1 /* 2 * linux/fs/char_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/init.h> 8 #include <linux/fs.h> 9 #include <linux/kdev_t.h> 10 #include <linux/slab.h> 11 #include <linux/string.h> 12 13 #include <linux/major.h> 14 #include <linux/errno.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 18 #include <linux/kobject.h> 19 #include <linux/kobj_map.h> 20 #include <linux/cdev.h> 21 #include <linux/mutex.h> 22 #include <linux/backing-dev.h> 23 #include <linux/tty.h> 24 25 #include "internal.h" 26 27 /* 28 * capabilities for /dev/mem, /dev/kmem and similar directly mappable character 29 * devices 30 * - permits shared-mmap for read, write and/or exec 31 * - does not permit private mmap in NOMMU mode (can't do COW) 32 * - no readahead or I/O queue unplugging required 33 */ 34 struct backing_dev_info directly_mappable_cdev_bdi = { 35 .name = "char", 36 .capabilities = ( 37 #ifdef CONFIG_MMU 38 /* permit private copies of the data to be taken */ 39 BDI_CAP_MAP_COPY | 40 #endif 41 /* permit direct mmap, for read, write or exec */ 42 BDI_CAP_MAP_DIRECT | 43 BDI_CAP_READ_MAP | BDI_CAP_WRITE_MAP | BDI_CAP_EXEC_MAP | 44 /* no writeback happens */ 45 BDI_CAP_NO_ACCT_AND_WRITEBACK), 46 }; 47 48 static struct kobj_map *cdev_map; 49 50 static DEFINE_MUTEX(chrdevs_lock); 51 52 static struct char_device_struct { 53 struct char_device_struct *next; 54 unsigned int major; 55 unsigned int baseminor; 56 int minorct; 57 char name[64]; 58 struct cdev *cdev; /* will die */ 59 } *chrdevs[CHRDEV_MAJOR_HASH_SIZE]; 60 61 /* index in the above */ 62 static inline int major_to_index(unsigned major) 63 { 64 return major % CHRDEV_MAJOR_HASH_SIZE; 65 } 66 67 #ifdef CONFIG_PROC_FS 68 69 void chrdev_show(struct seq_file *f, off_t offset) 70 { 71 struct char_device_struct *cd; 72 73 if (offset < CHRDEV_MAJOR_HASH_SIZE) { 74 mutex_lock(&chrdevs_lock); 75 for (cd = chrdevs[offset]; cd; cd = cd->next) 76 seq_printf(f, "%3d %s\n", cd->major, cd->name); 77 mutex_unlock(&chrdevs_lock); 78 } 79 } 80 81 #endif /* CONFIG_PROC_FS */ 82 83 /* 84 * Register a single major with a specified minor range. 85 * 86 * If major == 0 this functions will dynamically allocate a major and return 87 * its number. 88 * 89 * If major > 0 this function will attempt to reserve the passed range of 90 * minors and will return zero on success. 91 * 92 * Returns a -ve errno on failure. 93 */ 94 static struct char_device_struct * 95 __register_chrdev_region(unsigned int major, unsigned int baseminor, 96 int minorct, const char *name) 97 { 98 struct char_device_struct *cd, **cp; 99 int ret = 0; 100 int i; 101 102 cd = kzalloc(sizeof(struct char_device_struct), GFP_KERNEL); 103 if (cd == NULL) 104 return ERR_PTR(-ENOMEM); 105 106 mutex_lock(&chrdevs_lock); 107 108 /* temporary */ 109 if (major == 0) { 110 for (i = ARRAY_SIZE(chrdevs)-1; i > 0; i--) { 111 if (chrdevs[i] == NULL) 112 break; 113 } 114 115 if (i == 0) { 116 ret = -EBUSY; 117 goto out; 118 } 119 major = i; 120 } 121 122 cd->major = major; 123 cd->baseminor = baseminor; 124 cd->minorct = minorct; 125 strlcpy(cd->name, name, sizeof(cd->name)); 126 127 i = major_to_index(major); 128 129 for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next) 130 if ((*cp)->major > major || 131 ((*cp)->major == major && 132 (((*cp)->baseminor >= baseminor) || 133 ((*cp)->baseminor + (*cp)->minorct > baseminor)))) 134 break; 135 136 /* Check for overlapping minor ranges. */ 137 if (*cp && (*cp)->major == major) { 138 int old_min = (*cp)->baseminor; 139 int old_max = (*cp)->baseminor + (*cp)->minorct - 1; 140 int new_min = baseminor; 141 int new_max = baseminor + minorct - 1; 142 143 /* New driver overlaps from the left. */ 144 if (new_max >= old_min && new_max <= old_max) { 145 ret = -EBUSY; 146 goto out; 147 } 148 149 /* New driver overlaps from the right. */ 150 if (new_min <= old_max && new_min >= old_min) { 151 ret = -EBUSY; 152 goto out; 153 } 154 } 155 156 cd->next = *cp; 157 *cp = cd; 158 mutex_unlock(&chrdevs_lock); 159 return cd; 160 out: 161 mutex_unlock(&chrdevs_lock); 162 kfree(cd); 163 return ERR_PTR(ret); 164 } 165 166 static struct char_device_struct * 167 __unregister_chrdev_region(unsigned major, unsigned baseminor, int minorct) 168 { 169 struct char_device_struct *cd = NULL, **cp; 170 int i = major_to_index(major); 171 172 mutex_lock(&chrdevs_lock); 173 for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next) 174 if ((*cp)->major == major && 175 (*cp)->baseminor == baseminor && 176 (*cp)->minorct == minorct) 177 break; 178 if (*cp) { 179 cd = *cp; 180 *cp = cd->next; 181 } 182 mutex_unlock(&chrdevs_lock); 183 return cd; 184 } 185 186 /** 187 * register_chrdev_region() - register a range of device numbers 188 * @from: the first in the desired range of device numbers; must include 189 * the major number. 190 * @count: the number of consecutive device numbers required 191 * @name: the name of the device or driver. 192 * 193 * Return value is zero on success, a negative error code on failure. 194 */ 195 int register_chrdev_region(dev_t from, unsigned count, const char *name) 196 { 197 struct char_device_struct *cd; 198 dev_t to = from + count; 199 dev_t n, next; 200 201 for (n = from; n < to; n = next) { 202 next = MKDEV(MAJOR(n)+1, 0); 203 if (next > to) 204 next = to; 205 cd = __register_chrdev_region(MAJOR(n), MINOR(n), 206 next - n, name); 207 if (IS_ERR(cd)) 208 goto fail; 209 } 210 return 0; 211 fail: 212 to = n; 213 for (n = from; n < to; n = next) { 214 next = MKDEV(MAJOR(n)+1, 0); 215 kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n)); 216 } 217 return PTR_ERR(cd); 218 } 219 220 /** 221 * alloc_chrdev_region() - register a range of char device numbers 222 * @dev: output parameter for first assigned number 223 * @baseminor: first of the requested range of minor numbers 224 * @count: the number of minor numbers required 225 * @name: the name of the associated device or driver 226 * 227 * Allocates a range of char device numbers. The major number will be 228 * chosen dynamically, and returned (along with the first minor number) 229 * in @dev. Returns zero or a negative error code. 230 */ 231 int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, 232 const char *name) 233 { 234 struct char_device_struct *cd; 235 cd = __register_chrdev_region(0, baseminor, count, name); 236 if (IS_ERR(cd)) 237 return PTR_ERR(cd); 238 *dev = MKDEV(cd->major, cd->baseminor); 239 return 0; 240 } 241 242 /** 243 * __register_chrdev() - create and register a cdev occupying a range of minors 244 * @major: major device number or 0 for dynamic allocation 245 * @baseminor: first of the requested range of minor numbers 246 * @count: the number of minor numbers required 247 * @name: name of this range of devices 248 * @fops: file operations associated with this devices 249 * 250 * If @major == 0 this functions will dynamically allocate a major and return 251 * its number. 252 * 253 * If @major > 0 this function will attempt to reserve a device with the given 254 * major number and will return zero on success. 255 * 256 * Returns a -ve errno on failure. 257 * 258 * The name of this device has nothing to do with the name of the device in 259 * /dev. It only helps to keep track of the different owners of devices. If 260 * your module name has only one type of devices it's ok to use e.g. the name 261 * of the module here. 262 */ 263 int __register_chrdev(unsigned int major, unsigned int baseminor, 264 unsigned int count, const char *name, 265 const struct file_operations *fops) 266 { 267 struct char_device_struct *cd; 268 struct cdev *cdev; 269 int err = -ENOMEM; 270 271 cd = __register_chrdev_region(major, baseminor, count, name); 272 if (IS_ERR(cd)) 273 return PTR_ERR(cd); 274 275 cdev = cdev_alloc(); 276 if (!cdev) 277 goto out2; 278 279 cdev->owner = fops->owner; 280 cdev->ops = fops; 281 kobject_set_name(&cdev->kobj, "%s", name); 282 283 err = cdev_add(cdev, MKDEV(cd->major, baseminor), count); 284 if (err) 285 goto out; 286 287 cd->cdev = cdev; 288 289 return major ? 0 : cd->major; 290 out: 291 kobject_put(&cdev->kobj); 292 out2: 293 kfree(__unregister_chrdev_region(cd->major, baseminor, count)); 294 return err; 295 } 296 297 /** 298 * unregister_chrdev_region() - return a range of device numbers 299 * @from: the first in the range of numbers to unregister 300 * @count: the number of device numbers to unregister 301 * 302 * This function will unregister a range of @count device numbers, 303 * starting with @from. The caller should normally be the one who 304 * allocated those numbers in the first place... 305 */ 306 void unregister_chrdev_region(dev_t from, unsigned count) 307 { 308 dev_t to = from + count; 309 dev_t n, next; 310 311 for (n = from; n < to; n = next) { 312 next = MKDEV(MAJOR(n)+1, 0); 313 if (next > to) 314 next = to; 315 kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n)); 316 } 317 } 318 319 /** 320 * __unregister_chrdev - unregister and destroy a cdev 321 * @major: major device number 322 * @baseminor: first of the range of minor numbers 323 * @count: the number of minor numbers this cdev is occupying 324 * @name: name of this range of devices 325 * 326 * Unregister and destroy the cdev occupying the region described by 327 * @major, @baseminor and @count. This function undoes what 328 * __register_chrdev() did. 329 */ 330 void __unregister_chrdev(unsigned int major, unsigned int baseminor, 331 unsigned int count, const char *name) 332 { 333 struct char_device_struct *cd; 334 335 cd = __unregister_chrdev_region(major, baseminor, count); 336 if (cd && cd->cdev) 337 cdev_del(cd->cdev); 338 kfree(cd); 339 } 340 341 static DEFINE_SPINLOCK(cdev_lock); 342 343 static struct kobject *cdev_get(struct cdev *p) 344 { 345 struct module *owner = p->owner; 346 struct kobject *kobj; 347 348 if (owner && !try_module_get(owner)) 349 return NULL; 350 kobj = kobject_get(&p->kobj); 351 if (!kobj) 352 module_put(owner); 353 return kobj; 354 } 355 356 void cdev_put(struct cdev *p) 357 { 358 if (p) { 359 struct module *owner = p->owner; 360 kobject_put(&p->kobj); 361 module_put(owner); 362 } 363 } 364 365 /* 366 * Called every time a character special file is opened 367 */ 368 static int chrdev_open(struct inode *inode, struct file *filp) 369 { 370 const struct file_operations *fops; 371 struct cdev *p; 372 struct cdev *new = NULL; 373 int ret = 0; 374 375 spin_lock(&cdev_lock); 376 p = inode->i_cdev; 377 if (!p) { 378 struct kobject *kobj; 379 int idx; 380 spin_unlock(&cdev_lock); 381 kobj = kobj_lookup(cdev_map, inode->i_rdev, &idx); 382 if (!kobj) 383 return -ENXIO; 384 new = container_of(kobj, struct cdev, kobj); 385 spin_lock(&cdev_lock); 386 /* Check i_cdev again in case somebody beat us to it while 387 we dropped the lock. */ 388 p = inode->i_cdev; 389 if (!p) { 390 inode->i_cdev = p = new; 391 list_add(&inode->i_devices, &p->list); 392 new = NULL; 393 } else if (!cdev_get(p)) 394 ret = -ENXIO; 395 } else if (!cdev_get(p)) 396 ret = -ENXIO; 397 spin_unlock(&cdev_lock); 398 cdev_put(new); 399 if (ret) 400 return ret; 401 402 ret = -ENXIO; 403 fops = fops_get(p->ops); 404 if (!fops) 405 goto out_cdev_put; 406 407 replace_fops(filp, fops); 408 if (filp->f_op->open) { 409 ret = filp->f_op->open(inode, filp); 410 if (ret) 411 goto out_cdev_put; 412 } 413 414 return 0; 415 416 out_cdev_put: 417 cdev_put(p); 418 return ret; 419 } 420 421 void cd_forget(struct inode *inode) 422 { 423 spin_lock(&cdev_lock); 424 list_del_init(&inode->i_devices); 425 inode->i_cdev = NULL; 426 spin_unlock(&cdev_lock); 427 } 428 429 static void cdev_purge(struct cdev *cdev) 430 { 431 spin_lock(&cdev_lock); 432 while (!list_empty(&cdev->list)) { 433 struct inode *inode; 434 inode = container_of(cdev->list.next, struct inode, i_devices); 435 list_del_init(&inode->i_devices); 436 inode->i_cdev = NULL; 437 } 438 spin_unlock(&cdev_lock); 439 } 440 441 /* 442 * Dummy default file-operations: the only thing this does 443 * is contain the open that then fills in the correct operations 444 * depending on the special file... 445 */ 446 const struct file_operations def_chr_fops = { 447 .open = chrdev_open, 448 .llseek = noop_llseek, 449 }; 450 451 static struct kobject *exact_match(dev_t dev, int *part, void *data) 452 { 453 struct cdev *p = data; 454 return &p->kobj; 455 } 456 457 static int exact_lock(dev_t dev, void *data) 458 { 459 struct cdev *p = data; 460 return cdev_get(p) ? 0 : -1; 461 } 462 463 /** 464 * cdev_add() - add a char device to the system 465 * @p: the cdev structure for the device 466 * @dev: the first device number for which this device is responsible 467 * @count: the number of consecutive minor numbers corresponding to this 468 * device 469 * 470 * cdev_add() adds the device represented by @p to the system, making it 471 * live immediately. A negative error code is returned on failure. 472 */ 473 int cdev_add(struct cdev *p, dev_t dev, unsigned count) 474 { 475 int error; 476 477 p->dev = dev; 478 p->count = count; 479 480 error = kobj_map(cdev_map, dev, count, NULL, 481 exact_match, exact_lock, p); 482 if (error) 483 return error; 484 485 kobject_get(p->kobj.parent); 486 487 return 0; 488 } 489 490 static void cdev_unmap(dev_t dev, unsigned count) 491 { 492 kobj_unmap(cdev_map, dev, count); 493 } 494 495 /** 496 * cdev_del() - remove a cdev from the system 497 * @p: the cdev structure to be removed 498 * 499 * cdev_del() removes @p from the system, possibly freeing the structure 500 * itself. 501 */ 502 void cdev_del(struct cdev *p) 503 { 504 cdev_unmap(p->dev, p->count); 505 kobject_put(&p->kobj); 506 } 507 508 509 static void cdev_default_release(struct kobject *kobj) 510 { 511 struct cdev *p = container_of(kobj, struct cdev, kobj); 512 struct kobject *parent = kobj->parent; 513 514 cdev_purge(p); 515 kobject_put(parent); 516 } 517 518 static void cdev_dynamic_release(struct kobject *kobj) 519 { 520 struct cdev *p = container_of(kobj, struct cdev, kobj); 521 struct kobject *parent = kobj->parent; 522 523 cdev_purge(p); 524 kfree(p); 525 kobject_put(parent); 526 } 527 528 static struct kobj_type ktype_cdev_default = { 529 .release = cdev_default_release, 530 }; 531 532 static struct kobj_type ktype_cdev_dynamic = { 533 .release = cdev_dynamic_release, 534 }; 535 536 /** 537 * cdev_alloc() - allocate a cdev structure 538 * 539 * Allocates and returns a cdev structure, or NULL on failure. 540 */ 541 struct cdev *cdev_alloc(void) 542 { 543 struct cdev *p = kzalloc(sizeof(struct cdev), GFP_KERNEL); 544 if (p) { 545 INIT_LIST_HEAD(&p->list); 546 kobject_init(&p->kobj, &ktype_cdev_dynamic); 547 } 548 return p; 549 } 550 551 /** 552 * cdev_init() - initialize a cdev structure 553 * @cdev: the structure to initialize 554 * @fops: the file_operations for this device 555 * 556 * Initializes @cdev, remembering @fops, making it ready to add to the 557 * system with cdev_add(). 558 */ 559 void cdev_init(struct cdev *cdev, const struct file_operations *fops) 560 { 561 memset(cdev, 0, sizeof *cdev); 562 INIT_LIST_HEAD(&cdev->list); 563 kobject_init(&cdev->kobj, &ktype_cdev_default); 564 cdev->ops = fops; 565 } 566 567 static struct kobject *base_probe(dev_t dev, int *part, void *data) 568 { 569 if (request_module("char-major-%d-%d", MAJOR(dev), MINOR(dev)) > 0) 570 /* Make old-style 2.4 aliases work */ 571 request_module("char-major-%d", MAJOR(dev)); 572 return NULL; 573 } 574 575 void __init chrdev_init(void) 576 { 577 cdev_map = kobj_map_init(base_probe, &chrdevs_lock); 578 if (bdi_init(&directly_mappable_cdev_bdi)) 579 panic("Failed to init directly mappable cdev bdi"); 580 } 581 582 583 /* Let modules do char dev stuff */ 584 EXPORT_SYMBOL(register_chrdev_region); 585 EXPORT_SYMBOL(unregister_chrdev_region); 586 EXPORT_SYMBOL(alloc_chrdev_region); 587 EXPORT_SYMBOL(cdev_init); 588 EXPORT_SYMBOL(cdev_alloc); 589 EXPORT_SYMBOL(cdev_del); 590 EXPORT_SYMBOL(cdev_add); 591 EXPORT_SYMBOL(__register_chrdev); 592 EXPORT_SYMBOL(__unregister_chrdev); 593 EXPORT_SYMBOL(directly_mappable_cdev_bdi); 594