xref: /openbmc/linux/fs/coredump.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/string.h>
11 #include <linux/init.h>
12 #include <linux/pagemap.h>
13 #include <linux/perf_event.h>
14 #include <linux/highmem.h>
15 #include <linux/spinlock.h>
16 #include <linux/key.h>
17 #include <linux/personality.h>
18 #include <linux/binfmts.h>
19 #include <linux/coredump.h>
20 #include <linux/sched/coredump.h>
21 #include <linux/sched/signal.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/utsname.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/module.h>
26 #include <linux/namei.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/syscalls.h>
30 #include <linux/tsacct_kern.h>
31 #include <linux/cn_proc.h>
32 #include <linux/audit.h>
33 #include <linux/tracehook.h>
34 #include <linux/kmod.h>
35 #include <linux/fsnotify.h>
36 #include <linux/fs_struct.h>
37 #include <linux/pipe_fs_i.h>
38 #include <linux/oom.h>
39 #include <linux/compat.h>
40 #include <linux/fs.h>
41 #include <linux/path.h>
42 #include <linux/timekeeping.h>
43 
44 #include <linux/uaccess.h>
45 #include <asm/mmu_context.h>
46 #include <asm/tlb.h>
47 #include <asm/exec.h>
48 
49 #include <trace/events/task.h>
50 #include "internal.h"
51 
52 #include <trace/events/sched.h>
53 
54 int core_uses_pid;
55 unsigned int core_pipe_limit;
56 char core_pattern[CORENAME_MAX_SIZE] = "core";
57 static int core_name_size = CORENAME_MAX_SIZE;
58 
59 struct core_name {
60 	char *corename;
61 	int used, size;
62 };
63 
64 /* The maximal length of core_pattern is also specified in sysctl.c */
65 
66 static int expand_corename(struct core_name *cn, int size)
67 {
68 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
69 
70 	if (!corename)
71 		return -ENOMEM;
72 
73 	if (size > core_name_size) /* racy but harmless */
74 		core_name_size = size;
75 
76 	cn->size = ksize(corename);
77 	cn->corename = corename;
78 	return 0;
79 }
80 
81 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
82 				     va_list arg)
83 {
84 	int free, need;
85 	va_list arg_copy;
86 
87 again:
88 	free = cn->size - cn->used;
89 
90 	va_copy(arg_copy, arg);
91 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
92 	va_end(arg_copy);
93 
94 	if (need < free) {
95 		cn->used += need;
96 		return 0;
97 	}
98 
99 	if (!expand_corename(cn, cn->size + need - free + 1))
100 		goto again;
101 
102 	return -ENOMEM;
103 }
104 
105 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
106 {
107 	va_list arg;
108 	int ret;
109 
110 	va_start(arg, fmt);
111 	ret = cn_vprintf(cn, fmt, arg);
112 	va_end(arg);
113 
114 	return ret;
115 }
116 
117 static __printf(2, 3)
118 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
119 {
120 	int cur = cn->used;
121 	va_list arg;
122 	int ret;
123 
124 	va_start(arg, fmt);
125 	ret = cn_vprintf(cn, fmt, arg);
126 	va_end(arg);
127 
128 	if (ret == 0) {
129 		/*
130 		 * Ensure that this coredump name component can't cause the
131 		 * resulting corefile path to consist of a ".." or ".".
132 		 */
133 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
134 				(cn->used - cur == 2 && cn->corename[cur] == '.'
135 				&& cn->corename[cur+1] == '.'))
136 			cn->corename[cur] = '!';
137 
138 		/*
139 		 * Empty names are fishy and could be used to create a "//" in a
140 		 * corefile name, causing the coredump to happen one directory
141 		 * level too high. Enforce that all components of the core
142 		 * pattern are at least one character long.
143 		 */
144 		if (cn->used == cur)
145 			ret = cn_printf(cn, "!");
146 	}
147 
148 	for (; cur < cn->used; ++cur) {
149 		if (cn->corename[cur] == '/')
150 			cn->corename[cur] = '!';
151 	}
152 	return ret;
153 }
154 
155 static int cn_print_exe_file(struct core_name *cn)
156 {
157 	struct file *exe_file;
158 	char *pathbuf, *path;
159 	int ret;
160 
161 	exe_file = get_mm_exe_file(current->mm);
162 	if (!exe_file)
163 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
164 
165 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
166 	if (!pathbuf) {
167 		ret = -ENOMEM;
168 		goto put_exe_file;
169 	}
170 
171 	path = file_path(exe_file, pathbuf, PATH_MAX);
172 	if (IS_ERR(path)) {
173 		ret = PTR_ERR(path);
174 		goto free_buf;
175 	}
176 
177 	ret = cn_esc_printf(cn, "%s", path);
178 
179 free_buf:
180 	kfree(pathbuf);
181 put_exe_file:
182 	fput(exe_file);
183 	return ret;
184 }
185 
186 /* format_corename will inspect the pattern parameter, and output a
187  * name into corename, which must have space for at least
188  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
189  */
190 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
191 {
192 	const struct cred *cred = current_cred();
193 	const char *pat_ptr = core_pattern;
194 	int ispipe = (*pat_ptr == '|');
195 	int pid_in_pattern = 0;
196 	int err = 0;
197 
198 	cn->used = 0;
199 	cn->corename = NULL;
200 	if (expand_corename(cn, core_name_size))
201 		return -ENOMEM;
202 	cn->corename[0] = '\0';
203 
204 	if (ispipe)
205 		++pat_ptr;
206 
207 	/* Repeat as long as we have more pattern to process and more output
208 	   space */
209 	while (*pat_ptr) {
210 		if (*pat_ptr != '%') {
211 			err = cn_printf(cn, "%c", *pat_ptr++);
212 		} else {
213 			switch (*++pat_ptr) {
214 			/* single % at the end, drop that */
215 			case 0:
216 				goto out;
217 			/* Double percent, output one percent */
218 			case '%':
219 				err = cn_printf(cn, "%c", '%');
220 				break;
221 			/* pid */
222 			case 'p':
223 				pid_in_pattern = 1;
224 				err = cn_printf(cn, "%d",
225 					      task_tgid_vnr(current));
226 				break;
227 			/* global pid */
228 			case 'P':
229 				err = cn_printf(cn, "%d",
230 					      task_tgid_nr(current));
231 				break;
232 			case 'i':
233 				err = cn_printf(cn, "%d",
234 					      task_pid_vnr(current));
235 				break;
236 			case 'I':
237 				err = cn_printf(cn, "%d",
238 					      task_pid_nr(current));
239 				break;
240 			/* uid */
241 			case 'u':
242 				err = cn_printf(cn, "%u",
243 						from_kuid(&init_user_ns,
244 							  cred->uid));
245 				break;
246 			/* gid */
247 			case 'g':
248 				err = cn_printf(cn, "%u",
249 						from_kgid(&init_user_ns,
250 							  cred->gid));
251 				break;
252 			case 'd':
253 				err = cn_printf(cn, "%d",
254 					__get_dumpable(cprm->mm_flags));
255 				break;
256 			/* signal that caused the coredump */
257 			case 's':
258 				err = cn_printf(cn, "%d",
259 						cprm->siginfo->si_signo);
260 				break;
261 			/* UNIX time of coredump */
262 			case 't': {
263 				time64_t time;
264 
265 				time = ktime_get_real_seconds();
266 				err = cn_printf(cn, "%lld", time);
267 				break;
268 			}
269 			/* hostname */
270 			case 'h':
271 				down_read(&uts_sem);
272 				err = cn_esc_printf(cn, "%s",
273 					      utsname()->nodename);
274 				up_read(&uts_sem);
275 				break;
276 			/* executable */
277 			case 'e':
278 				err = cn_esc_printf(cn, "%s", current->comm);
279 				break;
280 			case 'E':
281 				err = cn_print_exe_file(cn);
282 				break;
283 			/* core limit size */
284 			case 'c':
285 				err = cn_printf(cn, "%lu",
286 					      rlimit(RLIMIT_CORE));
287 				break;
288 			default:
289 				break;
290 			}
291 			++pat_ptr;
292 		}
293 
294 		if (err)
295 			return err;
296 	}
297 
298 out:
299 	/* Backward compatibility with core_uses_pid:
300 	 *
301 	 * If core_pattern does not include a %p (as is the default)
302 	 * and core_uses_pid is set, then .%pid will be appended to
303 	 * the filename. Do not do this for piped commands. */
304 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
305 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
306 		if (err)
307 			return err;
308 	}
309 	return ispipe;
310 }
311 
312 static int zap_process(struct task_struct *start, int exit_code, int flags)
313 {
314 	struct task_struct *t;
315 	int nr = 0;
316 
317 	/* ignore all signals except SIGKILL, see prepare_signal() */
318 	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
319 	start->signal->group_exit_code = exit_code;
320 	start->signal->group_stop_count = 0;
321 
322 	for_each_thread(start, t) {
323 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
324 		if (t != current && t->mm) {
325 			sigaddset(&t->pending.signal, SIGKILL);
326 			signal_wake_up(t, 1);
327 			nr++;
328 		}
329 	}
330 
331 	return nr;
332 }
333 
334 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
335 			struct core_state *core_state, int exit_code)
336 {
337 	struct task_struct *g, *p;
338 	unsigned long flags;
339 	int nr = -EAGAIN;
340 
341 	spin_lock_irq(&tsk->sighand->siglock);
342 	if (!signal_group_exit(tsk->signal)) {
343 		mm->core_state = core_state;
344 		tsk->signal->group_exit_task = tsk;
345 		nr = zap_process(tsk, exit_code, 0);
346 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
347 	}
348 	spin_unlock_irq(&tsk->sighand->siglock);
349 	if (unlikely(nr < 0))
350 		return nr;
351 
352 	tsk->flags |= PF_DUMPCORE;
353 	if (atomic_read(&mm->mm_users) == nr + 1)
354 		goto done;
355 	/*
356 	 * We should find and kill all tasks which use this mm, and we should
357 	 * count them correctly into ->nr_threads. We don't take tasklist
358 	 * lock, but this is safe wrt:
359 	 *
360 	 * fork:
361 	 *	None of sub-threads can fork after zap_process(leader). All
362 	 *	processes which were created before this point should be
363 	 *	visible to zap_threads() because copy_process() adds the new
364 	 *	process to the tail of init_task.tasks list, and lock/unlock
365 	 *	of ->siglock provides a memory barrier.
366 	 *
367 	 * do_exit:
368 	 *	The caller holds mm->mmap_sem. This means that the task which
369 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
370 	 *	its ->mm.
371 	 *
372 	 * de_thread:
373 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
374 	 *	we must see either old or new leader, this does not matter.
375 	 *	However, it can change p->sighand, so lock_task_sighand(p)
376 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
377 	 *	it can't fail.
378 	 *
379 	 *	Note also that "g" can be the old leader with ->mm == NULL
380 	 *	and already unhashed and thus removed from ->thread_group.
381 	 *	This is OK, __unhash_process()->list_del_rcu() does not
382 	 *	clear the ->next pointer, we will find the new leader via
383 	 *	next_thread().
384 	 */
385 	rcu_read_lock();
386 	for_each_process(g) {
387 		if (g == tsk->group_leader)
388 			continue;
389 		if (g->flags & PF_KTHREAD)
390 			continue;
391 
392 		for_each_thread(g, p) {
393 			if (unlikely(!p->mm))
394 				continue;
395 			if (unlikely(p->mm == mm)) {
396 				lock_task_sighand(p, &flags);
397 				nr += zap_process(p, exit_code,
398 							SIGNAL_GROUP_EXIT);
399 				unlock_task_sighand(p, &flags);
400 			}
401 			break;
402 		}
403 	}
404 	rcu_read_unlock();
405 done:
406 	atomic_set(&core_state->nr_threads, nr);
407 	return nr;
408 }
409 
410 static int coredump_wait(int exit_code, struct core_state *core_state)
411 {
412 	struct task_struct *tsk = current;
413 	struct mm_struct *mm = tsk->mm;
414 	int core_waiters = -EBUSY;
415 
416 	init_completion(&core_state->startup);
417 	core_state->dumper.task = tsk;
418 	core_state->dumper.next = NULL;
419 
420 	if (down_write_killable(&mm->mmap_sem))
421 		return -EINTR;
422 
423 	if (!mm->core_state)
424 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
425 	up_write(&mm->mmap_sem);
426 
427 	if (core_waiters > 0) {
428 		struct core_thread *ptr;
429 
430 		freezer_do_not_count();
431 		wait_for_completion(&core_state->startup);
432 		freezer_count();
433 		/*
434 		 * Wait for all the threads to become inactive, so that
435 		 * all the thread context (extended register state, like
436 		 * fpu etc) gets copied to the memory.
437 		 */
438 		ptr = core_state->dumper.next;
439 		while (ptr != NULL) {
440 			wait_task_inactive(ptr->task, 0);
441 			ptr = ptr->next;
442 		}
443 	}
444 
445 	return core_waiters;
446 }
447 
448 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
449 {
450 	struct core_thread *curr, *next;
451 	struct task_struct *task;
452 
453 	spin_lock_irq(&current->sighand->siglock);
454 	if (core_dumped && !__fatal_signal_pending(current))
455 		current->signal->group_exit_code |= 0x80;
456 	current->signal->group_exit_task = NULL;
457 	current->signal->flags = SIGNAL_GROUP_EXIT;
458 	spin_unlock_irq(&current->sighand->siglock);
459 
460 	next = mm->core_state->dumper.next;
461 	while ((curr = next) != NULL) {
462 		next = curr->next;
463 		task = curr->task;
464 		/*
465 		 * see exit_mm(), curr->task must not see
466 		 * ->task == NULL before we read ->next.
467 		 */
468 		smp_mb();
469 		curr->task = NULL;
470 		wake_up_process(task);
471 	}
472 
473 	mm->core_state = NULL;
474 }
475 
476 static bool dump_interrupted(void)
477 {
478 	/*
479 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
480 	 * can do try_to_freeze() and check __fatal_signal_pending(),
481 	 * but then we need to teach dump_write() to restart and clear
482 	 * TIF_SIGPENDING.
483 	 */
484 	return signal_pending(current);
485 }
486 
487 static void wait_for_dump_helpers(struct file *file)
488 {
489 	struct pipe_inode_info *pipe = file->private_data;
490 
491 	pipe_lock(pipe);
492 	pipe->readers++;
493 	pipe->writers--;
494 	wake_up_interruptible_sync(&pipe->wait);
495 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
496 	pipe_unlock(pipe);
497 
498 	/*
499 	 * We actually want wait_event_freezable() but then we need
500 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
501 	 */
502 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
503 
504 	pipe_lock(pipe);
505 	pipe->readers--;
506 	pipe->writers++;
507 	pipe_unlock(pipe);
508 }
509 
510 /*
511  * umh_pipe_setup
512  * helper function to customize the process used
513  * to collect the core in userspace.  Specifically
514  * it sets up a pipe and installs it as fd 0 (stdin)
515  * for the process.  Returns 0 on success, or
516  * PTR_ERR on failure.
517  * Note that it also sets the core limit to 1.  This
518  * is a special value that we use to trap recursive
519  * core dumps
520  */
521 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
522 {
523 	struct file *files[2];
524 	struct coredump_params *cp = (struct coredump_params *)info->data;
525 	int err = create_pipe_files(files, 0);
526 	if (err)
527 		return err;
528 
529 	cp->file = files[1];
530 
531 	err = replace_fd(0, files[0], 0);
532 	fput(files[0]);
533 	/* and disallow core files too */
534 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
535 
536 	return err;
537 }
538 
539 void do_coredump(const kernel_siginfo_t *siginfo)
540 {
541 	struct core_state core_state;
542 	struct core_name cn;
543 	struct mm_struct *mm = current->mm;
544 	struct linux_binfmt * binfmt;
545 	const struct cred *old_cred;
546 	struct cred *cred;
547 	int retval = 0;
548 	int ispipe;
549 	struct files_struct *displaced;
550 	/* require nonrelative corefile path and be extra careful */
551 	bool need_suid_safe = false;
552 	bool core_dumped = false;
553 	static atomic_t core_dump_count = ATOMIC_INIT(0);
554 	struct coredump_params cprm = {
555 		.siginfo = siginfo,
556 		.regs = signal_pt_regs(),
557 		.limit = rlimit(RLIMIT_CORE),
558 		/*
559 		 * We must use the same mm->flags while dumping core to avoid
560 		 * inconsistency of bit flags, since this flag is not protected
561 		 * by any locks.
562 		 */
563 		.mm_flags = mm->flags,
564 	};
565 
566 	audit_core_dumps(siginfo->si_signo);
567 
568 	binfmt = mm->binfmt;
569 	if (!binfmt || !binfmt->core_dump)
570 		goto fail;
571 	if (!__get_dumpable(cprm.mm_flags))
572 		goto fail;
573 
574 	cred = prepare_creds();
575 	if (!cred)
576 		goto fail;
577 	/*
578 	 * We cannot trust fsuid as being the "true" uid of the process
579 	 * nor do we know its entire history. We only know it was tainted
580 	 * so we dump it as root in mode 2, and only into a controlled
581 	 * environment (pipe handler or fully qualified path).
582 	 */
583 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
584 		/* Setuid core dump mode */
585 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
586 		need_suid_safe = true;
587 	}
588 
589 	retval = coredump_wait(siginfo->si_signo, &core_state);
590 	if (retval < 0)
591 		goto fail_creds;
592 
593 	old_cred = override_creds(cred);
594 
595 	ispipe = format_corename(&cn, &cprm);
596 
597 	if (ispipe) {
598 		int dump_count;
599 		char **helper_argv;
600 		struct subprocess_info *sub_info;
601 
602 		if (ispipe < 0) {
603 			printk(KERN_WARNING "format_corename failed\n");
604 			printk(KERN_WARNING "Aborting core\n");
605 			goto fail_unlock;
606 		}
607 
608 		if (cprm.limit == 1) {
609 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
610 			 *
611 			 * Normally core limits are irrelevant to pipes, since
612 			 * we're not writing to the file system, but we use
613 			 * cprm.limit of 1 here as a special value, this is a
614 			 * consistent way to catch recursive crashes.
615 			 * We can still crash if the core_pattern binary sets
616 			 * RLIM_CORE = !1, but it runs as root, and can do
617 			 * lots of stupid things.
618 			 *
619 			 * Note that we use task_tgid_vnr here to grab the pid
620 			 * of the process group leader.  That way we get the
621 			 * right pid if a thread in a multi-threaded
622 			 * core_pattern process dies.
623 			 */
624 			printk(KERN_WARNING
625 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
626 				task_tgid_vnr(current), current->comm);
627 			printk(KERN_WARNING "Aborting core\n");
628 			goto fail_unlock;
629 		}
630 		cprm.limit = RLIM_INFINITY;
631 
632 		dump_count = atomic_inc_return(&core_dump_count);
633 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
634 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
635 			       task_tgid_vnr(current), current->comm);
636 			printk(KERN_WARNING "Skipping core dump\n");
637 			goto fail_dropcount;
638 		}
639 
640 		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
641 		if (!helper_argv) {
642 			printk(KERN_WARNING "%s failed to allocate memory\n",
643 			       __func__);
644 			goto fail_dropcount;
645 		}
646 
647 		retval = -ENOMEM;
648 		sub_info = call_usermodehelper_setup(helper_argv[0],
649 						helper_argv, NULL, GFP_KERNEL,
650 						umh_pipe_setup, NULL, &cprm);
651 		if (sub_info)
652 			retval = call_usermodehelper_exec(sub_info,
653 							  UMH_WAIT_EXEC);
654 
655 		argv_free(helper_argv);
656 		if (retval) {
657 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
658 			       cn.corename);
659 			goto close_fail;
660 		}
661 	} else {
662 		struct inode *inode;
663 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
664 				 O_LARGEFILE | O_EXCL;
665 
666 		if (cprm.limit < binfmt->min_coredump)
667 			goto fail_unlock;
668 
669 		if (need_suid_safe && cn.corename[0] != '/') {
670 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
671 				"to fully qualified path!\n",
672 				task_tgid_vnr(current), current->comm);
673 			printk(KERN_WARNING "Skipping core dump\n");
674 			goto fail_unlock;
675 		}
676 
677 		/*
678 		 * Unlink the file if it exists unless this is a SUID
679 		 * binary - in that case, we're running around with root
680 		 * privs and don't want to unlink another user's coredump.
681 		 */
682 		if (!need_suid_safe) {
683 			/*
684 			 * If it doesn't exist, that's fine. If there's some
685 			 * other problem, we'll catch it at the filp_open().
686 			 */
687 			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
688 		}
689 
690 		/*
691 		 * There is a race between unlinking and creating the
692 		 * file, but if that causes an EEXIST here, that's
693 		 * fine - another process raced with us while creating
694 		 * the corefile, and the other process won. To userspace,
695 		 * what matters is that at least one of the two processes
696 		 * writes its coredump successfully, not which one.
697 		 */
698 		if (need_suid_safe) {
699 			/*
700 			 * Using user namespaces, normal user tasks can change
701 			 * their current->fs->root to point to arbitrary
702 			 * directories. Since the intention of the "only dump
703 			 * with a fully qualified path" rule is to control where
704 			 * coredumps may be placed using root privileges,
705 			 * current->fs->root must not be used. Instead, use the
706 			 * root directory of init_task.
707 			 */
708 			struct path root;
709 
710 			task_lock(&init_task);
711 			get_fs_root(init_task.fs, &root);
712 			task_unlock(&init_task);
713 			cprm.file = file_open_root(root.dentry, root.mnt,
714 				cn.corename, open_flags, 0600);
715 			path_put(&root);
716 		} else {
717 			cprm.file = filp_open(cn.corename, open_flags, 0600);
718 		}
719 		if (IS_ERR(cprm.file))
720 			goto fail_unlock;
721 
722 		inode = file_inode(cprm.file);
723 		if (inode->i_nlink > 1)
724 			goto close_fail;
725 		if (d_unhashed(cprm.file->f_path.dentry))
726 			goto close_fail;
727 		/*
728 		 * AK: actually i see no reason to not allow this for named
729 		 * pipes etc, but keep the previous behaviour for now.
730 		 */
731 		if (!S_ISREG(inode->i_mode))
732 			goto close_fail;
733 		/*
734 		 * Don't dump core if the filesystem changed owner or mode
735 		 * of the file during file creation. This is an issue when
736 		 * a process dumps core while its cwd is e.g. on a vfat
737 		 * filesystem.
738 		 */
739 		if (!uid_eq(inode->i_uid, current_fsuid()))
740 			goto close_fail;
741 		if ((inode->i_mode & 0677) != 0600)
742 			goto close_fail;
743 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
744 			goto close_fail;
745 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
746 			goto close_fail;
747 	}
748 
749 	/* get us an unshared descriptor table; almost always a no-op */
750 	retval = unshare_files(&displaced);
751 	if (retval)
752 		goto close_fail;
753 	if (displaced)
754 		put_files_struct(displaced);
755 	if (!dump_interrupted()) {
756 		file_start_write(cprm.file);
757 		core_dumped = binfmt->core_dump(&cprm);
758 		file_end_write(cprm.file);
759 	}
760 	if (ispipe && core_pipe_limit)
761 		wait_for_dump_helpers(cprm.file);
762 close_fail:
763 	if (cprm.file)
764 		filp_close(cprm.file, NULL);
765 fail_dropcount:
766 	if (ispipe)
767 		atomic_dec(&core_dump_count);
768 fail_unlock:
769 	kfree(cn.corename);
770 	coredump_finish(mm, core_dumped);
771 	revert_creds(old_cred);
772 fail_creds:
773 	put_cred(cred);
774 fail:
775 	return;
776 }
777 
778 /*
779  * Core dumping helper functions.  These are the only things you should
780  * do on a core-file: use only these functions to write out all the
781  * necessary info.
782  */
783 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
784 {
785 	struct file *file = cprm->file;
786 	loff_t pos = file->f_pos;
787 	ssize_t n;
788 	if (cprm->written + nr > cprm->limit)
789 		return 0;
790 	while (nr) {
791 		if (dump_interrupted())
792 			return 0;
793 		n = __kernel_write(file, addr, nr, &pos);
794 		if (n <= 0)
795 			return 0;
796 		file->f_pos = pos;
797 		cprm->written += n;
798 		cprm->pos += n;
799 		nr -= n;
800 	}
801 	return 1;
802 }
803 EXPORT_SYMBOL(dump_emit);
804 
805 int dump_skip(struct coredump_params *cprm, size_t nr)
806 {
807 	static char zeroes[PAGE_SIZE];
808 	struct file *file = cprm->file;
809 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
810 		if (dump_interrupted() ||
811 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
812 			return 0;
813 		cprm->pos += nr;
814 		return 1;
815 	} else {
816 		while (nr > PAGE_SIZE) {
817 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
818 				return 0;
819 			nr -= PAGE_SIZE;
820 		}
821 		return dump_emit(cprm, zeroes, nr);
822 	}
823 }
824 EXPORT_SYMBOL(dump_skip);
825 
826 int dump_align(struct coredump_params *cprm, int align)
827 {
828 	unsigned mod = cprm->pos & (align - 1);
829 	if (align & (align - 1))
830 		return 0;
831 	return mod ? dump_skip(cprm, align - mod) : 1;
832 }
833 EXPORT_SYMBOL(dump_align);
834 
835 /*
836  * Ensures that file size is big enough to contain the current file
837  * postion. This prevents gdb from complaining about a truncated file
838  * if the last "write" to the file was dump_skip.
839  */
840 void dump_truncate(struct coredump_params *cprm)
841 {
842 	struct file *file = cprm->file;
843 	loff_t offset;
844 
845 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
846 		offset = file->f_op->llseek(file, 0, SEEK_CUR);
847 		if (i_size_read(file->f_mapping->host) < offset)
848 			do_truncate(file->f_path.dentry, offset, 0, file);
849 	}
850 }
851 EXPORT_SYMBOL(dump_truncate);
852