1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/fs.h> 5 #include <linux/sort.h> 6 #include <linux/slab.h> 7 #include <linux/iversion.h> 8 #include "super.h" 9 #include "mds_client.h" 10 #include <linux/ceph/decode.h> 11 12 /* unused map expires after 5 minutes */ 13 #define CEPH_SNAPID_MAP_TIMEOUT (5 * 60 * HZ) 14 15 /* 16 * Snapshots in ceph are driven in large part by cooperation from the 17 * client. In contrast to local file systems or file servers that 18 * implement snapshots at a single point in the system, ceph's 19 * distributed access to storage requires clients to help decide 20 * whether a write logically occurs before or after a recently created 21 * snapshot. 22 * 23 * This provides a perfect instantanous client-wide snapshot. Between 24 * clients, however, snapshots may appear to be applied at slightly 25 * different points in time, depending on delays in delivering the 26 * snapshot notification. 27 * 28 * Snapshots are _not_ file system-wide. Instead, each snapshot 29 * applies to the subdirectory nested beneath some directory. This 30 * effectively divides the hierarchy into multiple "realms," where all 31 * of the files contained by each realm share the same set of 32 * snapshots. An individual realm's snap set contains snapshots 33 * explicitly created on that realm, as well as any snaps in its 34 * parent's snap set _after_ the point at which the parent became it's 35 * parent (due to, say, a rename). Similarly, snaps from prior parents 36 * during the time intervals during which they were the parent are included. 37 * 38 * The client is spared most of this detail, fortunately... it must only 39 * maintains a hierarchy of realms reflecting the current parent/child 40 * realm relationship, and for each realm has an explicit list of snaps 41 * inherited from prior parents. 42 * 43 * A snap_realm struct is maintained for realms containing every inode 44 * with an open cap in the system. (The needed snap realm information is 45 * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq' 46 * version number is used to ensure that as realm parameters change (new 47 * snapshot, new parent, etc.) the client's realm hierarchy is updated. 48 * 49 * The realm hierarchy drives the generation of a 'snap context' for each 50 * realm, which simply lists the resulting set of snaps for the realm. This 51 * is attached to any writes sent to OSDs. 52 */ 53 /* 54 * Unfortunately error handling is a bit mixed here. If we get a snap 55 * update, but don't have enough memory to update our realm hierarchy, 56 * it's not clear what we can do about it (besides complaining to the 57 * console). 58 */ 59 60 61 /* 62 * increase ref count for the realm 63 * 64 * caller must hold snap_rwsem. 65 */ 66 void ceph_get_snap_realm(struct ceph_mds_client *mdsc, 67 struct ceph_snap_realm *realm) 68 { 69 lockdep_assert_held(&mdsc->snap_rwsem); 70 71 /* 72 * The 0->1 and 1->0 transitions must take the snap_empty_lock 73 * atomically with the refcount change. Go ahead and bump the 74 * nref here, unless it's 0, in which case we take the spinlock 75 * and then do the increment and remove it from the list. 76 */ 77 if (atomic_inc_not_zero(&realm->nref)) 78 return; 79 80 spin_lock(&mdsc->snap_empty_lock); 81 if (atomic_inc_return(&realm->nref) == 1) 82 list_del_init(&realm->empty_item); 83 spin_unlock(&mdsc->snap_empty_lock); 84 } 85 86 static void __insert_snap_realm(struct rb_root *root, 87 struct ceph_snap_realm *new) 88 { 89 struct rb_node **p = &root->rb_node; 90 struct rb_node *parent = NULL; 91 struct ceph_snap_realm *r = NULL; 92 93 while (*p) { 94 parent = *p; 95 r = rb_entry(parent, struct ceph_snap_realm, node); 96 if (new->ino < r->ino) 97 p = &(*p)->rb_left; 98 else if (new->ino > r->ino) 99 p = &(*p)->rb_right; 100 else 101 BUG(); 102 } 103 104 rb_link_node(&new->node, parent, p); 105 rb_insert_color(&new->node, root); 106 } 107 108 /* 109 * create and get the realm rooted at @ino and bump its ref count. 110 * 111 * caller must hold snap_rwsem for write. 112 */ 113 static struct ceph_snap_realm *ceph_create_snap_realm( 114 struct ceph_mds_client *mdsc, 115 u64 ino) 116 { 117 struct ceph_snap_realm *realm; 118 119 lockdep_assert_held_write(&mdsc->snap_rwsem); 120 121 realm = kzalloc(sizeof(*realm), GFP_NOFS); 122 if (!realm) 123 return ERR_PTR(-ENOMEM); 124 125 /* Do not release the global dummy snaprealm until unmouting */ 126 if (ino == CEPH_INO_GLOBAL_SNAPREALM) 127 atomic_set(&realm->nref, 2); 128 else 129 atomic_set(&realm->nref, 1); 130 realm->ino = ino; 131 INIT_LIST_HEAD(&realm->children); 132 INIT_LIST_HEAD(&realm->child_item); 133 INIT_LIST_HEAD(&realm->empty_item); 134 INIT_LIST_HEAD(&realm->dirty_item); 135 INIT_LIST_HEAD(&realm->rebuild_item); 136 INIT_LIST_HEAD(&realm->inodes_with_caps); 137 spin_lock_init(&realm->inodes_with_caps_lock); 138 __insert_snap_realm(&mdsc->snap_realms, realm); 139 mdsc->num_snap_realms++; 140 141 dout("%s %llx %p\n", __func__, realm->ino, realm); 142 return realm; 143 } 144 145 /* 146 * lookup the realm rooted at @ino. 147 * 148 * caller must hold snap_rwsem. 149 */ 150 static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc, 151 u64 ino) 152 { 153 struct rb_node *n = mdsc->snap_realms.rb_node; 154 struct ceph_snap_realm *r; 155 156 lockdep_assert_held(&mdsc->snap_rwsem); 157 158 while (n) { 159 r = rb_entry(n, struct ceph_snap_realm, node); 160 if (ino < r->ino) 161 n = n->rb_left; 162 else if (ino > r->ino) 163 n = n->rb_right; 164 else { 165 dout("%s %llx %p\n", __func__, r->ino, r); 166 return r; 167 } 168 } 169 return NULL; 170 } 171 172 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc, 173 u64 ino) 174 { 175 struct ceph_snap_realm *r; 176 r = __lookup_snap_realm(mdsc, ino); 177 if (r) 178 ceph_get_snap_realm(mdsc, r); 179 return r; 180 } 181 182 static void __put_snap_realm(struct ceph_mds_client *mdsc, 183 struct ceph_snap_realm *realm); 184 185 /* 186 * called with snap_rwsem (write) 187 */ 188 static void __destroy_snap_realm(struct ceph_mds_client *mdsc, 189 struct ceph_snap_realm *realm) 190 { 191 lockdep_assert_held_write(&mdsc->snap_rwsem); 192 193 dout("%s %p %llx\n", __func__, realm, realm->ino); 194 195 rb_erase(&realm->node, &mdsc->snap_realms); 196 mdsc->num_snap_realms--; 197 198 if (realm->parent) { 199 list_del_init(&realm->child_item); 200 __put_snap_realm(mdsc, realm->parent); 201 } 202 203 kfree(realm->prior_parent_snaps); 204 kfree(realm->snaps); 205 ceph_put_snap_context(realm->cached_context); 206 kfree(realm); 207 } 208 209 /* 210 * caller holds snap_rwsem (write) 211 */ 212 static void __put_snap_realm(struct ceph_mds_client *mdsc, 213 struct ceph_snap_realm *realm) 214 { 215 lockdep_assert_held_write(&mdsc->snap_rwsem); 216 217 /* 218 * We do not require the snap_empty_lock here, as any caller that 219 * increments the value must hold the snap_rwsem. 220 */ 221 if (atomic_dec_and_test(&realm->nref)) 222 __destroy_snap_realm(mdsc, realm); 223 } 224 225 /* 226 * See comments in ceph_get_snap_realm. Caller needn't hold any locks. 227 */ 228 void ceph_put_snap_realm(struct ceph_mds_client *mdsc, 229 struct ceph_snap_realm *realm) 230 { 231 if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock)) 232 return; 233 234 if (down_write_trylock(&mdsc->snap_rwsem)) { 235 spin_unlock(&mdsc->snap_empty_lock); 236 __destroy_snap_realm(mdsc, realm); 237 up_write(&mdsc->snap_rwsem); 238 } else { 239 list_add(&realm->empty_item, &mdsc->snap_empty); 240 spin_unlock(&mdsc->snap_empty_lock); 241 } 242 } 243 244 /* 245 * Clean up any realms whose ref counts have dropped to zero. Note 246 * that this does not include realms who were created but not yet 247 * used. 248 * 249 * Called under snap_rwsem (write) 250 */ 251 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc) 252 { 253 struct ceph_snap_realm *realm; 254 255 lockdep_assert_held_write(&mdsc->snap_rwsem); 256 257 spin_lock(&mdsc->snap_empty_lock); 258 while (!list_empty(&mdsc->snap_empty)) { 259 realm = list_first_entry(&mdsc->snap_empty, 260 struct ceph_snap_realm, empty_item); 261 list_del(&realm->empty_item); 262 spin_unlock(&mdsc->snap_empty_lock); 263 __destroy_snap_realm(mdsc, realm); 264 spin_lock(&mdsc->snap_empty_lock); 265 } 266 spin_unlock(&mdsc->snap_empty_lock); 267 } 268 269 void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc) 270 { 271 struct ceph_snap_realm *global_realm; 272 273 down_write(&mdsc->snap_rwsem); 274 global_realm = __lookup_snap_realm(mdsc, CEPH_INO_GLOBAL_SNAPREALM); 275 if (global_realm) 276 ceph_put_snap_realm(mdsc, global_realm); 277 __cleanup_empty_realms(mdsc); 278 up_write(&mdsc->snap_rwsem); 279 } 280 281 /* 282 * adjust the parent realm of a given @realm. adjust child list, and parent 283 * pointers, and ref counts appropriately. 284 * 285 * return true if parent was changed, 0 if unchanged, <0 on error. 286 * 287 * caller must hold snap_rwsem for write. 288 */ 289 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc, 290 struct ceph_snap_realm *realm, 291 u64 parentino) 292 { 293 struct ceph_snap_realm *parent; 294 295 lockdep_assert_held_write(&mdsc->snap_rwsem); 296 297 if (realm->parent_ino == parentino) 298 return 0; 299 300 parent = ceph_lookup_snap_realm(mdsc, parentino); 301 if (!parent) { 302 parent = ceph_create_snap_realm(mdsc, parentino); 303 if (IS_ERR(parent)) 304 return PTR_ERR(parent); 305 } 306 dout("%s %llx %p: %llx %p -> %llx %p\n", __func__, realm->ino, 307 realm, realm->parent_ino, realm->parent, parentino, parent); 308 if (realm->parent) { 309 list_del_init(&realm->child_item); 310 ceph_put_snap_realm(mdsc, realm->parent); 311 } 312 realm->parent_ino = parentino; 313 realm->parent = parent; 314 list_add(&realm->child_item, &parent->children); 315 return 1; 316 } 317 318 319 static int cmpu64_rev(const void *a, const void *b) 320 { 321 if (*(u64 *)a < *(u64 *)b) 322 return 1; 323 if (*(u64 *)a > *(u64 *)b) 324 return -1; 325 return 0; 326 } 327 328 329 /* 330 * build the snap context for a given realm. 331 */ 332 static int build_snap_context(struct ceph_snap_realm *realm, 333 struct list_head *realm_queue, 334 struct list_head *dirty_realms) 335 { 336 struct ceph_snap_realm *parent = realm->parent; 337 struct ceph_snap_context *snapc; 338 int err = 0; 339 u32 num = realm->num_prior_parent_snaps + realm->num_snaps; 340 341 /* 342 * build parent context, if it hasn't been built. 343 * conservatively estimate that all parent snaps might be 344 * included by us. 345 */ 346 if (parent) { 347 if (!parent->cached_context) { 348 /* add to the queue head */ 349 list_add(&parent->rebuild_item, realm_queue); 350 return 1; 351 } 352 num += parent->cached_context->num_snaps; 353 } 354 355 /* do i actually need to update? not if my context seq 356 matches realm seq, and my parents' does to. (this works 357 because we rebuild_snap_realms() works _downward_ in 358 hierarchy after each update.) */ 359 if (realm->cached_context && 360 realm->cached_context->seq == realm->seq && 361 (!parent || 362 realm->cached_context->seq >= parent->cached_context->seq)) { 363 dout("%s %llx %p: %p seq %lld (%u snaps) (unchanged)\n", 364 __func__, realm->ino, realm, realm->cached_context, 365 realm->cached_context->seq, 366 (unsigned int)realm->cached_context->num_snaps); 367 return 0; 368 } 369 370 /* alloc new snap context */ 371 err = -ENOMEM; 372 if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64)) 373 goto fail; 374 snapc = ceph_create_snap_context(num, GFP_NOFS); 375 if (!snapc) 376 goto fail; 377 378 /* build (reverse sorted) snap vector */ 379 num = 0; 380 snapc->seq = realm->seq; 381 if (parent) { 382 u32 i; 383 384 /* include any of parent's snaps occurring _after_ my 385 parent became my parent */ 386 for (i = 0; i < parent->cached_context->num_snaps; i++) 387 if (parent->cached_context->snaps[i] >= 388 realm->parent_since) 389 snapc->snaps[num++] = 390 parent->cached_context->snaps[i]; 391 if (parent->cached_context->seq > snapc->seq) 392 snapc->seq = parent->cached_context->seq; 393 } 394 memcpy(snapc->snaps + num, realm->snaps, 395 sizeof(u64)*realm->num_snaps); 396 num += realm->num_snaps; 397 memcpy(snapc->snaps + num, realm->prior_parent_snaps, 398 sizeof(u64)*realm->num_prior_parent_snaps); 399 num += realm->num_prior_parent_snaps; 400 401 sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL); 402 snapc->num_snaps = num; 403 dout("%s %llx %p: %p seq %lld (%u snaps)\n", __func__, realm->ino, 404 realm, snapc, snapc->seq, (unsigned int) snapc->num_snaps); 405 406 ceph_put_snap_context(realm->cached_context); 407 realm->cached_context = snapc; 408 /* queue realm for cap_snap creation */ 409 list_add_tail(&realm->dirty_item, dirty_realms); 410 return 0; 411 412 fail: 413 /* 414 * if we fail, clear old (incorrect) cached_context... hopefully 415 * we'll have better luck building it later 416 */ 417 if (realm->cached_context) { 418 ceph_put_snap_context(realm->cached_context); 419 realm->cached_context = NULL; 420 } 421 pr_err("%s %llx %p fail %d\n", __func__, realm->ino, realm, err); 422 return err; 423 } 424 425 /* 426 * rebuild snap context for the given realm and all of its children. 427 */ 428 static void rebuild_snap_realms(struct ceph_snap_realm *realm, 429 struct list_head *dirty_realms) 430 { 431 LIST_HEAD(realm_queue); 432 int last = 0; 433 bool skip = false; 434 435 list_add_tail(&realm->rebuild_item, &realm_queue); 436 437 while (!list_empty(&realm_queue)) { 438 struct ceph_snap_realm *_realm, *child; 439 440 _realm = list_first_entry(&realm_queue, 441 struct ceph_snap_realm, 442 rebuild_item); 443 444 /* 445 * If the last building failed dues to memory 446 * issue, just empty the realm_queue and return 447 * to avoid infinite loop. 448 */ 449 if (last < 0) { 450 list_del_init(&_realm->rebuild_item); 451 continue; 452 } 453 454 last = build_snap_context(_realm, &realm_queue, dirty_realms); 455 dout("%s %llx %p, %s\n", __func__, _realm->ino, _realm, 456 last > 0 ? "is deferred" : !last ? "succeeded" : "failed"); 457 458 /* is any child in the list ? */ 459 list_for_each_entry(child, &_realm->children, child_item) { 460 if (!list_empty(&child->rebuild_item)) { 461 skip = true; 462 break; 463 } 464 } 465 466 if (!skip) { 467 list_for_each_entry(child, &_realm->children, child_item) 468 list_add_tail(&child->rebuild_item, &realm_queue); 469 } 470 471 /* last == 1 means need to build parent first */ 472 if (last <= 0) 473 list_del_init(&_realm->rebuild_item); 474 } 475 } 476 477 478 /* 479 * helper to allocate and decode an array of snapids. free prior 480 * instance, if any. 481 */ 482 static int dup_array(u64 **dst, __le64 *src, u32 num) 483 { 484 u32 i; 485 486 kfree(*dst); 487 if (num) { 488 *dst = kcalloc(num, sizeof(u64), GFP_NOFS); 489 if (!*dst) 490 return -ENOMEM; 491 for (i = 0; i < num; i++) 492 (*dst)[i] = get_unaligned_le64(src + i); 493 } else { 494 *dst = NULL; 495 } 496 return 0; 497 } 498 499 static bool has_new_snaps(struct ceph_snap_context *o, 500 struct ceph_snap_context *n) 501 { 502 if (n->num_snaps == 0) 503 return false; 504 /* snaps are in descending order */ 505 return n->snaps[0] > o->seq; 506 } 507 508 /* 509 * When a snapshot is applied, the size/mtime inode metadata is queued 510 * in a ceph_cap_snap (one for each snapshot) until writeback 511 * completes and the metadata can be flushed back to the MDS. 512 * 513 * However, if a (sync) write is currently in-progress when we apply 514 * the snapshot, we have to wait until the write succeeds or fails 515 * (and a final size/mtime is known). In this case the 516 * cap_snap->writing = 1, and is said to be "pending." When the write 517 * finishes, we __ceph_finish_cap_snap(). 518 * 519 * Caller must hold snap_rwsem for read (i.e., the realm topology won't 520 * change). 521 */ 522 static void ceph_queue_cap_snap(struct ceph_inode_info *ci, 523 struct ceph_cap_snap **pcapsnap) 524 { 525 struct inode *inode = &ci->netfs.inode; 526 struct ceph_snap_context *old_snapc, *new_snapc; 527 struct ceph_cap_snap *capsnap = *pcapsnap; 528 struct ceph_buffer *old_blob = NULL; 529 int used, dirty; 530 531 spin_lock(&ci->i_ceph_lock); 532 used = __ceph_caps_used(ci); 533 dirty = __ceph_caps_dirty(ci); 534 535 old_snapc = ci->i_head_snapc; 536 new_snapc = ci->i_snap_realm->cached_context; 537 538 /* 539 * If there is a write in progress, treat that as a dirty Fw, 540 * even though it hasn't completed yet; by the time we finish 541 * up this capsnap it will be. 542 */ 543 if (used & CEPH_CAP_FILE_WR) 544 dirty |= CEPH_CAP_FILE_WR; 545 546 if (__ceph_have_pending_cap_snap(ci)) { 547 /* there is no point in queuing multiple "pending" cap_snaps, 548 as no new writes are allowed to start when pending, so any 549 writes in progress now were started before the previous 550 cap_snap. lucky us. */ 551 dout("%s %p %llx.%llx already pending\n", 552 __func__, inode, ceph_vinop(inode)); 553 goto update_snapc; 554 } 555 if (ci->i_wrbuffer_ref_head == 0 && 556 !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) { 557 dout("%s %p %llx.%llx nothing dirty|writing\n", 558 __func__, inode, ceph_vinop(inode)); 559 goto update_snapc; 560 } 561 562 BUG_ON(!old_snapc); 563 564 /* 565 * There is no need to send FLUSHSNAP message to MDS if there is 566 * no new snapshot. But when there is dirty pages or on-going 567 * writes, we still need to create cap_snap. cap_snap is needed 568 * by the write path and page writeback path. 569 * 570 * also see ceph_try_drop_cap_snap() 571 */ 572 if (has_new_snaps(old_snapc, new_snapc)) { 573 if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR)) 574 capsnap->need_flush = true; 575 } else { 576 if (!(used & CEPH_CAP_FILE_WR) && 577 ci->i_wrbuffer_ref_head == 0) { 578 dout("%s %p %llx.%llx no new_snap|dirty_page|writing\n", 579 __func__, inode, ceph_vinop(inode)); 580 goto update_snapc; 581 } 582 } 583 584 dout("%s %p %llx.%llx cap_snap %p queuing under %p %s %s\n", 585 __func__, inode, ceph_vinop(inode), capsnap, old_snapc, 586 ceph_cap_string(dirty), capsnap->need_flush ? "" : "no_flush"); 587 ihold(inode); 588 589 capsnap->follows = old_snapc->seq; 590 capsnap->issued = __ceph_caps_issued(ci, NULL); 591 capsnap->dirty = dirty; 592 593 capsnap->mode = inode->i_mode; 594 capsnap->uid = inode->i_uid; 595 capsnap->gid = inode->i_gid; 596 597 if (dirty & CEPH_CAP_XATTR_EXCL) { 598 old_blob = __ceph_build_xattrs_blob(ci); 599 capsnap->xattr_blob = 600 ceph_buffer_get(ci->i_xattrs.blob); 601 capsnap->xattr_version = ci->i_xattrs.version; 602 } else { 603 capsnap->xattr_blob = NULL; 604 capsnap->xattr_version = 0; 605 } 606 607 capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE; 608 609 /* dirty page count moved from _head to this cap_snap; 610 all subsequent writes page dirties occur _after_ this 611 snapshot. */ 612 capsnap->dirty_pages = ci->i_wrbuffer_ref_head; 613 ci->i_wrbuffer_ref_head = 0; 614 capsnap->context = old_snapc; 615 list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps); 616 617 if (used & CEPH_CAP_FILE_WR) { 618 dout("%s %p %llx.%llx cap_snap %p snapc %p seq %llu used WR," 619 " now pending\n", __func__, inode, ceph_vinop(inode), 620 capsnap, old_snapc, old_snapc->seq); 621 capsnap->writing = 1; 622 } else { 623 /* note mtime, size NOW. */ 624 __ceph_finish_cap_snap(ci, capsnap); 625 } 626 *pcapsnap = NULL; 627 old_snapc = NULL; 628 629 update_snapc: 630 if (ci->i_wrbuffer_ref_head == 0 && 631 ci->i_wr_ref == 0 && 632 ci->i_dirty_caps == 0 && 633 ci->i_flushing_caps == 0) { 634 ci->i_head_snapc = NULL; 635 } else { 636 ci->i_head_snapc = ceph_get_snap_context(new_snapc); 637 dout(" new snapc is %p\n", new_snapc); 638 } 639 spin_unlock(&ci->i_ceph_lock); 640 641 ceph_buffer_put(old_blob); 642 ceph_put_snap_context(old_snapc); 643 } 644 645 /* 646 * Finalize the size, mtime for a cap_snap.. that is, settle on final values 647 * to be used for the snapshot, to be flushed back to the mds. 648 * 649 * If capsnap can now be flushed, add to snap_flush list, and return 1. 650 * 651 * Caller must hold i_ceph_lock. 652 */ 653 int __ceph_finish_cap_snap(struct ceph_inode_info *ci, 654 struct ceph_cap_snap *capsnap) 655 { 656 struct inode *inode = &ci->netfs.inode; 657 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 658 659 BUG_ON(capsnap->writing); 660 capsnap->size = i_size_read(inode); 661 capsnap->mtime = inode->i_mtime; 662 capsnap->atime = inode->i_atime; 663 capsnap->ctime = inode->i_ctime; 664 capsnap->btime = ci->i_btime; 665 capsnap->change_attr = inode_peek_iversion_raw(inode); 666 capsnap->time_warp_seq = ci->i_time_warp_seq; 667 capsnap->truncate_size = ci->i_truncate_size; 668 capsnap->truncate_seq = ci->i_truncate_seq; 669 if (capsnap->dirty_pages) { 670 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu " 671 "still has %d dirty pages\n", __func__, inode, 672 ceph_vinop(inode), capsnap, capsnap->context, 673 capsnap->context->seq, ceph_cap_string(capsnap->dirty), 674 capsnap->size, capsnap->dirty_pages); 675 return 0; 676 } 677 678 /* Fb cap still in use, delay it */ 679 if (ci->i_wb_ref) { 680 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu " 681 "used WRBUFFER, delaying\n", __func__, inode, 682 ceph_vinop(inode), capsnap, capsnap->context, 683 capsnap->context->seq, ceph_cap_string(capsnap->dirty), 684 capsnap->size); 685 capsnap->writing = 1; 686 return 0; 687 } 688 689 ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS; 690 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu\n", 691 __func__, inode, ceph_vinop(inode), capsnap, capsnap->context, 692 capsnap->context->seq, ceph_cap_string(capsnap->dirty), 693 capsnap->size); 694 695 spin_lock(&mdsc->snap_flush_lock); 696 if (list_empty(&ci->i_snap_flush_item)) 697 list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list); 698 spin_unlock(&mdsc->snap_flush_lock); 699 return 1; /* caller may want to ceph_flush_snaps */ 700 } 701 702 /* 703 * Queue cap_snaps for snap writeback for this realm and its children. 704 * Called under snap_rwsem, so realm topology won't change. 705 */ 706 static void queue_realm_cap_snaps(struct ceph_snap_realm *realm) 707 { 708 struct ceph_inode_info *ci; 709 struct inode *lastinode = NULL; 710 struct ceph_cap_snap *capsnap = NULL; 711 712 dout("%s %p %llx inode\n", __func__, realm, realm->ino); 713 714 spin_lock(&realm->inodes_with_caps_lock); 715 list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) { 716 struct inode *inode = igrab(&ci->netfs.inode); 717 if (!inode) 718 continue; 719 spin_unlock(&realm->inodes_with_caps_lock); 720 iput(lastinode); 721 lastinode = inode; 722 723 /* 724 * Allocate the capsnap memory outside of ceph_queue_cap_snap() 725 * to reduce very possible but unnecessary frequently memory 726 * allocate/free in this loop. 727 */ 728 if (!capsnap) { 729 capsnap = kmem_cache_zalloc(ceph_cap_snap_cachep, GFP_NOFS); 730 if (!capsnap) { 731 pr_err("ENOMEM allocating ceph_cap_snap on %p\n", 732 inode); 733 return; 734 } 735 } 736 capsnap->cap_flush.is_capsnap = true; 737 refcount_set(&capsnap->nref, 1); 738 INIT_LIST_HEAD(&capsnap->cap_flush.i_list); 739 INIT_LIST_HEAD(&capsnap->cap_flush.g_list); 740 INIT_LIST_HEAD(&capsnap->ci_item); 741 742 ceph_queue_cap_snap(ci, &capsnap); 743 spin_lock(&realm->inodes_with_caps_lock); 744 } 745 spin_unlock(&realm->inodes_with_caps_lock); 746 iput(lastinode); 747 748 if (capsnap) 749 kmem_cache_free(ceph_cap_snap_cachep, capsnap); 750 dout("%s %p %llx done\n", __func__, realm, realm->ino); 751 } 752 753 /* 754 * Parse and apply a snapblob "snap trace" from the MDS. This specifies 755 * the snap realm parameters from a given realm and all of its ancestors, 756 * up to the root. 757 * 758 * Caller must hold snap_rwsem for write. 759 */ 760 int ceph_update_snap_trace(struct ceph_mds_client *mdsc, 761 void *p, void *e, bool deletion, 762 struct ceph_snap_realm **realm_ret) 763 { 764 struct ceph_mds_snap_realm *ri; /* encoded */ 765 __le64 *snaps; /* encoded */ 766 __le64 *prior_parent_snaps; /* encoded */ 767 struct ceph_snap_realm *realm; 768 struct ceph_snap_realm *first_realm = NULL; 769 struct ceph_snap_realm *realm_to_rebuild = NULL; 770 struct ceph_client *client = mdsc->fsc->client; 771 int rebuild_snapcs; 772 int err = -ENOMEM; 773 int ret; 774 LIST_HEAD(dirty_realms); 775 776 lockdep_assert_held_write(&mdsc->snap_rwsem); 777 778 dout("%s deletion=%d\n", __func__, deletion); 779 more: 780 realm = NULL; 781 rebuild_snapcs = 0; 782 ceph_decode_need(&p, e, sizeof(*ri), bad); 783 ri = p; 784 p += sizeof(*ri); 785 ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) + 786 le32_to_cpu(ri->num_prior_parent_snaps)), bad); 787 snaps = p; 788 p += sizeof(u64) * le32_to_cpu(ri->num_snaps); 789 prior_parent_snaps = p; 790 p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps); 791 792 realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino)); 793 if (!realm) { 794 realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino)); 795 if (IS_ERR(realm)) { 796 err = PTR_ERR(realm); 797 goto fail; 798 } 799 } 800 801 /* ensure the parent is correct */ 802 err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent)); 803 if (err < 0) 804 goto fail; 805 rebuild_snapcs += err; 806 807 if (le64_to_cpu(ri->seq) > realm->seq) { 808 dout("%s updating %llx %p %lld -> %lld\n", __func__, 809 realm->ino, realm, realm->seq, le64_to_cpu(ri->seq)); 810 /* update realm parameters, snap lists */ 811 realm->seq = le64_to_cpu(ri->seq); 812 realm->created = le64_to_cpu(ri->created); 813 realm->parent_since = le64_to_cpu(ri->parent_since); 814 815 realm->num_snaps = le32_to_cpu(ri->num_snaps); 816 err = dup_array(&realm->snaps, snaps, realm->num_snaps); 817 if (err < 0) 818 goto fail; 819 820 realm->num_prior_parent_snaps = 821 le32_to_cpu(ri->num_prior_parent_snaps); 822 err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps, 823 realm->num_prior_parent_snaps); 824 if (err < 0) 825 goto fail; 826 827 if (realm->seq > mdsc->last_snap_seq) 828 mdsc->last_snap_seq = realm->seq; 829 830 rebuild_snapcs = 1; 831 } else if (!realm->cached_context) { 832 dout("%s %llx %p seq %lld new\n", __func__, 833 realm->ino, realm, realm->seq); 834 rebuild_snapcs = 1; 835 } else { 836 dout("%s %llx %p seq %lld unchanged\n", __func__, 837 realm->ino, realm, realm->seq); 838 } 839 840 dout("done with %llx %p, rebuild_snapcs=%d, %p %p\n", realm->ino, 841 realm, rebuild_snapcs, p, e); 842 843 /* 844 * this will always track the uppest parent realm from which 845 * we need to rebuild the snapshot contexts _downward_ in 846 * hierarchy. 847 */ 848 if (rebuild_snapcs) 849 realm_to_rebuild = realm; 850 851 /* rebuild_snapcs when we reach the _end_ (root) of the trace */ 852 if (realm_to_rebuild && p >= e) 853 rebuild_snap_realms(realm_to_rebuild, &dirty_realms); 854 855 if (!first_realm) 856 first_realm = realm; 857 else 858 ceph_put_snap_realm(mdsc, realm); 859 860 if (p < e) 861 goto more; 862 863 /* 864 * queue cap snaps _after_ we've built the new snap contexts, 865 * so that i_head_snapc can be set appropriately. 866 */ 867 while (!list_empty(&dirty_realms)) { 868 realm = list_first_entry(&dirty_realms, struct ceph_snap_realm, 869 dirty_item); 870 list_del_init(&realm->dirty_item); 871 queue_realm_cap_snaps(realm); 872 } 873 874 if (realm_ret) 875 *realm_ret = first_realm; 876 else 877 ceph_put_snap_realm(mdsc, first_realm); 878 879 __cleanup_empty_realms(mdsc); 880 return 0; 881 882 bad: 883 err = -EIO; 884 fail: 885 if (realm && !IS_ERR(realm)) 886 ceph_put_snap_realm(mdsc, realm); 887 if (first_realm) 888 ceph_put_snap_realm(mdsc, first_realm); 889 pr_err("%s error %d\n", __func__, err); 890 891 /* 892 * When receiving a corrupted snap trace we don't know what 893 * exactly has happened in MDS side. And we shouldn't continue 894 * writing to OSD, which may corrupt the snapshot contents. 895 * 896 * Just try to blocklist this kclient and then this kclient 897 * must be remounted to continue after the corrupted metadata 898 * fixed in the MDS side. 899 */ 900 WRITE_ONCE(mdsc->fsc->mount_state, CEPH_MOUNT_FENCE_IO); 901 ret = ceph_monc_blocklist_add(&client->monc, &client->msgr.inst.addr); 902 if (ret) 903 pr_err("%s failed to blocklist %s: %d\n", __func__, 904 ceph_pr_addr(&client->msgr.inst.addr), ret); 905 906 WARN(1, "%s: %s%sdo remount to continue%s", 907 __func__, ret ? "" : ceph_pr_addr(&client->msgr.inst.addr), 908 ret ? "" : " was blocklisted, ", 909 err == -EIO ? " after corrupted snaptrace is fixed" : ""); 910 911 return err; 912 } 913 914 915 /* 916 * Send any cap_snaps that are queued for flush. Try to carry 917 * s_mutex across multiple snap flushes to avoid locking overhead. 918 * 919 * Caller holds no locks. 920 */ 921 static void flush_snaps(struct ceph_mds_client *mdsc) 922 { 923 struct ceph_inode_info *ci; 924 struct inode *inode; 925 struct ceph_mds_session *session = NULL; 926 927 dout("%s\n", __func__); 928 spin_lock(&mdsc->snap_flush_lock); 929 while (!list_empty(&mdsc->snap_flush_list)) { 930 ci = list_first_entry(&mdsc->snap_flush_list, 931 struct ceph_inode_info, i_snap_flush_item); 932 inode = &ci->netfs.inode; 933 ihold(inode); 934 spin_unlock(&mdsc->snap_flush_lock); 935 ceph_flush_snaps(ci, &session); 936 iput(inode); 937 spin_lock(&mdsc->snap_flush_lock); 938 } 939 spin_unlock(&mdsc->snap_flush_lock); 940 941 ceph_put_mds_session(session); 942 dout("%s done\n", __func__); 943 } 944 945 /** 946 * ceph_change_snap_realm - change the snap_realm for an inode 947 * @inode: inode to move to new snap realm 948 * @realm: new realm to move inode into (may be NULL) 949 * 950 * Detach an inode from its old snaprealm (if any) and attach it to 951 * the new snaprealm (if any). The old snap realm reference held by 952 * the inode is put. If realm is non-NULL, then the caller's reference 953 * to it is taken over by the inode. 954 */ 955 void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm) 956 { 957 struct ceph_inode_info *ci = ceph_inode(inode); 958 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 959 struct ceph_snap_realm *oldrealm = ci->i_snap_realm; 960 961 lockdep_assert_held(&ci->i_ceph_lock); 962 963 if (oldrealm) { 964 spin_lock(&oldrealm->inodes_with_caps_lock); 965 list_del_init(&ci->i_snap_realm_item); 966 if (oldrealm->ino == ci->i_vino.ino) 967 oldrealm->inode = NULL; 968 spin_unlock(&oldrealm->inodes_with_caps_lock); 969 ceph_put_snap_realm(mdsc, oldrealm); 970 } 971 972 ci->i_snap_realm = realm; 973 974 if (realm) { 975 spin_lock(&realm->inodes_with_caps_lock); 976 list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps); 977 if (realm->ino == ci->i_vino.ino) 978 realm->inode = inode; 979 spin_unlock(&realm->inodes_with_caps_lock); 980 } 981 } 982 983 /* 984 * Handle a snap notification from the MDS. 985 * 986 * This can take two basic forms: the simplest is just a snap creation 987 * or deletion notification on an existing realm. This should update the 988 * realm and its children. 989 * 990 * The more difficult case is realm creation, due to snap creation at a 991 * new point in the file hierarchy, or due to a rename that moves a file or 992 * directory into another realm. 993 */ 994 void ceph_handle_snap(struct ceph_mds_client *mdsc, 995 struct ceph_mds_session *session, 996 struct ceph_msg *msg) 997 { 998 struct super_block *sb = mdsc->fsc->sb; 999 int mds = session->s_mds; 1000 u64 split; 1001 int op; 1002 int trace_len; 1003 struct ceph_snap_realm *realm = NULL; 1004 void *p = msg->front.iov_base; 1005 void *e = p + msg->front.iov_len; 1006 struct ceph_mds_snap_head *h; 1007 int num_split_inos, num_split_realms; 1008 __le64 *split_inos = NULL, *split_realms = NULL; 1009 int i; 1010 int locked_rwsem = 0; 1011 bool close_sessions = false; 1012 1013 /* decode */ 1014 if (msg->front.iov_len < sizeof(*h)) 1015 goto bad; 1016 h = p; 1017 op = le32_to_cpu(h->op); 1018 split = le64_to_cpu(h->split); /* non-zero if we are splitting an 1019 * existing realm */ 1020 num_split_inos = le32_to_cpu(h->num_split_inos); 1021 num_split_realms = le32_to_cpu(h->num_split_realms); 1022 trace_len = le32_to_cpu(h->trace_len); 1023 p += sizeof(*h); 1024 1025 dout("%s from mds%d op %s split %llx tracelen %d\n", __func__, 1026 mds, ceph_snap_op_name(op), split, trace_len); 1027 1028 mutex_lock(&session->s_mutex); 1029 inc_session_sequence(session); 1030 mutex_unlock(&session->s_mutex); 1031 1032 down_write(&mdsc->snap_rwsem); 1033 locked_rwsem = 1; 1034 1035 if (op == CEPH_SNAP_OP_SPLIT) { 1036 struct ceph_mds_snap_realm *ri; 1037 1038 /* 1039 * A "split" breaks part of an existing realm off into 1040 * a new realm. The MDS provides a list of inodes 1041 * (with caps) and child realms that belong to the new 1042 * child. 1043 */ 1044 split_inos = p; 1045 p += sizeof(u64) * num_split_inos; 1046 split_realms = p; 1047 p += sizeof(u64) * num_split_realms; 1048 ceph_decode_need(&p, e, sizeof(*ri), bad); 1049 /* we will peek at realm info here, but will _not_ 1050 * advance p, as the realm update will occur below in 1051 * ceph_update_snap_trace. */ 1052 ri = p; 1053 1054 realm = ceph_lookup_snap_realm(mdsc, split); 1055 if (!realm) { 1056 realm = ceph_create_snap_realm(mdsc, split); 1057 if (IS_ERR(realm)) 1058 goto out; 1059 } 1060 1061 dout("splitting snap_realm %llx %p\n", realm->ino, realm); 1062 for (i = 0; i < num_split_inos; i++) { 1063 struct ceph_vino vino = { 1064 .ino = le64_to_cpu(split_inos[i]), 1065 .snap = CEPH_NOSNAP, 1066 }; 1067 struct inode *inode = ceph_find_inode(sb, vino); 1068 struct ceph_inode_info *ci; 1069 1070 if (!inode) 1071 continue; 1072 ci = ceph_inode(inode); 1073 1074 spin_lock(&ci->i_ceph_lock); 1075 if (!ci->i_snap_realm) 1076 goto skip_inode; 1077 /* 1078 * If this inode belongs to a realm that was 1079 * created after our new realm, we experienced 1080 * a race (due to another split notifications 1081 * arriving from a different MDS). So skip 1082 * this inode. 1083 */ 1084 if (ci->i_snap_realm->created > 1085 le64_to_cpu(ri->created)) { 1086 dout(" leaving %p %llx.%llx in newer realm %llx %p\n", 1087 inode, ceph_vinop(inode), ci->i_snap_realm->ino, 1088 ci->i_snap_realm); 1089 goto skip_inode; 1090 } 1091 dout(" will move %p %llx.%llx to split realm %llx %p\n", 1092 inode, ceph_vinop(inode), realm->ino, realm); 1093 1094 ceph_get_snap_realm(mdsc, realm); 1095 ceph_change_snap_realm(inode, realm); 1096 spin_unlock(&ci->i_ceph_lock); 1097 iput(inode); 1098 continue; 1099 1100 skip_inode: 1101 spin_unlock(&ci->i_ceph_lock); 1102 iput(inode); 1103 } 1104 1105 /* we may have taken some of the old realm's children. */ 1106 for (i = 0; i < num_split_realms; i++) { 1107 struct ceph_snap_realm *child = 1108 __lookup_snap_realm(mdsc, 1109 le64_to_cpu(split_realms[i])); 1110 if (!child) 1111 continue; 1112 adjust_snap_realm_parent(mdsc, child, realm->ino); 1113 } 1114 } else { 1115 /* 1116 * In the non-split case both 'num_split_inos' and 1117 * 'num_split_realms' should be 0, making this a no-op. 1118 * However the MDS happens to populate 'split_realms' list 1119 * in one of the UPDATE op cases by mistake. 1120 * 1121 * Skip both lists just in case to ensure that 'p' is 1122 * positioned at the start of realm info, as expected by 1123 * ceph_update_snap_trace(). 1124 */ 1125 p += sizeof(u64) * num_split_inos; 1126 p += sizeof(u64) * num_split_realms; 1127 } 1128 1129 /* 1130 * update using the provided snap trace. if we are deleting a 1131 * snap, we can avoid queueing cap_snaps. 1132 */ 1133 if (ceph_update_snap_trace(mdsc, p, e, 1134 op == CEPH_SNAP_OP_DESTROY, 1135 NULL)) { 1136 close_sessions = true; 1137 goto bad; 1138 } 1139 1140 if (op == CEPH_SNAP_OP_SPLIT) 1141 /* we took a reference when we created the realm, above */ 1142 ceph_put_snap_realm(mdsc, realm); 1143 1144 __cleanup_empty_realms(mdsc); 1145 1146 up_write(&mdsc->snap_rwsem); 1147 1148 flush_snaps(mdsc); 1149 return; 1150 1151 bad: 1152 pr_err("%s corrupt snap message from mds%d\n", __func__, mds); 1153 ceph_msg_dump(msg); 1154 out: 1155 if (locked_rwsem) 1156 up_write(&mdsc->snap_rwsem); 1157 1158 if (close_sessions) 1159 ceph_mdsc_close_sessions(mdsc); 1160 return; 1161 } 1162 1163 struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc, 1164 u64 snap) 1165 { 1166 struct ceph_snapid_map *sm, *exist; 1167 struct rb_node **p, *parent; 1168 int ret; 1169 1170 exist = NULL; 1171 spin_lock(&mdsc->snapid_map_lock); 1172 p = &mdsc->snapid_map_tree.rb_node; 1173 while (*p) { 1174 exist = rb_entry(*p, struct ceph_snapid_map, node); 1175 if (snap > exist->snap) { 1176 p = &(*p)->rb_left; 1177 } else if (snap < exist->snap) { 1178 p = &(*p)->rb_right; 1179 } else { 1180 if (atomic_inc_return(&exist->ref) == 1) 1181 list_del_init(&exist->lru); 1182 break; 1183 } 1184 exist = NULL; 1185 } 1186 spin_unlock(&mdsc->snapid_map_lock); 1187 if (exist) { 1188 dout("%s found snapid map %llx -> %x\n", __func__, 1189 exist->snap, exist->dev); 1190 return exist; 1191 } 1192 1193 sm = kmalloc(sizeof(*sm), GFP_NOFS); 1194 if (!sm) 1195 return NULL; 1196 1197 ret = get_anon_bdev(&sm->dev); 1198 if (ret < 0) { 1199 kfree(sm); 1200 return NULL; 1201 } 1202 1203 INIT_LIST_HEAD(&sm->lru); 1204 atomic_set(&sm->ref, 1); 1205 sm->snap = snap; 1206 1207 exist = NULL; 1208 parent = NULL; 1209 p = &mdsc->snapid_map_tree.rb_node; 1210 spin_lock(&mdsc->snapid_map_lock); 1211 while (*p) { 1212 parent = *p; 1213 exist = rb_entry(*p, struct ceph_snapid_map, node); 1214 if (snap > exist->snap) 1215 p = &(*p)->rb_left; 1216 else if (snap < exist->snap) 1217 p = &(*p)->rb_right; 1218 else 1219 break; 1220 exist = NULL; 1221 } 1222 if (exist) { 1223 if (atomic_inc_return(&exist->ref) == 1) 1224 list_del_init(&exist->lru); 1225 } else { 1226 rb_link_node(&sm->node, parent, p); 1227 rb_insert_color(&sm->node, &mdsc->snapid_map_tree); 1228 } 1229 spin_unlock(&mdsc->snapid_map_lock); 1230 if (exist) { 1231 free_anon_bdev(sm->dev); 1232 kfree(sm); 1233 dout("%s found snapid map %llx -> %x\n", __func__, 1234 exist->snap, exist->dev); 1235 return exist; 1236 } 1237 1238 dout("%s create snapid map %llx -> %x\n", __func__, 1239 sm->snap, sm->dev); 1240 return sm; 1241 } 1242 1243 void ceph_put_snapid_map(struct ceph_mds_client* mdsc, 1244 struct ceph_snapid_map *sm) 1245 { 1246 if (!sm) 1247 return; 1248 if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) { 1249 if (!RB_EMPTY_NODE(&sm->node)) { 1250 sm->last_used = jiffies; 1251 list_add_tail(&sm->lru, &mdsc->snapid_map_lru); 1252 spin_unlock(&mdsc->snapid_map_lock); 1253 } else { 1254 /* already cleaned up by 1255 * ceph_cleanup_snapid_map() */ 1256 spin_unlock(&mdsc->snapid_map_lock); 1257 kfree(sm); 1258 } 1259 } 1260 } 1261 1262 void ceph_trim_snapid_map(struct ceph_mds_client *mdsc) 1263 { 1264 struct ceph_snapid_map *sm; 1265 unsigned long now; 1266 LIST_HEAD(to_free); 1267 1268 spin_lock(&mdsc->snapid_map_lock); 1269 now = jiffies; 1270 1271 while (!list_empty(&mdsc->snapid_map_lru)) { 1272 sm = list_first_entry(&mdsc->snapid_map_lru, 1273 struct ceph_snapid_map, lru); 1274 if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now)) 1275 break; 1276 1277 rb_erase(&sm->node, &mdsc->snapid_map_tree); 1278 list_move(&sm->lru, &to_free); 1279 } 1280 spin_unlock(&mdsc->snapid_map_lock); 1281 1282 while (!list_empty(&to_free)) { 1283 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru); 1284 list_del(&sm->lru); 1285 dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev); 1286 free_anon_bdev(sm->dev); 1287 kfree(sm); 1288 } 1289 } 1290 1291 void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc) 1292 { 1293 struct ceph_snapid_map *sm; 1294 struct rb_node *p; 1295 LIST_HEAD(to_free); 1296 1297 spin_lock(&mdsc->snapid_map_lock); 1298 while ((p = rb_first(&mdsc->snapid_map_tree))) { 1299 sm = rb_entry(p, struct ceph_snapid_map, node); 1300 rb_erase(p, &mdsc->snapid_map_tree); 1301 RB_CLEAR_NODE(p); 1302 list_move(&sm->lru, &to_free); 1303 } 1304 spin_unlock(&mdsc->snapid_map_lock); 1305 1306 while (!list_empty(&to_free)) { 1307 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru); 1308 list_del(&sm->lru); 1309 free_anon_bdev(sm->dev); 1310 if (WARN_ON_ONCE(atomic_read(&sm->ref))) { 1311 pr_err("snapid map %llx -> %x still in use\n", 1312 sm->snap, sm->dev); 1313 } 1314 kfree(sm); 1315 } 1316 } 1317