xref: /openbmc/linux/fs/char_dev.c (revision e8e0929d)
1 /*
2  *  linux/fs/char_dev.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/init.h>
8 #include <linux/fs.h>
9 #include <linux/kdev_t.h>
10 #include <linux/slab.h>
11 #include <linux/string.h>
12 
13 #include <linux/major.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 
18 #include <linux/kobject.h>
19 #include <linux/kobj_map.h>
20 #include <linux/cdev.h>
21 #include <linux/mutex.h>
22 #include <linux/backing-dev.h>
23 
24 #include "internal.h"
25 
26 /*
27  * capabilities for /dev/mem, /dev/kmem and similar directly mappable character
28  * devices
29  * - permits shared-mmap for read, write and/or exec
30  * - does not permit private mmap in NOMMU mode (can't do COW)
31  * - no readahead or I/O queue unplugging required
32  */
33 struct backing_dev_info directly_mappable_cdev_bdi = {
34 	.name = "char",
35 	.capabilities	= (
36 #ifdef CONFIG_MMU
37 		/* permit private copies of the data to be taken */
38 		BDI_CAP_MAP_COPY |
39 #endif
40 		/* permit direct mmap, for read, write or exec */
41 		BDI_CAP_MAP_DIRECT |
42 		BDI_CAP_READ_MAP | BDI_CAP_WRITE_MAP | BDI_CAP_EXEC_MAP),
43 };
44 
45 static struct kobj_map *cdev_map;
46 
47 static DEFINE_MUTEX(chrdevs_lock);
48 
49 static struct char_device_struct {
50 	struct char_device_struct *next;
51 	unsigned int major;
52 	unsigned int baseminor;
53 	int minorct;
54 	char name[64];
55 	struct cdev *cdev;		/* will die */
56 } *chrdevs[CHRDEV_MAJOR_HASH_SIZE];
57 
58 /* index in the above */
59 static inline int major_to_index(int major)
60 {
61 	return major % CHRDEV_MAJOR_HASH_SIZE;
62 }
63 
64 #ifdef CONFIG_PROC_FS
65 
66 void chrdev_show(struct seq_file *f, off_t offset)
67 {
68 	struct char_device_struct *cd;
69 
70 	if (offset < CHRDEV_MAJOR_HASH_SIZE) {
71 		mutex_lock(&chrdevs_lock);
72 		for (cd = chrdevs[offset]; cd; cd = cd->next)
73 			seq_printf(f, "%3d %s\n", cd->major, cd->name);
74 		mutex_unlock(&chrdevs_lock);
75 	}
76 }
77 
78 #endif /* CONFIG_PROC_FS */
79 
80 /*
81  * Register a single major with a specified minor range.
82  *
83  * If major == 0 this functions will dynamically allocate a major and return
84  * its number.
85  *
86  * If major > 0 this function will attempt to reserve the passed range of
87  * minors and will return zero on success.
88  *
89  * Returns a -ve errno on failure.
90  */
91 static struct char_device_struct *
92 __register_chrdev_region(unsigned int major, unsigned int baseminor,
93 			   int minorct, const char *name)
94 {
95 	struct char_device_struct *cd, **cp;
96 	int ret = 0;
97 	int i;
98 
99 	cd = kzalloc(sizeof(struct char_device_struct), GFP_KERNEL);
100 	if (cd == NULL)
101 		return ERR_PTR(-ENOMEM);
102 
103 	mutex_lock(&chrdevs_lock);
104 
105 	/* temporary */
106 	if (major == 0) {
107 		for (i = ARRAY_SIZE(chrdevs)-1; i > 0; i--) {
108 			if (chrdevs[i] == NULL)
109 				break;
110 		}
111 
112 		if (i == 0) {
113 			ret = -EBUSY;
114 			goto out;
115 		}
116 		major = i;
117 		ret = major;
118 	}
119 
120 	cd->major = major;
121 	cd->baseminor = baseminor;
122 	cd->minorct = minorct;
123 	strlcpy(cd->name, name, sizeof(cd->name));
124 
125 	i = major_to_index(major);
126 
127 	for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)
128 		if ((*cp)->major > major ||
129 		    ((*cp)->major == major &&
130 		     (((*cp)->baseminor >= baseminor) ||
131 		      ((*cp)->baseminor + (*cp)->minorct > baseminor))))
132 			break;
133 
134 	/* Check for overlapping minor ranges.  */
135 	if (*cp && (*cp)->major == major) {
136 		int old_min = (*cp)->baseminor;
137 		int old_max = (*cp)->baseminor + (*cp)->minorct - 1;
138 		int new_min = baseminor;
139 		int new_max = baseminor + minorct - 1;
140 
141 		/* New driver overlaps from the left.  */
142 		if (new_max >= old_min && new_max <= old_max) {
143 			ret = -EBUSY;
144 			goto out;
145 		}
146 
147 		/* New driver overlaps from the right.  */
148 		if (new_min <= old_max && new_min >= old_min) {
149 			ret = -EBUSY;
150 			goto out;
151 		}
152 	}
153 
154 	cd->next = *cp;
155 	*cp = cd;
156 	mutex_unlock(&chrdevs_lock);
157 	return cd;
158 out:
159 	mutex_unlock(&chrdevs_lock);
160 	kfree(cd);
161 	return ERR_PTR(ret);
162 }
163 
164 static struct char_device_struct *
165 __unregister_chrdev_region(unsigned major, unsigned baseminor, int minorct)
166 {
167 	struct char_device_struct *cd = NULL, **cp;
168 	int i = major_to_index(major);
169 
170 	mutex_lock(&chrdevs_lock);
171 	for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)
172 		if ((*cp)->major == major &&
173 		    (*cp)->baseminor == baseminor &&
174 		    (*cp)->minorct == minorct)
175 			break;
176 	if (*cp) {
177 		cd = *cp;
178 		*cp = cd->next;
179 	}
180 	mutex_unlock(&chrdevs_lock);
181 	return cd;
182 }
183 
184 /**
185  * register_chrdev_region() - register a range of device numbers
186  * @from: the first in the desired range of device numbers; must include
187  *        the major number.
188  * @count: the number of consecutive device numbers required
189  * @name: the name of the device or driver.
190  *
191  * Return value is zero on success, a negative error code on failure.
192  */
193 int register_chrdev_region(dev_t from, unsigned count, const char *name)
194 {
195 	struct char_device_struct *cd;
196 	dev_t to = from + count;
197 	dev_t n, next;
198 
199 	for (n = from; n < to; n = next) {
200 		next = MKDEV(MAJOR(n)+1, 0);
201 		if (next > to)
202 			next = to;
203 		cd = __register_chrdev_region(MAJOR(n), MINOR(n),
204 			       next - n, name);
205 		if (IS_ERR(cd))
206 			goto fail;
207 	}
208 	return 0;
209 fail:
210 	to = n;
211 	for (n = from; n < to; n = next) {
212 		next = MKDEV(MAJOR(n)+1, 0);
213 		kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n));
214 	}
215 	return PTR_ERR(cd);
216 }
217 
218 /**
219  * alloc_chrdev_region() - register a range of char device numbers
220  * @dev: output parameter for first assigned number
221  * @baseminor: first of the requested range of minor numbers
222  * @count: the number of minor numbers required
223  * @name: the name of the associated device or driver
224  *
225  * Allocates a range of char device numbers.  The major number will be
226  * chosen dynamically, and returned (along with the first minor number)
227  * in @dev.  Returns zero or a negative error code.
228  */
229 int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,
230 			const char *name)
231 {
232 	struct char_device_struct *cd;
233 	cd = __register_chrdev_region(0, baseminor, count, name);
234 	if (IS_ERR(cd))
235 		return PTR_ERR(cd);
236 	*dev = MKDEV(cd->major, cd->baseminor);
237 	return 0;
238 }
239 
240 /**
241  * __register_chrdev() - create and register a cdev occupying a range of minors
242  * @major: major device number or 0 for dynamic allocation
243  * @baseminor: first of the requested range of minor numbers
244  * @count: the number of minor numbers required
245  * @name: name of this range of devices
246  * @fops: file operations associated with this devices
247  *
248  * If @major == 0 this functions will dynamically allocate a major and return
249  * its number.
250  *
251  * If @major > 0 this function will attempt to reserve a device with the given
252  * major number and will return zero on success.
253  *
254  * Returns a -ve errno on failure.
255  *
256  * The name of this device has nothing to do with the name of the device in
257  * /dev. It only helps to keep track of the different owners of devices. If
258  * your module name has only one type of devices it's ok to use e.g. the name
259  * of the module here.
260  */
261 int __register_chrdev(unsigned int major, unsigned int baseminor,
262 		      unsigned int count, const char *name,
263 		      const struct file_operations *fops)
264 {
265 	struct char_device_struct *cd;
266 	struct cdev *cdev;
267 	int err = -ENOMEM;
268 
269 	cd = __register_chrdev_region(major, baseminor, count, name);
270 	if (IS_ERR(cd))
271 		return PTR_ERR(cd);
272 
273 	cdev = cdev_alloc();
274 	if (!cdev)
275 		goto out2;
276 
277 	cdev->owner = fops->owner;
278 	cdev->ops = fops;
279 	kobject_set_name(&cdev->kobj, "%s", name);
280 
281 	err = cdev_add(cdev, MKDEV(cd->major, baseminor), count);
282 	if (err)
283 		goto out;
284 
285 	cd->cdev = cdev;
286 
287 	return major ? 0 : cd->major;
288 out:
289 	kobject_put(&cdev->kobj);
290 out2:
291 	kfree(__unregister_chrdev_region(cd->major, baseminor, count));
292 	return err;
293 }
294 
295 /**
296  * unregister_chrdev_region() - return a range of device numbers
297  * @from: the first in the range of numbers to unregister
298  * @count: the number of device numbers to unregister
299  *
300  * This function will unregister a range of @count device numbers,
301  * starting with @from.  The caller should normally be the one who
302  * allocated those numbers in the first place...
303  */
304 void unregister_chrdev_region(dev_t from, unsigned count)
305 {
306 	dev_t to = from + count;
307 	dev_t n, next;
308 
309 	for (n = from; n < to; n = next) {
310 		next = MKDEV(MAJOR(n)+1, 0);
311 		if (next > to)
312 			next = to;
313 		kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n));
314 	}
315 }
316 
317 /**
318  * __unregister_chrdev - unregister and destroy a cdev
319  * @major: major device number
320  * @baseminor: first of the range of minor numbers
321  * @count: the number of minor numbers this cdev is occupying
322  * @name: name of this range of devices
323  *
324  * Unregister and destroy the cdev occupying the region described by
325  * @major, @baseminor and @count.  This function undoes what
326  * __register_chrdev() did.
327  */
328 void __unregister_chrdev(unsigned int major, unsigned int baseminor,
329 			 unsigned int count, const char *name)
330 {
331 	struct char_device_struct *cd;
332 
333 	cd = __unregister_chrdev_region(major, baseminor, count);
334 	if (cd && cd->cdev)
335 		cdev_del(cd->cdev);
336 	kfree(cd);
337 }
338 
339 static DEFINE_SPINLOCK(cdev_lock);
340 
341 static struct kobject *cdev_get(struct cdev *p)
342 {
343 	struct module *owner = p->owner;
344 	struct kobject *kobj;
345 
346 	if (owner && !try_module_get(owner))
347 		return NULL;
348 	kobj = kobject_get(&p->kobj);
349 	if (!kobj)
350 		module_put(owner);
351 	return kobj;
352 }
353 
354 void cdev_put(struct cdev *p)
355 {
356 	if (p) {
357 		struct module *owner = p->owner;
358 		kobject_put(&p->kobj);
359 		module_put(owner);
360 	}
361 }
362 
363 /*
364  * Called every time a character special file is opened
365  */
366 static int chrdev_open(struct inode *inode, struct file *filp)
367 {
368 	struct cdev *p;
369 	struct cdev *new = NULL;
370 	int ret = 0;
371 
372 	spin_lock(&cdev_lock);
373 	p = inode->i_cdev;
374 	if (!p) {
375 		struct kobject *kobj;
376 		int idx;
377 		spin_unlock(&cdev_lock);
378 		kobj = kobj_lookup(cdev_map, inode->i_rdev, &idx);
379 		if (!kobj)
380 			return -ENXIO;
381 		new = container_of(kobj, struct cdev, kobj);
382 		spin_lock(&cdev_lock);
383 		/* Check i_cdev again in case somebody beat us to it while
384 		   we dropped the lock. */
385 		p = inode->i_cdev;
386 		if (!p) {
387 			inode->i_cdev = p = new;
388 			list_add(&inode->i_devices, &p->list);
389 			new = NULL;
390 		} else if (!cdev_get(p))
391 			ret = -ENXIO;
392 	} else if (!cdev_get(p))
393 		ret = -ENXIO;
394 	spin_unlock(&cdev_lock);
395 	cdev_put(new);
396 	if (ret)
397 		return ret;
398 
399 	ret = -ENXIO;
400 	filp->f_op = fops_get(p->ops);
401 	if (!filp->f_op)
402 		goto out_cdev_put;
403 
404 	if (filp->f_op->open) {
405 		ret = filp->f_op->open(inode,filp);
406 		if (ret)
407 			goto out_cdev_put;
408 	}
409 
410 	return 0;
411 
412  out_cdev_put:
413 	cdev_put(p);
414 	return ret;
415 }
416 
417 int cdev_index(struct inode *inode)
418 {
419 	int idx;
420 	struct kobject *kobj;
421 
422 	kobj = kobj_lookup(cdev_map, inode->i_rdev, &idx);
423 	if (!kobj)
424 		return -1;
425 	kobject_put(kobj);
426 	return idx;
427 }
428 
429 void cd_forget(struct inode *inode)
430 {
431 	spin_lock(&cdev_lock);
432 	list_del_init(&inode->i_devices);
433 	inode->i_cdev = NULL;
434 	spin_unlock(&cdev_lock);
435 }
436 
437 static void cdev_purge(struct cdev *cdev)
438 {
439 	spin_lock(&cdev_lock);
440 	while (!list_empty(&cdev->list)) {
441 		struct inode *inode;
442 		inode = container_of(cdev->list.next, struct inode, i_devices);
443 		list_del_init(&inode->i_devices);
444 		inode->i_cdev = NULL;
445 	}
446 	spin_unlock(&cdev_lock);
447 }
448 
449 /*
450  * Dummy default file-operations: the only thing this does
451  * is contain the open that then fills in the correct operations
452  * depending on the special file...
453  */
454 const struct file_operations def_chr_fops = {
455 	.open = chrdev_open,
456 };
457 
458 static struct kobject *exact_match(dev_t dev, int *part, void *data)
459 {
460 	struct cdev *p = data;
461 	return &p->kobj;
462 }
463 
464 static int exact_lock(dev_t dev, void *data)
465 {
466 	struct cdev *p = data;
467 	return cdev_get(p) ? 0 : -1;
468 }
469 
470 /**
471  * cdev_add() - add a char device to the system
472  * @p: the cdev structure for the device
473  * @dev: the first device number for which this device is responsible
474  * @count: the number of consecutive minor numbers corresponding to this
475  *         device
476  *
477  * cdev_add() adds the device represented by @p to the system, making it
478  * live immediately.  A negative error code is returned on failure.
479  */
480 int cdev_add(struct cdev *p, dev_t dev, unsigned count)
481 {
482 	p->dev = dev;
483 	p->count = count;
484 	return kobj_map(cdev_map, dev, count, NULL, exact_match, exact_lock, p);
485 }
486 
487 static void cdev_unmap(dev_t dev, unsigned count)
488 {
489 	kobj_unmap(cdev_map, dev, count);
490 }
491 
492 /**
493  * cdev_del() - remove a cdev from the system
494  * @p: the cdev structure to be removed
495  *
496  * cdev_del() removes @p from the system, possibly freeing the structure
497  * itself.
498  */
499 void cdev_del(struct cdev *p)
500 {
501 	cdev_unmap(p->dev, p->count);
502 	kobject_put(&p->kobj);
503 }
504 
505 
506 static void cdev_default_release(struct kobject *kobj)
507 {
508 	struct cdev *p = container_of(kobj, struct cdev, kobj);
509 	cdev_purge(p);
510 }
511 
512 static void cdev_dynamic_release(struct kobject *kobj)
513 {
514 	struct cdev *p = container_of(kobj, struct cdev, kobj);
515 	cdev_purge(p);
516 	kfree(p);
517 }
518 
519 static struct kobj_type ktype_cdev_default = {
520 	.release	= cdev_default_release,
521 };
522 
523 static struct kobj_type ktype_cdev_dynamic = {
524 	.release	= cdev_dynamic_release,
525 };
526 
527 /**
528  * cdev_alloc() - allocate a cdev structure
529  *
530  * Allocates and returns a cdev structure, or NULL on failure.
531  */
532 struct cdev *cdev_alloc(void)
533 {
534 	struct cdev *p = kzalloc(sizeof(struct cdev), GFP_KERNEL);
535 	if (p) {
536 		INIT_LIST_HEAD(&p->list);
537 		kobject_init(&p->kobj, &ktype_cdev_dynamic);
538 	}
539 	return p;
540 }
541 
542 /**
543  * cdev_init() - initialize a cdev structure
544  * @cdev: the structure to initialize
545  * @fops: the file_operations for this device
546  *
547  * Initializes @cdev, remembering @fops, making it ready to add to the
548  * system with cdev_add().
549  */
550 void cdev_init(struct cdev *cdev, const struct file_operations *fops)
551 {
552 	memset(cdev, 0, sizeof *cdev);
553 	INIT_LIST_HEAD(&cdev->list);
554 	kobject_init(&cdev->kobj, &ktype_cdev_default);
555 	cdev->ops = fops;
556 }
557 
558 static struct kobject *base_probe(dev_t dev, int *part, void *data)
559 {
560 	if (request_module("char-major-%d-%d", MAJOR(dev), MINOR(dev)) > 0)
561 		/* Make old-style 2.4 aliases work */
562 		request_module("char-major-%d", MAJOR(dev));
563 	return NULL;
564 }
565 
566 void __init chrdev_init(void)
567 {
568 	cdev_map = kobj_map_init(base_probe, &chrdevs_lock);
569 	bdi_init(&directly_mappable_cdev_bdi);
570 }
571 
572 
573 /* Let modules do char dev stuff */
574 EXPORT_SYMBOL(register_chrdev_region);
575 EXPORT_SYMBOL(unregister_chrdev_region);
576 EXPORT_SYMBOL(alloc_chrdev_region);
577 EXPORT_SYMBOL(cdev_init);
578 EXPORT_SYMBOL(cdev_alloc);
579 EXPORT_SYMBOL(cdev_del);
580 EXPORT_SYMBOL(cdev_add);
581 EXPORT_SYMBOL(cdev_index);
582 EXPORT_SYMBOL(__register_chrdev);
583 EXPORT_SYMBOL(__unregister_chrdev);
584 EXPORT_SYMBOL(directly_mappable_cdev_bdi);
585