xref: /openbmc/linux/fs/coredump.c (revision bcd684aa)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/tracehook.h>
35 #include <linux/kmod.h>
36 #include <linux/fsnotify.h>
37 #include <linux/fs_struct.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/oom.h>
40 #include <linux/compat.h>
41 #include <linux/fs.h>
42 #include <linux/path.h>
43 #include <linux/timekeeping.h>
44 
45 #include <linux/uaccess.h>
46 #include <asm/mmu_context.h>
47 #include <asm/tlb.h>
48 #include <asm/exec.h>
49 
50 #include <trace/events/task.h>
51 #include "internal.h"
52 
53 #include <trace/events/sched.h>
54 
55 int core_uses_pid;
56 unsigned int core_pipe_limit;
57 char core_pattern[CORENAME_MAX_SIZE] = "core";
58 static int core_name_size = CORENAME_MAX_SIZE;
59 
60 struct core_name {
61 	char *corename;
62 	int used, size;
63 };
64 
65 /* The maximal length of core_pattern is also specified in sysctl.c */
66 
67 static int expand_corename(struct core_name *cn, int size)
68 {
69 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
70 
71 	if (!corename)
72 		return -ENOMEM;
73 
74 	if (size > core_name_size) /* racy but harmless */
75 		core_name_size = size;
76 
77 	cn->size = ksize(corename);
78 	cn->corename = corename;
79 	return 0;
80 }
81 
82 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
83 				     va_list arg)
84 {
85 	int free, need;
86 	va_list arg_copy;
87 
88 again:
89 	free = cn->size - cn->used;
90 
91 	va_copy(arg_copy, arg);
92 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
93 	va_end(arg_copy);
94 
95 	if (need < free) {
96 		cn->used += need;
97 		return 0;
98 	}
99 
100 	if (!expand_corename(cn, cn->size + need - free + 1))
101 		goto again;
102 
103 	return -ENOMEM;
104 }
105 
106 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
107 {
108 	va_list arg;
109 	int ret;
110 
111 	va_start(arg, fmt);
112 	ret = cn_vprintf(cn, fmt, arg);
113 	va_end(arg);
114 
115 	return ret;
116 }
117 
118 static __printf(2, 3)
119 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
120 {
121 	int cur = cn->used;
122 	va_list arg;
123 	int ret;
124 
125 	va_start(arg, fmt);
126 	ret = cn_vprintf(cn, fmt, arg);
127 	va_end(arg);
128 
129 	if (ret == 0) {
130 		/*
131 		 * Ensure that this coredump name component can't cause the
132 		 * resulting corefile path to consist of a ".." or ".".
133 		 */
134 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
135 				(cn->used - cur == 2 && cn->corename[cur] == '.'
136 				&& cn->corename[cur+1] == '.'))
137 			cn->corename[cur] = '!';
138 
139 		/*
140 		 * Empty names are fishy and could be used to create a "//" in a
141 		 * corefile name, causing the coredump to happen one directory
142 		 * level too high. Enforce that all components of the core
143 		 * pattern are at least one character long.
144 		 */
145 		if (cn->used == cur)
146 			ret = cn_printf(cn, "!");
147 	}
148 
149 	for (; cur < cn->used; ++cur) {
150 		if (cn->corename[cur] == '/')
151 			cn->corename[cur] = '!';
152 	}
153 	return ret;
154 }
155 
156 static int cn_print_exe_file(struct core_name *cn, bool name_only)
157 {
158 	struct file *exe_file;
159 	char *pathbuf, *path, *ptr;
160 	int ret;
161 
162 	exe_file = get_mm_exe_file(current->mm);
163 	if (!exe_file)
164 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
165 
166 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
167 	if (!pathbuf) {
168 		ret = -ENOMEM;
169 		goto put_exe_file;
170 	}
171 
172 	path = file_path(exe_file, pathbuf, PATH_MAX);
173 	if (IS_ERR(path)) {
174 		ret = PTR_ERR(path);
175 		goto free_buf;
176 	}
177 
178 	if (name_only) {
179 		ptr = strrchr(path, '/');
180 		if (ptr)
181 			path = ptr + 1;
182 	}
183 	ret = cn_esc_printf(cn, "%s", path);
184 
185 free_buf:
186 	kfree(pathbuf);
187 put_exe_file:
188 	fput(exe_file);
189 	return ret;
190 }
191 
192 /* format_corename will inspect the pattern parameter, and output a
193  * name into corename, which must have space for at least
194  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
195  */
196 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
197 			   size_t **argv, int *argc)
198 {
199 	const struct cred *cred = current_cred();
200 	const char *pat_ptr = core_pattern;
201 	int ispipe = (*pat_ptr == '|');
202 	bool was_space = false;
203 	int pid_in_pattern = 0;
204 	int err = 0;
205 
206 	cn->used = 0;
207 	cn->corename = NULL;
208 	if (expand_corename(cn, core_name_size))
209 		return -ENOMEM;
210 	cn->corename[0] = '\0';
211 
212 	if (ispipe) {
213 		int argvs = sizeof(core_pattern) / 2;
214 		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
215 		if (!(*argv))
216 			return -ENOMEM;
217 		(*argv)[(*argc)++] = 0;
218 		++pat_ptr;
219 		if (!(*pat_ptr))
220 			return -ENOMEM;
221 	}
222 
223 	/* Repeat as long as we have more pattern to process and more output
224 	   space */
225 	while (*pat_ptr) {
226 		/*
227 		 * Split on spaces before doing template expansion so that
228 		 * %e and %E don't get split if they have spaces in them
229 		 */
230 		if (ispipe) {
231 			if (isspace(*pat_ptr)) {
232 				was_space = true;
233 				pat_ptr++;
234 				continue;
235 			} else if (was_space) {
236 				was_space = false;
237 				err = cn_printf(cn, "%c", '\0');
238 				if (err)
239 					return err;
240 				(*argv)[(*argc)++] = cn->used;
241 			}
242 		}
243 		if (*pat_ptr != '%') {
244 			err = cn_printf(cn, "%c", *pat_ptr++);
245 		} else {
246 			switch (*++pat_ptr) {
247 			/* single % at the end, drop that */
248 			case 0:
249 				goto out;
250 			/* Double percent, output one percent */
251 			case '%':
252 				err = cn_printf(cn, "%c", '%');
253 				break;
254 			/* pid */
255 			case 'p':
256 				pid_in_pattern = 1;
257 				err = cn_printf(cn, "%d",
258 					      task_tgid_vnr(current));
259 				break;
260 			/* global pid */
261 			case 'P':
262 				err = cn_printf(cn, "%d",
263 					      task_tgid_nr(current));
264 				break;
265 			case 'i':
266 				err = cn_printf(cn, "%d",
267 					      task_pid_vnr(current));
268 				break;
269 			case 'I':
270 				err = cn_printf(cn, "%d",
271 					      task_pid_nr(current));
272 				break;
273 			/* uid */
274 			case 'u':
275 				err = cn_printf(cn, "%u",
276 						from_kuid(&init_user_ns,
277 							  cred->uid));
278 				break;
279 			/* gid */
280 			case 'g':
281 				err = cn_printf(cn, "%u",
282 						from_kgid(&init_user_ns,
283 							  cred->gid));
284 				break;
285 			case 'd':
286 				err = cn_printf(cn, "%d",
287 					__get_dumpable(cprm->mm_flags));
288 				break;
289 			/* signal that caused the coredump */
290 			case 's':
291 				err = cn_printf(cn, "%d",
292 						cprm->siginfo->si_signo);
293 				break;
294 			/* UNIX time of coredump */
295 			case 't': {
296 				time64_t time;
297 
298 				time = ktime_get_real_seconds();
299 				err = cn_printf(cn, "%lld", time);
300 				break;
301 			}
302 			/* hostname */
303 			case 'h':
304 				down_read(&uts_sem);
305 				err = cn_esc_printf(cn, "%s",
306 					      utsname()->nodename);
307 				up_read(&uts_sem);
308 				break;
309 			/* executable, could be changed by prctl PR_SET_NAME etc */
310 			case 'e':
311 				err = cn_esc_printf(cn, "%s", current->comm);
312 				break;
313 			/* file name of executable */
314 			case 'f':
315 				err = cn_print_exe_file(cn, true);
316 				break;
317 			case 'E':
318 				err = cn_print_exe_file(cn, false);
319 				break;
320 			/* core limit size */
321 			case 'c':
322 				err = cn_printf(cn, "%lu",
323 					      rlimit(RLIMIT_CORE));
324 				break;
325 			default:
326 				break;
327 			}
328 			++pat_ptr;
329 		}
330 
331 		if (err)
332 			return err;
333 	}
334 
335 out:
336 	/* Backward compatibility with core_uses_pid:
337 	 *
338 	 * If core_pattern does not include a %p (as is the default)
339 	 * and core_uses_pid is set, then .%pid will be appended to
340 	 * the filename. Do not do this for piped commands. */
341 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
342 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
343 		if (err)
344 			return err;
345 	}
346 	return ispipe;
347 }
348 
349 static int zap_process(struct task_struct *start, int exit_code, int flags)
350 {
351 	struct task_struct *t;
352 	int nr = 0;
353 
354 	/* ignore all signals except SIGKILL, see prepare_signal() */
355 	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
356 	start->signal->group_exit_code = exit_code;
357 	start->signal->group_stop_count = 0;
358 
359 	for_each_thread(start, t) {
360 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
361 		if (t != current && t->mm) {
362 			sigaddset(&t->pending.signal, SIGKILL);
363 			signal_wake_up(t, 1);
364 			nr++;
365 		}
366 	}
367 
368 	return nr;
369 }
370 
371 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
372 			struct core_state *core_state, int exit_code)
373 {
374 	struct task_struct *g, *p;
375 	unsigned long flags;
376 	int nr = -EAGAIN;
377 
378 	spin_lock_irq(&tsk->sighand->siglock);
379 	if (!signal_group_exit(tsk->signal)) {
380 		mm->core_state = core_state;
381 		tsk->signal->group_exit_task = tsk;
382 		nr = zap_process(tsk, exit_code, 0);
383 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
384 	}
385 	spin_unlock_irq(&tsk->sighand->siglock);
386 	if (unlikely(nr < 0))
387 		return nr;
388 
389 	tsk->flags |= PF_DUMPCORE;
390 	if (atomic_read(&mm->mm_users) == nr + 1)
391 		goto done;
392 	/*
393 	 * We should find and kill all tasks which use this mm, and we should
394 	 * count them correctly into ->nr_threads. We don't take tasklist
395 	 * lock, but this is safe wrt:
396 	 *
397 	 * fork:
398 	 *	None of sub-threads can fork after zap_process(leader). All
399 	 *	processes which were created before this point should be
400 	 *	visible to zap_threads() because copy_process() adds the new
401 	 *	process to the tail of init_task.tasks list, and lock/unlock
402 	 *	of ->siglock provides a memory barrier.
403 	 *
404 	 * do_exit:
405 	 *	The caller holds mm->mmap_lock. This means that the task which
406 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
407 	 *	its ->mm.
408 	 *
409 	 * de_thread:
410 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
411 	 *	we must see either old or new leader, this does not matter.
412 	 *	However, it can change p->sighand, so lock_task_sighand(p)
413 	 *	must be used. Since p->mm != NULL and we hold ->mmap_lock
414 	 *	it can't fail.
415 	 *
416 	 *	Note also that "g" can be the old leader with ->mm == NULL
417 	 *	and already unhashed and thus removed from ->thread_group.
418 	 *	This is OK, __unhash_process()->list_del_rcu() does not
419 	 *	clear the ->next pointer, we will find the new leader via
420 	 *	next_thread().
421 	 */
422 	rcu_read_lock();
423 	for_each_process(g) {
424 		if (g == tsk->group_leader)
425 			continue;
426 		if (g->flags & PF_KTHREAD)
427 			continue;
428 
429 		for_each_thread(g, p) {
430 			if (unlikely(!p->mm))
431 				continue;
432 			if (unlikely(p->mm == mm)) {
433 				lock_task_sighand(p, &flags);
434 				nr += zap_process(p, exit_code,
435 							SIGNAL_GROUP_EXIT);
436 				unlock_task_sighand(p, &flags);
437 			}
438 			break;
439 		}
440 	}
441 	rcu_read_unlock();
442 done:
443 	atomic_set(&core_state->nr_threads, nr);
444 	return nr;
445 }
446 
447 static int coredump_wait(int exit_code, struct core_state *core_state)
448 {
449 	struct task_struct *tsk = current;
450 	struct mm_struct *mm = tsk->mm;
451 	int core_waiters = -EBUSY;
452 
453 	init_completion(&core_state->startup);
454 	core_state->dumper.task = tsk;
455 	core_state->dumper.next = NULL;
456 
457 	if (mmap_write_lock_killable(mm))
458 		return -EINTR;
459 
460 	if (!mm->core_state)
461 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
462 	mmap_write_unlock(mm);
463 
464 	if (core_waiters > 0) {
465 		struct core_thread *ptr;
466 
467 		freezer_do_not_count();
468 		wait_for_completion(&core_state->startup);
469 		freezer_count();
470 		/*
471 		 * Wait for all the threads to become inactive, so that
472 		 * all the thread context (extended register state, like
473 		 * fpu etc) gets copied to the memory.
474 		 */
475 		ptr = core_state->dumper.next;
476 		while (ptr != NULL) {
477 			wait_task_inactive(ptr->task, 0);
478 			ptr = ptr->next;
479 		}
480 	}
481 
482 	return core_waiters;
483 }
484 
485 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
486 {
487 	struct core_thread *curr, *next;
488 	struct task_struct *task;
489 
490 	spin_lock_irq(&current->sighand->siglock);
491 	if (core_dumped && !__fatal_signal_pending(current))
492 		current->signal->group_exit_code |= 0x80;
493 	current->signal->group_exit_task = NULL;
494 	current->signal->flags = SIGNAL_GROUP_EXIT;
495 	spin_unlock_irq(&current->sighand->siglock);
496 
497 	next = mm->core_state->dumper.next;
498 	while ((curr = next) != NULL) {
499 		next = curr->next;
500 		task = curr->task;
501 		/*
502 		 * see exit_mm(), curr->task must not see
503 		 * ->task == NULL before we read ->next.
504 		 */
505 		smp_mb();
506 		curr->task = NULL;
507 		wake_up_process(task);
508 	}
509 
510 	mm->core_state = NULL;
511 }
512 
513 static bool dump_interrupted(void)
514 {
515 	/*
516 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
517 	 * can do try_to_freeze() and check __fatal_signal_pending(),
518 	 * but then we need to teach dump_write() to restart and clear
519 	 * TIF_SIGPENDING.
520 	 */
521 	return signal_pending(current);
522 }
523 
524 static void wait_for_dump_helpers(struct file *file)
525 {
526 	struct pipe_inode_info *pipe = file->private_data;
527 
528 	pipe_lock(pipe);
529 	pipe->readers++;
530 	pipe->writers--;
531 	wake_up_interruptible_sync(&pipe->rd_wait);
532 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
533 	pipe_unlock(pipe);
534 
535 	/*
536 	 * We actually want wait_event_freezable() but then we need
537 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
538 	 */
539 	wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
540 
541 	pipe_lock(pipe);
542 	pipe->readers--;
543 	pipe->writers++;
544 	pipe_unlock(pipe);
545 }
546 
547 /*
548  * umh_pipe_setup
549  * helper function to customize the process used
550  * to collect the core in userspace.  Specifically
551  * it sets up a pipe and installs it as fd 0 (stdin)
552  * for the process.  Returns 0 on success, or
553  * PTR_ERR on failure.
554  * Note that it also sets the core limit to 1.  This
555  * is a special value that we use to trap recursive
556  * core dumps
557  */
558 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
559 {
560 	struct file *files[2];
561 	struct coredump_params *cp = (struct coredump_params *)info->data;
562 	int err = create_pipe_files(files, 0);
563 	if (err)
564 		return err;
565 
566 	cp->file = files[1];
567 
568 	err = replace_fd(0, files[0], 0);
569 	fput(files[0]);
570 	/* and disallow core files too */
571 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
572 
573 	return err;
574 }
575 
576 void do_coredump(const kernel_siginfo_t *siginfo)
577 {
578 	struct core_state core_state;
579 	struct core_name cn;
580 	struct mm_struct *mm = current->mm;
581 	struct linux_binfmt * binfmt;
582 	const struct cred *old_cred;
583 	struct cred *cred;
584 	int retval = 0;
585 	int ispipe;
586 	size_t *argv = NULL;
587 	int argc = 0;
588 	struct files_struct *displaced;
589 	/* require nonrelative corefile path and be extra careful */
590 	bool need_suid_safe = false;
591 	bool core_dumped = false;
592 	static atomic_t core_dump_count = ATOMIC_INIT(0);
593 	struct coredump_params cprm = {
594 		.siginfo = siginfo,
595 		.regs = signal_pt_regs(),
596 		.limit = rlimit(RLIMIT_CORE),
597 		/*
598 		 * We must use the same mm->flags while dumping core to avoid
599 		 * inconsistency of bit flags, since this flag is not protected
600 		 * by any locks.
601 		 */
602 		.mm_flags = mm->flags,
603 	};
604 
605 	audit_core_dumps(siginfo->si_signo);
606 
607 	binfmt = mm->binfmt;
608 	if (!binfmt || !binfmt->core_dump)
609 		goto fail;
610 	if (!__get_dumpable(cprm.mm_flags))
611 		goto fail;
612 
613 	cred = prepare_creds();
614 	if (!cred)
615 		goto fail;
616 	/*
617 	 * We cannot trust fsuid as being the "true" uid of the process
618 	 * nor do we know its entire history. We only know it was tainted
619 	 * so we dump it as root in mode 2, and only into a controlled
620 	 * environment (pipe handler or fully qualified path).
621 	 */
622 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
623 		/* Setuid core dump mode */
624 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
625 		need_suid_safe = true;
626 	}
627 
628 	retval = coredump_wait(siginfo->si_signo, &core_state);
629 	if (retval < 0)
630 		goto fail_creds;
631 
632 	old_cred = override_creds(cred);
633 
634 	ispipe = format_corename(&cn, &cprm, &argv, &argc);
635 
636 	if (ispipe) {
637 		int argi;
638 		int dump_count;
639 		char **helper_argv;
640 		struct subprocess_info *sub_info;
641 
642 		if (ispipe < 0) {
643 			printk(KERN_WARNING "format_corename failed\n");
644 			printk(KERN_WARNING "Aborting core\n");
645 			goto fail_unlock;
646 		}
647 
648 		if (cprm.limit == 1) {
649 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
650 			 *
651 			 * Normally core limits are irrelevant to pipes, since
652 			 * we're not writing to the file system, but we use
653 			 * cprm.limit of 1 here as a special value, this is a
654 			 * consistent way to catch recursive crashes.
655 			 * We can still crash if the core_pattern binary sets
656 			 * RLIM_CORE = !1, but it runs as root, and can do
657 			 * lots of stupid things.
658 			 *
659 			 * Note that we use task_tgid_vnr here to grab the pid
660 			 * of the process group leader.  That way we get the
661 			 * right pid if a thread in a multi-threaded
662 			 * core_pattern process dies.
663 			 */
664 			printk(KERN_WARNING
665 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
666 				task_tgid_vnr(current), current->comm);
667 			printk(KERN_WARNING "Aborting core\n");
668 			goto fail_unlock;
669 		}
670 		cprm.limit = RLIM_INFINITY;
671 
672 		dump_count = atomic_inc_return(&core_dump_count);
673 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
674 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
675 			       task_tgid_vnr(current), current->comm);
676 			printk(KERN_WARNING "Skipping core dump\n");
677 			goto fail_dropcount;
678 		}
679 
680 		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
681 					    GFP_KERNEL);
682 		if (!helper_argv) {
683 			printk(KERN_WARNING "%s failed to allocate memory\n",
684 			       __func__);
685 			goto fail_dropcount;
686 		}
687 		for (argi = 0; argi < argc; argi++)
688 			helper_argv[argi] = cn.corename + argv[argi];
689 		helper_argv[argi] = NULL;
690 
691 		retval = -ENOMEM;
692 		sub_info = call_usermodehelper_setup(helper_argv[0],
693 						helper_argv, NULL, GFP_KERNEL,
694 						umh_pipe_setup, NULL, &cprm);
695 		if (sub_info)
696 			retval = call_usermodehelper_exec(sub_info,
697 							  UMH_WAIT_EXEC);
698 
699 		kfree(helper_argv);
700 		if (retval) {
701 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
702 			       cn.corename);
703 			goto close_fail;
704 		}
705 	} else {
706 		struct inode *inode;
707 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
708 				 O_LARGEFILE | O_EXCL;
709 
710 		if (cprm.limit < binfmt->min_coredump)
711 			goto fail_unlock;
712 
713 		if (need_suid_safe && cn.corename[0] != '/') {
714 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
715 				"to fully qualified path!\n",
716 				task_tgid_vnr(current), current->comm);
717 			printk(KERN_WARNING "Skipping core dump\n");
718 			goto fail_unlock;
719 		}
720 
721 		/*
722 		 * Unlink the file if it exists unless this is a SUID
723 		 * binary - in that case, we're running around with root
724 		 * privs and don't want to unlink another user's coredump.
725 		 */
726 		if (!need_suid_safe) {
727 			/*
728 			 * If it doesn't exist, that's fine. If there's some
729 			 * other problem, we'll catch it at the filp_open().
730 			 */
731 			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
732 		}
733 
734 		/*
735 		 * There is a race between unlinking and creating the
736 		 * file, but if that causes an EEXIST here, that's
737 		 * fine - another process raced with us while creating
738 		 * the corefile, and the other process won. To userspace,
739 		 * what matters is that at least one of the two processes
740 		 * writes its coredump successfully, not which one.
741 		 */
742 		if (need_suid_safe) {
743 			/*
744 			 * Using user namespaces, normal user tasks can change
745 			 * their current->fs->root to point to arbitrary
746 			 * directories. Since the intention of the "only dump
747 			 * with a fully qualified path" rule is to control where
748 			 * coredumps may be placed using root privileges,
749 			 * current->fs->root must not be used. Instead, use the
750 			 * root directory of init_task.
751 			 */
752 			struct path root;
753 
754 			task_lock(&init_task);
755 			get_fs_root(init_task.fs, &root);
756 			task_unlock(&init_task);
757 			cprm.file = file_open_root(root.dentry, root.mnt,
758 				cn.corename, open_flags, 0600);
759 			path_put(&root);
760 		} else {
761 			cprm.file = filp_open(cn.corename, open_flags, 0600);
762 		}
763 		if (IS_ERR(cprm.file))
764 			goto fail_unlock;
765 
766 		inode = file_inode(cprm.file);
767 		if (inode->i_nlink > 1)
768 			goto close_fail;
769 		if (d_unhashed(cprm.file->f_path.dentry))
770 			goto close_fail;
771 		/*
772 		 * AK: actually i see no reason to not allow this for named
773 		 * pipes etc, but keep the previous behaviour for now.
774 		 */
775 		if (!S_ISREG(inode->i_mode))
776 			goto close_fail;
777 		/*
778 		 * Don't dump core if the filesystem changed owner or mode
779 		 * of the file during file creation. This is an issue when
780 		 * a process dumps core while its cwd is e.g. on a vfat
781 		 * filesystem.
782 		 */
783 		if (!uid_eq(inode->i_uid, current_fsuid()))
784 			goto close_fail;
785 		if ((inode->i_mode & 0677) != 0600)
786 			goto close_fail;
787 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
788 			goto close_fail;
789 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
790 			goto close_fail;
791 	}
792 
793 	/* get us an unshared descriptor table; almost always a no-op */
794 	retval = unshare_files(&displaced);
795 	if (retval)
796 		goto close_fail;
797 	if (displaced)
798 		put_files_struct(displaced);
799 	if (!dump_interrupted()) {
800 		/*
801 		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
802 		 * have this set to NULL.
803 		 */
804 		if (!cprm.file) {
805 			pr_info("Core dump to |%s disabled\n", cn.corename);
806 			goto close_fail;
807 		}
808 		file_start_write(cprm.file);
809 		core_dumped = binfmt->core_dump(&cprm);
810 		file_end_write(cprm.file);
811 	}
812 	if (ispipe && core_pipe_limit)
813 		wait_for_dump_helpers(cprm.file);
814 close_fail:
815 	if (cprm.file)
816 		filp_close(cprm.file, NULL);
817 fail_dropcount:
818 	if (ispipe)
819 		atomic_dec(&core_dump_count);
820 fail_unlock:
821 	kfree(argv);
822 	kfree(cn.corename);
823 	coredump_finish(mm, core_dumped);
824 	revert_creds(old_cred);
825 fail_creds:
826 	put_cred(cred);
827 fail:
828 	return;
829 }
830 
831 /*
832  * Core dumping helper functions.  These are the only things you should
833  * do on a core-file: use only these functions to write out all the
834  * necessary info.
835  */
836 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
837 {
838 	struct file *file = cprm->file;
839 	loff_t pos = file->f_pos;
840 	ssize_t n;
841 	if (cprm->written + nr > cprm->limit)
842 		return 0;
843 
844 
845 	if (dump_interrupted())
846 		return 0;
847 	n = __kernel_write(file, addr, nr, &pos);
848 	if (n != nr)
849 		return 0;
850 	file->f_pos = pos;
851 	cprm->written += n;
852 	cprm->pos += n;
853 
854 	return 1;
855 }
856 EXPORT_SYMBOL(dump_emit);
857 
858 int dump_skip(struct coredump_params *cprm, size_t nr)
859 {
860 	static char zeroes[PAGE_SIZE];
861 	struct file *file = cprm->file;
862 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
863 		if (dump_interrupted() ||
864 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
865 			return 0;
866 		cprm->pos += nr;
867 		return 1;
868 	} else {
869 		while (nr > PAGE_SIZE) {
870 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
871 				return 0;
872 			nr -= PAGE_SIZE;
873 		}
874 		return dump_emit(cprm, zeroes, nr);
875 	}
876 }
877 EXPORT_SYMBOL(dump_skip);
878 
879 #ifdef CONFIG_ELF_CORE
880 int dump_user_range(struct coredump_params *cprm, unsigned long start,
881 		    unsigned long len)
882 {
883 	unsigned long addr;
884 
885 	for (addr = start; addr < start + len; addr += PAGE_SIZE) {
886 		struct page *page;
887 		int stop;
888 
889 		/*
890 		 * To avoid having to allocate page tables for virtual address
891 		 * ranges that have never been used yet, and also to make it
892 		 * easy to generate sparse core files, use a helper that returns
893 		 * NULL when encountering an empty page table entry that would
894 		 * otherwise have been filled with the zero page.
895 		 */
896 		page = get_dump_page(addr);
897 		if (page) {
898 			void *kaddr = kmap(page);
899 
900 			stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
901 			kunmap(page);
902 			put_page(page);
903 		} else {
904 			stop = !dump_skip(cprm, PAGE_SIZE);
905 		}
906 		if (stop)
907 			return 0;
908 	}
909 	return 1;
910 }
911 #endif
912 
913 int dump_align(struct coredump_params *cprm, int align)
914 {
915 	unsigned mod = cprm->pos & (align - 1);
916 	if (align & (align - 1))
917 		return 0;
918 	return mod ? dump_skip(cprm, align - mod) : 1;
919 }
920 EXPORT_SYMBOL(dump_align);
921 
922 /*
923  * Ensures that file size is big enough to contain the current file
924  * postion. This prevents gdb from complaining about a truncated file
925  * if the last "write" to the file was dump_skip.
926  */
927 void dump_truncate(struct coredump_params *cprm)
928 {
929 	struct file *file = cprm->file;
930 	loff_t offset;
931 
932 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
933 		offset = file->f_op->llseek(file, 0, SEEK_CUR);
934 		if (i_size_read(file->f_mapping->host) < offset)
935 			do_truncate(file->f_path.dentry, offset, 0, file);
936 	}
937 }
938 EXPORT_SYMBOL(dump_truncate);
939 
940 /*
941  * The purpose of always_dump_vma() is to make sure that special kernel mappings
942  * that are useful for post-mortem analysis are included in every core dump.
943  * In that way we ensure that the core dump is fully interpretable later
944  * without matching up the same kernel and hardware config to see what PC values
945  * meant. These special mappings include - vDSO, vsyscall, and other
946  * architecture specific mappings
947  */
948 static bool always_dump_vma(struct vm_area_struct *vma)
949 {
950 	/* Any vsyscall mappings? */
951 	if (vma == get_gate_vma(vma->vm_mm))
952 		return true;
953 
954 	/*
955 	 * Assume that all vmas with a .name op should always be dumped.
956 	 * If this changes, a new vm_ops field can easily be added.
957 	 */
958 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
959 		return true;
960 
961 	/*
962 	 * arch_vma_name() returns non-NULL for special architecture mappings,
963 	 * such as vDSO sections.
964 	 */
965 	if (arch_vma_name(vma))
966 		return true;
967 
968 	return false;
969 }
970 
971 /*
972  * Decide how much of @vma's contents should be included in a core dump.
973  */
974 static unsigned long vma_dump_size(struct vm_area_struct *vma,
975 				   unsigned long mm_flags)
976 {
977 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
978 
979 	/* always dump the vdso and vsyscall sections */
980 	if (always_dump_vma(vma))
981 		goto whole;
982 
983 	if (vma->vm_flags & VM_DONTDUMP)
984 		return 0;
985 
986 	/* support for DAX */
987 	if (vma_is_dax(vma)) {
988 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
989 			goto whole;
990 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
991 			goto whole;
992 		return 0;
993 	}
994 
995 	/* Hugetlb memory check */
996 	if (is_vm_hugetlb_page(vma)) {
997 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
998 			goto whole;
999 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1000 			goto whole;
1001 		return 0;
1002 	}
1003 
1004 	/* Do not dump I/O mapped devices or special mappings */
1005 	if (vma->vm_flags & VM_IO)
1006 		return 0;
1007 
1008 	/* By default, dump shared memory if mapped from an anonymous file. */
1009 	if (vma->vm_flags & VM_SHARED) {
1010 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1011 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1012 			goto whole;
1013 		return 0;
1014 	}
1015 
1016 	/* Dump segments that have been written to.  */
1017 	if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1018 		goto whole;
1019 	if (vma->vm_file == NULL)
1020 		return 0;
1021 
1022 	if (FILTER(MAPPED_PRIVATE))
1023 		goto whole;
1024 
1025 	/*
1026 	 * If this is the beginning of an executable file mapping,
1027 	 * dump the first page to aid in determining what was mapped here.
1028 	 */
1029 	if (FILTER(ELF_HEADERS) &&
1030 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ) &&
1031 	    (READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1032 		return PAGE_SIZE;
1033 
1034 #undef	FILTER
1035 
1036 	return 0;
1037 
1038 whole:
1039 	return vma->vm_end - vma->vm_start;
1040 }
1041 
1042 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1043 					struct vm_area_struct *gate_vma)
1044 {
1045 	struct vm_area_struct *ret = tsk->mm->mmap;
1046 
1047 	if (ret)
1048 		return ret;
1049 	return gate_vma;
1050 }
1051 
1052 /*
1053  * Helper function for iterating across a vma list.  It ensures that the caller
1054  * will visit `gate_vma' prior to terminating the search.
1055  */
1056 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1057 				       struct vm_area_struct *gate_vma)
1058 {
1059 	struct vm_area_struct *ret;
1060 
1061 	ret = this_vma->vm_next;
1062 	if (ret)
1063 		return ret;
1064 	if (this_vma == gate_vma)
1065 		return NULL;
1066 	return gate_vma;
1067 }
1068 
1069 /*
1070  * Under the mmap_lock, take a snapshot of relevant information about the task's
1071  * VMAs.
1072  */
1073 int dump_vma_snapshot(struct coredump_params *cprm, int *vma_count,
1074 		      struct core_vma_metadata **vma_meta,
1075 		      size_t *vma_data_size_ptr)
1076 {
1077 	struct vm_area_struct *vma, *gate_vma;
1078 	struct mm_struct *mm = current->mm;
1079 	int i;
1080 	size_t vma_data_size = 0;
1081 
1082 	/*
1083 	 * Once the stack expansion code is fixed to not change VMA bounds
1084 	 * under mmap_lock in read mode, this can be changed to take the
1085 	 * mmap_lock in read mode.
1086 	 */
1087 	if (mmap_write_lock_killable(mm))
1088 		return -EINTR;
1089 
1090 	gate_vma = get_gate_vma(mm);
1091 	*vma_count = mm->map_count + (gate_vma ? 1 : 0);
1092 
1093 	*vma_meta = kvmalloc_array(*vma_count, sizeof(**vma_meta), GFP_KERNEL);
1094 	if (!*vma_meta) {
1095 		mmap_write_unlock(mm);
1096 		return -ENOMEM;
1097 	}
1098 
1099 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
1100 			vma = next_vma(vma, gate_vma), i++) {
1101 		struct core_vma_metadata *m = (*vma_meta) + i;
1102 
1103 		m->start = vma->vm_start;
1104 		m->end = vma->vm_end;
1105 		m->flags = vma->vm_flags;
1106 		m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1107 
1108 		vma_data_size += m->dump_size;
1109 	}
1110 
1111 	mmap_write_unlock(mm);
1112 
1113 	if (WARN_ON(i != *vma_count))
1114 		return -EFAULT;
1115 
1116 	*vma_data_size_ptr = vma_data_size;
1117 	return 0;
1118 }
1119