1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/fs.h> 5 #include <linux/sort.h> 6 #include <linux/slab.h> 7 #include <linux/iversion.h> 8 #include "super.h" 9 #include "mds_client.h" 10 #include <linux/ceph/decode.h> 11 12 /* unused map expires after 5 minutes */ 13 #define CEPH_SNAPID_MAP_TIMEOUT (5 * 60 * HZ) 14 15 /* 16 * Snapshots in ceph are driven in large part by cooperation from the 17 * client. In contrast to local file systems or file servers that 18 * implement snapshots at a single point in the system, ceph's 19 * distributed access to storage requires clients to help decide 20 * whether a write logically occurs before or after a recently created 21 * snapshot. 22 * 23 * This provides a perfect instantanous client-wide snapshot. Between 24 * clients, however, snapshots may appear to be applied at slightly 25 * different points in time, depending on delays in delivering the 26 * snapshot notification. 27 * 28 * Snapshots are _not_ file system-wide. Instead, each snapshot 29 * applies to the subdirectory nested beneath some directory. This 30 * effectively divides the hierarchy into multiple "realms," where all 31 * of the files contained by each realm share the same set of 32 * snapshots. An individual realm's snap set contains snapshots 33 * explicitly created on that realm, as well as any snaps in its 34 * parent's snap set _after_ the point at which the parent became it's 35 * parent (due to, say, a rename). Similarly, snaps from prior parents 36 * during the time intervals during which they were the parent are included. 37 * 38 * The client is spared most of this detail, fortunately... it must only 39 * maintains a hierarchy of realms reflecting the current parent/child 40 * realm relationship, and for each realm has an explicit list of snaps 41 * inherited from prior parents. 42 * 43 * A snap_realm struct is maintained for realms containing every inode 44 * with an open cap in the system. (The needed snap realm information is 45 * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq' 46 * version number is used to ensure that as realm parameters change (new 47 * snapshot, new parent, etc.) the client's realm hierarchy is updated. 48 * 49 * The realm hierarchy drives the generation of a 'snap context' for each 50 * realm, which simply lists the resulting set of snaps for the realm. This 51 * is attached to any writes sent to OSDs. 52 */ 53 /* 54 * Unfortunately error handling is a bit mixed here. If we get a snap 55 * update, but don't have enough memory to update our realm hierarchy, 56 * it's not clear what we can do about it (besides complaining to the 57 * console). 58 */ 59 60 61 /* 62 * increase ref count for the realm 63 * 64 * caller must hold snap_rwsem. 65 */ 66 void ceph_get_snap_realm(struct ceph_mds_client *mdsc, 67 struct ceph_snap_realm *realm) 68 { 69 lockdep_assert_held(&mdsc->snap_rwsem); 70 71 /* 72 * The 0->1 and 1->0 transitions must take the snap_empty_lock 73 * atomically with the refcount change. Go ahead and bump the 74 * nref here, unless it's 0, in which case we take the spinlock 75 * and then do the increment and remove it from the list. 76 */ 77 if (atomic_inc_not_zero(&realm->nref)) 78 return; 79 80 spin_lock(&mdsc->snap_empty_lock); 81 if (atomic_inc_return(&realm->nref) == 1) 82 list_del_init(&realm->empty_item); 83 spin_unlock(&mdsc->snap_empty_lock); 84 } 85 86 static void __insert_snap_realm(struct rb_root *root, 87 struct ceph_snap_realm *new) 88 { 89 struct rb_node **p = &root->rb_node; 90 struct rb_node *parent = NULL; 91 struct ceph_snap_realm *r = NULL; 92 93 while (*p) { 94 parent = *p; 95 r = rb_entry(parent, struct ceph_snap_realm, node); 96 if (new->ino < r->ino) 97 p = &(*p)->rb_left; 98 else if (new->ino > r->ino) 99 p = &(*p)->rb_right; 100 else 101 BUG(); 102 } 103 104 rb_link_node(&new->node, parent, p); 105 rb_insert_color(&new->node, root); 106 } 107 108 /* 109 * create and get the realm rooted at @ino and bump its ref count. 110 * 111 * caller must hold snap_rwsem for write. 112 */ 113 static struct ceph_snap_realm *ceph_create_snap_realm( 114 struct ceph_mds_client *mdsc, 115 u64 ino) 116 { 117 struct ceph_snap_realm *realm; 118 119 lockdep_assert_held_write(&mdsc->snap_rwsem); 120 121 realm = kzalloc(sizeof(*realm), GFP_NOFS); 122 if (!realm) 123 return ERR_PTR(-ENOMEM); 124 125 /* Do not release the global dummy snaprealm until unmouting */ 126 if (ino == CEPH_INO_GLOBAL_SNAPREALM) 127 atomic_set(&realm->nref, 2); 128 else 129 atomic_set(&realm->nref, 1); 130 realm->ino = ino; 131 INIT_LIST_HEAD(&realm->children); 132 INIT_LIST_HEAD(&realm->child_item); 133 INIT_LIST_HEAD(&realm->empty_item); 134 INIT_LIST_HEAD(&realm->dirty_item); 135 INIT_LIST_HEAD(&realm->rebuild_item); 136 INIT_LIST_HEAD(&realm->inodes_with_caps); 137 spin_lock_init(&realm->inodes_with_caps_lock); 138 __insert_snap_realm(&mdsc->snap_realms, realm); 139 mdsc->num_snap_realms++; 140 141 dout("%s %llx %p\n", __func__, realm->ino, realm); 142 return realm; 143 } 144 145 /* 146 * lookup the realm rooted at @ino. 147 * 148 * caller must hold snap_rwsem. 149 */ 150 static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc, 151 u64 ino) 152 { 153 struct rb_node *n = mdsc->snap_realms.rb_node; 154 struct ceph_snap_realm *r; 155 156 lockdep_assert_held(&mdsc->snap_rwsem); 157 158 while (n) { 159 r = rb_entry(n, struct ceph_snap_realm, node); 160 if (ino < r->ino) 161 n = n->rb_left; 162 else if (ino > r->ino) 163 n = n->rb_right; 164 else { 165 dout("%s %llx %p\n", __func__, r->ino, r); 166 return r; 167 } 168 } 169 return NULL; 170 } 171 172 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc, 173 u64 ino) 174 { 175 struct ceph_snap_realm *r; 176 r = __lookup_snap_realm(mdsc, ino); 177 if (r) 178 ceph_get_snap_realm(mdsc, r); 179 return r; 180 } 181 182 static void __put_snap_realm(struct ceph_mds_client *mdsc, 183 struct ceph_snap_realm *realm); 184 185 /* 186 * called with snap_rwsem (write) 187 */ 188 static void __destroy_snap_realm(struct ceph_mds_client *mdsc, 189 struct ceph_snap_realm *realm) 190 { 191 lockdep_assert_held_write(&mdsc->snap_rwsem); 192 193 dout("%s %p %llx\n", __func__, realm, realm->ino); 194 195 rb_erase(&realm->node, &mdsc->snap_realms); 196 mdsc->num_snap_realms--; 197 198 if (realm->parent) { 199 list_del_init(&realm->child_item); 200 __put_snap_realm(mdsc, realm->parent); 201 } 202 203 kfree(realm->prior_parent_snaps); 204 kfree(realm->snaps); 205 ceph_put_snap_context(realm->cached_context); 206 kfree(realm); 207 } 208 209 /* 210 * caller holds snap_rwsem (write) 211 */ 212 static void __put_snap_realm(struct ceph_mds_client *mdsc, 213 struct ceph_snap_realm *realm) 214 { 215 lockdep_assert_held_write(&mdsc->snap_rwsem); 216 217 /* 218 * We do not require the snap_empty_lock here, as any caller that 219 * increments the value must hold the snap_rwsem. 220 */ 221 if (atomic_dec_and_test(&realm->nref)) 222 __destroy_snap_realm(mdsc, realm); 223 } 224 225 /* 226 * See comments in ceph_get_snap_realm. Caller needn't hold any locks. 227 */ 228 void ceph_put_snap_realm(struct ceph_mds_client *mdsc, 229 struct ceph_snap_realm *realm) 230 { 231 if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock)) 232 return; 233 234 if (down_write_trylock(&mdsc->snap_rwsem)) { 235 spin_unlock(&mdsc->snap_empty_lock); 236 __destroy_snap_realm(mdsc, realm); 237 up_write(&mdsc->snap_rwsem); 238 } else { 239 list_add(&realm->empty_item, &mdsc->snap_empty); 240 spin_unlock(&mdsc->snap_empty_lock); 241 } 242 } 243 244 /* 245 * Clean up any realms whose ref counts have dropped to zero. Note 246 * that this does not include realms who were created but not yet 247 * used. 248 * 249 * Called under snap_rwsem (write) 250 */ 251 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc) 252 { 253 struct ceph_snap_realm *realm; 254 255 lockdep_assert_held_write(&mdsc->snap_rwsem); 256 257 spin_lock(&mdsc->snap_empty_lock); 258 while (!list_empty(&mdsc->snap_empty)) { 259 realm = list_first_entry(&mdsc->snap_empty, 260 struct ceph_snap_realm, empty_item); 261 list_del(&realm->empty_item); 262 spin_unlock(&mdsc->snap_empty_lock); 263 __destroy_snap_realm(mdsc, realm); 264 spin_lock(&mdsc->snap_empty_lock); 265 } 266 spin_unlock(&mdsc->snap_empty_lock); 267 } 268 269 void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc) 270 { 271 struct ceph_snap_realm *global_realm; 272 273 down_write(&mdsc->snap_rwsem); 274 global_realm = __lookup_snap_realm(mdsc, CEPH_INO_GLOBAL_SNAPREALM); 275 if (global_realm) 276 ceph_put_snap_realm(mdsc, global_realm); 277 __cleanup_empty_realms(mdsc); 278 up_write(&mdsc->snap_rwsem); 279 } 280 281 /* 282 * adjust the parent realm of a given @realm. adjust child list, and parent 283 * pointers, and ref counts appropriately. 284 * 285 * return true if parent was changed, 0 if unchanged, <0 on error. 286 * 287 * caller must hold snap_rwsem for write. 288 */ 289 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc, 290 struct ceph_snap_realm *realm, 291 u64 parentino) 292 { 293 struct ceph_snap_realm *parent; 294 295 lockdep_assert_held_write(&mdsc->snap_rwsem); 296 297 if (realm->parent_ino == parentino) 298 return 0; 299 300 parent = ceph_lookup_snap_realm(mdsc, parentino); 301 if (!parent) { 302 parent = ceph_create_snap_realm(mdsc, parentino); 303 if (IS_ERR(parent)) 304 return PTR_ERR(parent); 305 } 306 dout("%s %llx %p: %llx %p -> %llx %p\n", __func__, realm->ino, 307 realm, realm->parent_ino, realm->parent, parentino, parent); 308 if (realm->parent) { 309 list_del_init(&realm->child_item); 310 ceph_put_snap_realm(mdsc, realm->parent); 311 } 312 realm->parent_ino = parentino; 313 realm->parent = parent; 314 list_add(&realm->child_item, &parent->children); 315 return 1; 316 } 317 318 319 static int cmpu64_rev(const void *a, const void *b) 320 { 321 if (*(u64 *)a < *(u64 *)b) 322 return 1; 323 if (*(u64 *)a > *(u64 *)b) 324 return -1; 325 return 0; 326 } 327 328 329 /* 330 * build the snap context for a given realm. 331 */ 332 static int build_snap_context(struct ceph_mds_client *mdsc, 333 struct ceph_snap_realm *realm, 334 struct list_head *realm_queue, 335 struct list_head *dirty_realms) 336 { 337 struct ceph_snap_realm *parent = realm->parent; 338 struct ceph_snap_context *snapc; 339 int err = 0; 340 u32 num = realm->num_prior_parent_snaps + realm->num_snaps; 341 342 /* 343 * build parent context, if it hasn't been built. 344 * conservatively estimate that all parent snaps might be 345 * included by us. 346 */ 347 if (parent) { 348 if (!parent->cached_context) { 349 /* add to the queue head */ 350 list_add(&parent->rebuild_item, realm_queue); 351 return 1; 352 } 353 num += parent->cached_context->num_snaps; 354 } 355 356 /* do i actually need to update? not if my context seq 357 matches realm seq, and my parents' does to. (this works 358 because we rebuild_snap_realms() works _downward_ in 359 hierarchy after each update.) */ 360 if (realm->cached_context && 361 realm->cached_context->seq == realm->seq && 362 (!parent || 363 realm->cached_context->seq >= parent->cached_context->seq)) { 364 dout("%s %llx %p: %p seq %lld (%u snaps) (unchanged)\n", 365 __func__, realm->ino, realm, realm->cached_context, 366 realm->cached_context->seq, 367 (unsigned int)realm->cached_context->num_snaps); 368 return 0; 369 } 370 371 /* alloc new snap context */ 372 err = -ENOMEM; 373 if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64)) 374 goto fail; 375 snapc = ceph_create_snap_context(num, GFP_NOFS); 376 if (!snapc) 377 goto fail; 378 379 /* build (reverse sorted) snap vector */ 380 num = 0; 381 snapc->seq = realm->seq; 382 if (parent) { 383 u32 i; 384 385 /* include any of parent's snaps occurring _after_ my 386 parent became my parent */ 387 for (i = 0; i < parent->cached_context->num_snaps; i++) 388 if (parent->cached_context->snaps[i] >= 389 realm->parent_since) 390 snapc->snaps[num++] = 391 parent->cached_context->snaps[i]; 392 if (parent->cached_context->seq > snapc->seq) 393 snapc->seq = parent->cached_context->seq; 394 } 395 memcpy(snapc->snaps + num, realm->snaps, 396 sizeof(u64)*realm->num_snaps); 397 num += realm->num_snaps; 398 memcpy(snapc->snaps + num, realm->prior_parent_snaps, 399 sizeof(u64)*realm->num_prior_parent_snaps); 400 num += realm->num_prior_parent_snaps; 401 402 sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL); 403 snapc->num_snaps = num; 404 dout("%s %llx %p: %p seq %lld (%u snaps)\n", __func__, realm->ino, 405 realm, snapc, snapc->seq, (unsigned int) snapc->num_snaps); 406 407 ceph_put_snap_context(realm->cached_context); 408 realm->cached_context = snapc; 409 /* queue realm for cap_snap creation */ 410 list_add_tail(&realm->dirty_item, dirty_realms); 411 return 0; 412 413 fail: 414 /* 415 * if we fail, clear old (incorrect) cached_context... hopefully 416 * we'll have better luck building it later 417 */ 418 if (realm->cached_context) { 419 ceph_put_snap_context(realm->cached_context); 420 realm->cached_context = NULL; 421 } 422 pr_err("%s %llx %p fail %d\n", __func__, realm->ino, realm, err); 423 return err; 424 } 425 426 /* 427 * rebuild snap context for the given realm and all of its children. 428 */ 429 static void rebuild_snap_realms(struct ceph_mds_client *mdsc, 430 struct ceph_snap_realm *realm, 431 struct list_head *dirty_realms) 432 { 433 LIST_HEAD(realm_queue); 434 int last = 0; 435 bool skip = false; 436 437 list_add_tail(&realm->rebuild_item, &realm_queue); 438 439 while (!list_empty(&realm_queue)) { 440 struct ceph_snap_realm *_realm, *child; 441 442 _realm = list_first_entry(&realm_queue, 443 struct ceph_snap_realm, 444 rebuild_item); 445 446 /* 447 * If the last building failed dues to memory 448 * issue, just empty the realm_queue and return 449 * to avoid infinite loop. 450 */ 451 if (last < 0) { 452 list_del_init(&_realm->rebuild_item); 453 continue; 454 } 455 456 last = build_snap_context(mdsc, _realm, &realm_queue, 457 dirty_realms); 458 dout("%s %llx %p, %s\n", __func__, _realm->ino, _realm, 459 last > 0 ? "is deferred" : !last ? "succeeded" : "failed"); 460 461 /* is any child in the list ? */ 462 list_for_each_entry(child, &_realm->children, child_item) { 463 if (!list_empty(&child->rebuild_item)) { 464 skip = true; 465 break; 466 } 467 } 468 469 if (!skip) { 470 list_for_each_entry(child, &_realm->children, child_item) 471 list_add_tail(&child->rebuild_item, &realm_queue); 472 } 473 474 /* last == 1 means need to build parent first */ 475 if (last <= 0) 476 list_del_init(&_realm->rebuild_item); 477 } 478 } 479 480 481 /* 482 * helper to allocate and decode an array of snapids. free prior 483 * instance, if any. 484 */ 485 static int dup_array(u64 **dst, __le64 *src, u32 num) 486 { 487 u32 i; 488 489 kfree(*dst); 490 if (num) { 491 *dst = kcalloc(num, sizeof(u64), GFP_NOFS); 492 if (!*dst) 493 return -ENOMEM; 494 for (i = 0; i < num; i++) 495 (*dst)[i] = get_unaligned_le64(src + i); 496 } else { 497 *dst = NULL; 498 } 499 return 0; 500 } 501 502 static bool has_new_snaps(struct ceph_snap_context *o, 503 struct ceph_snap_context *n) 504 { 505 if (n->num_snaps == 0) 506 return false; 507 /* snaps are in descending order */ 508 return n->snaps[0] > o->seq; 509 } 510 511 /* 512 * When a snapshot is applied, the size/mtime inode metadata is queued 513 * in a ceph_cap_snap (one for each snapshot) until writeback 514 * completes and the metadata can be flushed back to the MDS. 515 * 516 * However, if a (sync) write is currently in-progress when we apply 517 * the snapshot, we have to wait until the write succeeds or fails 518 * (and a final size/mtime is known). In this case the 519 * cap_snap->writing = 1, and is said to be "pending." When the write 520 * finishes, we __ceph_finish_cap_snap(). 521 * 522 * Caller must hold snap_rwsem for read (i.e., the realm topology won't 523 * change). 524 */ 525 static void ceph_queue_cap_snap(struct ceph_inode_info *ci, 526 struct ceph_cap_snap **pcapsnap) 527 { 528 struct inode *inode = &ci->netfs.inode; 529 struct ceph_snap_context *old_snapc, *new_snapc; 530 struct ceph_cap_snap *capsnap = *pcapsnap; 531 struct ceph_buffer *old_blob = NULL; 532 int used, dirty; 533 534 spin_lock(&ci->i_ceph_lock); 535 used = __ceph_caps_used(ci); 536 dirty = __ceph_caps_dirty(ci); 537 538 old_snapc = ci->i_head_snapc; 539 new_snapc = ci->i_snap_realm->cached_context; 540 541 /* 542 * If there is a write in progress, treat that as a dirty Fw, 543 * even though it hasn't completed yet; by the time we finish 544 * up this capsnap it will be. 545 */ 546 if (used & CEPH_CAP_FILE_WR) 547 dirty |= CEPH_CAP_FILE_WR; 548 549 if (__ceph_have_pending_cap_snap(ci)) { 550 /* there is no point in queuing multiple "pending" cap_snaps, 551 as no new writes are allowed to start when pending, so any 552 writes in progress now were started before the previous 553 cap_snap. lucky us. */ 554 dout("%s %p %llx.%llx already pending\n", 555 __func__, inode, ceph_vinop(inode)); 556 goto update_snapc; 557 } 558 if (ci->i_wrbuffer_ref_head == 0 && 559 !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) { 560 dout("%s %p %llx.%llx nothing dirty|writing\n", 561 __func__, inode, ceph_vinop(inode)); 562 goto update_snapc; 563 } 564 565 BUG_ON(!old_snapc); 566 567 /* 568 * There is no need to send FLUSHSNAP message to MDS if there is 569 * no new snapshot. But when there is dirty pages or on-going 570 * writes, we still need to create cap_snap. cap_snap is needed 571 * by the write path and page writeback path. 572 * 573 * also see ceph_try_drop_cap_snap() 574 */ 575 if (has_new_snaps(old_snapc, new_snapc)) { 576 if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR)) 577 capsnap->need_flush = true; 578 } else { 579 if (!(used & CEPH_CAP_FILE_WR) && 580 ci->i_wrbuffer_ref_head == 0) { 581 dout("%s %p %llx.%llx no new_snap|dirty_page|writing\n", 582 __func__, inode, ceph_vinop(inode)); 583 goto update_snapc; 584 } 585 } 586 587 dout("%s %p %llx.%llx cap_snap %p queuing under %p %s %s\n", 588 __func__, inode, ceph_vinop(inode), capsnap, old_snapc, 589 ceph_cap_string(dirty), capsnap->need_flush ? "" : "no_flush"); 590 ihold(inode); 591 592 capsnap->follows = old_snapc->seq; 593 capsnap->issued = __ceph_caps_issued(ci, NULL); 594 capsnap->dirty = dirty; 595 596 capsnap->mode = inode->i_mode; 597 capsnap->uid = inode->i_uid; 598 capsnap->gid = inode->i_gid; 599 600 if (dirty & CEPH_CAP_XATTR_EXCL) { 601 old_blob = __ceph_build_xattrs_blob(ci); 602 capsnap->xattr_blob = 603 ceph_buffer_get(ci->i_xattrs.blob); 604 capsnap->xattr_version = ci->i_xattrs.version; 605 } else { 606 capsnap->xattr_blob = NULL; 607 capsnap->xattr_version = 0; 608 } 609 610 capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE; 611 612 /* dirty page count moved from _head to this cap_snap; 613 all subsequent writes page dirties occur _after_ this 614 snapshot. */ 615 capsnap->dirty_pages = ci->i_wrbuffer_ref_head; 616 ci->i_wrbuffer_ref_head = 0; 617 capsnap->context = old_snapc; 618 list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps); 619 620 if (used & CEPH_CAP_FILE_WR) { 621 dout("%s %p %llx.%llx cap_snap %p snapc %p seq %llu used WR," 622 " now pending\n", __func__, inode, ceph_vinop(inode), 623 capsnap, old_snapc, old_snapc->seq); 624 capsnap->writing = 1; 625 } else { 626 /* note mtime, size NOW. */ 627 __ceph_finish_cap_snap(ci, capsnap); 628 } 629 *pcapsnap = NULL; 630 old_snapc = NULL; 631 632 update_snapc: 633 if (ci->i_wrbuffer_ref_head == 0 && 634 ci->i_wr_ref == 0 && 635 ci->i_dirty_caps == 0 && 636 ci->i_flushing_caps == 0) { 637 ci->i_head_snapc = NULL; 638 } else { 639 ci->i_head_snapc = ceph_get_snap_context(new_snapc); 640 dout(" new snapc is %p\n", new_snapc); 641 } 642 spin_unlock(&ci->i_ceph_lock); 643 644 ceph_buffer_put(old_blob); 645 ceph_put_snap_context(old_snapc); 646 } 647 648 /* 649 * Finalize the size, mtime for a cap_snap.. that is, settle on final values 650 * to be used for the snapshot, to be flushed back to the mds. 651 * 652 * If capsnap can now be flushed, add to snap_flush list, and return 1. 653 * 654 * Caller must hold i_ceph_lock. 655 */ 656 int __ceph_finish_cap_snap(struct ceph_inode_info *ci, 657 struct ceph_cap_snap *capsnap) 658 { 659 struct inode *inode = &ci->netfs.inode; 660 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 661 662 BUG_ON(capsnap->writing); 663 capsnap->size = i_size_read(inode); 664 capsnap->mtime = inode->i_mtime; 665 capsnap->atime = inode->i_atime; 666 capsnap->ctime = inode_get_ctime(inode); 667 capsnap->btime = ci->i_btime; 668 capsnap->change_attr = inode_peek_iversion_raw(inode); 669 capsnap->time_warp_seq = ci->i_time_warp_seq; 670 capsnap->truncate_size = ci->i_truncate_size; 671 capsnap->truncate_seq = ci->i_truncate_seq; 672 if (capsnap->dirty_pages) { 673 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu " 674 "still has %d dirty pages\n", __func__, inode, 675 ceph_vinop(inode), capsnap, capsnap->context, 676 capsnap->context->seq, ceph_cap_string(capsnap->dirty), 677 capsnap->size, capsnap->dirty_pages); 678 return 0; 679 } 680 681 /* 682 * Defer flushing the capsnap if the dirty buffer not flushed yet. 683 * And trigger to flush the buffer immediately. 684 */ 685 if (ci->i_wrbuffer_ref) { 686 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu " 687 "used WRBUFFER, delaying\n", __func__, inode, 688 ceph_vinop(inode), capsnap, capsnap->context, 689 capsnap->context->seq, ceph_cap_string(capsnap->dirty), 690 capsnap->size); 691 ceph_queue_writeback(inode); 692 return 0; 693 } 694 695 ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS; 696 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu\n", 697 __func__, inode, ceph_vinop(inode), capsnap, capsnap->context, 698 capsnap->context->seq, ceph_cap_string(capsnap->dirty), 699 capsnap->size); 700 701 spin_lock(&mdsc->snap_flush_lock); 702 if (list_empty(&ci->i_snap_flush_item)) { 703 ihold(inode); 704 list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list); 705 } 706 spin_unlock(&mdsc->snap_flush_lock); 707 return 1; /* caller may want to ceph_flush_snaps */ 708 } 709 710 /* 711 * Queue cap_snaps for snap writeback for this realm and its children. 712 * Called under snap_rwsem, so realm topology won't change. 713 */ 714 static void queue_realm_cap_snaps(struct ceph_mds_client *mdsc, 715 struct ceph_snap_realm *realm) 716 { 717 struct ceph_inode_info *ci; 718 struct inode *lastinode = NULL; 719 struct ceph_cap_snap *capsnap = NULL; 720 721 dout("%s %p %llx inode\n", __func__, realm, realm->ino); 722 723 spin_lock(&realm->inodes_with_caps_lock); 724 list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) { 725 struct inode *inode = igrab(&ci->netfs.inode); 726 if (!inode) 727 continue; 728 spin_unlock(&realm->inodes_with_caps_lock); 729 iput(lastinode); 730 lastinode = inode; 731 732 /* 733 * Allocate the capsnap memory outside of ceph_queue_cap_snap() 734 * to reduce very possible but unnecessary frequently memory 735 * allocate/free in this loop. 736 */ 737 if (!capsnap) { 738 capsnap = kmem_cache_zalloc(ceph_cap_snap_cachep, GFP_NOFS); 739 if (!capsnap) { 740 pr_err("ENOMEM allocating ceph_cap_snap on %p\n", 741 inode); 742 return; 743 } 744 } 745 capsnap->cap_flush.is_capsnap = true; 746 refcount_set(&capsnap->nref, 1); 747 INIT_LIST_HEAD(&capsnap->cap_flush.i_list); 748 INIT_LIST_HEAD(&capsnap->cap_flush.g_list); 749 INIT_LIST_HEAD(&capsnap->ci_item); 750 751 ceph_queue_cap_snap(ci, &capsnap); 752 spin_lock(&realm->inodes_with_caps_lock); 753 } 754 spin_unlock(&realm->inodes_with_caps_lock); 755 iput(lastinode); 756 757 if (capsnap) 758 kmem_cache_free(ceph_cap_snap_cachep, capsnap); 759 dout("%s %p %llx done\n", __func__, realm, realm->ino); 760 } 761 762 /* 763 * Parse and apply a snapblob "snap trace" from the MDS. This specifies 764 * the snap realm parameters from a given realm and all of its ancestors, 765 * up to the root. 766 * 767 * Caller must hold snap_rwsem for write. 768 */ 769 int ceph_update_snap_trace(struct ceph_mds_client *mdsc, 770 void *p, void *e, bool deletion, 771 struct ceph_snap_realm **realm_ret) 772 { 773 struct ceph_mds_snap_realm *ri; /* encoded */ 774 __le64 *snaps; /* encoded */ 775 __le64 *prior_parent_snaps; /* encoded */ 776 struct ceph_snap_realm *realm; 777 struct ceph_snap_realm *first_realm = NULL; 778 struct ceph_snap_realm *realm_to_rebuild = NULL; 779 struct ceph_client *client = mdsc->fsc->client; 780 int rebuild_snapcs; 781 int err = -ENOMEM; 782 int ret; 783 LIST_HEAD(dirty_realms); 784 785 lockdep_assert_held_write(&mdsc->snap_rwsem); 786 787 dout("%s deletion=%d\n", __func__, deletion); 788 more: 789 realm = NULL; 790 rebuild_snapcs = 0; 791 ceph_decode_need(&p, e, sizeof(*ri), bad); 792 ri = p; 793 p += sizeof(*ri); 794 ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) + 795 le32_to_cpu(ri->num_prior_parent_snaps)), bad); 796 snaps = p; 797 p += sizeof(u64) * le32_to_cpu(ri->num_snaps); 798 prior_parent_snaps = p; 799 p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps); 800 801 realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino)); 802 if (!realm) { 803 realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino)); 804 if (IS_ERR(realm)) { 805 err = PTR_ERR(realm); 806 goto fail; 807 } 808 } 809 810 /* ensure the parent is correct */ 811 err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent)); 812 if (err < 0) 813 goto fail; 814 rebuild_snapcs += err; 815 816 if (le64_to_cpu(ri->seq) > realm->seq) { 817 dout("%s updating %llx %p %lld -> %lld\n", __func__, 818 realm->ino, realm, realm->seq, le64_to_cpu(ri->seq)); 819 /* update realm parameters, snap lists */ 820 realm->seq = le64_to_cpu(ri->seq); 821 realm->created = le64_to_cpu(ri->created); 822 realm->parent_since = le64_to_cpu(ri->parent_since); 823 824 realm->num_snaps = le32_to_cpu(ri->num_snaps); 825 err = dup_array(&realm->snaps, snaps, realm->num_snaps); 826 if (err < 0) 827 goto fail; 828 829 realm->num_prior_parent_snaps = 830 le32_to_cpu(ri->num_prior_parent_snaps); 831 err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps, 832 realm->num_prior_parent_snaps); 833 if (err < 0) 834 goto fail; 835 836 if (realm->seq > mdsc->last_snap_seq) 837 mdsc->last_snap_seq = realm->seq; 838 839 rebuild_snapcs = 1; 840 } else if (!realm->cached_context) { 841 dout("%s %llx %p seq %lld new\n", __func__, 842 realm->ino, realm, realm->seq); 843 rebuild_snapcs = 1; 844 } else { 845 dout("%s %llx %p seq %lld unchanged\n", __func__, 846 realm->ino, realm, realm->seq); 847 } 848 849 dout("done with %llx %p, rebuild_snapcs=%d, %p %p\n", realm->ino, 850 realm, rebuild_snapcs, p, e); 851 852 /* 853 * this will always track the uppest parent realm from which 854 * we need to rebuild the snapshot contexts _downward_ in 855 * hierarchy. 856 */ 857 if (rebuild_snapcs) 858 realm_to_rebuild = realm; 859 860 /* rebuild_snapcs when we reach the _end_ (root) of the trace */ 861 if (realm_to_rebuild && p >= e) 862 rebuild_snap_realms(mdsc, realm_to_rebuild, &dirty_realms); 863 864 if (!first_realm) 865 first_realm = realm; 866 else 867 ceph_put_snap_realm(mdsc, realm); 868 869 if (p < e) 870 goto more; 871 872 /* 873 * queue cap snaps _after_ we've built the new snap contexts, 874 * so that i_head_snapc can be set appropriately. 875 */ 876 while (!list_empty(&dirty_realms)) { 877 realm = list_first_entry(&dirty_realms, struct ceph_snap_realm, 878 dirty_item); 879 list_del_init(&realm->dirty_item); 880 queue_realm_cap_snaps(mdsc, realm); 881 } 882 883 if (realm_ret) 884 *realm_ret = first_realm; 885 else 886 ceph_put_snap_realm(mdsc, first_realm); 887 888 __cleanup_empty_realms(mdsc); 889 return 0; 890 891 bad: 892 err = -EIO; 893 fail: 894 if (realm && !IS_ERR(realm)) 895 ceph_put_snap_realm(mdsc, realm); 896 if (first_realm) 897 ceph_put_snap_realm(mdsc, first_realm); 898 pr_err("%s error %d\n", __func__, err); 899 900 /* 901 * When receiving a corrupted snap trace we don't know what 902 * exactly has happened in MDS side. And we shouldn't continue 903 * writing to OSD, which may corrupt the snapshot contents. 904 * 905 * Just try to blocklist this kclient and then this kclient 906 * must be remounted to continue after the corrupted metadata 907 * fixed in the MDS side. 908 */ 909 WRITE_ONCE(mdsc->fsc->mount_state, CEPH_MOUNT_FENCE_IO); 910 ret = ceph_monc_blocklist_add(&client->monc, &client->msgr.inst.addr); 911 if (ret) 912 pr_err("%s failed to blocklist %s: %d\n", __func__, 913 ceph_pr_addr(&client->msgr.inst.addr), ret); 914 915 WARN(1, "%s: %s%sdo remount to continue%s", 916 __func__, ret ? "" : ceph_pr_addr(&client->msgr.inst.addr), 917 ret ? "" : " was blocklisted, ", 918 err == -EIO ? " after corrupted snaptrace is fixed" : ""); 919 920 return err; 921 } 922 923 924 /* 925 * Send any cap_snaps that are queued for flush. Try to carry 926 * s_mutex across multiple snap flushes to avoid locking overhead. 927 * 928 * Caller holds no locks. 929 */ 930 static void flush_snaps(struct ceph_mds_client *mdsc) 931 { 932 struct ceph_inode_info *ci; 933 struct inode *inode; 934 struct ceph_mds_session *session = NULL; 935 936 dout("%s\n", __func__); 937 spin_lock(&mdsc->snap_flush_lock); 938 while (!list_empty(&mdsc->snap_flush_list)) { 939 ci = list_first_entry(&mdsc->snap_flush_list, 940 struct ceph_inode_info, i_snap_flush_item); 941 inode = &ci->netfs.inode; 942 ihold(inode); 943 spin_unlock(&mdsc->snap_flush_lock); 944 ceph_flush_snaps(ci, &session); 945 iput(inode); 946 spin_lock(&mdsc->snap_flush_lock); 947 } 948 spin_unlock(&mdsc->snap_flush_lock); 949 950 ceph_put_mds_session(session); 951 dout("%s done\n", __func__); 952 } 953 954 /** 955 * ceph_change_snap_realm - change the snap_realm for an inode 956 * @inode: inode to move to new snap realm 957 * @realm: new realm to move inode into (may be NULL) 958 * 959 * Detach an inode from its old snaprealm (if any) and attach it to 960 * the new snaprealm (if any). The old snap realm reference held by 961 * the inode is put. If realm is non-NULL, then the caller's reference 962 * to it is taken over by the inode. 963 */ 964 void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm) 965 { 966 struct ceph_inode_info *ci = ceph_inode(inode); 967 struct ceph_mds_client *mdsc = ceph_inode_to_fs_client(inode)->mdsc; 968 struct ceph_snap_realm *oldrealm = ci->i_snap_realm; 969 970 lockdep_assert_held(&ci->i_ceph_lock); 971 972 if (oldrealm) { 973 spin_lock(&oldrealm->inodes_with_caps_lock); 974 list_del_init(&ci->i_snap_realm_item); 975 if (oldrealm->ino == ci->i_vino.ino) 976 oldrealm->inode = NULL; 977 spin_unlock(&oldrealm->inodes_with_caps_lock); 978 ceph_put_snap_realm(mdsc, oldrealm); 979 } 980 981 ci->i_snap_realm = realm; 982 983 if (realm) { 984 spin_lock(&realm->inodes_with_caps_lock); 985 list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps); 986 if (realm->ino == ci->i_vino.ino) 987 realm->inode = inode; 988 spin_unlock(&realm->inodes_with_caps_lock); 989 } 990 } 991 992 /* 993 * Handle a snap notification from the MDS. 994 * 995 * This can take two basic forms: the simplest is just a snap creation 996 * or deletion notification on an existing realm. This should update the 997 * realm and its children. 998 * 999 * The more difficult case is realm creation, due to snap creation at a 1000 * new point in the file hierarchy, or due to a rename that moves a file or 1001 * directory into another realm. 1002 */ 1003 void ceph_handle_snap(struct ceph_mds_client *mdsc, 1004 struct ceph_mds_session *session, 1005 struct ceph_msg *msg) 1006 { 1007 struct super_block *sb = mdsc->fsc->sb; 1008 int mds = session->s_mds; 1009 u64 split; 1010 int op; 1011 int trace_len; 1012 struct ceph_snap_realm *realm = NULL; 1013 void *p = msg->front.iov_base; 1014 void *e = p + msg->front.iov_len; 1015 struct ceph_mds_snap_head *h; 1016 int num_split_inos, num_split_realms; 1017 __le64 *split_inos = NULL, *split_realms = NULL; 1018 int i; 1019 int locked_rwsem = 0; 1020 bool close_sessions = false; 1021 1022 if (!ceph_inc_mds_stopping_blocker(mdsc, session)) 1023 return; 1024 1025 /* decode */ 1026 if (msg->front.iov_len < sizeof(*h)) 1027 goto bad; 1028 h = p; 1029 op = le32_to_cpu(h->op); 1030 split = le64_to_cpu(h->split); /* non-zero if we are splitting an 1031 * existing realm */ 1032 num_split_inos = le32_to_cpu(h->num_split_inos); 1033 num_split_realms = le32_to_cpu(h->num_split_realms); 1034 trace_len = le32_to_cpu(h->trace_len); 1035 p += sizeof(*h); 1036 1037 dout("%s from mds%d op %s split %llx tracelen %d\n", __func__, 1038 mds, ceph_snap_op_name(op), split, trace_len); 1039 1040 down_write(&mdsc->snap_rwsem); 1041 locked_rwsem = 1; 1042 1043 if (op == CEPH_SNAP_OP_SPLIT) { 1044 struct ceph_mds_snap_realm *ri; 1045 1046 /* 1047 * A "split" breaks part of an existing realm off into 1048 * a new realm. The MDS provides a list of inodes 1049 * (with caps) and child realms that belong to the new 1050 * child. 1051 */ 1052 split_inos = p; 1053 p += sizeof(u64) * num_split_inos; 1054 split_realms = p; 1055 p += sizeof(u64) * num_split_realms; 1056 ceph_decode_need(&p, e, sizeof(*ri), bad); 1057 /* we will peek at realm info here, but will _not_ 1058 * advance p, as the realm update will occur below in 1059 * ceph_update_snap_trace. */ 1060 ri = p; 1061 1062 realm = ceph_lookup_snap_realm(mdsc, split); 1063 if (!realm) { 1064 realm = ceph_create_snap_realm(mdsc, split); 1065 if (IS_ERR(realm)) 1066 goto out; 1067 } 1068 1069 dout("splitting snap_realm %llx %p\n", realm->ino, realm); 1070 for (i = 0; i < num_split_inos; i++) { 1071 struct ceph_vino vino = { 1072 .ino = le64_to_cpu(split_inos[i]), 1073 .snap = CEPH_NOSNAP, 1074 }; 1075 struct inode *inode = ceph_find_inode(sb, vino); 1076 struct ceph_inode_info *ci; 1077 1078 if (!inode) 1079 continue; 1080 ci = ceph_inode(inode); 1081 1082 spin_lock(&ci->i_ceph_lock); 1083 if (!ci->i_snap_realm) 1084 goto skip_inode; 1085 /* 1086 * If this inode belongs to a realm that was 1087 * created after our new realm, we experienced 1088 * a race (due to another split notifications 1089 * arriving from a different MDS). So skip 1090 * this inode. 1091 */ 1092 if (ci->i_snap_realm->created > 1093 le64_to_cpu(ri->created)) { 1094 dout(" leaving %p %llx.%llx in newer realm %llx %p\n", 1095 inode, ceph_vinop(inode), ci->i_snap_realm->ino, 1096 ci->i_snap_realm); 1097 goto skip_inode; 1098 } 1099 dout(" will move %p %llx.%llx to split realm %llx %p\n", 1100 inode, ceph_vinop(inode), realm->ino, realm); 1101 1102 ceph_get_snap_realm(mdsc, realm); 1103 ceph_change_snap_realm(inode, realm); 1104 spin_unlock(&ci->i_ceph_lock); 1105 iput(inode); 1106 continue; 1107 1108 skip_inode: 1109 spin_unlock(&ci->i_ceph_lock); 1110 iput(inode); 1111 } 1112 1113 /* we may have taken some of the old realm's children. */ 1114 for (i = 0; i < num_split_realms; i++) { 1115 struct ceph_snap_realm *child = 1116 __lookup_snap_realm(mdsc, 1117 le64_to_cpu(split_realms[i])); 1118 if (!child) 1119 continue; 1120 adjust_snap_realm_parent(mdsc, child, realm->ino); 1121 } 1122 } else { 1123 /* 1124 * In the non-split case both 'num_split_inos' and 1125 * 'num_split_realms' should be 0, making this a no-op. 1126 * However the MDS happens to populate 'split_realms' list 1127 * in one of the UPDATE op cases by mistake. 1128 * 1129 * Skip both lists just in case to ensure that 'p' is 1130 * positioned at the start of realm info, as expected by 1131 * ceph_update_snap_trace(). 1132 */ 1133 p += sizeof(u64) * num_split_inos; 1134 p += sizeof(u64) * num_split_realms; 1135 } 1136 1137 /* 1138 * update using the provided snap trace. if we are deleting a 1139 * snap, we can avoid queueing cap_snaps. 1140 */ 1141 if (ceph_update_snap_trace(mdsc, p, e, 1142 op == CEPH_SNAP_OP_DESTROY, 1143 NULL)) { 1144 close_sessions = true; 1145 goto bad; 1146 } 1147 1148 if (op == CEPH_SNAP_OP_SPLIT) 1149 /* we took a reference when we created the realm, above */ 1150 ceph_put_snap_realm(mdsc, realm); 1151 1152 __cleanup_empty_realms(mdsc); 1153 1154 up_write(&mdsc->snap_rwsem); 1155 1156 flush_snaps(mdsc); 1157 ceph_dec_mds_stopping_blocker(mdsc); 1158 return; 1159 1160 bad: 1161 pr_err("%s corrupt snap message from mds%d\n", __func__, mds); 1162 ceph_msg_dump(msg); 1163 out: 1164 if (locked_rwsem) 1165 up_write(&mdsc->snap_rwsem); 1166 1167 ceph_dec_mds_stopping_blocker(mdsc); 1168 1169 if (close_sessions) 1170 ceph_mdsc_close_sessions(mdsc); 1171 return; 1172 } 1173 1174 struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc, 1175 u64 snap) 1176 { 1177 struct ceph_snapid_map *sm, *exist; 1178 struct rb_node **p, *parent; 1179 int ret; 1180 1181 exist = NULL; 1182 spin_lock(&mdsc->snapid_map_lock); 1183 p = &mdsc->snapid_map_tree.rb_node; 1184 while (*p) { 1185 exist = rb_entry(*p, struct ceph_snapid_map, node); 1186 if (snap > exist->snap) { 1187 p = &(*p)->rb_left; 1188 } else if (snap < exist->snap) { 1189 p = &(*p)->rb_right; 1190 } else { 1191 if (atomic_inc_return(&exist->ref) == 1) 1192 list_del_init(&exist->lru); 1193 break; 1194 } 1195 exist = NULL; 1196 } 1197 spin_unlock(&mdsc->snapid_map_lock); 1198 if (exist) { 1199 dout("%s found snapid map %llx -> %x\n", __func__, 1200 exist->snap, exist->dev); 1201 return exist; 1202 } 1203 1204 sm = kmalloc(sizeof(*sm), GFP_NOFS); 1205 if (!sm) 1206 return NULL; 1207 1208 ret = get_anon_bdev(&sm->dev); 1209 if (ret < 0) { 1210 kfree(sm); 1211 return NULL; 1212 } 1213 1214 INIT_LIST_HEAD(&sm->lru); 1215 atomic_set(&sm->ref, 1); 1216 sm->snap = snap; 1217 1218 exist = NULL; 1219 parent = NULL; 1220 p = &mdsc->snapid_map_tree.rb_node; 1221 spin_lock(&mdsc->snapid_map_lock); 1222 while (*p) { 1223 parent = *p; 1224 exist = rb_entry(*p, struct ceph_snapid_map, node); 1225 if (snap > exist->snap) 1226 p = &(*p)->rb_left; 1227 else if (snap < exist->snap) 1228 p = &(*p)->rb_right; 1229 else 1230 break; 1231 exist = NULL; 1232 } 1233 if (exist) { 1234 if (atomic_inc_return(&exist->ref) == 1) 1235 list_del_init(&exist->lru); 1236 } else { 1237 rb_link_node(&sm->node, parent, p); 1238 rb_insert_color(&sm->node, &mdsc->snapid_map_tree); 1239 } 1240 spin_unlock(&mdsc->snapid_map_lock); 1241 if (exist) { 1242 free_anon_bdev(sm->dev); 1243 kfree(sm); 1244 dout("%s found snapid map %llx -> %x\n", __func__, 1245 exist->snap, exist->dev); 1246 return exist; 1247 } 1248 1249 dout("%s create snapid map %llx -> %x\n", __func__, 1250 sm->snap, sm->dev); 1251 return sm; 1252 } 1253 1254 void ceph_put_snapid_map(struct ceph_mds_client* mdsc, 1255 struct ceph_snapid_map *sm) 1256 { 1257 if (!sm) 1258 return; 1259 if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) { 1260 if (!RB_EMPTY_NODE(&sm->node)) { 1261 sm->last_used = jiffies; 1262 list_add_tail(&sm->lru, &mdsc->snapid_map_lru); 1263 spin_unlock(&mdsc->snapid_map_lock); 1264 } else { 1265 /* already cleaned up by 1266 * ceph_cleanup_snapid_map() */ 1267 spin_unlock(&mdsc->snapid_map_lock); 1268 kfree(sm); 1269 } 1270 } 1271 } 1272 1273 void ceph_trim_snapid_map(struct ceph_mds_client *mdsc) 1274 { 1275 struct ceph_snapid_map *sm; 1276 unsigned long now; 1277 LIST_HEAD(to_free); 1278 1279 spin_lock(&mdsc->snapid_map_lock); 1280 now = jiffies; 1281 1282 while (!list_empty(&mdsc->snapid_map_lru)) { 1283 sm = list_first_entry(&mdsc->snapid_map_lru, 1284 struct ceph_snapid_map, lru); 1285 if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now)) 1286 break; 1287 1288 rb_erase(&sm->node, &mdsc->snapid_map_tree); 1289 list_move(&sm->lru, &to_free); 1290 } 1291 spin_unlock(&mdsc->snapid_map_lock); 1292 1293 while (!list_empty(&to_free)) { 1294 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru); 1295 list_del(&sm->lru); 1296 dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev); 1297 free_anon_bdev(sm->dev); 1298 kfree(sm); 1299 } 1300 } 1301 1302 void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc) 1303 { 1304 struct ceph_snapid_map *sm; 1305 struct rb_node *p; 1306 LIST_HEAD(to_free); 1307 1308 spin_lock(&mdsc->snapid_map_lock); 1309 while ((p = rb_first(&mdsc->snapid_map_tree))) { 1310 sm = rb_entry(p, struct ceph_snapid_map, node); 1311 rb_erase(p, &mdsc->snapid_map_tree); 1312 RB_CLEAR_NODE(p); 1313 list_move(&sm->lru, &to_free); 1314 } 1315 spin_unlock(&mdsc->snapid_map_lock); 1316 1317 while (!list_empty(&to_free)) { 1318 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru); 1319 list_del(&sm->lru); 1320 free_anon_bdev(sm->dev); 1321 if (WARN_ON_ONCE(atomic_read(&sm->ref))) { 1322 pr_err("snapid map %llx -> %x still in use\n", 1323 sm->snap, sm->dev); 1324 } 1325 kfree(sm); 1326 } 1327 } 1328