xref: /openbmc/linux/fs/configfs/file.c (revision 23c2b932)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c - operations for regular (text) files.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  *
21  * Based on sysfs:
22  * 	sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
23  *
24  * configfs Copyright (C) 2005 Oracle.  All rights reserved.
25  */
26 
27 #include <linux/fs.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/mutex.h>
31 #include <linux/vmalloc.h>
32 #include <asm/uaccess.h>
33 
34 #include <linux/configfs.h>
35 #include "configfs_internal.h"
36 
37 /*
38  * A simple attribute can only be 4096 characters.  Why 4k?  Because the
39  * original code limited it to PAGE_SIZE.  That's a bad idea, though,
40  * because an attribute of 16k on ia64 won't work on x86.  So we limit to
41  * 4k, our minimum common page size.
42  */
43 #define SIMPLE_ATTR_SIZE 4096
44 
45 struct configfs_buffer {
46 	size_t			count;
47 	loff_t			pos;
48 	char			* page;
49 	struct configfs_item_operations	* ops;
50 	struct mutex		mutex;
51 	int			needs_read_fill;
52 	bool			read_in_progress;
53 	bool			write_in_progress;
54 	char			*bin_buffer;
55 	int			bin_buffer_size;
56 };
57 
58 
59 /**
60  *	fill_read_buffer - allocate and fill buffer from item.
61  *	@dentry:	dentry pointer.
62  *	@buffer:	data buffer for file.
63  *
64  *	Allocate @buffer->page, if it hasn't been already, then call the
65  *	config_item's show() method to fill the buffer with this attribute's
66  *	data.
67  *	This is called only once, on the file's first read.
68  */
69 static int fill_read_buffer(struct dentry * dentry, struct configfs_buffer * buffer)
70 {
71 	struct configfs_attribute * attr = to_attr(dentry);
72 	struct config_item * item = to_item(dentry->d_parent);
73 	int ret = 0;
74 	ssize_t count;
75 
76 	if (!buffer->page)
77 		buffer->page = (char *) get_zeroed_page(GFP_KERNEL);
78 	if (!buffer->page)
79 		return -ENOMEM;
80 
81 	count = attr->show(item, buffer->page);
82 
83 	buffer->needs_read_fill = 0;
84 	BUG_ON(count > (ssize_t)SIMPLE_ATTR_SIZE);
85 	if (count >= 0)
86 		buffer->count = count;
87 	else
88 		ret = count;
89 	return ret;
90 }
91 
92 /**
93  *	configfs_read_file - read an attribute.
94  *	@file:	file pointer.
95  *	@buf:	buffer to fill.
96  *	@count:	number of bytes to read.
97  *	@ppos:	starting offset in file.
98  *
99  *	Userspace wants to read an attribute file. The attribute descriptor
100  *	is in the file's ->d_fsdata. The target item is in the directory's
101  *	->d_fsdata.
102  *
103  *	We call fill_read_buffer() to allocate and fill the buffer from the
104  *	item's show() method exactly once (if the read is happening from
105  *	the beginning of the file). That should fill the entire buffer with
106  *	all the data the item has to offer for that attribute.
107  *	We then call flush_read_buffer() to copy the buffer to userspace
108  *	in the increments specified.
109  */
110 
111 static ssize_t
112 configfs_read_file(struct file *file, char __user *buf, size_t count, loff_t *ppos)
113 {
114 	struct configfs_buffer * buffer = file->private_data;
115 	ssize_t retval = 0;
116 
117 	mutex_lock(&buffer->mutex);
118 	if (buffer->needs_read_fill) {
119 		if ((retval = fill_read_buffer(file->f_path.dentry,buffer)))
120 			goto out;
121 	}
122 	pr_debug("%s: count = %zd, ppos = %lld, buf = %s\n",
123 		 __func__, count, *ppos, buffer->page);
124 	retval = simple_read_from_buffer(buf, count, ppos, buffer->page,
125 					 buffer->count);
126 out:
127 	mutex_unlock(&buffer->mutex);
128 	return retval;
129 }
130 
131 /**
132  *	configfs_read_bin_file - read a binary attribute.
133  *	@file:	file pointer.
134  *	@buf:	buffer to fill.
135  *	@count:	number of bytes to read.
136  *	@ppos:	starting offset in file.
137  *
138  *	Userspace wants to read a binary attribute file. The attribute
139  *	descriptor is in the file's ->d_fsdata. The target item is in the
140  *	directory's ->d_fsdata.
141  *
142  *	We check whether we need to refill the buffer. If so we will
143  *	call the attributes' attr->read() twice. The first time we
144  *	will pass a NULL as a buffer pointer, which the attributes' method
145  *	will use to return the size of the buffer required. If no error
146  *	occurs we will allocate the buffer using vmalloc and call
147  *	attr->read() again passing that buffer as an argument.
148  *	Then we just copy to user-space using simple_read_from_buffer.
149  */
150 
151 static ssize_t
152 configfs_read_bin_file(struct file *file, char __user *buf,
153 		       size_t count, loff_t *ppos)
154 {
155 	struct configfs_buffer *buffer = file->private_data;
156 	struct dentry *dentry = file->f_path.dentry;
157 	struct config_item *item = to_item(dentry->d_parent);
158 	struct configfs_bin_attribute *bin_attr = to_bin_attr(dentry);
159 	ssize_t retval = 0;
160 	ssize_t len = min_t(size_t, count, PAGE_SIZE);
161 
162 	mutex_lock(&buffer->mutex);
163 
164 	/* we don't support switching read/write modes */
165 	if (buffer->write_in_progress) {
166 		retval = -ETXTBSY;
167 		goto out;
168 	}
169 	buffer->read_in_progress = 1;
170 
171 	if (buffer->needs_read_fill) {
172 		/* perform first read with buf == NULL to get extent */
173 		len = bin_attr->read(item, NULL, 0);
174 		if (len <= 0) {
175 			retval = len;
176 			goto out;
177 		}
178 
179 		/* do not exceed the maximum value */
180 		if (bin_attr->cb_max_size && len > bin_attr->cb_max_size) {
181 			retval = -EFBIG;
182 			goto out;
183 		}
184 
185 		buffer->bin_buffer = vmalloc(len);
186 		if (buffer->bin_buffer == NULL) {
187 			retval = -ENOMEM;
188 			goto out;
189 		}
190 		buffer->bin_buffer_size = len;
191 
192 		/* perform second read to fill buffer */
193 		len = bin_attr->read(item, buffer->bin_buffer, len);
194 		if (len < 0) {
195 			retval = len;
196 			vfree(buffer->bin_buffer);
197 			buffer->bin_buffer_size = 0;
198 			buffer->bin_buffer = NULL;
199 			goto out;
200 		}
201 
202 		buffer->needs_read_fill = 0;
203 	}
204 
205 	retval = simple_read_from_buffer(buf, count, ppos, buffer->bin_buffer,
206 					buffer->bin_buffer_size);
207 out:
208 	mutex_unlock(&buffer->mutex);
209 	return retval;
210 }
211 
212 
213 /**
214  *	fill_write_buffer - copy buffer from userspace.
215  *	@buffer:	data buffer for file.
216  *	@buf:		data from user.
217  *	@count:		number of bytes in @userbuf.
218  *
219  *	Allocate @buffer->page if it hasn't been already, then
220  *	copy the user-supplied buffer into it.
221  */
222 
223 static int
224 fill_write_buffer(struct configfs_buffer * buffer, const char __user * buf, size_t count)
225 {
226 	int error;
227 
228 	if (!buffer->page)
229 		buffer->page = (char *)__get_free_pages(GFP_KERNEL, 0);
230 	if (!buffer->page)
231 		return -ENOMEM;
232 
233 	if (count >= SIMPLE_ATTR_SIZE)
234 		count = SIMPLE_ATTR_SIZE - 1;
235 	error = copy_from_user(buffer->page,buf,count);
236 	buffer->needs_read_fill = 1;
237 	/* if buf is assumed to contain a string, terminate it by \0,
238 	 * so e.g. sscanf() can scan the string easily */
239 	buffer->page[count] = 0;
240 	return error ? -EFAULT : count;
241 }
242 
243 
244 /**
245  *	flush_write_buffer - push buffer to config_item.
246  *	@dentry:	dentry to the attribute
247  *	@buffer:	data buffer for file.
248  *	@count:		number of bytes
249  *
250  *	Get the correct pointers for the config_item and the attribute we're
251  *	dealing with, then call the store() method for the attribute,
252  *	passing the buffer that we acquired in fill_write_buffer().
253  */
254 
255 static int
256 flush_write_buffer(struct dentry * dentry, struct configfs_buffer * buffer, size_t count)
257 {
258 	struct configfs_attribute * attr = to_attr(dentry);
259 	struct config_item * item = to_item(dentry->d_parent);
260 
261 	return attr->store(item, buffer->page, count);
262 }
263 
264 
265 /**
266  *	configfs_write_file - write an attribute.
267  *	@file:	file pointer
268  *	@buf:	data to write
269  *	@count:	number of bytes
270  *	@ppos:	starting offset
271  *
272  *	Similar to configfs_read_file(), though working in the opposite direction.
273  *	We allocate and fill the data from the user in fill_write_buffer(),
274  *	then push it to the config_item in flush_write_buffer().
275  *	There is no easy way for us to know if userspace is only doing a partial
276  *	write, so we don't support them. We expect the entire buffer to come
277  *	on the first write.
278  *	Hint: if you're writing a value, first read the file, modify only the
279  *	the value you're changing, then write entire buffer back.
280  */
281 
282 static ssize_t
283 configfs_write_file(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
284 {
285 	struct configfs_buffer * buffer = file->private_data;
286 	ssize_t len;
287 
288 	mutex_lock(&buffer->mutex);
289 	len = fill_write_buffer(buffer, buf, count);
290 	if (len > 0)
291 		len = flush_write_buffer(file->f_path.dentry, buffer, len);
292 	if (len > 0)
293 		*ppos += len;
294 	mutex_unlock(&buffer->mutex);
295 	return len;
296 }
297 
298 /**
299  *	configfs_write_bin_file - write a binary attribute.
300  *	@file:	file pointer
301  *	@buf:	data to write
302  *	@count:	number of bytes
303  *	@ppos:	starting offset
304  *
305  *	Writing to a binary attribute file is similar to a normal read.
306  *	We buffer the consecutive writes (binary attribute files do not
307  *	support lseek) in a continuously growing buffer, but we don't
308  *	commit until the close of the file.
309  */
310 
311 static ssize_t
312 configfs_write_bin_file(struct file *file, const char __user *buf,
313 			size_t count, loff_t *ppos)
314 {
315 	struct configfs_buffer *buffer = file->private_data;
316 	struct dentry *dentry = file->f_path.dentry;
317 	struct configfs_bin_attribute *bin_attr = to_bin_attr(dentry);
318 	void *tbuf = NULL;
319 	ssize_t len;
320 
321 	mutex_lock(&buffer->mutex);
322 
323 	/* we don't support switching read/write modes */
324 	if (buffer->read_in_progress) {
325 		len = -ETXTBSY;
326 		goto out;
327 	}
328 	buffer->write_in_progress = 1;
329 
330 	/* buffer grows? */
331 	if (*ppos + count > buffer->bin_buffer_size) {
332 
333 		if (bin_attr->cb_max_size &&
334 			*ppos + count > bin_attr->cb_max_size) {
335 			len = -EFBIG;
336 		}
337 
338 		tbuf = vmalloc(*ppos + count);
339 		if (tbuf == NULL) {
340 			len = -ENOMEM;
341 			goto out;
342 		}
343 
344 		/* copy old contents */
345 		if (buffer->bin_buffer) {
346 			memcpy(tbuf, buffer->bin_buffer,
347 				buffer->bin_buffer_size);
348 			vfree(buffer->bin_buffer);
349 		}
350 
351 		/* clear the new area */
352 		memset(tbuf + buffer->bin_buffer_size, 0,
353 			*ppos + count - buffer->bin_buffer_size);
354 		buffer->bin_buffer = tbuf;
355 		buffer->bin_buffer_size = *ppos + count;
356 	}
357 
358 	len = simple_write_to_buffer(buffer->bin_buffer,
359 			buffer->bin_buffer_size, ppos, buf, count);
360 out:
361 	mutex_unlock(&buffer->mutex);
362 	return len;
363 }
364 
365 static int check_perm(struct inode * inode, struct file * file, int type)
366 {
367 	struct config_item *item = configfs_get_config_item(file->f_path.dentry->d_parent);
368 	struct configfs_attribute * attr = to_attr(file->f_path.dentry);
369 	struct configfs_bin_attribute *bin_attr = NULL;
370 	struct configfs_buffer * buffer;
371 	struct configfs_item_operations * ops = NULL;
372 	int error = 0;
373 
374 	if (!item || !attr)
375 		goto Einval;
376 
377 	if (type & CONFIGFS_ITEM_BIN_ATTR)
378 		bin_attr = to_bin_attr(file->f_path.dentry);
379 
380 	/* Grab the module reference for this attribute if we have one */
381 	if (!try_module_get(attr->ca_owner)) {
382 		error = -ENODEV;
383 		goto Done;
384 	}
385 
386 	if (item->ci_type)
387 		ops = item->ci_type->ct_item_ops;
388 	else
389 		goto Eaccess;
390 
391 	/* File needs write support.
392 	 * The inode's perms must say it's ok,
393 	 * and we must have a store method.
394 	 */
395 	if (file->f_mode & FMODE_WRITE) {
396 		if (!(inode->i_mode & S_IWUGO))
397 			goto Eaccess;
398 
399 		if ((type & CONFIGFS_ITEM_ATTR) && !attr->store)
400 			goto Eaccess;
401 
402 		if ((type & CONFIGFS_ITEM_BIN_ATTR) && !bin_attr->write)
403 			goto Eaccess;
404 	}
405 
406 	/* File needs read support.
407 	 * The inode's perms must say it's ok, and we there
408 	 * must be a show method for it.
409 	 */
410 	if (file->f_mode & FMODE_READ) {
411 		if (!(inode->i_mode & S_IRUGO))
412 			goto Eaccess;
413 
414 		if ((type & CONFIGFS_ITEM_ATTR) && !attr->show)
415 			goto Eaccess;
416 
417 		if ((type & CONFIGFS_ITEM_BIN_ATTR) && !bin_attr->read)
418 			goto Eaccess;
419 	}
420 
421 	/* No error? Great, allocate a buffer for the file, and store it
422 	 * it in file->private_data for easy access.
423 	 */
424 	buffer = kzalloc(sizeof(struct configfs_buffer),GFP_KERNEL);
425 	if (!buffer) {
426 		error = -ENOMEM;
427 		goto Enomem;
428 	}
429 	mutex_init(&buffer->mutex);
430 	buffer->needs_read_fill = 1;
431 	buffer->read_in_progress = 0;
432 	buffer->write_in_progress = 0;
433 	buffer->ops = ops;
434 	file->private_data = buffer;
435 	goto Done;
436 
437  Einval:
438 	error = -EINVAL;
439 	goto Done;
440  Eaccess:
441 	error = -EACCES;
442  Enomem:
443 	module_put(attr->ca_owner);
444  Done:
445 	if (error && item)
446 		config_item_put(item);
447 	return error;
448 }
449 
450 static int configfs_release(struct inode *inode, struct file *filp)
451 {
452 	struct config_item * item = to_item(filp->f_path.dentry->d_parent);
453 	struct configfs_attribute * attr = to_attr(filp->f_path.dentry);
454 	struct module * owner = attr->ca_owner;
455 	struct configfs_buffer * buffer = filp->private_data;
456 
457 	if (item)
458 		config_item_put(item);
459 	/* After this point, attr should not be accessed. */
460 	module_put(owner);
461 
462 	if (buffer) {
463 		if (buffer->page)
464 			free_page((unsigned long)buffer->page);
465 		mutex_destroy(&buffer->mutex);
466 		kfree(buffer);
467 	}
468 	return 0;
469 }
470 
471 static int configfs_open_file(struct inode *inode, struct file *filp)
472 {
473 	return check_perm(inode, filp, CONFIGFS_ITEM_ATTR);
474 }
475 
476 static int configfs_open_bin_file(struct inode *inode, struct file *filp)
477 {
478 	return check_perm(inode, filp, CONFIGFS_ITEM_BIN_ATTR);
479 }
480 
481 static int configfs_release_bin_file(struct inode *inode, struct file *filp)
482 {
483 	struct configfs_buffer *buffer = filp->private_data;
484 	struct dentry *dentry = filp->f_path.dentry;
485 	struct config_item *item = to_item(dentry->d_parent);
486 	struct configfs_bin_attribute *bin_attr = to_bin_attr(dentry);
487 	ssize_t len = 0;
488 	int ret;
489 
490 	buffer->read_in_progress = 0;
491 
492 	if (buffer->write_in_progress) {
493 		buffer->write_in_progress = 0;
494 
495 		len = bin_attr->write(item, buffer->bin_buffer,
496 				buffer->bin_buffer_size);
497 
498 		/* vfree on NULL is safe */
499 		vfree(buffer->bin_buffer);
500 		buffer->bin_buffer = NULL;
501 		buffer->bin_buffer_size = 0;
502 		buffer->needs_read_fill = 1;
503 	}
504 
505 	ret = configfs_release(inode, filp);
506 	if (len < 0)
507 		return len;
508 	return ret;
509 }
510 
511 
512 const struct file_operations configfs_file_operations = {
513 	.read		= configfs_read_file,
514 	.write		= configfs_write_file,
515 	.llseek		= generic_file_llseek,
516 	.open		= configfs_open_file,
517 	.release	= configfs_release,
518 };
519 
520 const struct file_operations configfs_bin_file_operations = {
521 	.read		= configfs_read_bin_file,
522 	.write		= configfs_write_bin_file,
523 	.llseek		= NULL,		/* bin file is not seekable */
524 	.open		= configfs_open_bin_file,
525 	.release	= configfs_release_bin_file,
526 };
527 
528 /**
529  *	configfs_create_file - create an attribute file for an item.
530  *	@item:	item we're creating for.
531  *	@attr:	atrribute descriptor.
532  */
533 
534 int configfs_create_file(struct config_item * item, const struct configfs_attribute * attr)
535 {
536 	struct dentry *dir = item->ci_dentry;
537 	struct configfs_dirent *parent_sd = dir->d_fsdata;
538 	umode_t mode = (attr->ca_mode & S_IALLUGO) | S_IFREG;
539 	int error = 0;
540 
541 	inode_lock_nested(d_inode(dir), I_MUTEX_NORMAL);
542 	error = configfs_make_dirent(parent_sd, NULL, (void *) attr, mode,
543 				     CONFIGFS_ITEM_ATTR);
544 	inode_unlock(d_inode(dir));
545 
546 	return error;
547 }
548 
549 /**
550  *	configfs_create_bin_file - create a binary attribute file for an item.
551  *	@item:	item we're creating for.
552  *	@attr:	atrribute descriptor.
553  */
554 
555 int configfs_create_bin_file(struct config_item *item,
556 		const struct configfs_bin_attribute *bin_attr)
557 {
558 	struct dentry *dir = item->ci_dentry;
559 	struct configfs_dirent *parent_sd = dir->d_fsdata;
560 	umode_t mode = (bin_attr->cb_attr.ca_mode & S_IALLUGO) | S_IFREG;
561 	int error = 0;
562 
563 	inode_lock_nested(dir->d_inode, I_MUTEX_NORMAL);
564 	error = configfs_make_dirent(parent_sd, NULL, (void *) bin_attr, mode,
565 				     CONFIGFS_ITEM_BIN_ATTR);
566 	inode_unlock(dir->d_inode);
567 
568 	return error;
569 }
570