1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/slab.h> 3 #include <linux/file.h> 4 #include <linux/fdtable.h> 5 #include <linux/freezer.h> 6 #include <linux/mm.h> 7 #include <linux/stat.h> 8 #include <linux/fcntl.h> 9 #include <linux/swap.h> 10 #include <linux/ctype.h> 11 #include <linux/string.h> 12 #include <linux/init.h> 13 #include <linux/pagemap.h> 14 #include <linux/perf_event.h> 15 #include <linux/highmem.h> 16 #include <linux/spinlock.h> 17 #include <linux/key.h> 18 #include <linux/personality.h> 19 #include <linux/binfmts.h> 20 #include <linux/coredump.h> 21 #include <linux/sched/coredump.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/utsname.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/module.h> 27 #include <linux/namei.h> 28 #include <linux/mount.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/tsacct_kern.h> 32 #include <linux/cn_proc.h> 33 #include <linux/audit.h> 34 #include <linux/kmod.h> 35 #include <linux/fsnotify.h> 36 #include <linux/fs_struct.h> 37 #include <linux/pipe_fs_i.h> 38 #include <linux/oom.h> 39 #include <linux/compat.h> 40 #include <linux/fs.h> 41 #include <linux/path.h> 42 #include <linux/timekeeping.h> 43 #include <linux/sysctl.h> 44 #include <linux/elf.h> 45 46 #include <linux/uaccess.h> 47 #include <asm/mmu_context.h> 48 #include <asm/tlb.h> 49 #include <asm/exec.h> 50 51 #include <trace/events/task.h> 52 #include "internal.h" 53 54 #include <trace/events/sched.h> 55 56 static bool dump_vma_snapshot(struct coredump_params *cprm); 57 static void free_vma_snapshot(struct coredump_params *cprm); 58 59 static int core_uses_pid; 60 static unsigned int core_pipe_limit; 61 static char core_pattern[CORENAME_MAX_SIZE] = "core"; 62 static int core_name_size = CORENAME_MAX_SIZE; 63 64 struct core_name { 65 char *corename; 66 int used, size; 67 }; 68 69 static int expand_corename(struct core_name *cn, int size) 70 { 71 char *corename = krealloc(cn->corename, size, GFP_KERNEL); 72 73 if (!corename) 74 return -ENOMEM; 75 76 if (size > core_name_size) /* racy but harmless */ 77 core_name_size = size; 78 79 cn->size = ksize(corename); 80 cn->corename = corename; 81 return 0; 82 } 83 84 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt, 85 va_list arg) 86 { 87 int free, need; 88 va_list arg_copy; 89 90 again: 91 free = cn->size - cn->used; 92 93 va_copy(arg_copy, arg); 94 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy); 95 va_end(arg_copy); 96 97 if (need < free) { 98 cn->used += need; 99 return 0; 100 } 101 102 if (!expand_corename(cn, cn->size + need - free + 1)) 103 goto again; 104 105 return -ENOMEM; 106 } 107 108 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...) 109 { 110 va_list arg; 111 int ret; 112 113 va_start(arg, fmt); 114 ret = cn_vprintf(cn, fmt, arg); 115 va_end(arg); 116 117 return ret; 118 } 119 120 static __printf(2, 3) 121 int cn_esc_printf(struct core_name *cn, const char *fmt, ...) 122 { 123 int cur = cn->used; 124 va_list arg; 125 int ret; 126 127 va_start(arg, fmt); 128 ret = cn_vprintf(cn, fmt, arg); 129 va_end(arg); 130 131 if (ret == 0) { 132 /* 133 * Ensure that this coredump name component can't cause the 134 * resulting corefile path to consist of a ".." or ".". 135 */ 136 if ((cn->used - cur == 1 && cn->corename[cur] == '.') || 137 (cn->used - cur == 2 && cn->corename[cur] == '.' 138 && cn->corename[cur+1] == '.')) 139 cn->corename[cur] = '!'; 140 141 /* 142 * Empty names are fishy and could be used to create a "//" in a 143 * corefile name, causing the coredump to happen one directory 144 * level too high. Enforce that all components of the core 145 * pattern are at least one character long. 146 */ 147 if (cn->used == cur) 148 ret = cn_printf(cn, "!"); 149 } 150 151 for (; cur < cn->used; ++cur) { 152 if (cn->corename[cur] == '/') 153 cn->corename[cur] = '!'; 154 } 155 return ret; 156 } 157 158 static int cn_print_exe_file(struct core_name *cn, bool name_only) 159 { 160 struct file *exe_file; 161 char *pathbuf, *path, *ptr; 162 int ret; 163 164 exe_file = get_mm_exe_file(current->mm); 165 if (!exe_file) 166 return cn_esc_printf(cn, "%s (path unknown)", current->comm); 167 168 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 169 if (!pathbuf) { 170 ret = -ENOMEM; 171 goto put_exe_file; 172 } 173 174 path = file_path(exe_file, pathbuf, PATH_MAX); 175 if (IS_ERR(path)) { 176 ret = PTR_ERR(path); 177 goto free_buf; 178 } 179 180 if (name_only) { 181 ptr = strrchr(path, '/'); 182 if (ptr) 183 path = ptr + 1; 184 } 185 ret = cn_esc_printf(cn, "%s", path); 186 187 free_buf: 188 kfree(pathbuf); 189 put_exe_file: 190 fput(exe_file); 191 return ret; 192 } 193 194 /* format_corename will inspect the pattern parameter, and output a 195 * name into corename, which must have space for at least 196 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 197 */ 198 static int format_corename(struct core_name *cn, struct coredump_params *cprm, 199 size_t **argv, int *argc) 200 { 201 const struct cred *cred = current_cred(); 202 const char *pat_ptr = core_pattern; 203 int ispipe = (*pat_ptr == '|'); 204 bool was_space = false; 205 int pid_in_pattern = 0; 206 int err = 0; 207 208 cn->used = 0; 209 cn->corename = NULL; 210 if (expand_corename(cn, core_name_size)) 211 return -ENOMEM; 212 cn->corename[0] = '\0'; 213 214 if (ispipe) { 215 int argvs = sizeof(core_pattern) / 2; 216 (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL); 217 if (!(*argv)) 218 return -ENOMEM; 219 (*argv)[(*argc)++] = 0; 220 ++pat_ptr; 221 if (!(*pat_ptr)) 222 return -ENOMEM; 223 } 224 225 /* Repeat as long as we have more pattern to process and more output 226 space */ 227 while (*pat_ptr) { 228 /* 229 * Split on spaces before doing template expansion so that 230 * %e and %E don't get split if they have spaces in them 231 */ 232 if (ispipe) { 233 if (isspace(*pat_ptr)) { 234 if (cn->used != 0) 235 was_space = true; 236 pat_ptr++; 237 continue; 238 } else if (was_space) { 239 was_space = false; 240 err = cn_printf(cn, "%c", '\0'); 241 if (err) 242 return err; 243 (*argv)[(*argc)++] = cn->used; 244 } 245 } 246 if (*pat_ptr != '%') { 247 err = cn_printf(cn, "%c", *pat_ptr++); 248 } else { 249 switch (*++pat_ptr) { 250 /* single % at the end, drop that */ 251 case 0: 252 goto out; 253 /* Double percent, output one percent */ 254 case '%': 255 err = cn_printf(cn, "%c", '%'); 256 break; 257 /* pid */ 258 case 'p': 259 pid_in_pattern = 1; 260 err = cn_printf(cn, "%d", 261 task_tgid_vnr(current)); 262 break; 263 /* global pid */ 264 case 'P': 265 err = cn_printf(cn, "%d", 266 task_tgid_nr(current)); 267 break; 268 case 'i': 269 err = cn_printf(cn, "%d", 270 task_pid_vnr(current)); 271 break; 272 case 'I': 273 err = cn_printf(cn, "%d", 274 task_pid_nr(current)); 275 break; 276 /* uid */ 277 case 'u': 278 err = cn_printf(cn, "%u", 279 from_kuid(&init_user_ns, 280 cred->uid)); 281 break; 282 /* gid */ 283 case 'g': 284 err = cn_printf(cn, "%u", 285 from_kgid(&init_user_ns, 286 cred->gid)); 287 break; 288 case 'd': 289 err = cn_printf(cn, "%d", 290 __get_dumpable(cprm->mm_flags)); 291 break; 292 /* signal that caused the coredump */ 293 case 's': 294 err = cn_printf(cn, "%d", 295 cprm->siginfo->si_signo); 296 break; 297 /* UNIX time of coredump */ 298 case 't': { 299 time64_t time; 300 301 time = ktime_get_real_seconds(); 302 err = cn_printf(cn, "%lld", time); 303 break; 304 } 305 /* hostname */ 306 case 'h': 307 down_read(&uts_sem); 308 err = cn_esc_printf(cn, "%s", 309 utsname()->nodename); 310 up_read(&uts_sem); 311 break; 312 /* executable, could be changed by prctl PR_SET_NAME etc */ 313 case 'e': 314 err = cn_esc_printf(cn, "%s", current->comm); 315 break; 316 /* file name of executable */ 317 case 'f': 318 err = cn_print_exe_file(cn, true); 319 break; 320 case 'E': 321 err = cn_print_exe_file(cn, false); 322 break; 323 /* core limit size */ 324 case 'c': 325 err = cn_printf(cn, "%lu", 326 rlimit(RLIMIT_CORE)); 327 break; 328 default: 329 break; 330 } 331 ++pat_ptr; 332 } 333 334 if (err) 335 return err; 336 } 337 338 out: 339 /* Backward compatibility with core_uses_pid: 340 * 341 * If core_pattern does not include a %p (as is the default) 342 * and core_uses_pid is set, then .%pid will be appended to 343 * the filename. Do not do this for piped commands. */ 344 if (!ispipe && !pid_in_pattern && core_uses_pid) { 345 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 346 if (err) 347 return err; 348 } 349 return ispipe; 350 } 351 352 static int zap_process(struct task_struct *start, int exit_code) 353 { 354 struct task_struct *t; 355 int nr = 0; 356 357 /* Allow SIGKILL, see prepare_signal() */ 358 start->signal->flags = SIGNAL_GROUP_EXIT; 359 start->signal->group_exit_code = exit_code; 360 start->signal->group_stop_count = 0; 361 362 for_each_thread(start, t) { 363 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 364 if (t != current && !(t->flags & PF_POSTCOREDUMP)) { 365 sigaddset(&t->pending.signal, SIGKILL); 366 signal_wake_up(t, 1); 367 nr++; 368 } 369 } 370 371 return nr; 372 } 373 374 static int zap_threads(struct task_struct *tsk, 375 struct core_state *core_state, int exit_code) 376 { 377 struct signal_struct *signal = tsk->signal; 378 int nr = -EAGAIN; 379 380 spin_lock_irq(&tsk->sighand->siglock); 381 if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) { 382 signal->core_state = core_state; 383 nr = zap_process(tsk, exit_code); 384 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 385 tsk->flags |= PF_DUMPCORE; 386 atomic_set(&core_state->nr_threads, nr); 387 } 388 spin_unlock_irq(&tsk->sighand->siglock); 389 return nr; 390 } 391 392 static int coredump_wait(int exit_code, struct core_state *core_state) 393 { 394 struct task_struct *tsk = current; 395 int core_waiters = -EBUSY; 396 397 init_completion(&core_state->startup); 398 core_state->dumper.task = tsk; 399 core_state->dumper.next = NULL; 400 401 core_waiters = zap_threads(tsk, core_state, exit_code); 402 if (core_waiters > 0) { 403 struct core_thread *ptr; 404 405 wait_for_completion_state(&core_state->startup, 406 TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); 407 /* 408 * Wait for all the threads to become inactive, so that 409 * all the thread context (extended register state, like 410 * fpu etc) gets copied to the memory. 411 */ 412 ptr = core_state->dumper.next; 413 while (ptr != NULL) { 414 wait_task_inactive(ptr->task, TASK_ANY); 415 ptr = ptr->next; 416 } 417 } 418 419 return core_waiters; 420 } 421 422 static void coredump_finish(bool core_dumped) 423 { 424 struct core_thread *curr, *next; 425 struct task_struct *task; 426 427 spin_lock_irq(¤t->sighand->siglock); 428 if (core_dumped && !__fatal_signal_pending(current)) 429 current->signal->group_exit_code |= 0x80; 430 next = current->signal->core_state->dumper.next; 431 current->signal->core_state = NULL; 432 spin_unlock_irq(¤t->sighand->siglock); 433 434 while ((curr = next) != NULL) { 435 next = curr->next; 436 task = curr->task; 437 /* 438 * see coredump_task_exit(), curr->task must not see 439 * ->task == NULL before we read ->next. 440 */ 441 smp_mb(); 442 curr->task = NULL; 443 wake_up_process(task); 444 } 445 } 446 447 static bool dump_interrupted(void) 448 { 449 /* 450 * SIGKILL or freezing() interrupt the coredumping. Perhaps we 451 * can do try_to_freeze() and check __fatal_signal_pending(), 452 * but then we need to teach dump_write() to restart and clear 453 * TIF_SIGPENDING. 454 */ 455 return fatal_signal_pending(current) || freezing(current); 456 } 457 458 static void wait_for_dump_helpers(struct file *file) 459 { 460 struct pipe_inode_info *pipe = file->private_data; 461 462 pipe_lock(pipe); 463 pipe->readers++; 464 pipe->writers--; 465 wake_up_interruptible_sync(&pipe->rd_wait); 466 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 467 pipe_unlock(pipe); 468 469 /* 470 * We actually want wait_event_freezable() but then we need 471 * to clear TIF_SIGPENDING and improve dump_interrupted(). 472 */ 473 wait_event_interruptible(pipe->rd_wait, pipe->readers == 1); 474 475 pipe_lock(pipe); 476 pipe->readers--; 477 pipe->writers++; 478 pipe_unlock(pipe); 479 } 480 481 /* 482 * umh_pipe_setup 483 * helper function to customize the process used 484 * to collect the core in userspace. Specifically 485 * it sets up a pipe and installs it as fd 0 (stdin) 486 * for the process. Returns 0 on success, or 487 * PTR_ERR on failure. 488 * Note that it also sets the core limit to 1. This 489 * is a special value that we use to trap recursive 490 * core dumps 491 */ 492 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) 493 { 494 struct file *files[2]; 495 struct coredump_params *cp = (struct coredump_params *)info->data; 496 int err = create_pipe_files(files, 0); 497 if (err) 498 return err; 499 500 cp->file = files[1]; 501 502 err = replace_fd(0, files[0], 0); 503 fput(files[0]); 504 /* and disallow core files too */ 505 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 506 507 return err; 508 } 509 510 void do_coredump(const kernel_siginfo_t *siginfo) 511 { 512 struct core_state core_state; 513 struct core_name cn; 514 struct mm_struct *mm = current->mm; 515 struct linux_binfmt * binfmt; 516 const struct cred *old_cred; 517 struct cred *cred; 518 int retval = 0; 519 int ispipe; 520 size_t *argv = NULL; 521 int argc = 0; 522 /* require nonrelative corefile path and be extra careful */ 523 bool need_suid_safe = false; 524 bool core_dumped = false; 525 static atomic_t core_dump_count = ATOMIC_INIT(0); 526 struct coredump_params cprm = { 527 .siginfo = siginfo, 528 .regs = signal_pt_regs(), 529 .limit = rlimit(RLIMIT_CORE), 530 /* 531 * We must use the same mm->flags while dumping core to avoid 532 * inconsistency of bit flags, since this flag is not protected 533 * by any locks. 534 */ 535 .mm_flags = mm->flags, 536 .vma_meta = NULL, 537 }; 538 539 audit_core_dumps(siginfo->si_signo); 540 541 binfmt = mm->binfmt; 542 if (!binfmt || !binfmt->core_dump) 543 goto fail; 544 if (!__get_dumpable(cprm.mm_flags)) 545 goto fail; 546 547 cred = prepare_creds(); 548 if (!cred) 549 goto fail; 550 /* 551 * We cannot trust fsuid as being the "true" uid of the process 552 * nor do we know its entire history. We only know it was tainted 553 * so we dump it as root in mode 2, and only into a controlled 554 * environment (pipe handler or fully qualified path). 555 */ 556 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) { 557 /* Setuid core dump mode */ 558 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */ 559 need_suid_safe = true; 560 } 561 562 retval = coredump_wait(siginfo->si_signo, &core_state); 563 if (retval < 0) 564 goto fail_creds; 565 566 old_cred = override_creds(cred); 567 568 ispipe = format_corename(&cn, &cprm, &argv, &argc); 569 570 if (ispipe) { 571 int argi; 572 int dump_count; 573 char **helper_argv; 574 struct subprocess_info *sub_info; 575 576 if (ispipe < 0) { 577 printk(KERN_WARNING "format_corename failed\n"); 578 printk(KERN_WARNING "Aborting core\n"); 579 goto fail_unlock; 580 } 581 582 if (cprm.limit == 1) { 583 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1. 584 * 585 * Normally core limits are irrelevant to pipes, since 586 * we're not writing to the file system, but we use 587 * cprm.limit of 1 here as a special value, this is a 588 * consistent way to catch recursive crashes. 589 * We can still crash if the core_pattern binary sets 590 * RLIM_CORE = !1, but it runs as root, and can do 591 * lots of stupid things. 592 * 593 * Note that we use task_tgid_vnr here to grab the pid 594 * of the process group leader. That way we get the 595 * right pid if a thread in a multi-threaded 596 * core_pattern process dies. 597 */ 598 printk(KERN_WARNING 599 "Process %d(%s) has RLIMIT_CORE set to 1\n", 600 task_tgid_vnr(current), current->comm); 601 printk(KERN_WARNING "Aborting core\n"); 602 goto fail_unlock; 603 } 604 cprm.limit = RLIM_INFINITY; 605 606 dump_count = atomic_inc_return(&core_dump_count); 607 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 608 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 609 task_tgid_vnr(current), current->comm); 610 printk(KERN_WARNING "Skipping core dump\n"); 611 goto fail_dropcount; 612 } 613 614 helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv), 615 GFP_KERNEL); 616 if (!helper_argv) { 617 printk(KERN_WARNING "%s failed to allocate memory\n", 618 __func__); 619 goto fail_dropcount; 620 } 621 for (argi = 0; argi < argc; argi++) 622 helper_argv[argi] = cn.corename + argv[argi]; 623 helper_argv[argi] = NULL; 624 625 retval = -ENOMEM; 626 sub_info = call_usermodehelper_setup(helper_argv[0], 627 helper_argv, NULL, GFP_KERNEL, 628 umh_pipe_setup, NULL, &cprm); 629 if (sub_info) 630 retval = call_usermodehelper_exec(sub_info, 631 UMH_WAIT_EXEC); 632 633 kfree(helper_argv); 634 if (retval) { 635 printk(KERN_INFO "Core dump to |%s pipe failed\n", 636 cn.corename); 637 goto close_fail; 638 } 639 } else { 640 struct user_namespace *mnt_userns; 641 struct inode *inode; 642 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW | 643 O_LARGEFILE | O_EXCL; 644 645 if (cprm.limit < binfmt->min_coredump) 646 goto fail_unlock; 647 648 if (need_suid_safe && cn.corename[0] != '/') { 649 printk(KERN_WARNING "Pid %d(%s) can only dump core "\ 650 "to fully qualified path!\n", 651 task_tgid_vnr(current), current->comm); 652 printk(KERN_WARNING "Skipping core dump\n"); 653 goto fail_unlock; 654 } 655 656 /* 657 * Unlink the file if it exists unless this is a SUID 658 * binary - in that case, we're running around with root 659 * privs and don't want to unlink another user's coredump. 660 */ 661 if (!need_suid_safe) { 662 /* 663 * If it doesn't exist, that's fine. If there's some 664 * other problem, we'll catch it at the filp_open(). 665 */ 666 do_unlinkat(AT_FDCWD, getname_kernel(cn.corename)); 667 } 668 669 /* 670 * There is a race between unlinking and creating the 671 * file, but if that causes an EEXIST here, that's 672 * fine - another process raced with us while creating 673 * the corefile, and the other process won. To userspace, 674 * what matters is that at least one of the two processes 675 * writes its coredump successfully, not which one. 676 */ 677 if (need_suid_safe) { 678 /* 679 * Using user namespaces, normal user tasks can change 680 * their current->fs->root to point to arbitrary 681 * directories. Since the intention of the "only dump 682 * with a fully qualified path" rule is to control where 683 * coredumps may be placed using root privileges, 684 * current->fs->root must not be used. Instead, use the 685 * root directory of init_task. 686 */ 687 struct path root; 688 689 task_lock(&init_task); 690 get_fs_root(init_task.fs, &root); 691 task_unlock(&init_task); 692 cprm.file = file_open_root(&root, cn.corename, 693 open_flags, 0600); 694 path_put(&root); 695 } else { 696 cprm.file = filp_open(cn.corename, open_flags, 0600); 697 } 698 if (IS_ERR(cprm.file)) 699 goto fail_unlock; 700 701 inode = file_inode(cprm.file); 702 if (inode->i_nlink > 1) 703 goto close_fail; 704 if (d_unhashed(cprm.file->f_path.dentry)) 705 goto close_fail; 706 /* 707 * AK: actually i see no reason to not allow this for named 708 * pipes etc, but keep the previous behaviour for now. 709 */ 710 if (!S_ISREG(inode->i_mode)) 711 goto close_fail; 712 /* 713 * Don't dump core if the filesystem changed owner or mode 714 * of the file during file creation. This is an issue when 715 * a process dumps core while its cwd is e.g. on a vfat 716 * filesystem. 717 */ 718 mnt_userns = file_mnt_user_ns(cprm.file); 719 if (!uid_eq(i_uid_into_mnt(mnt_userns, inode), 720 current_fsuid())) { 721 pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n", 722 cn.corename); 723 goto close_fail; 724 } 725 if ((inode->i_mode & 0677) != 0600) { 726 pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n", 727 cn.corename); 728 goto close_fail; 729 } 730 if (!(cprm.file->f_mode & FMODE_CAN_WRITE)) 731 goto close_fail; 732 if (do_truncate(mnt_userns, cprm.file->f_path.dentry, 733 0, 0, cprm.file)) 734 goto close_fail; 735 } 736 737 /* get us an unshared descriptor table; almost always a no-op */ 738 /* The cell spufs coredump code reads the file descriptor tables */ 739 retval = unshare_files(); 740 if (retval) 741 goto close_fail; 742 if (!dump_interrupted()) { 743 /* 744 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would 745 * have this set to NULL. 746 */ 747 if (!cprm.file) { 748 pr_info("Core dump to |%s disabled\n", cn.corename); 749 goto close_fail; 750 } 751 if (!dump_vma_snapshot(&cprm)) 752 goto close_fail; 753 754 file_start_write(cprm.file); 755 core_dumped = binfmt->core_dump(&cprm); 756 /* 757 * Ensures that file size is big enough to contain the current 758 * file postion. This prevents gdb from complaining about 759 * a truncated file if the last "write" to the file was 760 * dump_skip. 761 */ 762 if (cprm.to_skip) { 763 cprm.to_skip--; 764 dump_emit(&cprm, "", 1); 765 } 766 file_end_write(cprm.file); 767 free_vma_snapshot(&cprm); 768 } 769 if (ispipe && core_pipe_limit) 770 wait_for_dump_helpers(cprm.file); 771 close_fail: 772 if (cprm.file) 773 filp_close(cprm.file, NULL); 774 fail_dropcount: 775 if (ispipe) 776 atomic_dec(&core_dump_count); 777 fail_unlock: 778 kfree(argv); 779 kfree(cn.corename); 780 coredump_finish(core_dumped); 781 revert_creds(old_cred); 782 fail_creds: 783 put_cred(cred); 784 fail: 785 return; 786 } 787 788 /* 789 * Core dumping helper functions. These are the only things you should 790 * do on a core-file: use only these functions to write out all the 791 * necessary info. 792 */ 793 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr) 794 { 795 struct file *file = cprm->file; 796 loff_t pos = file->f_pos; 797 ssize_t n; 798 if (cprm->written + nr > cprm->limit) 799 return 0; 800 801 802 if (dump_interrupted()) 803 return 0; 804 n = __kernel_write(file, addr, nr, &pos); 805 if (n != nr) 806 return 0; 807 file->f_pos = pos; 808 cprm->written += n; 809 cprm->pos += n; 810 811 return 1; 812 } 813 814 static int __dump_skip(struct coredump_params *cprm, size_t nr) 815 { 816 static char zeroes[PAGE_SIZE]; 817 struct file *file = cprm->file; 818 if (file->f_mode & FMODE_LSEEK) { 819 if (dump_interrupted() || 820 vfs_llseek(file, nr, SEEK_CUR) < 0) 821 return 0; 822 cprm->pos += nr; 823 return 1; 824 } else { 825 while (nr > PAGE_SIZE) { 826 if (!__dump_emit(cprm, zeroes, PAGE_SIZE)) 827 return 0; 828 nr -= PAGE_SIZE; 829 } 830 return __dump_emit(cprm, zeroes, nr); 831 } 832 } 833 834 static int dump_emit_page(struct coredump_params *cprm, struct page *page) 835 { 836 struct bio_vec bvec = { 837 .bv_page = page, 838 .bv_offset = 0, 839 .bv_len = PAGE_SIZE, 840 }; 841 struct iov_iter iter; 842 struct file *file = cprm->file; 843 loff_t pos; 844 ssize_t n; 845 846 if (cprm->to_skip) { 847 if (!__dump_skip(cprm, cprm->to_skip)) 848 return 0; 849 cprm->to_skip = 0; 850 } 851 if (cprm->written + PAGE_SIZE > cprm->limit) 852 return 0; 853 if (dump_interrupted()) 854 return 0; 855 pos = file->f_pos; 856 iov_iter_bvec(&iter, WRITE, &bvec, 1, PAGE_SIZE); 857 n = __kernel_write_iter(cprm->file, &iter, &pos); 858 if (n != PAGE_SIZE) 859 return 0; 860 file->f_pos = pos; 861 cprm->written += PAGE_SIZE; 862 cprm->pos += PAGE_SIZE; 863 864 return 1; 865 } 866 867 int dump_emit(struct coredump_params *cprm, const void *addr, int nr) 868 { 869 if (cprm->to_skip) { 870 if (!__dump_skip(cprm, cprm->to_skip)) 871 return 0; 872 cprm->to_skip = 0; 873 } 874 return __dump_emit(cprm, addr, nr); 875 } 876 EXPORT_SYMBOL(dump_emit); 877 878 void dump_skip_to(struct coredump_params *cprm, unsigned long pos) 879 { 880 cprm->to_skip = pos - cprm->pos; 881 } 882 EXPORT_SYMBOL(dump_skip_to); 883 884 void dump_skip(struct coredump_params *cprm, size_t nr) 885 { 886 cprm->to_skip += nr; 887 } 888 EXPORT_SYMBOL(dump_skip); 889 890 #ifdef CONFIG_ELF_CORE 891 int dump_user_range(struct coredump_params *cprm, unsigned long start, 892 unsigned long len) 893 { 894 unsigned long addr; 895 896 for (addr = start; addr < start + len; addr += PAGE_SIZE) { 897 struct page *page; 898 899 /* 900 * To avoid having to allocate page tables for virtual address 901 * ranges that have never been used yet, and also to make it 902 * easy to generate sparse core files, use a helper that returns 903 * NULL when encountering an empty page table entry that would 904 * otherwise have been filled with the zero page. 905 */ 906 page = get_dump_page(addr); 907 if (page) { 908 int stop = !dump_emit_page(cprm, page); 909 put_page(page); 910 if (stop) 911 return 0; 912 } else { 913 dump_skip(cprm, PAGE_SIZE); 914 } 915 } 916 return 1; 917 } 918 #endif 919 920 int dump_align(struct coredump_params *cprm, int align) 921 { 922 unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1); 923 if (align & (align - 1)) 924 return 0; 925 if (mod) 926 cprm->to_skip += align - mod; 927 return 1; 928 } 929 EXPORT_SYMBOL(dump_align); 930 931 #ifdef CONFIG_SYSCTL 932 933 void validate_coredump_safety(void) 934 { 935 if (suid_dumpable == SUID_DUMP_ROOT && 936 core_pattern[0] != '/' && core_pattern[0] != '|') { 937 pr_warn( 938 "Unsafe core_pattern used with fs.suid_dumpable=2.\n" 939 "Pipe handler or fully qualified core dump path required.\n" 940 "Set kernel.core_pattern before fs.suid_dumpable.\n" 941 ); 942 } 943 } 944 945 static int proc_dostring_coredump(struct ctl_table *table, int write, 946 void *buffer, size_t *lenp, loff_t *ppos) 947 { 948 int error = proc_dostring(table, write, buffer, lenp, ppos); 949 950 if (!error) 951 validate_coredump_safety(); 952 return error; 953 } 954 955 static struct ctl_table coredump_sysctls[] = { 956 { 957 .procname = "core_uses_pid", 958 .data = &core_uses_pid, 959 .maxlen = sizeof(int), 960 .mode = 0644, 961 .proc_handler = proc_dointvec, 962 }, 963 { 964 .procname = "core_pattern", 965 .data = core_pattern, 966 .maxlen = CORENAME_MAX_SIZE, 967 .mode = 0644, 968 .proc_handler = proc_dostring_coredump, 969 }, 970 { 971 .procname = "core_pipe_limit", 972 .data = &core_pipe_limit, 973 .maxlen = sizeof(unsigned int), 974 .mode = 0644, 975 .proc_handler = proc_dointvec, 976 }, 977 { } 978 }; 979 980 static int __init init_fs_coredump_sysctls(void) 981 { 982 register_sysctl_init("kernel", coredump_sysctls); 983 return 0; 984 } 985 fs_initcall(init_fs_coredump_sysctls); 986 #endif /* CONFIG_SYSCTL */ 987 988 /* 989 * The purpose of always_dump_vma() is to make sure that special kernel mappings 990 * that are useful for post-mortem analysis are included in every core dump. 991 * In that way we ensure that the core dump is fully interpretable later 992 * without matching up the same kernel and hardware config to see what PC values 993 * meant. These special mappings include - vDSO, vsyscall, and other 994 * architecture specific mappings 995 */ 996 static bool always_dump_vma(struct vm_area_struct *vma) 997 { 998 /* Any vsyscall mappings? */ 999 if (vma == get_gate_vma(vma->vm_mm)) 1000 return true; 1001 1002 /* 1003 * Assume that all vmas with a .name op should always be dumped. 1004 * If this changes, a new vm_ops field can easily be added. 1005 */ 1006 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma)) 1007 return true; 1008 1009 /* 1010 * arch_vma_name() returns non-NULL for special architecture mappings, 1011 * such as vDSO sections. 1012 */ 1013 if (arch_vma_name(vma)) 1014 return true; 1015 1016 return false; 1017 } 1018 1019 #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1 1020 1021 /* 1022 * Decide how much of @vma's contents should be included in a core dump. 1023 */ 1024 static unsigned long vma_dump_size(struct vm_area_struct *vma, 1025 unsigned long mm_flags) 1026 { 1027 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) 1028 1029 /* always dump the vdso and vsyscall sections */ 1030 if (always_dump_vma(vma)) 1031 goto whole; 1032 1033 if (vma->vm_flags & VM_DONTDUMP) 1034 return 0; 1035 1036 /* support for DAX */ 1037 if (vma_is_dax(vma)) { 1038 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED)) 1039 goto whole; 1040 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE)) 1041 goto whole; 1042 return 0; 1043 } 1044 1045 /* Hugetlb memory check */ 1046 if (is_vm_hugetlb_page(vma)) { 1047 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) 1048 goto whole; 1049 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) 1050 goto whole; 1051 return 0; 1052 } 1053 1054 /* Do not dump I/O mapped devices or special mappings */ 1055 if (vma->vm_flags & VM_IO) 1056 return 0; 1057 1058 /* By default, dump shared memory if mapped from an anonymous file. */ 1059 if (vma->vm_flags & VM_SHARED) { 1060 if (file_inode(vma->vm_file)->i_nlink == 0 ? 1061 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) 1062 goto whole; 1063 return 0; 1064 } 1065 1066 /* Dump segments that have been written to. */ 1067 if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE)) 1068 goto whole; 1069 if (vma->vm_file == NULL) 1070 return 0; 1071 1072 if (FILTER(MAPPED_PRIVATE)) 1073 goto whole; 1074 1075 /* 1076 * If this is the beginning of an executable file mapping, 1077 * dump the first page to aid in determining what was mapped here. 1078 */ 1079 if (FILTER(ELF_HEADERS) && 1080 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { 1081 if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0) 1082 return PAGE_SIZE; 1083 1084 /* 1085 * ELF libraries aren't always executable. 1086 * We'll want to check whether the mapping starts with the ELF 1087 * magic, but not now - we're holding the mmap lock, 1088 * so copy_from_user() doesn't work here. 1089 * Use a placeholder instead, and fix it up later in 1090 * dump_vma_snapshot(). 1091 */ 1092 return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER; 1093 } 1094 1095 #undef FILTER 1096 1097 return 0; 1098 1099 whole: 1100 return vma->vm_end - vma->vm_start; 1101 } 1102 1103 /* 1104 * Helper function for iterating across a vma list. It ensures that the caller 1105 * will visit `gate_vma' prior to terminating the search. 1106 */ 1107 static struct vm_area_struct *coredump_next_vma(struct ma_state *mas, 1108 struct vm_area_struct *vma, 1109 struct vm_area_struct *gate_vma) 1110 { 1111 if (gate_vma && (vma == gate_vma)) 1112 return NULL; 1113 1114 vma = mas_next(mas, ULONG_MAX); 1115 if (vma) 1116 return vma; 1117 return gate_vma; 1118 } 1119 1120 static void free_vma_snapshot(struct coredump_params *cprm) 1121 { 1122 if (cprm->vma_meta) { 1123 int i; 1124 for (i = 0; i < cprm->vma_count; i++) { 1125 struct file *file = cprm->vma_meta[i].file; 1126 if (file) 1127 fput(file); 1128 } 1129 kvfree(cprm->vma_meta); 1130 cprm->vma_meta = NULL; 1131 } 1132 } 1133 1134 /* 1135 * Under the mmap_lock, take a snapshot of relevant information about the task's 1136 * VMAs. 1137 */ 1138 static bool dump_vma_snapshot(struct coredump_params *cprm) 1139 { 1140 struct vm_area_struct *gate_vma, *vma = NULL; 1141 struct mm_struct *mm = current->mm; 1142 MA_STATE(mas, &mm->mm_mt, 0, 0); 1143 int i = 0; 1144 1145 /* 1146 * Once the stack expansion code is fixed to not change VMA bounds 1147 * under mmap_lock in read mode, this can be changed to take the 1148 * mmap_lock in read mode. 1149 */ 1150 if (mmap_write_lock_killable(mm)) 1151 return false; 1152 1153 cprm->vma_data_size = 0; 1154 gate_vma = get_gate_vma(mm); 1155 cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0); 1156 1157 cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL); 1158 if (!cprm->vma_meta) { 1159 mmap_write_unlock(mm); 1160 return false; 1161 } 1162 1163 while ((vma = coredump_next_vma(&mas, vma, gate_vma)) != NULL) { 1164 struct core_vma_metadata *m = cprm->vma_meta + i; 1165 1166 m->start = vma->vm_start; 1167 m->end = vma->vm_end; 1168 m->flags = vma->vm_flags; 1169 m->dump_size = vma_dump_size(vma, cprm->mm_flags); 1170 m->pgoff = vma->vm_pgoff; 1171 m->file = vma->vm_file; 1172 if (m->file) 1173 get_file(m->file); 1174 i++; 1175 } 1176 1177 mmap_write_unlock(mm); 1178 1179 for (i = 0; i < cprm->vma_count; i++) { 1180 struct core_vma_metadata *m = cprm->vma_meta + i; 1181 1182 if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) { 1183 char elfmag[SELFMAG]; 1184 1185 if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) || 1186 memcmp(elfmag, ELFMAG, SELFMAG) != 0) { 1187 m->dump_size = 0; 1188 } else { 1189 m->dump_size = PAGE_SIZE; 1190 } 1191 } 1192 1193 cprm->vma_data_size += m->dump_size; 1194 } 1195 1196 return true; 1197 } 1198