xref: /openbmc/linux/fs/char_dev.c (revision fea966f7)
1 /*
2  *  linux/fs/char_dev.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/init.h>
8 #include <linux/fs.h>
9 #include <linux/kdev_t.h>
10 #include <linux/slab.h>
11 #include <linux/string.h>
12 
13 #include <linux/major.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 
18 #include <linux/kobject.h>
19 #include <linux/kobj_map.h>
20 #include <linux/cdev.h>
21 #include <linux/mutex.h>
22 #include <linux/backing-dev.h>
23 
24 #include "internal.h"
25 
26 /*
27  * capabilities for /dev/mem, /dev/kmem and similar directly mappable character
28  * devices
29  * - permits shared-mmap for read, write and/or exec
30  * - does not permit private mmap in NOMMU mode (can't do COW)
31  * - no readahead or I/O queue unplugging required
32  */
33 struct backing_dev_info directly_mappable_cdev_bdi = {
34 	.capabilities	= (
35 #ifdef CONFIG_MMU
36 		/* permit private copies of the data to be taken */
37 		BDI_CAP_MAP_COPY |
38 #endif
39 		/* permit direct mmap, for read, write or exec */
40 		BDI_CAP_MAP_DIRECT |
41 		BDI_CAP_READ_MAP | BDI_CAP_WRITE_MAP | BDI_CAP_EXEC_MAP),
42 };
43 
44 static struct kobj_map *cdev_map;
45 
46 static DEFINE_MUTEX(chrdevs_lock);
47 
48 static struct char_device_struct {
49 	struct char_device_struct *next;
50 	unsigned int major;
51 	unsigned int baseminor;
52 	int minorct;
53 	char name[64];
54 	struct cdev *cdev;		/* will die */
55 } *chrdevs[CHRDEV_MAJOR_HASH_SIZE];
56 
57 /* index in the above */
58 static inline int major_to_index(int major)
59 {
60 	return major % CHRDEV_MAJOR_HASH_SIZE;
61 }
62 
63 #ifdef CONFIG_PROC_FS
64 
65 void chrdev_show(struct seq_file *f, off_t offset)
66 {
67 	struct char_device_struct *cd;
68 
69 	if (offset < CHRDEV_MAJOR_HASH_SIZE) {
70 		mutex_lock(&chrdevs_lock);
71 		for (cd = chrdevs[offset]; cd; cd = cd->next)
72 			seq_printf(f, "%3d %s\n", cd->major, cd->name);
73 		mutex_unlock(&chrdevs_lock);
74 	}
75 }
76 
77 #endif /* CONFIG_PROC_FS */
78 
79 /*
80  * Register a single major with a specified minor range.
81  *
82  * If major == 0 this functions will dynamically allocate a major and return
83  * its number.
84  *
85  * If major > 0 this function will attempt to reserve the passed range of
86  * minors and will return zero on success.
87  *
88  * Returns a -ve errno on failure.
89  */
90 static struct char_device_struct *
91 __register_chrdev_region(unsigned int major, unsigned int baseminor,
92 			   int minorct, const char *name)
93 {
94 	struct char_device_struct *cd, **cp;
95 	int ret = 0;
96 	int i;
97 
98 	cd = kzalloc(sizeof(struct char_device_struct), GFP_KERNEL);
99 	if (cd == NULL)
100 		return ERR_PTR(-ENOMEM);
101 
102 	mutex_lock(&chrdevs_lock);
103 
104 	/* temporary */
105 	if (major == 0) {
106 		for (i = ARRAY_SIZE(chrdevs)-1; i > 0; i--) {
107 			if (chrdevs[i] == NULL)
108 				break;
109 		}
110 
111 		if (i == 0) {
112 			ret = -EBUSY;
113 			goto out;
114 		}
115 		major = i;
116 		ret = major;
117 	}
118 
119 	cd->major = major;
120 	cd->baseminor = baseminor;
121 	cd->minorct = minorct;
122 	strlcpy(cd->name, name, sizeof(cd->name));
123 
124 	i = major_to_index(major);
125 
126 	for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)
127 		if ((*cp)->major > major ||
128 		    ((*cp)->major == major &&
129 		     (((*cp)->baseminor >= baseminor) ||
130 		      ((*cp)->baseminor + (*cp)->minorct > baseminor))))
131 			break;
132 
133 	/* Check for overlapping minor ranges.  */
134 	if (*cp && (*cp)->major == major) {
135 		int old_min = (*cp)->baseminor;
136 		int old_max = (*cp)->baseminor + (*cp)->minorct - 1;
137 		int new_min = baseminor;
138 		int new_max = baseminor + minorct - 1;
139 
140 		/* New driver overlaps from the left.  */
141 		if (new_max >= old_min && new_max <= old_max) {
142 			ret = -EBUSY;
143 			goto out;
144 		}
145 
146 		/* New driver overlaps from the right.  */
147 		if (new_min <= old_max && new_min >= old_min) {
148 			ret = -EBUSY;
149 			goto out;
150 		}
151 	}
152 
153 	cd->next = *cp;
154 	*cp = cd;
155 	mutex_unlock(&chrdevs_lock);
156 	return cd;
157 out:
158 	mutex_unlock(&chrdevs_lock);
159 	kfree(cd);
160 	return ERR_PTR(ret);
161 }
162 
163 static struct char_device_struct *
164 __unregister_chrdev_region(unsigned major, unsigned baseminor, int minorct)
165 {
166 	struct char_device_struct *cd = NULL, **cp;
167 	int i = major_to_index(major);
168 
169 	mutex_lock(&chrdevs_lock);
170 	for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)
171 		if ((*cp)->major == major &&
172 		    (*cp)->baseminor == baseminor &&
173 		    (*cp)->minorct == minorct)
174 			break;
175 	if (*cp) {
176 		cd = *cp;
177 		*cp = cd->next;
178 	}
179 	mutex_unlock(&chrdevs_lock);
180 	return cd;
181 }
182 
183 /**
184  * register_chrdev_region() - register a range of device numbers
185  * @from: the first in the desired range of device numbers; must include
186  *        the major number.
187  * @count: the number of consecutive device numbers required
188  * @name: the name of the device or driver.
189  *
190  * Return value is zero on success, a negative error code on failure.
191  */
192 int register_chrdev_region(dev_t from, unsigned count, const char *name)
193 {
194 	struct char_device_struct *cd;
195 	dev_t to = from + count;
196 	dev_t n, next;
197 
198 	for (n = from; n < to; n = next) {
199 		next = MKDEV(MAJOR(n)+1, 0);
200 		if (next > to)
201 			next = to;
202 		cd = __register_chrdev_region(MAJOR(n), MINOR(n),
203 			       next - n, name);
204 		if (IS_ERR(cd))
205 			goto fail;
206 	}
207 	return 0;
208 fail:
209 	to = n;
210 	for (n = from; n < to; n = next) {
211 		next = MKDEV(MAJOR(n)+1, 0);
212 		kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n));
213 	}
214 	return PTR_ERR(cd);
215 }
216 
217 /**
218  * alloc_chrdev_region() - register a range of char device numbers
219  * @dev: output parameter for first assigned number
220  * @baseminor: first of the requested range of minor numbers
221  * @count: the number of minor numbers required
222  * @name: the name of the associated device or driver
223  *
224  * Allocates a range of char device numbers.  The major number will be
225  * chosen dynamically, and returned (along with the first minor number)
226  * in @dev.  Returns zero or a negative error code.
227  */
228 int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,
229 			const char *name)
230 {
231 	struct char_device_struct *cd;
232 	cd = __register_chrdev_region(0, baseminor, count, name);
233 	if (IS_ERR(cd))
234 		return PTR_ERR(cd);
235 	*dev = MKDEV(cd->major, cd->baseminor);
236 	return 0;
237 }
238 
239 /**
240  * register_chrdev() - Register a major number for character devices.
241  * @major: major device number or 0 for dynamic allocation
242  * @name: name of this range of devices
243  * @fops: file operations associated with this devices
244  *
245  * If @major == 0 this functions will dynamically allocate a major and return
246  * its number.
247  *
248  * If @major > 0 this function will attempt to reserve a device with the given
249  * major number and will return zero on success.
250  *
251  * Returns a -ve errno on failure.
252  *
253  * The name of this device has nothing to do with the name of the device in
254  * /dev. It only helps to keep track of the different owners of devices. If
255  * your module name has only one type of devices it's ok to use e.g. the name
256  * of the module here.
257  *
258  * This function registers a range of 256 minor numbers. The first minor number
259  * is 0.
260  */
261 int register_chrdev(unsigned int major, const char *name,
262 		    const struct file_operations *fops)
263 {
264 	struct char_device_struct *cd;
265 	struct cdev *cdev;
266 	char *s;
267 	int err = -ENOMEM;
268 
269 	cd = __register_chrdev_region(major, 0, 256, name);
270 	if (IS_ERR(cd))
271 		return PTR_ERR(cd);
272 
273 	cdev = cdev_alloc();
274 	if (!cdev)
275 		goto out2;
276 
277 	cdev->owner = fops->owner;
278 	cdev->ops = fops;
279 	kobject_set_name(&cdev->kobj, "%s", name);
280 	for (s = strchr(kobject_name(&cdev->kobj),'/'); s; s = strchr(s, '/'))
281 		*s = '!';
282 
283 	err = cdev_add(cdev, MKDEV(cd->major, 0), 256);
284 	if (err)
285 		goto out;
286 
287 	cd->cdev = cdev;
288 
289 	return major ? 0 : cd->major;
290 out:
291 	kobject_put(&cdev->kobj);
292 out2:
293 	kfree(__unregister_chrdev_region(cd->major, 0, 256));
294 	return err;
295 }
296 
297 /**
298  * unregister_chrdev_region() - return a range of device numbers
299  * @from: the first in the range of numbers to unregister
300  * @count: the number of device numbers to unregister
301  *
302  * This function will unregister a range of @count device numbers,
303  * starting with @from.  The caller should normally be the one who
304  * allocated those numbers in the first place...
305  */
306 void unregister_chrdev_region(dev_t from, unsigned count)
307 {
308 	dev_t to = from + count;
309 	dev_t n, next;
310 
311 	for (n = from; n < to; n = next) {
312 		next = MKDEV(MAJOR(n)+1, 0);
313 		if (next > to)
314 			next = to;
315 		kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n));
316 	}
317 }
318 
319 void unregister_chrdev(unsigned int major, const char *name)
320 {
321 	struct char_device_struct *cd;
322 	cd = __unregister_chrdev_region(major, 0, 256);
323 	if (cd && cd->cdev)
324 		cdev_del(cd->cdev);
325 	kfree(cd);
326 }
327 
328 static DEFINE_SPINLOCK(cdev_lock);
329 
330 static struct kobject *cdev_get(struct cdev *p)
331 {
332 	struct module *owner = p->owner;
333 	struct kobject *kobj;
334 
335 	if (owner && !try_module_get(owner))
336 		return NULL;
337 	kobj = kobject_get(&p->kobj);
338 	if (!kobj)
339 		module_put(owner);
340 	return kobj;
341 }
342 
343 void cdev_put(struct cdev *p)
344 {
345 	if (p) {
346 		struct module *owner = p->owner;
347 		kobject_put(&p->kobj);
348 		module_put(owner);
349 	}
350 }
351 
352 /*
353  * Called every time a character special file is opened
354  */
355 static int chrdev_open(struct inode *inode, struct file *filp)
356 {
357 	struct cdev *p;
358 	struct cdev *new = NULL;
359 	int ret = 0;
360 
361 	spin_lock(&cdev_lock);
362 	p = inode->i_cdev;
363 	if (!p) {
364 		struct kobject *kobj;
365 		int idx;
366 		spin_unlock(&cdev_lock);
367 		kobj = kobj_lookup(cdev_map, inode->i_rdev, &idx);
368 		if (!kobj)
369 			return -ENXIO;
370 		new = container_of(kobj, struct cdev, kobj);
371 		spin_lock(&cdev_lock);
372 		/* Check i_cdev again in case somebody beat us to it while
373 		   we dropped the lock. */
374 		p = inode->i_cdev;
375 		if (!p) {
376 			inode->i_cdev = p = new;
377 			list_add(&inode->i_devices, &p->list);
378 			new = NULL;
379 		} else if (!cdev_get(p))
380 			ret = -ENXIO;
381 	} else if (!cdev_get(p))
382 		ret = -ENXIO;
383 	spin_unlock(&cdev_lock);
384 	cdev_put(new);
385 	if (ret)
386 		return ret;
387 
388 	ret = -ENXIO;
389 	filp->f_op = fops_get(p->ops);
390 	if (!filp->f_op)
391 		goto out_cdev_put;
392 
393 	if (filp->f_op->open) {
394 		ret = filp->f_op->open(inode,filp);
395 		if (ret)
396 			goto out_cdev_put;
397 	}
398 
399 	return 0;
400 
401  out_cdev_put:
402 	cdev_put(p);
403 	return ret;
404 }
405 
406 int cdev_index(struct inode *inode)
407 {
408 	int idx;
409 	struct kobject *kobj;
410 
411 	kobj = kobj_lookup(cdev_map, inode->i_rdev, &idx);
412 	if (!kobj)
413 		return -1;
414 	kobject_put(kobj);
415 	return idx;
416 }
417 
418 void cd_forget(struct inode *inode)
419 {
420 	spin_lock(&cdev_lock);
421 	list_del_init(&inode->i_devices);
422 	inode->i_cdev = NULL;
423 	spin_unlock(&cdev_lock);
424 }
425 
426 static void cdev_purge(struct cdev *cdev)
427 {
428 	spin_lock(&cdev_lock);
429 	while (!list_empty(&cdev->list)) {
430 		struct inode *inode;
431 		inode = container_of(cdev->list.next, struct inode, i_devices);
432 		list_del_init(&inode->i_devices);
433 		inode->i_cdev = NULL;
434 	}
435 	spin_unlock(&cdev_lock);
436 }
437 
438 /*
439  * Dummy default file-operations: the only thing this does
440  * is contain the open that then fills in the correct operations
441  * depending on the special file...
442  */
443 const struct file_operations def_chr_fops = {
444 	.open = chrdev_open,
445 };
446 
447 static struct kobject *exact_match(dev_t dev, int *part, void *data)
448 {
449 	struct cdev *p = data;
450 	return &p->kobj;
451 }
452 
453 static int exact_lock(dev_t dev, void *data)
454 {
455 	struct cdev *p = data;
456 	return cdev_get(p) ? 0 : -1;
457 }
458 
459 /**
460  * cdev_add() - add a char device to the system
461  * @p: the cdev structure for the device
462  * @dev: the first device number for which this device is responsible
463  * @count: the number of consecutive minor numbers corresponding to this
464  *         device
465  *
466  * cdev_add() adds the device represented by @p to the system, making it
467  * live immediately.  A negative error code is returned on failure.
468  */
469 int cdev_add(struct cdev *p, dev_t dev, unsigned count)
470 {
471 	p->dev = dev;
472 	p->count = count;
473 	return kobj_map(cdev_map, dev, count, NULL, exact_match, exact_lock, p);
474 }
475 
476 static void cdev_unmap(dev_t dev, unsigned count)
477 {
478 	kobj_unmap(cdev_map, dev, count);
479 }
480 
481 /**
482  * cdev_del() - remove a cdev from the system
483  * @p: the cdev structure to be removed
484  *
485  * cdev_del() removes @p from the system, possibly freeing the structure
486  * itself.
487  */
488 void cdev_del(struct cdev *p)
489 {
490 	cdev_unmap(p->dev, p->count);
491 	kobject_put(&p->kobj);
492 }
493 
494 
495 static void cdev_default_release(struct kobject *kobj)
496 {
497 	struct cdev *p = container_of(kobj, struct cdev, kobj);
498 	cdev_purge(p);
499 }
500 
501 static void cdev_dynamic_release(struct kobject *kobj)
502 {
503 	struct cdev *p = container_of(kobj, struct cdev, kobj);
504 	cdev_purge(p);
505 	kfree(p);
506 }
507 
508 static struct kobj_type ktype_cdev_default = {
509 	.release	= cdev_default_release,
510 };
511 
512 static struct kobj_type ktype_cdev_dynamic = {
513 	.release	= cdev_dynamic_release,
514 };
515 
516 /**
517  * cdev_alloc() - allocate a cdev structure
518  *
519  * Allocates and returns a cdev structure, or NULL on failure.
520  */
521 struct cdev *cdev_alloc(void)
522 {
523 	struct cdev *p = kzalloc(sizeof(struct cdev), GFP_KERNEL);
524 	if (p) {
525 		INIT_LIST_HEAD(&p->list);
526 		kobject_init(&p->kobj, &ktype_cdev_dynamic);
527 	}
528 	return p;
529 }
530 
531 /**
532  * cdev_init() - initialize a cdev structure
533  * @cdev: the structure to initialize
534  * @fops: the file_operations for this device
535  *
536  * Initializes @cdev, remembering @fops, making it ready to add to the
537  * system with cdev_add().
538  */
539 void cdev_init(struct cdev *cdev, const struct file_operations *fops)
540 {
541 	memset(cdev, 0, sizeof *cdev);
542 	INIT_LIST_HEAD(&cdev->list);
543 	kobject_init(&cdev->kobj, &ktype_cdev_default);
544 	cdev->ops = fops;
545 }
546 
547 static struct kobject *base_probe(dev_t dev, int *part, void *data)
548 {
549 	if (request_module("char-major-%d-%d", MAJOR(dev), MINOR(dev)) > 0)
550 		/* Make old-style 2.4 aliases work */
551 		request_module("char-major-%d", MAJOR(dev));
552 	return NULL;
553 }
554 
555 void __init chrdev_init(void)
556 {
557 	cdev_map = kobj_map_init(base_probe, &chrdevs_lock);
558 	bdi_init(&directly_mappable_cdev_bdi);
559 }
560 
561 
562 /* Let modules do char dev stuff */
563 EXPORT_SYMBOL(register_chrdev_region);
564 EXPORT_SYMBOL(unregister_chrdev_region);
565 EXPORT_SYMBOL(alloc_chrdev_region);
566 EXPORT_SYMBOL(cdev_init);
567 EXPORT_SYMBOL(cdev_alloc);
568 EXPORT_SYMBOL(cdev_del);
569 EXPORT_SYMBOL(cdev_add);
570 EXPORT_SYMBOL(cdev_index);
571 EXPORT_SYMBOL(register_chrdev);
572 EXPORT_SYMBOL(unregister_chrdev);
573 EXPORT_SYMBOL(directly_mappable_cdev_bdi);
574