xref: /openbmc/linux/fs/coredump.c (revision 39fd0cc0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/tracehook.h>
35 #include <linux/kmod.h>
36 #include <linux/fsnotify.h>
37 #include <linux/fs_struct.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/oom.h>
40 #include <linux/compat.h>
41 #include <linux/fs.h>
42 #include <linux/path.h>
43 #include <linux/timekeeping.h>
44 #include <linux/elf.h>
45 
46 #include <linux/uaccess.h>
47 #include <asm/mmu_context.h>
48 #include <asm/tlb.h>
49 #include <asm/exec.h>
50 
51 #include <trace/events/task.h>
52 #include "internal.h"
53 
54 #include <trace/events/sched.h>
55 
56 static bool dump_vma_snapshot(struct coredump_params *cprm);
57 static void free_vma_snapshot(struct coredump_params *cprm);
58 
59 int core_uses_pid;
60 unsigned int core_pipe_limit;
61 char core_pattern[CORENAME_MAX_SIZE] = "core";
62 static int core_name_size = CORENAME_MAX_SIZE;
63 
64 struct core_name {
65 	char *corename;
66 	int used, size;
67 };
68 
69 /* The maximal length of core_pattern is also specified in sysctl.c */
70 
71 static int expand_corename(struct core_name *cn, int size)
72 {
73 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
74 
75 	if (!corename)
76 		return -ENOMEM;
77 
78 	if (size > core_name_size) /* racy but harmless */
79 		core_name_size = size;
80 
81 	cn->size = ksize(corename);
82 	cn->corename = corename;
83 	return 0;
84 }
85 
86 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
87 				     va_list arg)
88 {
89 	int free, need;
90 	va_list arg_copy;
91 
92 again:
93 	free = cn->size - cn->used;
94 
95 	va_copy(arg_copy, arg);
96 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
97 	va_end(arg_copy);
98 
99 	if (need < free) {
100 		cn->used += need;
101 		return 0;
102 	}
103 
104 	if (!expand_corename(cn, cn->size + need - free + 1))
105 		goto again;
106 
107 	return -ENOMEM;
108 }
109 
110 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
111 {
112 	va_list arg;
113 	int ret;
114 
115 	va_start(arg, fmt);
116 	ret = cn_vprintf(cn, fmt, arg);
117 	va_end(arg);
118 
119 	return ret;
120 }
121 
122 static __printf(2, 3)
123 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
124 {
125 	int cur = cn->used;
126 	va_list arg;
127 	int ret;
128 
129 	va_start(arg, fmt);
130 	ret = cn_vprintf(cn, fmt, arg);
131 	va_end(arg);
132 
133 	if (ret == 0) {
134 		/*
135 		 * Ensure that this coredump name component can't cause the
136 		 * resulting corefile path to consist of a ".." or ".".
137 		 */
138 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
139 				(cn->used - cur == 2 && cn->corename[cur] == '.'
140 				&& cn->corename[cur+1] == '.'))
141 			cn->corename[cur] = '!';
142 
143 		/*
144 		 * Empty names are fishy and could be used to create a "//" in a
145 		 * corefile name, causing the coredump to happen one directory
146 		 * level too high. Enforce that all components of the core
147 		 * pattern are at least one character long.
148 		 */
149 		if (cn->used == cur)
150 			ret = cn_printf(cn, "!");
151 	}
152 
153 	for (; cur < cn->used; ++cur) {
154 		if (cn->corename[cur] == '/')
155 			cn->corename[cur] = '!';
156 	}
157 	return ret;
158 }
159 
160 static int cn_print_exe_file(struct core_name *cn, bool name_only)
161 {
162 	struct file *exe_file;
163 	char *pathbuf, *path, *ptr;
164 	int ret;
165 
166 	exe_file = get_mm_exe_file(current->mm);
167 	if (!exe_file)
168 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
169 
170 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
171 	if (!pathbuf) {
172 		ret = -ENOMEM;
173 		goto put_exe_file;
174 	}
175 
176 	path = file_path(exe_file, pathbuf, PATH_MAX);
177 	if (IS_ERR(path)) {
178 		ret = PTR_ERR(path);
179 		goto free_buf;
180 	}
181 
182 	if (name_only) {
183 		ptr = strrchr(path, '/');
184 		if (ptr)
185 			path = ptr + 1;
186 	}
187 	ret = cn_esc_printf(cn, "%s", path);
188 
189 free_buf:
190 	kfree(pathbuf);
191 put_exe_file:
192 	fput(exe_file);
193 	return ret;
194 }
195 
196 /* format_corename will inspect the pattern parameter, and output a
197  * name into corename, which must have space for at least
198  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
199  */
200 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
201 			   size_t **argv, int *argc)
202 {
203 	const struct cred *cred = current_cred();
204 	const char *pat_ptr = core_pattern;
205 	int ispipe = (*pat_ptr == '|');
206 	bool was_space = false;
207 	int pid_in_pattern = 0;
208 	int err = 0;
209 
210 	cn->used = 0;
211 	cn->corename = NULL;
212 	if (expand_corename(cn, core_name_size))
213 		return -ENOMEM;
214 	cn->corename[0] = '\0';
215 
216 	if (ispipe) {
217 		int argvs = sizeof(core_pattern) / 2;
218 		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
219 		if (!(*argv))
220 			return -ENOMEM;
221 		(*argv)[(*argc)++] = 0;
222 		++pat_ptr;
223 		if (!(*pat_ptr))
224 			return -ENOMEM;
225 	}
226 
227 	/* Repeat as long as we have more pattern to process and more output
228 	   space */
229 	while (*pat_ptr) {
230 		/*
231 		 * Split on spaces before doing template expansion so that
232 		 * %e and %E don't get split if they have spaces in them
233 		 */
234 		if (ispipe) {
235 			if (isspace(*pat_ptr)) {
236 				if (cn->used != 0)
237 					was_space = true;
238 				pat_ptr++;
239 				continue;
240 			} else if (was_space) {
241 				was_space = false;
242 				err = cn_printf(cn, "%c", '\0');
243 				if (err)
244 					return err;
245 				(*argv)[(*argc)++] = cn->used;
246 			}
247 		}
248 		if (*pat_ptr != '%') {
249 			err = cn_printf(cn, "%c", *pat_ptr++);
250 		} else {
251 			switch (*++pat_ptr) {
252 			/* single % at the end, drop that */
253 			case 0:
254 				goto out;
255 			/* Double percent, output one percent */
256 			case '%':
257 				err = cn_printf(cn, "%c", '%');
258 				break;
259 			/* pid */
260 			case 'p':
261 				pid_in_pattern = 1;
262 				err = cn_printf(cn, "%d",
263 					      task_tgid_vnr(current));
264 				break;
265 			/* global pid */
266 			case 'P':
267 				err = cn_printf(cn, "%d",
268 					      task_tgid_nr(current));
269 				break;
270 			case 'i':
271 				err = cn_printf(cn, "%d",
272 					      task_pid_vnr(current));
273 				break;
274 			case 'I':
275 				err = cn_printf(cn, "%d",
276 					      task_pid_nr(current));
277 				break;
278 			/* uid */
279 			case 'u':
280 				err = cn_printf(cn, "%u",
281 						from_kuid(&init_user_ns,
282 							  cred->uid));
283 				break;
284 			/* gid */
285 			case 'g':
286 				err = cn_printf(cn, "%u",
287 						from_kgid(&init_user_ns,
288 							  cred->gid));
289 				break;
290 			case 'd':
291 				err = cn_printf(cn, "%d",
292 					__get_dumpable(cprm->mm_flags));
293 				break;
294 			/* signal that caused the coredump */
295 			case 's':
296 				err = cn_printf(cn, "%d",
297 						cprm->siginfo->si_signo);
298 				break;
299 			/* UNIX time of coredump */
300 			case 't': {
301 				time64_t time;
302 
303 				time = ktime_get_real_seconds();
304 				err = cn_printf(cn, "%lld", time);
305 				break;
306 			}
307 			/* hostname */
308 			case 'h':
309 				down_read(&uts_sem);
310 				err = cn_esc_printf(cn, "%s",
311 					      utsname()->nodename);
312 				up_read(&uts_sem);
313 				break;
314 			/* executable, could be changed by prctl PR_SET_NAME etc */
315 			case 'e':
316 				err = cn_esc_printf(cn, "%s", current->comm);
317 				break;
318 			/* file name of executable */
319 			case 'f':
320 				err = cn_print_exe_file(cn, true);
321 				break;
322 			case 'E':
323 				err = cn_print_exe_file(cn, false);
324 				break;
325 			/* core limit size */
326 			case 'c':
327 				err = cn_printf(cn, "%lu",
328 					      rlimit(RLIMIT_CORE));
329 				break;
330 			default:
331 				break;
332 			}
333 			++pat_ptr;
334 		}
335 
336 		if (err)
337 			return err;
338 	}
339 
340 out:
341 	/* Backward compatibility with core_uses_pid:
342 	 *
343 	 * If core_pattern does not include a %p (as is the default)
344 	 * and core_uses_pid is set, then .%pid will be appended to
345 	 * the filename. Do not do this for piped commands. */
346 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
347 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
348 		if (err)
349 			return err;
350 	}
351 	return ispipe;
352 }
353 
354 static int zap_process(struct task_struct *start, int exit_code, int flags)
355 {
356 	struct task_struct *t;
357 	int nr = 0;
358 
359 	/* ignore all signals except SIGKILL, see prepare_signal() */
360 	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
361 	start->signal->group_exit_code = exit_code;
362 	start->signal->group_stop_count = 0;
363 
364 	for_each_thread(start, t) {
365 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
366 		if (t != current && t->mm) {
367 			sigaddset(&t->pending.signal, SIGKILL);
368 			signal_wake_up(t, 1);
369 			nr++;
370 		}
371 	}
372 
373 	return nr;
374 }
375 
376 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
377 			struct core_state *core_state, int exit_code)
378 {
379 	struct task_struct *g, *p;
380 	unsigned long flags;
381 	int nr = -EAGAIN;
382 
383 	spin_lock_irq(&tsk->sighand->siglock);
384 	if (!signal_group_exit(tsk->signal)) {
385 		mm->core_state = core_state;
386 		tsk->signal->group_exit_task = tsk;
387 		nr = zap_process(tsk, exit_code, 0);
388 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
389 	}
390 	spin_unlock_irq(&tsk->sighand->siglock);
391 	if (unlikely(nr < 0))
392 		return nr;
393 
394 	tsk->flags |= PF_DUMPCORE;
395 	if (atomic_read(&mm->mm_users) == nr + 1)
396 		goto done;
397 	/*
398 	 * We should find and kill all tasks which use this mm, and we should
399 	 * count them correctly into ->nr_threads. We don't take tasklist
400 	 * lock, but this is safe wrt:
401 	 *
402 	 * fork:
403 	 *	None of sub-threads can fork after zap_process(leader). All
404 	 *	processes which were created before this point should be
405 	 *	visible to zap_threads() because copy_process() adds the new
406 	 *	process to the tail of init_task.tasks list, and lock/unlock
407 	 *	of ->siglock provides a memory barrier.
408 	 *
409 	 * do_exit:
410 	 *	The caller holds mm->mmap_lock. This means that the task which
411 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
412 	 *	its ->mm.
413 	 *
414 	 * de_thread:
415 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
416 	 *	we must see either old or new leader, this does not matter.
417 	 *	However, it can change p->sighand, so lock_task_sighand(p)
418 	 *	must be used. Since p->mm != NULL and we hold ->mmap_lock
419 	 *	it can't fail.
420 	 *
421 	 *	Note also that "g" can be the old leader with ->mm == NULL
422 	 *	and already unhashed and thus removed from ->thread_group.
423 	 *	This is OK, __unhash_process()->list_del_rcu() does not
424 	 *	clear the ->next pointer, we will find the new leader via
425 	 *	next_thread().
426 	 */
427 	rcu_read_lock();
428 	for_each_process(g) {
429 		if (g == tsk->group_leader)
430 			continue;
431 		if (g->flags & PF_KTHREAD)
432 			continue;
433 
434 		for_each_thread(g, p) {
435 			if (unlikely(!p->mm))
436 				continue;
437 			if (unlikely(p->mm == mm)) {
438 				lock_task_sighand(p, &flags);
439 				nr += zap_process(p, exit_code,
440 							SIGNAL_GROUP_EXIT);
441 				unlock_task_sighand(p, &flags);
442 			}
443 			break;
444 		}
445 	}
446 	rcu_read_unlock();
447 done:
448 	atomic_set(&core_state->nr_threads, nr);
449 	return nr;
450 }
451 
452 static int coredump_wait(int exit_code, struct core_state *core_state)
453 {
454 	struct task_struct *tsk = current;
455 	struct mm_struct *mm = tsk->mm;
456 	int core_waiters = -EBUSY;
457 
458 	init_completion(&core_state->startup);
459 	core_state->dumper.task = tsk;
460 	core_state->dumper.next = NULL;
461 
462 	if (mmap_write_lock_killable(mm))
463 		return -EINTR;
464 
465 	if (!mm->core_state)
466 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
467 	mmap_write_unlock(mm);
468 
469 	if (core_waiters > 0) {
470 		struct core_thread *ptr;
471 
472 		freezer_do_not_count();
473 		wait_for_completion(&core_state->startup);
474 		freezer_count();
475 		/*
476 		 * Wait for all the threads to become inactive, so that
477 		 * all the thread context (extended register state, like
478 		 * fpu etc) gets copied to the memory.
479 		 */
480 		ptr = core_state->dumper.next;
481 		while (ptr != NULL) {
482 			wait_task_inactive(ptr->task, 0);
483 			ptr = ptr->next;
484 		}
485 	}
486 
487 	return core_waiters;
488 }
489 
490 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
491 {
492 	struct core_thread *curr, *next;
493 	struct task_struct *task;
494 
495 	spin_lock_irq(&current->sighand->siglock);
496 	if (core_dumped && !__fatal_signal_pending(current))
497 		current->signal->group_exit_code |= 0x80;
498 	current->signal->group_exit_task = NULL;
499 	current->signal->flags = SIGNAL_GROUP_EXIT;
500 	spin_unlock_irq(&current->sighand->siglock);
501 
502 	next = mm->core_state->dumper.next;
503 	while ((curr = next) != NULL) {
504 		next = curr->next;
505 		task = curr->task;
506 		/*
507 		 * see exit_mm(), curr->task must not see
508 		 * ->task == NULL before we read ->next.
509 		 */
510 		smp_mb();
511 		curr->task = NULL;
512 		wake_up_process(task);
513 	}
514 
515 	mm->core_state = NULL;
516 }
517 
518 static bool dump_interrupted(void)
519 {
520 	/*
521 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
522 	 * can do try_to_freeze() and check __fatal_signal_pending(),
523 	 * but then we need to teach dump_write() to restart and clear
524 	 * TIF_SIGPENDING.
525 	 */
526 	return fatal_signal_pending(current) || freezing(current);
527 }
528 
529 static void wait_for_dump_helpers(struct file *file)
530 {
531 	struct pipe_inode_info *pipe = file->private_data;
532 
533 	pipe_lock(pipe);
534 	pipe->readers++;
535 	pipe->writers--;
536 	wake_up_interruptible_sync(&pipe->rd_wait);
537 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
538 	pipe_unlock(pipe);
539 
540 	/*
541 	 * We actually want wait_event_freezable() but then we need
542 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
543 	 */
544 	wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
545 
546 	pipe_lock(pipe);
547 	pipe->readers--;
548 	pipe->writers++;
549 	pipe_unlock(pipe);
550 }
551 
552 /*
553  * umh_pipe_setup
554  * helper function to customize the process used
555  * to collect the core in userspace.  Specifically
556  * it sets up a pipe and installs it as fd 0 (stdin)
557  * for the process.  Returns 0 on success, or
558  * PTR_ERR on failure.
559  * Note that it also sets the core limit to 1.  This
560  * is a special value that we use to trap recursive
561  * core dumps
562  */
563 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
564 {
565 	struct file *files[2];
566 	struct coredump_params *cp = (struct coredump_params *)info->data;
567 	int err = create_pipe_files(files, 0);
568 	if (err)
569 		return err;
570 
571 	cp->file = files[1];
572 
573 	err = replace_fd(0, files[0], 0);
574 	fput(files[0]);
575 	/* and disallow core files too */
576 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
577 
578 	return err;
579 }
580 
581 void do_coredump(const kernel_siginfo_t *siginfo)
582 {
583 	struct core_state core_state;
584 	struct core_name cn;
585 	struct mm_struct *mm = current->mm;
586 	struct linux_binfmt * binfmt;
587 	const struct cred *old_cred;
588 	struct cred *cred;
589 	int retval = 0;
590 	int ispipe;
591 	size_t *argv = NULL;
592 	int argc = 0;
593 	/* require nonrelative corefile path and be extra careful */
594 	bool need_suid_safe = false;
595 	bool core_dumped = false;
596 	static atomic_t core_dump_count = ATOMIC_INIT(0);
597 	struct coredump_params cprm = {
598 		.siginfo = siginfo,
599 		.regs = signal_pt_regs(),
600 		.limit = rlimit(RLIMIT_CORE),
601 		/*
602 		 * We must use the same mm->flags while dumping core to avoid
603 		 * inconsistency of bit flags, since this flag is not protected
604 		 * by any locks.
605 		 */
606 		.mm_flags = mm->flags,
607 		.vma_meta = NULL,
608 	};
609 
610 	audit_core_dumps(siginfo->si_signo);
611 
612 	binfmt = mm->binfmt;
613 	if (!binfmt || !binfmt->core_dump)
614 		goto fail;
615 	if (!__get_dumpable(cprm.mm_flags))
616 		goto fail;
617 
618 	cred = prepare_creds();
619 	if (!cred)
620 		goto fail;
621 	/*
622 	 * We cannot trust fsuid as being the "true" uid of the process
623 	 * nor do we know its entire history. We only know it was tainted
624 	 * so we dump it as root in mode 2, and only into a controlled
625 	 * environment (pipe handler or fully qualified path).
626 	 */
627 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
628 		/* Setuid core dump mode */
629 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
630 		need_suid_safe = true;
631 	}
632 
633 	retval = coredump_wait(siginfo->si_signo, &core_state);
634 	if (retval < 0)
635 		goto fail_creds;
636 
637 	old_cred = override_creds(cred);
638 
639 	ispipe = format_corename(&cn, &cprm, &argv, &argc);
640 
641 	if (ispipe) {
642 		int argi;
643 		int dump_count;
644 		char **helper_argv;
645 		struct subprocess_info *sub_info;
646 
647 		if (ispipe < 0) {
648 			printk(KERN_WARNING "format_corename failed\n");
649 			printk(KERN_WARNING "Aborting core\n");
650 			goto fail_unlock;
651 		}
652 
653 		if (cprm.limit == 1) {
654 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
655 			 *
656 			 * Normally core limits are irrelevant to pipes, since
657 			 * we're not writing to the file system, but we use
658 			 * cprm.limit of 1 here as a special value, this is a
659 			 * consistent way to catch recursive crashes.
660 			 * We can still crash if the core_pattern binary sets
661 			 * RLIM_CORE = !1, but it runs as root, and can do
662 			 * lots of stupid things.
663 			 *
664 			 * Note that we use task_tgid_vnr here to grab the pid
665 			 * of the process group leader.  That way we get the
666 			 * right pid if a thread in a multi-threaded
667 			 * core_pattern process dies.
668 			 */
669 			printk(KERN_WARNING
670 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
671 				task_tgid_vnr(current), current->comm);
672 			printk(KERN_WARNING "Aborting core\n");
673 			goto fail_unlock;
674 		}
675 		cprm.limit = RLIM_INFINITY;
676 
677 		dump_count = atomic_inc_return(&core_dump_count);
678 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
679 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
680 			       task_tgid_vnr(current), current->comm);
681 			printk(KERN_WARNING "Skipping core dump\n");
682 			goto fail_dropcount;
683 		}
684 
685 		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
686 					    GFP_KERNEL);
687 		if (!helper_argv) {
688 			printk(KERN_WARNING "%s failed to allocate memory\n",
689 			       __func__);
690 			goto fail_dropcount;
691 		}
692 		for (argi = 0; argi < argc; argi++)
693 			helper_argv[argi] = cn.corename + argv[argi];
694 		helper_argv[argi] = NULL;
695 
696 		retval = -ENOMEM;
697 		sub_info = call_usermodehelper_setup(helper_argv[0],
698 						helper_argv, NULL, GFP_KERNEL,
699 						umh_pipe_setup, NULL, &cprm);
700 		if (sub_info)
701 			retval = call_usermodehelper_exec(sub_info,
702 							  UMH_WAIT_EXEC);
703 
704 		kfree(helper_argv);
705 		if (retval) {
706 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
707 			       cn.corename);
708 			goto close_fail;
709 		}
710 	} else {
711 		struct user_namespace *mnt_userns;
712 		struct inode *inode;
713 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
714 				 O_LARGEFILE | O_EXCL;
715 
716 		if (cprm.limit < binfmt->min_coredump)
717 			goto fail_unlock;
718 
719 		if (need_suid_safe && cn.corename[0] != '/') {
720 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
721 				"to fully qualified path!\n",
722 				task_tgid_vnr(current), current->comm);
723 			printk(KERN_WARNING "Skipping core dump\n");
724 			goto fail_unlock;
725 		}
726 
727 		/*
728 		 * Unlink the file if it exists unless this is a SUID
729 		 * binary - in that case, we're running around with root
730 		 * privs and don't want to unlink another user's coredump.
731 		 */
732 		if (!need_suid_safe) {
733 			/*
734 			 * If it doesn't exist, that's fine. If there's some
735 			 * other problem, we'll catch it at the filp_open().
736 			 */
737 			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
738 		}
739 
740 		/*
741 		 * There is a race between unlinking and creating the
742 		 * file, but if that causes an EEXIST here, that's
743 		 * fine - another process raced with us while creating
744 		 * the corefile, and the other process won. To userspace,
745 		 * what matters is that at least one of the two processes
746 		 * writes its coredump successfully, not which one.
747 		 */
748 		if (need_suid_safe) {
749 			/*
750 			 * Using user namespaces, normal user tasks can change
751 			 * their current->fs->root to point to arbitrary
752 			 * directories. Since the intention of the "only dump
753 			 * with a fully qualified path" rule is to control where
754 			 * coredumps may be placed using root privileges,
755 			 * current->fs->root must not be used. Instead, use the
756 			 * root directory of init_task.
757 			 */
758 			struct path root;
759 
760 			task_lock(&init_task);
761 			get_fs_root(init_task.fs, &root);
762 			task_unlock(&init_task);
763 			cprm.file = file_open_root(&root, cn.corename,
764 						   open_flags, 0600);
765 			path_put(&root);
766 		} else {
767 			cprm.file = filp_open(cn.corename, open_flags, 0600);
768 		}
769 		if (IS_ERR(cprm.file))
770 			goto fail_unlock;
771 
772 		inode = file_inode(cprm.file);
773 		if (inode->i_nlink > 1)
774 			goto close_fail;
775 		if (d_unhashed(cprm.file->f_path.dentry))
776 			goto close_fail;
777 		/*
778 		 * AK: actually i see no reason to not allow this for named
779 		 * pipes etc, but keep the previous behaviour for now.
780 		 */
781 		if (!S_ISREG(inode->i_mode))
782 			goto close_fail;
783 		/*
784 		 * Don't dump core if the filesystem changed owner or mode
785 		 * of the file during file creation. This is an issue when
786 		 * a process dumps core while its cwd is e.g. on a vfat
787 		 * filesystem.
788 		 */
789 		mnt_userns = file_mnt_user_ns(cprm.file);
790 		if (!uid_eq(i_uid_into_mnt(mnt_userns, inode),
791 			    current_fsuid())) {
792 			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n",
793 					    cn.corename);
794 			goto close_fail;
795 		}
796 		if ((inode->i_mode & 0677) != 0600) {
797 			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n",
798 					    cn.corename);
799 			goto close_fail;
800 		}
801 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
802 			goto close_fail;
803 		if (do_truncate(mnt_userns, cprm.file->f_path.dentry,
804 				0, 0, cprm.file))
805 			goto close_fail;
806 	}
807 
808 	/* get us an unshared descriptor table; almost always a no-op */
809 	/* The cell spufs coredump code reads the file descriptor tables */
810 	retval = unshare_files();
811 	if (retval)
812 		goto close_fail;
813 	if (!dump_interrupted()) {
814 		/*
815 		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
816 		 * have this set to NULL.
817 		 */
818 		if (!cprm.file) {
819 			pr_info("Core dump to |%s disabled\n", cn.corename);
820 			goto close_fail;
821 		}
822 		if (!dump_vma_snapshot(&cprm))
823 			goto close_fail;
824 
825 		file_start_write(cprm.file);
826 		core_dumped = binfmt->core_dump(&cprm);
827 		/*
828 		 * Ensures that file size is big enough to contain the current
829 		 * file postion. This prevents gdb from complaining about
830 		 * a truncated file if the last "write" to the file was
831 		 * dump_skip.
832 		 */
833 		if (cprm.to_skip) {
834 			cprm.to_skip--;
835 			dump_emit(&cprm, "", 1);
836 		}
837 		file_end_write(cprm.file);
838 		free_vma_snapshot(&cprm);
839 	}
840 	if (ispipe && core_pipe_limit)
841 		wait_for_dump_helpers(cprm.file);
842 close_fail:
843 	if (cprm.file)
844 		filp_close(cprm.file, NULL);
845 fail_dropcount:
846 	if (ispipe)
847 		atomic_dec(&core_dump_count);
848 fail_unlock:
849 	kfree(argv);
850 	kfree(cn.corename);
851 	coredump_finish(mm, core_dumped);
852 	revert_creds(old_cred);
853 fail_creds:
854 	put_cred(cred);
855 fail:
856 	return;
857 }
858 
859 /*
860  * Core dumping helper functions.  These are the only things you should
861  * do on a core-file: use only these functions to write out all the
862  * necessary info.
863  */
864 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
865 {
866 	struct file *file = cprm->file;
867 	loff_t pos = file->f_pos;
868 	ssize_t n;
869 	if (cprm->written + nr > cprm->limit)
870 		return 0;
871 
872 
873 	if (dump_interrupted())
874 		return 0;
875 	n = __kernel_write(file, addr, nr, &pos);
876 	if (n != nr)
877 		return 0;
878 	file->f_pos = pos;
879 	cprm->written += n;
880 	cprm->pos += n;
881 
882 	return 1;
883 }
884 
885 static int __dump_skip(struct coredump_params *cprm, size_t nr)
886 {
887 	static char zeroes[PAGE_SIZE];
888 	struct file *file = cprm->file;
889 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
890 		if (dump_interrupted() ||
891 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
892 			return 0;
893 		cprm->pos += nr;
894 		return 1;
895 	} else {
896 		while (nr > PAGE_SIZE) {
897 			if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
898 				return 0;
899 			nr -= PAGE_SIZE;
900 		}
901 		return __dump_emit(cprm, zeroes, nr);
902 	}
903 }
904 
905 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
906 {
907 	if (cprm->to_skip) {
908 		if (!__dump_skip(cprm, cprm->to_skip))
909 			return 0;
910 		cprm->to_skip = 0;
911 	}
912 	return __dump_emit(cprm, addr, nr);
913 }
914 EXPORT_SYMBOL(dump_emit);
915 
916 void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
917 {
918 	cprm->to_skip = pos - cprm->pos;
919 }
920 EXPORT_SYMBOL(dump_skip_to);
921 
922 void dump_skip(struct coredump_params *cprm, size_t nr)
923 {
924 	cprm->to_skip += nr;
925 }
926 EXPORT_SYMBOL(dump_skip);
927 
928 #ifdef CONFIG_ELF_CORE
929 int dump_user_range(struct coredump_params *cprm, unsigned long start,
930 		    unsigned long len)
931 {
932 	unsigned long addr;
933 
934 	for (addr = start; addr < start + len; addr += PAGE_SIZE) {
935 		struct page *page;
936 		int stop;
937 
938 		/*
939 		 * To avoid having to allocate page tables for virtual address
940 		 * ranges that have never been used yet, and also to make it
941 		 * easy to generate sparse core files, use a helper that returns
942 		 * NULL when encountering an empty page table entry that would
943 		 * otherwise have been filled with the zero page.
944 		 */
945 		page = get_dump_page(addr);
946 		if (page) {
947 			void *kaddr = kmap_local_page(page);
948 
949 			stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
950 			kunmap_local(kaddr);
951 			put_page(page);
952 			if (stop)
953 				return 0;
954 		} else {
955 			dump_skip(cprm, PAGE_SIZE);
956 		}
957 	}
958 	return 1;
959 }
960 #endif
961 
962 int dump_align(struct coredump_params *cprm, int align)
963 {
964 	unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
965 	if (align & (align - 1))
966 		return 0;
967 	if (mod)
968 		cprm->to_skip += align - mod;
969 	return 1;
970 }
971 EXPORT_SYMBOL(dump_align);
972 
973 /*
974  * The purpose of always_dump_vma() is to make sure that special kernel mappings
975  * that are useful for post-mortem analysis are included in every core dump.
976  * In that way we ensure that the core dump is fully interpretable later
977  * without matching up the same kernel and hardware config to see what PC values
978  * meant. These special mappings include - vDSO, vsyscall, and other
979  * architecture specific mappings
980  */
981 static bool always_dump_vma(struct vm_area_struct *vma)
982 {
983 	/* Any vsyscall mappings? */
984 	if (vma == get_gate_vma(vma->vm_mm))
985 		return true;
986 
987 	/*
988 	 * Assume that all vmas with a .name op should always be dumped.
989 	 * If this changes, a new vm_ops field can easily be added.
990 	 */
991 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
992 		return true;
993 
994 	/*
995 	 * arch_vma_name() returns non-NULL for special architecture mappings,
996 	 * such as vDSO sections.
997 	 */
998 	if (arch_vma_name(vma))
999 		return true;
1000 
1001 	return false;
1002 }
1003 
1004 #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
1005 
1006 /*
1007  * Decide how much of @vma's contents should be included in a core dump.
1008  */
1009 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1010 				   unsigned long mm_flags)
1011 {
1012 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1013 
1014 	/* always dump the vdso and vsyscall sections */
1015 	if (always_dump_vma(vma))
1016 		goto whole;
1017 
1018 	if (vma->vm_flags & VM_DONTDUMP)
1019 		return 0;
1020 
1021 	/* support for DAX */
1022 	if (vma_is_dax(vma)) {
1023 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1024 			goto whole;
1025 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1026 			goto whole;
1027 		return 0;
1028 	}
1029 
1030 	/* Hugetlb memory check */
1031 	if (is_vm_hugetlb_page(vma)) {
1032 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1033 			goto whole;
1034 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1035 			goto whole;
1036 		return 0;
1037 	}
1038 
1039 	/* Do not dump I/O mapped devices or special mappings */
1040 	if (vma->vm_flags & VM_IO)
1041 		return 0;
1042 
1043 	/* By default, dump shared memory if mapped from an anonymous file. */
1044 	if (vma->vm_flags & VM_SHARED) {
1045 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1046 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1047 			goto whole;
1048 		return 0;
1049 	}
1050 
1051 	/* Dump segments that have been written to.  */
1052 	if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1053 		goto whole;
1054 	if (vma->vm_file == NULL)
1055 		return 0;
1056 
1057 	if (FILTER(MAPPED_PRIVATE))
1058 		goto whole;
1059 
1060 	/*
1061 	 * If this is the beginning of an executable file mapping,
1062 	 * dump the first page to aid in determining what was mapped here.
1063 	 */
1064 	if (FILTER(ELF_HEADERS) &&
1065 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1066 		if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1067 			return PAGE_SIZE;
1068 
1069 		/*
1070 		 * ELF libraries aren't always executable.
1071 		 * We'll want to check whether the mapping starts with the ELF
1072 		 * magic, but not now - we're holding the mmap lock,
1073 		 * so copy_from_user() doesn't work here.
1074 		 * Use a placeholder instead, and fix it up later in
1075 		 * dump_vma_snapshot().
1076 		 */
1077 		return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
1078 	}
1079 
1080 #undef	FILTER
1081 
1082 	return 0;
1083 
1084 whole:
1085 	return vma->vm_end - vma->vm_start;
1086 }
1087 
1088 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1089 					struct vm_area_struct *gate_vma)
1090 {
1091 	struct vm_area_struct *ret = tsk->mm->mmap;
1092 
1093 	if (ret)
1094 		return ret;
1095 	return gate_vma;
1096 }
1097 
1098 /*
1099  * Helper function for iterating across a vma list.  It ensures that the caller
1100  * will visit `gate_vma' prior to terminating the search.
1101  */
1102 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1103 				       struct vm_area_struct *gate_vma)
1104 {
1105 	struct vm_area_struct *ret;
1106 
1107 	ret = this_vma->vm_next;
1108 	if (ret)
1109 		return ret;
1110 	if (this_vma == gate_vma)
1111 		return NULL;
1112 	return gate_vma;
1113 }
1114 
1115 static void free_vma_snapshot(struct coredump_params *cprm)
1116 {
1117 	if (cprm->vma_meta) {
1118 		int i;
1119 		for (i = 0; i < cprm->vma_count; i++) {
1120 			struct file *file = cprm->vma_meta[i].file;
1121 			if (file)
1122 				fput(file);
1123 		}
1124 		kvfree(cprm->vma_meta);
1125 		cprm->vma_meta = NULL;
1126 	}
1127 }
1128 
1129 /*
1130  * Under the mmap_lock, take a snapshot of relevant information about the task's
1131  * VMAs.
1132  */
1133 static bool dump_vma_snapshot(struct coredump_params *cprm)
1134 {
1135 	struct vm_area_struct *vma, *gate_vma;
1136 	struct mm_struct *mm = current->mm;
1137 	int i;
1138 
1139 	/*
1140 	 * Once the stack expansion code is fixed to not change VMA bounds
1141 	 * under mmap_lock in read mode, this can be changed to take the
1142 	 * mmap_lock in read mode.
1143 	 */
1144 	if (mmap_write_lock_killable(mm))
1145 		return false;
1146 
1147 	cprm->vma_data_size = 0;
1148 	gate_vma = get_gate_vma(mm);
1149 	cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0);
1150 
1151 	cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL);
1152 	if (!cprm->vma_meta) {
1153 		mmap_write_unlock(mm);
1154 		return false;
1155 	}
1156 
1157 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
1158 			vma = next_vma(vma, gate_vma), i++) {
1159 		struct core_vma_metadata *m = cprm->vma_meta + i;
1160 
1161 		m->start = vma->vm_start;
1162 		m->end = vma->vm_end;
1163 		m->flags = vma->vm_flags;
1164 		m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1165 		m->pgoff = vma->vm_pgoff;
1166 
1167 		m->file = vma->vm_file;
1168 		if (m->file)
1169 			get_file(m->file);
1170 	}
1171 
1172 	mmap_write_unlock(mm);
1173 
1174 	for (i = 0; i < cprm->vma_count; i++) {
1175 		struct core_vma_metadata *m = cprm->vma_meta + i;
1176 
1177 		if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
1178 			char elfmag[SELFMAG];
1179 
1180 			if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
1181 					memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
1182 				m->dump_size = 0;
1183 			} else {
1184 				m->dump_size = PAGE_SIZE;
1185 			}
1186 		}
1187 
1188 		cprm->vma_data_size += m->dump_size;
1189 	}
1190 
1191 	return true;
1192 }
1193