xref: /openbmc/linux/fs/configfs/file.c (revision c6b2f240)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * file.c - operations for regular (text) files.
6  *
7  * Based on sysfs:
8  * 	sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
9  *
10  * configfs Copyright (C) 2005 Oracle.  All rights reserved.
11  */
12 
13 #include <linux/fs.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/mutex.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 
20 #include <linux/configfs.h>
21 #include "configfs_internal.h"
22 
23 /*
24  * A simple attribute can only be 4096 characters.  Why 4k?  Because the
25  * original code limited it to PAGE_SIZE.  That's a bad idea, though,
26  * because an attribute of 16k on ia64 won't work on x86.  So we limit to
27  * 4k, our minimum common page size.
28  */
29 #define SIMPLE_ATTR_SIZE 4096
30 
31 struct configfs_buffer {
32 	size_t			count;
33 	loff_t			pos;
34 	char			* page;
35 	struct configfs_item_operations	* ops;
36 	struct mutex		mutex;
37 	int			needs_read_fill;
38 	bool			read_in_progress;
39 	bool			write_in_progress;
40 	char			*bin_buffer;
41 	int			bin_buffer_size;
42 	int			cb_max_size;
43 	struct config_item	*item;
44 	struct module		*owner;
45 	union {
46 		struct configfs_attribute	*attr;
47 		struct configfs_bin_attribute	*bin_attr;
48 	};
49 };
50 
51 static inline struct configfs_fragment *to_frag(struct file *file)
52 {
53 	struct configfs_dirent *sd = file->f_path.dentry->d_fsdata;
54 
55 	return sd->s_frag;
56 }
57 
58 static int fill_read_buffer(struct file *file, struct configfs_buffer *buffer)
59 {
60 	struct configfs_fragment *frag = to_frag(file);
61 	ssize_t count = -ENOENT;
62 
63 	if (!buffer->page)
64 		buffer->page = (char *) get_zeroed_page(GFP_KERNEL);
65 	if (!buffer->page)
66 		return -ENOMEM;
67 
68 	down_read(&frag->frag_sem);
69 	if (!frag->frag_dead)
70 		count = buffer->attr->show(buffer->item, buffer->page);
71 	up_read(&frag->frag_sem);
72 
73 	if (count < 0)
74 		return count;
75 	if (WARN_ON_ONCE(count > (ssize_t)SIMPLE_ATTR_SIZE))
76 		return -EIO;
77 	buffer->needs_read_fill = 0;
78 	buffer->count = count;
79 	return 0;
80 }
81 
82 /**
83  *	configfs_read_file - read an attribute.
84  *	@file:	file pointer.
85  *	@buf:	buffer to fill.
86  *	@count:	number of bytes to read.
87  *	@ppos:	starting offset in file.
88  *
89  *	Userspace wants to read an attribute file. The attribute descriptor
90  *	is in the file's ->d_fsdata. The target item is in the directory's
91  *	->d_fsdata.
92  *
93  *	We call fill_read_buffer() to allocate and fill the buffer from the
94  *	item's show() method exactly once (if the read is happening from
95  *	the beginning of the file). That should fill the entire buffer with
96  *	all the data the item has to offer for that attribute.
97  *	We then call flush_read_buffer() to copy the buffer to userspace
98  *	in the increments specified.
99  */
100 
101 static ssize_t
102 configfs_read_file(struct file *file, char __user *buf, size_t count, loff_t *ppos)
103 {
104 	struct configfs_buffer *buffer = file->private_data;
105 	ssize_t retval = 0;
106 
107 	mutex_lock(&buffer->mutex);
108 	if (buffer->needs_read_fill) {
109 		retval = fill_read_buffer(file, buffer);
110 		if (retval)
111 			goto out;
112 	}
113 	pr_debug("%s: count = %zd, ppos = %lld, buf = %s\n",
114 		 __func__, count, *ppos, buffer->page);
115 	retval = simple_read_from_buffer(buf, count, ppos, buffer->page,
116 					 buffer->count);
117 out:
118 	mutex_unlock(&buffer->mutex);
119 	return retval;
120 }
121 
122 /**
123  *	configfs_read_bin_file - read a binary attribute.
124  *	@file:	file pointer.
125  *	@buf:	buffer to fill.
126  *	@count:	number of bytes to read.
127  *	@ppos:	starting offset in file.
128  *
129  *	Userspace wants to read a binary attribute file. The attribute
130  *	descriptor is in the file's ->d_fsdata. The target item is in the
131  *	directory's ->d_fsdata.
132  *
133  *	We check whether we need to refill the buffer. If so we will
134  *	call the attributes' attr->read() twice. The first time we
135  *	will pass a NULL as a buffer pointer, which the attributes' method
136  *	will use to return the size of the buffer required. If no error
137  *	occurs we will allocate the buffer using vmalloc and call
138  *	attr->read() again passing that buffer as an argument.
139  *	Then we just copy to user-space using simple_read_from_buffer.
140  */
141 
142 static ssize_t
143 configfs_read_bin_file(struct file *file, char __user *buf,
144 		       size_t count, loff_t *ppos)
145 {
146 	struct configfs_fragment *frag = to_frag(file);
147 	struct configfs_buffer *buffer = file->private_data;
148 	ssize_t retval = 0;
149 	ssize_t len = min_t(size_t, count, PAGE_SIZE);
150 
151 	mutex_lock(&buffer->mutex);
152 
153 	/* we don't support switching read/write modes */
154 	if (buffer->write_in_progress) {
155 		retval = -ETXTBSY;
156 		goto out;
157 	}
158 	buffer->read_in_progress = true;
159 
160 	if (buffer->needs_read_fill) {
161 		/* perform first read with buf == NULL to get extent */
162 		down_read(&frag->frag_sem);
163 		if (!frag->frag_dead)
164 			len = buffer->bin_attr->read(buffer->item, NULL, 0);
165 		else
166 			len = -ENOENT;
167 		up_read(&frag->frag_sem);
168 		if (len <= 0) {
169 			retval = len;
170 			goto out;
171 		}
172 
173 		/* do not exceed the maximum value */
174 		if (buffer->cb_max_size && len > buffer->cb_max_size) {
175 			retval = -EFBIG;
176 			goto out;
177 		}
178 
179 		buffer->bin_buffer = vmalloc(len);
180 		if (buffer->bin_buffer == NULL) {
181 			retval = -ENOMEM;
182 			goto out;
183 		}
184 		buffer->bin_buffer_size = len;
185 
186 		/* perform second read to fill buffer */
187 		down_read(&frag->frag_sem);
188 		if (!frag->frag_dead)
189 			len = buffer->bin_attr->read(buffer->item,
190 						     buffer->bin_buffer, len);
191 		else
192 			len = -ENOENT;
193 		up_read(&frag->frag_sem);
194 		if (len < 0) {
195 			retval = len;
196 			vfree(buffer->bin_buffer);
197 			buffer->bin_buffer_size = 0;
198 			buffer->bin_buffer = NULL;
199 			goto out;
200 		}
201 
202 		buffer->needs_read_fill = 0;
203 	}
204 
205 	retval = simple_read_from_buffer(buf, count, ppos, buffer->bin_buffer,
206 					buffer->bin_buffer_size);
207 out:
208 	mutex_unlock(&buffer->mutex);
209 	return retval;
210 }
211 
212 
213 /**
214  *	fill_write_buffer - copy buffer from userspace.
215  *	@buffer:	data buffer for file.
216  *	@buf:		data from user.
217  *	@count:		number of bytes in @userbuf.
218  *
219  *	Allocate @buffer->page if it hasn't been already, then
220  *	copy the user-supplied buffer into it.
221  */
222 
223 static int
224 fill_write_buffer(struct configfs_buffer * buffer, const char __user * buf, size_t count)
225 {
226 	int error;
227 
228 	if (!buffer->page)
229 		buffer->page = (char *)__get_free_pages(GFP_KERNEL, 0);
230 	if (!buffer->page)
231 		return -ENOMEM;
232 
233 	if (count >= SIMPLE_ATTR_SIZE)
234 		count = SIMPLE_ATTR_SIZE - 1;
235 	error = copy_from_user(buffer->page,buf,count);
236 	buffer->needs_read_fill = 1;
237 	/* if buf is assumed to contain a string, terminate it by \0,
238 	 * so e.g. sscanf() can scan the string easily */
239 	buffer->page[count] = 0;
240 	return error ? -EFAULT : count;
241 }
242 
243 static int
244 flush_write_buffer(struct file *file, struct configfs_buffer *buffer, size_t count)
245 {
246 	struct configfs_fragment *frag = to_frag(file);
247 	int res = -ENOENT;
248 
249 	down_read(&frag->frag_sem);
250 	if (!frag->frag_dead)
251 		res = buffer->attr->store(buffer->item, buffer->page, count);
252 	up_read(&frag->frag_sem);
253 	return res;
254 }
255 
256 
257 /**
258  *	configfs_write_file - write an attribute.
259  *	@file:	file pointer
260  *	@buf:	data to write
261  *	@count:	number of bytes
262  *	@ppos:	starting offset
263  *
264  *	Similar to configfs_read_file(), though working in the opposite direction.
265  *	We allocate and fill the data from the user in fill_write_buffer(),
266  *	then push it to the config_item in flush_write_buffer().
267  *	There is no easy way for us to know if userspace is only doing a partial
268  *	write, so we don't support them. We expect the entire buffer to come
269  *	on the first write.
270  *	Hint: if you're writing a value, first read the file, modify only
271  *	the value you're changing, then write entire buffer back.
272  */
273 
274 static ssize_t
275 configfs_write_file(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
276 {
277 	struct configfs_buffer *buffer = file->private_data;
278 	ssize_t len;
279 
280 	mutex_lock(&buffer->mutex);
281 	len = fill_write_buffer(buffer, buf, count);
282 	if (len > 0)
283 		len = flush_write_buffer(file, buffer, len);
284 	if (len > 0)
285 		*ppos += len;
286 	mutex_unlock(&buffer->mutex);
287 	return len;
288 }
289 
290 /**
291  *	configfs_write_bin_file - write a binary attribute.
292  *	@file:	file pointer
293  *	@buf:	data to write
294  *	@count:	number of bytes
295  *	@ppos:	starting offset
296  *
297  *	Writing to a binary attribute file is similar to a normal read.
298  *	We buffer the consecutive writes (binary attribute files do not
299  *	support lseek) in a continuously growing buffer, but we don't
300  *	commit until the close of the file.
301  */
302 
303 static ssize_t
304 configfs_write_bin_file(struct file *file, const char __user *buf,
305 			size_t count, loff_t *ppos)
306 {
307 	struct configfs_buffer *buffer = file->private_data;
308 	void *tbuf = NULL;
309 	ssize_t len;
310 
311 	mutex_lock(&buffer->mutex);
312 
313 	/* we don't support switching read/write modes */
314 	if (buffer->read_in_progress) {
315 		len = -ETXTBSY;
316 		goto out;
317 	}
318 	buffer->write_in_progress = true;
319 
320 	/* buffer grows? */
321 	if (*ppos + count > buffer->bin_buffer_size) {
322 
323 		if (buffer->cb_max_size &&
324 			*ppos + count > buffer->cb_max_size) {
325 			len = -EFBIG;
326 			goto out;
327 		}
328 
329 		tbuf = vmalloc(*ppos + count);
330 		if (tbuf == NULL) {
331 			len = -ENOMEM;
332 			goto out;
333 		}
334 
335 		/* copy old contents */
336 		if (buffer->bin_buffer) {
337 			memcpy(tbuf, buffer->bin_buffer,
338 				buffer->bin_buffer_size);
339 			vfree(buffer->bin_buffer);
340 		}
341 
342 		/* clear the new area */
343 		memset(tbuf + buffer->bin_buffer_size, 0,
344 			*ppos + count - buffer->bin_buffer_size);
345 		buffer->bin_buffer = tbuf;
346 		buffer->bin_buffer_size = *ppos + count;
347 	}
348 
349 	len = simple_write_to_buffer(buffer->bin_buffer,
350 			buffer->bin_buffer_size, ppos, buf, count);
351 out:
352 	mutex_unlock(&buffer->mutex);
353 	return len;
354 }
355 
356 static int __configfs_open_file(struct inode *inode, struct file *file, int type)
357 {
358 	struct dentry *dentry = file->f_path.dentry;
359 	struct configfs_fragment *frag = to_frag(file);
360 	struct configfs_attribute *attr;
361 	struct configfs_buffer *buffer;
362 	int error;
363 
364 	error = -ENOMEM;
365 	buffer = kzalloc(sizeof(struct configfs_buffer), GFP_KERNEL);
366 	if (!buffer)
367 		goto out;
368 
369 	error = -ENOENT;
370 	down_read(&frag->frag_sem);
371 	if (unlikely(frag->frag_dead))
372 		goto out_free_buffer;
373 
374 	error = -EINVAL;
375 	buffer->item = to_item(dentry->d_parent);
376 	if (!buffer->item)
377 		goto out_free_buffer;
378 
379 	attr = to_attr(dentry);
380 	if (!attr)
381 		goto out_put_item;
382 
383 	if (type & CONFIGFS_ITEM_BIN_ATTR) {
384 		buffer->bin_attr = to_bin_attr(dentry);
385 		buffer->cb_max_size = buffer->bin_attr->cb_max_size;
386 	} else {
387 		buffer->attr = attr;
388 	}
389 
390 	buffer->owner = attr->ca_owner;
391 	/* Grab the module reference for this attribute if we have one */
392 	error = -ENODEV;
393 	if (!try_module_get(buffer->owner))
394 		goto out_put_item;
395 
396 	error = -EACCES;
397 	if (!buffer->item->ci_type)
398 		goto out_put_module;
399 
400 	buffer->ops = buffer->item->ci_type->ct_item_ops;
401 
402 	/* File needs write support.
403 	 * The inode's perms must say it's ok,
404 	 * and we must have a store method.
405 	 */
406 	if (file->f_mode & FMODE_WRITE) {
407 		if (!(inode->i_mode & S_IWUGO))
408 			goto out_put_module;
409 		if ((type & CONFIGFS_ITEM_ATTR) && !attr->store)
410 			goto out_put_module;
411 		if ((type & CONFIGFS_ITEM_BIN_ATTR) && !buffer->bin_attr->write)
412 			goto out_put_module;
413 	}
414 
415 	/* File needs read support.
416 	 * The inode's perms must say it's ok, and we there
417 	 * must be a show method for it.
418 	 */
419 	if (file->f_mode & FMODE_READ) {
420 		if (!(inode->i_mode & S_IRUGO))
421 			goto out_put_module;
422 		if ((type & CONFIGFS_ITEM_ATTR) && !attr->show)
423 			goto out_put_module;
424 		if ((type & CONFIGFS_ITEM_BIN_ATTR) && !buffer->bin_attr->read)
425 			goto out_put_module;
426 	}
427 
428 	mutex_init(&buffer->mutex);
429 	buffer->needs_read_fill = 1;
430 	buffer->read_in_progress = false;
431 	buffer->write_in_progress = false;
432 	file->private_data = buffer;
433 	up_read(&frag->frag_sem);
434 	return 0;
435 
436 out_put_module:
437 	module_put(buffer->owner);
438 out_put_item:
439 	config_item_put(buffer->item);
440 out_free_buffer:
441 	up_read(&frag->frag_sem);
442 	kfree(buffer);
443 out:
444 	return error;
445 }
446 
447 static int configfs_release(struct inode *inode, struct file *filp)
448 {
449 	struct configfs_buffer *buffer = filp->private_data;
450 
451 	module_put(buffer->owner);
452 	if (buffer->page)
453 		free_page((unsigned long)buffer->page);
454 	mutex_destroy(&buffer->mutex);
455 	kfree(buffer);
456 	return 0;
457 }
458 
459 static int configfs_open_file(struct inode *inode, struct file *filp)
460 {
461 	return __configfs_open_file(inode, filp, CONFIGFS_ITEM_ATTR);
462 }
463 
464 static int configfs_open_bin_file(struct inode *inode, struct file *filp)
465 {
466 	return __configfs_open_file(inode, filp, CONFIGFS_ITEM_BIN_ATTR);
467 }
468 
469 static int configfs_release_bin_file(struct inode *inode, struct file *file)
470 {
471 	struct configfs_buffer *buffer = file->private_data;
472 
473 	buffer->read_in_progress = false;
474 
475 	if (buffer->write_in_progress) {
476 		struct configfs_fragment *frag = to_frag(file);
477 		buffer->write_in_progress = false;
478 
479 		down_read(&frag->frag_sem);
480 		if (!frag->frag_dead) {
481 			/* result of ->release() is ignored */
482 			buffer->bin_attr->write(buffer->item,
483 					buffer->bin_buffer,
484 					buffer->bin_buffer_size);
485 		}
486 		up_read(&frag->frag_sem);
487 		/* vfree on NULL is safe */
488 		vfree(buffer->bin_buffer);
489 		buffer->bin_buffer = NULL;
490 		buffer->bin_buffer_size = 0;
491 		buffer->needs_read_fill = 1;
492 	}
493 
494 	configfs_release(inode, file);
495 	return 0;
496 }
497 
498 
499 const struct file_operations configfs_file_operations = {
500 	.read		= configfs_read_file,
501 	.write		= configfs_write_file,
502 	.llseek		= generic_file_llseek,
503 	.open		= configfs_open_file,
504 	.release	= configfs_release,
505 };
506 
507 const struct file_operations configfs_bin_file_operations = {
508 	.read		= configfs_read_bin_file,
509 	.write		= configfs_write_bin_file,
510 	.llseek		= NULL,		/* bin file is not seekable */
511 	.open		= configfs_open_bin_file,
512 	.release	= configfs_release_bin_file,
513 };
514 
515 /**
516  *	configfs_create_file - create an attribute file for an item.
517  *	@item:	item we're creating for.
518  *	@attr:	atrribute descriptor.
519  */
520 
521 int configfs_create_file(struct config_item * item, const struct configfs_attribute * attr)
522 {
523 	struct dentry *dir = item->ci_dentry;
524 	struct configfs_dirent *parent_sd = dir->d_fsdata;
525 	umode_t mode = (attr->ca_mode & S_IALLUGO) | S_IFREG;
526 	int error = 0;
527 
528 	inode_lock_nested(d_inode(dir), I_MUTEX_NORMAL);
529 	error = configfs_make_dirent(parent_sd, NULL, (void *) attr, mode,
530 				     CONFIGFS_ITEM_ATTR, parent_sd->s_frag);
531 	inode_unlock(d_inode(dir));
532 
533 	return error;
534 }
535 
536 /**
537  *	configfs_create_bin_file - create a binary attribute file for an item.
538  *	@item:	item we're creating for.
539  *	@attr:	atrribute descriptor.
540  */
541 
542 int configfs_create_bin_file(struct config_item *item,
543 		const struct configfs_bin_attribute *bin_attr)
544 {
545 	struct dentry *dir = item->ci_dentry;
546 	struct configfs_dirent *parent_sd = dir->d_fsdata;
547 	umode_t mode = (bin_attr->cb_attr.ca_mode & S_IALLUGO) | S_IFREG;
548 	int error = 0;
549 
550 	inode_lock_nested(dir->d_inode, I_MUTEX_NORMAL);
551 	error = configfs_make_dirent(parent_sd, NULL, (void *) bin_attr, mode,
552 				     CONFIGFS_ITEM_BIN_ATTR, parent_sd->s_frag);
553 	inode_unlock(dir->d_inode);
554 
555 	return error;
556 }
557