1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/slab.h> 3 #include <linux/file.h> 4 #include <linux/fdtable.h> 5 #include <linux/freezer.h> 6 #include <linux/mm.h> 7 #include <linux/stat.h> 8 #include <linux/fcntl.h> 9 #include <linux/swap.h> 10 #include <linux/ctype.h> 11 #include <linux/string.h> 12 #include <linux/init.h> 13 #include <linux/pagemap.h> 14 #include <linux/perf_event.h> 15 #include <linux/highmem.h> 16 #include <linux/spinlock.h> 17 #include <linux/key.h> 18 #include <linux/personality.h> 19 #include <linux/binfmts.h> 20 #include <linux/coredump.h> 21 #include <linux/sched/coredump.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/utsname.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/module.h> 27 #include <linux/namei.h> 28 #include <linux/mount.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/tsacct_kern.h> 32 #include <linux/cn_proc.h> 33 #include <linux/audit.h> 34 #include <linux/tracehook.h> 35 #include <linux/kmod.h> 36 #include <linux/fsnotify.h> 37 #include <linux/fs_struct.h> 38 #include <linux/pipe_fs_i.h> 39 #include <linux/oom.h> 40 #include <linux/compat.h> 41 #include <linux/fs.h> 42 #include <linux/path.h> 43 #include <linux/timekeeping.h> 44 #include <linux/sysctl.h> 45 46 #include <linux/uaccess.h> 47 #include <asm/mmu_context.h> 48 #include <asm/tlb.h> 49 #include <asm/exec.h> 50 51 #include <trace/events/task.h> 52 #include "internal.h" 53 54 #include <trace/events/sched.h> 55 56 static int core_uses_pid; 57 static unsigned int core_pipe_limit; 58 static char core_pattern[CORENAME_MAX_SIZE] = "core"; 59 static int core_name_size = CORENAME_MAX_SIZE; 60 61 struct core_name { 62 char *corename; 63 int used, size; 64 }; 65 66 static int expand_corename(struct core_name *cn, int size) 67 { 68 char *corename = krealloc(cn->corename, size, GFP_KERNEL); 69 70 if (!corename) 71 return -ENOMEM; 72 73 if (size > core_name_size) /* racy but harmless */ 74 core_name_size = size; 75 76 cn->size = ksize(corename); 77 cn->corename = corename; 78 return 0; 79 } 80 81 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt, 82 va_list arg) 83 { 84 int free, need; 85 va_list arg_copy; 86 87 again: 88 free = cn->size - cn->used; 89 90 va_copy(arg_copy, arg); 91 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy); 92 va_end(arg_copy); 93 94 if (need < free) { 95 cn->used += need; 96 return 0; 97 } 98 99 if (!expand_corename(cn, cn->size + need - free + 1)) 100 goto again; 101 102 return -ENOMEM; 103 } 104 105 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...) 106 { 107 va_list arg; 108 int ret; 109 110 va_start(arg, fmt); 111 ret = cn_vprintf(cn, fmt, arg); 112 va_end(arg); 113 114 return ret; 115 } 116 117 static __printf(2, 3) 118 int cn_esc_printf(struct core_name *cn, const char *fmt, ...) 119 { 120 int cur = cn->used; 121 va_list arg; 122 int ret; 123 124 va_start(arg, fmt); 125 ret = cn_vprintf(cn, fmt, arg); 126 va_end(arg); 127 128 if (ret == 0) { 129 /* 130 * Ensure that this coredump name component can't cause the 131 * resulting corefile path to consist of a ".." or ".". 132 */ 133 if ((cn->used - cur == 1 && cn->corename[cur] == '.') || 134 (cn->used - cur == 2 && cn->corename[cur] == '.' 135 && cn->corename[cur+1] == '.')) 136 cn->corename[cur] = '!'; 137 138 /* 139 * Empty names are fishy and could be used to create a "//" in a 140 * corefile name, causing the coredump to happen one directory 141 * level too high. Enforce that all components of the core 142 * pattern are at least one character long. 143 */ 144 if (cn->used == cur) 145 ret = cn_printf(cn, "!"); 146 } 147 148 for (; cur < cn->used; ++cur) { 149 if (cn->corename[cur] == '/') 150 cn->corename[cur] = '!'; 151 } 152 return ret; 153 } 154 155 static int cn_print_exe_file(struct core_name *cn, bool name_only) 156 { 157 struct file *exe_file; 158 char *pathbuf, *path, *ptr; 159 int ret; 160 161 exe_file = get_mm_exe_file(current->mm); 162 if (!exe_file) 163 return cn_esc_printf(cn, "%s (path unknown)", current->comm); 164 165 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 166 if (!pathbuf) { 167 ret = -ENOMEM; 168 goto put_exe_file; 169 } 170 171 path = file_path(exe_file, pathbuf, PATH_MAX); 172 if (IS_ERR(path)) { 173 ret = PTR_ERR(path); 174 goto free_buf; 175 } 176 177 if (name_only) { 178 ptr = strrchr(path, '/'); 179 if (ptr) 180 path = ptr + 1; 181 } 182 ret = cn_esc_printf(cn, "%s", path); 183 184 free_buf: 185 kfree(pathbuf); 186 put_exe_file: 187 fput(exe_file); 188 return ret; 189 } 190 191 /* format_corename will inspect the pattern parameter, and output a 192 * name into corename, which must have space for at least 193 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 194 */ 195 static int format_corename(struct core_name *cn, struct coredump_params *cprm, 196 size_t **argv, int *argc) 197 { 198 const struct cred *cred = current_cred(); 199 const char *pat_ptr = core_pattern; 200 int ispipe = (*pat_ptr == '|'); 201 bool was_space = false; 202 int pid_in_pattern = 0; 203 int err = 0; 204 205 cn->used = 0; 206 cn->corename = NULL; 207 if (expand_corename(cn, core_name_size)) 208 return -ENOMEM; 209 cn->corename[0] = '\0'; 210 211 if (ispipe) { 212 int argvs = sizeof(core_pattern) / 2; 213 (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL); 214 if (!(*argv)) 215 return -ENOMEM; 216 (*argv)[(*argc)++] = 0; 217 ++pat_ptr; 218 if (!(*pat_ptr)) 219 return -ENOMEM; 220 } 221 222 /* Repeat as long as we have more pattern to process and more output 223 space */ 224 while (*pat_ptr) { 225 /* 226 * Split on spaces before doing template expansion so that 227 * %e and %E don't get split if they have spaces in them 228 */ 229 if (ispipe) { 230 if (isspace(*pat_ptr)) { 231 if (cn->used != 0) 232 was_space = true; 233 pat_ptr++; 234 continue; 235 } else if (was_space) { 236 was_space = false; 237 err = cn_printf(cn, "%c", '\0'); 238 if (err) 239 return err; 240 (*argv)[(*argc)++] = cn->used; 241 } 242 } 243 if (*pat_ptr != '%') { 244 err = cn_printf(cn, "%c", *pat_ptr++); 245 } else { 246 switch (*++pat_ptr) { 247 /* single % at the end, drop that */ 248 case 0: 249 goto out; 250 /* Double percent, output one percent */ 251 case '%': 252 err = cn_printf(cn, "%c", '%'); 253 break; 254 /* pid */ 255 case 'p': 256 pid_in_pattern = 1; 257 err = cn_printf(cn, "%d", 258 task_tgid_vnr(current)); 259 break; 260 /* global pid */ 261 case 'P': 262 err = cn_printf(cn, "%d", 263 task_tgid_nr(current)); 264 break; 265 case 'i': 266 err = cn_printf(cn, "%d", 267 task_pid_vnr(current)); 268 break; 269 case 'I': 270 err = cn_printf(cn, "%d", 271 task_pid_nr(current)); 272 break; 273 /* uid */ 274 case 'u': 275 err = cn_printf(cn, "%u", 276 from_kuid(&init_user_ns, 277 cred->uid)); 278 break; 279 /* gid */ 280 case 'g': 281 err = cn_printf(cn, "%u", 282 from_kgid(&init_user_ns, 283 cred->gid)); 284 break; 285 case 'd': 286 err = cn_printf(cn, "%d", 287 __get_dumpable(cprm->mm_flags)); 288 break; 289 /* signal that caused the coredump */ 290 case 's': 291 err = cn_printf(cn, "%d", 292 cprm->siginfo->si_signo); 293 break; 294 /* UNIX time of coredump */ 295 case 't': { 296 time64_t time; 297 298 time = ktime_get_real_seconds(); 299 err = cn_printf(cn, "%lld", time); 300 break; 301 } 302 /* hostname */ 303 case 'h': 304 down_read(&uts_sem); 305 err = cn_esc_printf(cn, "%s", 306 utsname()->nodename); 307 up_read(&uts_sem); 308 break; 309 /* executable, could be changed by prctl PR_SET_NAME etc */ 310 case 'e': 311 err = cn_esc_printf(cn, "%s", current->comm); 312 break; 313 /* file name of executable */ 314 case 'f': 315 err = cn_print_exe_file(cn, true); 316 break; 317 case 'E': 318 err = cn_print_exe_file(cn, false); 319 break; 320 /* core limit size */ 321 case 'c': 322 err = cn_printf(cn, "%lu", 323 rlimit(RLIMIT_CORE)); 324 break; 325 default: 326 break; 327 } 328 ++pat_ptr; 329 } 330 331 if (err) 332 return err; 333 } 334 335 out: 336 /* Backward compatibility with core_uses_pid: 337 * 338 * If core_pattern does not include a %p (as is the default) 339 * and core_uses_pid is set, then .%pid will be appended to 340 * the filename. Do not do this for piped commands. */ 341 if (!ispipe && !pid_in_pattern && core_uses_pid) { 342 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 343 if (err) 344 return err; 345 } 346 return ispipe; 347 } 348 349 static int zap_process(struct task_struct *start, int exit_code) 350 { 351 struct task_struct *t; 352 int nr = 0; 353 354 /* ignore all signals except SIGKILL, see prepare_signal() */ 355 start->signal->flags = SIGNAL_GROUP_EXIT; 356 start->signal->group_exit_code = exit_code; 357 start->signal->group_stop_count = 0; 358 359 for_each_thread(start, t) { 360 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 361 if (t != current && !(t->flags & PF_POSTCOREDUMP)) { 362 sigaddset(&t->pending.signal, SIGKILL); 363 signal_wake_up(t, 1); 364 nr++; 365 } 366 } 367 368 return nr; 369 } 370 371 static int zap_threads(struct task_struct *tsk, 372 struct core_state *core_state, int exit_code) 373 { 374 struct signal_struct *signal = tsk->signal; 375 int nr = -EAGAIN; 376 377 spin_lock_irq(&tsk->sighand->siglock); 378 if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) { 379 signal->core_state = core_state; 380 nr = zap_process(tsk, exit_code); 381 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 382 tsk->flags |= PF_DUMPCORE; 383 atomic_set(&core_state->nr_threads, nr); 384 } 385 spin_unlock_irq(&tsk->sighand->siglock); 386 return nr; 387 } 388 389 static int coredump_wait(int exit_code, struct core_state *core_state) 390 { 391 struct task_struct *tsk = current; 392 int core_waiters = -EBUSY; 393 394 init_completion(&core_state->startup); 395 core_state->dumper.task = tsk; 396 core_state->dumper.next = NULL; 397 398 core_waiters = zap_threads(tsk, core_state, exit_code); 399 if (core_waiters > 0) { 400 struct core_thread *ptr; 401 402 freezer_do_not_count(); 403 wait_for_completion(&core_state->startup); 404 freezer_count(); 405 /* 406 * Wait for all the threads to become inactive, so that 407 * all the thread context (extended register state, like 408 * fpu etc) gets copied to the memory. 409 */ 410 ptr = core_state->dumper.next; 411 while (ptr != NULL) { 412 wait_task_inactive(ptr->task, 0); 413 ptr = ptr->next; 414 } 415 } 416 417 return core_waiters; 418 } 419 420 static void coredump_finish(bool core_dumped) 421 { 422 struct core_thread *curr, *next; 423 struct task_struct *task; 424 425 spin_lock_irq(¤t->sighand->siglock); 426 if (core_dumped && !__fatal_signal_pending(current)) 427 current->signal->group_exit_code |= 0x80; 428 next = current->signal->core_state->dumper.next; 429 current->signal->core_state = NULL; 430 spin_unlock_irq(¤t->sighand->siglock); 431 432 while ((curr = next) != NULL) { 433 next = curr->next; 434 task = curr->task; 435 /* 436 * see coredump_task_exit(), curr->task must not see 437 * ->task == NULL before we read ->next. 438 */ 439 smp_mb(); 440 curr->task = NULL; 441 wake_up_process(task); 442 } 443 } 444 445 static bool dump_interrupted(void) 446 { 447 /* 448 * SIGKILL or freezing() interrupt the coredumping. Perhaps we 449 * can do try_to_freeze() and check __fatal_signal_pending(), 450 * but then we need to teach dump_write() to restart and clear 451 * TIF_SIGPENDING. 452 */ 453 return fatal_signal_pending(current) || freezing(current); 454 } 455 456 static void wait_for_dump_helpers(struct file *file) 457 { 458 struct pipe_inode_info *pipe = file->private_data; 459 460 pipe_lock(pipe); 461 pipe->readers++; 462 pipe->writers--; 463 wake_up_interruptible_sync(&pipe->rd_wait); 464 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 465 pipe_unlock(pipe); 466 467 /* 468 * We actually want wait_event_freezable() but then we need 469 * to clear TIF_SIGPENDING and improve dump_interrupted(). 470 */ 471 wait_event_interruptible(pipe->rd_wait, pipe->readers == 1); 472 473 pipe_lock(pipe); 474 pipe->readers--; 475 pipe->writers++; 476 pipe_unlock(pipe); 477 } 478 479 /* 480 * umh_pipe_setup 481 * helper function to customize the process used 482 * to collect the core in userspace. Specifically 483 * it sets up a pipe and installs it as fd 0 (stdin) 484 * for the process. Returns 0 on success, or 485 * PTR_ERR on failure. 486 * Note that it also sets the core limit to 1. This 487 * is a special value that we use to trap recursive 488 * core dumps 489 */ 490 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) 491 { 492 struct file *files[2]; 493 struct coredump_params *cp = (struct coredump_params *)info->data; 494 int err = create_pipe_files(files, 0); 495 if (err) 496 return err; 497 498 cp->file = files[1]; 499 500 err = replace_fd(0, files[0], 0); 501 fput(files[0]); 502 /* and disallow core files too */ 503 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 504 505 return err; 506 } 507 508 void do_coredump(const kernel_siginfo_t *siginfo) 509 { 510 struct core_state core_state; 511 struct core_name cn; 512 struct mm_struct *mm = current->mm; 513 struct linux_binfmt * binfmt; 514 const struct cred *old_cred; 515 struct cred *cred; 516 int retval = 0; 517 int ispipe; 518 size_t *argv = NULL; 519 int argc = 0; 520 /* require nonrelative corefile path and be extra careful */ 521 bool need_suid_safe = false; 522 bool core_dumped = false; 523 static atomic_t core_dump_count = ATOMIC_INIT(0); 524 struct coredump_params cprm = { 525 .siginfo = siginfo, 526 .regs = signal_pt_regs(), 527 .limit = rlimit(RLIMIT_CORE), 528 /* 529 * We must use the same mm->flags while dumping core to avoid 530 * inconsistency of bit flags, since this flag is not protected 531 * by any locks. 532 */ 533 .mm_flags = mm->flags, 534 }; 535 536 audit_core_dumps(siginfo->si_signo); 537 538 binfmt = mm->binfmt; 539 if (!binfmt || !binfmt->core_dump) 540 goto fail; 541 if (!__get_dumpable(cprm.mm_flags)) 542 goto fail; 543 544 cred = prepare_creds(); 545 if (!cred) 546 goto fail; 547 /* 548 * We cannot trust fsuid as being the "true" uid of the process 549 * nor do we know its entire history. We only know it was tainted 550 * so we dump it as root in mode 2, and only into a controlled 551 * environment (pipe handler or fully qualified path). 552 */ 553 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) { 554 /* Setuid core dump mode */ 555 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */ 556 need_suid_safe = true; 557 } 558 559 retval = coredump_wait(siginfo->si_signo, &core_state); 560 if (retval < 0) 561 goto fail_creds; 562 563 old_cred = override_creds(cred); 564 565 ispipe = format_corename(&cn, &cprm, &argv, &argc); 566 567 if (ispipe) { 568 int argi; 569 int dump_count; 570 char **helper_argv; 571 struct subprocess_info *sub_info; 572 573 if (ispipe < 0) { 574 printk(KERN_WARNING "format_corename failed\n"); 575 printk(KERN_WARNING "Aborting core\n"); 576 goto fail_unlock; 577 } 578 579 if (cprm.limit == 1) { 580 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1. 581 * 582 * Normally core limits are irrelevant to pipes, since 583 * we're not writing to the file system, but we use 584 * cprm.limit of 1 here as a special value, this is a 585 * consistent way to catch recursive crashes. 586 * We can still crash if the core_pattern binary sets 587 * RLIM_CORE = !1, but it runs as root, and can do 588 * lots of stupid things. 589 * 590 * Note that we use task_tgid_vnr here to grab the pid 591 * of the process group leader. That way we get the 592 * right pid if a thread in a multi-threaded 593 * core_pattern process dies. 594 */ 595 printk(KERN_WARNING 596 "Process %d(%s) has RLIMIT_CORE set to 1\n", 597 task_tgid_vnr(current), current->comm); 598 printk(KERN_WARNING "Aborting core\n"); 599 goto fail_unlock; 600 } 601 cprm.limit = RLIM_INFINITY; 602 603 dump_count = atomic_inc_return(&core_dump_count); 604 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 605 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 606 task_tgid_vnr(current), current->comm); 607 printk(KERN_WARNING "Skipping core dump\n"); 608 goto fail_dropcount; 609 } 610 611 helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv), 612 GFP_KERNEL); 613 if (!helper_argv) { 614 printk(KERN_WARNING "%s failed to allocate memory\n", 615 __func__); 616 goto fail_dropcount; 617 } 618 for (argi = 0; argi < argc; argi++) 619 helper_argv[argi] = cn.corename + argv[argi]; 620 helper_argv[argi] = NULL; 621 622 retval = -ENOMEM; 623 sub_info = call_usermodehelper_setup(helper_argv[0], 624 helper_argv, NULL, GFP_KERNEL, 625 umh_pipe_setup, NULL, &cprm); 626 if (sub_info) 627 retval = call_usermodehelper_exec(sub_info, 628 UMH_WAIT_EXEC); 629 630 kfree(helper_argv); 631 if (retval) { 632 printk(KERN_INFO "Core dump to |%s pipe failed\n", 633 cn.corename); 634 goto close_fail; 635 } 636 } else { 637 struct user_namespace *mnt_userns; 638 struct inode *inode; 639 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW | 640 O_LARGEFILE | O_EXCL; 641 642 if (cprm.limit < binfmt->min_coredump) 643 goto fail_unlock; 644 645 if (need_suid_safe && cn.corename[0] != '/') { 646 printk(KERN_WARNING "Pid %d(%s) can only dump core "\ 647 "to fully qualified path!\n", 648 task_tgid_vnr(current), current->comm); 649 printk(KERN_WARNING "Skipping core dump\n"); 650 goto fail_unlock; 651 } 652 653 /* 654 * Unlink the file if it exists unless this is a SUID 655 * binary - in that case, we're running around with root 656 * privs and don't want to unlink another user's coredump. 657 */ 658 if (!need_suid_safe) { 659 /* 660 * If it doesn't exist, that's fine. If there's some 661 * other problem, we'll catch it at the filp_open(). 662 */ 663 do_unlinkat(AT_FDCWD, getname_kernel(cn.corename)); 664 } 665 666 /* 667 * There is a race between unlinking and creating the 668 * file, but if that causes an EEXIST here, that's 669 * fine - another process raced with us while creating 670 * the corefile, and the other process won. To userspace, 671 * what matters is that at least one of the two processes 672 * writes its coredump successfully, not which one. 673 */ 674 if (need_suid_safe) { 675 /* 676 * Using user namespaces, normal user tasks can change 677 * their current->fs->root to point to arbitrary 678 * directories. Since the intention of the "only dump 679 * with a fully qualified path" rule is to control where 680 * coredumps may be placed using root privileges, 681 * current->fs->root must not be used. Instead, use the 682 * root directory of init_task. 683 */ 684 struct path root; 685 686 task_lock(&init_task); 687 get_fs_root(init_task.fs, &root); 688 task_unlock(&init_task); 689 cprm.file = file_open_root(&root, cn.corename, 690 open_flags, 0600); 691 path_put(&root); 692 } else { 693 cprm.file = filp_open(cn.corename, open_flags, 0600); 694 } 695 if (IS_ERR(cprm.file)) 696 goto fail_unlock; 697 698 inode = file_inode(cprm.file); 699 if (inode->i_nlink > 1) 700 goto close_fail; 701 if (d_unhashed(cprm.file->f_path.dentry)) 702 goto close_fail; 703 /* 704 * AK: actually i see no reason to not allow this for named 705 * pipes etc, but keep the previous behaviour for now. 706 */ 707 if (!S_ISREG(inode->i_mode)) 708 goto close_fail; 709 /* 710 * Don't dump core if the filesystem changed owner or mode 711 * of the file during file creation. This is an issue when 712 * a process dumps core while its cwd is e.g. on a vfat 713 * filesystem. 714 */ 715 mnt_userns = file_mnt_user_ns(cprm.file); 716 if (!uid_eq(i_uid_into_mnt(mnt_userns, inode), 717 current_fsuid())) { 718 pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n", 719 cn.corename); 720 goto close_fail; 721 } 722 if ((inode->i_mode & 0677) != 0600) { 723 pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n", 724 cn.corename); 725 goto close_fail; 726 } 727 if (!(cprm.file->f_mode & FMODE_CAN_WRITE)) 728 goto close_fail; 729 if (do_truncate(mnt_userns, cprm.file->f_path.dentry, 730 0, 0, cprm.file)) 731 goto close_fail; 732 } 733 734 /* get us an unshared descriptor table; almost always a no-op */ 735 /* The cell spufs coredump code reads the file descriptor tables */ 736 retval = unshare_files(); 737 if (retval) 738 goto close_fail; 739 if (!dump_interrupted()) { 740 /* 741 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would 742 * have this set to NULL. 743 */ 744 if (!cprm.file) { 745 pr_info("Core dump to |%s disabled\n", cn.corename); 746 goto close_fail; 747 } 748 file_start_write(cprm.file); 749 core_dumped = binfmt->core_dump(&cprm); 750 /* 751 * Ensures that file size is big enough to contain the current 752 * file postion. This prevents gdb from complaining about 753 * a truncated file if the last "write" to the file was 754 * dump_skip. 755 */ 756 if (cprm.to_skip) { 757 cprm.to_skip--; 758 dump_emit(&cprm, "", 1); 759 } 760 file_end_write(cprm.file); 761 } 762 if (ispipe && core_pipe_limit) 763 wait_for_dump_helpers(cprm.file); 764 close_fail: 765 if (cprm.file) 766 filp_close(cprm.file, NULL); 767 fail_dropcount: 768 if (ispipe) 769 atomic_dec(&core_dump_count); 770 fail_unlock: 771 kfree(argv); 772 kfree(cn.corename); 773 coredump_finish(core_dumped); 774 revert_creds(old_cred); 775 fail_creds: 776 put_cred(cred); 777 fail: 778 return; 779 } 780 781 /* 782 * Core dumping helper functions. These are the only things you should 783 * do on a core-file: use only these functions to write out all the 784 * necessary info. 785 */ 786 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr) 787 { 788 struct file *file = cprm->file; 789 loff_t pos = file->f_pos; 790 ssize_t n; 791 if (cprm->written + nr > cprm->limit) 792 return 0; 793 794 795 if (dump_interrupted()) 796 return 0; 797 n = __kernel_write(file, addr, nr, &pos); 798 if (n != nr) 799 return 0; 800 file->f_pos = pos; 801 cprm->written += n; 802 cprm->pos += n; 803 804 return 1; 805 } 806 807 static int __dump_skip(struct coredump_params *cprm, size_t nr) 808 { 809 static char zeroes[PAGE_SIZE]; 810 struct file *file = cprm->file; 811 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 812 if (dump_interrupted() || 813 file->f_op->llseek(file, nr, SEEK_CUR) < 0) 814 return 0; 815 cprm->pos += nr; 816 return 1; 817 } else { 818 while (nr > PAGE_SIZE) { 819 if (!__dump_emit(cprm, zeroes, PAGE_SIZE)) 820 return 0; 821 nr -= PAGE_SIZE; 822 } 823 return __dump_emit(cprm, zeroes, nr); 824 } 825 } 826 827 int dump_emit(struct coredump_params *cprm, const void *addr, int nr) 828 { 829 if (cprm->to_skip) { 830 if (!__dump_skip(cprm, cprm->to_skip)) 831 return 0; 832 cprm->to_skip = 0; 833 } 834 return __dump_emit(cprm, addr, nr); 835 } 836 EXPORT_SYMBOL(dump_emit); 837 838 void dump_skip_to(struct coredump_params *cprm, unsigned long pos) 839 { 840 cprm->to_skip = pos - cprm->pos; 841 } 842 EXPORT_SYMBOL(dump_skip_to); 843 844 void dump_skip(struct coredump_params *cprm, size_t nr) 845 { 846 cprm->to_skip += nr; 847 } 848 EXPORT_SYMBOL(dump_skip); 849 850 #ifdef CONFIG_ELF_CORE 851 int dump_user_range(struct coredump_params *cprm, unsigned long start, 852 unsigned long len) 853 { 854 unsigned long addr; 855 856 for (addr = start; addr < start + len; addr += PAGE_SIZE) { 857 struct page *page; 858 int stop; 859 860 /* 861 * To avoid having to allocate page tables for virtual address 862 * ranges that have never been used yet, and also to make it 863 * easy to generate sparse core files, use a helper that returns 864 * NULL when encountering an empty page table entry that would 865 * otherwise have been filled with the zero page. 866 */ 867 page = get_dump_page(addr); 868 if (page) { 869 void *kaddr = kmap_local_page(page); 870 871 stop = !dump_emit(cprm, kaddr, PAGE_SIZE); 872 kunmap_local(kaddr); 873 put_page(page); 874 if (stop) 875 return 0; 876 } else { 877 dump_skip(cprm, PAGE_SIZE); 878 } 879 } 880 return 1; 881 } 882 #endif 883 884 int dump_align(struct coredump_params *cprm, int align) 885 { 886 unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1); 887 if (align & (align - 1)) 888 return 0; 889 if (mod) 890 cprm->to_skip += align - mod; 891 return 1; 892 } 893 EXPORT_SYMBOL(dump_align); 894 895 #ifdef CONFIG_SYSCTL 896 897 void validate_coredump_safety(void) 898 { 899 if (suid_dumpable == SUID_DUMP_ROOT && 900 core_pattern[0] != '/' && core_pattern[0] != '|') { 901 pr_warn( 902 "Unsafe core_pattern used with fs.suid_dumpable=2.\n" 903 "Pipe handler or fully qualified core dump path required.\n" 904 "Set kernel.core_pattern before fs.suid_dumpable.\n" 905 ); 906 } 907 } 908 909 static int proc_dostring_coredump(struct ctl_table *table, int write, 910 void *buffer, size_t *lenp, loff_t *ppos) 911 { 912 int error = proc_dostring(table, write, buffer, lenp, ppos); 913 914 if (!error) 915 validate_coredump_safety(); 916 return error; 917 } 918 919 static struct ctl_table coredump_sysctls[] = { 920 { 921 .procname = "core_uses_pid", 922 .data = &core_uses_pid, 923 .maxlen = sizeof(int), 924 .mode = 0644, 925 .proc_handler = proc_dointvec, 926 }, 927 { 928 .procname = "core_pattern", 929 .data = core_pattern, 930 .maxlen = CORENAME_MAX_SIZE, 931 .mode = 0644, 932 .proc_handler = proc_dostring_coredump, 933 }, 934 { 935 .procname = "core_pipe_limit", 936 .data = &core_pipe_limit, 937 .maxlen = sizeof(unsigned int), 938 .mode = 0644, 939 .proc_handler = proc_dointvec, 940 }, 941 { } 942 }; 943 944 static int __init init_fs_coredump_sysctls(void) 945 { 946 register_sysctl_init("kernel", coredump_sysctls); 947 return 0; 948 } 949 fs_initcall(init_fs_coredump_sysctls); 950 #endif /* CONFIG_SYSCTL */ 951 952 /* 953 * The purpose of always_dump_vma() is to make sure that special kernel mappings 954 * that are useful for post-mortem analysis are included in every core dump. 955 * In that way we ensure that the core dump is fully interpretable later 956 * without matching up the same kernel and hardware config to see what PC values 957 * meant. These special mappings include - vDSO, vsyscall, and other 958 * architecture specific mappings 959 */ 960 static bool always_dump_vma(struct vm_area_struct *vma) 961 { 962 /* Any vsyscall mappings? */ 963 if (vma == get_gate_vma(vma->vm_mm)) 964 return true; 965 966 /* 967 * Assume that all vmas with a .name op should always be dumped. 968 * If this changes, a new vm_ops field can easily be added. 969 */ 970 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma)) 971 return true; 972 973 /* 974 * arch_vma_name() returns non-NULL for special architecture mappings, 975 * such as vDSO sections. 976 */ 977 if (arch_vma_name(vma)) 978 return true; 979 980 return false; 981 } 982 983 /* 984 * Decide how much of @vma's contents should be included in a core dump. 985 */ 986 static unsigned long vma_dump_size(struct vm_area_struct *vma, 987 unsigned long mm_flags) 988 { 989 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) 990 991 /* always dump the vdso and vsyscall sections */ 992 if (always_dump_vma(vma)) 993 goto whole; 994 995 if (vma->vm_flags & VM_DONTDUMP) 996 return 0; 997 998 /* support for DAX */ 999 if (vma_is_dax(vma)) { 1000 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED)) 1001 goto whole; 1002 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE)) 1003 goto whole; 1004 return 0; 1005 } 1006 1007 /* Hugetlb memory check */ 1008 if (is_vm_hugetlb_page(vma)) { 1009 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) 1010 goto whole; 1011 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) 1012 goto whole; 1013 return 0; 1014 } 1015 1016 /* Do not dump I/O mapped devices or special mappings */ 1017 if (vma->vm_flags & VM_IO) 1018 return 0; 1019 1020 /* By default, dump shared memory if mapped from an anonymous file. */ 1021 if (vma->vm_flags & VM_SHARED) { 1022 if (file_inode(vma->vm_file)->i_nlink == 0 ? 1023 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) 1024 goto whole; 1025 return 0; 1026 } 1027 1028 /* Dump segments that have been written to. */ 1029 if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE)) 1030 goto whole; 1031 if (vma->vm_file == NULL) 1032 return 0; 1033 1034 if (FILTER(MAPPED_PRIVATE)) 1035 goto whole; 1036 1037 /* 1038 * If this is the beginning of an executable file mapping, 1039 * dump the first page to aid in determining what was mapped here. 1040 */ 1041 if (FILTER(ELF_HEADERS) && 1042 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ) && 1043 (READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0) 1044 return PAGE_SIZE; 1045 1046 #undef FILTER 1047 1048 return 0; 1049 1050 whole: 1051 return vma->vm_end - vma->vm_start; 1052 } 1053 1054 static struct vm_area_struct *first_vma(struct task_struct *tsk, 1055 struct vm_area_struct *gate_vma) 1056 { 1057 struct vm_area_struct *ret = tsk->mm->mmap; 1058 1059 if (ret) 1060 return ret; 1061 return gate_vma; 1062 } 1063 1064 /* 1065 * Helper function for iterating across a vma list. It ensures that the caller 1066 * will visit `gate_vma' prior to terminating the search. 1067 */ 1068 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, 1069 struct vm_area_struct *gate_vma) 1070 { 1071 struct vm_area_struct *ret; 1072 1073 ret = this_vma->vm_next; 1074 if (ret) 1075 return ret; 1076 if (this_vma == gate_vma) 1077 return NULL; 1078 return gate_vma; 1079 } 1080 1081 /* 1082 * Under the mmap_lock, take a snapshot of relevant information about the task's 1083 * VMAs. 1084 */ 1085 int dump_vma_snapshot(struct coredump_params *cprm, int *vma_count, 1086 struct core_vma_metadata **vma_meta, 1087 size_t *vma_data_size_ptr) 1088 { 1089 struct vm_area_struct *vma, *gate_vma; 1090 struct mm_struct *mm = current->mm; 1091 int i; 1092 size_t vma_data_size = 0; 1093 1094 /* 1095 * Once the stack expansion code is fixed to not change VMA bounds 1096 * under mmap_lock in read mode, this can be changed to take the 1097 * mmap_lock in read mode. 1098 */ 1099 if (mmap_write_lock_killable(mm)) 1100 return -EINTR; 1101 1102 gate_vma = get_gate_vma(mm); 1103 *vma_count = mm->map_count + (gate_vma ? 1 : 0); 1104 1105 *vma_meta = kvmalloc_array(*vma_count, sizeof(**vma_meta), GFP_KERNEL); 1106 if (!*vma_meta) { 1107 mmap_write_unlock(mm); 1108 return -ENOMEM; 1109 } 1110 1111 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; 1112 vma = next_vma(vma, gate_vma), i++) { 1113 struct core_vma_metadata *m = (*vma_meta) + i; 1114 1115 m->start = vma->vm_start; 1116 m->end = vma->vm_end; 1117 m->flags = vma->vm_flags; 1118 m->dump_size = vma_dump_size(vma, cprm->mm_flags); 1119 1120 vma_data_size += m->dump_size; 1121 } 1122 1123 mmap_write_unlock(mm); 1124 1125 if (WARN_ON(i != *vma_count)) { 1126 kvfree(*vma_meta); 1127 return -EFAULT; 1128 } 1129 1130 *vma_data_size_ptr = vma_data_size; 1131 return 0; 1132 } 1133