1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _FS_CEPH_SUPER_H 3 #define _FS_CEPH_SUPER_H 4 5 #include <linux/ceph/ceph_debug.h> 6 7 #include <asm/unaligned.h> 8 #include <linux/backing-dev.h> 9 #include <linux/completion.h> 10 #include <linux/exportfs.h> 11 #include <linux/fs.h> 12 #include <linux/mempool.h> 13 #include <linux/pagemap.h> 14 #include <linux/wait.h> 15 #include <linux/writeback.h> 16 #include <linux/slab.h> 17 #include <linux/posix_acl.h> 18 #include <linux/refcount.h> 19 #include <linux/security.h> 20 21 #include <linux/ceph/libceph.h> 22 23 #ifdef CONFIG_CEPH_FSCACHE 24 #define FSCACHE_USE_NEW_IO_API 25 #include <linux/fscache.h> 26 #endif 27 28 /* f_type in struct statfs */ 29 #define CEPH_SUPER_MAGIC 0x00c36400 30 31 /* large granularity for statfs utilization stats to facilitate 32 * large volume sizes on 32-bit machines. */ 33 #define CEPH_BLOCK_SHIFT 22 /* 4 MB */ 34 #define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT) 35 36 #define CEPH_MOUNT_OPT_CLEANRECOVER (1<<1) /* auto reonnect (clean mode) after blocklisted */ 37 #define CEPH_MOUNT_OPT_DIRSTAT (1<<4) /* `cat dirname` for stats */ 38 #define CEPH_MOUNT_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */ 39 #define CEPH_MOUNT_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */ 40 #define CEPH_MOUNT_OPT_INO32 (1<<8) /* 32 bit inos */ 41 #define CEPH_MOUNT_OPT_DCACHE (1<<9) /* use dcache for readdir etc */ 42 #define CEPH_MOUNT_OPT_FSCACHE (1<<10) /* use fscache */ 43 #define CEPH_MOUNT_OPT_NOPOOLPERM (1<<11) /* no pool permission check */ 44 #define CEPH_MOUNT_OPT_MOUNTWAIT (1<<12) /* mount waits if no mds is up */ 45 #define CEPH_MOUNT_OPT_NOQUOTADF (1<<13) /* no root dir quota in statfs */ 46 #define CEPH_MOUNT_OPT_NOCOPYFROM (1<<14) /* don't use RADOS 'copy-from' op */ 47 #define CEPH_MOUNT_OPT_ASYNC_DIROPS (1<<15) /* allow async directory ops */ 48 49 #define CEPH_MOUNT_OPT_DEFAULT \ 50 (CEPH_MOUNT_OPT_DCACHE | \ 51 CEPH_MOUNT_OPT_NOCOPYFROM) 52 53 #define ceph_set_mount_opt(fsc, opt) \ 54 (fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt 55 #define ceph_clear_mount_opt(fsc, opt) \ 56 (fsc)->mount_options->flags &= ~CEPH_MOUNT_OPT_##opt 57 #define ceph_test_mount_opt(fsc, opt) \ 58 (!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt)) 59 60 /* max size of osd read request, limited by libceph */ 61 #define CEPH_MAX_READ_SIZE CEPH_MSG_MAX_DATA_LEN 62 /* osd has a configurable limitaion of max write size. 63 * CEPH_MSG_MAX_DATA_LEN should be small enough. */ 64 #define CEPH_MAX_WRITE_SIZE CEPH_MSG_MAX_DATA_LEN 65 #define CEPH_RASIZE_DEFAULT (8192*1024) /* max readahead */ 66 #define CEPH_MAX_READDIR_DEFAULT 1024 67 #define CEPH_MAX_READDIR_BYTES_DEFAULT (512*1024) 68 #define CEPH_SNAPDIRNAME_DEFAULT ".snap" 69 70 /* 71 * Delay telling the MDS we no longer want caps, in case we reopen 72 * the file. Delay a minimum amount of time, even if we send a cap 73 * message for some other reason. Otherwise, take the oppotunity to 74 * update the mds to avoid sending another message later. 75 */ 76 #define CEPH_CAPS_WANTED_DELAY_MIN_DEFAULT 5 /* cap release delay */ 77 #define CEPH_CAPS_WANTED_DELAY_MAX_DEFAULT 60 /* cap release delay */ 78 79 struct ceph_mount_options { 80 unsigned int flags; 81 82 unsigned int wsize; /* max write size */ 83 unsigned int rsize; /* max read size */ 84 unsigned int rasize; /* max readahead */ 85 unsigned int congestion_kb; /* max writeback in flight */ 86 unsigned int caps_wanted_delay_min, caps_wanted_delay_max; 87 int caps_max; 88 unsigned int max_readdir; /* max readdir result (entries) */ 89 unsigned int max_readdir_bytes; /* max readdir result (bytes) */ 90 91 /* 92 * everything above this point can be memcmp'd; everything below 93 * is handled in compare_mount_options() 94 */ 95 96 char *snapdir_name; /* default ".snap" */ 97 char *mds_namespace; /* default NULL */ 98 char *server_path; /* default NULL (means "/") */ 99 char *fscache_uniq; /* default NULL */ 100 }; 101 102 struct ceph_fs_client { 103 struct super_block *sb; 104 105 struct list_head metric_wakeup; 106 107 struct ceph_mount_options *mount_options; 108 struct ceph_client *client; 109 110 int mount_state; 111 112 bool blocklisted; 113 114 bool have_copy_from2; 115 116 u32 filp_gen; 117 loff_t max_file_size; 118 119 struct ceph_mds_client *mdsc; 120 121 atomic_long_t writeback_count; 122 123 struct workqueue_struct *inode_wq; 124 struct workqueue_struct *cap_wq; 125 126 #ifdef CONFIG_DEBUG_FS 127 struct dentry *debugfs_dentry_lru, *debugfs_caps; 128 struct dentry *debugfs_congestion_kb; 129 struct dentry *debugfs_bdi; 130 struct dentry *debugfs_mdsc, *debugfs_mdsmap; 131 struct dentry *debugfs_metric; 132 struct dentry *debugfs_status; 133 struct dentry *debugfs_mds_sessions; 134 #endif 135 136 #ifdef CONFIG_CEPH_FSCACHE 137 struct fscache_cookie *fscache; 138 #endif 139 }; 140 141 142 /* 143 * File i/o capability. This tracks shared state with the metadata 144 * server that allows us to cache or writeback attributes or to read 145 * and write data. For any given inode, we should have one or more 146 * capabilities, one issued by each metadata server, and our 147 * cumulative access is the OR of all issued capabilities. 148 * 149 * Each cap is referenced by the inode's i_caps rbtree and by per-mds 150 * session capability lists. 151 */ 152 struct ceph_cap { 153 struct ceph_inode_info *ci; 154 struct rb_node ci_node; /* per-ci cap tree */ 155 struct ceph_mds_session *session; 156 struct list_head session_caps; /* per-session caplist */ 157 u64 cap_id; /* unique cap id (mds provided) */ 158 union { 159 /* in-use caps */ 160 struct { 161 int issued; /* latest, from the mds */ 162 int implemented; /* implemented superset of 163 issued (for revocation) */ 164 int mds; /* mds index for this cap */ 165 int mds_wanted; /* caps wanted from this mds */ 166 }; 167 /* caps to release */ 168 struct { 169 u64 cap_ino; 170 int queue_release; 171 }; 172 }; 173 u32 seq, issue_seq, mseq; 174 u32 cap_gen; /* active/stale cycle */ 175 unsigned long last_used; 176 struct list_head caps_item; 177 }; 178 179 #define CHECK_CAPS_AUTHONLY 1 /* only check auth cap */ 180 #define CHECK_CAPS_FLUSH 2 /* flush any dirty caps */ 181 #define CHECK_CAPS_NOINVAL 4 /* don't invalidate pagecache */ 182 183 struct ceph_cap_flush { 184 u64 tid; 185 int caps; 186 bool wake; /* wake up flush waiters when finish ? */ 187 bool is_capsnap; /* true means capsnap */ 188 struct list_head g_list; // global 189 struct list_head i_list; // per inode 190 }; 191 192 /* 193 * Snapped cap state that is pending flush to mds. When a snapshot occurs, 194 * we first complete any in-process sync writes and writeback any dirty 195 * data before flushing the snapped state (tracked here) back to the MDS. 196 */ 197 struct ceph_cap_snap { 198 refcount_t nref; 199 struct list_head ci_item; 200 201 struct ceph_cap_flush cap_flush; 202 203 u64 follows; 204 int issued, dirty; 205 struct ceph_snap_context *context; 206 207 umode_t mode; 208 kuid_t uid; 209 kgid_t gid; 210 211 struct ceph_buffer *xattr_blob; 212 u64 xattr_version; 213 214 u64 size; 215 u64 change_attr; 216 struct timespec64 mtime, atime, ctime, btime; 217 u64 time_warp_seq; 218 u64 truncate_size; 219 u32 truncate_seq; 220 int writing; /* a sync write is still in progress */ 221 int dirty_pages; /* dirty pages awaiting writeback */ 222 bool inline_data; 223 bool need_flush; 224 }; 225 226 static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap) 227 { 228 if (refcount_dec_and_test(&capsnap->nref)) { 229 if (capsnap->xattr_blob) 230 ceph_buffer_put(capsnap->xattr_blob); 231 kfree(capsnap); 232 } 233 } 234 235 /* 236 * The frag tree describes how a directory is fragmented, potentially across 237 * multiple metadata servers. It is also used to indicate points where 238 * metadata authority is delegated, and whether/where metadata is replicated. 239 * 240 * A _leaf_ frag will be present in the i_fragtree IFF there is 241 * delegation info. That is, if mds >= 0 || ndist > 0. 242 */ 243 #define CEPH_MAX_DIRFRAG_REP 4 244 245 struct ceph_inode_frag { 246 struct rb_node node; 247 248 /* fragtree state */ 249 u32 frag; 250 int split_by; /* i.e. 2^(split_by) children */ 251 252 /* delegation and replication info */ 253 int mds; /* -1 if same authority as parent */ 254 int ndist; /* >0 if replicated */ 255 int dist[CEPH_MAX_DIRFRAG_REP]; 256 }; 257 258 /* 259 * We cache inode xattrs as an encoded blob until they are first used, 260 * at which point we parse them into an rbtree. 261 */ 262 struct ceph_inode_xattr { 263 struct rb_node node; 264 265 const char *name; 266 int name_len; 267 const char *val; 268 int val_len; 269 int dirty; 270 271 int should_free_name; 272 int should_free_val; 273 }; 274 275 /* 276 * Ceph dentry state 277 */ 278 struct ceph_dentry_info { 279 struct dentry *dentry; 280 struct ceph_mds_session *lease_session; 281 struct list_head lease_list; 282 unsigned flags; 283 int lease_shared_gen; 284 u32 lease_gen; 285 u32 lease_seq; 286 unsigned long lease_renew_after, lease_renew_from; 287 unsigned long time; 288 u64 offset; 289 }; 290 291 #define CEPH_DENTRY_REFERENCED 1 292 #define CEPH_DENTRY_LEASE_LIST 2 293 #define CEPH_DENTRY_SHRINK_LIST 4 294 #define CEPH_DENTRY_PRIMARY_LINK 8 295 296 struct ceph_inode_xattrs_info { 297 /* 298 * (still encoded) xattr blob. we avoid the overhead of parsing 299 * this until someone actually calls getxattr, etc. 300 * 301 * blob->vec.iov_len == 4 implies there are no xattrs; blob == 302 * NULL means we don't know. 303 */ 304 struct ceph_buffer *blob, *prealloc_blob; 305 306 struct rb_root index; 307 bool dirty; 308 int count; 309 int names_size; 310 int vals_size; 311 u64 version, index_version; 312 }; 313 314 /* 315 * Ceph inode. 316 */ 317 struct ceph_inode_info { 318 struct ceph_vino i_vino; /* ceph ino + snap */ 319 320 spinlock_t i_ceph_lock; 321 322 u64 i_version; 323 u64 i_inline_version; 324 u32 i_time_warp_seq; 325 326 unsigned long i_ceph_flags; 327 atomic64_t i_release_count; 328 atomic64_t i_ordered_count; 329 atomic64_t i_complete_seq[2]; 330 331 struct ceph_dir_layout i_dir_layout; 332 struct ceph_file_layout i_layout; 333 struct ceph_file_layout i_cached_layout; // for async creates 334 char *i_symlink; 335 336 /* for dirs */ 337 struct timespec64 i_rctime; 338 u64 i_rbytes, i_rfiles, i_rsubdirs, i_rsnaps; 339 u64 i_files, i_subdirs; 340 341 /* quotas */ 342 u64 i_max_bytes, i_max_files; 343 344 s32 i_dir_pin; 345 346 struct rb_root i_fragtree; 347 int i_fragtree_nsplits; 348 struct mutex i_fragtree_mutex; 349 350 struct ceph_inode_xattrs_info i_xattrs; 351 352 /* capabilities. protected _both_ by i_ceph_lock and cap->session's 353 * s_mutex. */ 354 struct rb_root i_caps; /* cap list */ 355 struct ceph_cap *i_auth_cap; /* authoritative cap, if any */ 356 unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */ 357 358 /* 359 * Link to the auth cap's session's s_cap_dirty list. s_cap_dirty 360 * is protected by the mdsc->cap_dirty_lock, but each individual item 361 * is also protected by the inode's i_ceph_lock. Walking s_cap_dirty 362 * requires the mdsc->cap_dirty_lock. List presence for an item can 363 * be tested under the i_ceph_lock. Changing anything requires both. 364 */ 365 struct list_head i_dirty_item; 366 367 /* 368 * Link to session's s_cap_flushing list. Protected in a similar 369 * fashion to i_dirty_item, but also by the s_mutex for changes. The 370 * s_cap_flushing list can be walked while holding either the s_mutex 371 * or msdc->cap_dirty_lock. List presence can also be checked while 372 * holding the i_ceph_lock for this inode. 373 */ 374 struct list_head i_flushing_item; 375 376 /* we need to track cap writeback on a per-cap-bit basis, to allow 377 * overlapping, pipelined cap flushes to the mds. we can probably 378 * reduce the tid to 8 bits if we're concerned about inode size. */ 379 struct ceph_cap_flush *i_prealloc_cap_flush; 380 struct list_head i_cap_flush_list; 381 wait_queue_head_t i_cap_wq; /* threads waiting on a capability */ 382 unsigned long i_hold_caps_max; /* jiffies */ 383 struct list_head i_cap_delay_list; /* for delayed cap release to mds */ 384 struct ceph_cap_reservation i_cap_migration_resv; 385 struct list_head i_cap_snaps; /* snapped state pending flush to mds */ 386 struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 or 387 dirty|flushing caps */ 388 unsigned i_snap_caps; /* cap bits for snapped files */ 389 390 unsigned long i_last_rd; 391 unsigned long i_last_wr; 392 int i_nr_by_mode[CEPH_FILE_MODE_BITS]; /* open file counts */ 393 394 struct mutex i_truncate_mutex; 395 u32 i_truncate_seq; /* last truncate to smaller size */ 396 u64 i_truncate_size; /* and the size we last truncated down to */ 397 int i_truncate_pending; /* still need to call vmtruncate */ 398 399 u64 i_max_size; /* max file size authorized by mds */ 400 u64 i_reported_size; /* (max_)size reported to or requested of mds */ 401 u64 i_wanted_max_size; /* offset we'd like to write too */ 402 u64 i_requested_max_size; /* max_size we've requested */ 403 404 /* held references to caps */ 405 int i_pin_ref; 406 int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref, i_fx_ref; 407 int i_wrbuffer_ref, i_wrbuffer_ref_head; 408 atomic_t i_filelock_ref; 409 atomic_t i_shared_gen; /* increment each time we get FILE_SHARED */ 410 u32 i_rdcache_gen; /* incremented each time we get FILE_CACHE. */ 411 u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */ 412 413 struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */ 414 struct list_head i_unsafe_iops; /* uncommitted mds inode ops */ 415 spinlock_t i_unsafe_lock; 416 417 union { 418 struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */ 419 struct ceph_snapid_map *i_snapid_map; /* snapid -> dev_t */ 420 }; 421 struct list_head i_snap_realm_item; 422 struct list_head i_snap_flush_item; 423 struct timespec64 i_btime; 424 struct timespec64 i_snap_btime; 425 426 struct work_struct i_work; 427 unsigned long i_work_mask; 428 429 #ifdef CONFIG_CEPH_FSCACHE 430 struct fscache_cookie *fscache; 431 #endif 432 struct inode vfs_inode; /* at end */ 433 }; 434 435 static inline struct ceph_inode_info * 436 ceph_inode(const struct inode *inode) 437 { 438 return container_of(inode, struct ceph_inode_info, vfs_inode); 439 } 440 441 static inline struct ceph_fs_client * 442 ceph_inode_to_client(const struct inode *inode) 443 { 444 return (struct ceph_fs_client *)inode->i_sb->s_fs_info; 445 } 446 447 static inline struct ceph_fs_client * 448 ceph_sb_to_client(const struct super_block *sb) 449 { 450 return (struct ceph_fs_client *)sb->s_fs_info; 451 } 452 453 static inline struct ceph_mds_client * 454 ceph_sb_to_mdsc(const struct super_block *sb) 455 { 456 return (struct ceph_mds_client *)ceph_sb_to_client(sb)->mdsc; 457 } 458 459 static inline struct ceph_vino 460 ceph_vino(const struct inode *inode) 461 { 462 return ceph_inode(inode)->i_vino; 463 } 464 465 static inline u32 ceph_ino_to_ino32(u64 vino) 466 { 467 u32 ino = vino & 0xffffffff; 468 ino ^= vino >> 32; 469 if (!ino) 470 ino = 2; 471 return ino; 472 } 473 474 /* 475 * Inode numbers in cephfs are 64 bits, but inode->i_ino is 32-bits on 476 * some arches. We generally do not use this value inside the ceph driver, but 477 * we do want to set it to something, so that generic vfs code has an 478 * appropriate value for tracepoints and the like. 479 */ 480 static inline ino_t ceph_vino_to_ino_t(struct ceph_vino vino) 481 { 482 if (sizeof(ino_t) == sizeof(u32)) 483 return ceph_ino_to_ino32(vino.ino); 484 return (ino_t)vino.ino; 485 } 486 487 /* for printf-style formatting */ 488 #define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap 489 490 static inline u64 ceph_ino(struct inode *inode) 491 { 492 return ceph_inode(inode)->i_vino.ino; 493 } 494 495 static inline u64 ceph_snap(struct inode *inode) 496 { 497 return ceph_inode(inode)->i_vino.snap; 498 } 499 500 /** 501 * ceph_present_ino - format an inode number for presentation to userland 502 * @sb: superblock where the inode lives 503 * @ino: inode number to (possibly) convert 504 * 505 * If the user mounted with the ino32 option, then the 64-bit value needs 506 * to be converted to something that can fit inside 32 bits. Note that 507 * internal kernel code never uses this value, so this is entirely for 508 * userland consumption. 509 */ 510 static inline u64 ceph_present_ino(struct super_block *sb, u64 ino) 511 { 512 if (unlikely(ceph_test_mount_opt(ceph_sb_to_client(sb), INO32))) 513 return ceph_ino_to_ino32(ino); 514 return ino; 515 } 516 517 static inline u64 ceph_present_inode(struct inode *inode) 518 { 519 return ceph_present_ino(inode->i_sb, ceph_ino(inode)); 520 } 521 522 static inline int ceph_ino_compare(struct inode *inode, void *data) 523 { 524 struct ceph_vino *pvino = (struct ceph_vino *)data; 525 struct ceph_inode_info *ci = ceph_inode(inode); 526 return ci->i_vino.ino == pvino->ino && 527 ci->i_vino.snap == pvino->snap; 528 } 529 530 /* 531 * The MDS reserves a set of inodes for its own usage. These should never 532 * be accessible by clients, and so the MDS has no reason to ever hand these 533 * out. The range is CEPH_MDS_INO_MDSDIR_OFFSET..CEPH_INO_SYSTEM_BASE. 534 * 535 * These come from src/mds/mdstypes.h in the ceph sources. 536 */ 537 #define CEPH_MAX_MDS 0x100 538 #define CEPH_NUM_STRAY 10 539 #define CEPH_MDS_INO_MDSDIR_OFFSET (1 * CEPH_MAX_MDS) 540 #define CEPH_INO_SYSTEM_BASE ((6*CEPH_MAX_MDS) + (CEPH_MAX_MDS * CEPH_NUM_STRAY)) 541 542 static inline bool ceph_vino_is_reserved(const struct ceph_vino vino) 543 { 544 if (vino.ino < CEPH_INO_SYSTEM_BASE && 545 vino.ino >= CEPH_MDS_INO_MDSDIR_OFFSET) { 546 WARN_RATELIMIT(1, "Attempt to access reserved inode number 0x%llx", vino.ino); 547 return true; 548 } 549 return false; 550 } 551 552 static inline struct inode *ceph_find_inode(struct super_block *sb, 553 struct ceph_vino vino) 554 { 555 if (ceph_vino_is_reserved(vino)) 556 return NULL; 557 558 /* 559 * NB: The hashval will be run through the fs/inode.c hash function 560 * anyway, so there is no need to squash the inode number down to 561 * 32-bits first. Just use low-order bits on arches with 32-bit long. 562 */ 563 return ilookup5(sb, (unsigned long)vino.ino, ceph_ino_compare, &vino); 564 } 565 566 567 /* 568 * Ceph inode. 569 */ 570 #define CEPH_I_DIR_ORDERED (1 << 0) /* dentries in dir are ordered */ 571 #define CEPH_I_FLUSH (1 << 2) /* do not delay flush of dirty metadata */ 572 #define CEPH_I_POOL_PERM (1 << 3) /* pool rd/wr bits are valid */ 573 #define CEPH_I_POOL_RD (1 << 4) /* can read from pool */ 574 #define CEPH_I_POOL_WR (1 << 5) /* can write to pool */ 575 #define CEPH_I_SEC_INITED (1 << 6) /* security initialized */ 576 #define CEPH_I_KICK_FLUSH (1 << 7) /* kick flushing caps */ 577 #define CEPH_I_FLUSH_SNAPS (1 << 8) /* need flush snapss */ 578 #define CEPH_I_ERROR_WRITE (1 << 9) /* have seen write errors */ 579 #define CEPH_I_ERROR_FILELOCK (1 << 10) /* have seen file lock errors */ 580 #define CEPH_I_ODIRECT (1 << 11) /* inode in direct I/O mode */ 581 #define CEPH_ASYNC_CREATE_BIT (12) /* async create in flight for this */ 582 #define CEPH_I_ASYNC_CREATE (1 << CEPH_ASYNC_CREATE_BIT) 583 584 /* 585 * Masks of ceph inode work. 586 */ 587 #define CEPH_I_WORK_WRITEBACK 0 588 #define CEPH_I_WORK_INVALIDATE_PAGES 1 589 #define CEPH_I_WORK_VMTRUNCATE 2 590 #define CEPH_I_WORK_CHECK_CAPS 3 591 #define CEPH_I_WORK_FLUSH_SNAPS 4 592 593 /* 594 * We set the ERROR_WRITE bit when we start seeing write errors on an inode 595 * and then clear it when they start succeeding. Note that we do a lockless 596 * check first, and only take the lock if it looks like it needs to be changed. 597 * The write submission code just takes this as a hint, so we're not too 598 * worried if a few slip through in either direction. 599 */ 600 static inline void ceph_set_error_write(struct ceph_inode_info *ci) 601 { 602 if (!(READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE)) { 603 spin_lock(&ci->i_ceph_lock); 604 ci->i_ceph_flags |= CEPH_I_ERROR_WRITE; 605 spin_unlock(&ci->i_ceph_lock); 606 } 607 } 608 609 static inline void ceph_clear_error_write(struct ceph_inode_info *ci) 610 { 611 if (READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE) { 612 spin_lock(&ci->i_ceph_lock); 613 ci->i_ceph_flags &= ~CEPH_I_ERROR_WRITE; 614 spin_unlock(&ci->i_ceph_lock); 615 } 616 } 617 618 static inline void __ceph_dir_set_complete(struct ceph_inode_info *ci, 619 long long release_count, 620 long long ordered_count) 621 { 622 /* 623 * Makes sure operations that setup readdir cache (update page 624 * cache and i_size) are strongly ordered w.r.t. the following 625 * atomic64_set() operations. 626 */ 627 smp_mb(); 628 atomic64_set(&ci->i_complete_seq[0], release_count); 629 atomic64_set(&ci->i_complete_seq[1], ordered_count); 630 } 631 632 static inline void __ceph_dir_clear_complete(struct ceph_inode_info *ci) 633 { 634 atomic64_inc(&ci->i_release_count); 635 } 636 637 static inline void __ceph_dir_clear_ordered(struct ceph_inode_info *ci) 638 { 639 atomic64_inc(&ci->i_ordered_count); 640 } 641 642 static inline bool __ceph_dir_is_complete(struct ceph_inode_info *ci) 643 { 644 return atomic64_read(&ci->i_complete_seq[0]) == 645 atomic64_read(&ci->i_release_count); 646 } 647 648 static inline bool __ceph_dir_is_complete_ordered(struct ceph_inode_info *ci) 649 { 650 return atomic64_read(&ci->i_complete_seq[0]) == 651 atomic64_read(&ci->i_release_count) && 652 atomic64_read(&ci->i_complete_seq[1]) == 653 atomic64_read(&ci->i_ordered_count); 654 } 655 656 static inline void ceph_dir_clear_complete(struct inode *inode) 657 { 658 __ceph_dir_clear_complete(ceph_inode(inode)); 659 } 660 661 static inline void ceph_dir_clear_ordered(struct inode *inode) 662 { 663 __ceph_dir_clear_ordered(ceph_inode(inode)); 664 } 665 666 static inline bool ceph_dir_is_complete_ordered(struct inode *inode) 667 { 668 bool ret = __ceph_dir_is_complete_ordered(ceph_inode(inode)); 669 smp_rmb(); 670 return ret; 671 } 672 673 /* find a specific frag @f */ 674 extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci, 675 u32 f); 676 677 /* 678 * choose fragment for value @v. copy frag content to pfrag, if leaf 679 * exists 680 */ 681 extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v, 682 struct ceph_inode_frag *pfrag, 683 int *found); 684 685 static inline struct ceph_dentry_info *ceph_dentry(const struct dentry *dentry) 686 { 687 return (struct ceph_dentry_info *)dentry->d_fsdata; 688 } 689 690 /* 691 * caps helpers 692 */ 693 static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci) 694 { 695 return !RB_EMPTY_ROOT(&ci->i_caps); 696 } 697 698 extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented); 699 extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t); 700 extern int __ceph_caps_issued_mask_metric(struct ceph_inode_info *ci, int mask, 701 int t); 702 extern int __ceph_caps_issued_other(struct ceph_inode_info *ci, 703 struct ceph_cap *cap); 704 705 static inline int ceph_caps_issued(struct ceph_inode_info *ci) 706 { 707 int issued; 708 spin_lock(&ci->i_ceph_lock); 709 issued = __ceph_caps_issued(ci, NULL); 710 spin_unlock(&ci->i_ceph_lock); 711 return issued; 712 } 713 714 static inline int ceph_caps_issued_mask_metric(struct ceph_inode_info *ci, 715 int mask, int touch) 716 { 717 int r; 718 spin_lock(&ci->i_ceph_lock); 719 r = __ceph_caps_issued_mask_metric(ci, mask, touch); 720 spin_unlock(&ci->i_ceph_lock); 721 return r; 722 } 723 724 static inline int __ceph_caps_dirty(struct ceph_inode_info *ci) 725 { 726 return ci->i_dirty_caps | ci->i_flushing_caps; 727 } 728 extern struct ceph_cap_flush *ceph_alloc_cap_flush(void); 729 extern void ceph_free_cap_flush(struct ceph_cap_flush *cf); 730 extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask, 731 struct ceph_cap_flush **pcf); 732 733 extern int __ceph_caps_revoking_other(struct ceph_inode_info *ci, 734 struct ceph_cap *ocap, int mask); 735 extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask); 736 extern int __ceph_caps_used(struct ceph_inode_info *ci); 737 738 static inline bool __ceph_is_file_opened(struct ceph_inode_info *ci) 739 { 740 return ci->i_nr_by_mode[0]; 741 } 742 extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci); 743 extern int __ceph_caps_wanted(struct ceph_inode_info *ci); 744 745 /* what the mds thinks we want */ 746 extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci, bool check); 747 748 extern void ceph_caps_init(struct ceph_mds_client *mdsc); 749 extern void ceph_caps_finalize(struct ceph_mds_client *mdsc); 750 extern void ceph_adjust_caps_max_min(struct ceph_mds_client *mdsc, 751 struct ceph_mount_options *fsopt); 752 extern int ceph_reserve_caps(struct ceph_mds_client *mdsc, 753 struct ceph_cap_reservation *ctx, int need); 754 extern void ceph_unreserve_caps(struct ceph_mds_client *mdsc, 755 struct ceph_cap_reservation *ctx); 756 extern void ceph_reservation_status(struct ceph_fs_client *client, 757 int *total, int *avail, int *used, 758 int *reserved, int *min); 759 760 761 762 /* 763 * we keep buffered readdir results attached to file->private_data 764 */ 765 #define CEPH_F_SYNC 1 766 #define CEPH_F_ATEND 2 767 768 struct ceph_file_info { 769 short fmode; /* initialized on open */ 770 short flags; /* CEPH_F_* */ 771 772 spinlock_t rw_contexts_lock; 773 struct list_head rw_contexts; 774 775 u32 filp_gen; 776 atomic_t num_locks; 777 }; 778 779 struct ceph_dir_file_info { 780 struct ceph_file_info file_info; 781 782 /* readdir: position within the dir */ 783 u32 frag; 784 struct ceph_mds_request *last_readdir; 785 786 /* readdir: position within a frag */ 787 unsigned next_offset; /* offset of next chunk (last_name's + 1) */ 788 char *last_name; /* last entry in previous chunk */ 789 long long dir_release_count; 790 long long dir_ordered_count; 791 int readdir_cache_idx; 792 793 /* used for -o dirstat read() on directory thing */ 794 char *dir_info; 795 int dir_info_len; 796 }; 797 798 struct ceph_rw_context { 799 struct list_head list; 800 struct task_struct *thread; 801 int caps; 802 }; 803 804 #define CEPH_DEFINE_RW_CONTEXT(_name, _caps) \ 805 struct ceph_rw_context _name = { \ 806 .thread = current, \ 807 .caps = _caps, \ 808 } 809 810 static inline void ceph_add_rw_context(struct ceph_file_info *cf, 811 struct ceph_rw_context *ctx) 812 { 813 spin_lock(&cf->rw_contexts_lock); 814 list_add(&ctx->list, &cf->rw_contexts); 815 spin_unlock(&cf->rw_contexts_lock); 816 } 817 818 static inline void ceph_del_rw_context(struct ceph_file_info *cf, 819 struct ceph_rw_context *ctx) 820 { 821 spin_lock(&cf->rw_contexts_lock); 822 list_del(&ctx->list); 823 spin_unlock(&cf->rw_contexts_lock); 824 } 825 826 static inline struct ceph_rw_context* 827 ceph_find_rw_context(struct ceph_file_info *cf) 828 { 829 struct ceph_rw_context *ctx, *found = NULL; 830 spin_lock(&cf->rw_contexts_lock); 831 list_for_each_entry(ctx, &cf->rw_contexts, list) { 832 if (ctx->thread == current) { 833 found = ctx; 834 break; 835 } 836 } 837 spin_unlock(&cf->rw_contexts_lock); 838 return found; 839 } 840 841 struct ceph_readdir_cache_control { 842 struct page *page; 843 struct dentry **dentries; 844 int index; 845 }; 846 847 /* 848 * A "snap realm" describes a subset of the file hierarchy sharing 849 * the same set of snapshots that apply to it. The realms themselves 850 * are organized into a hierarchy, such that children inherit (some of) 851 * the snapshots of their parents. 852 * 853 * All inodes within the realm that have capabilities are linked into a 854 * per-realm list. 855 */ 856 struct ceph_snap_realm { 857 u64 ino; 858 struct inode *inode; 859 atomic_t nref; 860 struct rb_node node; 861 862 u64 created, seq; 863 u64 parent_ino; 864 u64 parent_since; /* snapid when our current parent became so */ 865 866 u64 *prior_parent_snaps; /* snaps inherited from any parents we */ 867 u32 num_prior_parent_snaps; /* had prior to parent_since */ 868 u64 *snaps; /* snaps specific to this realm */ 869 u32 num_snaps; 870 871 struct ceph_snap_realm *parent; 872 struct list_head children; /* list of child realms */ 873 struct list_head child_item; 874 875 struct list_head empty_item; /* if i have ref==0 */ 876 877 struct list_head dirty_item; /* if realm needs new context */ 878 879 /* the current set of snaps for this realm */ 880 struct ceph_snap_context *cached_context; 881 882 struct list_head inodes_with_caps; 883 spinlock_t inodes_with_caps_lock; 884 }; 885 886 static inline int default_congestion_kb(void) 887 { 888 int congestion_kb; 889 890 /* 891 * Copied from NFS 892 * 893 * congestion size, scale with available memory. 894 * 895 * 64MB: 8192k 896 * 128MB: 11585k 897 * 256MB: 16384k 898 * 512MB: 23170k 899 * 1GB: 32768k 900 * 2GB: 46340k 901 * 4GB: 65536k 902 * 8GB: 92681k 903 * 16GB: 131072k 904 * 905 * This allows larger machines to have larger/more transfers. 906 * Limit the default to 256M 907 */ 908 congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10); 909 if (congestion_kb > 256*1024) 910 congestion_kb = 256*1024; 911 912 return congestion_kb; 913 } 914 915 916 /* super.c */ 917 extern int ceph_force_reconnect(struct super_block *sb); 918 /* snap.c */ 919 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc, 920 u64 ino); 921 extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc, 922 struct ceph_snap_realm *realm); 923 extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc, 924 struct ceph_snap_realm *realm); 925 extern int ceph_update_snap_trace(struct ceph_mds_client *m, 926 void *p, void *e, bool deletion, 927 struct ceph_snap_realm **realm_ret); 928 void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm); 929 extern void ceph_handle_snap(struct ceph_mds_client *mdsc, 930 struct ceph_mds_session *session, 931 struct ceph_msg *msg); 932 extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci, 933 struct ceph_cap_snap *capsnap); 934 extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc); 935 936 extern struct ceph_snapid_map *ceph_get_snapid_map(struct ceph_mds_client *mdsc, 937 u64 snap); 938 extern void ceph_put_snapid_map(struct ceph_mds_client* mdsc, 939 struct ceph_snapid_map *sm); 940 extern void ceph_trim_snapid_map(struct ceph_mds_client *mdsc); 941 extern void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc); 942 943 944 /* 945 * a cap_snap is "pending" if it is still awaiting an in-progress 946 * sync write (that may/may not still update size, mtime, etc.). 947 */ 948 static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci) 949 { 950 return !list_empty(&ci->i_cap_snaps) && 951 list_last_entry(&ci->i_cap_snaps, struct ceph_cap_snap, 952 ci_item)->writing; 953 } 954 955 /* inode.c */ 956 struct ceph_mds_reply_info_in; 957 struct ceph_mds_reply_dirfrag; 958 959 extern const struct inode_operations ceph_file_iops; 960 961 extern struct inode *ceph_alloc_inode(struct super_block *sb); 962 extern void ceph_evict_inode(struct inode *inode); 963 extern void ceph_free_inode(struct inode *inode); 964 965 extern struct inode *ceph_get_inode(struct super_block *sb, 966 struct ceph_vino vino); 967 extern struct inode *ceph_get_snapdir(struct inode *parent); 968 extern int ceph_fill_file_size(struct inode *inode, int issued, 969 u32 truncate_seq, u64 truncate_size, u64 size); 970 extern void ceph_fill_file_time(struct inode *inode, int issued, 971 u64 time_warp_seq, struct timespec64 *ctime, 972 struct timespec64 *mtime, 973 struct timespec64 *atime); 974 extern int ceph_fill_inode(struct inode *inode, struct page *locked_page, 975 struct ceph_mds_reply_info_in *iinfo, 976 struct ceph_mds_reply_dirfrag *dirinfo, 977 struct ceph_mds_session *session, int cap_fmode, 978 struct ceph_cap_reservation *caps_reservation); 979 extern int ceph_fill_trace(struct super_block *sb, 980 struct ceph_mds_request *req); 981 extern int ceph_readdir_prepopulate(struct ceph_mds_request *req, 982 struct ceph_mds_session *session); 983 984 extern int ceph_inode_holds_cap(struct inode *inode, int mask); 985 986 extern bool ceph_inode_set_size(struct inode *inode, loff_t size); 987 extern void __ceph_do_pending_vmtruncate(struct inode *inode); 988 989 void ceph_queue_inode_work(struct inode *inode, int work_bit); 990 991 static inline void ceph_queue_vmtruncate(struct inode *inode) 992 { 993 ceph_queue_inode_work(inode, CEPH_I_WORK_VMTRUNCATE); 994 } 995 996 static inline void ceph_queue_invalidate(struct inode *inode) 997 { 998 ceph_queue_inode_work(inode, CEPH_I_WORK_INVALIDATE_PAGES); 999 } 1000 1001 static inline void ceph_queue_writeback(struct inode *inode) 1002 { 1003 ceph_queue_inode_work(inode, CEPH_I_WORK_WRITEBACK); 1004 } 1005 1006 static inline void ceph_queue_check_caps(struct inode *inode) 1007 { 1008 ceph_queue_inode_work(inode, CEPH_I_WORK_CHECK_CAPS); 1009 } 1010 1011 static inline void ceph_queue_flush_snaps(struct inode *inode) 1012 { 1013 ceph_queue_inode_work(inode, CEPH_I_WORK_FLUSH_SNAPS); 1014 } 1015 1016 extern int __ceph_do_getattr(struct inode *inode, struct page *locked_page, 1017 int mask, bool force); 1018 static inline int ceph_do_getattr(struct inode *inode, int mask, bool force) 1019 { 1020 return __ceph_do_getattr(inode, NULL, mask, force); 1021 } 1022 extern int ceph_permission(struct user_namespace *mnt_userns, 1023 struct inode *inode, int mask); 1024 extern int __ceph_setattr(struct inode *inode, struct iattr *attr); 1025 extern int ceph_setattr(struct user_namespace *mnt_userns, 1026 struct dentry *dentry, struct iattr *attr); 1027 extern int ceph_getattr(struct user_namespace *mnt_userns, 1028 const struct path *path, struct kstat *stat, 1029 u32 request_mask, unsigned int flags); 1030 1031 /* xattr.c */ 1032 int __ceph_setxattr(struct inode *, const char *, const void *, size_t, int); 1033 ssize_t __ceph_getxattr(struct inode *, const char *, void *, size_t); 1034 extern ssize_t ceph_listxattr(struct dentry *, char *, size_t); 1035 extern struct ceph_buffer *__ceph_build_xattrs_blob(struct ceph_inode_info *ci); 1036 extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci); 1037 extern const struct xattr_handler *ceph_xattr_handlers[]; 1038 1039 struct ceph_acl_sec_ctx { 1040 #ifdef CONFIG_CEPH_FS_POSIX_ACL 1041 void *default_acl; 1042 void *acl; 1043 #endif 1044 #ifdef CONFIG_CEPH_FS_SECURITY_LABEL 1045 void *sec_ctx; 1046 u32 sec_ctxlen; 1047 #endif 1048 struct ceph_pagelist *pagelist; 1049 }; 1050 1051 #ifdef CONFIG_SECURITY 1052 extern bool ceph_security_xattr_deadlock(struct inode *in); 1053 extern bool ceph_security_xattr_wanted(struct inode *in); 1054 #else 1055 static inline bool ceph_security_xattr_deadlock(struct inode *in) 1056 { 1057 return false; 1058 } 1059 static inline bool ceph_security_xattr_wanted(struct inode *in) 1060 { 1061 return false; 1062 } 1063 #endif 1064 1065 #ifdef CONFIG_CEPH_FS_SECURITY_LABEL 1066 extern int ceph_security_init_secctx(struct dentry *dentry, umode_t mode, 1067 struct ceph_acl_sec_ctx *ctx); 1068 static inline void ceph_security_invalidate_secctx(struct inode *inode) 1069 { 1070 security_inode_invalidate_secctx(inode); 1071 } 1072 #else 1073 static inline int ceph_security_init_secctx(struct dentry *dentry, umode_t mode, 1074 struct ceph_acl_sec_ctx *ctx) 1075 { 1076 return 0; 1077 } 1078 static inline void ceph_security_invalidate_secctx(struct inode *inode) 1079 { 1080 } 1081 #endif 1082 1083 void ceph_release_acl_sec_ctx(struct ceph_acl_sec_ctx *as_ctx); 1084 1085 /* acl.c */ 1086 #ifdef CONFIG_CEPH_FS_POSIX_ACL 1087 1088 struct posix_acl *ceph_get_acl(struct inode *, int, bool); 1089 int ceph_set_acl(struct user_namespace *mnt_userns, 1090 struct inode *inode, struct posix_acl *acl, int type); 1091 int ceph_pre_init_acls(struct inode *dir, umode_t *mode, 1092 struct ceph_acl_sec_ctx *as_ctx); 1093 void ceph_init_inode_acls(struct inode *inode, 1094 struct ceph_acl_sec_ctx *as_ctx); 1095 1096 static inline void ceph_forget_all_cached_acls(struct inode *inode) 1097 { 1098 forget_all_cached_acls(inode); 1099 } 1100 1101 #else 1102 1103 #define ceph_get_acl NULL 1104 #define ceph_set_acl NULL 1105 1106 static inline int ceph_pre_init_acls(struct inode *dir, umode_t *mode, 1107 struct ceph_acl_sec_ctx *as_ctx) 1108 { 1109 return 0; 1110 } 1111 static inline void ceph_init_inode_acls(struct inode *inode, 1112 struct ceph_acl_sec_ctx *as_ctx) 1113 { 1114 } 1115 static inline int ceph_acl_chmod(struct dentry *dentry, struct inode *inode) 1116 { 1117 return 0; 1118 } 1119 1120 static inline void ceph_forget_all_cached_acls(struct inode *inode) 1121 { 1122 } 1123 1124 #endif 1125 1126 /* caps.c */ 1127 extern const char *ceph_cap_string(int c); 1128 extern void ceph_handle_caps(struct ceph_mds_session *session, 1129 struct ceph_msg *msg); 1130 extern struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc, 1131 struct ceph_cap_reservation *ctx); 1132 extern void ceph_add_cap(struct inode *inode, 1133 struct ceph_mds_session *session, u64 cap_id, 1134 unsigned issued, unsigned wanted, 1135 unsigned cap, unsigned seq, u64 realmino, int flags, 1136 struct ceph_cap **new_cap); 1137 extern void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release); 1138 extern void ceph_remove_cap(struct ceph_cap *cap, bool queue_release); 1139 extern void __ceph_remove_caps(struct ceph_inode_info *ci); 1140 extern void ceph_put_cap(struct ceph_mds_client *mdsc, 1141 struct ceph_cap *cap); 1142 extern int ceph_is_any_caps(struct inode *inode); 1143 1144 extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc); 1145 extern int ceph_fsync(struct file *file, loff_t start, loff_t end, 1146 int datasync); 1147 extern void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc, 1148 struct ceph_mds_session *session); 1149 extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1150 struct ceph_mds_session *session); 1151 void ceph_kick_flushing_inode_caps(struct ceph_mds_session *session, 1152 struct ceph_inode_info *ci); 1153 extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, 1154 int mds); 1155 extern void ceph_take_cap_refs(struct ceph_inode_info *ci, int caps, 1156 bool snap_rwsem_locked); 1157 extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps); 1158 extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had); 1159 extern void ceph_put_cap_refs_async(struct ceph_inode_info *ci, int had); 1160 extern void ceph_put_cap_refs_no_check_caps(struct ceph_inode_info *ci, 1161 int had); 1162 extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 1163 struct ceph_snap_context *snapc); 1164 extern void __ceph_remove_capsnap(struct inode *inode, 1165 struct ceph_cap_snap *capsnap, 1166 bool *wake_ci, bool *wake_mdsc); 1167 extern void ceph_remove_capsnap(struct inode *inode, 1168 struct ceph_cap_snap *capsnap, 1169 bool *wake_ci, bool *wake_mdsc); 1170 extern void ceph_flush_snaps(struct ceph_inode_info *ci, 1171 struct ceph_mds_session **psession); 1172 extern bool __ceph_should_report_size(struct ceph_inode_info *ci); 1173 extern void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1174 struct ceph_mds_session *session); 1175 extern unsigned long ceph_check_delayed_caps(struct ceph_mds_client *mdsc); 1176 extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc); 1177 extern int ceph_drop_caps_for_unlink(struct inode *inode); 1178 extern int ceph_encode_inode_release(void **p, struct inode *inode, 1179 int mds, int drop, int unless, int force); 1180 extern int ceph_encode_dentry_release(void **p, struct dentry *dn, 1181 struct inode *dir, 1182 int mds, int drop, int unless); 1183 1184 extern int ceph_get_caps(struct file *filp, int need, int want, 1185 loff_t endoff, int *got); 1186 extern int ceph_try_get_caps(struct inode *inode, 1187 int need, int want, bool nonblock, int *got); 1188 1189 /* for counting open files by mode */ 1190 extern void ceph_get_fmode(struct ceph_inode_info *ci, int mode, int count); 1191 extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode, int count); 1192 extern void __ceph_touch_fmode(struct ceph_inode_info *ci, 1193 struct ceph_mds_client *mdsc, int fmode); 1194 1195 /* addr.c */ 1196 extern const struct address_space_operations ceph_aops; 1197 extern int ceph_mmap(struct file *file, struct vm_area_struct *vma); 1198 extern int ceph_uninline_data(struct file *filp, struct page *locked_page); 1199 extern int ceph_pool_perm_check(struct inode *inode, int need); 1200 extern void ceph_pool_perm_destroy(struct ceph_mds_client* mdsc); 1201 1202 /* file.c */ 1203 extern const struct file_operations ceph_file_fops; 1204 1205 extern int ceph_renew_caps(struct inode *inode, int fmode); 1206 extern int ceph_open(struct inode *inode, struct file *file); 1207 extern int ceph_atomic_open(struct inode *dir, struct dentry *dentry, 1208 struct file *file, unsigned flags, umode_t mode); 1209 extern int ceph_release(struct inode *inode, struct file *filp); 1210 extern void ceph_fill_inline_data(struct inode *inode, struct page *locked_page, 1211 char *data, size_t len); 1212 1213 /* dir.c */ 1214 extern const struct file_operations ceph_dir_fops; 1215 extern const struct file_operations ceph_snapdir_fops; 1216 extern const struct inode_operations ceph_dir_iops; 1217 extern const struct inode_operations ceph_snapdir_iops; 1218 extern const struct dentry_operations ceph_dentry_ops; 1219 1220 extern loff_t ceph_make_fpos(unsigned high, unsigned off, bool hash_order); 1221 extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry); 1222 extern struct dentry *ceph_handle_snapdir(struct ceph_mds_request *req, 1223 struct dentry *dentry); 1224 extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req, 1225 struct dentry *dentry, int err); 1226 1227 extern void __ceph_dentry_lease_touch(struct ceph_dentry_info *di); 1228 extern void __ceph_dentry_dir_lease_touch(struct ceph_dentry_info *di); 1229 extern void ceph_invalidate_dentry_lease(struct dentry *dentry); 1230 extern int ceph_trim_dentries(struct ceph_mds_client *mdsc); 1231 extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn); 1232 extern void ceph_readdir_cache_release(struct ceph_readdir_cache_control *ctl); 1233 1234 /* ioctl.c */ 1235 extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1236 1237 /* export.c */ 1238 extern const struct export_operations ceph_export_ops; 1239 struct inode *ceph_lookup_inode(struct super_block *sb, u64 ino); 1240 1241 /* locks.c */ 1242 extern __init void ceph_flock_init(void); 1243 extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl); 1244 extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl); 1245 extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num); 1246 extern int ceph_encode_locks_to_buffer(struct inode *inode, 1247 struct ceph_filelock *flocks, 1248 int num_fcntl_locks, 1249 int num_flock_locks); 1250 extern int ceph_locks_to_pagelist(struct ceph_filelock *flocks, 1251 struct ceph_pagelist *pagelist, 1252 int num_fcntl_locks, int num_flock_locks); 1253 1254 /* debugfs.c */ 1255 extern void ceph_fs_debugfs_init(struct ceph_fs_client *client); 1256 extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client); 1257 1258 /* quota.c */ 1259 static inline bool __ceph_has_any_quota(struct ceph_inode_info *ci) 1260 { 1261 return ci->i_max_files || ci->i_max_bytes; 1262 } 1263 1264 extern void ceph_adjust_quota_realms_count(struct inode *inode, bool inc); 1265 1266 static inline void __ceph_update_quota(struct ceph_inode_info *ci, 1267 u64 max_bytes, u64 max_files) 1268 { 1269 bool had_quota, has_quota; 1270 had_quota = __ceph_has_any_quota(ci); 1271 ci->i_max_bytes = max_bytes; 1272 ci->i_max_files = max_files; 1273 has_quota = __ceph_has_any_quota(ci); 1274 1275 if (had_quota != has_quota) 1276 ceph_adjust_quota_realms_count(&ci->vfs_inode, has_quota); 1277 } 1278 1279 extern void ceph_handle_quota(struct ceph_mds_client *mdsc, 1280 struct ceph_mds_session *session, 1281 struct ceph_msg *msg); 1282 extern bool ceph_quota_is_max_files_exceeded(struct inode *inode); 1283 extern bool ceph_quota_is_same_realm(struct inode *old, struct inode *new); 1284 extern bool ceph_quota_is_max_bytes_exceeded(struct inode *inode, 1285 loff_t newlen); 1286 extern bool ceph_quota_is_max_bytes_approaching(struct inode *inode, 1287 loff_t newlen); 1288 extern bool ceph_quota_update_statfs(struct ceph_fs_client *fsc, 1289 struct kstatfs *buf); 1290 extern void ceph_cleanup_quotarealms_inodes(struct ceph_mds_client *mdsc); 1291 1292 #endif /* _FS_CEPH_SUPER_H */ 1293