1 #include <linux/slab.h> 2 #include <linux/file.h> 3 #include <linux/fdtable.h> 4 #include <linux/mm.h> 5 #include <linux/stat.h> 6 #include <linux/fcntl.h> 7 #include <linux/swap.h> 8 #include <linux/string.h> 9 #include <linux/init.h> 10 #include <linux/pagemap.h> 11 #include <linux/perf_event.h> 12 #include <linux/highmem.h> 13 #include <linux/spinlock.h> 14 #include <linux/key.h> 15 #include <linux/personality.h> 16 #include <linux/binfmts.h> 17 #include <linux/coredump.h> 18 #include <linux/utsname.h> 19 #include <linux/pid_namespace.h> 20 #include <linux/module.h> 21 #include <linux/namei.h> 22 #include <linux/mount.h> 23 #include <linux/security.h> 24 #include <linux/syscalls.h> 25 #include <linux/tsacct_kern.h> 26 #include <linux/cn_proc.h> 27 #include <linux/audit.h> 28 #include <linux/tracehook.h> 29 #include <linux/kmod.h> 30 #include <linux/fsnotify.h> 31 #include <linux/fs_struct.h> 32 #include <linux/pipe_fs_i.h> 33 #include <linux/oom.h> 34 #include <linux/compat.h> 35 36 #include <asm/uaccess.h> 37 #include <asm/mmu_context.h> 38 #include <asm/tlb.h> 39 #include <asm/exec.h> 40 41 #include <trace/events/task.h> 42 #include "internal.h" 43 44 #include <trace/events/sched.h> 45 46 int core_uses_pid; 47 unsigned int core_pipe_limit; 48 char core_pattern[CORENAME_MAX_SIZE] = "core"; 49 static int core_name_size = CORENAME_MAX_SIZE; 50 51 struct core_name { 52 char *corename; 53 int used, size; 54 }; 55 56 /* The maximal length of core_pattern is also specified in sysctl.c */ 57 58 static int expand_corename(struct core_name *cn, int size) 59 { 60 char *corename = krealloc(cn->corename, size, GFP_KERNEL); 61 62 if (!corename) 63 return -ENOMEM; 64 65 if (size > core_name_size) /* racy but harmless */ 66 core_name_size = size; 67 68 cn->size = ksize(corename); 69 cn->corename = corename; 70 return 0; 71 } 72 73 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt, 74 va_list arg) 75 { 76 int free, need; 77 va_list arg_copy; 78 79 again: 80 free = cn->size - cn->used; 81 82 va_copy(arg_copy, arg); 83 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy); 84 va_end(arg_copy); 85 86 if (need < free) { 87 cn->used += need; 88 return 0; 89 } 90 91 if (!expand_corename(cn, cn->size + need - free + 1)) 92 goto again; 93 94 return -ENOMEM; 95 } 96 97 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...) 98 { 99 va_list arg; 100 int ret; 101 102 va_start(arg, fmt); 103 ret = cn_vprintf(cn, fmt, arg); 104 va_end(arg); 105 106 return ret; 107 } 108 109 static __printf(2, 3) 110 int cn_esc_printf(struct core_name *cn, const char *fmt, ...) 111 { 112 int cur = cn->used; 113 va_list arg; 114 int ret; 115 116 va_start(arg, fmt); 117 ret = cn_vprintf(cn, fmt, arg); 118 va_end(arg); 119 120 for (; cur < cn->used; ++cur) { 121 if (cn->corename[cur] == '/') 122 cn->corename[cur] = '!'; 123 } 124 return ret; 125 } 126 127 static int cn_print_exe_file(struct core_name *cn) 128 { 129 struct file *exe_file; 130 char *pathbuf, *path; 131 int ret; 132 133 exe_file = get_mm_exe_file(current->mm); 134 if (!exe_file) 135 return cn_esc_printf(cn, "%s (path unknown)", current->comm); 136 137 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY); 138 if (!pathbuf) { 139 ret = -ENOMEM; 140 goto put_exe_file; 141 } 142 143 path = file_path(exe_file, pathbuf, PATH_MAX); 144 if (IS_ERR(path)) { 145 ret = PTR_ERR(path); 146 goto free_buf; 147 } 148 149 ret = cn_esc_printf(cn, "%s", path); 150 151 free_buf: 152 kfree(pathbuf); 153 put_exe_file: 154 fput(exe_file); 155 return ret; 156 } 157 158 /* format_corename will inspect the pattern parameter, and output a 159 * name into corename, which must have space for at least 160 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 161 */ 162 static int format_corename(struct core_name *cn, struct coredump_params *cprm) 163 { 164 const struct cred *cred = current_cred(); 165 const char *pat_ptr = core_pattern; 166 int ispipe = (*pat_ptr == '|'); 167 int pid_in_pattern = 0; 168 int err = 0; 169 170 cn->used = 0; 171 cn->corename = NULL; 172 if (expand_corename(cn, core_name_size)) 173 return -ENOMEM; 174 cn->corename[0] = '\0'; 175 176 if (ispipe) 177 ++pat_ptr; 178 179 /* Repeat as long as we have more pattern to process and more output 180 space */ 181 while (*pat_ptr) { 182 if (*pat_ptr != '%') { 183 err = cn_printf(cn, "%c", *pat_ptr++); 184 } else { 185 switch (*++pat_ptr) { 186 /* single % at the end, drop that */ 187 case 0: 188 goto out; 189 /* Double percent, output one percent */ 190 case '%': 191 err = cn_printf(cn, "%c", '%'); 192 break; 193 /* pid */ 194 case 'p': 195 pid_in_pattern = 1; 196 err = cn_printf(cn, "%d", 197 task_tgid_vnr(current)); 198 break; 199 /* global pid */ 200 case 'P': 201 err = cn_printf(cn, "%d", 202 task_tgid_nr(current)); 203 break; 204 case 'i': 205 err = cn_printf(cn, "%d", 206 task_pid_vnr(current)); 207 break; 208 case 'I': 209 err = cn_printf(cn, "%d", 210 task_pid_nr(current)); 211 break; 212 /* uid */ 213 case 'u': 214 err = cn_printf(cn, "%u", 215 from_kuid(&init_user_ns, 216 cred->uid)); 217 break; 218 /* gid */ 219 case 'g': 220 err = cn_printf(cn, "%u", 221 from_kgid(&init_user_ns, 222 cred->gid)); 223 break; 224 case 'd': 225 err = cn_printf(cn, "%d", 226 __get_dumpable(cprm->mm_flags)); 227 break; 228 /* signal that caused the coredump */ 229 case 's': 230 err = cn_printf(cn, "%d", 231 cprm->siginfo->si_signo); 232 break; 233 /* UNIX time of coredump */ 234 case 't': { 235 struct timeval tv; 236 do_gettimeofday(&tv); 237 err = cn_printf(cn, "%lu", tv.tv_sec); 238 break; 239 } 240 /* hostname */ 241 case 'h': 242 down_read(&uts_sem); 243 err = cn_esc_printf(cn, "%s", 244 utsname()->nodename); 245 up_read(&uts_sem); 246 break; 247 /* executable */ 248 case 'e': 249 err = cn_esc_printf(cn, "%s", current->comm); 250 break; 251 case 'E': 252 err = cn_print_exe_file(cn); 253 break; 254 /* core limit size */ 255 case 'c': 256 err = cn_printf(cn, "%lu", 257 rlimit(RLIMIT_CORE)); 258 break; 259 default: 260 break; 261 } 262 ++pat_ptr; 263 } 264 265 if (err) 266 return err; 267 } 268 269 out: 270 /* Backward compatibility with core_uses_pid: 271 * 272 * If core_pattern does not include a %p (as is the default) 273 * and core_uses_pid is set, then .%pid will be appended to 274 * the filename. Do not do this for piped commands. */ 275 if (!ispipe && !pid_in_pattern && core_uses_pid) { 276 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 277 if (err) 278 return err; 279 } 280 return ispipe; 281 } 282 283 static int zap_process(struct task_struct *start, int exit_code, int flags) 284 { 285 struct task_struct *t; 286 int nr = 0; 287 288 /* ignore all signals except SIGKILL, see prepare_signal() */ 289 start->signal->flags = SIGNAL_GROUP_COREDUMP | flags; 290 start->signal->group_exit_code = exit_code; 291 start->signal->group_stop_count = 0; 292 293 for_each_thread(start, t) { 294 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 295 if (t != current && t->mm) { 296 sigaddset(&t->pending.signal, SIGKILL); 297 signal_wake_up(t, 1); 298 nr++; 299 } 300 } 301 302 return nr; 303 } 304 305 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 306 struct core_state *core_state, int exit_code) 307 { 308 struct task_struct *g, *p; 309 unsigned long flags; 310 int nr = -EAGAIN; 311 312 spin_lock_irq(&tsk->sighand->siglock); 313 if (!signal_group_exit(tsk->signal)) { 314 mm->core_state = core_state; 315 tsk->signal->group_exit_task = tsk; 316 nr = zap_process(tsk, exit_code, 0); 317 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 318 } 319 spin_unlock_irq(&tsk->sighand->siglock); 320 if (unlikely(nr < 0)) 321 return nr; 322 323 tsk->flags |= PF_DUMPCORE; 324 if (atomic_read(&mm->mm_users) == nr + 1) 325 goto done; 326 /* 327 * We should find and kill all tasks which use this mm, and we should 328 * count them correctly into ->nr_threads. We don't take tasklist 329 * lock, but this is safe wrt: 330 * 331 * fork: 332 * None of sub-threads can fork after zap_process(leader). All 333 * processes which were created before this point should be 334 * visible to zap_threads() because copy_process() adds the new 335 * process to the tail of init_task.tasks list, and lock/unlock 336 * of ->siglock provides a memory barrier. 337 * 338 * do_exit: 339 * The caller holds mm->mmap_sem. This means that the task which 340 * uses this mm can't pass exit_mm(), so it can't exit or clear 341 * its ->mm. 342 * 343 * de_thread: 344 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 345 * we must see either old or new leader, this does not matter. 346 * However, it can change p->sighand, so lock_task_sighand(p) 347 * must be used. Since p->mm != NULL and we hold ->mmap_sem 348 * it can't fail. 349 * 350 * Note also that "g" can be the old leader with ->mm == NULL 351 * and already unhashed and thus removed from ->thread_group. 352 * This is OK, __unhash_process()->list_del_rcu() does not 353 * clear the ->next pointer, we will find the new leader via 354 * next_thread(). 355 */ 356 rcu_read_lock(); 357 for_each_process(g) { 358 if (g == tsk->group_leader) 359 continue; 360 if (g->flags & PF_KTHREAD) 361 continue; 362 363 for_each_thread(g, p) { 364 if (unlikely(!p->mm)) 365 continue; 366 if (unlikely(p->mm == mm)) { 367 lock_task_sighand(p, &flags); 368 nr += zap_process(p, exit_code, 369 SIGNAL_GROUP_EXIT); 370 unlock_task_sighand(p, &flags); 371 } 372 break; 373 } 374 } 375 rcu_read_unlock(); 376 done: 377 atomic_set(&core_state->nr_threads, nr); 378 return nr; 379 } 380 381 static int coredump_wait(int exit_code, struct core_state *core_state) 382 { 383 struct task_struct *tsk = current; 384 struct mm_struct *mm = tsk->mm; 385 int core_waiters = -EBUSY; 386 387 init_completion(&core_state->startup); 388 core_state->dumper.task = tsk; 389 core_state->dumper.next = NULL; 390 391 down_write(&mm->mmap_sem); 392 if (!mm->core_state) 393 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 394 up_write(&mm->mmap_sem); 395 396 if (core_waiters > 0) { 397 struct core_thread *ptr; 398 399 wait_for_completion(&core_state->startup); 400 /* 401 * Wait for all the threads to become inactive, so that 402 * all the thread context (extended register state, like 403 * fpu etc) gets copied to the memory. 404 */ 405 ptr = core_state->dumper.next; 406 while (ptr != NULL) { 407 wait_task_inactive(ptr->task, 0); 408 ptr = ptr->next; 409 } 410 } 411 412 return core_waiters; 413 } 414 415 static void coredump_finish(struct mm_struct *mm, bool core_dumped) 416 { 417 struct core_thread *curr, *next; 418 struct task_struct *task; 419 420 spin_lock_irq(¤t->sighand->siglock); 421 if (core_dumped && !__fatal_signal_pending(current)) 422 current->signal->group_exit_code |= 0x80; 423 current->signal->group_exit_task = NULL; 424 current->signal->flags = SIGNAL_GROUP_EXIT; 425 spin_unlock_irq(¤t->sighand->siglock); 426 427 next = mm->core_state->dumper.next; 428 while ((curr = next) != NULL) { 429 next = curr->next; 430 task = curr->task; 431 /* 432 * see exit_mm(), curr->task must not see 433 * ->task == NULL before we read ->next. 434 */ 435 smp_mb(); 436 curr->task = NULL; 437 wake_up_process(task); 438 } 439 440 mm->core_state = NULL; 441 } 442 443 static bool dump_interrupted(void) 444 { 445 /* 446 * SIGKILL or freezing() interrupt the coredumping. Perhaps we 447 * can do try_to_freeze() and check __fatal_signal_pending(), 448 * but then we need to teach dump_write() to restart and clear 449 * TIF_SIGPENDING. 450 */ 451 return signal_pending(current); 452 } 453 454 static void wait_for_dump_helpers(struct file *file) 455 { 456 struct pipe_inode_info *pipe = file->private_data; 457 458 pipe_lock(pipe); 459 pipe->readers++; 460 pipe->writers--; 461 wake_up_interruptible_sync(&pipe->wait); 462 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 463 pipe_unlock(pipe); 464 465 /* 466 * We actually want wait_event_freezable() but then we need 467 * to clear TIF_SIGPENDING and improve dump_interrupted(). 468 */ 469 wait_event_interruptible(pipe->wait, pipe->readers == 1); 470 471 pipe_lock(pipe); 472 pipe->readers--; 473 pipe->writers++; 474 pipe_unlock(pipe); 475 } 476 477 /* 478 * umh_pipe_setup 479 * helper function to customize the process used 480 * to collect the core in userspace. Specifically 481 * it sets up a pipe and installs it as fd 0 (stdin) 482 * for the process. Returns 0 on success, or 483 * PTR_ERR on failure. 484 * Note that it also sets the core limit to 1. This 485 * is a special value that we use to trap recursive 486 * core dumps 487 */ 488 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) 489 { 490 struct file *files[2]; 491 struct coredump_params *cp = (struct coredump_params *)info->data; 492 int err = create_pipe_files(files, 0); 493 if (err) 494 return err; 495 496 cp->file = files[1]; 497 498 err = replace_fd(0, files[0], 0); 499 fput(files[0]); 500 /* and disallow core files too */ 501 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 502 503 return err; 504 } 505 506 void do_coredump(const siginfo_t *siginfo) 507 { 508 struct core_state core_state; 509 struct core_name cn; 510 struct mm_struct *mm = current->mm; 511 struct linux_binfmt * binfmt; 512 const struct cred *old_cred; 513 struct cred *cred; 514 int retval = 0; 515 int ispipe; 516 struct files_struct *displaced; 517 /* require nonrelative corefile path and be extra careful */ 518 bool need_suid_safe = false; 519 bool core_dumped = false; 520 static atomic_t core_dump_count = ATOMIC_INIT(0); 521 struct coredump_params cprm = { 522 .siginfo = siginfo, 523 .regs = signal_pt_regs(), 524 .limit = rlimit(RLIMIT_CORE), 525 /* 526 * We must use the same mm->flags while dumping core to avoid 527 * inconsistency of bit flags, since this flag is not protected 528 * by any locks. 529 */ 530 .mm_flags = mm->flags, 531 }; 532 533 audit_core_dumps(siginfo->si_signo); 534 535 binfmt = mm->binfmt; 536 if (!binfmt || !binfmt->core_dump) 537 goto fail; 538 if (!__get_dumpable(cprm.mm_flags)) 539 goto fail; 540 541 cred = prepare_creds(); 542 if (!cred) 543 goto fail; 544 /* 545 * We cannot trust fsuid as being the "true" uid of the process 546 * nor do we know its entire history. We only know it was tainted 547 * so we dump it as root in mode 2, and only into a controlled 548 * environment (pipe handler or fully qualified path). 549 */ 550 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) { 551 /* Setuid core dump mode */ 552 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */ 553 need_suid_safe = true; 554 } 555 556 retval = coredump_wait(siginfo->si_signo, &core_state); 557 if (retval < 0) 558 goto fail_creds; 559 560 old_cred = override_creds(cred); 561 562 ispipe = format_corename(&cn, &cprm); 563 564 if (ispipe) { 565 int dump_count; 566 char **helper_argv; 567 struct subprocess_info *sub_info; 568 569 if (ispipe < 0) { 570 printk(KERN_WARNING "format_corename failed\n"); 571 printk(KERN_WARNING "Aborting core\n"); 572 goto fail_unlock; 573 } 574 575 if (cprm.limit == 1) { 576 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1. 577 * 578 * Normally core limits are irrelevant to pipes, since 579 * we're not writing to the file system, but we use 580 * cprm.limit of 1 here as a special value, this is a 581 * consistent way to catch recursive crashes. 582 * We can still crash if the core_pattern binary sets 583 * RLIM_CORE = !1, but it runs as root, and can do 584 * lots of stupid things. 585 * 586 * Note that we use task_tgid_vnr here to grab the pid 587 * of the process group leader. That way we get the 588 * right pid if a thread in a multi-threaded 589 * core_pattern process dies. 590 */ 591 printk(KERN_WARNING 592 "Process %d(%s) has RLIMIT_CORE set to 1\n", 593 task_tgid_vnr(current), current->comm); 594 printk(KERN_WARNING "Aborting core\n"); 595 goto fail_unlock; 596 } 597 cprm.limit = RLIM_INFINITY; 598 599 dump_count = atomic_inc_return(&core_dump_count); 600 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 601 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 602 task_tgid_vnr(current), current->comm); 603 printk(KERN_WARNING "Skipping core dump\n"); 604 goto fail_dropcount; 605 } 606 607 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL); 608 if (!helper_argv) { 609 printk(KERN_WARNING "%s failed to allocate memory\n", 610 __func__); 611 goto fail_dropcount; 612 } 613 614 retval = -ENOMEM; 615 sub_info = call_usermodehelper_setup(helper_argv[0], 616 helper_argv, NULL, GFP_KERNEL, 617 umh_pipe_setup, NULL, &cprm); 618 if (sub_info) 619 retval = call_usermodehelper_exec(sub_info, 620 UMH_WAIT_EXEC); 621 622 argv_free(helper_argv); 623 if (retval) { 624 printk(KERN_INFO "Core dump to |%s pipe failed\n", 625 cn.corename); 626 goto close_fail; 627 } 628 } else { 629 struct inode *inode; 630 631 if (cprm.limit < binfmt->min_coredump) 632 goto fail_unlock; 633 634 if (need_suid_safe && cn.corename[0] != '/') { 635 printk(KERN_WARNING "Pid %d(%s) can only dump core "\ 636 "to fully qualified path!\n", 637 task_tgid_vnr(current), current->comm); 638 printk(KERN_WARNING "Skipping core dump\n"); 639 goto fail_unlock; 640 } 641 642 /* 643 * Unlink the file if it exists unless this is a SUID 644 * binary - in that case, we're running around with root 645 * privs and don't want to unlink another user's coredump. 646 */ 647 if (!need_suid_safe) { 648 mm_segment_t old_fs; 649 650 old_fs = get_fs(); 651 set_fs(KERNEL_DS); 652 /* 653 * If it doesn't exist, that's fine. If there's some 654 * other problem, we'll catch it at the filp_open(). 655 */ 656 (void) sys_unlink((const char __user *)cn.corename); 657 set_fs(old_fs); 658 } 659 660 /* 661 * There is a race between unlinking and creating the 662 * file, but if that causes an EEXIST here, that's 663 * fine - another process raced with us while creating 664 * the corefile, and the other process won. To userspace, 665 * what matters is that at least one of the two processes 666 * writes its coredump successfully, not which one. 667 */ 668 cprm.file = filp_open(cn.corename, 669 O_CREAT | 2 | O_NOFOLLOW | 670 O_LARGEFILE | O_EXCL, 671 0600); 672 if (IS_ERR(cprm.file)) 673 goto fail_unlock; 674 675 inode = file_inode(cprm.file); 676 if (inode->i_nlink > 1) 677 goto close_fail; 678 if (d_unhashed(cprm.file->f_path.dentry)) 679 goto close_fail; 680 /* 681 * AK: actually i see no reason to not allow this for named 682 * pipes etc, but keep the previous behaviour for now. 683 */ 684 if (!S_ISREG(inode->i_mode)) 685 goto close_fail; 686 /* 687 * Don't dump core if the filesystem changed owner or mode 688 * of the file during file creation. This is an issue when 689 * a process dumps core while its cwd is e.g. on a vfat 690 * filesystem. 691 */ 692 if (!uid_eq(inode->i_uid, current_fsuid())) 693 goto close_fail; 694 if ((inode->i_mode & 0677) != 0600) 695 goto close_fail; 696 if (!(cprm.file->f_mode & FMODE_CAN_WRITE)) 697 goto close_fail; 698 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 699 goto close_fail; 700 } 701 702 /* get us an unshared descriptor table; almost always a no-op */ 703 retval = unshare_files(&displaced); 704 if (retval) 705 goto close_fail; 706 if (displaced) 707 put_files_struct(displaced); 708 if (!dump_interrupted()) { 709 file_start_write(cprm.file); 710 core_dumped = binfmt->core_dump(&cprm); 711 file_end_write(cprm.file); 712 } 713 if (ispipe && core_pipe_limit) 714 wait_for_dump_helpers(cprm.file); 715 close_fail: 716 if (cprm.file) 717 filp_close(cprm.file, NULL); 718 fail_dropcount: 719 if (ispipe) 720 atomic_dec(&core_dump_count); 721 fail_unlock: 722 kfree(cn.corename); 723 coredump_finish(mm, core_dumped); 724 revert_creds(old_cred); 725 fail_creds: 726 put_cred(cred); 727 fail: 728 return; 729 } 730 731 /* 732 * Core dumping helper functions. These are the only things you should 733 * do on a core-file: use only these functions to write out all the 734 * necessary info. 735 */ 736 int dump_emit(struct coredump_params *cprm, const void *addr, int nr) 737 { 738 struct file *file = cprm->file; 739 loff_t pos = file->f_pos; 740 ssize_t n; 741 if (cprm->written + nr > cprm->limit) 742 return 0; 743 while (nr) { 744 if (dump_interrupted()) 745 return 0; 746 n = __kernel_write(file, addr, nr, &pos); 747 if (n <= 0) 748 return 0; 749 file->f_pos = pos; 750 cprm->written += n; 751 nr -= n; 752 } 753 return 1; 754 } 755 EXPORT_SYMBOL(dump_emit); 756 757 int dump_skip(struct coredump_params *cprm, size_t nr) 758 { 759 static char zeroes[PAGE_SIZE]; 760 struct file *file = cprm->file; 761 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 762 if (cprm->written + nr > cprm->limit) 763 return 0; 764 if (dump_interrupted() || 765 file->f_op->llseek(file, nr, SEEK_CUR) < 0) 766 return 0; 767 cprm->written += nr; 768 return 1; 769 } else { 770 while (nr > PAGE_SIZE) { 771 if (!dump_emit(cprm, zeroes, PAGE_SIZE)) 772 return 0; 773 nr -= PAGE_SIZE; 774 } 775 return dump_emit(cprm, zeroes, nr); 776 } 777 } 778 EXPORT_SYMBOL(dump_skip); 779 780 int dump_align(struct coredump_params *cprm, int align) 781 { 782 unsigned mod = cprm->written & (align - 1); 783 if (align & (align - 1)) 784 return 0; 785 return mod ? dump_skip(cprm, align - mod) : 1; 786 } 787 EXPORT_SYMBOL(dump_align); 788