1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/sort.h> 5 #include <linux/slab.h> 6 #include <linux/iversion.h> 7 #include "super.h" 8 #include "mds_client.h" 9 #include <linux/ceph/decode.h> 10 11 /* unused map expires after 5 minutes */ 12 #define CEPH_SNAPID_MAP_TIMEOUT (5 * 60 * HZ) 13 14 /* 15 * Snapshots in ceph are driven in large part by cooperation from the 16 * client. In contrast to local file systems or file servers that 17 * implement snapshots at a single point in the system, ceph's 18 * distributed access to storage requires clients to help decide 19 * whether a write logically occurs before or after a recently created 20 * snapshot. 21 * 22 * This provides a perfect instantanous client-wide snapshot. Between 23 * clients, however, snapshots may appear to be applied at slightly 24 * different points in time, depending on delays in delivering the 25 * snapshot notification. 26 * 27 * Snapshots are _not_ file system-wide. Instead, each snapshot 28 * applies to the subdirectory nested beneath some directory. This 29 * effectively divides the hierarchy into multiple "realms," where all 30 * of the files contained by each realm share the same set of 31 * snapshots. An individual realm's snap set contains snapshots 32 * explicitly created on that realm, as well as any snaps in its 33 * parent's snap set _after_ the point at which the parent became it's 34 * parent (due to, say, a rename). Similarly, snaps from prior parents 35 * during the time intervals during which they were the parent are included. 36 * 37 * The client is spared most of this detail, fortunately... it must only 38 * maintains a hierarchy of realms reflecting the current parent/child 39 * realm relationship, and for each realm has an explicit list of snaps 40 * inherited from prior parents. 41 * 42 * A snap_realm struct is maintained for realms containing every inode 43 * with an open cap in the system. (The needed snap realm information is 44 * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq' 45 * version number is used to ensure that as realm parameters change (new 46 * snapshot, new parent, etc.) the client's realm hierarchy is updated. 47 * 48 * The realm hierarchy drives the generation of a 'snap context' for each 49 * realm, which simply lists the resulting set of snaps for the realm. This 50 * is attached to any writes sent to OSDs. 51 */ 52 /* 53 * Unfortunately error handling is a bit mixed here. If we get a snap 54 * update, but don't have enough memory to update our realm hierarchy, 55 * it's not clear what we can do about it (besides complaining to the 56 * console). 57 */ 58 59 60 /* 61 * increase ref count for the realm 62 * 63 * caller must hold snap_rwsem. 64 */ 65 void ceph_get_snap_realm(struct ceph_mds_client *mdsc, 66 struct ceph_snap_realm *realm) 67 { 68 lockdep_assert_held(&mdsc->snap_rwsem); 69 70 /* 71 * The 0->1 and 1->0 transitions must take the snap_empty_lock 72 * atomically with the refcount change. Go ahead and bump the 73 * nref here, unless it's 0, in which case we take the spinlock 74 * and then do the increment and remove it from the list. 75 */ 76 if (atomic_inc_not_zero(&realm->nref)) 77 return; 78 79 spin_lock(&mdsc->snap_empty_lock); 80 if (atomic_inc_return(&realm->nref) == 1) 81 list_del_init(&realm->empty_item); 82 spin_unlock(&mdsc->snap_empty_lock); 83 } 84 85 static void __insert_snap_realm(struct rb_root *root, 86 struct ceph_snap_realm *new) 87 { 88 struct rb_node **p = &root->rb_node; 89 struct rb_node *parent = NULL; 90 struct ceph_snap_realm *r = NULL; 91 92 while (*p) { 93 parent = *p; 94 r = rb_entry(parent, struct ceph_snap_realm, node); 95 if (new->ino < r->ino) 96 p = &(*p)->rb_left; 97 else if (new->ino > r->ino) 98 p = &(*p)->rb_right; 99 else 100 BUG(); 101 } 102 103 rb_link_node(&new->node, parent, p); 104 rb_insert_color(&new->node, root); 105 } 106 107 /* 108 * create and get the realm rooted at @ino and bump its ref count. 109 * 110 * caller must hold snap_rwsem for write. 111 */ 112 static struct ceph_snap_realm *ceph_create_snap_realm( 113 struct ceph_mds_client *mdsc, 114 u64 ino) 115 { 116 struct ceph_snap_realm *realm; 117 118 lockdep_assert_held_write(&mdsc->snap_rwsem); 119 120 realm = kzalloc(sizeof(*realm), GFP_NOFS); 121 if (!realm) 122 return ERR_PTR(-ENOMEM); 123 124 /* Do not release the global dummy snaprealm until unmouting */ 125 if (ino == CEPH_INO_GLOBAL_SNAPREALM) 126 atomic_set(&realm->nref, 2); 127 else 128 atomic_set(&realm->nref, 1); 129 realm->ino = ino; 130 INIT_LIST_HEAD(&realm->children); 131 INIT_LIST_HEAD(&realm->child_item); 132 INIT_LIST_HEAD(&realm->empty_item); 133 INIT_LIST_HEAD(&realm->dirty_item); 134 INIT_LIST_HEAD(&realm->rebuild_item); 135 INIT_LIST_HEAD(&realm->inodes_with_caps); 136 spin_lock_init(&realm->inodes_with_caps_lock); 137 __insert_snap_realm(&mdsc->snap_realms, realm); 138 mdsc->num_snap_realms++; 139 140 dout("%s %llx %p\n", __func__, realm->ino, realm); 141 return realm; 142 } 143 144 /* 145 * lookup the realm rooted at @ino. 146 * 147 * caller must hold snap_rwsem. 148 */ 149 static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc, 150 u64 ino) 151 { 152 struct rb_node *n = mdsc->snap_realms.rb_node; 153 struct ceph_snap_realm *r; 154 155 lockdep_assert_held(&mdsc->snap_rwsem); 156 157 while (n) { 158 r = rb_entry(n, struct ceph_snap_realm, node); 159 if (ino < r->ino) 160 n = n->rb_left; 161 else if (ino > r->ino) 162 n = n->rb_right; 163 else { 164 dout("%s %llx %p\n", __func__, r->ino, r); 165 return r; 166 } 167 } 168 return NULL; 169 } 170 171 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc, 172 u64 ino) 173 { 174 struct ceph_snap_realm *r; 175 r = __lookup_snap_realm(mdsc, ino); 176 if (r) 177 ceph_get_snap_realm(mdsc, r); 178 return r; 179 } 180 181 static void __put_snap_realm(struct ceph_mds_client *mdsc, 182 struct ceph_snap_realm *realm); 183 184 /* 185 * called with snap_rwsem (write) 186 */ 187 static void __destroy_snap_realm(struct ceph_mds_client *mdsc, 188 struct ceph_snap_realm *realm) 189 { 190 lockdep_assert_held_write(&mdsc->snap_rwsem); 191 192 dout("%s %p %llx\n", __func__, realm, realm->ino); 193 194 rb_erase(&realm->node, &mdsc->snap_realms); 195 mdsc->num_snap_realms--; 196 197 if (realm->parent) { 198 list_del_init(&realm->child_item); 199 __put_snap_realm(mdsc, realm->parent); 200 } 201 202 kfree(realm->prior_parent_snaps); 203 kfree(realm->snaps); 204 ceph_put_snap_context(realm->cached_context); 205 kfree(realm); 206 } 207 208 /* 209 * caller holds snap_rwsem (write) 210 */ 211 static void __put_snap_realm(struct ceph_mds_client *mdsc, 212 struct ceph_snap_realm *realm) 213 { 214 lockdep_assert_held_write(&mdsc->snap_rwsem); 215 216 /* 217 * We do not require the snap_empty_lock here, as any caller that 218 * increments the value must hold the snap_rwsem. 219 */ 220 if (atomic_dec_and_test(&realm->nref)) 221 __destroy_snap_realm(mdsc, realm); 222 } 223 224 /* 225 * See comments in ceph_get_snap_realm. Caller needn't hold any locks. 226 */ 227 void ceph_put_snap_realm(struct ceph_mds_client *mdsc, 228 struct ceph_snap_realm *realm) 229 { 230 if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock)) 231 return; 232 233 if (down_write_trylock(&mdsc->snap_rwsem)) { 234 spin_unlock(&mdsc->snap_empty_lock); 235 __destroy_snap_realm(mdsc, realm); 236 up_write(&mdsc->snap_rwsem); 237 } else { 238 list_add(&realm->empty_item, &mdsc->snap_empty); 239 spin_unlock(&mdsc->snap_empty_lock); 240 } 241 } 242 243 /* 244 * Clean up any realms whose ref counts have dropped to zero. Note 245 * that this does not include realms who were created but not yet 246 * used. 247 * 248 * Called under snap_rwsem (write) 249 */ 250 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc) 251 { 252 struct ceph_snap_realm *realm; 253 254 lockdep_assert_held_write(&mdsc->snap_rwsem); 255 256 spin_lock(&mdsc->snap_empty_lock); 257 while (!list_empty(&mdsc->snap_empty)) { 258 realm = list_first_entry(&mdsc->snap_empty, 259 struct ceph_snap_realm, empty_item); 260 list_del(&realm->empty_item); 261 spin_unlock(&mdsc->snap_empty_lock); 262 __destroy_snap_realm(mdsc, realm); 263 spin_lock(&mdsc->snap_empty_lock); 264 } 265 spin_unlock(&mdsc->snap_empty_lock); 266 } 267 268 void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc) 269 { 270 struct ceph_snap_realm *global_realm; 271 272 down_write(&mdsc->snap_rwsem); 273 global_realm = __lookup_snap_realm(mdsc, CEPH_INO_GLOBAL_SNAPREALM); 274 if (global_realm) 275 ceph_put_snap_realm(mdsc, global_realm); 276 __cleanup_empty_realms(mdsc); 277 up_write(&mdsc->snap_rwsem); 278 } 279 280 /* 281 * adjust the parent realm of a given @realm. adjust child list, and parent 282 * pointers, and ref counts appropriately. 283 * 284 * return true if parent was changed, 0 if unchanged, <0 on error. 285 * 286 * caller must hold snap_rwsem for write. 287 */ 288 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc, 289 struct ceph_snap_realm *realm, 290 u64 parentino) 291 { 292 struct ceph_snap_realm *parent; 293 294 lockdep_assert_held_write(&mdsc->snap_rwsem); 295 296 if (realm->parent_ino == parentino) 297 return 0; 298 299 parent = ceph_lookup_snap_realm(mdsc, parentino); 300 if (!parent) { 301 parent = ceph_create_snap_realm(mdsc, parentino); 302 if (IS_ERR(parent)) 303 return PTR_ERR(parent); 304 } 305 dout("%s %llx %p: %llx %p -> %llx %p\n", __func__, realm->ino, 306 realm, realm->parent_ino, realm->parent, parentino, parent); 307 if (realm->parent) { 308 list_del_init(&realm->child_item); 309 ceph_put_snap_realm(mdsc, realm->parent); 310 } 311 realm->parent_ino = parentino; 312 realm->parent = parent; 313 list_add(&realm->child_item, &parent->children); 314 return 1; 315 } 316 317 318 static int cmpu64_rev(const void *a, const void *b) 319 { 320 if (*(u64 *)a < *(u64 *)b) 321 return 1; 322 if (*(u64 *)a > *(u64 *)b) 323 return -1; 324 return 0; 325 } 326 327 328 /* 329 * build the snap context for a given realm. 330 */ 331 static int build_snap_context(struct ceph_snap_realm *realm, 332 struct list_head *realm_queue, 333 struct list_head *dirty_realms) 334 { 335 struct ceph_snap_realm *parent = realm->parent; 336 struct ceph_snap_context *snapc; 337 int err = 0; 338 u32 num = realm->num_prior_parent_snaps + realm->num_snaps; 339 340 /* 341 * build parent context, if it hasn't been built. 342 * conservatively estimate that all parent snaps might be 343 * included by us. 344 */ 345 if (parent) { 346 if (!parent->cached_context) { 347 /* add to the queue head */ 348 list_add(&parent->rebuild_item, realm_queue); 349 return 1; 350 } 351 num += parent->cached_context->num_snaps; 352 } 353 354 /* do i actually need to update? not if my context seq 355 matches realm seq, and my parents' does to. (this works 356 because we rebuild_snap_realms() works _downward_ in 357 hierarchy after each update.) */ 358 if (realm->cached_context && 359 realm->cached_context->seq == realm->seq && 360 (!parent || 361 realm->cached_context->seq >= parent->cached_context->seq)) { 362 dout("%s %llx %p: %p seq %lld (%u snaps) (unchanged)\n", 363 __func__, realm->ino, realm, realm->cached_context, 364 realm->cached_context->seq, 365 (unsigned int)realm->cached_context->num_snaps); 366 return 0; 367 } 368 369 /* alloc new snap context */ 370 err = -ENOMEM; 371 if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64)) 372 goto fail; 373 snapc = ceph_create_snap_context(num, GFP_NOFS); 374 if (!snapc) 375 goto fail; 376 377 /* build (reverse sorted) snap vector */ 378 num = 0; 379 snapc->seq = realm->seq; 380 if (parent) { 381 u32 i; 382 383 /* include any of parent's snaps occurring _after_ my 384 parent became my parent */ 385 for (i = 0; i < parent->cached_context->num_snaps; i++) 386 if (parent->cached_context->snaps[i] >= 387 realm->parent_since) 388 snapc->snaps[num++] = 389 parent->cached_context->snaps[i]; 390 if (parent->cached_context->seq > snapc->seq) 391 snapc->seq = parent->cached_context->seq; 392 } 393 memcpy(snapc->snaps + num, realm->snaps, 394 sizeof(u64)*realm->num_snaps); 395 num += realm->num_snaps; 396 memcpy(snapc->snaps + num, realm->prior_parent_snaps, 397 sizeof(u64)*realm->num_prior_parent_snaps); 398 num += realm->num_prior_parent_snaps; 399 400 sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL); 401 snapc->num_snaps = num; 402 dout("%s %llx %p: %p seq %lld (%u snaps)\n", __func__, realm->ino, 403 realm, snapc, snapc->seq, (unsigned int) snapc->num_snaps); 404 405 ceph_put_snap_context(realm->cached_context); 406 realm->cached_context = snapc; 407 /* queue realm for cap_snap creation */ 408 list_add_tail(&realm->dirty_item, dirty_realms); 409 return 0; 410 411 fail: 412 /* 413 * if we fail, clear old (incorrect) cached_context... hopefully 414 * we'll have better luck building it later 415 */ 416 if (realm->cached_context) { 417 ceph_put_snap_context(realm->cached_context); 418 realm->cached_context = NULL; 419 } 420 pr_err("%s %llx %p fail %d\n", __func__, realm->ino, realm, err); 421 return err; 422 } 423 424 /* 425 * rebuild snap context for the given realm and all of its children. 426 */ 427 static void rebuild_snap_realms(struct ceph_snap_realm *realm, 428 struct list_head *dirty_realms) 429 { 430 LIST_HEAD(realm_queue); 431 int last = 0; 432 bool skip = false; 433 434 list_add_tail(&realm->rebuild_item, &realm_queue); 435 436 while (!list_empty(&realm_queue)) { 437 struct ceph_snap_realm *_realm, *child; 438 439 _realm = list_first_entry(&realm_queue, 440 struct ceph_snap_realm, 441 rebuild_item); 442 443 /* 444 * If the last building failed dues to memory 445 * issue, just empty the realm_queue and return 446 * to avoid infinite loop. 447 */ 448 if (last < 0) { 449 list_del_init(&_realm->rebuild_item); 450 continue; 451 } 452 453 last = build_snap_context(_realm, &realm_queue, dirty_realms); 454 dout("%s %llx %p, %s\n", __func__, _realm->ino, _realm, 455 last > 0 ? "is deferred" : !last ? "succeeded" : "failed"); 456 457 /* is any child in the list ? */ 458 list_for_each_entry(child, &_realm->children, child_item) { 459 if (!list_empty(&child->rebuild_item)) { 460 skip = true; 461 break; 462 } 463 } 464 465 if (!skip) { 466 list_for_each_entry(child, &_realm->children, child_item) 467 list_add_tail(&child->rebuild_item, &realm_queue); 468 } 469 470 /* last == 1 means need to build parent first */ 471 if (last <= 0) 472 list_del_init(&_realm->rebuild_item); 473 } 474 } 475 476 477 /* 478 * helper to allocate and decode an array of snapids. free prior 479 * instance, if any. 480 */ 481 static int dup_array(u64 **dst, __le64 *src, u32 num) 482 { 483 u32 i; 484 485 kfree(*dst); 486 if (num) { 487 *dst = kcalloc(num, sizeof(u64), GFP_NOFS); 488 if (!*dst) 489 return -ENOMEM; 490 for (i = 0; i < num; i++) 491 (*dst)[i] = get_unaligned_le64(src + i); 492 } else { 493 *dst = NULL; 494 } 495 return 0; 496 } 497 498 static bool has_new_snaps(struct ceph_snap_context *o, 499 struct ceph_snap_context *n) 500 { 501 if (n->num_snaps == 0) 502 return false; 503 /* snaps are in descending order */ 504 return n->snaps[0] > o->seq; 505 } 506 507 /* 508 * When a snapshot is applied, the size/mtime inode metadata is queued 509 * in a ceph_cap_snap (one for each snapshot) until writeback 510 * completes and the metadata can be flushed back to the MDS. 511 * 512 * However, if a (sync) write is currently in-progress when we apply 513 * the snapshot, we have to wait until the write succeeds or fails 514 * (and a final size/mtime is known). In this case the 515 * cap_snap->writing = 1, and is said to be "pending." When the write 516 * finishes, we __ceph_finish_cap_snap(). 517 * 518 * Caller must hold snap_rwsem for read (i.e., the realm topology won't 519 * change). 520 */ 521 static void ceph_queue_cap_snap(struct ceph_inode_info *ci, 522 struct ceph_cap_snap **pcapsnap) 523 { 524 struct inode *inode = &ci->netfs.inode; 525 struct ceph_snap_context *old_snapc, *new_snapc; 526 struct ceph_cap_snap *capsnap = *pcapsnap; 527 struct ceph_buffer *old_blob = NULL; 528 int used, dirty; 529 530 spin_lock(&ci->i_ceph_lock); 531 used = __ceph_caps_used(ci); 532 dirty = __ceph_caps_dirty(ci); 533 534 old_snapc = ci->i_head_snapc; 535 new_snapc = ci->i_snap_realm->cached_context; 536 537 /* 538 * If there is a write in progress, treat that as a dirty Fw, 539 * even though it hasn't completed yet; by the time we finish 540 * up this capsnap it will be. 541 */ 542 if (used & CEPH_CAP_FILE_WR) 543 dirty |= CEPH_CAP_FILE_WR; 544 545 if (__ceph_have_pending_cap_snap(ci)) { 546 /* there is no point in queuing multiple "pending" cap_snaps, 547 as no new writes are allowed to start when pending, so any 548 writes in progress now were started before the previous 549 cap_snap. lucky us. */ 550 dout("%s %p %llx.%llx already pending\n", 551 __func__, inode, ceph_vinop(inode)); 552 goto update_snapc; 553 } 554 if (ci->i_wrbuffer_ref_head == 0 && 555 !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) { 556 dout("%s %p %llx.%llx nothing dirty|writing\n", 557 __func__, inode, ceph_vinop(inode)); 558 goto update_snapc; 559 } 560 561 BUG_ON(!old_snapc); 562 563 /* 564 * There is no need to send FLUSHSNAP message to MDS if there is 565 * no new snapshot. But when there is dirty pages or on-going 566 * writes, we still need to create cap_snap. cap_snap is needed 567 * by the write path and page writeback path. 568 * 569 * also see ceph_try_drop_cap_snap() 570 */ 571 if (has_new_snaps(old_snapc, new_snapc)) { 572 if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR)) 573 capsnap->need_flush = true; 574 } else { 575 if (!(used & CEPH_CAP_FILE_WR) && 576 ci->i_wrbuffer_ref_head == 0) { 577 dout("%s %p %llx.%llx no new_snap|dirty_page|writing\n", 578 __func__, inode, ceph_vinop(inode)); 579 goto update_snapc; 580 } 581 } 582 583 dout("%s %p %llx.%llx cap_snap %p queuing under %p %s %s\n", 584 __func__, inode, ceph_vinop(inode), capsnap, old_snapc, 585 ceph_cap_string(dirty), capsnap->need_flush ? "" : "no_flush"); 586 ihold(inode); 587 588 capsnap->follows = old_snapc->seq; 589 capsnap->issued = __ceph_caps_issued(ci, NULL); 590 capsnap->dirty = dirty; 591 592 capsnap->mode = inode->i_mode; 593 capsnap->uid = inode->i_uid; 594 capsnap->gid = inode->i_gid; 595 596 if (dirty & CEPH_CAP_XATTR_EXCL) { 597 old_blob = __ceph_build_xattrs_blob(ci); 598 capsnap->xattr_blob = 599 ceph_buffer_get(ci->i_xattrs.blob); 600 capsnap->xattr_version = ci->i_xattrs.version; 601 } else { 602 capsnap->xattr_blob = NULL; 603 capsnap->xattr_version = 0; 604 } 605 606 capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE; 607 608 /* dirty page count moved from _head to this cap_snap; 609 all subsequent writes page dirties occur _after_ this 610 snapshot. */ 611 capsnap->dirty_pages = ci->i_wrbuffer_ref_head; 612 ci->i_wrbuffer_ref_head = 0; 613 capsnap->context = old_snapc; 614 list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps); 615 616 if (used & CEPH_CAP_FILE_WR) { 617 dout("%s %p %llx.%llx cap_snap %p snapc %p seq %llu used WR," 618 " now pending\n", __func__, inode, ceph_vinop(inode), 619 capsnap, old_snapc, old_snapc->seq); 620 capsnap->writing = 1; 621 } else { 622 /* note mtime, size NOW. */ 623 __ceph_finish_cap_snap(ci, capsnap); 624 } 625 *pcapsnap = NULL; 626 old_snapc = NULL; 627 628 update_snapc: 629 if (ci->i_wrbuffer_ref_head == 0 && 630 ci->i_wr_ref == 0 && 631 ci->i_dirty_caps == 0 && 632 ci->i_flushing_caps == 0) { 633 ci->i_head_snapc = NULL; 634 } else { 635 ci->i_head_snapc = ceph_get_snap_context(new_snapc); 636 dout(" new snapc is %p\n", new_snapc); 637 } 638 spin_unlock(&ci->i_ceph_lock); 639 640 ceph_buffer_put(old_blob); 641 ceph_put_snap_context(old_snapc); 642 } 643 644 /* 645 * Finalize the size, mtime for a cap_snap.. that is, settle on final values 646 * to be used for the snapshot, to be flushed back to the mds. 647 * 648 * If capsnap can now be flushed, add to snap_flush list, and return 1. 649 * 650 * Caller must hold i_ceph_lock. 651 */ 652 int __ceph_finish_cap_snap(struct ceph_inode_info *ci, 653 struct ceph_cap_snap *capsnap) 654 { 655 struct inode *inode = &ci->netfs.inode; 656 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 657 658 BUG_ON(capsnap->writing); 659 capsnap->size = i_size_read(inode); 660 capsnap->mtime = inode->i_mtime; 661 capsnap->atime = inode->i_atime; 662 capsnap->ctime = inode->i_ctime; 663 capsnap->btime = ci->i_btime; 664 capsnap->change_attr = inode_peek_iversion_raw(inode); 665 capsnap->time_warp_seq = ci->i_time_warp_seq; 666 capsnap->truncate_size = ci->i_truncate_size; 667 capsnap->truncate_seq = ci->i_truncate_seq; 668 if (capsnap->dirty_pages) { 669 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu " 670 "still has %d dirty pages\n", __func__, inode, 671 ceph_vinop(inode), capsnap, capsnap->context, 672 capsnap->context->seq, ceph_cap_string(capsnap->dirty), 673 capsnap->size, capsnap->dirty_pages); 674 return 0; 675 } 676 677 /* Fb cap still in use, delay it */ 678 if (ci->i_wb_ref) { 679 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu " 680 "used WRBUFFER, delaying\n", __func__, inode, 681 ceph_vinop(inode), capsnap, capsnap->context, 682 capsnap->context->seq, ceph_cap_string(capsnap->dirty), 683 capsnap->size); 684 capsnap->writing = 1; 685 return 0; 686 } 687 688 ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS; 689 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu\n", 690 __func__, inode, ceph_vinop(inode), capsnap, capsnap->context, 691 capsnap->context->seq, ceph_cap_string(capsnap->dirty), 692 capsnap->size); 693 694 spin_lock(&mdsc->snap_flush_lock); 695 if (list_empty(&ci->i_snap_flush_item)) 696 list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list); 697 spin_unlock(&mdsc->snap_flush_lock); 698 return 1; /* caller may want to ceph_flush_snaps */ 699 } 700 701 /* 702 * Queue cap_snaps for snap writeback for this realm and its children. 703 * Called under snap_rwsem, so realm topology won't change. 704 */ 705 static void queue_realm_cap_snaps(struct ceph_snap_realm *realm) 706 { 707 struct ceph_inode_info *ci; 708 struct inode *lastinode = NULL; 709 struct ceph_cap_snap *capsnap = NULL; 710 711 dout("%s %p %llx inode\n", __func__, realm, realm->ino); 712 713 spin_lock(&realm->inodes_with_caps_lock); 714 list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) { 715 struct inode *inode = igrab(&ci->netfs.inode); 716 if (!inode) 717 continue; 718 spin_unlock(&realm->inodes_with_caps_lock); 719 iput(lastinode); 720 lastinode = inode; 721 722 /* 723 * Allocate the capsnap memory outside of ceph_queue_cap_snap() 724 * to reduce very possible but unnecessary frequently memory 725 * allocate/free in this loop. 726 */ 727 if (!capsnap) { 728 capsnap = kmem_cache_zalloc(ceph_cap_snap_cachep, GFP_NOFS); 729 if (!capsnap) { 730 pr_err("ENOMEM allocating ceph_cap_snap on %p\n", 731 inode); 732 return; 733 } 734 } 735 capsnap->cap_flush.is_capsnap = true; 736 refcount_set(&capsnap->nref, 1); 737 INIT_LIST_HEAD(&capsnap->cap_flush.i_list); 738 INIT_LIST_HEAD(&capsnap->cap_flush.g_list); 739 INIT_LIST_HEAD(&capsnap->ci_item); 740 741 ceph_queue_cap_snap(ci, &capsnap); 742 spin_lock(&realm->inodes_with_caps_lock); 743 } 744 spin_unlock(&realm->inodes_with_caps_lock); 745 iput(lastinode); 746 747 if (capsnap) 748 kmem_cache_free(ceph_cap_snap_cachep, capsnap); 749 dout("%s %p %llx done\n", __func__, realm, realm->ino); 750 } 751 752 /* 753 * Parse and apply a snapblob "snap trace" from the MDS. This specifies 754 * the snap realm parameters from a given realm and all of its ancestors, 755 * up to the root. 756 * 757 * Caller must hold snap_rwsem for write. 758 */ 759 int ceph_update_snap_trace(struct ceph_mds_client *mdsc, 760 void *p, void *e, bool deletion, 761 struct ceph_snap_realm **realm_ret) 762 { 763 struct ceph_mds_snap_realm *ri; /* encoded */ 764 __le64 *snaps; /* encoded */ 765 __le64 *prior_parent_snaps; /* encoded */ 766 struct ceph_snap_realm *realm; 767 struct ceph_snap_realm *first_realm = NULL; 768 struct ceph_snap_realm *realm_to_rebuild = NULL; 769 int rebuild_snapcs; 770 int err = -ENOMEM; 771 LIST_HEAD(dirty_realms); 772 773 lockdep_assert_held_write(&mdsc->snap_rwsem); 774 775 dout("%s deletion=%d\n", __func__, deletion); 776 more: 777 realm = NULL; 778 rebuild_snapcs = 0; 779 ceph_decode_need(&p, e, sizeof(*ri), bad); 780 ri = p; 781 p += sizeof(*ri); 782 ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) + 783 le32_to_cpu(ri->num_prior_parent_snaps)), bad); 784 snaps = p; 785 p += sizeof(u64) * le32_to_cpu(ri->num_snaps); 786 prior_parent_snaps = p; 787 p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps); 788 789 realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino)); 790 if (!realm) { 791 realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino)); 792 if (IS_ERR(realm)) { 793 err = PTR_ERR(realm); 794 goto fail; 795 } 796 } 797 798 /* ensure the parent is correct */ 799 err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent)); 800 if (err < 0) 801 goto fail; 802 rebuild_snapcs += err; 803 804 if (le64_to_cpu(ri->seq) > realm->seq) { 805 dout("%s updating %llx %p %lld -> %lld\n", __func__, 806 realm->ino, realm, realm->seq, le64_to_cpu(ri->seq)); 807 /* update realm parameters, snap lists */ 808 realm->seq = le64_to_cpu(ri->seq); 809 realm->created = le64_to_cpu(ri->created); 810 realm->parent_since = le64_to_cpu(ri->parent_since); 811 812 realm->num_snaps = le32_to_cpu(ri->num_snaps); 813 err = dup_array(&realm->snaps, snaps, realm->num_snaps); 814 if (err < 0) 815 goto fail; 816 817 realm->num_prior_parent_snaps = 818 le32_to_cpu(ri->num_prior_parent_snaps); 819 err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps, 820 realm->num_prior_parent_snaps); 821 if (err < 0) 822 goto fail; 823 824 if (realm->seq > mdsc->last_snap_seq) 825 mdsc->last_snap_seq = realm->seq; 826 827 rebuild_snapcs = 1; 828 } else if (!realm->cached_context) { 829 dout("%s %llx %p seq %lld new\n", __func__, 830 realm->ino, realm, realm->seq); 831 rebuild_snapcs = 1; 832 } else { 833 dout("%s %llx %p seq %lld unchanged\n", __func__, 834 realm->ino, realm, realm->seq); 835 } 836 837 dout("done with %llx %p, rebuild_snapcs=%d, %p %p\n", realm->ino, 838 realm, rebuild_snapcs, p, e); 839 840 /* 841 * this will always track the uppest parent realm from which 842 * we need to rebuild the snapshot contexts _downward_ in 843 * hierarchy. 844 */ 845 if (rebuild_snapcs) 846 realm_to_rebuild = realm; 847 848 /* rebuild_snapcs when we reach the _end_ (root) of the trace */ 849 if (realm_to_rebuild && p >= e) 850 rebuild_snap_realms(realm_to_rebuild, &dirty_realms); 851 852 if (!first_realm) 853 first_realm = realm; 854 else 855 ceph_put_snap_realm(mdsc, realm); 856 857 if (p < e) 858 goto more; 859 860 /* 861 * queue cap snaps _after_ we've built the new snap contexts, 862 * so that i_head_snapc can be set appropriately. 863 */ 864 while (!list_empty(&dirty_realms)) { 865 realm = list_first_entry(&dirty_realms, struct ceph_snap_realm, 866 dirty_item); 867 list_del_init(&realm->dirty_item); 868 queue_realm_cap_snaps(realm); 869 } 870 871 if (realm_ret) 872 *realm_ret = first_realm; 873 else 874 ceph_put_snap_realm(mdsc, first_realm); 875 876 __cleanup_empty_realms(mdsc); 877 return 0; 878 879 bad: 880 err = -EIO; 881 fail: 882 if (realm && !IS_ERR(realm)) 883 ceph_put_snap_realm(mdsc, realm); 884 if (first_realm) 885 ceph_put_snap_realm(mdsc, first_realm); 886 pr_err("%s error %d\n", __func__, err); 887 return err; 888 } 889 890 891 /* 892 * Send any cap_snaps that are queued for flush. Try to carry 893 * s_mutex across multiple snap flushes to avoid locking overhead. 894 * 895 * Caller holds no locks. 896 */ 897 static void flush_snaps(struct ceph_mds_client *mdsc) 898 { 899 struct ceph_inode_info *ci; 900 struct inode *inode; 901 struct ceph_mds_session *session = NULL; 902 903 dout("%s\n", __func__); 904 spin_lock(&mdsc->snap_flush_lock); 905 while (!list_empty(&mdsc->snap_flush_list)) { 906 ci = list_first_entry(&mdsc->snap_flush_list, 907 struct ceph_inode_info, i_snap_flush_item); 908 inode = &ci->netfs.inode; 909 ihold(inode); 910 spin_unlock(&mdsc->snap_flush_lock); 911 ceph_flush_snaps(ci, &session); 912 iput(inode); 913 spin_lock(&mdsc->snap_flush_lock); 914 } 915 spin_unlock(&mdsc->snap_flush_lock); 916 917 ceph_put_mds_session(session); 918 dout("%s done\n", __func__); 919 } 920 921 /** 922 * ceph_change_snap_realm - change the snap_realm for an inode 923 * @inode: inode to move to new snap realm 924 * @realm: new realm to move inode into (may be NULL) 925 * 926 * Detach an inode from its old snaprealm (if any) and attach it to 927 * the new snaprealm (if any). The old snap realm reference held by 928 * the inode is put. If realm is non-NULL, then the caller's reference 929 * to it is taken over by the inode. 930 */ 931 void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm) 932 { 933 struct ceph_inode_info *ci = ceph_inode(inode); 934 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 935 struct ceph_snap_realm *oldrealm = ci->i_snap_realm; 936 937 lockdep_assert_held(&ci->i_ceph_lock); 938 939 if (oldrealm) { 940 spin_lock(&oldrealm->inodes_with_caps_lock); 941 list_del_init(&ci->i_snap_realm_item); 942 if (oldrealm->ino == ci->i_vino.ino) 943 oldrealm->inode = NULL; 944 spin_unlock(&oldrealm->inodes_with_caps_lock); 945 ceph_put_snap_realm(mdsc, oldrealm); 946 } 947 948 ci->i_snap_realm = realm; 949 950 if (realm) { 951 spin_lock(&realm->inodes_with_caps_lock); 952 list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps); 953 if (realm->ino == ci->i_vino.ino) 954 realm->inode = inode; 955 spin_unlock(&realm->inodes_with_caps_lock); 956 } 957 } 958 959 /* 960 * Handle a snap notification from the MDS. 961 * 962 * This can take two basic forms: the simplest is just a snap creation 963 * or deletion notification on an existing realm. This should update the 964 * realm and its children. 965 * 966 * The more difficult case is realm creation, due to snap creation at a 967 * new point in the file hierarchy, or due to a rename that moves a file or 968 * directory into another realm. 969 */ 970 void ceph_handle_snap(struct ceph_mds_client *mdsc, 971 struct ceph_mds_session *session, 972 struct ceph_msg *msg) 973 { 974 struct super_block *sb = mdsc->fsc->sb; 975 int mds = session->s_mds; 976 u64 split; 977 int op; 978 int trace_len; 979 struct ceph_snap_realm *realm = NULL; 980 void *p = msg->front.iov_base; 981 void *e = p + msg->front.iov_len; 982 struct ceph_mds_snap_head *h; 983 int num_split_inos, num_split_realms; 984 __le64 *split_inos = NULL, *split_realms = NULL; 985 int i; 986 int locked_rwsem = 0; 987 988 /* decode */ 989 if (msg->front.iov_len < sizeof(*h)) 990 goto bad; 991 h = p; 992 op = le32_to_cpu(h->op); 993 split = le64_to_cpu(h->split); /* non-zero if we are splitting an 994 * existing realm */ 995 num_split_inos = le32_to_cpu(h->num_split_inos); 996 num_split_realms = le32_to_cpu(h->num_split_realms); 997 trace_len = le32_to_cpu(h->trace_len); 998 p += sizeof(*h); 999 1000 dout("%s from mds%d op %s split %llx tracelen %d\n", __func__, 1001 mds, ceph_snap_op_name(op), split, trace_len); 1002 1003 mutex_lock(&session->s_mutex); 1004 inc_session_sequence(session); 1005 mutex_unlock(&session->s_mutex); 1006 1007 down_write(&mdsc->snap_rwsem); 1008 locked_rwsem = 1; 1009 1010 if (op == CEPH_SNAP_OP_SPLIT) { 1011 struct ceph_mds_snap_realm *ri; 1012 1013 /* 1014 * A "split" breaks part of an existing realm off into 1015 * a new realm. The MDS provides a list of inodes 1016 * (with caps) and child realms that belong to the new 1017 * child. 1018 */ 1019 split_inos = p; 1020 p += sizeof(u64) * num_split_inos; 1021 split_realms = p; 1022 p += sizeof(u64) * num_split_realms; 1023 ceph_decode_need(&p, e, sizeof(*ri), bad); 1024 /* we will peek at realm info here, but will _not_ 1025 * advance p, as the realm update will occur below in 1026 * ceph_update_snap_trace. */ 1027 ri = p; 1028 1029 realm = ceph_lookup_snap_realm(mdsc, split); 1030 if (!realm) { 1031 realm = ceph_create_snap_realm(mdsc, split); 1032 if (IS_ERR(realm)) 1033 goto out; 1034 } 1035 1036 dout("splitting snap_realm %llx %p\n", realm->ino, realm); 1037 for (i = 0; i < num_split_inos; i++) { 1038 struct ceph_vino vino = { 1039 .ino = le64_to_cpu(split_inos[i]), 1040 .snap = CEPH_NOSNAP, 1041 }; 1042 struct inode *inode = ceph_find_inode(sb, vino); 1043 struct ceph_inode_info *ci; 1044 1045 if (!inode) 1046 continue; 1047 ci = ceph_inode(inode); 1048 1049 spin_lock(&ci->i_ceph_lock); 1050 if (!ci->i_snap_realm) 1051 goto skip_inode; 1052 /* 1053 * If this inode belongs to a realm that was 1054 * created after our new realm, we experienced 1055 * a race (due to another split notifications 1056 * arriving from a different MDS). So skip 1057 * this inode. 1058 */ 1059 if (ci->i_snap_realm->created > 1060 le64_to_cpu(ri->created)) { 1061 dout(" leaving %p %llx.%llx in newer realm %llx %p\n", 1062 inode, ceph_vinop(inode), ci->i_snap_realm->ino, 1063 ci->i_snap_realm); 1064 goto skip_inode; 1065 } 1066 dout(" will move %p %llx.%llx to split realm %llx %p\n", 1067 inode, ceph_vinop(inode), realm->ino, realm); 1068 1069 ceph_get_snap_realm(mdsc, realm); 1070 ceph_change_snap_realm(inode, realm); 1071 spin_unlock(&ci->i_ceph_lock); 1072 iput(inode); 1073 continue; 1074 1075 skip_inode: 1076 spin_unlock(&ci->i_ceph_lock); 1077 iput(inode); 1078 } 1079 1080 /* we may have taken some of the old realm's children. */ 1081 for (i = 0; i < num_split_realms; i++) { 1082 struct ceph_snap_realm *child = 1083 __lookup_snap_realm(mdsc, 1084 le64_to_cpu(split_realms[i])); 1085 if (!child) 1086 continue; 1087 adjust_snap_realm_parent(mdsc, child, realm->ino); 1088 } 1089 } 1090 1091 /* 1092 * update using the provided snap trace. if we are deleting a 1093 * snap, we can avoid queueing cap_snaps. 1094 */ 1095 ceph_update_snap_trace(mdsc, p, e, 1096 op == CEPH_SNAP_OP_DESTROY, NULL); 1097 1098 if (op == CEPH_SNAP_OP_SPLIT) 1099 /* we took a reference when we created the realm, above */ 1100 ceph_put_snap_realm(mdsc, realm); 1101 1102 __cleanup_empty_realms(mdsc); 1103 1104 up_write(&mdsc->snap_rwsem); 1105 1106 flush_snaps(mdsc); 1107 return; 1108 1109 bad: 1110 pr_err("%s corrupt snap message from mds%d\n", __func__, mds); 1111 ceph_msg_dump(msg); 1112 out: 1113 if (locked_rwsem) 1114 up_write(&mdsc->snap_rwsem); 1115 return; 1116 } 1117 1118 struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc, 1119 u64 snap) 1120 { 1121 struct ceph_snapid_map *sm, *exist; 1122 struct rb_node **p, *parent; 1123 int ret; 1124 1125 exist = NULL; 1126 spin_lock(&mdsc->snapid_map_lock); 1127 p = &mdsc->snapid_map_tree.rb_node; 1128 while (*p) { 1129 exist = rb_entry(*p, struct ceph_snapid_map, node); 1130 if (snap > exist->snap) { 1131 p = &(*p)->rb_left; 1132 } else if (snap < exist->snap) { 1133 p = &(*p)->rb_right; 1134 } else { 1135 if (atomic_inc_return(&exist->ref) == 1) 1136 list_del_init(&exist->lru); 1137 break; 1138 } 1139 exist = NULL; 1140 } 1141 spin_unlock(&mdsc->snapid_map_lock); 1142 if (exist) { 1143 dout("%s found snapid map %llx -> %x\n", __func__, 1144 exist->snap, exist->dev); 1145 return exist; 1146 } 1147 1148 sm = kmalloc(sizeof(*sm), GFP_NOFS); 1149 if (!sm) 1150 return NULL; 1151 1152 ret = get_anon_bdev(&sm->dev); 1153 if (ret < 0) { 1154 kfree(sm); 1155 return NULL; 1156 } 1157 1158 INIT_LIST_HEAD(&sm->lru); 1159 atomic_set(&sm->ref, 1); 1160 sm->snap = snap; 1161 1162 exist = NULL; 1163 parent = NULL; 1164 p = &mdsc->snapid_map_tree.rb_node; 1165 spin_lock(&mdsc->snapid_map_lock); 1166 while (*p) { 1167 parent = *p; 1168 exist = rb_entry(*p, struct ceph_snapid_map, node); 1169 if (snap > exist->snap) 1170 p = &(*p)->rb_left; 1171 else if (snap < exist->snap) 1172 p = &(*p)->rb_right; 1173 else 1174 break; 1175 exist = NULL; 1176 } 1177 if (exist) { 1178 if (atomic_inc_return(&exist->ref) == 1) 1179 list_del_init(&exist->lru); 1180 } else { 1181 rb_link_node(&sm->node, parent, p); 1182 rb_insert_color(&sm->node, &mdsc->snapid_map_tree); 1183 } 1184 spin_unlock(&mdsc->snapid_map_lock); 1185 if (exist) { 1186 free_anon_bdev(sm->dev); 1187 kfree(sm); 1188 dout("%s found snapid map %llx -> %x\n", __func__, 1189 exist->snap, exist->dev); 1190 return exist; 1191 } 1192 1193 dout("%s create snapid map %llx -> %x\n", __func__, 1194 sm->snap, sm->dev); 1195 return sm; 1196 } 1197 1198 void ceph_put_snapid_map(struct ceph_mds_client* mdsc, 1199 struct ceph_snapid_map *sm) 1200 { 1201 if (!sm) 1202 return; 1203 if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) { 1204 if (!RB_EMPTY_NODE(&sm->node)) { 1205 sm->last_used = jiffies; 1206 list_add_tail(&sm->lru, &mdsc->snapid_map_lru); 1207 spin_unlock(&mdsc->snapid_map_lock); 1208 } else { 1209 /* already cleaned up by 1210 * ceph_cleanup_snapid_map() */ 1211 spin_unlock(&mdsc->snapid_map_lock); 1212 kfree(sm); 1213 } 1214 } 1215 } 1216 1217 void ceph_trim_snapid_map(struct ceph_mds_client *mdsc) 1218 { 1219 struct ceph_snapid_map *sm; 1220 unsigned long now; 1221 LIST_HEAD(to_free); 1222 1223 spin_lock(&mdsc->snapid_map_lock); 1224 now = jiffies; 1225 1226 while (!list_empty(&mdsc->snapid_map_lru)) { 1227 sm = list_first_entry(&mdsc->snapid_map_lru, 1228 struct ceph_snapid_map, lru); 1229 if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now)) 1230 break; 1231 1232 rb_erase(&sm->node, &mdsc->snapid_map_tree); 1233 list_move(&sm->lru, &to_free); 1234 } 1235 spin_unlock(&mdsc->snapid_map_lock); 1236 1237 while (!list_empty(&to_free)) { 1238 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru); 1239 list_del(&sm->lru); 1240 dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev); 1241 free_anon_bdev(sm->dev); 1242 kfree(sm); 1243 } 1244 } 1245 1246 void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc) 1247 { 1248 struct ceph_snapid_map *sm; 1249 struct rb_node *p; 1250 LIST_HEAD(to_free); 1251 1252 spin_lock(&mdsc->snapid_map_lock); 1253 while ((p = rb_first(&mdsc->snapid_map_tree))) { 1254 sm = rb_entry(p, struct ceph_snapid_map, node); 1255 rb_erase(p, &mdsc->snapid_map_tree); 1256 RB_CLEAR_NODE(p); 1257 list_move(&sm->lru, &to_free); 1258 } 1259 spin_unlock(&mdsc->snapid_map_lock); 1260 1261 while (!list_empty(&to_free)) { 1262 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru); 1263 list_del(&sm->lru); 1264 free_anon_bdev(sm->dev); 1265 if (WARN_ON_ONCE(atomic_read(&sm->ref))) { 1266 pr_err("snapid map %llx -> %x still in use\n", 1267 sm->snap, sm->dev); 1268 } 1269 kfree(sm); 1270 } 1271 } 1272