xref: /openbmc/linux/fs/coredump.c (revision 9a69abf8)
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlb.h>
39 #include <asm/exec.h>
40 
41 #include <trace/events/task.h>
42 #include "internal.h"
43 #include "coredump.h"
44 
45 #include <trace/events/sched.h>
46 
47 int core_uses_pid;
48 char core_pattern[CORENAME_MAX_SIZE] = "core";
49 unsigned int core_pipe_limit;
50 
51 struct core_name {
52 	char *corename;
53 	int used, size;
54 };
55 static atomic_t call_count = ATOMIC_INIT(1);
56 
57 /* The maximal length of core_pattern is also specified in sysctl.c */
58 
59 static int expand_corename(struct core_name *cn)
60 {
61 	char *old_corename = cn->corename;
62 
63 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
64 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
65 
66 	if (!cn->corename) {
67 		kfree(old_corename);
68 		return -ENOMEM;
69 	}
70 
71 	return 0;
72 }
73 
74 static int cn_printf(struct core_name *cn, const char *fmt, ...)
75 {
76 	char *cur;
77 	int need;
78 	int ret;
79 	va_list arg;
80 
81 	va_start(arg, fmt);
82 	need = vsnprintf(NULL, 0, fmt, arg);
83 	va_end(arg);
84 
85 	if (likely(need < cn->size - cn->used - 1))
86 		goto out_printf;
87 
88 	ret = expand_corename(cn);
89 	if (ret)
90 		goto expand_fail;
91 
92 out_printf:
93 	cur = cn->corename + cn->used;
94 	va_start(arg, fmt);
95 	vsnprintf(cur, need + 1, fmt, arg);
96 	va_end(arg);
97 	cn->used += need;
98 	return 0;
99 
100 expand_fail:
101 	return ret;
102 }
103 
104 static void cn_escape(char *str)
105 {
106 	for (; *str; str++)
107 		if (*str == '/')
108 			*str = '!';
109 }
110 
111 static int cn_print_exe_file(struct core_name *cn)
112 {
113 	struct file *exe_file;
114 	char *pathbuf, *path;
115 	int ret;
116 
117 	exe_file = get_mm_exe_file(current->mm);
118 	if (!exe_file) {
119 		char *commstart = cn->corename + cn->used;
120 		ret = cn_printf(cn, "%s (path unknown)", current->comm);
121 		cn_escape(commstart);
122 		return ret;
123 	}
124 
125 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
126 	if (!pathbuf) {
127 		ret = -ENOMEM;
128 		goto put_exe_file;
129 	}
130 
131 	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
132 	if (IS_ERR(path)) {
133 		ret = PTR_ERR(path);
134 		goto free_buf;
135 	}
136 
137 	cn_escape(path);
138 
139 	ret = cn_printf(cn, "%s", path);
140 
141 free_buf:
142 	kfree(pathbuf);
143 put_exe_file:
144 	fput(exe_file);
145 	return ret;
146 }
147 
148 /* format_corename will inspect the pattern parameter, and output a
149  * name into corename, which must have space for at least
150  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
151  */
152 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
153 {
154 	const struct cred *cred = current_cred();
155 	const char *pat_ptr = core_pattern;
156 	int ispipe = (*pat_ptr == '|');
157 	int pid_in_pattern = 0;
158 	int err = 0;
159 
160 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
161 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
162 	cn->used = 0;
163 
164 	if (!cn->corename)
165 		return -ENOMEM;
166 
167 	/* Repeat as long as we have more pattern to process and more output
168 	   space */
169 	while (*pat_ptr) {
170 		if (*pat_ptr != '%') {
171 			if (*pat_ptr == 0)
172 				goto out;
173 			err = cn_printf(cn, "%c", *pat_ptr++);
174 		} else {
175 			switch (*++pat_ptr) {
176 			/* single % at the end, drop that */
177 			case 0:
178 				goto out;
179 			/* Double percent, output one percent */
180 			case '%':
181 				err = cn_printf(cn, "%c", '%');
182 				break;
183 			/* pid */
184 			case 'p':
185 				pid_in_pattern = 1;
186 				err = cn_printf(cn, "%d",
187 					      task_tgid_vnr(current));
188 				break;
189 			/* uid */
190 			case 'u':
191 				err = cn_printf(cn, "%d", cred->uid);
192 				break;
193 			/* gid */
194 			case 'g':
195 				err = cn_printf(cn, "%d", cred->gid);
196 				break;
197 			case 'd':
198 				err = cn_printf(cn, "%d",
199 					__get_dumpable(cprm->mm_flags));
200 				break;
201 			/* signal that caused the coredump */
202 			case 's':
203 				err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
204 				break;
205 			/* UNIX time of coredump */
206 			case 't': {
207 				struct timeval tv;
208 				do_gettimeofday(&tv);
209 				err = cn_printf(cn, "%lu", tv.tv_sec);
210 				break;
211 			}
212 			/* hostname */
213 			case 'h': {
214 				char *namestart = cn->corename + cn->used;
215 				down_read(&uts_sem);
216 				err = cn_printf(cn, "%s",
217 					      utsname()->nodename);
218 				up_read(&uts_sem);
219 				cn_escape(namestart);
220 				break;
221 			}
222 			/* executable */
223 			case 'e': {
224 				char *commstart = cn->corename + cn->used;
225 				err = cn_printf(cn, "%s", current->comm);
226 				cn_escape(commstart);
227 				break;
228 			}
229 			case 'E':
230 				err = cn_print_exe_file(cn);
231 				break;
232 			/* core limit size */
233 			case 'c':
234 				err = cn_printf(cn, "%lu",
235 					      rlimit(RLIMIT_CORE));
236 				break;
237 			default:
238 				break;
239 			}
240 			++pat_ptr;
241 		}
242 
243 		if (err)
244 			return err;
245 	}
246 
247 	/* Backward compatibility with core_uses_pid:
248 	 *
249 	 * If core_pattern does not include a %p (as is the default)
250 	 * and core_uses_pid is set, then .%pid will be appended to
251 	 * the filename. Do not do this for piped commands. */
252 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
253 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
254 		if (err)
255 			return err;
256 	}
257 out:
258 	return ispipe;
259 }
260 
261 static int zap_process(struct task_struct *start, int exit_code)
262 {
263 	struct task_struct *t;
264 	int nr = 0;
265 
266 	start->signal->flags = SIGNAL_GROUP_EXIT;
267 	start->signal->group_exit_code = exit_code;
268 	start->signal->group_stop_count = 0;
269 
270 	t = start;
271 	do {
272 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
273 		if (t != current && t->mm) {
274 			sigaddset(&t->pending.signal, SIGKILL);
275 			signal_wake_up(t, 1);
276 			nr++;
277 		}
278 	} while_each_thread(start, t);
279 
280 	return nr;
281 }
282 
283 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
284 				struct core_state *core_state, int exit_code)
285 {
286 	struct task_struct *g, *p;
287 	unsigned long flags;
288 	int nr = -EAGAIN;
289 
290 	spin_lock_irq(&tsk->sighand->siglock);
291 	if (!signal_group_exit(tsk->signal)) {
292 		mm->core_state = core_state;
293 		nr = zap_process(tsk, exit_code);
294 	}
295 	spin_unlock_irq(&tsk->sighand->siglock);
296 	if (unlikely(nr < 0))
297 		return nr;
298 
299 	if (atomic_read(&mm->mm_users) == nr + 1)
300 		goto done;
301 	/*
302 	 * We should find and kill all tasks which use this mm, and we should
303 	 * count them correctly into ->nr_threads. We don't take tasklist
304 	 * lock, but this is safe wrt:
305 	 *
306 	 * fork:
307 	 *	None of sub-threads can fork after zap_process(leader). All
308 	 *	processes which were created before this point should be
309 	 *	visible to zap_threads() because copy_process() adds the new
310 	 *	process to the tail of init_task.tasks list, and lock/unlock
311 	 *	of ->siglock provides a memory barrier.
312 	 *
313 	 * do_exit:
314 	 *	The caller holds mm->mmap_sem. This means that the task which
315 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
316 	 *	its ->mm.
317 	 *
318 	 * de_thread:
319 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
320 	 *	we must see either old or new leader, this does not matter.
321 	 *	However, it can change p->sighand, so lock_task_sighand(p)
322 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
323 	 *	it can't fail.
324 	 *
325 	 *	Note also that "g" can be the old leader with ->mm == NULL
326 	 *	and already unhashed and thus removed from ->thread_group.
327 	 *	This is OK, __unhash_process()->list_del_rcu() does not
328 	 *	clear the ->next pointer, we will find the new leader via
329 	 *	next_thread().
330 	 */
331 	rcu_read_lock();
332 	for_each_process(g) {
333 		if (g == tsk->group_leader)
334 			continue;
335 		if (g->flags & PF_KTHREAD)
336 			continue;
337 		p = g;
338 		do {
339 			if (p->mm) {
340 				if (unlikely(p->mm == mm)) {
341 					lock_task_sighand(p, &flags);
342 					nr += zap_process(p, exit_code);
343 					unlock_task_sighand(p, &flags);
344 				}
345 				break;
346 			}
347 		} while_each_thread(g, p);
348 	}
349 	rcu_read_unlock();
350 done:
351 	atomic_set(&core_state->nr_threads, nr);
352 	return nr;
353 }
354 
355 static int coredump_wait(int exit_code, struct core_state *core_state)
356 {
357 	struct task_struct *tsk = current;
358 	struct mm_struct *mm = tsk->mm;
359 	int core_waiters = -EBUSY;
360 
361 	init_completion(&core_state->startup);
362 	core_state->dumper.task = tsk;
363 	core_state->dumper.next = NULL;
364 
365 	down_write(&mm->mmap_sem);
366 	if (!mm->core_state)
367 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
368 	up_write(&mm->mmap_sem);
369 
370 	if (core_waiters > 0) {
371 		struct core_thread *ptr;
372 
373 		wait_for_completion(&core_state->startup);
374 		/*
375 		 * Wait for all the threads to become inactive, so that
376 		 * all the thread context (extended register state, like
377 		 * fpu etc) gets copied to the memory.
378 		 */
379 		ptr = core_state->dumper.next;
380 		while (ptr != NULL) {
381 			wait_task_inactive(ptr->task, 0);
382 			ptr = ptr->next;
383 		}
384 	}
385 
386 	return core_waiters;
387 }
388 
389 static void coredump_finish(struct mm_struct *mm)
390 {
391 	struct core_thread *curr, *next;
392 	struct task_struct *task;
393 
394 	next = mm->core_state->dumper.next;
395 	while ((curr = next) != NULL) {
396 		next = curr->next;
397 		task = curr->task;
398 		/*
399 		 * see exit_mm(), curr->task must not see
400 		 * ->task == NULL before we read ->next.
401 		 */
402 		smp_mb();
403 		curr->task = NULL;
404 		wake_up_process(task);
405 	}
406 
407 	mm->core_state = NULL;
408 }
409 
410 static void wait_for_dump_helpers(struct file *file)
411 {
412 	struct pipe_inode_info *pipe;
413 
414 	pipe = file_inode(file)->i_pipe;
415 
416 	pipe_lock(pipe);
417 	pipe->readers++;
418 	pipe->writers--;
419 
420 	while ((pipe->readers > 1) && (!signal_pending(current))) {
421 		wake_up_interruptible_sync(&pipe->wait);
422 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
423 		pipe_wait(pipe);
424 	}
425 
426 	pipe->readers--;
427 	pipe->writers++;
428 	pipe_unlock(pipe);
429 
430 }
431 
432 /*
433  * umh_pipe_setup
434  * helper function to customize the process used
435  * to collect the core in userspace.  Specifically
436  * it sets up a pipe and installs it as fd 0 (stdin)
437  * for the process.  Returns 0 on success, or
438  * PTR_ERR on failure.
439  * Note that it also sets the core limit to 1.  This
440  * is a special value that we use to trap recursive
441  * core dumps
442  */
443 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
444 {
445 	struct file *files[2];
446 	struct coredump_params *cp = (struct coredump_params *)info->data;
447 	int err = create_pipe_files(files, 0);
448 	if (err)
449 		return err;
450 
451 	cp->file = files[1];
452 
453 	err = replace_fd(0, files[0], 0);
454 	fput(files[0]);
455 	/* and disallow core files too */
456 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
457 
458 	return err;
459 }
460 
461 void do_coredump(siginfo_t *siginfo)
462 {
463 	struct core_state core_state;
464 	struct core_name cn;
465 	struct mm_struct *mm = current->mm;
466 	struct linux_binfmt * binfmt;
467 	const struct cred *old_cred;
468 	struct cred *cred;
469 	int retval = 0;
470 	int flag = 0;
471 	int ispipe;
472 	struct files_struct *displaced;
473 	bool need_nonrelative = false;
474 	static atomic_t core_dump_count = ATOMIC_INIT(0);
475 	struct coredump_params cprm = {
476 		.siginfo = siginfo,
477 		.regs = signal_pt_regs(),
478 		.limit = rlimit(RLIMIT_CORE),
479 		/*
480 		 * We must use the same mm->flags while dumping core to avoid
481 		 * inconsistency of bit flags, since this flag is not protected
482 		 * by any locks.
483 		 */
484 		.mm_flags = mm->flags,
485 	};
486 
487 	audit_core_dumps(siginfo->si_signo);
488 
489 	binfmt = mm->binfmt;
490 	if (!binfmt || !binfmt->core_dump)
491 		goto fail;
492 	if (!__get_dumpable(cprm.mm_flags))
493 		goto fail;
494 
495 	cred = prepare_creds();
496 	if (!cred)
497 		goto fail;
498 	/*
499 	 * We cannot trust fsuid as being the "true" uid of the process
500 	 * nor do we know its entire history. We only know it was tainted
501 	 * so we dump it as root in mode 2, and only into a controlled
502 	 * environment (pipe handler or fully qualified path).
503 	 */
504 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
505 		/* Setuid core dump mode */
506 		flag = O_EXCL;		/* Stop rewrite attacks */
507 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
508 		need_nonrelative = true;
509 	}
510 
511 	retval = coredump_wait(siginfo->si_signo, &core_state);
512 	if (retval < 0)
513 		goto fail_creds;
514 
515 	old_cred = override_creds(cred);
516 
517 	/*
518 	 * Clear any false indication of pending signals that might
519 	 * be seen by the filesystem code called to write the core file.
520 	 */
521 	clear_thread_flag(TIF_SIGPENDING);
522 
523 	ispipe = format_corename(&cn, &cprm);
524 
525  	if (ispipe) {
526 		int dump_count;
527 		char **helper_argv;
528 
529 		if (ispipe < 0) {
530 			printk(KERN_WARNING "format_corename failed\n");
531 			printk(KERN_WARNING "Aborting core\n");
532 			goto fail_corename;
533 		}
534 
535 		if (cprm.limit == 1) {
536 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
537 			 *
538 			 * Normally core limits are irrelevant to pipes, since
539 			 * we're not writing to the file system, but we use
540 			 * cprm.limit of 1 here as a speacial value, this is a
541 			 * consistent way to catch recursive crashes.
542 			 * We can still crash if the core_pattern binary sets
543 			 * RLIM_CORE = !1, but it runs as root, and can do
544 			 * lots of stupid things.
545 			 *
546 			 * Note that we use task_tgid_vnr here to grab the pid
547 			 * of the process group leader.  That way we get the
548 			 * right pid if a thread in a multi-threaded
549 			 * core_pattern process dies.
550 			 */
551 			printk(KERN_WARNING
552 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
553 				task_tgid_vnr(current), current->comm);
554 			printk(KERN_WARNING "Aborting core\n");
555 			goto fail_unlock;
556 		}
557 		cprm.limit = RLIM_INFINITY;
558 
559 		dump_count = atomic_inc_return(&core_dump_count);
560 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
561 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
562 			       task_tgid_vnr(current), current->comm);
563 			printk(KERN_WARNING "Skipping core dump\n");
564 			goto fail_dropcount;
565 		}
566 
567 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
568 		if (!helper_argv) {
569 			printk(KERN_WARNING "%s failed to allocate memory\n",
570 			       __func__);
571 			goto fail_dropcount;
572 		}
573 
574 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
575 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
576 					NULL, &cprm);
577 		argv_free(helper_argv);
578 		if (retval) {
579  			printk(KERN_INFO "Core dump to %s pipe failed\n",
580 			       cn.corename);
581 			goto close_fail;
582  		}
583 	} else {
584 		struct inode *inode;
585 
586 		if (cprm.limit < binfmt->min_coredump)
587 			goto fail_unlock;
588 
589 		if (need_nonrelative && cn.corename[0] != '/') {
590 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
591 				"to fully qualified path!\n",
592 				task_tgid_vnr(current), current->comm);
593 			printk(KERN_WARNING "Skipping core dump\n");
594 			goto fail_unlock;
595 		}
596 
597 		cprm.file = filp_open(cn.corename,
598 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
599 				 0600);
600 		if (IS_ERR(cprm.file))
601 			goto fail_unlock;
602 
603 		inode = file_inode(cprm.file);
604 		if (inode->i_nlink > 1)
605 			goto close_fail;
606 		if (d_unhashed(cprm.file->f_path.dentry))
607 			goto close_fail;
608 		/*
609 		 * AK: actually i see no reason to not allow this for named
610 		 * pipes etc, but keep the previous behaviour for now.
611 		 */
612 		if (!S_ISREG(inode->i_mode))
613 			goto close_fail;
614 		/*
615 		 * Dont allow local users get cute and trick others to coredump
616 		 * into their pre-created files.
617 		 */
618 		if (!uid_eq(inode->i_uid, current_fsuid()))
619 			goto close_fail;
620 		if (!cprm.file->f_op || !cprm.file->f_op->write)
621 			goto close_fail;
622 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
623 			goto close_fail;
624 	}
625 
626 	/* get us an unshared descriptor table; almost always a no-op */
627 	retval = unshare_files(&displaced);
628 	if (retval)
629 		goto close_fail;
630 	if (displaced)
631 		put_files_struct(displaced);
632 	retval = binfmt->core_dump(&cprm);
633 	if (retval)
634 		current->signal->group_exit_code |= 0x80;
635 
636 	if (ispipe && core_pipe_limit)
637 		wait_for_dump_helpers(cprm.file);
638 close_fail:
639 	if (cprm.file)
640 		filp_close(cprm.file, NULL);
641 fail_dropcount:
642 	if (ispipe)
643 		atomic_dec(&core_dump_count);
644 fail_unlock:
645 	kfree(cn.corename);
646 fail_corename:
647 	coredump_finish(mm);
648 	revert_creds(old_cred);
649 fail_creds:
650 	put_cred(cred);
651 fail:
652 	return;
653 }
654 
655 /*
656  * Core dumping helper functions.  These are the only things you should
657  * do on a core-file: use only these functions to write out all the
658  * necessary info.
659  */
660 int dump_write(struct file *file, const void *addr, int nr)
661 {
662 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
663 }
664 EXPORT_SYMBOL(dump_write);
665 
666 int dump_seek(struct file *file, loff_t off)
667 {
668 	int ret = 1;
669 
670 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
671 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
672 			return 0;
673 	} else {
674 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
675 
676 		if (!buf)
677 			return 0;
678 		while (off > 0) {
679 			unsigned long n = off;
680 
681 			if (n > PAGE_SIZE)
682 				n = PAGE_SIZE;
683 			if (!dump_write(file, buf, n)) {
684 				ret = 0;
685 				break;
686 			}
687 			off -= n;
688 		}
689 		free_page((unsigned long)buf);
690 	}
691 	return ret;
692 }
693 EXPORT_SYMBOL(dump_seek);
694