xref: /openbmc/linux/fs/coredump.c (revision 6846d656)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/tracehook.h>
35 #include <linux/kmod.h>
36 #include <linux/fsnotify.h>
37 #include <linux/fs_struct.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/oom.h>
40 #include <linux/compat.h>
41 #include <linux/fs.h>
42 #include <linux/path.h>
43 #include <linux/timekeeping.h>
44 #include <linux/sysctl.h>
45 #include <linux/elf.h>
46 
47 #include <linux/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/tlb.h>
50 #include <asm/exec.h>
51 
52 #include <trace/events/task.h>
53 #include "internal.h"
54 
55 #include <trace/events/sched.h>
56 
57 static bool dump_vma_snapshot(struct coredump_params *cprm);
58 static void free_vma_snapshot(struct coredump_params *cprm);
59 
60 static int core_uses_pid;
61 static unsigned int core_pipe_limit;
62 static char core_pattern[CORENAME_MAX_SIZE] = "core";
63 static int core_name_size = CORENAME_MAX_SIZE;
64 
65 struct core_name {
66 	char *corename;
67 	int used, size;
68 };
69 
70 static int expand_corename(struct core_name *cn, int size)
71 {
72 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
73 
74 	if (!corename)
75 		return -ENOMEM;
76 
77 	if (size > core_name_size) /* racy but harmless */
78 		core_name_size = size;
79 
80 	cn->size = ksize(corename);
81 	cn->corename = corename;
82 	return 0;
83 }
84 
85 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
86 				     va_list arg)
87 {
88 	int free, need;
89 	va_list arg_copy;
90 
91 again:
92 	free = cn->size - cn->used;
93 
94 	va_copy(arg_copy, arg);
95 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
96 	va_end(arg_copy);
97 
98 	if (need < free) {
99 		cn->used += need;
100 		return 0;
101 	}
102 
103 	if (!expand_corename(cn, cn->size + need - free + 1))
104 		goto again;
105 
106 	return -ENOMEM;
107 }
108 
109 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
110 {
111 	va_list arg;
112 	int ret;
113 
114 	va_start(arg, fmt);
115 	ret = cn_vprintf(cn, fmt, arg);
116 	va_end(arg);
117 
118 	return ret;
119 }
120 
121 static __printf(2, 3)
122 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
123 {
124 	int cur = cn->used;
125 	va_list arg;
126 	int ret;
127 
128 	va_start(arg, fmt);
129 	ret = cn_vprintf(cn, fmt, arg);
130 	va_end(arg);
131 
132 	if (ret == 0) {
133 		/*
134 		 * Ensure that this coredump name component can't cause the
135 		 * resulting corefile path to consist of a ".." or ".".
136 		 */
137 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
138 				(cn->used - cur == 2 && cn->corename[cur] == '.'
139 				&& cn->corename[cur+1] == '.'))
140 			cn->corename[cur] = '!';
141 
142 		/*
143 		 * Empty names are fishy and could be used to create a "//" in a
144 		 * corefile name, causing the coredump to happen one directory
145 		 * level too high. Enforce that all components of the core
146 		 * pattern are at least one character long.
147 		 */
148 		if (cn->used == cur)
149 			ret = cn_printf(cn, "!");
150 	}
151 
152 	for (; cur < cn->used; ++cur) {
153 		if (cn->corename[cur] == '/')
154 			cn->corename[cur] = '!';
155 	}
156 	return ret;
157 }
158 
159 static int cn_print_exe_file(struct core_name *cn, bool name_only)
160 {
161 	struct file *exe_file;
162 	char *pathbuf, *path, *ptr;
163 	int ret;
164 
165 	exe_file = get_mm_exe_file(current->mm);
166 	if (!exe_file)
167 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
168 
169 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
170 	if (!pathbuf) {
171 		ret = -ENOMEM;
172 		goto put_exe_file;
173 	}
174 
175 	path = file_path(exe_file, pathbuf, PATH_MAX);
176 	if (IS_ERR(path)) {
177 		ret = PTR_ERR(path);
178 		goto free_buf;
179 	}
180 
181 	if (name_only) {
182 		ptr = strrchr(path, '/');
183 		if (ptr)
184 			path = ptr + 1;
185 	}
186 	ret = cn_esc_printf(cn, "%s", path);
187 
188 free_buf:
189 	kfree(pathbuf);
190 put_exe_file:
191 	fput(exe_file);
192 	return ret;
193 }
194 
195 /* format_corename will inspect the pattern parameter, and output a
196  * name into corename, which must have space for at least
197  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
198  */
199 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
200 			   size_t **argv, int *argc)
201 {
202 	const struct cred *cred = current_cred();
203 	const char *pat_ptr = core_pattern;
204 	int ispipe = (*pat_ptr == '|');
205 	bool was_space = false;
206 	int pid_in_pattern = 0;
207 	int err = 0;
208 
209 	cn->used = 0;
210 	cn->corename = NULL;
211 	if (expand_corename(cn, core_name_size))
212 		return -ENOMEM;
213 	cn->corename[0] = '\0';
214 
215 	if (ispipe) {
216 		int argvs = sizeof(core_pattern) / 2;
217 		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
218 		if (!(*argv))
219 			return -ENOMEM;
220 		(*argv)[(*argc)++] = 0;
221 		++pat_ptr;
222 		if (!(*pat_ptr))
223 			return -ENOMEM;
224 	}
225 
226 	/* Repeat as long as we have more pattern to process and more output
227 	   space */
228 	while (*pat_ptr) {
229 		/*
230 		 * Split on spaces before doing template expansion so that
231 		 * %e and %E don't get split if they have spaces in them
232 		 */
233 		if (ispipe) {
234 			if (isspace(*pat_ptr)) {
235 				if (cn->used != 0)
236 					was_space = true;
237 				pat_ptr++;
238 				continue;
239 			} else if (was_space) {
240 				was_space = false;
241 				err = cn_printf(cn, "%c", '\0');
242 				if (err)
243 					return err;
244 				(*argv)[(*argc)++] = cn->used;
245 			}
246 		}
247 		if (*pat_ptr != '%') {
248 			err = cn_printf(cn, "%c", *pat_ptr++);
249 		} else {
250 			switch (*++pat_ptr) {
251 			/* single % at the end, drop that */
252 			case 0:
253 				goto out;
254 			/* Double percent, output one percent */
255 			case '%':
256 				err = cn_printf(cn, "%c", '%');
257 				break;
258 			/* pid */
259 			case 'p':
260 				pid_in_pattern = 1;
261 				err = cn_printf(cn, "%d",
262 					      task_tgid_vnr(current));
263 				break;
264 			/* global pid */
265 			case 'P':
266 				err = cn_printf(cn, "%d",
267 					      task_tgid_nr(current));
268 				break;
269 			case 'i':
270 				err = cn_printf(cn, "%d",
271 					      task_pid_vnr(current));
272 				break;
273 			case 'I':
274 				err = cn_printf(cn, "%d",
275 					      task_pid_nr(current));
276 				break;
277 			/* uid */
278 			case 'u':
279 				err = cn_printf(cn, "%u",
280 						from_kuid(&init_user_ns,
281 							  cred->uid));
282 				break;
283 			/* gid */
284 			case 'g':
285 				err = cn_printf(cn, "%u",
286 						from_kgid(&init_user_ns,
287 							  cred->gid));
288 				break;
289 			case 'd':
290 				err = cn_printf(cn, "%d",
291 					__get_dumpable(cprm->mm_flags));
292 				break;
293 			/* signal that caused the coredump */
294 			case 's':
295 				err = cn_printf(cn, "%d",
296 						cprm->siginfo->si_signo);
297 				break;
298 			/* UNIX time of coredump */
299 			case 't': {
300 				time64_t time;
301 
302 				time = ktime_get_real_seconds();
303 				err = cn_printf(cn, "%lld", time);
304 				break;
305 			}
306 			/* hostname */
307 			case 'h':
308 				down_read(&uts_sem);
309 				err = cn_esc_printf(cn, "%s",
310 					      utsname()->nodename);
311 				up_read(&uts_sem);
312 				break;
313 			/* executable, could be changed by prctl PR_SET_NAME etc */
314 			case 'e':
315 				err = cn_esc_printf(cn, "%s", current->comm);
316 				break;
317 			/* file name of executable */
318 			case 'f':
319 				err = cn_print_exe_file(cn, true);
320 				break;
321 			case 'E':
322 				err = cn_print_exe_file(cn, false);
323 				break;
324 			/* core limit size */
325 			case 'c':
326 				err = cn_printf(cn, "%lu",
327 					      rlimit(RLIMIT_CORE));
328 				break;
329 			default:
330 				break;
331 			}
332 			++pat_ptr;
333 		}
334 
335 		if (err)
336 			return err;
337 	}
338 
339 out:
340 	/* Backward compatibility with core_uses_pid:
341 	 *
342 	 * If core_pattern does not include a %p (as is the default)
343 	 * and core_uses_pid is set, then .%pid will be appended to
344 	 * the filename. Do not do this for piped commands. */
345 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
346 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
347 		if (err)
348 			return err;
349 	}
350 	return ispipe;
351 }
352 
353 static int zap_process(struct task_struct *start, int exit_code)
354 {
355 	struct task_struct *t;
356 	int nr = 0;
357 
358 	/* ignore all signals except SIGKILL, see prepare_signal() */
359 	start->signal->flags = SIGNAL_GROUP_EXIT;
360 	start->signal->group_exit_code = exit_code;
361 	start->signal->group_stop_count = 0;
362 
363 	for_each_thread(start, t) {
364 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
365 		if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
366 			sigaddset(&t->pending.signal, SIGKILL);
367 			signal_wake_up(t, 1);
368 			nr++;
369 		}
370 	}
371 
372 	return nr;
373 }
374 
375 static int zap_threads(struct task_struct *tsk,
376 			struct core_state *core_state, int exit_code)
377 {
378 	struct signal_struct *signal = tsk->signal;
379 	int nr = -EAGAIN;
380 
381 	spin_lock_irq(&tsk->sighand->siglock);
382 	if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
383 		signal->core_state = core_state;
384 		nr = zap_process(tsk, exit_code);
385 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
386 		tsk->flags |= PF_DUMPCORE;
387 		atomic_set(&core_state->nr_threads, nr);
388 	}
389 	spin_unlock_irq(&tsk->sighand->siglock);
390 	return nr;
391 }
392 
393 static int coredump_wait(int exit_code, struct core_state *core_state)
394 {
395 	struct task_struct *tsk = current;
396 	int core_waiters = -EBUSY;
397 
398 	init_completion(&core_state->startup);
399 	core_state->dumper.task = tsk;
400 	core_state->dumper.next = NULL;
401 
402 	core_waiters = zap_threads(tsk, core_state, exit_code);
403 	if (core_waiters > 0) {
404 		struct core_thread *ptr;
405 
406 		freezer_do_not_count();
407 		wait_for_completion(&core_state->startup);
408 		freezer_count();
409 		/*
410 		 * Wait for all the threads to become inactive, so that
411 		 * all the thread context (extended register state, like
412 		 * fpu etc) gets copied to the memory.
413 		 */
414 		ptr = core_state->dumper.next;
415 		while (ptr != NULL) {
416 			wait_task_inactive(ptr->task, 0);
417 			ptr = ptr->next;
418 		}
419 	}
420 
421 	return core_waiters;
422 }
423 
424 static void coredump_finish(bool core_dumped)
425 {
426 	struct core_thread *curr, *next;
427 	struct task_struct *task;
428 
429 	spin_lock_irq(&current->sighand->siglock);
430 	if (core_dumped && !__fatal_signal_pending(current))
431 		current->signal->group_exit_code |= 0x80;
432 	next = current->signal->core_state->dumper.next;
433 	current->signal->core_state = NULL;
434 	spin_unlock_irq(&current->sighand->siglock);
435 
436 	while ((curr = next) != NULL) {
437 		next = curr->next;
438 		task = curr->task;
439 		/*
440 		 * see coredump_task_exit(), curr->task must not see
441 		 * ->task == NULL before we read ->next.
442 		 */
443 		smp_mb();
444 		curr->task = NULL;
445 		wake_up_process(task);
446 	}
447 }
448 
449 static bool dump_interrupted(void)
450 {
451 	/*
452 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
453 	 * can do try_to_freeze() and check __fatal_signal_pending(),
454 	 * but then we need to teach dump_write() to restart and clear
455 	 * TIF_SIGPENDING.
456 	 */
457 	return fatal_signal_pending(current) || freezing(current);
458 }
459 
460 static void wait_for_dump_helpers(struct file *file)
461 {
462 	struct pipe_inode_info *pipe = file->private_data;
463 
464 	pipe_lock(pipe);
465 	pipe->readers++;
466 	pipe->writers--;
467 	wake_up_interruptible_sync(&pipe->rd_wait);
468 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
469 	pipe_unlock(pipe);
470 
471 	/*
472 	 * We actually want wait_event_freezable() but then we need
473 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
474 	 */
475 	wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
476 
477 	pipe_lock(pipe);
478 	pipe->readers--;
479 	pipe->writers++;
480 	pipe_unlock(pipe);
481 }
482 
483 /*
484  * umh_pipe_setup
485  * helper function to customize the process used
486  * to collect the core in userspace.  Specifically
487  * it sets up a pipe and installs it as fd 0 (stdin)
488  * for the process.  Returns 0 on success, or
489  * PTR_ERR on failure.
490  * Note that it also sets the core limit to 1.  This
491  * is a special value that we use to trap recursive
492  * core dumps
493  */
494 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
495 {
496 	struct file *files[2];
497 	struct coredump_params *cp = (struct coredump_params *)info->data;
498 	int err = create_pipe_files(files, 0);
499 	if (err)
500 		return err;
501 
502 	cp->file = files[1];
503 
504 	err = replace_fd(0, files[0], 0);
505 	fput(files[0]);
506 	/* and disallow core files too */
507 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
508 
509 	return err;
510 }
511 
512 void do_coredump(const kernel_siginfo_t *siginfo)
513 {
514 	struct core_state core_state;
515 	struct core_name cn;
516 	struct mm_struct *mm = current->mm;
517 	struct linux_binfmt * binfmt;
518 	const struct cred *old_cred;
519 	struct cred *cred;
520 	int retval = 0;
521 	int ispipe;
522 	size_t *argv = NULL;
523 	int argc = 0;
524 	/* require nonrelative corefile path and be extra careful */
525 	bool need_suid_safe = false;
526 	bool core_dumped = false;
527 	static atomic_t core_dump_count = ATOMIC_INIT(0);
528 	struct coredump_params cprm = {
529 		.siginfo = siginfo,
530 		.regs = signal_pt_regs(),
531 		.limit = rlimit(RLIMIT_CORE),
532 		/*
533 		 * We must use the same mm->flags while dumping core to avoid
534 		 * inconsistency of bit flags, since this flag is not protected
535 		 * by any locks.
536 		 */
537 		.mm_flags = mm->flags,
538 		.vma_meta = NULL,
539 	};
540 
541 	audit_core_dumps(siginfo->si_signo);
542 
543 	binfmt = mm->binfmt;
544 	if (!binfmt || !binfmt->core_dump)
545 		goto fail;
546 	if (!__get_dumpable(cprm.mm_flags))
547 		goto fail;
548 
549 	cred = prepare_creds();
550 	if (!cred)
551 		goto fail;
552 	/*
553 	 * We cannot trust fsuid as being the "true" uid of the process
554 	 * nor do we know its entire history. We only know it was tainted
555 	 * so we dump it as root in mode 2, and only into a controlled
556 	 * environment (pipe handler or fully qualified path).
557 	 */
558 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
559 		/* Setuid core dump mode */
560 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
561 		need_suid_safe = true;
562 	}
563 
564 	retval = coredump_wait(siginfo->si_signo, &core_state);
565 	if (retval < 0)
566 		goto fail_creds;
567 
568 	old_cred = override_creds(cred);
569 
570 	ispipe = format_corename(&cn, &cprm, &argv, &argc);
571 
572 	if (ispipe) {
573 		int argi;
574 		int dump_count;
575 		char **helper_argv;
576 		struct subprocess_info *sub_info;
577 
578 		if (ispipe < 0) {
579 			printk(KERN_WARNING "format_corename failed\n");
580 			printk(KERN_WARNING "Aborting core\n");
581 			goto fail_unlock;
582 		}
583 
584 		if (cprm.limit == 1) {
585 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
586 			 *
587 			 * Normally core limits are irrelevant to pipes, since
588 			 * we're not writing to the file system, but we use
589 			 * cprm.limit of 1 here as a special value, this is a
590 			 * consistent way to catch recursive crashes.
591 			 * We can still crash if the core_pattern binary sets
592 			 * RLIM_CORE = !1, but it runs as root, and can do
593 			 * lots of stupid things.
594 			 *
595 			 * Note that we use task_tgid_vnr here to grab the pid
596 			 * of the process group leader.  That way we get the
597 			 * right pid if a thread in a multi-threaded
598 			 * core_pattern process dies.
599 			 */
600 			printk(KERN_WARNING
601 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
602 				task_tgid_vnr(current), current->comm);
603 			printk(KERN_WARNING "Aborting core\n");
604 			goto fail_unlock;
605 		}
606 		cprm.limit = RLIM_INFINITY;
607 
608 		dump_count = atomic_inc_return(&core_dump_count);
609 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
610 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
611 			       task_tgid_vnr(current), current->comm);
612 			printk(KERN_WARNING "Skipping core dump\n");
613 			goto fail_dropcount;
614 		}
615 
616 		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
617 					    GFP_KERNEL);
618 		if (!helper_argv) {
619 			printk(KERN_WARNING "%s failed to allocate memory\n",
620 			       __func__);
621 			goto fail_dropcount;
622 		}
623 		for (argi = 0; argi < argc; argi++)
624 			helper_argv[argi] = cn.corename + argv[argi];
625 		helper_argv[argi] = NULL;
626 
627 		retval = -ENOMEM;
628 		sub_info = call_usermodehelper_setup(helper_argv[0],
629 						helper_argv, NULL, GFP_KERNEL,
630 						umh_pipe_setup, NULL, &cprm);
631 		if (sub_info)
632 			retval = call_usermodehelper_exec(sub_info,
633 							  UMH_WAIT_EXEC);
634 
635 		kfree(helper_argv);
636 		if (retval) {
637 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
638 			       cn.corename);
639 			goto close_fail;
640 		}
641 	} else {
642 		struct user_namespace *mnt_userns;
643 		struct inode *inode;
644 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
645 				 O_LARGEFILE | O_EXCL;
646 
647 		if (cprm.limit < binfmt->min_coredump)
648 			goto fail_unlock;
649 
650 		if (need_suid_safe && cn.corename[0] != '/') {
651 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
652 				"to fully qualified path!\n",
653 				task_tgid_vnr(current), current->comm);
654 			printk(KERN_WARNING "Skipping core dump\n");
655 			goto fail_unlock;
656 		}
657 
658 		/*
659 		 * Unlink the file if it exists unless this is a SUID
660 		 * binary - in that case, we're running around with root
661 		 * privs and don't want to unlink another user's coredump.
662 		 */
663 		if (!need_suid_safe) {
664 			/*
665 			 * If it doesn't exist, that's fine. If there's some
666 			 * other problem, we'll catch it at the filp_open().
667 			 */
668 			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
669 		}
670 
671 		/*
672 		 * There is a race between unlinking and creating the
673 		 * file, but if that causes an EEXIST here, that's
674 		 * fine - another process raced with us while creating
675 		 * the corefile, and the other process won. To userspace,
676 		 * what matters is that at least one of the two processes
677 		 * writes its coredump successfully, not which one.
678 		 */
679 		if (need_suid_safe) {
680 			/*
681 			 * Using user namespaces, normal user tasks can change
682 			 * their current->fs->root to point to arbitrary
683 			 * directories. Since the intention of the "only dump
684 			 * with a fully qualified path" rule is to control where
685 			 * coredumps may be placed using root privileges,
686 			 * current->fs->root must not be used. Instead, use the
687 			 * root directory of init_task.
688 			 */
689 			struct path root;
690 
691 			task_lock(&init_task);
692 			get_fs_root(init_task.fs, &root);
693 			task_unlock(&init_task);
694 			cprm.file = file_open_root(&root, cn.corename,
695 						   open_flags, 0600);
696 			path_put(&root);
697 		} else {
698 			cprm.file = filp_open(cn.corename, open_flags, 0600);
699 		}
700 		if (IS_ERR(cprm.file))
701 			goto fail_unlock;
702 
703 		inode = file_inode(cprm.file);
704 		if (inode->i_nlink > 1)
705 			goto close_fail;
706 		if (d_unhashed(cprm.file->f_path.dentry))
707 			goto close_fail;
708 		/*
709 		 * AK: actually i see no reason to not allow this for named
710 		 * pipes etc, but keep the previous behaviour for now.
711 		 */
712 		if (!S_ISREG(inode->i_mode))
713 			goto close_fail;
714 		/*
715 		 * Don't dump core if the filesystem changed owner or mode
716 		 * of the file during file creation. This is an issue when
717 		 * a process dumps core while its cwd is e.g. on a vfat
718 		 * filesystem.
719 		 */
720 		mnt_userns = file_mnt_user_ns(cprm.file);
721 		if (!uid_eq(i_uid_into_mnt(mnt_userns, inode),
722 			    current_fsuid())) {
723 			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n",
724 					    cn.corename);
725 			goto close_fail;
726 		}
727 		if ((inode->i_mode & 0677) != 0600) {
728 			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n",
729 					    cn.corename);
730 			goto close_fail;
731 		}
732 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
733 			goto close_fail;
734 		if (do_truncate(mnt_userns, cprm.file->f_path.dentry,
735 				0, 0, cprm.file))
736 			goto close_fail;
737 	}
738 
739 	/* get us an unshared descriptor table; almost always a no-op */
740 	/* The cell spufs coredump code reads the file descriptor tables */
741 	retval = unshare_files();
742 	if (retval)
743 		goto close_fail;
744 	if (!dump_interrupted()) {
745 		/*
746 		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
747 		 * have this set to NULL.
748 		 */
749 		if (!cprm.file) {
750 			pr_info("Core dump to |%s disabled\n", cn.corename);
751 			goto close_fail;
752 		}
753 		if (!dump_vma_snapshot(&cprm))
754 			goto close_fail;
755 
756 		file_start_write(cprm.file);
757 		core_dumped = binfmt->core_dump(&cprm);
758 		/*
759 		 * Ensures that file size is big enough to contain the current
760 		 * file postion. This prevents gdb from complaining about
761 		 * a truncated file if the last "write" to the file was
762 		 * dump_skip.
763 		 */
764 		if (cprm.to_skip) {
765 			cprm.to_skip--;
766 			dump_emit(&cprm, "", 1);
767 		}
768 		file_end_write(cprm.file);
769 		free_vma_snapshot(&cprm);
770 	}
771 	if (ispipe && core_pipe_limit)
772 		wait_for_dump_helpers(cprm.file);
773 close_fail:
774 	if (cprm.file)
775 		filp_close(cprm.file, NULL);
776 fail_dropcount:
777 	if (ispipe)
778 		atomic_dec(&core_dump_count);
779 fail_unlock:
780 	kfree(argv);
781 	kfree(cn.corename);
782 	coredump_finish(core_dumped);
783 	revert_creds(old_cred);
784 fail_creds:
785 	put_cred(cred);
786 fail:
787 	return;
788 }
789 
790 /*
791  * Core dumping helper functions.  These are the only things you should
792  * do on a core-file: use only these functions to write out all the
793  * necessary info.
794  */
795 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
796 {
797 	struct file *file = cprm->file;
798 	loff_t pos = file->f_pos;
799 	ssize_t n;
800 	if (cprm->written + nr > cprm->limit)
801 		return 0;
802 
803 
804 	if (dump_interrupted())
805 		return 0;
806 	n = __kernel_write(file, addr, nr, &pos);
807 	if (n != nr)
808 		return 0;
809 	file->f_pos = pos;
810 	cprm->written += n;
811 	cprm->pos += n;
812 
813 	return 1;
814 }
815 
816 static int __dump_skip(struct coredump_params *cprm, size_t nr)
817 {
818 	static char zeroes[PAGE_SIZE];
819 	struct file *file = cprm->file;
820 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
821 		if (dump_interrupted() ||
822 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
823 			return 0;
824 		cprm->pos += nr;
825 		return 1;
826 	} else {
827 		while (nr > PAGE_SIZE) {
828 			if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
829 				return 0;
830 			nr -= PAGE_SIZE;
831 		}
832 		return __dump_emit(cprm, zeroes, nr);
833 	}
834 }
835 
836 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
837 {
838 	if (cprm->to_skip) {
839 		if (!__dump_skip(cprm, cprm->to_skip))
840 			return 0;
841 		cprm->to_skip = 0;
842 	}
843 	return __dump_emit(cprm, addr, nr);
844 }
845 EXPORT_SYMBOL(dump_emit);
846 
847 void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
848 {
849 	cprm->to_skip = pos - cprm->pos;
850 }
851 EXPORT_SYMBOL(dump_skip_to);
852 
853 void dump_skip(struct coredump_params *cprm, size_t nr)
854 {
855 	cprm->to_skip += nr;
856 }
857 EXPORT_SYMBOL(dump_skip);
858 
859 #ifdef CONFIG_ELF_CORE
860 int dump_user_range(struct coredump_params *cprm, unsigned long start,
861 		    unsigned long len)
862 {
863 	unsigned long addr;
864 
865 	for (addr = start; addr < start + len; addr += PAGE_SIZE) {
866 		struct page *page;
867 		int stop;
868 
869 		/*
870 		 * To avoid having to allocate page tables for virtual address
871 		 * ranges that have never been used yet, and also to make it
872 		 * easy to generate sparse core files, use a helper that returns
873 		 * NULL when encountering an empty page table entry that would
874 		 * otherwise have been filled with the zero page.
875 		 */
876 		page = get_dump_page(addr);
877 		if (page) {
878 			void *kaddr = kmap_local_page(page);
879 
880 			stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
881 			kunmap_local(kaddr);
882 			put_page(page);
883 			if (stop)
884 				return 0;
885 		} else {
886 			dump_skip(cprm, PAGE_SIZE);
887 		}
888 	}
889 	return 1;
890 }
891 #endif
892 
893 int dump_align(struct coredump_params *cprm, int align)
894 {
895 	unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
896 	if (align & (align - 1))
897 		return 0;
898 	if (mod)
899 		cprm->to_skip += align - mod;
900 	return 1;
901 }
902 EXPORT_SYMBOL(dump_align);
903 
904 #ifdef CONFIG_SYSCTL
905 
906 void validate_coredump_safety(void)
907 {
908 	if (suid_dumpable == SUID_DUMP_ROOT &&
909 	    core_pattern[0] != '/' && core_pattern[0] != '|') {
910 		pr_warn(
911 "Unsafe core_pattern used with fs.suid_dumpable=2.\n"
912 "Pipe handler or fully qualified core dump path required.\n"
913 "Set kernel.core_pattern before fs.suid_dumpable.\n"
914 		);
915 	}
916 }
917 
918 static int proc_dostring_coredump(struct ctl_table *table, int write,
919 		  void *buffer, size_t *lenp, loff_t *ppos)
920 {
921 	int error = proc_dostring(table, write, buffer, lenp, ppos);
922 
923 	if (!error)
924 		validate_coredump_safety();
925 	return error;
926 }
927 
928 static struct ctl_table coredump_sysctls[] = {
929 	{
930 		.procname	= "core_uses_pid",
931 		.data		= &core_uses_pid,
932 		.maxlen		= sizeof(int),
933 		.mode		= 0644,
934 		.proc_handler	= proc_dointvec,
935 	},
936 	{
937 		.procname	= "core_pattern",
938 		.data		= core_pattern,
939 		.maxlen		= CORENAME_MAX_SIZE,
940 		.mode		= 0644,
941 		.proc_handler	= proc_dostring_coredump,
942 	},
943 	{
944 		.procname	= "core_pipe_limit",
945 		.data		= &core_pipe_limit,
946 		.maxlen		= sizeof(unsigned int),
947 		.mode		= 0644,
948 		.proc_handler	= proc_dointvec,
949 	},
950 	{ }
951 };
952 
953 static int __init init_fs_coredump_sysctls(void)
954 {
955 	register_sysctl_init("kernel", coredump_sysctls);
956 	return 0;
957 }
958 fs_initcall(init_fs_coredump_sysctls);
959 #endif /* CONFIG_SYSCTL */
960 
961 /*
962  * The purpose of always_dump_vma() is to make sure that special kernel mappings
963  * that are useful for post-mortem analysis are included in every core dump.
964  * In that way we ensure that the core dump is fully interpretable later
965  * without matching up the same kernel and hardware config to see what PC values
966  * meant. These special mappings include - vDSO, vsyscall, and other
967  * architecture specific mappings
968  */
969 static bool always_dump_vma(struct vm_area_struct *vma)
970 {
971 	/* Any vsyscall mappings? */
972 	if (vma == get_gate_vma(vma->vm_mm))
973 		return true;
974 
975 	/*
976 	 * Assume that all vmas with a .name op should always be dumped.
977 	 * If this changes, a new vm_ops field can easily be added.
978 	 */
979 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
980 		return true;
981 
982 	/*
983 	 * arch_vma_name() returns non-NULL for special architecture mappings,
984 	 * such as vDSO sections.
985 	 */
986 	if (arch_vma_name(vma))
987 		return true;
988 
989 	return false;
990 }
991 
992 #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
993 
994 /*
995  * Decide how much of @vma's contents should be included in a core dump.
996  */
997 static unsigned long vma_dump_size(struct vm_area_struct *vma,
998 				   unsigned long mm_flags)
999 {
1000 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1001 
1002 	/* always dump the vdso and vsyscall sections */
1003 	if (always_dump_vma(vma))
1004 		goto whole;
1005 
1006 	if (vma->vm_flags & VM_DONTDUMP)
1007 		return 0;
1008 
1009 	/* support for DAX */
1010 	if (vma_is_dax(vma)) {
1011 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1012 			goto whole;
1013 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1014 			goto whole;
1015 		return 0;
1016 	}
1017 
1018 	/* Hugetlb memory check */
1019 	if (is_vm_hugetlb_page(vma)) {
1020 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1021 			goto whole;
1022 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1023 			goto whole;
1024 		return 0;
1025 	}
1026 
1027 	/* Do not dump I/O mapped devices or special mappings */
1028 	if (vma->vm_flags & VM_IO)
1029 		return 0;
1030 
1031 	/* By default, dump shared memory if mapped from an anonymous file. */
1032 	if (vma->vm_flags & VM_SHARED) {
1033 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1034 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1035 			goto whole;
1036 		return 0;
1037 	}
1038 
1039 	/* Dump segments that have been written to.  */
1040 	if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1041 		goto whole;
1042 	if (vma->vm_file == NULL)
1043 		return 0;
1044 
1045 	if (FILTER(MAPPED_PRIVATE))
1046 		goto whole;
1047 
1048 	/*
1049 	 * If this is the beginning of an executable file mapping,
1050 	 * dump the first page to aid in determining what was mapped here.
1051 	 */
1052 	if (FILTER(ELF_HEADERS) &&
1053 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1054 		if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1055 			return PAGE_SIZE;
1056 
1057 		/*
1058 		 * ELF libraries aren't always executable.
1059 		 * We'll want to check whether the mapping starts with the ELF
1060 		 * magic, but not now - we're holding the mmap lock,
1061 		 * so copy_from_user() doesn't work here.
1062 		 * Use a placeholder instead, and fix it up later in
1063 		 * dump_vma_snapshot().
1064 		 */
1065 		return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
1066 	}
1067 
1068 #undef	FILTER
1069 
1070 	return 0;
1071 
1072 whole:
1073 	return vma->vm_end - vma->vm_start;
1074 }
1075 
1076 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1077 					struct vm_area_struct *gate_vma)
1078 {
1079 	struct vm_area_struct *ret = tsk->mm->mmap;
1080 
1081 	if (ret)
1082 		return ret;
1083 	return gate_vma;
1084 }
1085 
1086 /*
1087  * Helper function for iterating across a vma list.  It ensures that the caller
1088  * will visit `gate_vma' prior to terminating the search.
1089  */
1090 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1091 				       struct vm_area_struct *gate_vma)
1092 {
1093 	struct vm_area_struct *ret;
1094 
1095 	ret = this_vma->vm_next;
1096 	if (ret)
1097 		return ret;
1098 	if (this_vma == gate_vma)
1099 		return NULL;
1100 	return gate_vma;
1101 }
1102 
1103 static void free_vma_snapshot(struct coredump_params *cprm)
1104 {
1105 	if (cprm->vma_meta) {
1106 		int i;
1107 		for (i = 0; i < cprm->vma_count; i++) {
1108 			struct file *file = cprm->vma_meta[i].file;
1109 			if (file)
1110 				fput(file);
1111 		}
1112 		kvfree(cprm->vma_meta);
1113 		cprm->vma_meta = NULL;
1114 	}
1115 }
1116 
1117 /*
1118  * Under the mmap_lock, take a snapshot of relevant information about the task's
1119  * VMAs.
1120  */
1121 static bool dump_vma_snapshot(struct coredump_params *cprm)
1122 {
1123 	struct vm_area_struct *vma, *gate_vma;
1124 	struct mm_struct *mm = current->mm;
1125 	int i;
1126 
1127 	/*
1128 	 * Once the stack expansion code is fixed to not change VMA bounds
1129 	 * under mmap_lock in read mode, this can be changed to take the
1130 	 * mmap_lock in read mode.
1131 	 */
1132 	if (mmap_write_lock_killable(mm))
1133 		return false;
1134 
1135 	cprm->vma_data_size = 0;
1136 	gate_vma = get_gate_vma(mm);
1137 	cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0);
1138 
1139 	cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL);
1140 	if (!cprm->vma_meta) {
1141 		mmap_write_unlock(mm);
1142 		return false;
1143 	}
1144 
1145 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
1146 			vma = next_vma(vma, gate_vma), i++) {
1147 		struct core_vma_metadata *m = cprm->vma_meta + i;
1148 
1149 		m->start = vma->vm_start;
1150 		m->end = vma->vm_end;
1151 		m->flags = vma->vm_flags;
1152 		m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1153 		m->pgoff = vma->vm_pgoff;
1154 
1155 		m->file = vma->vm_file;
1156 		if (m->file)
1157 			get_file(m->file);
1158 	}
1159 
1160 	mmap_write_unlock(mm);
1161 
1162 	for (i = 0; i < cprm->vma_count; i++) {
1163 		struct core_vma_metadata *m = cprm->vma_meta + i;
1164 
1165 		if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
1166 			char elfmag[SELFMAG];
1167 
1168 			if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
1169 					memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
1170 				m->dump_size = 0;
1171 			} else {
1172 				m->dump_size = PAGE_SIZE;
1173 			}
1174 		}
1175 
1176 		cprm->vma_data_size += m->dump_size;
1177 	}
1178 
1179 	return true;
1180 }
1181