xref: /openbmc/linux/fs/coredump.c (revision 6dd142d9)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/kmod.h>
35 #include <linux/fsnotify.h>
36 #include <linux/fs_struct.h>
37 #include <linux/pipe_fs_i.h>
38 #include <linux/oom.h>
39 #include <linux/compat.h>
40 #include <linux/fs.h>
41 #include <linux/path.h>
42 #include <linux/timekeeping.h>
43 #include <linux/sysctl.h>
44 #include <linux/elf.h>
45 
46 #include <linux/uaccess.h>
47 #include <asm/mmu_context.h>
48 #include <asm/tlb.h>
49 #include <asm/exec.h>
50 
51 #include <trace/events/task.h>
52 #include "internal.h"
53 
54 #include <trace/events/sched.h>
55 
56 static bool dump_vma_snapshot(struct coredump_params *cprm);
57 static void free_vma_snapshot(struct coredump_params *cprm);
58 
59 static int core_uses_pid;
60 static unsigned int core_pipe_limit;
61 static char core_pattern[CORENAME_MAX_SIZE] = "core";
62 static int core_name_size = CORENAME_MAX_SIZE;
63 
64 struct core_name {
65 	char *corename;
66 	int used, size;
67 };
68 
69 static int expand_corename(struct core_name *cn, int size)
70 {
71 	char *corename;
72 
73 	size = kmalloc_size_roundup(size);
74 	corename = krealloc(cn->corename, size, GFP_KERNEL);
75 
76 	if (!corename)
77 		return -ENOMEM;
78 
79 	if (size > core_name_size) /* racy but harmless */
80 		core_name_size = size;
81 
82 	cn->size = size;
83 	cn->corename = corename;
84 	return 0;
85 }
86 
87 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
88 				     va_list arg)
89 {
90 	int free, need;
91 	va_list arg_copy;
92 
93 again:
94 	free = cn->size - cn->used;
95 
96 	va_copy(arg_copy, arg);
97 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
98 	va_end(arg_copy);
99 
100 	if (need < free) {
101 		cn->used += need;
102 		return 0;
103 	}
104 
105 	if (!expand_corename(cn, cn->size + need - free + 1))
106 		goto again;
107 
108 	return -ENOMEM;
109 }
110 
111 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
112 {
113 	va_list arg;
114 	int ret;
115 
116 	va_start(arg, fmt);
117 	ret = cn_vprintf(cn, fmt, arg);
118 	va_end(arg);
119 
120 	return ret;
121 }
122 
123 static __printf(2, 3)
124 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
125 {
126 	int cur = cn->used;
127 	va_list arg;
128 	int ret;
129 
130 	va_start(arg, fmt);
131 	ret = cn_vprintf(cn, fmt, arg);
132 	va_end(arg);
133 
134 	if (ret == 0) {
135 		/*
136 		 * Ensure that this coredump name component can't cause the
137 		 * resulting corefile path to consist of a ".." or ".".
138 		 */
139 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
140 				(cn->used - cur == 2 && cn->corename[cur] == '.'
141 				&& cn->corename[cur+1] == '.'))
142 			cn->corename[cur] = '!';
143 
144 		/*
145 		 * Empty names are fishy and could be used to create a "//" in a
146 		 * corefile name, causing the coredump to happen one directory
147 		 * level too high. Enforce that all components of the core
148 		 * pattern are at least one character long.
149 		 */
150 		if (cn->used == cur)
151 			ret = cn_printf(cn, "!");
152 	}
153 
154 	for (; cur < cn->used; ++cur) {
155 		if (cn->corename[cur] == '/')
156 			cn->corename[cur] = '!';
157 	}
158 	return ret;
159 }
160 
161 static int cn_print_exe_file(struct core_name *cn, bool name_only)
162 {
163 	struct file *exe_file;
164 	char *pathbuf, *path, *ptr;
165 	int ret;
166 
167 	exe_file = get_mm_exe_file(current->mm);
168 	if (!exe_file)
169 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
170 
171 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
172 	if (!pathbuf) {
173 		ret = -ENOMEM;
174 		goto put_exe_file;
175 	}
176 
177 	path = file_path(exe_file, pathbuf, PATH_MAX);
178 	if (IS_ERR(path)) {
179 		ret = PTR_ERR(path);
180 		goto free_buf;
181 	}
182 
183 	if (name_only) {
184 		ptr = strrchr(path, '/');
185 		if (ptr)
186 			path = ptr + 1;
187 	}
188 	ret = cn_esc_printf(cn, "%s", path);
189 
190 free_buf:
191 	kfree(pathbuf);
192 put_exe_file:
193 	fput(exe_file);
194 	return ret;
195 }
196 
197 /* format_corename will inspect the pattern parameter, and output a
198  * name into corename, which must have space for at least
199  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
200  */
201 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
202 			   size_t **argv, int *argc)
203 {
204 	const struct cred *cred = current_cred();
205 	const char *pat_ptr = core_pattern;
206 	int ispipe = (*pat_ptr == '|');
207 	bool was_space = false;
208 	int pid_in_pattern = 0;
209 	int err = 0;
210 
211 	cn->used = 0;
212 	cn->corename = NULL;
213 	if (expand_corename(cn, core_name_size))
214 		return -ENOMEM;
215 	cn->corename[0] = '\0';
216 
217 	if (ispipe) {
218 		int argvs = sizeof(core_pattern) / 2;
219 		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
220 		if (!(*argv))
221 			return -ENOMEM;
222 		(*argv)[(*argc)++] = 0;
223 		++pat_ptr;
224 		if (!(*pat_ptr))
225 			return -ENOMEM;
226 	}
227 
228 	/* Repeat as long as we have more pattern to process and more output
229 	   space */
230 	while (*pat_ptr) {
231 		/*
232 		 * Split on spaces before doing template expansion so that
233 		 * %e and %E don't get split if they have spaces in them
234 		 */
235 		if (ispipe) {
236 			if (isspace(*pat_ptr)) {
237 				if (cn->used != 0)
238 					was_space = true;
239 				pat_ptr++;
240 				continue;
241 			} else if (was_space) {
242 				was_space = false;
243 				err = cn_printf(cn, "%c", '\0');
244 				if (err)
245 					return err;
246 				(*argv)[(*argc)++] = cn->used;
247 			}
248 		}
249 		if (*pat_ptr != '%') {
250 			err = cn_printf(cn, "%c", *pat_ptr++);
251 		} else {
252 			switch (*++pat_ptr) {
253 			/* single % at the end, drop that */
254 			case 0:
255 				goto out;
256 			/* Double percent, output one percent */
257 			case '%':
258 				err = cn_printf(cn, "%c", '%');
259 				break;
260 			/* pid */
261 			case 'p':
262 				pid_in_pattern = 1;
263 				err = cn_printf(cn, "%d",
264 					      task_tgid_vnr(current));
265 				break;
266 			/* global pid */
267 			case 'P':
268 				err = cn_printf(cn, "%d",
269 					      task_tgid_nr(current));
270 				break;
271 			case 'i':
272 				err = cn_printf(cn, "%d",
273 					      task_pid_vnr(current));
274 				break;
275 			case 'I':
276 				err = cn_printf(cn, "%d",
277 					      task_pid_nr(current));
278 				break;
279 			/* uid */
280 			case 'u':
281 				err = cn_printf(cn, "%u",
282 						from_kuid(&init_user_ns,
283 							  cred->uid));
284 				break;
285 			/* gid */
286 			case 'g':
287 				err = cn_printf(cn, "%u",
288 						from_kgid(&init_user_ns,
289 							  cred->gid));
290 				break;
291 			case 'd':
292 				err = cn_printf(cn, "%d",
293 					__get_dumpable(cprm->mm_flags));
294 				break;
295 			/* signal that caused the coredump */
296 			case 's':
297 				err = cn_printf(cn, "%d",
298 						cprm->siginfo->si_signo);
299 				break;
300 			/* UNIX time of coredump */
301 			case 't': {
302 				time64_t time;
303 
304 				time = ktime_get_real_seconds();
305 				err = cn_printf(cn, "%lld", time);
306 				break;
307 			}
308 			/* hostname */
309 			case 'h':
310 				down_read(&uts_sem);
311 				err = cn_esc_printf(cn, "%s",
312 					      utsname()->nodename);
313 				up_read(&uts_sem);
314 				break;
315 			/* executable, could be changed by prctl PR_SET_NAME etc */
316 			case 'e':
317 				err = cn_esc_printf(cn, "%s", current->comm);
318 				break;
319 			/* file name of executable */
320 			case 'f':
321 				err = cn_print_exe_file(cn, true);
322 				break;
323 			case 'E':
324 				err = cn_print_exe_file(cn, false);
325 				break;
326 			/* core limit size */
327 			case 'c':
328 				err = cn_printf(cn, "%lu",
329 					      rlimit(RLIMIT_CORE));
330 				break;
331 			default:
332 				break;
333 			}
334 			++pat_ptr;
335 		}
336 
337 		if (err)
338 			return err;
339 	}
340 
341 out:
342 	/* Backward compatibility with core_uses_pid:
343 	 *
344 	 * If core_pattern does not include a %p (as is the default)
345 	 * and core_uses_pid is set, then .%pid will be appended to
346 	 * the filename. Do not do this for piped commands. */
347 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
348 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
349 		if (err)
350 			return err;
351 	}
352 	return ispipe;
353 }
354 
355 static int zap_process(struct task_struct *start, int exit_code)
356 {
357 	struct task_struct *t;
358 	int nr = 0;
359 
360 	/* Allow SIGKILL, see prepare_signal() */
361 	start->signal->flags = SIGNAL_GROUP_EXIT;
362 	start->signal->group_exit_code = exit_code;
363 	start->signal->group_stop_count = 0;
364 
365 	for_each_thread(start, t) {
366 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
367 		if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
368 			sigaddset(&t->pending.signal, SIGKILL);
369 			signal_wake_up(t, 1);
370 			nr++;
371 		}
372 	}
373 
374 	return nr;
375 }
376 
377 static int zap_threads(struct task_struct *tsk,
378 			struct core_state *core_state, int exit_code)
379 {
380 	struct signal_struct *signal = tsk->signal;
381 	int nr = -EAGAIN;
382 
383 	spin_lock_irq(&tsk->sighand->siglock);
384 	if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
385 		signal->core_state = core_state;
386 		nr = zap_process(tsk, exit_code);
387 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
388 		tsk->flags |= PF_DUMPCORE;
389 		atomic_set(&core_state->nr_threads, nr);
390 	}
391 	spin_unlock_irq(&tsk->sighand->siglock);
392 	return nr;
393 }
394 
395 static int coredump_wait(int exit_code, struct core_state *core_state)
396 {
397 	struct task_struct *tsk = current;
398 	int core_waiters = -EBUSY;
399 
400 	init_completion(&core_state->startup);
401 	core_state->dumper.task = tsk;
402 	core_state->dumper.next = NULL;
403 
404 	core_waiters = zap_threads(tsk, core_state, exit_code);
405 	if (core_waiters > 0) {
406 		struct core_thread *ptr;
407 
408 		wait_for_completion_state(&core_state->startup,
409 					  TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
410 		/*
411 		 * Wait for all the threads to become inactive, so that
412 		 * all the thread context (extended register state, like
413 		 * fpu etc) gets copied to the memory.
414 		 */
415 		ptr = core_state->dumper.next;
416 		while (ptr != NULL) {
417 			wait_task_inactive(ptr->task, TASK_ANY);
418 			ptr = ptr->next;
419 		}
420 	}
421 
422 	return core_waiters;
423 }
424 
425 static void coredump_finish(bool core_dumped)
426 {
427 	struct core_thread *curr, *next;
428 	struct task_struct *task;
429 
430 	spin_lock_irq(&current->sighand->siglock);
431 	if (core_dumped && !__fatal_signal_pending(current))
432 		current->signal->group_exit_code |= 0x80;
433 	next = current->signal->core_state->dumper.next;
434 	current->signal->core_state = NULL;
435 	spin_unlock_irq(&current->sighand->siglock);
436 
437 	while ((curr = next) != NULL) {
438 		next = curr->next;
439 		task = curr->task;
440 		/*
441 		 * see coredump_task_exit(), curr->task must not see
442 		 * ->task == NULL before we read ->next.
443 		 */
444 		smp_mb();
445 		curr->task = NULL;
446 		wake_up_process(task);
447 	}
448 }
449 
450 static bool dump_interrupted(void)
451 {
452 	/*
453 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
454 	 * can do try_to_freeze() and check __fatal_signal_pending(),
455 	 * but then we need to teach dump_write() to restart and clear
456 	 * TIF_SIGPENDING.
457 	 */
458 	return fatal_signal_pending(current) || freezing(current);
459 }
460 
461 static void wait_for_dump_helpers(struct file *file)
462 {
463 	struct pipe_inode_info *pipe = file->private_data;
464 
465 	pipe_lock(pipe);
466 	pipe->readers++;
467 	pipe->writers--;
468 	wake_up_interruptible_sync(&pipe->rd_wait);
469 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
470 	pipe_unlock(pipe);
471 
472 	/*
473 	 * We actually want wait_event_freezable() but then we need
474 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
475 	 */
476 	wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
477 
478 	pipe_lock(pipe);
479 	pipe->readers--;
480 	pipe->writers++;
481 	pipe_unlock(pipe);
482 }
483 
484 /*
485  * umh_pipe_setup
486  * helper function to customize the process used
487  * to collect the core in userspace.  Specifically
488  * it sets up a pipe and installs it as fd 0 (stdin)
489  * for the process.  Returns 0 on success, or
490  * PTR_ERR on failure.
491  * Note that it also sets the core limit to 1.  This
492  * is a special value that we use to trap recursive
493  * core dumps
494  */
495 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
496 {
497 	struct file *files[2];
498 	struct coredump_params *cp = (struct coredump_params *)info->data;
499 	int err = create_pipe_files(files, 0);
500 	if (err)
501 		return err;
502 
503 	cp->file = files[1];
504 
505 	err = replace_fd(0, files[0], 0);
506 	fput(files[0]);
507 	/* and disallow core files too */
508 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
509 
510 	return err;
511 }
512 
513 void do_coredump(const kernel_siginfo_t *siginfo)
514 {
515 	struct core_state core_state;
516 	struct core_name cn;
517 	struct mm_struct *mm = current->mm;
518 	struct linux_binfmt * binfmt;
519 	const struct cred *old_cred;
520 	struct cred *cred;
521 	int retval = 0;
522 	int ispipe;
523 	size_t *argv = NULL;
524 	int argc = 0;
525 	/* require nonrelative corefile path and be extra careful */
526 	bool need_suid_safe = false;
527 	bool core_dumped = false;
528 	static atomic_t core_dump_count = ATOMIC_INIT(0);
529 	struct coredump_params cprm = {
530 		.siginfo = siginfo,
531 		.regs = signal_pt_regs(),
532 		.limit = rlimit(RLIMIT_CORE),
533 		/*
534 		 * We must use the same mm->flags while dumping core to avoid
535 		 * inconsistency of bit flags, since this flag is not protected
536 		 * by any locks.
537 		 */
538 		.mm_flags = mm->flags,
539 		.vma_meta = NULL,
540 	};
541 
542 	audit_core_dumps(siginfo->si_signo);
543 
544 	binfmt = mm->binfmt;
545 	if (!binfmt || !binfmt->core_dump)
546 		goto fail;
547 	if (!__get_dumpable(cprm.mm_flags))
548 		goto fail;
549 
550 	cred = prepare_creds();
551 	if (!cred)
552 		goto fail;
553 	/*
554 	 * We cannot trust fsuid as being the "true" uid of the process
555 	 * nor do we know its entire history. We only know it was tainted
556 	 * so we dump it as root in mode 2, and only into a controlled
557 	 * environment (pipe handler or fully qualified path).
558 	 */
559 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
560 		/* Setuid core dump mode */
561 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
562 		need_suid_safe = true;
563 	}
564 
565 	retval = coredump_wait(siginfo->si_signo, &core_state);
566 	if (retval < 0)
567 		goto fail_creds;
568 
569 	old_cred = override_creds(cred);
570 
571 	ispipe = format_corename(&cn, &cprm, &argv, &argc);
572 
573 	if (ispipe) {
574 		int argi;
575 		int dump_count;
576 		char **helper_argv;
577 		struct subprocess_info *sub_info;
578 
579 		if (ispipe < 0) {
580 			printk(KERN_WARNING "format_corename failed\n");
581 			printk(KERN_WARNING "Aborting core\n");
582 			goto fail_unlock;
583 		}
584 
585 		if (cprm.limit == 1) {
586 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
587 			 *
588 			 * Normally core limits are irrelevant to pipes, since
589 			 * we're not writing to the file system, but we use
590 			 * cprm.limit of 1 here as a special value, this is a
591 			 * consistent way to catch recursive crashes.
592 			 * We can still crash if the core_pattern binary sets
593 			 * RLIM_CORE = !1, but it runs as root, and can do
594 			 * lots of stupid things.
595 			 *
596 			 * Note that we use task_tgid_vnr here to grab the pid
597 			 * of the process group leader.  That way we get the
598 			 * right pid if a thread in a multi-threaded
599 			 * core_pattern process dies.
600 			 */
601 			printk(KERN_WARNING
602 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
603 				task_tgid_vnr(current), current->comm);
604 			printk(KERN_WARNING "Aborting core\n");
605 			goto fail_unlock;
606 		}
607 		cprm.limit = RLIM_INFINITY;
608 
609 		dump_count = atomic_inc_return(&core_dump_count);
610 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
611 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
612 			       task_tgid_vnr(current), current->comm);
613 			printk(KERN_WARNING "Skipping core dump\n");
614 			goto fail_dropcount;
615 		}
616 
617 		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
618 					    GFP_KERNEL);
619 		if (!helper_argv) {
620 			printk(KERN_WARNING "%s failed to allocate memory\n",
621 			       __func__);
622 			goto fail_dropcount;
623 		}
624 		for (argi = 0; argi < argc; argi++)
625 			helper_argv[argi] = cn.corename + argv[argi];
626 		helper_argv[argi] = NULL;
627 
628 		retval = -ENOMEM;
629 		sub_info = call_usermodehelper_setup(helper_argv[0],
630 						helper_argv, NULL, GFP_KERNEL,
631 						umh_pipe_setup, NULL, &cprm);
632 		if (sub_info)
633 			retval = call_usermodehelper_exec(sub_info,
634 							  UMH_WAIT_EXEC);
635 
636 		kfree(helper_argv);
637 		if (retval) {
638 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
639 			       cn.corename);
640 			goto close_fail;
641 		}
642 	} else {
643 		struct user_namespace *mnt_userns;
644 		struct inode *inode;
645 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
646 				 O_LARGEFILE | O_EXCL;
647 
648 		if (cprm.limit < binfmt->min_coredump)
649 			goto fail_unlock;
650 
651 		if (need_suid_safe && cn.corename[0] != '/') {
652 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
653 				"to fully qualified path!\n",
654 				task_tgid_vnr(current), current->comm);
655 			printk(KERN_WARNING "Skipping core dump\n");
656 			goto fail_unlock;
657 		}
658 
659 		/*
660 		 * Unlink the file if it exists unless this is a SUID
661 		 * binary - in that case, we're running around with root
662 		 * privs and don't want to unlink another user's coredump.
663 		 */
664 		if (!need_suid_safe) {
665 			/*
666 			 * If it doesn't exist, that's fine. If there's some
667 			 * other problem, we'll catch it at the filp_open().
668 			 */
669 			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
670 		}
671 
672 		/*
673 		 * There is a race between unlinking and creating the
674 		 * file, but if that causes an EEXIST here, that's
675 		 * fine - another process raced with us while creating
676 		 * the corefile, and the other process won. To userspace,
677 		 * what matters is that at least one of the two processes
678 		 * writes its coredump successfully, not which one.
679 		 */
680 		if (need_suid_safe) {
681 			/*
682 			 * Using user namespaces, normal user tasks can change
683 			 * their current->fs->root to point to arbitrary
684 			 * directories. Since the intention of the "only dump
685 			 * with a fully qualified path" rule is to control where
686 			 * coredumps may be placed using root privileges,
687 			 * current->fs->root must not be used. Instead, use the
688 			 * root directory of init_task.
689 			 */
690 			struct path root;
691 
692 			task_lock(&init_task);
693 			get_fs_root(init_task.fs, &root);
694 			task_unlock(&init_task);
695 			cprm.file = file_open_root(&root, cn.corename,
696 						   open_flags, 0600);
697 			path_put(&root);
698 		} else {
699 			cprm.file = filp_open(cn.corename, open_flags, 0600);
700 		}
701 		if (IS_ERR(cprm.file))
702 			goto fail_unlock;
703 
704 		inode = file_inode(cprm.file);
705 		if (inode->i_nlink > 1)
706 			goto close_fail;
707 		if (d_unhashed(cprm.file->f_path.dentry))
708 			goto close_fail;
709 		/*
710 		 * AK: actually i see no reason to not allow this for named
711 		 * pipes etc, but keep the previous behaviour for now.
712 		 */
713 		if (!S_ISREG(inode->i_mode))
714 			goto close_fail;
715 		/*
716 		 * Don't dump core if the filesystem changed owner or mode
717 		 * of the file during file creation. This is an issue when
718 		 * a process dumps core while its cwd is e.g. on a vfat
719 		 * filesystem.
720 		 */
721 		mnt_userns = file_mnt_user_ns(cprm.file);
722 		if (!uid_eq(i_uid_into_mnt(mnt_userns, inode),
723 			    current_fsuid())) {
724 			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n",
725 					    cn.corename);
726 			goto close_fail;
727 		}
728 		if ((inode->i_mode & 0677) != 0600) {
729 			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n",
730 					    cn.corename);
731 			goto close_fail;
732 		}
733 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
734 			goto close_fail;
735 		if (do_truncate(mnt_userns, cprm.file->f_path.dentry,
736 				0, 0, cprm.file))
737 			goto close_fail;
738 	}
739 
740 	/* get us an unshared descriptor table; almost always a no-op */
741 	/* The cell spufs coredump code reads the file descriptor tables */
742 	retval = unshare_files();
743 	if (retval)
744 		goto close_fail;
745 	if (!dump_interrupted()) {
746 		/*
747 		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
748 		 * have this set to NULL.
749 		 */
750 		if (!cprm.file) {
751 			pr_info("Core dump to |%s disabled\n", cn.corename);
752 			goto close_fail;
753 		}
754 		if (!dump_vma_snapshot(&cprm))
755 			goto close_fail;
756 
757 		file_start_write(cprm.file);
758 		core_dumped = binfmt->core_dump(&cprm);
759 		/*
760 		 * Ensures that file size is big enough to contain the current
761 		 * file postion. This prevents gdb from complaining about
762 		 * a truncated file if the last "write" to the file was
763 		 * dump_skip.
764 		 */
765 		if (cprm.to_skip) {
766 			cprm.to_skip--;
767 			dump_emit(&cprm, "", 1);
768 		}
769 		file_end_write(cprm.file);
770 		free_vma_snapshot(&cprm);
771 	}
772 	if (ispipe && core_pipe_limit)
773 		wait_for_dump_helpers(cprm.file);
774 close_fail:
775 	if (cprm.file)
776 		filp_close(cprm.file, NULL);
777 fail_dropcount:
778 	if (ispipe)
779 		atomic_dec(&core_dump_count);
780 fail_unlock:
781 	kfree(argv);
782 	kfree(cn.corename);
783 	coredump_finish(core_dumped);
784 	revert_creds(old_cred);
785 fail_creds:
786 	put_cred(cred);
787 fail:
788 	return;
789 }
790 
791 /*
792  * Core dumping helper functions.  These are the only things you should
793  * do on a core-file: use only these functions to write out all the
794  * necessary info.
795  */
796 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
797 {
798 	struct file *file = cprm->file;
799 	loff_t pos = file->f_pos;
800 	ssize_t n;
801 	if (cprm->written + nr > cprm->limit)
802 		return 0;
803 
804 
805 	if (dump_interrupted())
806 		return 0;
807 	n = __kernel_write(file, addr, nr, &pos);
808 	if (n != nr)
809 		return 0;
810 	file->f_pos = pos;
811 	cprm->written += n;
812 	cprm->pos += n;
813 
814 	return 1;
815 }
816 
817 static int __dump_skip(struct coredump_params *cprm, size_t nr)
818 {
819 	static char zeroes[PAGE_SIZE];
820 	struct file *file = cprm->file;
821 	if (file->f_mode & FMODE_LSEEK) {
822 		if (dump_interrupted() ||
823 		    vfs_llseek(file, nr, SEEK_CUR) < 0)
824 			return 0;
825 		cprm->pos += nr;
826 		return 1;
827 	} else {
828 		while (nr > PAGE_SIZE) {
829 			if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
830 				return 0;
831 			nr -= PAGE_SIZE;
832 		}
833 		return __dump_emit(cprm, zeroes, nr);
834 	}
835 }
836 
837 static int dump_emit_page(struct coredump_params *cprm, struct page *page)
838 {
839 	struct bio_vec bvec = {
840 		.bv_page	= page,
841 		.bv_offset	= 0,
842 		.bv_len		= PAGE_SIZE,
843 	};
844 	struct iov_iter iter;
845 	struct file *file = cprm->file;
846 	loff_t pos;
847 	ssize_t n;
848 
849 	if (cprm->to_skip) {
850 		if (!__dump_skip(cprm, cprm->to_skip))
851 			return 0;
852 		cprm->to_skip = 0;
853 	}
854 	if (cprm->written + PAGE_SIZE > cprm->limit)
855 		return 0;
856 	if (dump_interrupted())
857 		return 0;
858 	pos = file->f_pos;
859 	iov_iter_bvec(&iter, WRITE, &bvec, 1, PAGE_SIZE);
860 	n = __kernel_write_iter(cprm->file, &iter, &pos);
861 	if (n != PAGE_SIZE)
862 		return 0;
863 	file->f_pos = pos;
864 	cprm->written += PAGE_SIZE;
865 	cprm->pos += PAGE_SIZE;
866 
867 	return 1;
868 }
869 
870 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
871 {
872 	if (cprm->to_skip) {
873 		if (!__dump_skip(cprm, cprm->to_skip))
874 			return 0;
875 		cprm->to_skip = 0;
876 	}
877 	return __dump_emit(cprm, addr, nr);
878 }
879 EXPORT_SYMBOL(dump_emit);
880 
881 void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
882 {
883 	cprm->to_skip = pos - cprm->pos;
884 }
885 EXPORT_SYMBOL(dump_skip_to);
886 
887 void dump_skip(struct coredump_params *cprm, size_t nr)
888 {
889 	cprm->to_skip += nr;
890 }
891 EXPORT_SYMBOL(dump_skip);
892 
893 #ifdef CONFIG_ELF_CORE
894 int dump_user_range(struct coredump_params *cprm, unsigned long start,
895 		    unsigned long len)
896 {
897 	unsigned long addr;
898 
899 	for (addr = start; addr < start + len; addr += PAGE_SIZE) {
900 		struct page *page;
901 
902 		/*
903 		 * To avoid having to allocate page tables for virtual address
904 		 * ranges that have never been used yet, and also to make it
905 		 * easy to generate sparse core files, use a helper that returns
906 		 * NULL when encountering an empty page table entry that would
907 		 * otherwise have been filled with the zero page.
908 		 */
909 		page = get_dump_page(addr);
910 		if (page) {
911 			int stop = !dump_emit_page(cprm, page);
912 			put_page(page);
913 			if (stop)
914 				return 0;
915 		} else {
916 			dump_skip(cprm, PAGE_SIZE);
917 		}
918 	}
919 	return 1;
920 }
921 #endif
922 
923 int dump_align(struct coredump_params *cprm, int align)
924 {
925 	unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
926 	if (align & (align - 1))
927 		return 0;
928 	if (mod)
929 		cprm->to_skip += align - mod;
930 	return 1;
931 }
932 EXPORT_SYMBOL(dump_align);
933 
934 #ifdef CONFIG_SYSCTL
935 
936 void validate_coredump_safety(void)
937 {
938 	if (suid_dumpable == SUID_DUMP_ROOT &&
939 	    core_pattern[0] != '/' && core_pattern[0] != '|') {
940 		pr_warn(
941 "Unsafe core_pattern used with fs.suid_dumpable=2.\n"
942 "Pipe handler or fully qualified core dump path required.\n"
943 "Set kernel.core_pattern before fs.suid_dumpable.\n"
944 		);
945 	}
946 }
947 
948 static int proc_dostring_coredump(struct ctl_table *table, int write,
949 		  void *buffer, size_t *lenp, loff_t *ppos)
950 {
951 	int error = proc_dostring(table, write, buffer, lenp, ppos);
952 
953 	if (!error)
954 		validate_coredump_safety();
955 	return error;
956 }
957 
958 static struct ctl_table coredump_sysctls[] = {
959 	{
960 		.procname	= "core_uses_pid",
961 		.data		= &core_uses_pid,
962 		.maxlen		= sizeof(int),
963 		.mode		= 0644,
964 		.proc_handler	= proc_dointvec,
965 	},
966 	{
967 		.procname	= "core_pattern",
968 		.data		= core_pattern,
969 		.maxlen		= CORENAME_MAX_SIZE,
970 		.mode		= 0644,
971 		.proc_handler	= proc_dostring_coredump,
972 	},
973 	{
974 		.procname	= "core_pipe_limit",
975 		.data		= &core_pipe_limit,
976 		.maxlen		= sizeof(unsigned int),
977 		.mode		= 0644,
978 		.proc_handler	= proc_dointvec,
979 	},
980 	{ }
981 };
982 
983 static int __init init_fs_coredump_sysctls(void)
984 {
985 	register_sysctl_init("kernel", coredump_sysctls);
986 	return 0;
987 }
988 fs_initcall(init_fs_coredump_sysctls);
989 #endif /* CONFIG_SYSCTL */
990 
991 /*
992  * The purpose of always_dump_vma() is to make sure that special kernel mappings
993  * that are useful for post-mortem analysis are included in every core dump.
994  * In that way we ensure that the core dump is fully interpretable later
995  * without matching up the same kernel and hardware config to see what PC values
996  * meant. These special mappings include - vDSO, vsyscall, and other
997  * architecture specific mappings
998  */
999 static bool always_dump_vma(struct vm_area_struct *vma)
1000 {
1001 	/* Any vsyscall mappings? */
1002 	if (vma == get_gate_vma(vma->vm_mm))
1003 		return true;
1004 
1005 	/*
1006 	 * Assume that all vmas with a .name op should always be dumped.
1007 	 * If this changes, a new vm_ops field can easily be added.
1008 	 */
1009 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1010 		return true;
1011 
1012 	/*
1013 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1014 	 * such as vDSO sections.
1015 	 */
1016 	if (arch_vma_name(vma))
1017 		return true;
1018 
1019 	return false;
1020 }
1021 
1022 #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
1023 
1024 /*
1025  * Decide how much of @vma's contents should be included in a core dump.
1026  */
1027 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1028 				   unsigned long mm_flags)
1029 {
1030 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1031 
1032 	/* always dump the vdso and vsyscall sections */
1033 	if (always_dump_vma(vma))
1034 		goto whole;
1035 
1036 	if (vma->vm_flags & VM_DONTDUMP)
1037 		return 0;
1038 
1039 	/* support for DAX */
1040 	if (vma_is_dax(vma)) {
1041 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1042 			goto whole;
1043 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1044 			goto whole;
1045 		return 0;
1046 	}
1047 
1048 	/* Hugetlb memory check */
1049 	if (is_vm_hugetlb_page(vma)) {
1050 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1051 			goto whole;
1052 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1053 			goto whole;
1054 		return 0;
1055 	}
1056 
1057 	/* Do not dump I/O mapped devices or special mappings */
1058 	if (vma->vm_flags & VM_IO)
1059 		return 0;
1060 
1061 	/* By default, dump shared memory if mapped from an anonymous file. */
1062 	if (vma->vm_flags & VM_SHARED) {
1063 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1064 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1065 			goto whole;
1066 		return 0;
1067 	}
1068 
1069 	/* Dump segments that have been written to.  */
1070 	if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1071 		goto whole;
1072 	if (vma->vm_file == NULL)
1073 		return 0;
1074 
1075 	if (FILTER(MAPPED_PRIVATE))
1076 		goto whole;
1077 
1078 	/*
1079 	 * If this is the beginning of an executable file mapping,
1080 	 * dump the first page to aid in determining what was mapped here.
1081 	 */
1082 	if (FILTER(ELF_HEADERS) &&
1083 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1084 		if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1085 			return PAGE_SIZE;
1086 
1087 		/*
1088 		 * ELF libraries aren't always executable.
1089 		 * We'll want to check whether the mapping starts with the ELF
1090 		 * magic, but not now - we're holding the mmap lock,
1091 		 * so copy_from_user() doesn't work here.
1092 		 * Use a placeholder instead, and fix it up later in
1093 		 * dump_vma_snapshot().
1094 		 */
1095 		return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
1096 	}
1097 
1098 #undef	FILTER
1099 
1100 	return 0;
1101 
1102 whole:
1103 	return vma->vm_end - vma->vm_start;
1104 }
1105 
1106 /*
1107  * Helper function for iterating across a vma list.  It ensures that the caller
1108  * will visit `gate_vma' prior to terminating the search.
1109  */
1110 static struct vm_area_struct *coredump_next_vma(struct ma_state *mas,
1111 				       struct vm_area_struct *vma,
1112 				       struct vm_area_struct *gate_vma)
1113 {
1114 	if (gate_vma && (vma == gate_vma))
1115 		return NULL;
1116 
1117 	vma = mas_next(mas, ULONG_MAX);
1118 	if (vma)
1119 		return vma;
1120 	return gate_vma;
1121 }
1122 
1123 static void free_vma_snapshot(struct coredump_params *cprm)
1124 {
1125 	if (cprm->vma_meta) {
1126 		int i;
1127 		for (i = 0; i < cprm->vma_count; i++) {
1128 			struct file *file = cprm->vma_meta[i].file;
1129 			if (file)
1130 				fput(file);
1131 		}
1132 		kvfree(cprm->vma_meta);
1133 		cprm->vma_meta = NULL;
1134 	}
1135 }
1136 
1137 /*
1138  * Under the mmap_lock, take a snapshot of relevant information about the task's
1139  * VMAs.
1140  */
1141 static bool dump_vma_snapshot(struct coredump_params *cprm)
1142 {
1143 	struct vm_area_struct *gate_vma, *vma = NULL;
1144 	struct mm_struct *mm = current->mm;
1145 	MA_STATE(mas, &mm->mm_mt, 0, 0);
1146 	int i = 0;
1147 
1148 	/*
1149 	 * Once the stack expansion code is fixed to not change VMA bounds
1150 	 * under mmap_lock in read mode, this can be changed to take the
1151 	 * mmap_lock in read mode.
1152 	 */
1153 	if (mmap_write_lock_killable(mm))
1154 		return false;
1155 
1156 	cprm->vma_data_size = 0;
1157 	gate_vma = get_gate_vma(mm);
1158 	cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0);
1159 
1160 	cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL);
1161 	if (!cprm->vma_meta) {
1162 		mmap_write_unlock(mm);
1163 		return false;
1164 	}
1165 
1166 	while ((vma = coredump_next_vma(&mas, vma, gate_vma)) != NULL) {
1167 		struct core_vma_metadata *m = cprm->vma_meta + i;
1168 
1169 		m->start = vma->vm_start;
1170 		m->end = vma->vm_end;
1171 		m->flags = vma->vm_flags;
1172 		m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1173 		m->pgoff = vma->vm_pgoff;
1174 		m->file = vma->vm_file;
1175 		if (m->file)
1176 			get_file(m->file);
1177 		i++;
1178 	}
1179 
1180 	mmap_write_unlock(mm);
1181 
1182 	for (i = 0; i < cprm->vma_count; i++) {
1183 		struct core_vma_metadata *m = cprm->vma_meta + i;
1184 
1185 		if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
1186 			char elfmag[SELFMAG];
1187 
1188 			if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
1189 					memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
1190 				m->dump_size = 0;
1191 			} else {
1192 				m->dump_size = PAGE_SIZE;
1193 			}
1194 		}
1195 
1196 		cprm->vma_data_size += m->dump_size;
1197 	}
1198 
1199 	return true;
1200 }
1201