1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * dir.c - Operations for configfs directories. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 * 21 * Based on sysfs: 22 * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel 23 * 24 * configfs Copyright (C) 2005 Oracle. All rights reserved. 25 */ 26 27 #undef DEBUG 28 29 #include <linux/fs.h> 30 #include <linux/mount.h> 31 #include <linux/module.h> 32 #include <linux/slab.h> 33 34 #include <linux/configfs.h> 35 #include "configfs_internal.h" 36 37 DECLARE_RWSEM(configfs_rename_sem); 38 39 static void configfs_d_iput(struct dentry * dentry, 40 struct inode * inode) 41 { 42 struct configfs_dirent * sd = dentry->d_fsdata; 43 44 if (sd) { 45 BUG_ON(sd->s_dentry != dentry); 46 sd->s_dentry = NULL; 47 configfs_put(sd); 48 } 49 iput(inode); 50 } 51 52 /* 53 * We _must_ delete our dentries on last dput, as the chain-to-parent 54 * behavior is required to clear the parents of default_groups. 55 */ 56 static int configfs_d_delete(struct dentry *dentry) 57 { 58 return 1; 59 } 60 61 static struct dentry_operations configfs_dentry_ops = { 62 .d_iput = configfs_d_iput, 63 /* simple_delete_dentry() isn't exported */ 64 .d_delete = configfs_d_delete, 65 }; 66 67 /* 68 * Allocates a new configfs_dirent and links it to the parent configfs_dirent 69 */ 70 static struct configfs_dirent *configfs_new_dirent(struct configfs_dirent * parent_sd, 71 void * element) 72 { 73 struct configfs_dirent * sd; 74 75 sd = kmem_cache_zalloc(configfs_dir_cachep, GFP_KERNEL); 76 if (!sd) 77 return NULL; 78 79 atomic_set(&sd->s_count, 1); 80 INIT_LIST_HEAD(&sd->s_links); 81 INIT_LIST_HEAD(&sd->s_children); 82 list_add(&sd->s_sibling, &parent_sd->s_children); 83 sd->s_element = element; 84 85 return sd; 86 } 87 88 /* 89 * 90 * Return -EEXIST if there is already a configfs element with the same 91 * name for the same parent. 92 * 93 * called with parent inode's i_mutex held 94 */ 95 static int configfs_dirent_exists(struct configfs_dirent *parent_sd, 96 const unsigned char *new) 97 { 98 struct configfs_dirent * sd; 99 100 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) { 101 if (sd->s_element) { 102 const unsigned char *existing = configfs_get_name(sd); 103 if (strcmp(existing, new)) 104 continue; 105 else 106 return -EEXIST; 107 } 108 } 109 110 return 0; 111 } 112 113 114 int configfs_make_dirent(struct configfs_dirent * parent_sd, 115 struct dentry * dentry, void * element, 116 umode_t mode, int type) 117 { 118 struct configfs_dirent * sd; 119 120 sd = configfs_new_dirent(parent_sd, element); 121 if (!sd) 122 return -ENOMEM; 123 124 sd->s_mode = mode; 125 sd->s_type = type; 126 sd->s_dentry = dentry; 127 if (dentry) { 128 dentry->d_fsdata = configfs_get(sd); 129 dentry->d_op = &configfs_dentry_ops; 130 } 131 132 return 0; 133 } 134 135 static int init_dir(struct inode * inode) 136 { 137 inode->i_op = &configfs_dir_inode_operations; 138 inode->i_fop = &configfs_dir_operations; 139 140 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 141 inc_nlink(inode); 142 return 0; 143 } 144 145 static int init_file(struct inode * inode) 146 { 147 inode->i_size = PAGE_SIZE; 148 inode->i_fop = &configfs_file_operations; 149 return 0; 150 } 151 152 static int init_symlink(struct inode * inode) 153 { 154 inode->i_op = &configfs_symlink_inode_operations; 155 return 0; 156 } 157 158 static int create_dir(struct config_item * k, struct dentry * p, 159 struct dentry * d) 160 { 161 int error; 162 umode_t mode = S_IFDIR| S_IRWXU | S_IRUGO | S_IXUGO; 163 164 error = configfs_dirent_exists(p->d_fsdata, d->d_name.name); 165 if (!error) 166 error = configfs_make_dirent(p->d_fsdata, d, k, mode, 167 CONFIGFS_DIR); 168 if (!error) { 169 error = configfs_create(d, mode, init_dir); 170 if (!error) { 171 inc_nlink(p->d_inode); 172 (d)->d_op = &configfs_dentry_ops; 173 } else { 174 struct configfs_dirent *sd = d->d_fsdata; 175 if (sd) { 176 list_del_init(&sd->s_sibling); 177 configfs_put(sd); 178 } 179 } 180 } 181 return error; 182 } 183 184 185 /** 186 * configfs_create_dir - create a directory for an config_item. 187 * @item: config_itemwe're creating directory for. 188 * @dentry: config_item's dentry. 189 */ 190 191 static int configfs_create_dir(struct config_item * item, struct dentry *dentry) 192 { 193 struct dentry * parent; 194 int error = 0; 195 196 BUG_ON(!item); 197 198 if (item->ci_parent) 199 parent = item->ci_parent->ci_dentry; 200 else if (configfs_mount && configfs_mount->mnt_sb) 201 parent = configfs_mount->mnt_sb->s_root; 202 else 203 return -EFAULT; 204 205 error = create_dir(item,parent,dentry); 206 if (!error) 207 item->ci_dentry = dentry; 208 return error; 209 } 210 211 int configfs_create_link(struct configfs_symlink *sl, 212 struct dentry *parent, 213 struct dentry *dentry) 214 { 215 int err = 0; 216 umode_t mode = S_IFLNK | S_IRWXUGO; 217 218 err = configfs_make_dirent(parent->d_fsdata, dentry, sl, mode, 219 CONFIGFS_ITEM_LINK); 220 if (!err) { 221 err = configfs_create(dentry, mode, init_symlink); 222 if (!err) 223 dentry->d_op = &configfs_dentry_ops; 224 else { 225 struct configfs_dirent *sd = dentry->d_fsdata; 226 if (sd) { 227 list_del_init(&sd->s_sibling); 228 configfs_put(sd); 229 } 230 } 231 } 232 return err; 233 } 234 235 static void remove_dir(struct dentry * d) 236 { 237 struct dentry * parent = dget(d->d_parent); 238 struct configfs_dirent * sd; 239 240 sd = d->d_fsdata; 241 list_del_init(&sd->s_sibling); 242 configfs_put(sd); 243 if (d->d_inode) 244 simple_rmdir(parent->d_inode,d); 245 246 pr_debug(" o %s removing done (%d)\n",d->d_name.name, 247 atomic_read(&d->d_count)); 248 249 dput(parent); 250 } 251 252 /** 253 * configfs_remove_dir - remove an config_item's directory. 254 * @item: config_item we're removing. 255 * 256 * The only thing special about this is that we remove any files in 257 * the directory before we remove the directory, and we've inlined 258 * what used to be configfs_rmdir() below, instead of calling separately. 259 */ 260 261 static void configfs_remove_dir(struct config_item * item) 262 { 263 struct dentry * dentry = dget(item->ci_dentry); 264 265 if (!dentry) 266 return; 267 268 remove_dir(dentry); 269 /** 270 * Drop reference from dget() on entrance. 271 */ 272 dput(dentry); 273 } 274 275 276 /* attaches attribute's configfs_dirent to the dentry corresponding to the 277 * attribute file 278 */ 279 static int configfs_attach_attr(struct configfs_dirent * sd, struct dentry * dentry) 280 { 281 struct configfs_attribute * attr = sd->s_element; 282 int error; 283 284 dentry->d_fsdata = configfs_get(sd); 285 sd->s_dentry = dentry; 286 error = configfs_create(dentry, (attr->ca_mode & S_IALLUGO) | S_IFREG, init_file); 287 if (error) { 288 configfs_put(sd); 289 return error; 290 } 291 292 dentry->d_op = &configfs_dentry_ops; 293 d_rehash(dentry); 294 295 return 0; 296 } 297 298 static struct dentry * configfs_lookup(struct inode *dir, 299 struct dentry *dentry, 300 struct nameidata *nd) 301 { 302 struct configfs_dirent * parent_sd = dentry->d_parent->d_fsdata; 303 struct configfs_dirent * sd; 304 int found = 0; 305 int err = 0; 306 307 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) { 308 if (sd->s_type & CONFIGFS_NOT_PINNED) { 309 const unsigned char * name = configfs_get_name(sd); 310 311 if (strcmp(name, dentry->d_name.name)) 312 continue; 313 314 found = 1; 315 err = configfs_attach_attr(sd, dentry); 316 break; 317 } 318 } 319 320 if (!found) { 321 /* 322 * If it doesn't exist and it isn't a NOT_PINNED item, 323 * it must be negative. 324 */ 325 return simple_lookup(dir, dentry, nd); 326 } 327 328 return ERR_PTR(err); 329 } 330 331 /* 332 * Only subdirectories count here. Files (CONFIGFS_NOT_PINNED) are 333 * attributes and are removed by rmdir(). We recurse, taking i_mutex 334 * on all children that are candidates for default detach. If the 335 * result is clean, then configfs_detach_group() will handle dropping 336 * i_mutex. If there is an error, the caller will clean up the i_mutex 337 * holders via configfs_detach_rollback(). 338 */ 339 static int configfs_detach_prep(struct dentry *dentry) 340 { 341 struct configfs_dirent *parent_sd = dentry->d_fsdata; 342 struct configfs_dirent *sd; 343 int ret; 344 345 ret = -EBUSY; 346 if (!list_empty(&parent_sd->s_links)) 347 goto out; 348 349 ret = 0; 350 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) { 351 if (sd->s_type & CONFIGFS_NOT_PINNED) 352 continue; 353 if (sd->s_type & CONFIGFS_USET_DEFAULT) { 354 mutex_lock(&sd->s_dentry->d_inode->i_mutex); 355 /* Mark that we've taken i_mutex */ 356 sd->s_type |= CONFIGFS_USET_DROPPING; 357 358 /* 359 * Yup, recursive. If there's a problem, blame 360 * deep nesting of default_groups 361 */ 362 ret = configfs_detach_prep(sd->s_dentry); 363 if (!ret) 364 continue; 365 } else 366 ret = -ENOTEMPTY; 367 368 break; 369 } 370 371 out: 372 return ret; 373 } 374 375 /* 376 * Walk the tree, dropping i_mutex wherever CONFIGFS_USET_DROPPING is 377 * set. 378 */ 379 static void configfs_detach_rollback(struct dentry *dentry) 380 { 381 struct configfs_dirent *parent_sd = dentry->d_fsdata; 382 struct configfs_dirent *sd; 383 384 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) { 385 if (sd->s_type & CONFIGFS_USET_DEFAULT) { 386 configfs_detach_rollback(sd->s_dentry); 387 388 if (sd->s_type & CONFIGFS_USET_DROPPING) { 389 sd->s_type &= ~CONFIGFS_USET_DROPPING; 390 mutex_unlock(&sd->s_dentry->d_inode->i_mutex); 391 } 392 } 393 } 394 } 395 396 static void detach_attrs(struct config_item * item) 397 { 398 struct dentry * dentry = dget(item->ci_dentry); 399 struct configfs_dirent * parent_sd; 400 struct configfs_dirent * sd, * tmp; 401 402 if (!dentry) 403 return; 404 405 pr_debug("configfs %s: dropping attrs for dir\n", 406 dentry->d_name.name); 407 408 parent_sd = dentry->d_fsdata; 409 list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) { 410 if (!sd->s_element || !(sd->s_type & CONFIGFS_NOT_PINNED)) 411 continue; 412 list_del_init(&sd->s_sibling); 413 configfs_drop_dentry(sd, dentry); 414 configfs_put(sd); 415 } 416 417 /** 418 * Drop reference from dget() on entrance. 419 */ 420 dput(dentry); 421 } 422 423 static int populate_attrs(struct config_item *item) 424 { 425 struct config_item_type *t = item->ci_type; 426 struct configfs_attribute *attr; 427 int error = 0; 428 int i; 429 430 if (!t) 431 return -EINVAL; 432 if (t->ct_attrs) { 433 for (i = 0; (attr = t->ct_attrs[i]) != NULL; i++) { 434 if ((error = configfs_create_file(item, attr))) 435 break; 436 } 437 } 438 439 if (error) 440 detach_attrs(item); 441 442 return error; 443 } 444 445 static int configfs_attach_group(struct config_item *parent_item, 446 struct config_item *item, 447 struct dentry *dentry); 448 static void configfs_detach_group(struct config_item *item); 449 450 static void detach_groups(struct config_group *group) 451 { 452 struct dentry * dentry = dget(group->cg_item.ci_dentry); 453 struct dentry *child; 454 struct configfs_dirent *parent_sd; 455 struct configfs_dirent *sd, *tmp; 456 457 if (!dentry) 458 return; 459 460 parent_sd = dentry->d_fsdata; 461 list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) { 462 if (!sd->s_element || 463 !(sd->s_type & CONFIGFS_USET_DEFAULT)) 464 continue; 465 466 child = sd->s_dentry; 467 468 configfs_detach_group(sd->s_element); 469 child->d_inode->i_flags |= S_DEAD; 470 471 /* 472 * From rmdir/unregister, a configfs_detach_prep() pass 473 * has taken our i_mutex for us. Drop it. 474 * From mkdir/register cleanup, there is no sem held. 475 */ 476 if (sd->s_type & CONFIGFS_USET_DROPPING) 477 mutex_unlock(&child->d_inode->i_mutex); 478 479 d_delete(child); 480 dput(child); 481 } 482 483 /** 484 * Drop reference from dget() on entrance. 485 */ 486 dput(dentry); 487 } 488 489 /* 490 * This fakes mkdir(2) on a default_groups[] entry. It 491 * creates a dentry, attachs it, and then does fixup 492 * on the sd->s_type. 493 * 494 * We could, perhaps, tweak our parent's ->mkdir for a minute and 495 * try using vfs_mkdir. Just a thought. 496 */ 497 static int create_default_group(struct config_group *parent_group, 498 struct config_group *group) 499 { 500 int ret; 501 struct qstr name; 502 struct configfs_dirent *sd; 503 /* We trust the caller holds a reference to parent */ 504 struct dentry *child, *parent = parent_group->cg_item.ci_dentry; 505 506 if (!group->cg_item.ci_name) 507 group->cg_item.ci_name = group->cg_item.ci_namebuf; 508 name.name = group->cg_item.ci_name; 509 name.len = strlen(name.name); 510 name.hash = full_name_hash(name.name, name.len); 511 512 ret = -ENOMEM; 513 child = d_alloc(parent, &name); 514 if (child) { 515 d_add(child, NULL); 516 517 ret = configfs_attach_group(&parent_group->cg_item, 518 &group->cg_item, child); 519 if (!ret) { 520 sd = child->d_fsdata; 521 sd->s_type |= CONFIGFS_USET_DEFAULT; 522 } else { 523 d_delete(child); 524 dput(child); 525 } 526 } 527 528 return ret; 529 } 530 531 static int populate_groups(struct config_group *group) 532 { 533 struct config_group *new_group; 534 struct dentry *dentry = group->cg_item.ci_dentry; 535 int ret = 0; 536 int i; 537 538 if (group->default_groups) { 539 /* 540 * FYI, we're faking mkdir here 541 * I'm not sure we need this semaphore, as we're called 542 * from our parent's mkdir. That holds our parent's 543 * i_mutex, so afaik lookup cannot continue through our 544 * parent to find us, let alone mess with our tree. 545 * That said, taking our i_mutex is closer to mkdir 546 * emulation, and shouldn't hurt. 547 */ 548 mutex_lock(&dentry->d_inode->i_mutex); 549 550 for (i = 0; group->default_groups[i]; i++) { 551 new_group = group->default_groups[i]; 552 553 ret = create_default_group(group, new_group); 554 if (ret) 555 break; 556 } 557 558 mutex_unlock(&dentry->d_inode->i_mutex); 559 } 560 561 if (ret) 562 detach_groups(group); 563 564 return ret; 565 } 566 567 /* 568 * All of link_obj/unlink_obj/link_group/unlink_group require that 569 * subsys->su_mutex is held. 570 */ 571 572 static void unlink_obj(struct config_item *item) 573 { 574 struct config_group *group; 575 576 group = item->ci_group; 577 if (group) { 578 list_del_init(&item->ci_entry); 579 580 item->ci_group = NULL; 581 item->ci_parent = NULL; 582 583 /* Drop the reference for ci_entry */ 584 config_item_put(item); 585 586 /* Drop the reference for ci_parent */ 587 config_group_put(group); 588 } 589 } 590 591 static void link_obj(struct config_item *parent_item, struct config_item *item) 592 { 593 /* 594 * Parent seems redundant with group, but it makes certain 595 * traversals much nicer. 596 */ 597 item->ci_parent = parent_item; 598 599 /* 600 * We hold a reference on the parent for the child's ci_parent 601 * link. 602 */ 603 item->ci_group = config_group_get(to_config_group(parent_item)); 604 list_add_tail(&item->ci_entry, &item->ci_group->cg_children); 605 606 /* 607 * We hold a reference on the child for ci_entry on the parent's 608 * cg_children 609 */ 610 config_item_get(item); 611 } 612 613 static void unlink_group(struct config_group *group) 614 { 615 int i; 616 struct config_group *new_group; 617 618 if (group->default_groups) { 619 for (i = 0; group->default_groups[i]; i++) { 620 new_group = group->default_groups[i]; 621 unlink_group(new_group); 622 } 623 } 624 625 group->cg_subsys = NULL; 626 unlink_obj(&group->cg_item); 627 } 628 629 static void link_group(struct config_group *parent_group, struct config_group *group) 630 { 631 int i; 632 struct config_group *new_group; 633 struct configfs_subsystem *subsys = NULL; /* gcc is a turd */ 634 635 link_obj(&parent_group->cg_item, &group->cg_item); 636 637 if (parent_group->cg_subsys) 638 subsys = parent_group->cg_subsys; 639 else if (configfs_is_root(&parent_group->cg_item)) 640 subsys = to_configfs_subsystem(group); 641 else 642 BUG(); 643 group->cg_subsys = subsys; 644 645 if (group->default_groups) { 646 for (i = 0; group->default_groups[i]; i++) { 647 new_group = group->default_groups[i]; 648 link_group(group, new_group); 649 } 650 } 651 } 652 653 /* 654 * The goal is that configfs_attach_item() (and 655 * configfs_attach_group()) can be called from either the VFS or this 656 * module. That is, they assume that the items have been created, 657 * the dentry allocated, and the dcache is all ready to go. 658 * 659 * If they fail, they must clean up after themselves as if they 660 * had never been called. The caller (VFS or local function) will 661 * handle cleaning up the dcache bits. 662 * 663 * configfs_detach_group() and configfs_detach_item() behave similarly on 664 * the way out. They assume that the proper semaphores are held, they 665 * clean up the configfs items, and they expect their callers will 666 * handle the dcache bits. 667 */ 668 static int configfs_attach_item(struct config_item *parent_item, 669 struct config_item *item, 670 struct dentry *dentry) 671 { 672 int ret; 673 674 ret = configfs_create_dir(item, dentry); 675 if (!ret) { 676 ret = populate_attrs(item); 677 if (ret) { 678 configfs_remove_dir(item); 679 d_delete(dentry); 680 } 681 } 682 683 return ret; 684 } 685 686 static void configfs_detach_item(struct config_item *item) 687 { 688 detach_attrs(item); 689 configfs_remove_dir(item); 690 } 691 692 static int configfs_attach_group(struct config_item *parent_item, 693 struct config_item *item, 694 struct dentry *dentry) 695 { 696 int ret; 697 struct configfs_dirent *sd; 698 699 ret = configfs_attach_item(parent_item, item, dentry); 700 if (!ret) { 701 sd = dentry->d_fsdata; 702 sd->s_type |= CONFIGFS_USET_DIR; 703 704 ret = populate_groups(to_config_group(item)); 705 if (ret) { 706 configfs_detach_item(item); 707 d_delete(dentry); 708 } 709 } 710 711 return ret; 712 } 713 714 static void configfs_detach_group(struct config_item *item) 715 { 716 detach_groups(to_config_group(item)); 717 configfs_detach_item(item); 718 } 719 720 /* 721 * After the item has been detached from the filesystem view, we are 722 * ready to tear it out of the hierarchy. Notify the client before 723 * we do that so they can perform any cleanup that requires 724 * navigating the hierarchy. A client does not need to provide this 725 * callback. The subsystem semaphore MUST be held by the caller, and 726 * references must be valid for both items. It also assumes the 727 * caller has validated ci_type. 728 */ 729 static void client_disconnect_notify(struct config_item *parent_item, 730 struct config_item *item) 731 { 732 struct config_item_type *type; 733 734 type = parent_item->ci_type; 735 BUG_ON(!type); 736 737 if (type->ct_group_ops && type->ct_group_ops->disconnect_notify) 738 type->ct_group_ops->disconnect_notify(to_config_group(parent_item), 739 item); 740 } 741 742 /* 743 * Drop the initial reference from make_item()/make_group() 744 * This function assumes that reference is held on item 745 * and that item holds a valid reference to the parent. Also, it 746 * assumes the caller has validated ci_type. 747 */ 748 static void client_drop_item(struct config_item *parent_item, 749 struct config_item *item) 750 { 751 struct config_item_type *type; 752 753 type = parent_item->ci_type; 754 BUG_ON(!type); 755 756 /* 757 * If ->drop_item() exists, it is responsible for the 758 * config_item_put(). 759 */ 760 if (type->ct_group_ops && type->ct_group_ops->drop_item) 761 type->ct_group_ops->drop_item(to_config_group(parent_item), 762 item); 763 else 764 config_item_put(item); 765 } 766 767 #ifdef DEBUG 768 static void configfs_dump_one(struct configfs_dirent *sd, int level) 769 { 770 printk(KERN_INFO "%*s\"%s\":\n", level, " ", configfs_get_name(sd)); 771 772 #define type_print(_type) if (sd->s_type & _type) printk(KERN_INFO "%*s %s\n", level, " ", #_type); 773 type_print(CONFIGFS_ROOT); 774 type_print(CONFIGFS_DIR); 775 type_print(CONFIGFS_ITEM_ATTR); 776 type_print(CONFIGFS_ITEM_LINK); 777 type_print(CONFIGFS_USET_DIR); 778 type_print(CONFIGFS_USET_DEFAULT); 779 type_print(CONFIGFS_USET_DROPPING); 780 #undef type_print 781 } 782 783 static int configfs_dump(struct configfs_dirent *sd, int level) 784 { 785 struct configfs_dirent *child_sd; 786 int ret = 0; 787 788 configfs_dump_one(sd, level); 789 790 if (!(sd->s_type & (CONFIGFS_DIR|CONFIGFS_ROOT))) 791 return 0; 792 793 list_for_each_entry(child_sd, &sd->s_children, s_sibling) { 794 ret = configfs_dump(child_sd, level + 2); 795 if (ret) 796 break; 797 } 798 799 return ret; 800 } 801 #endif 802 803 804 /* 805 * configfs_depend_item() and configfs_undepend_item() 806 * 807 * WARNING: Do not call these from a configfs callback! 808 * 809 * This describes these functions and their helpers. 810 * 811 * Allow another kernel system to depend on a config_item. If this 812 * happens, the item cannot go away until the dependant can live without 813 * it. The idea is to give client modules as simple an interface as 814 * possible. When a system asks them to depend on an item, they just 815 * call configfs_depend_item(). If the item is live and the client 816 * driver is in good shape, we'll happily do the work for them. 817 * 818 * Why is the locking complex? Because configfs uses the VFS to handle 819 * all locking, but this function is called outside the normal 820 * VFS->configfs path. So it must take VFS locks to prevent the 821 * VFS->configfs stuff (configfs_mkdir(), configfs_rmdir(), etc). This is 822 * why you can't call these functions underneath configfs callbacks. 823 * 824 * Note, btw, that this can be called at *any* time, even when a configfs 825 * subsystem isn't registered, or when configfs is loading or unloading. 826 * Just like configfs_register_subsystem(). So we take the same 827 * precautions. We pin the filesystem. We lock each i_mutex _in_order_ 828 * on our way down the tree. If we can find the target item in the 829 * configfs tree, it must be part of the subsystem tree as well, so we 830 * do not need the subsystem semaphore. Holding the i_mutex chain locks 831 * out mkdir() and rmdir(), who might be racing us. 832 */ 833 834 /* 835 * configfs_depend_prep() 836 * 837 * Only subdirectories count here. Files (CONFIGFS_NOT_PINNED) are 838 * attributes. This is similar but not the same to configfs_detach_prep(). 839 * Note that configfs_detach_prep() expects the parent to be locked when it 840 * is called, but we lock the parent *inside* configfs_depend_prep(). We 841 * do that so we can unlock it if we find nothing. 842 * 843 * Here we do a depth-first search of the dentry hierarchy looking for 844 * our object. We take i_mutex on each step of the way down. IT IS 845 * ESSENTIAL THAT i_mutex LOCKING IS ORDERED. If we come back up a branch, 846 * we'll drop the i_mutex. 847 * 848 * If the target is not found, -ENOENT is bubbled up and we have released 849 * all locks. If the target was found, the locks will be cleared by 850 * configfs_depend_rollback(). 851 * 852 * This adds a requirement that all config_items be unique! 853 * 854 * This is recursive because the locking traversal is tricky. There isn't 855 * much on the stack, though, so folks that need this function - be careful 856 * about your stack! Patches will be accepted to make it iterative. 857 */ 858 static int configfs_depend_prep(struct dentry *origin, 859 struct config_item *target) 860 { 861 struct configfs_dirent *child_sd, *sd = origin->d_fsdata; 862 int ret = 0; 863 864 BUG_ON(!origin || !sd); 865 866 /* Lock this guy on the way down */ 867 mutex_lock(&sd->s_dentry->d_inode->i_mutex); 868 if (sd->s_element == target) /* Boo-yah */ 869 goto out; 870 871 list_for_each_entry(child_sd, &sd->s_children, s_sibling) { 872 if (child_sd->s_type & CONFIGFS_DIR) { 873 ret = configfs_depend_prep(child_sd->s_dentry, 874 target); 875 if (!ret) 876 goto out; /* Child path boo-yah */ 877 } 878 } 879 880 /* We looped all our children and didn't find target */ 881 mutex_unlock(&sd->s_dentry->d_inode->i_mutex); 882 ret = -ENOENT; 883 884 out: 885 return ret; 886 } 887 888 /* 889 * This is ONLY called if configfs_depend_prep() did its job. So we can 890 * trust the entire path from item back up to origin. 891 * 892 * We walk backwards from item, unlocking each i_mutex. We finish by 893 * unlocking origin. 894 */ 895 static void configfs_depend_rollback(struct dentry *origin, 896 struct config_item *item) 897 { 898 struct dentry *dentry = item->ci_dentry; 899 900 while (dentry != origin) { 901 mutex_unlock(&dentry->d_inode->i_mutex); 902 dentry = dentry->d_parent; 903 } 904 905 mutex_unlock(&origin->d_inode->i_mutex); 906 } 907 908 int configfs_depend_item(struct configfs_subsystem *subsys, 909 struct config_item *target) 910 { 911 int ret; 912 struct configfs_dirent *p, *root_sd, *subsys_sd = NULL; 913 struct config_item *s_item = &subsys->su_group.cg_item; 914 915 /* 916 * Pin the configfs filesystem. This means we can safely access 917 * the root of the configfs filesystem. 918 */ 919 ret = configfs_pin_fs(); 920 if (ret) 921 return ret; 922 923 /* 924 * Next, lock the root directory. We're going to check that the 925 * subsystem is really registered, and so we need to lock out 926 * configfs_[un]register_subsystem(). 927 */ 928 mutex_lock(&configfs_sb->s_root->d_inode->i_mutex); 929 930 root_sd = configfs_sb->s_root->d_fsdata; 931 932 list_for_each_entry(p, &root_sd->s_children, s_sibling) { 933 if (p->s_type & CONFIGFS_DIR) { 934 if (p->s_element == s_item) { 935 subsys_sd = p; 936 break; 937 } 938 } 939 } 940 941 if (!subsys_sd) { 942 ret = -ENOENT; 943 goto out_unlock_fs; 944 } 945 946 /* Ok, now we can trust subsys/s_item */ 947 948 /* Scan the tree, locking i_mutex recursively, return 0 if found */ 949 ret = configfs_depend_prep(subsys_sd->s_dentry, target); 950 if (ret) 951 goto out_unlock_fs; 952 953 /* We hold all i_mutexes from the subsystem down to the target */ 954 p = target->ci_dentry->d_fsdata; 955 p->s_dependent_count += 1; 956 957 configfs_depend_rollback(subsys_sd->s_dentry, target); 958 959 out_unlock_fs: 960 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex); 961 962 /* 963 * If we succeeded, the fs is pinned via other methods. If not, 964 * we're done with it anyway. So release_fs() is always right. 965 */ 966 configfs_release_fs(); 967 968 return ret; 969 } 970 EXPORT_SYMBOL(configfs_depend_item); 971 972 /* 973 * Release the dependent linkage. This is much simpler than 974 * configfs_depend_item() because we know that that the client driver is 975 * pinned, thus the subsystem is pinned, and therefore configfs is pinned. 976 */ 977 void configfs_undepend_item(struct configfs_subsystem *subsys, 978 struct config_item *target) 979 { 980 struct configfs_dirent *sd; 981 982 /* 983 * Since we can trust everything is pinned, we just need i_mutex 984 * on the item. 985 */ 986 mutex_lock(&target->ci_dentry->d_inode->i_mutex); 987 988 sd = target->ci_dentry->d_fsdata; 989 BUG_ON(sd->s_dependent_count < 1); 990 991 sd->s_dependent_count -= 1; 992 993 /* 994 * After this unlock, we cannot trust the item to stay alive! 995 * DO NOT REFERENCE item after this unlock. 996 */ 997 mutex_unlock(&target->ci_dentry->d_inode->i_mutex); 998 } 999 EXPORT_SYMBOL(configfs_undepend_item); 1000 1001 static int configfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1002 { 1003 int ret, module_got = 0; 1004 struct config_group *group; 1005 struct config_item *item; 1006 struct config_item *parent_item; 1007 struct configfs_subsystem *subsys; 1008 struct configfs_dirent *sd; 1009 struct config_item_type *type; 1010 struct module *owner = NULL; 1011 char *name; 1012 1013 if (dentry->d_parent == configfs_sb->s_root) { 1014 ret = -EPERM; 1015 goto out; 1016 } 1017 1018 sd = dentry->d_parent->d_fsdata; 1019 if (!(sd->s_type & CONFIGFS_USET_DIR)) { 1020 ret = -EPERM; 1021 goto out; 1022 } 1023 1024 /* Get a working ref for the duration of this function */ 1025 parent_item = configfs_get_config_item(dentry->d_parent); 1026 type = parent_item->ci_type; 1027 subsys = to_config_group(parent_item)->cg_subsys; 1028 BUG_ON(!subsys); 1029 1030 if (!type || !type->ct_group_ops || 1031 (!type->ct_group_ops->make_group && 1032 !type->ct_group_ops->make_item)) { 1033 ret = -EPERM; /* Lack-of-mkdir returns -EPERM */ 1034 goto out_put; 1035 } 1036 1037 name = kmalloc(dentry->d_name.len + 1, GFP_KERNEL); 1038 if (!name) { 1039 ret = -ENOMEM; 1040 goto out_put; 1041 } 1042 1043 snprintf(name, dentry->d_name.len + 1, "%s", dentry->d_name.name); 1044 1045 mutex_lock(&subsys->su_mutex); 1046 group = NULL; 1047 item = NULL; 1048 if (type->ct_group_ops->make_group) { 1049 group = type->ct_group_ops->make_group(to_config_group(parent_item), name); 1050 if (group) { 1051 link_group(to_config_group(parent_item), group); 1052 item = &group->cg_item; 1053 } 1054 } else { 1055 item = type->ct_group_ops->make_item(to_config_group(parent_item), name); 1056 if (item) 1057 link_obj(parent_item, item); 1058 } 1059 mutex_unlock(&subsys->su_mutex); 1060 1061 kfree(name); 1062 if (!item) { 1063 /* 1064 * If item == NULL, then link_obj() was never called. 1065 * There are no extra references to clean up. 1066 */ 1067 ret = -ENOMEM; 1068 goto out_put; 1069 } 1070 1071 /* 1072 * link_obj() has been called (via link_group() for groups). 1073 * From here on out, errors must clean that up. 1074 */ 1075 1076 type = item->ci_type; 1077 if (!type) { 1078 ret = -EINVAL; 1079 goto out_unlink; 1080 } 1081 1082 owner = type->ct_owner; 1083 if (!try_module_get(owner)) { 1084 ret = -EINVAL; 1085 goto out_unlink; 1086 } 1087 1088 /* 1089 * I hate doing it this way, but if there is 1090 * an error, module_put() probably should 1091 * happen after any cleanup. 1092 */ 1093 module_got = 1; 1094 1095 if (group) 1096 ret = configfs_attach_group(parent_item, item, dentry); 1097 else 1098 ret = configfs_attach_item(parent_item, item, dentry); 1099 1100 out_unlink: 1101 if (ret) { 1102 /* Tear down everything we built up */ 1103 mutex_lock(&subsys->su_mutex); 1104 1105 client_disconnect_notify(parent_item, item); 1106 if (group) 1107 unlink_group(group); 1108 else 1109 unlink_obj(item); 1110 client_drop_item(parent_item, item); 1111 1112 mutex_unlock(&subsys->su_mutex); 1113 1114 if (module_got) 1115 module_put(owner); 1116 } 1117 1118 out_put: 1119 /* 1120 * link_obj()/link_group() took a reference from child->parent, 1121 * so the parent is safely pinned. We can drop our working 1122 * reference. 1123 */ 1124 config_item_put(parent_item); 1125 1126 out: 1127 return ret; 1128 } 1129 1130 static int configfs_rmdir(struct inode *dir, struct dentry *dentry) 1131 { 1132 struct config_item *parent_item; 1133 struct config_item *item; 1134 struct configfs_subsystem *subsys; 1135 struct configfs_dirent *sd; 1136 struct module *owner = NULL; 1137 int ret; 1138 1139 if (dentry->d_parent == configfs_sb->s_root) 1140 return -EPERM; 1141 1142 sd = dentry->d_fsdata; 1143 if (sd->s_type & CONFIGFS_USET_DEFAULT) 1144 return -EPERM; 1145 1146 /* 1147 * Here's where we check for dependents. We're protected by 1148 * i_mutex. 1149 */ 1150 if (sd->s_dependent_count) 1151 return -EBUSY; 1152 1153 /* Get a working ref until we have the child */ 1154 parent_item = configfs_get_config_item(dentry->d_parent); 1155 subsys = to_config_group(parent_item)->cg_subsys; 1156 BUG_ON(!subsys); 1157 1158 if (!parent_item->ci_type) { 1159 config_item_put(parent_item); 1160 return -EINVAL; 1161 } 1162 1163 ret = configfs_detach_prep(dentry); 1164 if (ret) { 1165 configfs_detach_rollback(dentry); 1166 config_item_put(parent_item); 1167 return ret; 1168 } 1169 1170 /* Get a working ref for the duration of this function */ 1171 item = configfs_get_config_item(dentry); 1172 1173 /* Drop reference from above, item already holds one. */ 1174 config_item_put(parent_item); 1175 1176 if (item->ci_type) 1177 owner = item->ci_type->ct_owner; 1178 1179 if (sd->s_type & CONFIGFS_USET_DIR) { 1180 configfs_detach_group(item); 1181 1182 mutex_lock(&subsys->su_mutex); 1183 client_disconnect_notify(parent_item, item); 1184 unlink_group(to_config_group(item)); 1185 } else { 1186 configfs_detach_item(item); 1187 1188 mutex_lock(&subsys->su_mutex); 1189 client_disconnect_notify(parent_item, item); 1190 unlink_obj(item); 1191 } 1192 1193 client_drop_item(parent_item, item); 1194 mutex_unlock(&subsys->su_mutex); 1195 1196 /* Drop our reference from above */ 1197 config_item_put(item); 1198 1199 module_put(owner); 1200 1201 return 0; 1202 } 1203 1204 const struct inode_operations configfs_dir_inode_operations = { 1205 .mkdir = configfs_mkdir, 1206 .rmdir = configfs_rmdir, 1207 .symlink = configfs_symlink, 1208 .unlink = configfs_unlink, 1209 .lookup = configfs_lookup, 1210 .setattr = configfs_setattr, 1211 }; 1212 1213 #if 0 1214 int configfs_rename_dir(struct config_item * item, const char *new_name) 1215 { 1216 int error = 0; 1217 struct dentry * new_dentry, * parent; 1218 1219 if (!strcmp(config_item_name(item), new_name)) 1220 return -EINVAL; 1221 1222 if (!item->parent) 1223 return -EINVAL; 1224 1225 down_write(&configfs_rename_sem); 1226 parent = item->parent->dentry; 1227 1228 mutex_lock(&parent->d_inode->i_mutex); 1229 1230 new_dentry = lookup_one_len(new_name, parent, strlen(new_name)); 1231 if (!IS_ERR(new_dentry)) { 1232 if (!new_dentry->d_inode) { 1233 error = config_item_set_name(item, "%s", new_name); 1234 if (!error) { 1235 d_add(new_dentry, NULL); 1236 d_move(item->dentry, new_dentry); 1237 } 1238 else 1239 d_delete(new_dentry); 1240 } else 1241 error = -EEXIST; 1242 dput(new_dentry); 1243 } 1244 mutex_unlock(&parent->d_inode->i_mutex); 1245 up_write(&configfs_rename_sem); 1246 1247 return error; 1248 } 1249 #endif 1250 1251 static int configfs_dir_open(struct inode *inode, struct file *file) 1252 { 1253 struct dentry * dentry = file->f_path.dentry; 1254 struct configfs_dirent * parent_sd = dentry->d_fsdata; 1255 1256 mutex_lock(&dentry->d_inode->i_mutex); 1257 file->private_data = configfs_new_dirent(parent_sd, NULL); 1258 mutex_unlock(&dentry->d_inode->i_mutex); 1259 1260 return file->private_data ? 0 : -ENOMEM; 1261 1262 } 1263 1264 static int configfs_dir_close(struct inode *inode, struct file *file) 1265 { 1266 struct dentry * dentry = file->f_path.dentry; 1267 struct configfs_dirent * cursor = file->private_data; 1268 1269 mutex_lock(&dentry->d_inode->i_mutex); 1270 list_del_init(&cursor->s_sibling); 1271 mutex_unlock(&dentry->d_inode->i_mutex); 1272 1273 release_configfs_dirent(cursor); 1274 1275 return 0; 1276 } 1277 1278 /* Relationship between s_mode and the DT_xxx types */ 1279 static inline unsigned char dt_type(struct configfs_dirent *sd) 1280 { 1281 return (sd->s_mode >> 12) & 15; 1282 } 1283 1284 static int configfs_readdir(struct file * filp, void * dirent, filldir_t filldir) 1285 { 1286 struct dentry *dentry = filp->f_path.dentry; 1287 struct configfs_dirent * parent_sd = dentry->d_fsdata; 1288 struct configfs_dirent *cursor = filp->private_data; 1289 struct list_head *p, *q = &cursor->s_sibling; 1290 ino_t ino; 1291 int i = filp->f_pos; 1292 1293 switch (i) { 1294 case 0: 1295 ino = dentry->d_inode->i_ino; 1296 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 1297 break; 1298 filp->f_pos++; 1299 i++; 1300 /* fallthrough */ 1301 case 1: 1302 ino = parent_ino(dentry); 1303 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 1304 break; 1305 filp->f_pos++; 1306 i++; 1307 /* fallthrough */ 1308 default: 1309 if (filp->f_pos == 2) { 1310 list_move(q, &parent_sd->s_children); 1311 } 1312 for (p=q->next; p!= &parent_sd->s_children; p=p->next) { 1313 struct configfs_dirent *next; 1314 const char * name; 1315 int len; 1316 1317 next = list_entry(p, struct configfs_dirent, 1318 s_sibling); 1319 if (!next->s_element) 1320 continue; 1321 1322 name = configfs_get_name(next); 1323 len = strlen(name); 1324 if (next->s_dentry) 1325 ino = next->s_dentry->d_inode->i_ino; 1326 else 1327 ino = iunique(configfs_sb, 2); 1328 1329 if (filldir(dirent, name, len, filp->f_pos, ino, 1330 dt_type(next)) < 0) 1331 return 0; 1332 1333 list_move(q, p); 1334 p = q; 1335 filp->f_pos++; 1336 } 1337 } 1338 return 0; 1339 } 1340 1341 static loff_t configfs_dir_lseek(struct file * file, loff_t offset, int origin) 1342 { 1343 struct dentry * dentry = file->f_path.dentry; 1344 1345 mutex_lock(&dentry->d_inode->i_mutex); 1346 switch (origin) { 1347 case 1: 1348 offset += file->f_pos; 1349 case 0: 1350 if (offset >= 0) 1351 break; 1352 default: 1353 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex); 1354 return -EINVAL; 1355 } 1356 if (offset != file->f_pos) { 1357 file->f_pos = offset; 1358 if (file->f_pos >= 2) { 1359 struct configfs_dirent *sd = dentry->d_fsdata; 1360 struct configfs_dirent *cursor = file->private_data; 1361 struct list_head *p; 1362 loff_t n = file->f_pos - 2; 1363 1364 list_del(&cursor->s_sibling); 1365 p = sd->s_children.next; 1366 while (n && p != &sd->s_children) { 1367 struct configfs_dirent *next; 1368 next = list_entry(p, struct configfs_dirent, 1369 s_sibling); 1370 if (next->s_element) 1371 n--; 1372 p = p->next; 1373 } 1374 list_add_tail(&cursor->s_sibling, p); 1375 } 1376 } 1377 mutex_unlock(&dentry->d_inode->i_mutex); 1378 return offset; 1379 } 1380 1381 const struct file_operations configfs_dir_operations = { 1382 .open = configfs_dir_open, 1383 .release = configfs_dir_close, 1384 .llseek = configfs_dir_lseek, 1385 .read = generic_read_dir, 1386 .readdir = configfs_readdir, 1387 }; 1388 1389 int configfs_register_subsystem(struct configfs_subsystem *subsys) 1390 { 1391 int err; 1392 struct config_group *group = &subsys->su_group; 1393 struct qstr name; 1394 struct dentry *dentry; 1395 struct configfs_dirent *sd; 1396 1397 err = configfs_pin_fs(); 1398 if (err) 1399 return err; 1400 1401 if (!group->cg_item.ci_name) 1402 group->cg_item.ci_name = group->cg_item.ci_namebuf; 1403 1404 sd = configfs_sb->s_root->d_fsdata; 1405 link_group(to_config_group(sd->s_element), group); 1406 1407 mutex_lock(&configfs_sb->s_root->d_inode->i_mutex); 1408 1409 name.name = group->cg_item.ci_name; 1410 name.len = strlen(name.name); 1411 name.hash = full_name_hash(name.name, name.len); 1412 1413 err = -ENOMEM; 1414 dentry = d_alloc(configfs_sb->s_root, &name); 1415 if (dentry) { 1416 d_add(dentry, NULL); 1417 1418 err = configfs_attach_group(sd->s_element, &group->cg_item, 1419 dentry); 1420 if (err) { 1421 d_delete(dentry); 1422 dput(dentry); 1423 } 1424 } 1425 1426 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex); 1427 1428 if (err) { 1429 unlink_group(group); 1430 configfs_release_fs(); 1431 } 1432 1433 return err; 1434 } 1435 1436 void configfs_unregister_subsystem(struct configfs_subsystem *subsys) 1437 { 1438 struct config_group *group = &subsys->su_group; 1439 struct dentry *dentry = group->cg_item.ci_dentry; 1440 1441 if (dentry->d_parent != configfs_sb->s_root) { 1442 printk(KERN_ERR "configfs: Tried to unregister non-subsystem!\n"); 1443 return; 1444 } 1445 1446 mutex_lock_nested(&configfs_sb->s_root->d_inode->i_mutex, 1447 I_MUTEX_PARENT); 1448 mutex_lock_nested(&dentry->d_inode->i_mutex, I_MUTEX_CHILD); 1449 if (configfs_detach_prep(dentry)) { 1450 printk(KERN_ERR "configfs: Tried to unregister non-empty subsystem!\n"); 1451 } 1452 configfs_detach_group(&group->cg_item); 1453 dentry->d_inode->i_flags |= S_DEAD; 1454 mutex_unlock(&dentry->d_inode->i_mutex); 1455 1456 d_delete(dentry); 1457 1458 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex); 1459 1460 dput(dentry); 1461 1462 unlink_group(group); 1463 configfs_release_fs(); 1464 } 1465 1466 EXPORT_SYMBOL(configfs_register_subsystem); 1467 EXPORT_SYMBOL(configfs_unregister_subsystem); 1468