xref: /openbmc/linux/fs/coredump.c (revision 22a8cb82)
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlb.h>
39 #include <asm/exec.h>
40 
41 #include <trace/events/task.h>
42 #include "internal.h"
43 #include "coredump.h"
44 
45 #include <trace/events/sched.h>
46 
47 int core_uses_pid;
48 unsigned int core_pipe_limit;
49 char core_pattern[CORENAME_MAX_SIZE] = "core";
50 static int core_name_size = CORENAME_MAX_SIZE;
51 
52 struct core_name {
53 	char *corename;
54 	int used, size;
55 };
56 
57 /* The maximal length of core_pattern is also specified in sysctl.c */
58 
59 static int expand_corename(struct core_name *cn, int size)
60 {
61 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
62 
63 	if (!corename)
64 		return -ENOMEM;
65 
66 	if (size > core_name_size) /* racy but harmless */
67 		core_name_size = size;
68 
69 	cn->size = ksize(corename);
70 	cn->corename = corename;
71 	return 0;
72 }
73 
74 static int cn_vprintf(struct core_name *cn, const char *fmt, va_list arg)
75 {
76 	int free, need;
77 
78 again:
79 	free = cn->size - cn->used;
80 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg);
81 	if (need < free) {
82 		cn->used += need;
83 		return 0;
84 	}
85 
86 	if (!expand_corename(cn, cn->size + need - free + 1))
87 		goto again;
88 
89 	return -ENOMEM;
90 }
91 
92 static int cn_printf(struct core_name *cn, const char *fmt, ...)
93 {
94 	va_list arg;
95 	int ret;
96 
97 	va_start(arg, fmt);
98 	ret = cn_vprintf(cn, fmt, arg);
99 	va_end(arg);
100 
101 	return ret;
102 }
103 
104 static int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
105 {
106 	int cur = cn->used;
107 	va_list arg;
108 	int ret;
109 
110 	va_start(arg, fmt);
111 	ret = cn_vprintf(cn, fmt, arg);
112 	va_end(arg);
113 
114 	for (; cur < cn->used; ++cur) {
115 		if (cn->corename[cur] == '/')
116 			cn->corename[cur] = '!';
117 	}
118 	return ret;
119 }
120 
121 static int cn_print_exe_file(struct core_name *cn)
122 {
123 	struct file *exe_file;
124 	char *pathbuf, *path;
125 	int ret;
126 
127 	exe_file = get_mm_exe_file(current->mm);
128 	if (!exe_file)
129 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
130 
131 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
132 	if (!pathbuf) {
133 		ret = -ENOMEM;
134 		goto put_exe_file;
135 	}
136 
137 	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
138 	if (IS_ERR(path)) {
139 		ret = PTR_ERR(path);
140 		goto free_buf;
141 	}
142 
143 	ret = cn_esc_printf(cn, "%s", path);
144 
145 free_buf:
146 	kfree(pathbuf);
147 put_exe_file:
148 	fput(exe_file);
149 	return ret;
150 }
151 
152 /* format_corename will inspect the pattern parameter, and output a
153  * name into corename, which must have space for at least
154  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
155  */
156 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
157 {
158 	const struct cred *cred = current_cred();
159 	const char *pat_ptr = core_pattern;
160 	int ispipe = (*pat_ptr == '|');
161 	int pid_in_pattern = 0;
162 	int err = 0;
163 
164 	cn->used = 0;
165 	cn->corename = NULL;
166 	if (expand_corename(cn, core_name_size))
167 		return -ENOMEM;
168 	cn->corename[0] = '\0';
169 
170 	if (ispipe)
171 		++pat_ptr;
172 
173 	/* Repeat as long as we have more pattern to process and more output
174 	   space */
175 	while (*pat_ptr) {
176 		if (*pat_ptr != '%') {
177 			err = cn_printf(cn, "%c", *pat_ptr++);
178 		} else {
179 			switch (*++pat_ptr) {
180 			/* single % at the end, drop that */
181 			case 0:
182 				goto out;
183 			/* Double percent, output one percent */
184 			case '%':
185 				err = cn_printf(cn, "%c", '%');
186 				break;
187 			/* pid */
188 			case 'p':
189 				pid_in_pattern = 1;
190 				err = cn_printf(cn, "%d",
191 					      task_tgid_vnr(current));
192 				break;
193 			/* global pid */
194 			case 'P':
195 				err = cn_printf(cn, "%d",
196 					      task_tgid_nr(current));
197 				break;
198 			/* uid */
199 			case 'u':
200 				err = cn_printf(cn, "%d", cred->uid);
201 				break;
202 			/* gid */
203 			case 'g':
204 				err = cn_printf(cn, "%d", cred->gid);
205 				break;
206 			case 'd':
207 				err = cn_printf(cn, "%d",
208 					__get_dumpable(cprm->mm_flags));
209 				break;
210 			/* signal that caused the coredump */
211 			case 's':
212 				err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
213 				break;
214 			/* UNIX time of coredump */
215 			case 't': {
216 				struct timeval tv;
217 				do_gettimeofday(&tv);
218 				err = cn_printf(cn, "%lu", tv.tv_sec);
219 				break;
220 			}
221 			/* hostname */
222 			case 'h':
223 				down_read(&uts_sem);
224 				err = cn_esc_printf(cn, "%s",
225 					      utsname()->nodename);
226 				up_read(&uts_sem);
227 				break;
228 			/* executable */
229 			case 'e':
230 				err = cn_esc_printf(cn, "%s", current->comm);
231 				break;
232 			case 'E':
233 				err = cn_print_exe_file(cn);
234 				break;
235 			/* core limit size */
236 			case 'c':
237 				err = cn_printf(cn, "%lu",
238 					      rlimit(RLIMIT_CORE));
239 				break;
240 			default:
241 				break;
242 			}
243 			++pat_ptr;
244 		}
245 
246 		if (err)
247 			return err;
248 	}
249 
250 out:
251 	/* Backward compatibility with core_uses_pid:
252 	 *
253 	 * If core_pattern does not include a %p (as is the default)
254 	 * and core_uses_pid is set, then .%pid will be appended to
255 	 * the filename. Do not do this for piped commands. */
256 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
257 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
258 		if (err)
259 			return err;
260 	}
261 	return ispipe;
262 }
263 
264 static int zap_process(struct task_struct *start, int exit_code)
265 {
266 	struct task_struct *t;
267 	int nr = 0;
268 
269 	start->signal->group_exit_code = exit_code;
270 	start->signal->group_stop_count = 0;
271 
272 	t = start;
273 	do {
274 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
275 		if (t != current && t->mm) {
276 			sigaddset(&t->pending.signal, SIGKILL);
277 			signal_wake_up(t, 1);
278 			nr++;
279 		}
280 	} while_each_thread(start, t);
281 
282 	return nr;
283 }
284 
285 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
286 			struct core_state *core_state, int exit_code)
287 {
288 	struct task_struct *g, *p;
289 	unsigned long flags;
290 	int nr = -EAGAIN;
291 
292 	spin_lock_irq(&tsk->sighand->siglock);
293 	if (!signal_group_exit(tsk->signal)) {
294 		mm->core_state = core_state;
295 		nr = zap_process(tsk, exit_code);
296 		tsk->signal->group_exit_task = tsk;
297 		/* ignore all signals except SIGKILL, see prepare_signal() */
298 		tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
299 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
300 	}
301 	spin_unlock_irq(&tsk->sighand->siglock);
302 	if (unlikely(nr < 0))
303 		return nr;
304 
305 	tsk->flags = PF_DUMPCORE;
306 	if (atomic_read(&mm->mm_users) == nr + 1)
307 		goto done;
308 	/*
309 	 * We should find and kill all tasks which use this mm, and we should
310 	 * count them correctly into ->nr_threads. We don't take tasklist
311 	 * lock, but this is safe wrt:
312 	 *
313 	 * fork:
314 	 *	None of sub-threads can fork after zap_process(leader). All
315 	 *	processes which were created before this point should be
316 	 *	visible to zap_threads() because copy_process() adds the new
317 	 *	process to the tail of init_task.tasks list, and lock/unlock
318 	 *	of ->siglock provides a memory barrier.
319 	 *
320 	 * do_exit:
321 	 *	The caller holds mm->mmap_sem. This means that the task which
322 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
323 	 *	its ->mm.
324 	 *
325 	 * de_thread:
326 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
327 	 *	we must see either old or new leader, this does not matter.
328 	 *	However, it can change p->sighand, so lock_task_sighand(p)
329 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
330 	 *	it can't fail.
331 	 *
332 	 *	Note also that "g" can be the old leader with ->mm == NULL
333 	 *	and already unhashed and thus removed from ->thread_group.
334 	 *	This is OK, __unhash_process()->list_del_rcu() does not
335 	 *	clear the ->next pointer, we will find the new leader via
336 	 *	next_thread().
337 	 */
338 	rcu_read_lock();
339 	for_each_process(g) {
340 		if (g == tsk->group_leader)
341 			continue;
342 		if (g->flags & PF_KTHREAD)
343 			continue;
344 		p = g;
345 		do {
346 			if (p->mm) {
347 				if (unlikely(p->mm == mm)) {
348 					lock_task_sighand(p, &flags);
349 					nr += zap_process(p, exit_code);
350 					p->signal->flags = SIGNAL_GROUP_EXIT;
351 					unlock_task_sighand(p, &flags);
352 				}
353 				break;
354 			}
355 		} while_each_thread(g, p);
356 	}
357 	rcu_read_unlock();
358 done:
359 	atomic_set(&core_state->nr_threads, nr);
360 	return nr;
361 }
362 
363 static int coredump_wait(int exit_code, struct core_state *core_state)
364 {
365 	struct task_struct *tsk = current;
366 	struct mm_struct *mm = tsk->mm;
367 	int core_waiters = -EBUSY;
368 
369 	init_completion(&core_state->startup);
370 	core_state->dumper.task = tsk;
371 	core_state->dumper.next = NULL;
372 
373 	down_write(&mm->mmap_sem);
374 	if (!mm->core_state)
375 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
376 	up_write(&mm->mmap_sem);
377 
378 	if (core_waiters > 0) {
379 		struct core_thread *ptr;
380 
381 		wait_for_completion(&core_state->startup);
382 		/*
383 		 * Wait for all the threads to become inactive, so that
384 		 * all the thread context (extended register state, like
385 		 * fpu etc) gets copied to the memory.
386 		 */
387 		ptr = core_state->dumper.next;
388 		while (ptr != NULL) {
389 			wait_task_inactive(ptr->task, 0);
390 			ptr = ptr->next;
391 		}
392 	}
393 
394 	return core_waiters;
395 }
396 
397 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
398 {
399 	struct core_thread *curr, *next;
400 	struct task_struct *task;
401 
402 	spin_lock_irq(&current->sighand->siglock);
403 	if (core_dumped && !__fatal_signal_pending(current))
404 		current->signal->group_exit_code |= 0x80;
405 	current->signal->group_exit_task = NULL;
406 	current->signal->flags = SIGNAL_GROUP_EXIT;
407 	spin_unlock_irq(&current->sighand->siglock);
408 
409 	next = mm->core_state->dumper.next;
410 	while ((curr = next) != NULL) {
411 		next = curr->next;
412 		task = curr->task;
413 		/*
414 		 * see exit_mm(), curr->task must not see
415 		 * ->task == NULL before we read ->next.
416 		 */
417 		smp_mb();
418 		curr->task = NULL;
419 		wake_up_process(task);
420 	}
421 
422 	mm->core_state = NULL;
423 }
424 
425 static bool dump_interrupted(void)
426 {
427 	/*
428 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
429 	 * can do try_to_freeze() and check __fatal_signal_pending(),
430 	 * but then we need to teach dump_write() to restart and clear
431 	 * TIF_SIGPENDING.
432 	 */
433 	return signal_pending(current);
434 }
435 
436 static void wait_for_dump_helpers(struct file *file)
437 {
438 	struct pipe_inode_info *pipe = file->private_data;
439 
440 	pipe_lock(pipe);
441 	pipe->readers++;
442 	pipe->writers--;
443 	wake_up_interruptible_sync(&pipe->wait);
444 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
445 	pipe_unlock(pipe);
446 
447 	/*
448 	 * We actually want wait_event_freezable() but then we need
449 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
450 	 */
451 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
452 
453 	pipe_lock(pipe);
454 	pipe->readers--;
455 	pipe->writers++;
456 	pipe_unlock(pipe);
457 }
458 
459 /*
460  * umh_pipe_setup
461  * helper function to customize the process used
462  * to collect the core in userspace.  Specifically
463  * it sets up a pipe and installs it as fd 0 (stdin)
464  * for the process.  Returns 0 on success, or
465  * PTR_ERR on failure.
466  * Note that it also sets the core limit to 1.  This
467  * is a special value that we use to trap recursive
468  * core dumps
469  */
470 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
471 {
472 	struct file *files[2];
473 	struct coredump_params *cp = (struct coredump_params *)info->data;
474 	int err = create_pipe_files(files, 0);
475 	if (err)
476 		return err;
477 
478 	cp->file = files[1];
479 
480 	err = replace_fd(0, files[0], 0);
481 	fput(files[0]);
482 	/* and disallow core files too */
483 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
484 
485 	return err;
486 }
487 
488 void do_coredump(siginfo_t *siginfo)
489 {
490 	struct core_state core_state;
491 	struct core_name cn;
492 	struct mm_struct *mm = current->mm;
493 	struct linux_binfmt * binfmt;
494 	const struct cred *old_cred;
495 	struct cred *cred;
496 	int retval = 0;
497 	int flag = 0;
498 	int ispipe;
499 	struct files_struct *displaced;
500 	bool need_nonrelative = false;
501 	bool core_dumped = false;
502 	static atomic_t core_dump_count = ATOMIC_INIT(0);
503 	struct coredump_params cprm = {
504 		.siginfo = siginfo,
505 		.regs = signal_pt_regs(),
506 		.limit = rlimit(RLIMIT_CORE),
507 		/*
508 		 * We must use the same mm->flags while dumping core to avoid
509 		 * inconsistency of bit flags, since this flag is not protected
510 		 * by any locks.
511 		 */
512 		.mm_flags = mm->flags,
513 	};
514 
515 	audit_core_dumps(siginfo->si_signo);
516 
517 	binfmt = mm->binfmt;
518 	if (!binfmt || !binfmt->core_dump)
519 		goto fail;
520 	if (!__get_dumpable(cprm.mm_flags))
521 		goto fail;
522 
523 	cred = prepare_creds();
524 	if (!cred)
525 		goto fail;
526 	/*
527 	 * We cannot trust fsuid as being the "true" uid of the process
528 	 * nor do we know its entire history. We only know it was tainted
529 	 * so we dump it as root in mode 2, and only into a controlled
530 	 * environment (pipe handler or fully qualified path).
531 	 */
532 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
533 		/* Setuid core dump mode */
534 		flag = O_EXCL;		/* Stop rewrite attacks */
535 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
536 		need_nonrelative = true;
537 	}
538 
539 	retval = coredump_wait(siginfo->si_signo, &core_state);
540 	if (retval < 0)
541 		goto fail_creds;
542 
543 	old_cred = override_creds(cred);
544 
545 	ispipe = format_corename(&cn, &cprm);
546 
547 	if (ispipe) {
548 		int dump_count;
549 		char **helper_argv;
550 		struct subprocess_info *sub_info;
551 
552 		if (ispipe < 0) {
553 			printk(KERN_WARNING "format_corename failed\n");
554 			printk(KERN_WARNING "Aborting core\n");
555 			goto fail_unlock;
556 		}
557 
558 		if (cprm.limit == 1) {
559 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
560 			 *
561 			 * Normally core limits are irrelevant to pipes, since
562 			 * we're not writing to the file system, but we use
563 			 * cprm.limit of 1 here as a speacial value, this is a
564 			 * consistent way to catch recursive crashes.
565 			 * We can still crash if the core_pattern binary sets
566 			 * RLIM_CORE = !1, but it runs as root, and can do
567 			 * lots of stupid things.
568 			 *
569 			 * Note that we use task_tgid_vnr here to grab the pid
570 			 * of the process group leader.  That way we get the
571 			 * right pid if a thread in a multi-threaded
572 			 * core_pattern process dies.
573 			 */
574 			printk(KERN_WARNING
575 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
576 				task_tgid_vnr(current), current->comm);
577 			printk(KERN_WARNING "Aborting core\n");
578 			goto fail_unlock;
579 		}
580 		cprm.limit = RLIM_INFINITY;
581 
582 		dump_count = atomic_inc_return(&core_dump_count);
583 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
584 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
585 			       task_tgid_vnr(current), current->comm);
586 			printk(KERN_WARNING "Skipping core dump\n");
587 			goto fail_dropcount;
588 		}
589 
590 		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
591 		if (!helper_argv) {
592 			printk(KERN_WARNING "%s failed to allocate memory\n",
593 			       __func__);
594 			goto fail_dropcount;
595 		}
596 
597 		retval = -ENOMEM;
598 		sub_info = call_usermodehelper_setup(helper_argv[0],
599 						helper_argv, NULL, GFP_KERNEL,
600 						umh_pipe_setup, NULL, &cprm);
601 		if (sub_info)
602 			retval = call_usermodehelper_exec(sub_info,
603 							  UMH_WAIT_EXEC);
604 
605 		argv_free(helper_argv);
606 		if (retval) {
607 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
608 			       cn.corename);
609 			goto close_fail;
610 		}
611 	} else {
612 		struct inode *inode;
613 
614 		if (cprm.limit < binfmt->min_coredump)
615 			goto fail_unlock;
616 
617 		if (need_nonrelative && cn.corename[0] != '/') {
618 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
619 				"to fully qualified path!\n",
620 				task_tgid_vnr(current), current->comm);
621 			printk(KERN_WARNING "Skipping core dump\n");
622 			goto fail_unlock;
623 		}
624 
625 		cprm.file = filp_open(cn.corename,
626 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
627 				 0600);
628 		if (IS_ERR(cprm.file))
629 			goto fail_unlock;
630 
631 		inode = file_inode(cprm.file);
632 		if (inode->i_nlink > 1)
633 			goto close_fail;
634 		if (d_unhashed(cprm.file->f_path.dentry))
635 			goto close_fail;
636 		/*
637 		 * AK: actually i see no reason to not allow this for named
638 		 * pipes etc, but keep the previous behaviour for now.
639 		 */
640 		if (!S_ISREG(inode->i_mode))
641 			goto close_fail;
642 		/*
643 		 * Dont allow local users get cute and trick others to coredump
644 		 * into their pre-created files.
645 		 */
646 		if (!uid_eq(inode->i_uid, current_fsuid()))
647 			goto close_fail;
648 		if (!cprm.file->f_op->write)
649 			goto close_fail;
650 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
651 			goto close_fail;
652 	}
653 
654 	/* get us an unshared descriptor table; almost always a no-op */
655 	retval = unshare_files(&displaced);
656 	if (retval)
657 		goto close_fail;
658 	if (displaced)
659 		put_files_struct(displaced);
660 	if (!dump_interrupted()) {
661 		file_start_write(cprm.file);
662 		core_dumped = binfmt->core_dump(&cprm);
663 		file_end_write(cprm.file);
664 	}
665 	if (ispipe && core_pipe_limit)
666 		wait_for_dump_helpers(cprm.file);
667 close_fail:
668 	if (cprm.file)
669 		filp_close(cprm.file, NULL);
670 fail_dropcount:
671 	if (ispipe)
672 		atomic_dec(&core_dump_count);
673 fail_unlock:
674 	kfree(cn.corename);
675 	coredump_finish(mm, core_dumped);
676 	revert_creds(old_cred);
677 fail_creds:
678 	put_cred(cred);
679 fail:
680 	return;
681 }
682 
683 /*
684  * Core dumping helper functions.  These are the only things you should
685  * do on a core-file: use only these functions to write out all the
686  * necessary info.
687  */
688 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
689 {
690 	struct file *file = cprm->file;
691 	loff_t pos = file->f_pos;
692 	ssize_t n;
693 	if (cprm->written + nr > cprm->limit)
694 		return 0;
695 	while (nr) {
696 		if (dump_interrupted())
697 			return 0;
698 		n = vfs_write(file, addr, nr, &pos);
699 		if (n <= 0)
700 			return 0;
701 		file->f_pos = pos;
702 		cprm->written += n;
703 		nr -= n;
704 	}
705 	return 1;
706 }
707 EXPORT_SYMBOL(dump_emit);
708 
709 int dump_skip(struct coredump_params *cprm, size_t nr)
710 {
711 	static char zeroes[PAGE_SIZE];
712 	struct file *file = cprm->file;
713 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
714 		if (cprm->written + nr > cprm->limit)
715 			return 0;
716 		if (dump_interrupted() ||
717 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
718 			return 0;
719 		cprm->written += nr;
720 		return 1;
721 	} else {
722 		while (nr > PAGE_SIZE) {
723 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
724 				return 0;
725 			nr -= PAGE_SIZE;
726 		}
727 		return dump_emit(cprm, zeroes, nr);
728 	}
729 }
730 EXPORT_SYMBOL(dump_skip);
731 
732 int dump_align(struct coredump_params *cprm, int align)
733 {
734 	unsigned mod = cprm->written & (align - 1);
735 	if (align & (align - 1))
736 		return -EINVAL;
737 	return mod ? dump_skip(cprm, align - mod) : 0;
738 }
739 EXPORT_SYMBOL(dump_align);
740