xref: /openbmc/linux/fs/coredump.c (revision 174cd4b1)
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/freezer.h>
5 #include <linux/mm.h>
6 #include <linux/stat.h>
7 #include <linux/fcntl.h>
8 #include <linux/swap.h>
9 #include <linux/string.h>
10 #include <linux/init.h>
11 #include <linux/pagemap.h>
12 #include <linux/perf_event.h>
13 #include <linux/highmem.h>
14 #include <linux/spinlock.h>
15 #include <linux/key.h>
16 #include <linux/personality.h>
17 #include <linux/binfmts.h>
18 #include <linux/coredump.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/signal.h>
21 #include <linux/utsname.h>
22 #include <linux/pid_namespace.h>
23 #include <linux/module.h>
24 #include <linux/namei.h>
25 #include <linux/mount.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/tsacct_kern.h>
29 #include <linux/cn_proc.h>
30 #include <linux/audit.h>
31 #include <linux/tracehook.h>
32 #include <linux/kmod.h>
33 #include <linux/fsnotify.h>
34 #include <linux/fs_struct.h>
35 #include <linux/pipe_fs_i.h>
36 #include <linux/oom.h>
37 #include <linux/compat.h>
38 #include <linux/fs.h>
39 #include <linux/path.h>
40 #include <linux/timekeeping.h>
41 
42 #include <linux/uaccess.h>
43 #include <asm/mmu_context.h>
44 #include <asm/tlb.h>
45 #include <asm/exec.h>
46 
47 #include <trace/events/task.h>
48 #include "internal.h"
49 
50 #include <trace/events/sched.h>
51 
52 int core_uses_pid;
53 unsigned int core_pipe_limit;
54 char core_pattern[CORENAME_MAX_SIZE] = "core";
55 static int core_name_size = CORENAME_MAX_SIZE;
56 
57 struct core_name {
58 	char *corename;
59 	int used, size;
60 };
61 
62 /* The maximal length of core_pattern is also specified in sysctl.c */
63 
64 static int expand_corename(struct core_name *cn, int size)
65 {
66 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
67 
68 	if (!corename)
69 		return -ENOMEM;
70 
71 	if (size > core_name_size) /* racy but harmless */
72 		core_name_size = size;
73 
74 	cn->size = ksize(corename);
75 	cn->corename = corename;
76 	return 0;
77 }
78 
79 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
80 				     va_list arg)
81 {
82 	int free, need;
83 	va_list arg_copy;
84 
85 again:
86 	free = cn->size - cn->used;
87 
88 	va_copy(arg_copy, arg);
89 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
90 	va_end(arg_copy);
91 
92 	if (need < free) {
93 		cn->used += need;
94 		return 0;
95 	}
96 
97 	if (!expand_corename(cn, cn->size + need - free + 1))
98 		goto again;
99 
100 	return -ENOMEM;
101 }
102 
103 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
104 {
105 	va_list arg;
106 	int ret;
107 
108 	va_start(arg, fmt);
109 	ret = cn_vprintf(cn, fmt, arg);
110 	va_end(arg);
111 
112 	return ret;
113 }
114 
115 static __printf(2, 3)
116 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
117 {
118 	int cur = cn->used;
119 	va_list arg;
120 	int ret;
121 
122 	va_start(arg, fmt);
123 	ret = cn_vprintf(cn, fmt, arg);
124 	va_end(arg);
125 
126 	if (ret == 0) {
127 		/*
128 		 * Ensure that this coredump name component can't cause the
129 		 * resulting corefile path to consist of a ".." or ".".
130 		 */
131 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
132 				(cn->used - cur == 2 && cn->corename[cur] == '.'
133 				&& cn->corename[cur+1] == '.'))
134 			cn->corename[cur] = '!';
135 
136 		/*
137 		 * Empty names are fishy and could be used to create a "//" in a
138 		 * corefile name, causing the coredump to happen one directory
139 		 * level too high. Enforce that all components of the core
140 		 * pattern are at least one character long.
141 		 */
142 		if (cn->used == cur)
143 			ret = cn_printf(cn, "!");
144 	}
145 
146 	for (; cur < cn->used; ++cur) {
147 		if (cn->corename[cur] == '/')
148 			cn->corename[cur] = '!';
149 	}
150 	return ret;
151 }
152 
153 static int cn_print_exe_file(struct core_name *cn)
154 {
155 	struct file *exe_file;
156 	char *pathbuf, *path;
157 	int ret;
158 
159 	exe_file = get_mm_exe_file(current->mm);
160 	if (!exe_file)
161 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
162 
163 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
164 	if (!pathbuf) {
165 		ret = -ENOMEM;
166 		goto put_exe_file;
167 	}
168 
169 	path = file_path(exe_file, pathbuf, PATH_MAX);
170 	if (IS_ERR(path)) {
171 		ret = PTR_ERR(path);
172 		goto free_buf;
173 	}
174 
175 	ret = cn_esc_printf(cn, "%s", path);
176 
177 free_buf:
178 	kfree(pathbuf);
179 put_exe_file:
180 	fput(exe_file);
181 	return ret;
182 }
183 
184 /* format_corename will inspect the pattern parameter, and output a
185  * name into corename, which must have space for at least
186  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
187  */
188 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
189 {
190 	const struct cred *cred = current_cred();
191 	const char *pat_ptr = core_pattern;
192 	int ispipe = (*pat_ptr == '|');
193 	int pid_in_pattern = 0;
194 	int err = 0;
195 
196 	cn->used = 0;
197 	cn->corename = NULL;
198 	if (expand_corename(cn, core_name_size))
199 		return -ENOMEM;
200 	cn->corename[0] = '\0';
201 
202 	if (ispipe)
203 		++pat_ptr;
204 
205 	/* Repeat as long as we have more pattern to process and more output
206 	   space */
207 	while (*pat_ptr) {
208 		if (*pat_ptr != '%') {
209 			err = cn_printf(cn, "%c", *pat_ptr++);
210 		} else {
211 			switch (*++pat_ptr) {
212 			/* single % at the end, drop that */
213 			case 0:
214 				goto out;
215 			/* Double percent, output one percent */
216 			case '%':
217 				err = cn_printf(cn, "%c", '%');
218 				break;
219 			/* pid */
220 			case 'p':
221 				pid_in_pattern = 1;
222 				err = cn_printf(cn, "%d",
223 					      task_tgid_vnr(current));
224 				break;
225 			/* global pid */
226 			case 'P':
227 				err = cn_printf(cn, "%d",
228 					      task_tgid_nr(current));
229 				break;
230 			case 'i':
231 				err = cn_printf(cn, "%d",
232 					      task_pid_vnr(current));
233 				break;
234 			case 'I':
235 				err = cn_printf(cn, "%d",
236 					      task_pid_nr(current));
237 				break;
238 			/* uid */
239 			case 'u':
240 				err = cn_printf(cn, "%u",
241 						from_kuid(&init_user_ns,
242 							  cred->uid));
243 				break;
244 			/* gid */
245 			case 'g':
246 				err = cn_printf(cn, "%u",
247 						from_kgid(&init_user_ns,
248 							  cred->gid));
249 				break;
250 			case 'd':
251 				err = cn_printf(cn, "%d",
252 					__get_dumpable(cprm->mm_flags));
253 				break;
254 			/* signal that caused the coredump */
255 			case 's':
256 				err = cn_printf(cn, "%d",
257 						cprm->siginfo->si_signo);
258 				break;
259 			/* UNIX time of coredump */
260 			case 't': {
261 				time64_t time;
262 
263 				time = ktime_get_real_seconds();
264 				err = cn_printf(cn, "%lld", time);
265 				break;
266 			}
267 			/* hostname */
268 			case 'h':
269 				down_read(&uts_sem);
270 				err = cn_esc_printf(cn, "%s",
271 					      utsname()->nodename);
272 				up_read(&uts_sem);
273 				break;
274 			/* executable */
275 			case 'e':
276 				err = cn_esc_printf(cn, "%s", current->comm);
277 				break;
278 			case 'E':
279 				err = cn_print_exe_file(cn);
280 				break;
281 			/* core limit size */
282 			case 'c':
283 				err = cn_printf(cn, "%lu",
284 					      rlimit(RLIMIT_CORE));
285 				break;
286 			default:
287 				break;
288 			}
289 			++pat_ptr;
290 		}
291 
292 		if (err)
293 			return err;
294 	}
295 
296 out:
297 	/* Backward compatibility with core_uses_pid:
298 	 *
299 	 * If core_pattern does not include a %p (as is the default)
300 	 * and core_uses_pid is set, then .%pid will be appended to
301 	 * the filename. Do not do this for piped commands. */
302 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
303 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
304 		if (err)
305 			return err;
306 	}
307 	return ispipe;
308 }
309 
310 static int zap_process(struct task_struct *start, int exit_code, int flags)
311 {
312 	struct task_struct *t;
313 	int nr = 0;
314 
315 	/* ignore all signals except SIGKILL, see prepare_signal() */
316 	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
317 	start->signal->group_exit_code = exit_code;
318 	start->signal->group_stop_count = 0;
319 
320 	for_each_thread(start, t) {
321 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
322 		if (t != current && t->mm) {
323 			sigaddset(&t->pending.signal, SIGKILL);
324 			signal_wake_up(t, 1);
325 			nr++;
326 		}
327 	}
328 
329 	return nr;
330 }
331 
332 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
333 			struct core_state *core_state, int exit_code)
334 {
335 	struct task_struct *g, *p;
336 	unsigned long flags;
337 	int nr = -EAGAIN;
338 
339 	spin_lock_irq(&tsk->sighand->siglock);
340 	if (!signal_group_exit(tsk->signal)) {
341 		mm->core_state = core_state;
342 		tsk->signal->group_exit_task = tsk;
343 		nr = zap_process(tsk, exit_code, 0);
344 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
345 	}
346 	spin_unlock_irq(&tsk->sighand->siglock);
347 	if (unlikely(nr < 0))
348 		return nr;
349 
350 	tsk->flags |= PF_DUMPCORE;
351 	if (atomic_read(&mm->mm_users) == nr + 1)
352 		goto done;
353 	/*
354 	 * We should find and kill all tasks which use this mm, and we should
355 	 * count them correctly into ->nr_threads. We don't take tasklist
356 	 * lock, but this is safe wrt:
357 	 *
358 	 * fork:
359 	 *	None of sub-threads can fork after zap_process(leader). All
360 	 *	processes which were created before this point should be
361 	 *	visible to zap_threads() because copy_process() adds the new
362 	 *	process to the tail of init_task.tasks list, and lock/unlock
363 	 *	of ->siglock provides a memory barrier.
364 	 *
365 	 * do_exit:
366 	 *	The caller holds mm->mmap_sem. This means that the task which
367 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
368 	 *	its ->mm.
369 	 *
370 	 * de_thread:
371 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
372 	 *	we must see either old or new leader, this does not matter.
373 	 *	However, it can change p->sighand, so lock_task_sighand(p)
374 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
375 	 *	it can't fail.
376 	 *
377 	 *	Note also that "g" can be the old leader with ->mm == NULL
378 	 *	and already unhashed and thus removed from ->thread_group.
379 	 *	This is OK, __unhash_process()->list_del_rcu() does not
380 	 *	clear the ->next pointer, we will find the new leader via
381 	 *	next_thread().
382 	 */
383 	rcu_read_lock();
384 	for_each_process(g) {
385 		if (g == tsk->group_leader)
386 			continue;
387 		if (g->flags & PF_KTHREAD)
388 			continue;
389 
390 		for_each_thread(g, p) {
391 			if (unlikely(!p->mm))
392 				continue;
393 			if (unlikely(p->mm == mm)) {
394 				lock_task_sighand(p, &flags);
395 				nr += zap_process(p, exit_code,
396 							SIGNAL_GROUP_EXIT);
397 				unlock_task_sighand(p, &flags);
398 			}
399 			break;
400 		}
401 	}
402 	rcu_read_unlock();
403 done:
404 	atomic_set(&core_state->nr_threads, nr);
405 	return nr;
406 }
407 
408 static int coredump_wait(int exit_code, struct core_state *core_state)
409 {
410 	struct task_struct *tsk = current;
411 	struct mm_struct *mm = tsk->mm;
412 	int core_waiters = -EBUSY;
413 
414 	init_completion(&core_state->startup);
415 	core_state->dumper.task = tsk;
416 	core_state->dumper.next = NULL;
417 
418 	if (down_write_killable(&mm->mmap_sem))
419 		return -EINTR;
420 
421 	if (!mm->core_state)
422 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
423 	up_write(&mm->mmap_sem);
424 
425 	if (core_waiters > 0) {
426 		struct core_thread *ptr;
427 
428 		freezer_do_not_count();
429 		wait_for_completion(&core_state->startup);
430 		freezer_count();
431 		/*
432 		 * Wait for all the threads to become inactive, so that
433 		 * all the thread context (extended register state, like
434 		 * fpu etc) gets copied to the memory.
435 		 */
436 		ptr = core_state->dumper.next;
437 		while (ptr != NULL) {
438 			wait_task_inactive(ptr->task, 0);
439 			ptr = ptr->next;
440 		}
441 	}
442 
443 	return core_waiters;
444 }
445 
446 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
447 {
448 	struct core_thread *curr, *next;
449 	struct task_struct *task;
450 
451 	spin_lock_irq(&current->sighand->siglock);
452 	if (core_dumped && !__fatal_signal_pending(current))
453 		current->signal->group_exit_code |= 0x80;
454 	current->signal->group_exit_task = NULL;
455 	current->signal->flags = SIGNAL_GROUP_EXIT;
456 	spin_unlock_irq(&current->sighand->siglock);
457 
458 	next = mm->core_state->dumper.next;
459 	while ((curr = next) != NULL) {
460 		next = curr->next;
461 		task = curr->task;
462 		/*
463 		 * see exit_mm(), curr->task must not see
464 		 * ->task == NULL before we read ->next.
465 		 */
466 		smp_mb();
467 		curr->task = NULL;
468 		wake_up_process(task);
469 	}
470 
471 	mm->core_state = NULL;
472 }
473 
474 static bool dump_interrupted(void)
475 {
476 	/*
477 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
478 	 * can do try_to_freeze() and check __fatal_signal_pending(),
479 	 * but then we need to teach dump_write() to restart and clear
480 	 * TIF_SIGPENDING.
481 	 */
482 	return signal_pending(current);
483 }
484 
485 static void wait_for_dump_helpers(struct file *file)
486 {
487 	struct pipe_inode_info *pipe = file->private_data;
488 
489 	pipe_lock(pipe);
490 	pipe->readers++;
491 	pipe->writers--;
492 	wake_up_interruptible_sync(&pipe->wait);
493 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
494 	pipe_unlock(pipe);
495 
496 	/*
497 	 * We actually want wait_event_freezable() but then we need
498 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
499 	 */
500 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
501 
502 	pipe_lock(pipe);
503 	pipe->readers--;
504 	pipe->writers++;
505 	pipe_unlock(pipe);
506 }
507 
508 /*
509  * umh_pipe_setup
510  * helper function to customize the process used
511  * to collect the core in userspace.  Specifically
512  * it sets up a pipe and installs it as fd 0 (stdin)
513  * for the process.  Returns 0 on success, or
514  * PTR_ERR on failure.
515  * Note that it also sets the core limit to 1.  This
516  * is a special value that we use to trap recursive
517  * core dumps
518  */
519 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
520 {
521 	struct file *files[2];
522 	struct coredump_params *cp = (struct coredump_params *)info->data;
523 	int err = create_pipe_files(files, 0);
524 	if (err)
525 		return err;
526 
527 	cp->file = files[1];
528 
529 	err = replace_fd(0, files[0], 0);
530 	fput(files[0]);
531 	/* and disallow core files too */
532 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
533 
534 	return err;
535 }
536 
537 void do_coredump(const siginfo_t *siginfo)
538 {
539 	struct core_state core_state;
540 	struct core_name cn;
541 	struct mm_struct *mm = current->mm;
542 	struct linux_binfmt * binfmt;
543 	const struct cred *old_cred;
544 	struct cred *cred;
545 	int retval = 0;
546 	int ispipe;
547 	struct files_struct *displaced;
548 	/* require nonrelative corefile path and be extra careful */
549 	bool need_suid_safe = false;
550 	bool core_dumped = false;
551 	static atomic_t core_dump_count = ATOMIC_INIT(0);
552 	struct coredump_params cprm = {
553 		.siginfo = siginfo,
554 		.regs = signal_pt_regs(),
555 		.limit = rlimit(RLIMIT_CORE),
556 		/*
557 		 * We must use the same mm->flags while dumping core to avoid
558 		 * inconsistency of bit flags, since this flag is not protected
559 		 * by any locks.
560 		 */
561 		.mm_flags = mm->flags,
562 	};
563 
564 	audit_core_dumps(siginfo->si_signo);
565 
566 	binfmt = mm->binfmt;
567 	if (!binfmt || !binfmt->core_dump)
568 		goto fail;
569 	if (!__get_dumpable(cprm.mm_flags))
570 		goto fail;
571 
572 	cred = prepare_creds();
573 	if (!cred)
574 		goto fail;
575 	/*
576 	 * We cannot trust fsuid as being the "true" uid of the process
577 	 * nor do we know its entire history. We only know it was tainted
578 	 * so we dump it as root in mode 2, and only into a controlled
579 	 * environment (pipe handler or fully qualified path).
580 	 */
581 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
582 		/* Setuid core dump mode */
583 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
584 		need_suid_safe = true;
585 	}
586 
587 	retval = coredump_wait(siginfo->si_signo, &core_state);
588 	if (retval < 0)
589 		goto fail_creds;
590 
591 	old_cred = override_creds(cred);
592 
593 	ispipe = format_corename(&cn, &cprm);
594 
595 	if (ispipe) {
596 		int dump_count;
597 		char **helper_argv;
598 		struct subprocess_info *sub_info;
599 
600 		if (ispipe < 0) {
601 			printk(KERN_WARNING "format_corename failed\n");
602 			printk(KERN_WARNING "Aborting core\n");
603 			goto fail_unlock;
604 		}
605 
606 		if (cprm.limit == 1) {
607 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
608 			 *
609 			 * Normally core limits are irrelevant to pipes, since
610 			 * we're not writing to the file system, but we use
611 			 * cprm.limit of 1 here as a special value, this is a
612 			 * consistent way to catch recursive crashes.
613 			 * We can still crash if the core_pattern binary sets
614 			 * RLIM_CORE = !1, but it runs as root, and can do
615 			 * lots of stupid things.
616 			 *
617 			 * Note that we use task_tgid_vnr here to grab the pid
618 			 * of the process group leader.  That way we get the
619 			 * right pid if a thread in a multi-threaded
620 			 * core_pattern process dies.
621 			 */
622 			printk(KERN_WARNING
623 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
624 				task_tgid_vnr(current), current->comm);
625 			printk(KERN_WARNING "Aborting core\n");
626 			goto fail_unlock;
627 		}
628 		cprm.limit = RLIM_INFINITY;
629 
630 		dump_count = atomic_inc_return(&core_dump_count);
631 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
632 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
633 			       task_tgid_vnr(current), current->comm);
634 			printk(KERN_WARNING "Skipping core dump\n");
635 			goto fail_dropcount;
636 		}
637 
638 		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
639 		if (!helper_argv) {
640 			printk(KERN_WARNING "%s failed to allocate memory\n",
641 			       __func__);
642 			goto fail_dropcount;
643 		}
644 
645 		retval = -ENOMEM;
646 		sub_info = call_usermodehelper_setup(helper_argv[0],
647 						helper_argv, NULL, GFP_KERNEL,
648 						umh_pipe_setup, NULL, &cprm);
649 		if (sub_info)
650 			retval = call_usermodehelper_exec(sub_info,
651 							  UMH_WAIT_EXEC);
652 
653 		argv_free(helper_argv);
654 		if (retval) {
655 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
656 			       cn.corename);
657 			goto close_fail;
658 		}
659 	} else {
660 		struct inode *inode;
661 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
662 				 O_LARGEFILE | O_EXCL;
663 
664 		if (cprm.limit < binfmt->min_coredump)
665 			goto fail_unlock;
666 
667 		if (need_suid_safe && cn.corename[0] != '/') {
668 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
669 				"to fully qualified path!\n",
670 				task_tgid_vnr(current), current->comm);
671 			printk(KERN_WARNING "Skipping core dump\n");
672 			goto fail_unlock;
673 		}
674 
675 		/*
676 		 * Unlink the file if it exists unless this is a SUID
677 		 * binary - in that case, we're running around with root
678 		 * privs and don't want to unlink another user's coredump.
679 		 */
680 		if (!need_suid_safe) {
681 			mm_segment_t old_fs;
682 
683 			old_fs = get_fs();
684 			set_fs(KERNEL_DS);
685 			/*
686 			 * If it doesn't exist, that's fine. If there's some
687 			 * other problem, we'll catch it at the filp_open().
688 			 */
689 			(void) sys_unlink((const char __user *)cn.corename);
690 			set_fs(old_fs);
691 		}
692 
693 		/*
694 		 * There is a race between unlinking and creating the
695 		 * file, but if that causes an EEXIST here, that's
696 		 * fine - another process raced with us while creating
697 		 * the corefile, and the other process won. To userspace,
698 		 * what matters is that at least one of the two processes
699 		 * writes its coredump successfully, not which one.
700 		 */
701 		if (need_suid_safe) {
702 			/*
703 			 * Using user namespaces, normal user tasks can change
704 			 * their current->fs->root to point to arbitrary
705 			 * directories. Since the intention of the "only dump
706 			 * with a fully qualified path" rule is to control where
707 			 * coredumps may be placed using root privileges,
708 			 * current->fs->root must not be used. Instead, use the
709 			 * root directory of init_task.
710 			 */
711 			struct path root;
712 
713 			task_lock(&init_task);
714 			get_fs_root(init_task.fs, &root);
715 			task_unlock(&init_task);
716 			cprm.file = file_open_root(root.dentry, root.mnt,
717 				cn.corename, open_flags, 0600);
718 			path_put(&root);
719 		} else {
720 			cprm.file = filp_open(cn.corename, open_flags, 0600);
721 		}
722 		if (IS_ERR(cprm.file))
723 			goto fail_unlock;
724 
725 		inode = file_inode(cprm.file);
726 		if (inode->i_nlink > 1)
727 			goto close_fail;
728 		if (d_unhashed(cprm.file->f_path.dentry))
729 			goto close_fail;
730 		/*
731 		 * AK: actually i see no reason to not allow this for named
732 		 * pipes etc, but keep the previous behaviour for now.
733 		 */
734 		if (!S_ISREG(inode->i_mode))
735 			goto close_fail;
736 		/*
737 		 * Don't dump core if the filesystem changed owner or mode
738 		 * of the file during file creation. This is an issue when
739 		 * a process dumps core while its cwd is e.g. on a vfat
740 		 * filesystem.
741 		 */
742 		if (!uid_eq(inode->i_uid, current_fsuid()))
743 			goto close_fail;
744 		if ((inode->i_mode & 0677) != 0600)
745 			goto close_fail;
746 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
747 			goto close_fail;
748 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
749 			goto close_fail;
750 	}
751 
752 	/* get us an unshared descriptor table; almost always a no-op */
753 	retval = unshare_files(&displaced);
754 	if (retval)
755 		goto close_fail;
756 	if (displaced)
757 		put_files_struct(displaced);
758 	if (!dump_interrupted()) {
759 		file_start_write(cprm.file);
760 		core_dumped = binfmt->core_dump(&cprm);
761 		file_end_write(cprm.file);
762 	}
763 	if (ispipe && core_pipe_limit)
764 		wait_for_dump_helpers(cprm.file);
765 close_fail:
766 	if (cprm.file)
767 		filp_close(cprm.file, NULL);
768 fail_dropcount:
769 	if (ispipe)
770 		atomic_dec(&core_dump_count);
771 fail_unlock:
772 	kfree(cn.corename);
773 	coredump_finish(mm, core_dumped);
774 	revert_creds(old_cred);
775 fail_creds:
776 	put_cred(cred);
777 fail:
778 	return;
779 }
780 
781 /*
782  * Core dumping helper functions.  These are the only things you should
783  * do on a core-file: use only these functions to write out all the
784  * necessary info.
785  */
786 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
787 {
788 	struct file *file = cprm->file;
789 	loff_t pos = file->f_pos;
790 	ssize_t n;
791 	if (cprm->written + nr > cprm->limit)
792 		return 0;
793 	while (nr) {
794 		if (dump_interrupted())
795 			return 0;
796 		n = __kernel_write(file, addr, nr, &pos);
797 		if (n <= 0)
798 			return 0;
799 		file->f_pos = pos;
800 		cprm->written += n;
801 		cprm->pos += n;
802 		nr -= n;
803 	}
804 	return 1;
805 }
806 EXPORT_SYMBOL(dump_emit);
807 
808 int dump_skip(struct coredump_params *cprm, size_t nr)
809 {
810 	static char zeroes[PAGE_SIZE];
811 	struct file *file = cprm->file;
812 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
813 		if (dump_interrupted() ||
814 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
815 			return 0;
816 		cprm->pos += nr;
817 		return 1;
818 	} else {
819 		while (nr > PAGE_SIZE) {
820 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
821 				return 0;
822 			nr -= PAGE_SIZE;
823 		}
824 		return dump_emit(cprm, zeroes, nr);
825 	}
826 }
827 EXPORT_SYMBOL(dump_skip);
828 
829 int dump_align(struct coredump_params *cprm, int align)
830 {
831 	unsigned mod = cprm->pos & (align - 1);
832 	if (align & (align - 1))
833 		return 0;
834 	return mod ? dump_skip(cprm, align - mod) : 1;
835 }
836 EXPORT_SYMBOL(dump_align);
837 
838 /*
839  * Ensures that file size is big enough to contain the current file
840  * postion. This prevents gdb from complaining about a truncated file
841  * if the last "write" to the file was dump_skip.
842  */
843 void dump_truncate(struct coredump_params *cprm)
844 {
845 	struct file *file = cprm->file;
846 	loff_t offset;
847 
848 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
849 		offset = file->f_op->llseek(file, 0, SEEK_CUR);
850 		if (i_size_read(file->f_mapping->host) < offset)
851 			do_truncate(file->f_path.dentry, offset, 0, file);
852 	}
853 }
854 EXPORT_SYMBOL(dump_truncate);
855