xref: /openbmc/linux/fs/char_dev.c (revision e3b9f1e8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/char_dev.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/kdev_t.h>
11 #include <linux/slab.h>
12 #include <linux/string.h>
13 
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/module.h>
17 #include <linux/seq_file.h>
18 
19 #include <linux/kobject.h>
20 #include <linux/kobj_map.h>
21 #include <linux/cdev.h>
22 #include <linux/mutex.h>
23 #include <linux/backing-dev.h>
24 #include <linux/tty.h>
25 
26 #include "internal.h"
27 
28 static struct kobj_map *cdev_map;
29 
30 static DEFINE_MUTEX(chrdevs_lock);
31 
32 #define CHRDEV_MAJOR_HASH_SIZE 255
33 
34 static struct char_device_struct {
35 	struct char_device_struct *next;
36 	unsigned int major;
37 	unsigned int baseminor;
38 	int minorct;
39 	char name[64];
40 	struct cdev *cdev;		/* will die */
41 } *chrdevs[CHRDEV_MAJOR_HASH_SIZE];
42 
43 /* index in the above */
44 static inline int major_to_index(unsigned major)
45 {
46 	return major % CHRDEV_MAJOR_HASH_SIZE;
47 }
48 
49 #ifdef CONFIG_PROC_FS
50 
51 void chrdev_show(struct seq_file *f, off_t offset)
52 {
53 	struct char_device_struct *cd;
54 
55 	mutex_lock(&chrdevs_lock);
56 	for (cd = chrdevs[major_to_index(offset)]; cd; cd = cd->next) {
57 		if (cd->major == offset)
58 			seq_printf(f, "%3d %s\n", cd->major, cd->name);
59 	}
60 	mutex_unlock(&chrdevs_lock);
61 }
62 
63 #endif /* CONFIG_PROC_FS */
64 
65 static int find_dynamic_major(void)
66 {
67 	int i;
68 	struct char_device_struct *cd;
69 
70 	for (i = ARRAY_SIZE(chrdevs)-1; i > CHRDEV_MAJOR_DYN_END; i--) {
71 		if (chrdevs[i] == NULL)
72 			return i;
73 	}
74 
75 	for (i = CHRDEV_MAJOR_DYN_EXT_START;
76 	     i > CHRDEV_MAJOR_DYN_EXT_END; i--) {
77 		for (cd = chrdevs[major_to_index(i)]; cd; cd = cd->next)
78 			if (cd->major == i)
79 				break;
80 
81 		if (cd == NULL || cd->major != i)
82 			return i;
83 	}
84 
85 	return -EBUSY;
86 }
87 
88 /*
89  * Register a single major with a specified minor range.
90  *
91  * If major == 0 this functions will dynamically allocate a major and return
92  * its number.
93  *
94  * If major > 0 this function will attempt to reserve the passed range of
95  * minors and will return zero on success.
96  *
97  * Returns a -ve errno on failure.
98  */
99 static struct char_device_struct *
100 __register_chrdev_region(unsigned int major, unsigned int baseminor,
101 			   int minorct, const char *name)
102 {
103 	struct char_device_struct *cd, **cp;
104 	int ret = 0;
105 	int i;
106 
107 	cd = kzalloc(sizeof(struct char_device_struct), GFP_KERNEL);
108 	if (cd == NULL)
109 		return ERR_PTR(-ENOMEM);
110 
111 	mutex_lock(&chrdevs_lock);
112 
113 	if (major == 0) {
114 		ret = find_dynamic_major();
115 		if (ret < 0) {
116 			pr_err("CHRDEV \"%s\" dynamic allocation region is full\n",
117 			       name);
118 			goto out;
119 		}
120 		major = ret;
121 	}
122 
123 	if (major >= CHRDEV_MAJOR_MAX) {
124 		pr_err("CHRDEV \"%s\" major requested (%d) is greater than the maximum (%d)\n",
125 		       name, major, CHRDEV_MAJOR_MAX);
126 		ret = -EINVAL;
127 		goto out;
128 	}
129 
130 	cd->major = major;
131 	cd->baseminor = baseminor;
132 	cd->minorct = minorct;
133 	strlcpy(cd->name, name, sizeof(cd->name));
134 
135 	i = major_to_index(major);
136 
137 	for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)
138 		if ((*cp)->major > major ||
139 		    ((*cp)->major == major &&
140 		     (((*cp)->baseminor >= baseminor) ||
141 		      ((*cp)->baseminor + (*cp)->minorct > baseminor))))
142 			break;
143 
144 	/* Check for overlapping minor ranges.  */
145 	if (*cp && (*cp)->major == major) {
146 		int old_min = (*cp)->baseminor;
147 		int old_max = (*cp)->baseminor + (*cp)->minorct - 1;
148 		int new_min = baseminor;
149 		int new_max = baseminor + minorct - 1;
150 
151 		/* New driver overlaps from the left.  */
152 		if (new_max >= old_min && new_max <= old_max) {
153 			ret = -EBUSY;
154 			goto out;
155 		}
156 
157 		/* New driver overlaps from the right.  */
158 		if (new_min <= old_max && new_min >= old_min) {
159 			ret = -EBUSY;
160 			goto out;
161 		}
162 	}
163 
164 	cd->next = *cp;
165 	*cp = cd;
166 	mutex_unlock(&chrdevs_lock);
167 	return cd;
168 out:
169 	mutex_unlock(&chrdevs_lock);
170 	kfree(cd);
171 	return ERR_PTR(ret);
172 }
173 
174 static struct char_device_struct *
175 __unregister_chrdev_region(unsigned major, unsigned baseminor, int minorct)
176 {
177 	struct char_device_struct *cd = NULL, **cp;
178 	int i = major_to_index(major);
179 
180 	mutex_lock(&chrdevs_lock);
181 	for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)
182 		if ((*cp)->major == major &&
183 		    (*cp)->baseminor == baseminor &&
184 		    (*cp)->minorct == minorct)
185 			break;
186 	if (*cp) {
187 		cd = *cp;
188 		*cp = cd->next;
189 	}
190 	mutex_unlock(&chrdevs_lock);
191 	return cd;
192 }
193 
194 /**
195  * register_chrdev_region() - register a range of device numbers
196  * @from: the first in the desired range of device numbers; must include
197  *        the major number.
198  * @count: the number of consecutive device numbers required
199  * @name: the name of the device or driver.
200  *
201  * Return value is zero on success, a negative error code on failure.
202  */
203 int register_chrdev_region(dev_t from, unsigned count, const char *name)
204 {
205 	struct char_device_struct *cd;
206 	dev_t to = from + count;
207 	dev_t n, next;
208 
209 	for (n = from; n < to; n = next) {
210 		next = MKDEV(MAJOR(n)+1, 0);
211 		if (next > to)
212 			next = to;
213 		cd = __register_chrdev_region(MAJOR(n), MINOR(n),
214 			       next - n, name);
215 		if (IS_ERR(cd))
216 			goto fail;
217 	}
218 	return 0;
219 fail:
220 	to = n;
221 	for (n = from; n < to; n = next) {
222 		next = MKDEV(MAJOR(n)+1, 0);
223 		kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n));
224 	}
225 	return PTR_ERR(cd);
226 }
227 
228 /**
229  * alloc_chrdev_region() - register a range of char device numbers
230  * @dev: output parameter for first assigned number
231  * @baseminor: first of the requested range of minor numbers
232  * @count: the number of minor numbers required
233  * @name: the name of the associated device or driver
234  *
235  * Allocates a range of char device numbers.  The major number will be
236  * chosen dynamically, and returned (along with the first minor number)
237  * in @dev.  Returns zero or a negative error code.
238  */
239 int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,
240 			const char *name)
241 {
242 	struct char_device_struct *cd;
243 	cd = __register_chrdev_region(0, baseminor, count, name);
244 	if (IS_ERR(cd))
245 		return PTR_ERR(cd);
246 	*dev = MKDEV(cd->major, cd->baseminor);
247 	return 0;
248 }
249 
250 /**
251  * __register_chrdev() - create and register a cdev occupying a range of minors
252  * @major: major device number or 0 for dynamic allocation
253  * @baseminor: first of the requested range of minor numbers
254  * @count: the number of minor numbers required
255  * @name: name of this range of devices
256  * @fops: file operations associated with this devices
257  *
258  * If @major == 0 this functions will dynamically allocate a major and return
259  * its number.
260  *
261  * If @major > 0 this function will attempt to reserve a device with the given
262  * major number and will return zero on success.
263  *
264  * Returns a -ve errno on failure.
265  *
266  * The name of this device has nothing to do with the name of the device in
267  * /dev. It only helps to keep track of the different owners of devices. If
268  * your module name has only one type of devices it's ok to use e.g. the name
269  * of the module here.
270  */
271 int __register_chrdev(unsigned int major, unsigned int baseminor,
272 		      unsigned int count, const char *name,
273 		      const struct file_operations *fops)
274 {
275 	struct char_device_struct *cd;
276 	struct cdev *cdev;
277 	int err = -ENOMEM;
278 
279 	cd = __register_chrdev_region(major, baseminor, count, name);
280 	if (IS_ERR(cd))
281 		return PTR_ERR(cd);
282 
283 	cdev = cdev_alloc();
284 	if (!cdev)
285 		goto out2;
286 
287 	cdev->owner = fops->owner;
288 	cdev->ops = fops;
289 	kobject_set_name(&cdev->kobj, "%s", name);
290 
291 	err = cdev_add(cdev, MKDEV(cd->major, baseminor), count);
292 	if (err)
293 		goto out;
294 
295 	cd->cdev = cdev;
296 
297 	return major ? 0 : cd->major;
298 out:
299 	kobject_put(&cdev->kobj);
300 out2:
301 	kfree(__unregister_chrdev_region(cd->major, baseminor, count));
302 	return err;
303 }
304 
305 /**
306  * unregister_chrdev_region() - unregister a range of device numbers
307  * @from: the first in the range of numbers to unregister
308  * @count: the number of device numbers to unregister
309  *
310  * This function will unregister a range of @count device numbers,
311  * starting with @from.  The caller should normally be the one who
312  * allocated those numbers in the first place...
313  */
314 void unregister_chrdev_region(dev_t from, unsigned count)
315 {
316 	dev_t to = from + count;
317 	dev_t n, next;
318 
319 	for (n = from; n < to; n = next) {
320 		next = MKDEV(MAJOR(n)+1, 0);
321 		if (next > to)
322 			next = to;
323 		kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n));
324 	}
325 }
326 
327 /**
328  * __unregister_chrdev - unregister and destroy a cdev
329  * @major: major device number
330  * @baseminor: first of the range of minor numbers
331  * @count: the number of minor numbers this cdev is occupying
332  * @name: name of this range of devices
333  *
334  * Unregister and destroy the cdev occupying the region described by
335  * @major, @baseminor and @count.  This function undoes what
336  * __register_chrdev() did.
337  */
338 void __unregister_chrdev(unsigned int major, unsigned int baseminor,
339 			 unsigned int count, const char *name)
340 {
341 	struct char_device_struct *cd;
342 
343 	cd = __unregister_chrdev_region(major, baseminor, count);
344 	if (cd && cd->cdev)
345 		cdev_del(cd->cdev);
346 	kfree(cd);
347 }
348 
349 static DEFINE_SPINLOCK(cdev_lock);
350 
351 static struct kobject *cdev_get(struct cdev *p)
352 {
353 	struct module *owner = p->owner;
354 	struct kobject *kobj;
355 
356 	if (owner && !try_module_get(owner))
357 		return NULL;
358 	kobj = kobject_get(&p->kobj);
359 	if (!kobj)
360 		module_put(owner);
361 	return kobj;
362 }
363 
364 void cdev_put(struct cdev *p)
365 {
366 	if (p) {
367 		struct module *owner = p->owner;
368 		kobject_put(&p->kobj);
369 		module_put(owner);
370 	}
371 }
372 
373 /*
374  * Called every time a character special file is opened
375  */
376 static int chrdev_open(struct inode *inode, struct file *filp)
377 {
378 	const struct file_operations *fops;
379 	struct cdev *p;
380 	struct cdev *new = NULL;
381 	int ret = 0;
382 
383 	spin_lock(&cdev_lock);
384 	p = inode->i_cdev;
385 	if (!p) {
386 		struct kobject *kobj;
387 		int idx;
388 		spin_unlock(&cdev_lock);
389 		kobj = kobj_lookup(cdev_map, inode->i_rdev, &idx);
390 		if (!kobj)
391 			return -ENXIO;
392 		new = container_of(kobj, struct cdev, kobj);
393 		spin_lock(&cdev_lock);
394 		/* Check i_cdev again in case somebody beat us to it while
395 		   we dropped the lock. */
396 		p = inode->i_cdev;
397 		if (!p) {
398 			inode->i_cdev = p = new;
399 			list_add(&inode->i_devices, &p->list);
400 			new = NULL;
401 		} else if (!cdev_get(p))
402 			ret = -ENXIO;
403 	} else if (!cdev_get(p))
404 		ret = -ENXIO;
405 	spin_unlock(&cdev_lock);
406 	cdev_put(new);
407 	if (ret)
408 		return ret;
409 
410 	ret = -ENXIO;
411 	fops = fops_get(p->ops);
412 	if (!fops)
413 		goto out_cdev_put;
414 
415 	replace_fops(filp, fops);
416 	if (filp->f_op->open) {
417 		ret = filp->f_op->open(inode, filp);
418 		if (ret)
419 			goto out_cdev_put;
420 	}
421 
422 	return 0;
423 
424  out_cdev_put:
425 	cdev_put(p);
426 	return ret;
427 }
428 
429 void cd_forget(struct inode *inode)
430 {
431 	spin_lock(&cdev_lock);
432 	list_del_init(&inode->i_devices);
433 	inode->i_cdev = NULL;
434 	inode->i_mapping = &inode->i_data;
435 	spin_unlock(&cdev_lock);
436 }
437 
438 static void cdev_purge(struct cdev *cdev)
439 {
440 	spin_lock(&cdev_lock);
441 	while (!list_empty(&cdev->list)) {
442 		struct inode *inode;
443 		inode = container_of(cdev->list.next, struct inode, i_devices);
444 		list_del_init(&inode->i_devices);
445 		inode->i_cdev = NULL;
446 	}
447 	spin_unlock(&cdev_lock);
448 }
449 
450 /*
451  * Dummy default file-operations: the only thing this does
452  * is contain the open that then fills in the correct operations
453  * depending on the special file...
454  */
455 const struct file_operations def_chr_fops = {
456 	.open = chrdev_open,
457 	.llseek = noop_llseek,
458 };
459 
460 static struct kobject *exact_match(dev_t dev, int *part, void *data)
461 {
462 	struct cdev *p = data;
463 	return &p->kobj;
464 }
465 
466 static int exact_lock(dev_t dev, void *data)
467 {
468 	struct cdev *p = data;
469 	return cdev_get(p) ? 0 : -1;
470 }
471 
472 /**
473  * cdev_add() - add a char device to the system
474  * @p: the cdev structure for the device
475  * @dev: the first device number for which this device is responsible
476  * @count: the number of consecutive minor numbers corresponding to this
477  *         device
478  *
479  * cdev_add() adds the device represented by @p to the system, making it
480  * live immediately.  A negative error code is returned on failure.
481  */
482 int cdev_add(struct cdev *p, dev_t dev, unsigned count)
483 {
484 	int error;
485 
486 	p->dev = dev;
487 	p->count = count;
488 
489 	error = kobj_map(cdev_map, dev, count, NULL,
490 			 exact_match, exact_lock, p);
491 	if (error)
492 		return error;
493 
494 	kobject_get(p->kobj.parent);
495 
496 	return 0;
497 }
498 
499 /**
500  * cdev_set_parent() - set the parent kobject for a char device
501  * @p: the cdev structure
502  * @kobj: the kobject to take a reference to
503  *
504  * cdev_set_parent() sets a parent kobject which will be referenced
505  * appropriately so the parent is not freed before the cdev. This
506  * should be called before cdev_add.
507  */
508 void cdev_set_parent(struct cdev *p, struct kobject *kobj)
509 {
510 	WARN_ON(!kobj->state_initialized);
511 	p->kobj.parent = kobj;
512 }
513 
514 /**
515  * cdev_device_add() - add a char device and it's corresponding
516  *	struct device, linkink
517  * @dev: the device structure
518  * @cdev: the cdev structure
519  *
520  * cdev_device_add() adds the char device represented by @cdev to the system,
521  * just as cdev_add does. It then adds @dev to the system using device_add
522  * The dev_t for the char device will be taken from the struct device which
523  * needs to be initialized first. This helper function correctly takes a
524  * reference to the parent device so the parent will not get released until
525  * all references to the cdev are released.
526  *
527  * This helper uses dev->devt for the device number. If it is not set
528  * it will not add the cdev and it will be equivalent to device_add.
529  *
530  * This function should be used whenever the struct cdev and the
531  * struct device are members of the same structure whose lifetime is
532  * managed by the struct device.
533  *
534  * NOTE: Callers must assume that userspace was able to open the cdev and
535  * can call cdev fops callbacks at any time, even if this function fails.
536  */
537 int cdev_device_add(struct cdev *cdev, struct device *dev)
538 {
539 	int rc = 0;
540 
541 	if (dev->devt) {
542 		cdev_set_parent(cdev, &dev->kobj);
543 
544 		rc = cdev_add(cdev, dev->devt, 1);
545 		if (rc)
546 			return rc;
547 	}
548 
549 	rc = device_add(dev);
550 	if (rc)
551 		cdev_del(cdev);
552 
553 	return rc;
554 }
555 
556 /**
557  * cdev_device_del() - inverse of cdev_device_add
558  * @dev: the device structure
559  * @cdev: the cdev structure
560  *
561  * cdev_device_del() is a helper function to call cdev_del and device_del.
562  * It should be used whenever cdev_device_add is used.
563  *
564  * If dev->devt is not set it will not remove the cdev and will be equivalent
565  * to device_del.
566  *
567  * NOTE: This guarantees that associated sysfs callbacks are not running
568  * or runnable, however any cdevs already open will remain and their fops
569  * will still be callable even after this function returns.
570  */
571 void cdev_device_del(struct cdev *cdev, struct device *dev)
572 {
573 	device_del(dev);
574 	if (dev->devt)
575 		cdev_del(cdev);
576 }
577 
578 static void cdev_unmap(dev_t dev, unsigned count)
579 {
580 	kobj_unmap(cdev_map, dev, count);
581 }
582 
583 /**
584  * cdev_del() - remove a cdev from the system
585  * @p: the cdev structure to be removed
586  *
587  * cdev_del() removes @p from the system, possibly freeing the structure
588  * itself.
589  *
590  * NOTE: This guarantees that cdev device will no longer be able to be
591  * opened, however any cdevs already open will remain and their fops will
592  * still be callable even after cdev_del returns.
593  */
594 void cdev_del(struct cdev *p)
595 {
596 	cdev_unmap(p->dev, p->count);
597 	kobject_put(&p->kobj);
598 }
599 
600 
601 static void cdev_default_release(struct kobject *kobj)
602 {
603 	struct cdev *p = container_of(kobj, struct cdev, kobj);
604 	struct kobject *parent = kobj->parent;
605 
606 	cdev_purge(p);
607 	kobject_put(parent);
608 }
609 
610 static void cdev_dynamic_release(struct kobject *kobj)
611 {
612 	struct cdev *p = container_of(kobj, struct cdev, kobj);
613 	struct kobject *parent = kobj->parent;
614 
615 	cdev_purge(p);
616 	kfree(p);
617 	kobject_put(parent);
618 }
619 
620 static struct kobj_type ktype_cdev_default = {
621 	.release	= cdev_default_release,
622 };
623 
624 static struct kobj_type ktype_cdev_dynamic = {
625 	.release	= cdev_dynamic_release,
626 };
627 
628 /**
629  * cdev_alloc() - allocate a cdev structure
630  *
631  * Allocates and returns a cdev structure, or NULL on failure.
632  */
633 struct cdev *cdev_alloc(void)
634 {
635 	struct cdev *p = kzalloc(sizeof(struct cdev), GFP_KERNEL);
636 	if (p) {
637 		INIT_LIST_HEAD(&p->list);
638 		kobject_init(&p->kobj, &ktype_cdev_dynamic);
639 	}
640 	return p;
641 }
642 
643 /**
644  * cdev_init() - initialize a cdev structure
645  * @cdev: the structure to initialize
646  * @fops: the file_operations for this device
647  *
648  * Initializes @cdev, remembering @fops, making it ready to add to the
649  * system with cdev_add().
650  */
651 void cdev_init(struct cdev *cdev, const struct file_operations *fops)
652 {
653 	memset(cdev, 0, sizeof *cdev);
654 	INIT_LIST_HEAD(&cdev->list);
655 	kobject_init(&cdev->kobj, &ktype_cdev_default);
656 	cdev->ops = fops;
657 }
658 
659 static struct kobject *base_probe(dev_t dev, int *part, void *data)
660 {
661 	if (request_module("char-major-%d-%d", MAJOR(dev), MINOR(dev)) > 0)
662 		/* Make old-style 2.4 aliases work */
663 		request_module("char-major-%d", MAJOR(dev));
664 	return NULL;
665 }
666 
667 void __init chrdev_init(void)
668 {
669 	cdev_map = kobj_map_init(base_probe, &chrdevs_lock);
670 }
671 
672 
673 /* Let modules do char dev stuff */
674 EXPORT_SYMBOL(register_chrdev_region);
675 EXPORT_SYMBOL(unregister_chrdev_region);
676 EXPORT_SYMBOL(alloc_chrdev_region);
677 EXPORT_SYMBOL(cdev_init);
678 EXPORT_SYMBOL(cdev_alloc);
679 EXPORT_SYMBOL(cdev_del);
680 EXPORT_SYMBOL(cdev_add);
681 EXPORT_SYMBOL(cdev_set_parent);
682 EXPORT_SYMBOL(cdev_device_add);
683 EXPORT_SYMBOL(cdev_device_del);
684 EXPORT_SYMBOL(__register_chrdev);
685 EXPORT_SYMBOL(__unregister_chrdev);
686