xref: /openbmc/linux/fs/ceph/snap.c (revision ecefa105)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/fs.h>
5 #include <linux/sort.h>
6 #include <linux/slab.h>
7 #include <linux/iversion.h>
8 #include "super.h"
9 #include "mds_client.h"
10 #include <linux/ceph/decode.h>
11 
12 /* unused map expires after 5 minutes */
13 #define CEPH_SNAPID_MAP_TIMEOUT	(5 * 60 * HZ)
14 
15 /*
16  * Snapshots in ceph are driven in large part by cooperation from the
17  * client.  In contrast to local file systems or file servers that
18  * implement snapshots at a single point in the system, ceph's
19  * distributed access to storage requires clients to help decide
20  * whether a write logically occurs before or after a recently created
21  * snapshot.
22  *
23  * This provides a perfect instantanous client-wide snapshot.  Between
24  * clients, however, snapshots may appear to be applied at slightly
25  * different points in time, depending on delays in delivering the
26  * snapshot notification.
27  *
28  * Snapshots are _not_ file system-wide.  Instead, each snapshot
29  * applies to the subdirectory nested beneath some directory.  This
30  * effectively divides the hierarchy into multiple "realms," where all
31  * of the files contained by each realm share the same set of
32  * snapshots.  An individual realm's snap set contains snapshots
33  * explicitly created on that realm, as well as any snaps in its
34  * parent's snap set _after_ the point at which the parent became it's
35  * parent (due to, say, a rename).  Similarly, snaps from prior parents
36  * during the time intervals during which they were the parent are included.
37  *
38  * The client is spared most of this detail, fortunately... it must only
39  * maintains a hierarchy of realms reflecting the current parent/child
40  * realm relationship, and for each realm has an explicit list of snaps
41  * inherited from prior parents.
42  *
43  * A snap_realm struct is maintained for realms containing every inode
44  * with an open cap in the system.  (The needed snap realm information is
45  * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
46  * version number is used to ensure that as realm parameters change (new
47  * snapshot, new parent, etc.) the client's realm hierarchy is updated.
48  *
49  * The realm hierarchy drives the generation of a 'snap context' for each
50  * realm, which simply lists the resulting set of snaps for the realm.  This
51  * is attached to any writes sent to OSDs.
52  */
53 /*
54  * Unfortunately error handling is a bit mixed here.  If we get a snap
55  * update, but don't have enough memory to update our realm hierarchy,
56  * it's not clear what we can do about it (besides complaining to the
57  * console).
58  */
59 
60 
61 /*
62  * increase ref count for the realm
63  *
64  * caller must hold snap_rwsem.
65  */
66 void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
67 			 struct ceph_snap_realm *realm)
68 {
69 	lockdep_assert_held(&mdsc->snap_rwsem);
70 
71 	/*
72 	 * The 0->1 and 1->0 transitions must take the snap_empty_lock
73 	 * atomically with the refcount change. Go ahead and bump the
74 	 * nref here, unless it's 0, in which case we take the spinlock
75 	 * and then do the increment and remove it from the list.
76 	 */
77 	if (atomic_inc_not_zero(&realm->nref))
78 		return;
79 
80 	spin_lock(&mdsc->snap_empty_lock);
81 	if (atomic_inc_return(&realm->nref) == 1)
82 		list_del_init(&realm->empty_item);
83 	spin_unlock(&mdsc->snap_empty_lock);
84 }
85 
86 static void __insert_snap_realm(struct rb_root *root,
87 				struct ceph_snap_realm *new)
88 {
89 	struct rb_node **p = &root->rb_node;
90 	struct rb_node *parent = NULL;
91 	struct ceph_snap_realm *r = NULL;
92 
93 	while (*p) {
94 		parent = *p;
95 		r = rb_entry(parent, struct ceph_snap_realm, node);
96 		if (new->ino < r->ino)
97 			p = &(*p)->rb_left;
98 		else if (new->ino > r->ino)
99 			p = &(*p)->rb_right;
100 		else
101 			BUG();
102 	}
103 
104 	rb_link_node(&new->node, parent, p);
105 	rb_insert_color(&new->node, root);
106 }
107 
108 /*
109  * create and get the realm rooted at @ino and bump its ref count.
110  *
111  * caller must hold snap_rwsem for write.
112  */
113 static struct ceph_snap_realm *ceph_create_snap_realm(
114 	struct ceph_mds_client *mdsc,
115 	u64 ino)
116 {
117 	struct ceph_snap_realm *realm;
118 
119 	lockdep_assert_held_write(&mdsc->snap_rwsem);
120 
121 	realm = kzalloc(sizeof(*realm), GFP_NOFS);
122 	if (!realm)
123 		return ERR_PTR(-ENOMEM);
124 
125 	/* Do not release the global dummy snaprealm until unmouting */
126 	if (ino == CEPH_INO_GLOBAL_SNAPREALM)
127 		atomic_set(&realm->nref, 2);
128 	else
129 		atomic_set(&realm->nref, 1);
130 	realm->ino = ino;
131 	INIT_LIST_HEAD(&realm->children);
132 	INIT_LIST_HEAD(&realm->child_item);
133 	INIT_LIST_HEAD(&realm->empty_item);
134 	INIT_LIST_HEAD(&realm->dirty_item);
135 	INIT_LIST_HEAD(&realm->rebuild_item);
136 	INIT_LIST_HEAD(&realm->inodes_with_caps);
137 	spin_lock_init(&realm->inodes_with_caps_lock);
138 	__insert_snap_realm(&mdsc->snap_realms, realm);
139 	mdsc->num_snap_realms++;
140 
141 	dout("%s %llx %p\n", __func__, realm->ino, realm);
142 	return realm;
143 }
144 
145 /*
146  * lookup the realm rooted at @ino.
147  *
148  * caller must hold snap_rwsem.
149  */
150 static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
151 						   u64 ino)
152 {
153 	struct rb_node *n = mdsc->snap_realms.rb_node;
154 	struct ceph_snap_realm *r;
155 
156 	lockdep_assert_held(&mdsc->snap_rwsem);
157 
158 	while (n) {
159 		r = rb_entry(n, struct ceph_snap_realm, node);
160 		if (ino < r->ino)
161 			n = n->rb_left;
162 		else if (ino > r->ino)
163 			n = n->rb_right;
164 		else {
165 			dout("%s %llx %p\n", __func__, r->ino, r);
166 			return r;
167 		}
168 	}
169 	return NULL;
170 }
171 
172 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
173 					       u64 ino)
174 {
175 	struct ceph_snap_realm *r;
176 	r = __lookup_snap_realm(mdsc, ino);
177 	if (r)
178 		ceph_get_snap_realm(mdsc, r);
179 	return r;
180 }
181 
182 static void __put_snap_realm(struct ceph_mds_client *mdsc,
183 			     struct ceph_snap_realm *realm);
184 
185 /*
186  * called with snap_rwsem (write)
187  */
188 static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
189 				 struct ceph_snap_realm *realm)
190 {
191 	lockdep_assert_held_write(&mdsc->snap_rwsem);
192 
193 	dout("%s %p %llx\n", __func__, realm, realm->ino);
194 
195 	rb_erase(&realm->node, &mdsc->snap_realms);
196 	mdsc->num_snap_realms--;
197 
198 	if (realm->parent) {
199 		list_del_init(&realm->child_item);
200 		__put_snap_realm(mdsc, realm->parent);
201 	}
202 
203 	kfree(realm->prior_parent_snaps);
204 	kfree(realm->snaps);
205 	ceph_put_snap_context(realm->cached_context);
206 	kfree(realm);
207 }
208 
209 /*
210  * caller holds snap_rwsem (write)
211  */
212 static void __put_snap_realm(struct ceph_mds_client *mdsc,
213 			     struct ceph_snap_realm *realm)
214 {
215 	lockdep_assert_held_write(&mdsc->snap_rwsem);
216 
217 	/*
218 	 * We do not require the snap_empty_lock here, as any caller that
219 	 * increments the value must hold the snap_rwsem.
220 	 */
221 	if (atomic_dec_and_test(&realm->nref))
222 		__destroy_snap_realm(mdsc, realm);
223 }
224 
225 /*
226  * See comments in ceph_get_snap_realm. Caller needn't hold any locks.
227  */
228 void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
229 			 struct ceph_snap_realm *realm)
230 {
231 	if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock))
232 		return;
233 
234 	if (down_write_trylock(&mdsc->snap_rwsem)) {
235 		spin_unlock(&mdsc->snap_empty_lock);
236 		__destroy_snap_realm(mdsc, realm);
237 		up_write(&mdsc->snap_rwsem);
238 	} else {
239 		list_add(&realm->empty_item, &mdsc->snap_empty);
240 		spin_unlock(&mdsc->snap_empty_lock);
241 	}
242 }
243 
244 /*
245  * Clean up any realms whose ref counts have dropped to zero.  Note
246  * that this does not include realms who were created but not yet
247  * used.
248  *
249  * Called under snap_rwsem (write)
250  */
251 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
252 {
253 	struct ceph_snap_realm *realm;
254 
255 	lockdep_assert_held_write(&mdsc->snap_rwsem);
256 
257 	spin_lock(&mdsc->snap_empty_lock);
258 	while (!list_empty(&mdsc->snap_empty)) {
259 		realm = list_first_entry(&mdsc->snap_empty,
260 				   struct ceph_snap_realm, empty_item);
261 		list_del(&realm->empty_item);
262 		spin_unlock(&mdsc->snap_empty_lock);
263 		__destroy_snap_realm(mdsc, realm);
264 		spin_lock(&mdsc->snap_empty_lock);
265 	}
266 	spin_unlock(&mdsc->snap_empty_lock);
267 }
268 
269 void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc)
270 {
271 	struct ceph_snap_realm *global_realm;
272 
273 	down_write(&mdsc->snap_rwsem);
274 	global_realm = __lookup_snap_realm(mdsc, CEPH_INO_GLOBAL_SNAPREALM);
275 	if (global_realm)
276 		ceph_put_snap_realm(mdsc, global_realm);
277 	__cleanup_empty_realms(mdsc);
278 	up_write(&mdsc->snap_rwsem);
279 }
280 
281 /*
282  * adjust the parent realm of a given @realm.  adjust child list, and parent
283  * pointers, and ref counts appropriately.
284  *
285  * return true if parent was changed, 0 if unchanged, <0 on error.
286  *
287  * caller must hold snap_rwsem for write.
288  */
289 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
290 				    struct ceph_snap_realm *realm,
291 				    u64 parentino)
292 {
293 	struct ceph_snap_realm *parent;
294 
295 	lockdep_assert_held_write(&mdsc->snap_rwsem);
296 
297 	if (realm->parent_ino == parentino)
298 		return 0;
299 
300 	parent = ceph_lookup_snap_realm(mdsc, parentino);
301 	if (!parent) {
302 		parent = ceph_create_snap_realm(mdsc, parentino);
303 		if (IS_ERR(parent))
304 			return PTR_ERR(parent);
305 	}
306 	dout("%s %llx %p: %llx %p -> %llx %p\n", __func__, realm->ino,
307 	     realm, realm->parent_ino, realm->parent, parentino, parent);
308 	if (realm->parent) {
309 		list_del_init(&realm->child_item);
310 		ceph_put_snap_realm(mdsc, realm->parent);
311 	}
312 	realm->parent_ino = parentino;
313 	realm->parent = parent;
314 	list_add(&realm->child_item, &parent->children);
315 	return 1;
316 }
317 
318 
319 static int cmpu64_rev(const void *a, const void *b)
320 {
321 	if (*(u64 *)a < *(u64 *)b)
322 		return 1;
323 	if (*(u64 *)a > *(u64 *)b)
324 		return -1;
325 	return 0;
326 }
327 
328 
329 /*
330  * build the snap context for a given realm.
331  */
332 static int build_snap_context(struct ceph_snap_realm *realm,
333 			      struct list_head *realm_queue,
334 			      struct list_head *dirty_realms)
335 {
336 	struct ceph_snap_realm *parent = realm->parent;
337 	struct ceph_snap_context *snapc;
338 	int err = 0;
339 	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
340 
341 	/*
342 	 * build parent context, if it hasn't been built.
343 	 * conservatively estimate that all parent snaps might be
344 	 * included by us.
345 	 */
346 	if (parent) {
347 		if (!parent->cached_context) {
348 			/* add to the queue head */
349 			list_add(&parent->rebuild_item, realm_queue);
350 			return 1;
351 		}
352 		num += parent->cached_context->num_snaps;
353 	}
354 
355 	/* do i actually need to update?  not if my context seq
356 	   matches realm seq, and my parents' does to.  (this works
357 	   because we rebuild_snap_realms() works _downward_ in
358 	   hierarchy after each update.) */
359 	if (realm->cached_context &&
360 	    realm->cached_context->seq == realm->seq &&
361 	    (!parent ||
362 	     realm->cached_context->seq >= parent->cached_context->seq)) {
363 		dout("%s %llx %p: %p seq %lld (%u snaps) (unchanged)\n",
364 		     __func__, realm->ino, realm, realm->cached_context,
365 		     realm->cached_context->seq,
366 		     (unsigned int)realm->cached_context->num_snaps);
367 		return 0;
368 	}
369 
370 	/* alloc new snap context */
371 	err = -ENOMEM;
372 	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
373 		goto fail;
374 	snapc = ceph_create_snap_context(num, GFP_NOFS);
375 	if (!snapc)
376 		goto fail;
377 
378 	/* build (reverse sorted) snap vector */
379 	num = 0;
380 	snapc->seq = realm->seq;
381 	if (parent) {
382 		u32 i;
383 
384 		/* include any of parent's snaps occurring _after_ my
385 		   parent became my parent */
386 		for (i = 0; i < parent->cached_context->num_snaps; i++)
387 			if (parent->cached_context->snaps[i] >=
388 			    realm->parent_since)
389 				snapc->snaps[num++] =
390 					parent->cached_context->snaps[i];
391 		if (parent->cached_context->seq > snapc->seq)
392 			snapc->seq = parent->cached_context->seq;
393 	}
394 	memcpy(snapc->snaps + num, realm->snaps,
395 	       sizeof(u64)*realm->num_snaps);
396 	num += realm->num_snaps;
397 	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
398 	       sizeof(u64)*realm->num_prior_parent_snaps);
399 	num += realm->num_prior_parent_snaps;
400 
401 	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
402 	snapc->num_snaps = num;
403 	dout("%s %llx %p: %p seq %lld (%u snaps)\n", __func__, realm->ino,
404 	     realm, snapc, snapc->seq, (unsigned int) snapc->num_snaps);
405 
406 	ceph_put_snap_context(realm->cached_context);
407 	realm->cached_context = snapc;
408 	/* queue realm for cap_snap creation */
409 	list_add_tail(&realm->dirty_item, dirty_realms);
410 	return 0;
411 
412 fail:
413 	/*
414 	 * if we fail, clear old (incorrect) cached_context... hopefully
415 	 * we'll have better luck building it later
416 	 */
417 	if (realm->cached_context) {
418 		ceph_put_snap_context(realm->cached_context);
419 		realm->cached_context = NULL;
420 	}
421 	pr_err("%s %llx %p fail %d\n", __func__, realm->ino, realm, err);
422 	return err;
423 }
424 
425 /*
426  * rebuild snap context for the given realm and all of its children.
427  */
428 static void rebuild_snap_realms(struct ceph_snap_realm *realm,
429 				struct list_head *dirty_realms)
430 {
431 	LIST_HEAD(realm_queue);
432 	int last = 0;
433 	bool skip = false;
434 
435 	list_add_tail(&realm->rebuild_item, &realm_queue);
436 
437 	while (!list_empty(&realm_queue)) {
438 		struct ceph_snap_realm *_realm, *child;
439 
440 		_realm = list_first_entry(&realm_queue,
441 					  struct ceph_snap_realm,
442 					  rebuild_item);
443 
444 		/*
445 		 * If the last building failed dues to memory
446 		 * issue, just empty the realm_queue and return
447 		 * to avoid infinite loop.
448 		 */
449 		if (last < 0) {
450 			list_del_init(&_realm->rebuild_item);
451 			continue;
452 		}
453 
454 		last = build_snap_context(_realm, &realm_queue, dirty_realms);
455 		dout("%s %llx %p, %s\n", __func__, _realm->ino, _realm,
456 		     last > 0 ? "is deferred" : !last ? "succeeded" : "failed");
457 
458 		/* is any child in the list ? */
459 		list_for_each_entry(child, &_realm->children, child_item) {
460 			if (!list_empty(&child->rebuild_item)) {
461 				skip = true;
462 				break;
463 			}
464 		}
465 
466 		if (!skip) {
467 			list_for_each_entry(child, &_realm->children, child_item)
468 				list_add_tail(&child->rebuild_item, &realm_queue);
469 		}
470 
471 		/* last == 1 means need to build parent first */
472 		if (last <= 0)
473 			list_del_init(&_realm->rebuild_item);
474 	}
475 }
476 
477 
478 /*
479  * helper to allocate and decode an array of snapids.  free prior
480  * instance, if any.
481  */
482 static int dup_array(u64 **dst, __le64 *src, u32 num)
483 {
484 	u32 i;
485 
486 	kfree(*dst);
487 	if (num) {
488 		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
489 		if (!*dst)
490 			return -ENOMEM;
491 		for (i = 0; i < num; i++)
492 			(*dst)[i] = get_unaligned_le64(src + i);
493 	} else {
494 		*dst = NULL;
495 	}
496 	return 0;
497 }
498 
499 static bool has_new_snaps(struct ceph_snap_context *o,
500 			  struct ceph_snap_context *n)
501 {
502 	if (n->num_snaps == 0)
503 		return false;
504 	/* snaps are in descending order */
505 	return n->snaps[0] > o->seq;
506 }
507 
508 /*
509  * When a snapshot is applied, the size/mtime inode metadata is queued
510  * in a ceph_cap_snap (one for each snapshot) until writeback
511  * completes and the metadata can be flushed back to the MDS.
512  *
513  * However, if a (sync) write is currently in-progress when we apply
514  * the snapshot, we have to wait until the write succeeds or fails
515  * (and a final size/mtime is known).  In this case the
516  * cap_snap->writing = 1, and is said to be "pending."  When the write
517  * finishes, we __ceph_finish_cap_snap().
518  *
519  * Caller must hold snap_rwsem for read (i.e., the realm topology won't
520  * change).
521  */
522 static void ceph_queue_cap_snap(struct ceph_inode_info *ci,
523 				struct ceph_cap_snap **pcapsnap)
524 {
525 	struct inode *inode = &ci->netfs.inode;
526 	struct ceph_snap_context *old_snapc, *new_snapc;
527 	struct ceph_cap_snap *capsnap = *pcapsnap;
528 	struct ceph_buffer *old_blob = NULL;
529 	int used, dirty;
530 
531 	spin_lock(&ci->i_ceph_lock);
532 	used = __ceph_caps_used(ci);
533 	dirty = __ceph_caps_dirty(ci);
534 
535 	old_snapc = ci->i_head_snapc;
536 	new_snapc = ci->i_snap_realm->cached_context;
537 
538 	/*
539 	 * If there is a write in progress, treat that as a dirty Fw,
540 	 * even though it hasn't completed yet; by the time we finish
541 	 * up this capsnap it will be.
542 	 */
543 	if (used & CEPH_CAP_FILE_WR)
544 		dirty |= CEPH_CAP_FILE_WR;
545 
546 	if (__ceph_have_pending_cap_snap(ci)) {
547 		/* there is no point in queuing multiple "pending" cap_snaps,
548 		   as no new writes are allowed to start when pending, so any
549 		   writes in progress now were started before the previous
550 		   cap_snap.  lucky us. */
551 		dout("%s %p %llx.%llx already pending\n",
552 		     __func__, inode, ceph_vinop(inode));
553 		goto update_snapc;
554 	}
555 	if (ci->i_wrbuffer_ref_head == 0 &&
556 	    !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
557 		dout("%s %p %llx.%llx nothing dirty|writing\n",
558 		     __func__, inode, ceph_vinop(inode));
559 		goto update_snapc;
560 	}
561 
562 	BUG_ON(!old_snapc);
563 
564 	/*
565 	 * There is no need to send FLUSHSNAP message to MDS if there is
566 	 * no new snapshot. But when there is dirty pages or on-going
567 	 * writes, we still need to create cap_snap. cap_snap is needed
568 	 * by the write path and page writeback path.
569 	 *
570 	 * also see ceph_try_drop_cap_snap()
571 	 */
572 	if (has_new_snaps(old_snapc, new_snapc)) {
573 		if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
574 			capsnap->need_flush = true;
575 	} else {
576 		if (!(used & CEPH_CAP_FILE_WR) &&
577 		    ci->i_wrbuffer_ref_head == 0) {
578 			dout("%s %p %llx.%llx no new_snap|dirty_page|writing\n",
579 			     __func__, inode, ceph_vinop(inode));
580 			goto update_snapc;
581 		}
582 	}
583 
584 	dout("%s %p %llx.%llx cap_snap %p queuing under %p %s %s\n",
585 	     __func__, inode, ceph_vinop(inode), capsnap, old_snapc,
586 	     ceph_cap_string(dirty), capsnap->need_flush ? "" : "no_flush");
587 	ihold(inode);
588 
589 	capsnap->follows = old_snapc->seq;
590 	capsnap->issued = __ceph_caps_issued(ci, NULL);
591 	capsnap->dirty = dirty;
592 
593 	capsnap->mode = inode->i_mode;
594 	capsnap->uid = inode->i_uid;
595 	capsnap->gid = inode->i_gid;
596 
597 	if (dirty & CEPH_CAP_XATTR_EXCL) {
598 		old_blob = __ceph_build_xattrs_blob(ci);
599 		capsnap->xattr_blob =
600 			ceph_buffer_get(ci->i_xattrs.blob);
601 		capsnap->xattr_version = ci->i_xattrs.version;
602 	} else {
603 		capsnap->xattr_blob = NULL;
604 		capsnap->xattr_version = 0;
605 	}
606 
607 	capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
608 
609 	/* dirty page count moved from _head to this cap_snap;
610 	   all subsequent writes page dirties occur _after_ this
611 	   snapshot. */
612 	capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
613 	ci->i_wrbuffer_ref_head = 0;
614 	capsnap->context = old_snapc;
615 	list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
616 
617 	if (used & CEPH_CAP_FILE_WR) {
618 		dout("%s %p %llx.%llx cap_snap %p snapc %p seq %llu used WR,"
619 		     " now pending\n", __func__, inode, ceph_vinop(inode),
620 		     capsnap, old_snapc, old_snapc->seq);
621 		capsnap->writing = 1;
622 	} else {
623 		/* note mtime, size NOW. */
624 		__ceph_finish_cap_snap(ci, capsnap);
625 	}
626 	*pcapsnap = NULL;
627 	old_snapc = NULL;
628 
629 update_snapc:
630 	if (ci->i_wrbuffer_ref_head == 0 &&
631 	    ci->i_wr_ref == 0 &&
632 	    ci->i_dirty_caps == 0 &&
633 	    ci->i_flushing_caps == 0) {
634 		ci->i_head_snapc = NULL;
635 	} else {
636 		ci->i_head_snapc = ceph_get_snap_context(new_snapc);
637 		dout(" new snapc is %p\n", new_snapc);
638 	}
639 	spin_unlock(&ci->i_ceph_lock);
640 
641 	ceph_buffer_put(old_blob);
642 	ceph_put_snap_context(old_snapc);
643 }
644 
645 /*
646  * Finalize the size, mtime for a cap_snap.. that is, settle on final values
647  * to be used for the snapshot, to be flushed back to the mds.
648  *
649  * If capsnap can now be flushed, add to snap_flush list, and return 1.
650  *
651  * Caller must hold i_ceph_lock.
652  */
653 int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
654 			    struct ceph_cap_snap *capsnap)
655 {
656 	struct inode *inode = &ci->netfs.inode;
657 	struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
658 
659 	BUG_ON(capsnap->writing);
660 	capsnap->size = i_size_read(inode);
661 	capsnap->mtime = inode->i_mtime;
662 	capsnap->atime = inode->i_atime;
663 	capsnap->ctime = inode->i_ctime;
664 	capsnap->btime = ci->i_btime;
665 	capsnap->change_attr = inode_peek_iversion_raw(inode);
666 	capsnap->time_warp_seq = ci->i_time_warp_seq;
667 	capsnap->truncate_size = ci->i_truncate_size;
668 	capsnap->truncate_seq = ci->i_truncate_seq;
669 	if (capsnap->dirty_pages) {
670 		dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
671 		     "still has %d dirty pages\n", __func__, inode,
672 		     ceph_vinop(inode), capsnap, capsnap->context,
673 		     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
674 		     capsnap->size, capsnap->dirty_pages);
675 		return 0;
676 	}
677 
678 	/* Fb cap still in use, delay it */
679 	if (ci->i_wb_ref) {
680 		dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
681 		     "used WRBUFFER, delaying\n", __func__, inode,
682 		     ceph_vinop(inode), capsnap, capsnap->context,
683 		     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
684 		     capsnap->size);
685 		capsnap->writing = 1;
686 		return 0;
687 	}
688 
689 	ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
690 	dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu\n",
691 	     __func__, inode, ceph_vinop(inode), capsnap, capsnap->context,
692 	     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
693 	     capsnap->size);
694 
695 	spin_lock(&mdsc->snap_flush_lock);
696 	if (list_empty(&ci->i_snap_flush_item))
697 		list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
698 	spin_unlock(&mdsc->snap_flush_lock);
699 	return 1;  /* caller may want to ceph_flush_snaps */
700 }
701 
702 /*
703  * Queue cap_snaps for snap writeback for this realm and its children.
704  * Called under snap_rwsem, so realm topology won't change.
705  */
706 static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
707 {
708 	struct ceph_inode_info *ci;
709 	struct inode *lastinode = NULL;
710 	struct ceph_cap_snap *capsnap = NULL;
711 
712 	dout("%s %p %llx inode\n", __func__, realm, realm->ino);
713 
714 	spin_lock(&realm->inodes_with_caps_lock);
715 	list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
716 		struct inode *inode = igrab(&ci->netfs.inode);
717 		if (!inode)
718 			continue;
719 		spin_unlock(&realm->inodes_with_caps_lock);
720 		iput(lastinode);
721 		lastinode = inode;
722 
723 		/*
724 		 * Allocate the capsnap memory outside of ceph_queue_cap_snap()
725 		 * to reduce very possible but unnecessary frequently memory
726 		 * allocate/free in this loop.
727 		 */
728 		if (!capsnap) {
729 			capsnap = kmem_cache_zalloc(ceph_cap_snap_cachep, GFP_NOFS);
730 			if (!capsnap) {
731 				pr_err("ENOMEM allocating ceph_cap_snap on %p\n",
732 				       inode);
733 				return;
734 			}
735 		}
736 		capsnap->cap_flush.is_capsnap = true;
737 		refcount_set(&capsnap->nref, 1);
738 		INIT_LIST_HEAD(&capsnap->cap_flush.i_list);
739 		INIT_LIST_HEAD(&capsnap->cap_flush.g_list);
740 		INIT_LIST_HEAD(&capsnap->ci_item);
741 
742 		ceph_queue_cap_snap(ci, &capsnap);
743 		spin_lock(&realm->inodes_with_caps_lock);
744 	}
745 	spin_unlock(&realm->inodes_with_caps_lock);
746 	iput(lastinode);
747 
748 	if (capsnap)
749 		kmem_cache_free(ceph_cap_snap_cachep, capsnap);
750 	dout("%s %p %llx done\n", __func__, realm, realm->ino);
751 }
752 
753 /*
754  * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
755  * the snap realm parameters from a given realm and all of its ancestors,
756  * up to the root.
757  *
758  * Caller must hold snap_rwsem for write.
759  */
760 int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
761 			   void *p, void *e, bool deletion,
762 			   struct ceph_snap_realm **realm_ret)
763 {
764 	struct ceph_mds_snap_realm *ri;    /* encoded */
765 	__le64 *snaps;                     /* encoded */
766 	__le64 *prior_parent_snaps;        /* encoded */
767 	struct ceph_snap_realm *realm;
768 	struct ceph_snap_realm *first_realm = NULL;
769 	struct ceph_snap_realm *realm_to_rebuild = NULL;
770 	struct ceph_client *client = mdsc->fsc->client;
771 	int rebuild_snapcs;
772 	int err = -ENOMEM;
773 	int ret;
774 	LIST_HEAD(dirty_realms);
775 
776 	lockdep_assert_held_write(&mdsc->snap_rwsem);
777 
778 	dout("%s deletion=%d\n", __func__, deletion);
779 more:
780 	realm = NULL;
781 	rebuild_snapcs = 0;
782 	ceph_decode_need(&p, e, sizeof(*ri), bad);
783 	ri = p;
784 	p += sizeof(*ri);
785 	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
786 			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
787 	snaps = p;
788 	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
789 	prior_parent_snaps = p;
790 	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
791 
792 	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
793 	if (!realm) {
794 		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
795 		if (IS_ERR(realm)) {
796 			err = PTR_ERR(realm);
797 			goto fail;
798 		}
799 	}
800 
801 	/* ensure the parent is correct */
802 	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
803 	if (err < 0)
804 		goto fail;
805 	rebuild_snapcs += err;
806 
807 	if (le64_to_cpu(ri->seq) > realm->seq) {
808 		dout("%s updating %llx %p %lld -> %lld\n", __func__,
809 		     realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
810 		/* update realm parameters, snap lists */
811 		realm->seq = le64_to_cpu(ri->seq);
812 		realm->created = le64_to_cpu(ri->created);
813 		realm->parent_since = le64_to_cpu(ri->parent_since);
814 
815 		realm->num_snaps = le32_to_cpu(ri->num_snaps);
816 		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
817 		if (err < 0)
818 			goto fail;
819 
820 		realm->num_prior_parent_snaps =
821 			le32_to_cpu(ri->num_prior_parent_snaps);
822 		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
823 				realm->num_prior_parent_snaps);
824 		if (err < 0)
825 			goto fail;
826 
827 		if (realm->seq > mdsc->last_snap_seq)
828 			mdsc->last_snap_seq = realm->seq;
829 
830 		rebuild_snapcs = 1;
831 	} else if (!realm->cached_context) {
832 		dout("%s %llx %p seq %lld new\n", __func__,
833 		     realm->ino, realm, realm->seq);
834 		rebuild_snapcs = 1;
835 	} else {
836 		dout("%s %llx %p seq %lld unchanged\n", __func__,
837 		     realm->ino, realm, realm->seq);
838 	}
839 
840 	dout("done with %llx %p, rebuild_snapcs=%d, %p %p\n", realm->ino,
841 	     realm, rebuild_snapcs, p, e);
842 
843 	/*
844 	 * this will always track the uppest parent realm from which
845 	 * we need to rebuild the snapshot contexts _downward_ in
846 	 * hierarchy.
847 	 */
848 	if (rebuild_snapcs)
849 		realm_to_rebuild = realm;
850 
851 	/* rebuild_snapcs when we reach the _end_ (root) of the trace */
852 	if (realm_to_rebuild && p >= e)
853 		rebuild_snap_realms(realm_to_rebuild, &dirty_realms);
854 
855 	if (!first_realm)
856 		first_realm = realm;
857 	else
858 		ceph_put_snap_realm(mdsc, realm);
859 
860 	if (p < e)
861 		goto more;
862 
863 	/*
864 	 * queue cap snaps _after_ we've built the new snap contexts,
865 	 * so that i_head_snapc can be set appropriately.
866 	 */
867 	while (!list_empty(&dirty_realms)) {
868 		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
869 					 dirty_item);
870 		list_del_init(&realm->dirty_item);
871 		queue_realm_cap_snaps(realm);
872 	}
873 
874 	if (realm_ret)
875 		*realm_ret = first_realm;
876 	else
877 		ceph_put_snap_realm(mdsc, first_realm);
878 
879 	__cleanup_empty_realms(mdsc);
880 	return 0;
881 
882 bad:
883 	err = -EIO;
884 fail:
885 	if (realm && !IS_ERR(realm))
886 		ceph_put_snap_realm(mdsc, realm);
887 	if (first_realm)
888 		ceph_put_snap_realm(mdsc, first_realm);
889 	pr_err("%s error %d\n", __func__, err);
890 
891 	/*
892 	 * When receiving a corrupted snap trace we don't know what
893 	 * exactly has happened in MDS side. And we shouldn't continue
894 	 * writing to OSD, which may corrupt the snapshot contents.
895 	 *
896 	 * Just try to blocklist this kclient and then this kclient
897 	 * must be remounted to continue after the corrupted metadata
898 	 * fixed in the MDS side.
899 	 */
900 	WRITE_ONCE(mdsc->fsc->mount_state, CEPH_MOUNT_FENCE_IO);
901 	ret = ceph_monc_blocklist_add(&client->monc, &client->msgr.inst.addr);
902 	if (ret)
903 		pr_err("%s failed to blocklist %s: %d\n", __func__,
904 		       ceph_pr_addr(&client->msgr.inst.addr), ret);
905 
906 	WARN(1, "%s: %s%sdo remount to continue%s",
907 	     __func__, ret ? "" : ceph_pr_addr(&client->msgr.inst.addr),
908 	     ret ? "" : " was blocklisted, ",
909 	     err == -EIO ? " after corrupted snaptrace is fixed" : "");
910 
911 	return err;
912 }
913 
914 
915 /*
916  * Send any cap_snaps that are queued for flush.  Try to carry
917  * s_mutex across multiple snap flushes to avoid locking overhead.
918  *
919  * Caller holds no locks.
920  */
921 static void flush_snaps(struct ceph_mds_client *mdsc)
922 {
923 	struct ceph_inode_info *ci;
924 	struct inode *inode;
925 	struct ceph_mds_session *session = NULL;
926 
927 	dout("%s\n", __func__);
928 	spin_lock(&mdsc->snap_flush_lock);
929 	while (!list_empty(&mdsc->snap_flush_list)) {
930 		ci = list_first_entry(&mdsc->snap_flush_list,
931 				struct ceph_inode_info, i_snap_flush_item);
932 		inode = &ci->netfs.inode;
933 		ihold(inode);
934 		spin_unlock(&mdsc->snap_flush_lock);
935 		ceph_flush_snaps(ci, &session);
936 		iput(inode);
937 		spin_lock(&mdsc->snap_flush_lock);
938 	}
939 	spin_unlock(&mdsc->snap_flush_lock);
940 
941 	ceph_put_mds_session(session);
942 	dout("%s done\n", __func__);
943 }
944 
945 /**
946  * ceph_change_snap_realm - change the snap_realm for an inode
947  * @inode: inode to move to new snap realm
948  * @realm: new realm to move inode into (may be NULL)
949  *
950  * Detach an inode from its old snaprealm (if any) and attach it to
951  * the new snaprealm (if any). The old snap realm reference held by
952  * the inode is put. If realm is non-NULL, then the caller's reference
953  * to it is taken over by the inode.
954  */
955 void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm)
956 {
957 	struct ceph_inode_info *ci = ceph_inode(inode);
958 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
959 	struct ceph_snap_realm *oldrealm = ci->i_snap_realm;
960 
961 	lockdep_assert_held(&ci->i_ceph_lock);
962 
963 	if (oldrealm) {
964 		spin_lock(&oldrealm->inodes_with_caps_lock);
965 		list_del_init(&ci->i_snap_realm_item);
966 		if (oldrealm->ino == ci->i_vino.ino)
967 			oldrealm->inode = NULL;
968 		spin_unlock(&oldrealm->inodes_with_caps_lock);
969 		ceph_put_snap_realm(mdsc, oldrealm);
970 	}
971 
972 	ci->i_snap_realm = realm;
973 
974 	if (realm) {
975 		spin_lock(&realm->inodes_with_caps_lock);
976 		list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps);
977 		if (realm->ino == ci->i_vino.ino)
978 			realm->inode = inode;
979 		spin_unlock(&realm->inodes_with_caps_lock);
980 	}
981 }
982 
983 /*
984  * Handle a snap notification from the MDS.
985  *
986  * This can take two basic forms: the simplest is just a snap creation
987  * or deletion notification on an existing realm.  This should update the
988  * realm and its children.
989  *
990  * The more difficult case is realm creation, due to snap creation at a
991  * new point in the file hierarchy, or due to a rename that moves a file or
992  * directory into another realm.
993  */
994 void ceph_handle_snap(struct ceph_mds_client *mdsc,
995 		      struct ceph_mds_session *session,
996 		      struct ceph_msg *msg)
997 {
998 	struct super_block *sb = mdsc->fsc->sb;
999 	int mds = session->s_mds;
1000 	u64 split;
1001 	int op;
1002 	int trace_len;
1003 	struct ceph_snap_realm *realm = NULL;
1004 	void *p = msg->front.iov_base;
1005 	void *e = p + msg->front.iov_len;
1006 	struct ceph_mds_snap_head *h;
1007 	int num_split_inos, num_split_realms;
1008 	__le64 *split_inos = NULL, *split_realms = NULL;
1009 	int i;
1010 	int locked_rwsem = 0;
1011 	bool close_sessions = false;
1012 
1013 	/* decode */
1014 	if (msg->front.iov_len < sizeof(*h))
1015 		goto bad;
1016 	h = p;
1017 	op = le32_to_cpu(h->op);
1018 	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
1019 					  * existing realm */
1020 	num_split_inos = le32_to_cpu(h->num_split_inos);
1021 	num_split_realms = le32_to_cpu(h->num_split_realms);
1022 	trace_len = le32_to_cpu(h->trace_len);
1023 	p += sizeof(*h);
1024 
1025 	dout("%s from mds%d op %s split %llx tracelen %d\n", __func__,
1026 	     mds, ceph_snap_op_name(op), split, trace_len);
1027 
1028 	mutex_lock(&session->s_mutex);
1029 	inc_session_sequence(session);
1030 	mutex_unlock(&session->s_mutex);
1031 
1032 	down_write(&mdsc->snap_rwsem);
1033 	locked_rwsem = 1;
1034 
1035 	if (op == CEPH_SNAP_OP_SPLIT) {
1036 		struct ceph_mds_snap_realm *ri;
1037 
1038 		/*
1039 		 * A "split" breaks part of an existing realm off into
1040 		 * a new realm.  The MDS provides a list of inodes
1041 		 * (with caps) and child realms that belong to the new
1042 		 * child.
1043 		 */
1044 		split_inos = p;
1045 		p += sizeof(u64) * num_split_inos;
1046 		split_realms = p;
1047 		p += sizeof(u64) * num_split_realms;
1048 		ceph_decode_need(&p, e, sizeof(*ri), bad);
1049 		/* we will peek at realm info here, but will _not_
1050 		 * advance p, as the realm update will occur below in
1051 		 * ceph_update_snap_trace. */
1052 		ri = p;
1053 
1054 		realm = ceph_lookup_snap_realm(mdsc, split);
1055 		if (!realm) {
1056 			realm = ceph_create_snap_realm(mdsc, split);
1057 			if (IS_ERR(realm))
1058 				goto out;
1059 		}
1060 
1061 		dout("splitting snap_realm %llx %p\n", realm->ino, realm);
1062 		for (i = 0; i < num_split_inos; i++) {
1063 			struct ceph_vino vino = {
1064 				.ino = le64_to_cpu(split_inos[i]),
1065 				.snap = CEPH_NOSNAP,
1066 			};
1067 			struct inode *inode = ceph_find_inode(sb, vino);
1068 			struct ceph_inode_info *ci;
1069 
1070 			if (!inode)
1071 				continue;
1072 			ci = ceph_inode(inode);
1073 
1074 			spin_lock(&ci->i_ceph_lock);
1075 			if (!ci->i_snap_realm)
1076 				goto skip_inode;
1077 			/*
1078 			 * If this inode belongs to a realm that was
1079 			 * created after our new realm, we experienced
1080 			 * a race (due to another split notifications
1081 			 * arriving from a different MDS).  So skip
1082 			 * this inode.
1083 			 */
1084 			if (ci->i_snap_realm->created >
1085 			    le64_to_cpu(ri->created)) {
1086 				dout(" leaving %p %llx.%llx in newer realm %llx %p\n",
1087 				     inode, ceph_vinop(inode), ci->i_snap_realm->ino,
1088 				     ci->i_snap_realm);
1089 				goto skip_inode;
1090 			}
1091 			dout(" will move %p %llx.%llx to split realm %llx %p\n",
1092 			     inode, ceph_vinop(inode), realm->ino, realm);
1093 
1094 			ceph_get_snap_realm(mdsc, realm);
1095 			ceph_change_snap_realm(inode, realm);
1096 			spin_unlock(&ci->i_ceph_lock);
1097 			iput(inode);
1098 			continue;
1099 
1100 skip_inode:
1101 			spin_unlock(&ci->i_ceph_lock);
1102 			iput(inode);
1103 		}
1104 
1105 		/* we may have taken some of the old realm's children. */
1106 		for (i = 0; i < num_split_realms; i++) {
1107 			struct ceph_snap_realm *child =
1108 				__lookup_snap_realm(mdsc,
1109 					   le64_to_cpu(split_realms[i]));
1110 			if (!child)
1111 				continue;
1112 			adjust_snap_realm_parent(mdsc, child, realm->ino);
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * update using the provided snap trace. if we are deleting a
1118 	 * snap, we can avoid queueing cap_snaps.
1119 	 */
1120 	if (ceph_update_snap_trace(mdsc, p, e,
1121 				   op == CEPH_SNAP_OP_DESTROY,
1122 				   NULL)) {
1123 		close_sessions = true;
1124 		goto bad;
1125 	}
1126 
1127 	if (op == CEPH_SNAP_OP_SPLIT)
1128 		/* we took a reference when we created the realm, above */
1129 		ceph_put_snap_realm(mdsc, realm);
1130 
1131 	__cleanup_empty_realms(mdsc);
1132 
1133 	up_write(&mdsc->snap_rwsem);
1134 
1135 	flush_snaps(mdsc);
1136 	return;
1137 
1138 bad:
1139 	pr_err("%s corrupt snap message from mds%d\n", __func__, mds);
1140 	ceph_msg_dump(msg);
1141 out:
1142 	if (locked_rwsem)
1143 		up_write(&mdsc->snap_rwsem);
1144 
1145 	if (close_sessions)
1146 		ceph_mdsc_close_sessions(mdsc);
1147 	return;
1148 }
1149 
1150 struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
1151 					    u64 snap)
1152 {
1153 	struct ceph_snapid_map *sm, *exist;
1154 	struct rb_node **p, *parent;
1155 	int ret;
1156 
1157 	exist = NULL;
1158 	spin_lock(&mdsc->snapid_map_lock);
1159 	p = &mdsc->snapid_map_tree.rb_node;
1160 	while (*p) {
1161 		exist = rb_entry(*p, struct ceph_snapid_map, node);
1162 		if (snap > exist->snap) {
1163 			p = &(*p)->rb_left;
1164 		} else if (snap < exist->snap) {
1165 			p = &(*p)->rb_right;
1166 		} else {
1167 			if (atomic_inc_return(&exist->ref) == 1)
1168 				list_del_init(&exist->lru);
1169 			break;
1170 		}
1171 		exist = NULL;
1172 	}
1173 	spin_unlock(&mdsc->snapid_map_lock);
1174 	if (exist) {
1175 		dout("%s found snapid map %llx -> %x\n", __func__,
1176 		     exist->snap, exist->dev);
1177 		return exist;
1178 	}
1179 
1180 	sm = kmalloc(sizeof(*sm), GFP_NOFS);
1181 	if (!sm)
1182 		return NULL;
1183 
1184 	ret = get_anon_bdev(&sm->dev);
1185 	if (ret < 0) {
1186 		kfree(sm);
1187 		return NULL;
1188 	}
1189 
1190 	INIT_LIST_HEAD(&sm->lru);
1191 	atomic_set(&sm->ref, 1);
1192 	sm->snap = snap;
1193 
1194 	exist = NULL;
1195 	parent = NULL;
1196 	p = &mdsc->snapid_map_tree.rb_node;
1197 	spin_lock(&mdsc->snapid_map_lock);
1198 	while (*p) {
1199 		parent = *p;
1200 		exist = rb_entry(*p, struct ceph_snapid_map, node);
1201 		if (snap > exist->snap)
1202 			p = &(*p)->rb_left;
1203 		else if (snap < exist->snap)
1204 			p = &(*p)->rb_right;
1205 		else
1206 			break;
1207 		exist = NULL;
1208 	}
1209 	if (exist) {
1210 		if (atomic_inc_return(&exist->ref) == 1)
1211 			list_del_init(&exist->lru);
1212 	} else {
1213 		rb_link_node(&sm->node, parent, p);
1214 		rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
1215 	}
1216 	spin_unlock(&mdsc->snapid_map_lock);
1217 	if (exist) {
1218 		free_anon_bdev(sm->dev);
1219 		kfree(sm);
1220 		dout("%s found snapid map %llx -> %x\n", __func__,
1221 		     exist->snap, exist->dev);
1222 		return exist;
1223 	}
1224 
1225 	dout("%s create snapid map %llx -> %x\n", __func__,
1226 	     sm->snap, sm->dev);
1227 	return sm;
1228 }
1229 
1230 void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
1231 			 struct ceph_snapid_map *sm)
1232 {
1233 	if (!sm)
1234 		return;
1235 	if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
1236 		if (!RB_EMPTY_NODE(&sm->node)) {
1237 			sm->last_used = jiffies;
1238 			list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
1239 			spin_unlock(&mdsc->snapid_map_lock);
1240 		} else {
1241 			/* already cleaned up by
1242 			 * ceph_cleanup_snapid_map() */
1243 			spin_unlock(&mdsc->snapid_map_lock);
1244 			kfree(sm);
1245 		}
1246 	}
1247 }
1248 
1249 void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
1250 {
1251 	struct ceph_snapid_map *sm;
1252 	unsigned long now;
1253 	LIST_HEAD(to_free);
1254 
1255 	spin_lock(&mdsc->snapid_map_lock);
1256 	now = jiffies;
1257 
1258 	while (!list_empty(&mdsc->snapid_map_lru)) {
1259 		sm = list_first_entry(&mdsc->snapid_map_lru,
1260 				      struct ceph_snapid_map, lru);
1261 		if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
1262 			break;
1263 
1264 		rb_erase(&sm->node, &mdsc->snapid_map_tree);
1265 		list_move(&sm->lru, &to_free);
1266 	}
1267 	spin_unlock(&mdsc->snapid_map_lock);
1268 
1269 	while (!list_empty(&to_free)) {
1270 		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1271 		list_del(&sm->lru);
1272 		dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev);
1273 		free_anon_bdev(sm->dev);
1274 		kfree(sm);
1275 	}
1276 }
1277 
1278 void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
1279 {
1280 	struct ceph_snapid_map *sm;
1281 	struct rb_node *p;
1282 	LIST_HEAD(to_free);
1283 
1284 	spin_lock(&mdsc->snapid_map_lock);
1285 	while ((p = rb_first(&mdsc->snapid_map_tree))) {
1286 		sm = rb_entry(p, struct ceph_snapid_map, node);
1287 		rb_erase(p, &mdsc->snapid_map_tree);
1288 		RB_CLEAR_NODE(p);
1289 		list_move(&sm->lru, &to_free);
1290 	}
1291 	spin_unlock(&mdsc->snapid_map_lock);
1292 
1293 	while (!list_empty(&to_free)) {
1294 		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1295 		list_del(&sm->lru);
1296 		free_anon_bdev(sm->dev);
1297 		if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
1298 			pr_err("snapid map %llx -> %x still in use\n",
1299 			       sm->snap, sm->dev);
1300 		}
1301 		kfree(sm);
1302 	}
1303 }
1304