xref: /openbmc/linux/fs/ceph/snap.c (revision ae213c44)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/sort.h>
5 #include <linux/slab.h>
6 #include "super.h"
7 #include "mds_client.h"
8 #include <linux/ceph/decode.h>
9 
10 /* unused map expires after 5 minutes */
11 #define CEPH_SNAPID_MAP_TIMEOUT	(5 * 60 * HZ)
12 
13 /*
14  * Snapshots in ceph are driven in large part by cooperation from the
15  * client.  In contrast to local file systems or file servers that
16  * implement snapshots at a single point in the system, ceph's
17  * distributed access to storage requires clients to help decide
18  * whether a write logically occurs before or after a recently created
19  * snapshot.
20  *
21  * This provides a perfect instantanous client-wide snapshot.  Between
22  * clients, however, snapshots may appear to be applied at slightly
23  * different points in time, depending on delays in delivering the
24  * snapshot notification.
25  *
26  * Snapshots are _not_ file system-wide.  Instead, each snapshot
27  * applies to the subdirectory nested beneath some directory.  This
28  * effectively divides the hierarchy into multiple "realms," where all
29  * of the files contained by each realm share the same set of
30  * snapshots.  An individual realm's snap set contains snapshots
31  * explicitly created on that realm, as well as any snaps in its
32  * parent's snap set _after_ the point at which the parent became it's
33  * parent (due to, say, a rename).  Similarly, snaps from prior parents
34  * during the time intervals during which they were the parent are included.
35  *
36  * The client is spared most of this detail, fortunately... it must only
37  * maintains a hierarchy of realms reflecting the current parent/child
38  * realm relationship, and for each realm has an explicit list of snaps
39  * inherited from prior parents.
40  *
41  * A snap_realm struct is maintained for realms containing every inode
42  * with an open cap in the system.  (The needed snap realm information is
43  * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
44  * version number is used to ensure that as realm parameters change (new
45  * snapshot, new parent, etc.) the client's realm hierarchy is updated.
46  *
47  * The realm hierarchy drives the generation of a 'snap context' for each
48  * realm, which simply lists the resulting set of snaps for the realm.  This
49  * is attached to any writes sent to OSDs.
50  */
51 /*
52  * Unfortunately error handling is a bit mixed here.  If we get a snap
53  * update, but don't have enough memory to update our realm hierarchy,
54  * it's not clear what we can do about it (besides complaining to the
55  * console).
56  */
57 
58 
59 /*
60  * increase ref count for the realm
61  *
62  * caller must hold snap_rwsem for write.
63  */
64 void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
65 			 struct ceph_snap_realm *realm)
66 {
67 	dout("get_realm %p %d -> %d\n", realm,
68 	     atomic_read(&realm->nref), atomic_read(&realm->nref)+1);
69 	/*
70 	 * since we _only_ increment realm refs or empty the empty
71 	 * list with snap_rwsem held, adjusting the empty list here is
72 	 * safe.  we do need to protect against concurrent empty list
73 	 * additions, however.
74 	 */
75 	if (atomic_inc_return(&realm->nref) == 1) {
76 		spin_lock(&mdsc->snap_empty_lock);
77 		list_del_init(&realm->empty_item);
78 		spin_unlock(&mdsc->snap_empty_lock);
79 	}
80 }
81 
82 static void __insert_snap_realm(struct rb_root *root,
83 				struct ceph_snap_realm *new)
84 {
85 	struct rb_node **p = &root->rb_node;
86 	struct rb_node *parent = NULL;
87 	struct ceph_snap_realm *r = NULL;
88 
89 	while (*p) {
90 		parent = *p;
91 		r = rb_entry(parent, struct ceph_snap_realm, node);
92 		if (new->ino < r->ino)
93 			p = &(*p)->rb_left;
94 		else if (new->ino > r->ino)
95 			p = &(*p)->rb_right;
96 		else
97 			BUG();
98 	}
99 
100 	rb_link_node(&new->node, parent, p);
101 	rb_insert_color(&new->node, root);
102 }
103 
104 /*
105  * create and get the realm rooted at @ino and bump its ref count.
106  *
107  * caller must hold snap_rwsem for write.
108  */
109 static struct ceph_snap_realm *ceph_create_snap_realm(
110 	struct ceph_mds_client *mdsc,
111 	u64 ino)
112 {
113 	struct ceph_snap_realm *realm;
114 
115 	realm = kzalloc(sizeof(*realm), GFP_NOFS);
116 	if (!realm)
117 		return ERR_PTR(-ENOMEM);
118 
119 	atomic_set(&realm->nref, 1);    /* for caller */
120 	realm->ino = ino;
121 	INIT_LIST_HEAD(&realm->children);
122 	INIT_LIST_HEAD(&realm->child_item);
123 	INIT_LIST_HEAD(&realm->empty_item);
124 	INIT_LIST_HEAD(&realm->dirty_item);
125 	INIT_LIST_HEAD(&realm->inodes_with_caps);
126 	spin_lock_init(&realm->inodes_with_caps_lock);
127 	__insert_snap_realm(&mdsc->snap_realms, realm);
128 	mdsc->num_snap_realms++;
129 
130 	dout("create_snap_realm %llx %p\n", realm->ino, realm);
131 	return realm;
132 }
133 
134 /*
135  * lookup the realm rooted at @ino.
136  *
137  * caller must hold snap_rwsem for write.
138  */
139 static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
140 						   u64 ino)
141 {
142 	struct rb_node *n = mdsc->snap_realms.rb_node;
143 	struct ceph_snap_realm *r;
144 
145 	while (n) {
146 		r = rb_entry(n, struct ceph_snap_realm, node);
147 		if (ino < r->ino)
148 			n = n->rb_left;
149 		else if (ino > r->ino)
150 			n = n->rb_right;
151 		else {
152 			dout("lookup_snap_realm %llx %p\n", r->ino, r);
153 			return r;
154 		}
155 	}
156 	return NULL;
157 }
158 
159 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
160 					       u64 ino)
161 {
162 	struct ceph_snap_realm *r;
163 	r = __lookup_snap_realm(mdsc, ino);
164 	if (r)
165 		ceph_get_snap_realm(mdsc, r);
166 	return r;
167 }
168 
169 static void __put_snap_realm(struct ceph_mds_client *mdsc,
170 			     struct ceph_snap_realm *realm);
171 
172 /*
173  * called with snap_rwsem (write)
174  */
175 static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
176 				 struct ceph_snap_realm *realm)
177 {
178 	dout("__destroy_snap_realm %p %llx\n", realm, realm->ino);
179 
180 	rb_erase(&realm->node, &mdsc->snap_realms);
181 	mdsc->num_snap_realms--;
182 
183 	if (realm->parent) {
184 		list_del_init(&realm->child_item);
185 		__put_snap_realm(mdsc, realm->parent);
186 	}
187 
188 	kfree(realm->prior_parent_snaps);
189 	kfree(realm->snaps);
190 	ceph_put_snap_context(realm->cached_context);
191 	kfree(realm);
192 }
193 
194 /*
195  * caller holds snap_rwsem (write)
196  */
197 static void __put_snap_realm(struct ceph_mds_client *mdsc,
198 			     struct ceph_snap_realm *realm)
199 {
200 	dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
201 	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
202 	if (atomic_dec_and_test(&realm->nref))
203 		__destroy_snap_realm(mdsc, realm);
204 }
205 
206 /*
207  * caller needn't hold any locks
208  */
209 void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
210 			 struct ceph_snap_realm *realm)
211 {
212 	dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
213 	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
214 	if (!atomic_dec_and_test(&realm->nref))
215 		return;
216 
217 	if (down_write_trylock(&mdsc->snap_rwsem)) {
218 		__destroy_snap_realm(mdsc, realm);
219 		up_write(&mdsc->snap_rwsem);
220 	} else {
221 		spin_lock(&mdsc->snap_empty_lock);
222 		list_add(&realm->empty_item, &mdsc->snap_empty);
223 		spin_unlock(&mdsc->snap_empty_lock);
224 	}
225 }
226 
227 /*
228  * Clean up any realms whose ref counts have dropped to zero.  Note
229  * that this does not include realms who were created but not yet
230  * used.
231  *
232  * Called under snap_rwsem (write)
233  */
234 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
235 {
236 	struct ceph_snap_realm *realm;
237 
238 	spin_lock(&mdsc->snap_empty_lock);
239 	while (!list_empty(&mdsc->snap_empty)) {
240 		realm = list_first_entry(&mdsc->snap_empty,
241 				   struct ceph_snap_realm, empty_item);
242 		list_del(&realm->empty_item);
243 		spin_unlock(&mdsc->snap_empty_lock);
244 		__destroy_snap_realm(mdsc, realm);
245 		spin_lock(&mdsc->snap_empty_lock);
246 	}
247 	spin_unlock(&mdsc->snap_empty_lock);
248 }
249 
250 void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc)
251 {
252 	down_write(&mdsc->snap_rwsem);
253 	__cleanup_empty_realms(mdsc);
254 	up_write(&mdsc->snap_rwsem);
255 }
256 
257 /*
258  * adjust the parent realm of a given @realm.  adjust child list, and parent
259  * pointers, and ref counts appropriately.
260  *
261  * return true if parent was changed, 0 if unchanged, <0 on error.
262  *
263  * caller must hold snap_rwsem for write.
264  */
265 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
266 				    struct ceph_snap_realm *realm,
267 				    u64 parentino)
268 {
269 	struct ceph_snap_realm *parent;
270 
271 	if (realm->parent_ino == parentino)
272 		return 0;
273 
274 	parent = ceph_lookup_snap_realm(mdsc, parentino);
275 	if (!parent) {
276 		parent = ceph_create_snap_realm(mdsc, parentino);
277 		if (IS_ERR(parent))
278 			return PTR_ERR(parent);
279 	}
280 	dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
281 	     realm->ino, realm, realm->parent_ino, realm->parent,
282 	     parentino, parent);
283 	if (realm->parent) {
284 		list_del_init(&realm->child_item);
285 		ceph_put_snap_realm(mdsc, realm->parent);
286 	}
287 	realm->parent_ino = parentino;
288 	realm->parent = parent;
289 	list_add(&realm->child_item, &parent->children);
290 	return 1;
291 }
292 
293 
294 static int cmpu64_rev(const void *a, const void *b)
295 {
296 	if (*(u64 *)a < *(u64 *)b)
297 		return 1;
298 	if (*(u64 *)a > *(u64 *)b)
299 		return -1;
300 	return 0;
301 }
302 
303 
304 /*
305  * build the snap context for a given realm.
306  */
307 static int build_snap_context(struct ceph_snap_realm *realm,
308 			      struct list_head* dirty_realms)
309 {
310 	struct ceph_snap_realm *parent = realm->parent;
311 	struct ceph_snap_context *snapc;
312 	int err = 0;
313 	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
314 
315 	/*
316 	 * build parent context, if it hasn't been built.
317 	 * conservatively estimate that all parent snaps might be
318 	 * included by us.
319 	 */
320 	if (parent) {
321 		if (!parent->cached_context) {
322 			err = build_snap_context(parent, dirty_realms);
323 			if (err)
324 				goto fail;
325 		}
326 		num += parent->cached_context->num_snaps;
327 	}
328 
329 	/* do i actually need to update?  not if my context seq
330 	   matches realm seq, and my parents' does to.  (this works
331 	   because we rebuild_snap_realms() works _downward_ in
332 	   hierarchy after each update.) */
333 	if (realm->cached_context &&
334 	    realm->cached_context->seq == realm->seq &&
335 	    (!parent ||
336 	     realm->cached_context->seq >= parent->cached_context->seq)) {
337 		dout("build_snap_context %llx %p: %p seq %lld (%u snaps)"
338 		     " (unchanged)\n",
339 		     realm->ino, realm, realm->cached_context,
340 		     realm->cached_context->seq,
341 		     (unsigned int)realm->cached_context->num_snaps);
342 		return 0;
343 	}
344 
345 	/* alloc new snap context */
346 	err = -ENOMEM;
347 	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
348 		goto fail;
349 	snapc = ceph_create_snap_context(num, GFP_NOFS);
350 	if (!snapc)
351 		goto fail;
352 
353 	/* build (reverse sorted) snap vector */
354 	num = 0;
355 	snapc->seq = realm->seq;
356 	if (parent) {
357 		u32 i;
358 
359 		/* include any of parent's snaps occurring _after_ my
360 		   parent became my parent */
361 		for (i = 0; i < parent->cached_context->num_snaps; i++)
362 			if (parent->cached_context->snaps[i] >=
363 			    realm->parent_since)
364 				snapc->snaps[num++] =
365 					parent->cached_context->snaps[i];
366 		if (parent->cached_context->seq > snapc->seq)
367 			snapc->seq = parent->cached_context->seq;
368 	}
369 	memcpy(snapc->snaps + num, realm->snaps,
370 	       sizeof(u64)*realm->num_snaps);
371 	num += realm->num_snaps;
372 	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
373 	       sizeof(u64)*realm->num_prior_parent_snaps);
374 	num += realm->num_prior_parent_snaps;
375 
376 	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
377 	snapc->num_snaps = num;
378 	dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n",
379 	     realm->ino, realm, snapc, snapc->seq,
380 	     (unsigned int) snapc->num_snaps);
381 
382 	ceph_put_snap_context(realm->cached_context);
383 	realm->cached_context = snapc;
384 	/* queue realm for cap_snap creation */
385 	list_add_tail(&realm->dirty_item, dirty_realms);
386 	return 0;
387 
388 fail:
389 	/*
390 	 * if we fail, clear old (incorrect) cached_context... hopefully
391 	 * we'll have better luck building it later
392 	 */
393 	if (realm->cached_context) {
394 		ceph_put_snap_context(realm->cached_context);
395 		realm->cached_context = NULL;
396 	}
397 	pr_err("build_snap_context %llx %p fail %d\n", realm->ino,
398 	       realm, err);
399 	return err;
400 }
401 
402 /*
403  * rebuild snap context for the given realm and all of its children.
404  */
405 static void rebuild_snap_realms(struct ceph_snap_realm *realm,
406 				struct list_head *dirty_realms)
407 {
408 	struct ceph_snap_realm *child;
409 
410 	dout("rebuild_snap_realms %llx %p\n", realm->ino, realm);
411 	build_snap_context(realm, dirty_realms);
412 
413 	list_for_each_entry(child, &realm->children, child_item)
414 		rebuild_snap_realms(child, dirty_realms);
415 }
416 
417 
418 /*
419  * helper to allocate and decode an array of snapids.  free prior
420  * instance, if any.
421  */
422 static int dup_array(u64 **dst, __le64 *src, u32 num)
423 {
424 	u32 i;
425 
426 	kfree(*dst);
427 	if (num) {
428 		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
429 		if (!*dst)
430 			return -ENOMEM;
431 		for (i = 0; i < num; i++)
432 			(*dst)[i] = get_unaligned_le64(src + i);
433 	} else {
434 		*dst = NULL;
435 	}
436 	return 0;
437 }
438 
439 static bool has_new_snaps(struct ceph_snap_context *o,
440 			  struct ceph_snap_context *n)
441 {
442 	if (n->num_snaps == 0)
443 		return false;
444 	/* snaps are in descending order */
445 	return n->snaps[0] > o->seq;
446 }
447 
448 /*
449  * When a snapshot is applied, the size/mtime inode metadata is queued
450  * in a ceph_cap_snap (one for each snapshot) until writeback
451  * completes and the metadata can be flushed back to the MDS.
452  *
453  * However, if a (sync) write is currently in-progress when we apply
454  * the snapshot, we have to wait until the write succeeds or fails
455  * (and a final size/mtime is known).  In this case the
456  * cap_snap->writing = 1, and is said to be "pending."  When the write
457  * finishes, we __ceph_finish_cap_snap().
458  *
459  * Caller must hold snap_rwsem for read (i.e., the realm topology won't
460  * change).
461  */
462 void ceph_queue_cap_snap(struct ceph_inode_info *ci)
463 {
464 	struct inode *inode = &ci->vfs_inode;
465 	struct ceph_cap_snap *capsnap;
466 	struct ceph_snap_context *old_snapc, *new_snapc;
467 	int used, dirty;
468 
469 	capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS);
470 	if (!capsnap) {
471 		pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode);
472 		return;
473 	}
474 
475 	spin_lock(&ci->i_ceph_lock);
476 	used = __ceph_caps_used(ci);
477 	dirty = __ceph_caps_dirty(ci);
478 
479 	old_snapc = ci->i_head_snapc;
480 	new_snapc = ci->i_snap_realm->cached_context;
481 
482 	/*
483 	 * If there is a write in progress, treat that as a dirty Fw,
484 	 * even though it hasn't completed yet; by the time we finish
485 	 * up this capsnap it will be.
486 	 */
487 	if (used & CEPH_CAP_FILE_WR)
488 		dirty |= CEPH_CAP_FILE_WR;
489 
490 	if (__ceph_have_pending_cap_snap(ci)) {
491 		/* there is no point in queuing multiple "pending" cap_snaps,
492 		   as no new writes are allowed to start when pending, so any
493 		   writes in progress now were started before the previous
494 		   cap_snap.  lucky us. */
495 		dout("queue_cap_snap %p already pending\n", inode);
496 		goto update_snapc;
497 	}
498 	if (ci->i_wrbuffer_ref_head == 0 &&
499 	    !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
500 		dout("queue_cap_snap %p nothing dirty|writing\n", inode);
501 		goto update_snapc;
502 	}
503 
504 	BUG_ON(!old_snapc);
505 
506 	/*
507 	 * There is no need to send FLUSHSNAP message to MDS if there is
508 	 * no new snapshot. But when there is dirty pages or on-going
509 	 * writes, we still need to create cap_snap. cap_snap is needed
510 	 * by the write path and page writeback path.
511 	 *
512 	 * also see ceph_try_drop_cap_snap()
513 	 */
514 	if (has_new_snaps(old_snapc, new_snapc)) {
515 		if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
516 			capsnap->need_flush = true;
517 	} else {
518 		if (!(used & CEPH_CAP_FILE_WR) &&
519 		    ci->i_wrbuffer_ref_head == 0) {
520 			dout("queue_cap_snap %p "
521 			     "no new_snap|dirty_page|writing\n", inode);
522 			goto update_snapc;
523 		}
524 	}
525 
526 	dout("queue_cap_snap %p cap_snap %p queuing under %p %s %s\n",
527 	     inode, capsnap, old_snapc, ceph_cap_string(dirty),
528 	     capsnap->need_flush ? "" : "no_flush");
529 	ihold(inode);
530 
531 	refcount_set(&capsnap->nref, 1);
532 	INIT_LIST_HEAD(&capsnap->ci_item);
533 
534 	capsnap->follows = old_snapc->seq;
535 	capsnap->issued = __ceph_caps_issued(ci, NULL);
536 	capsnap->dirty = dirty;
537 
538 	capsnap->mode = inode->i_mode;
539 	capsnap->uid = inode->i_uid;
540 	capsnap->gid = inode->i_gid;
541 
542 	if (dirty & CEPH_CAP_XATTR_EXCL) {
543 		__ceph_build_xattrs_blob(ci);
544 		capsnap->xattr_blob =
545 			ceph_buffer_get(ci->i_xattrs.blob);
546 		capsnap->xattr_version = ci->i_xattrs.version;
547 	} else {
548 		capsnap->xattr_blob = NULL;
549 		capsnap->xattr_version = 0;
550 	}
551 
552 	capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
553 
554 	/* dirty page count moved from _head to this cap_snap;
555 	   all subsequent writes page dirties occur _after_ this
556 	   snapshot. */
557 	capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
558 	ci->i_wrbuffer_ref_head = 0;
559 	capsnap->context = old_snapc;
560 	list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
561 
562 	if (used & CEPH_CAP_FILE_WR) {
563 		dout("queue_cap_snap %p cap_snap %p snapc %p"
564 		     " seq %llu used WR, now pending\n", inode,
565 		     capsnap, old_snapc, old_snapc->seq);
566 		capsnap->writing = 1;
567 	} else {
568 		/* note mtime, size NOW. */
569 		__ceph_finish_cap_snap(ci, capsnap);
570 	}
571 	capsnap = NULL;
572 	old_snapc = NULL;
573 
574 update_snapc:
575        if (ci->i_wrbuffer_ref_head == 0 &&
576            ci->i_wr_ref == 0 &&
577            ci->i_dirty_caps == 0 &&
578            ci->i_flushing_caps == 0) {
579                ci->i_head_snapc = NULL;
580        } else {
581 		ci->i_head_snapc = ceph_get_snap_context(new_snapc);
582 		dout(" new snapc is %p\n", new_snapc);
583 	}
584 	spin_unlock(&ci->i_ceph_lock);
585 
586 	kfree(capsnap);
587 	ceph_put_snap_context(old_snapc);
588 }
589 
590 /*
591  * Finalize the size, mtime for a cap_snap.. that is, settle on final values
592  * to be used for the snapshot, to be flushed back to the mds.
593  *
594  * If capsnap can now be flushed, add to snap_flush list, and return 1.
595  *
596  * Caller must hold i_ceph_lock.
597  */
598 int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
599 			    struct ceph_cap_snap *capsnap)
600 {
601 	struct inode *inode = &ci->vfs_inode;
602 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
603 
604 	BUG_ON(capsnap->writing);
605 	capsnap->size = inode->i_size;
606 	capsnap->mtime = inode->i_mtime;
607 	capsnap->atime = inode->i_atime;
608 	capsnap->ctime = inode->i_ctime;
609 	capsnap->time_warp_seq = ci->i_time_warp_seq;
610 	capsnap->truncate_size = ci->i_truncate_size;
611 	capsnap->truncate_seq = ci->i_truncate_seq;
612 	if (capsnap->dirty_pages) {
613 		dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
614 		     "still has %d dirty pages\n", inode, capsnap,
615 		     capsnap->context, capsnap->context->seq,
616 		     ceph_cap_string(capsnap->dirty), capsnap->size,
617 		     capsnap->dirty_pages);
618 		return 0;
619 	}
620 
621 	ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
622 	dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
623 	     inode, capsnap, capsnap->context,
624 	     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
625 	     capsnap->size);
626 
627 	spin_lock(&mdsc->snap_flush_lock);
628 	if (list_empty(&ci->i_snap_flush_item))
629 		list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
630 	spin_unlock(&mdsc->snap_flush_lock);
631 	return 1;  /* caller may want to ceph_flush_snaps */
632 }
633 
634 /*
635  * Queue cap_snaps for snap writeback for this realm and its children.
636  * Called under snap_rwsem, so realm topology won't change.
637  */
638 static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
639 {
640 	struct ceph_inode_info *ci;
641 	struct inode *lastinode = NULL;
642 
643 	dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino);
644 
645 	spin_lock(&realm->inodes_with_caps_lock);
646 	list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
647 		struct inode *inode = igrab(&ci->vfs_inode);
648 		if (!inode)
649 			continue;
650 		spin_unlock(&realm->inodes_with_caps_lock);
651 		iput(lastinode);
652 		lastinode = inode;
653 		ceph_queue_cap_snap(ci);
654 		spin_lock(&realm->inodes_with_caps_lock);
655 	}
656 	spin_unlock(&realm->inodes_with_caps_lock);
657 	iput(lastinode);
658 
659 	dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino);
660 }
661 
662 /*
663  * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
664  * the snap realm parameters from a given realm and all of its ancestors,
665  * up to the root.
666  *
667  * Caller must hold snap_rwsem for write.
668  */
669 int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
670 			   void *p, void *e, bool deletion,
671 			   struct ceph_snap_realm **realm_ret)
672 {
673 	struct ceph_mds_snap_realm *ri;    /* encoded */
674 	__le64 *snaps;                     /* encoded */
675 	__le64 *prior_parent_snaps;        /* encoded */
676 	struct ceph_snap_realm *realm = NULL;
677 	struct ceph_snap_realm *first_realm = NULL;
678 	int invalidate = 0;
679 	int err = -ENOMEM;
680 	LIST_HEAD(dirty_realms);
681 
682 	dout("update_snap_trace deletion=%d\n", deletion);
683 more:
684 	ceph_decode_need(&p, e, sizeof(*ri), bad);
685 	ri = p;
686 	p += sizeof(*ri);
687 	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
688 			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
689 	snaps = p;
690 	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
691 	prior_parent_snaps = p;
692 	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
693 
694 	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
695 	if (!realm) {
696 		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
697 		if (IS_ERR(realm)) {
698 			err = PTR_ERR(realm);
699 			goto fail;
700 		}
701 	}
702 
703 	/* ensure the parent is correct */
704 	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
705 	if (err < 0)
706 		goto fail;
707 	invalidate += err;
708 
709 	if (le64_to_cpu(ri->seq) > realm->seq) {
710 		dout("update_snap_trace updating %llx %p %lld -> %lld\n",
711 		     realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
712 		/* update realm parameters, snap lists */
713 		realm->seq = le64_to_cpu(ri->seq);
714 		realm->created = le64_to_cpu(ri->created);
715 		realm->parent_since = le64_to_cpu(ri->parent_since);
716 
717 		realm->num_snaps = le32_to_cpu(ri->num_snaps);
718 		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
719 		if (err < 0)
720 			goto fail;
721 
722 		realm->num_prior_parent_snaps =
723 			le32_to_cpu(ri->num_prior_parent_snaps);
724 		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
725 				realm->num_prior_parent_snaps);
726 		if (err < 0)
727 			goto fail;
728 
729 		if (realm->seq > mdsc->last_snap_seq)
730 			mdsc->last_snap_seq = realm->seq;
731 
732 		invalidate = 1;
733 	} else if (!realm->cached_context) {
734 		dout("update_snap_trace %llx %p seq %lld new\n",
735 		     realm->ino, realm, realm->seq);
736 		invalidate = 1;
737 	} else {
738 		dout("update_snap_trace %llx %p seq %lld unchanged\n",
739 		     realm->ino, realm, realm->seq);
740 	}
741 
742 	dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino,
743 	     realm, invalidate, p, e);
744 
745 	/* invalidate when we reach the _end_ (root) of the trace */
746 	if (invalidate && p >= e)
747 		rebuild_snap_realms(realm, &dirty_realms);
748 
749 	if (!first_realm)
750 		first_realm = realm;
751 	else
752 		ceph_put_snap_realm(mdsc, realm);
753 
754 	if (p < e)
755 		goto more;
756 
757 	/*
758 	 * queue cap snaps _after_ we've built the new snap contexts,
759 	 * so that i_head_snapc can be set appropriately.
760 	 */
761 	while (!list_empty(&dirty_realms)) {
762 		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
763 					 dirty_item);
764 		list_del_init(&realm->dirty_item);
765 		queue_realm_cap_snaps(realm);
766 	}
767 
768 	if (realm_ret)
769 		*realm_ret = first_realm;
770 	else
771 		ceph_put_snap_realm(mdsc, first_realm);
772 
773 	__cleanup_empty_realms(mdsc);
774 	return 0;
775 
776 bad:
777 	err = -EINVAL;
778 fail:
779 	if (realm && !IS_ERR(realm))
780 		ceph_put_snap_realm(mdsc, realm);
781 	if (first_realm)
782 		ceph_put_snap_realm(mdsc, first_realm);
783 	pr_err("update_snap_trace error %d\n", err);
784 	return err;
785 }
786 
787 
788 /*
789  * Send any cap_snaps that are queued for flush.  Try to carry
790  * s_mutex across multiple snap flushes to avoid locking overhead.
791  *
792  * Caller holds no locks.
793  */
794 static void flush_snaps(struct ceph_mds_client *mdsc)
795 {
796 	struct ceph_inode_info *ci;
797 	struct inode *inode;
798 	struct ceph_mds_session *session = NULL;
799 
800 	dout("flush_snaps\n");
801 	spin_lock(&mdsc->snap_flush_lock);
802 	while (!list_empty(&mdsc->snap_flush_list)) {
803 		ci = list_first_entry(&mdsc->snap_flush_list,
804 				struct ceph_inode_info, i_snap_flush_item);
805 		inode = &ci->vfs_inode;
806 		ihold(inode);
807 		spin_unlock(&mdsc->snap_flush_lock);
808 		ceph_flush_snaps(ci, &session);
809 		iput(inode);
810 		spin_lock(&mdsc->snap_flush_lock);
811 	}
812 	spin_unlock(&mdsc->snap_flush_lock);
813 
814 	if (session) {
815 		mutex_unlock(&session->s_mutex);
816 		ceph_put_mds_session(session);
817 	}
818 	dout("flush_snaps done\n");
819 }
820 
821 
822 /*
823  * Handle a snap notification from the MDS.
824  *
825  * This can take two basic forms: the simplest is just a snap creation
826  * or deletion notification on an existing realm.  This should update the
827  * realm and its children.
828  *
829  * The more difficult case is realm creation, due to snap creation at a
830  * new point in the file hierarchy, or due to a rename that moves a file or
831  * directory into another realm.
832  */
833 void ceph_handle_snap(struct ceph_mds_client *mdsc,
834 		      struct ceph_mds_session *session,
835 		      struct ceph_msg *msg)
836 {
837 	struct super_block *sb = mdsc->fsc->sb;
838 	int mds = session->s_mds;
839 	u64 split;
840 	int op;
841 	int trace_len;
842 	struct ceph_snap_realm *realm = NULL;
843 	void *p = msg->front.iov_base;
844 	void *e = p + msg->front.iov_len;
845 	struct ceph_mds_snap_head *h;
846 	int num_split_inos, num_split_realms;
847 	__le64 *split_inos = NULL, *split_realms = NULL;
848 	int i;
849 	int locked_rwsem = 0;
850 
851 	/* decode */
852 	if (msg->front.iov_len < sizeof(*h))
853 		goto bad;
854 	h = p;
855 	op = le32_to_cpu(h->op);
856 	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
857 					  * existing realm */
858 	num_split_inos = le32_to_cpu(h->num_split_inos);
859 	num_split_realms = le32_to_cpu(h->num_split_realms);
860 	trace_len = le32_to_cpu(h->trace_len);
861 	p += sizeof(*h);
862 
863 	dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds,
864 	     ceph_snap_op_name(op), split, trace_len);
865 
866 	mutex_lock(&session->s_mutex);
867 	session->s_seq++;
868 	mutex_unlock(&session->s_mutex);
869 
870 	down_write(&mdsc->snap_rwsem);
871 	locked_rwsem = 1;
872 
873 	if (op == CEPH_SNAP_OP_SPLIT) {
874 		struct ceph_mds_snap_realm *ri;
875 
876 		/*
877 		 * A "split" breaks part of an existing realm off into
878 		 * a new realm.  The MDS provides a list of inodes
879 		 * (with caps) and child realms that belong to the new
880 		 * child.
881 		 */
882 		split_inos = p;
883 		p += sizeof(u64) * num_split_inos;
884 		split_realms = p;
885 		p += sizeof(u64) * num_split_realms;
886 		ceph_decode_need(&p, e, sizeof(*ri), bad);
887 		/* we will peek at realm info here, but will _not_
888 		 * advance p, as the realm update will occur below in
889 		 * ceph_update_snap_trace. */
890 		ri = p;
891 
892 		realm = ceph_lookup_snap_realm(mdsc, split);
893 		if (!realm) {
894 			realm = ceph_create_snap_realm(mdsc, split);
895 			if (IS_ERR(realm))
896 				goto out;
897 		}
898 
899 		dout("splitting snap_realm %llx %p\n", realm->ino, realm);
900 		for (i = 0; i < num_split_inos; i++) {
901 			struct ceph_vino vino = {
902 				.ino = le64_to_cpu(split_inos[i]),
903 				.snap = CEPH_NOSNAP,
904 			};
905 			struct inode *inode = ceph_find_inode(sb, vino);
906 			struct ceph_inode_info *ci;
907 			struct ceph_snap_realm *oldrealm;
908 
909 			if (!inode)
910 				continue;
911 			ci = ceph_inode(inode);
912 
913 			spin_lock(&ci->i_ceph_lock);
914 			if (!ci->i_snap_realm)
915 				goto skip_inode;
916 			/*
917 			 * If this inode belongs to a realm that was
918 			 * created after our new realm, we experienced
919 			 * a race (due to another split notifications
920 			 * arriving from a different MDS).  So skip
921 			 * this inode.
922 			 */
923 			if (ci->i_snap_realm->created >
924 			    le64_to_cpu(ri->created)) {
925 				dout(" leaving %p in newer realm %llx %p\n",
926 				     inode, ci->i_snap_realm->ino,
927 				     ci->i_snap_realm);
928 				goto skip_inode;
929 			}
930 			dout(" will move %p to split realm %llx %p\n",
931 			     inode, realm->ino, realm);
932 			/*
933 			 * Move the inode to the new realm
934 			 */
935 			oldrealm = ci->i_snap_realm;
936 			spin_lock(&oldrealm->inodes_with_caps_lock);
937 			list_del_init(&ci->i_snap_realm_item);
938 			spin_unlock(&oldrealm->inodes_with_caps_lock);
939 
940 			spin_lock(&realm->inodes_with_caps_lock);
941 			list_add(&ci->i_snap_realm_item,
942 				 &realm->inodes_with_caps);
943 			ci->i_snap_realm = realm;
944 			if (realm->ino == ci->i_vino.ino)
945                                 realm->inode = inode;
946 			spin_unlock(&realm->inodes_with_caps_lock);
947 
948 			spin_unlock(&ci->i_ceph_lock);
949 
950 			ceph_get_snap_realm(mdsc, realm);
951 			ceph_put_snap_realm(mdsc, oldrealm);
952 
953 			iput(inode);
954 			continue;
955 
956 skip_inode:
957 			spin_unlock(&ci->i_ceph_lock);
958 			iput(inode);
959 		}
960 
961 		/* we may have taken some of the old realm's children. */
962 		for (i = 0; i < num_split_realms; i++) {
963 			struct ceph_snap_realm *child =
964 				__lookup_snap_realm(mdsc,
965 					   le64_to_cpu(split_realms[i]));
966 			if (!child)
967 				continue;
968 			adjust_snap_realm_parent(mdsc, child, realm->ino);
969 		}
970 	}
971 
972 	/*
973 	 * update using the provided snap trace. if we are deleting a
974 	 * snap, we can avoid queueing cap_snaps.
975 	 */
976 	ceph_update_snap_trace(mdsc, p, e,
977 			       op == CEPH_SNAP_OP_DESTROY, NULL);
978 
979 	if (op == CEPH_SNAP_OP_SPLIT)
980 		/* we took a reference when we created the realm, above */
981 		ceph_put_snap_realm(mdsc, realm);
982 
983 	__cleanup_empty_realms(mdsc);
984 
985 	up_write(&mdsc->snap_rwsem);
986 
987 	flush_snaps(mdsc);
988 	return;
989 
990 bad:
991 	pr_err("corrupt snap message from mds%d\n", mds);
992 	ceph_msg_dump(msg);
993 out:
994 	if (locked_rwsem)
995 		up_write(&mdsc->snap_rwsem);
996 	return;
997 }
998 
999 struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
1000 					    u64 snap)
1001 {
1002 	struct ceph_snapid_map *sm, *exist;
1003 	struct rb_node **p, *parent;
1004 	int ret;
1005 
1006 	exist = NULL;
1007 	spin_lock(&mdsc->snapid_map_lock);
1008 	p = &mdsc->snapid_map_tree.rb_node;
1009 	while (*p) {
1010 		exist = rb_entry(*p, struct ceph_snapid_map, node);
1011 		if (snap > exist->snap) {
1012 			p = &(*p)->rb_left;
1013 		} else if (snap < exist->snap) {
1014 			p = &(*p)->rb_right;
1015 		} else {
1016 			if (atomic_inc_return(&exist->ref) == 1)
1017 				list_del_init(&exist->lru);
1018 			break;
1019 		}
1020 		exist = NULL;
1021 	}
1022 	spin_unlock(&mdsc->snapid_map_lock);
1023 	if (exist) {
1024 		dout("found snapid map %llx -> %x\n", exist->snap, exist->dev);
1025 		return exist;
1026 	}
1027 
1028 	sm = kmalloc(sizeof(*sm), GFP_NOFS);
1029 	if (!sm)
1030 		return NULL;
1031 
1032 	ret = get_anon_bdev(&sm->dev);
1033 	if (ret < 0) {
1034 		kfree(sm);
1035 		return NULL;
1036 	}
1037 
1038 	INIT_LIST_HEAD(&sm->lru);
1039 	atomic_set(&sm->ref, 1);
1040 	sm->snap = snap;
1041 
1042 	exist = NULL;
1043 	parent = NULL;
1044 	p = &mdsc->snapid_map_tree.rb_node;
1045 	spin_lock(&mdsc->snapid_map_lock);
1046 	while (*p) {
1047 		parent = *p;
1048 		exist = rb_entry(*p, struct ceph_snapid_map, node);
1049 		if (snap > exist->snap)
1050 			p = &(*p)->rb_left;
1051 		else if (snap < exist->snap)
1052 			p = &(*p)->rb_right;
1053 		else
1054 			break;
1055 		exist = NULL;
1056 	}
1057 	if (exist) {
1058 		if (atomic_inc_return(&exist->ref) == 1)
1059 			list_del_init(&exist->lru);
1060 	} else {
1061 		rb_link_node(&sm->node, parent, p);
1062 		rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
1063 	}
1064 	spin_unlock(&mdsc->snapid_map_lock);
1065 	if (exist) {
1066 		free_anon_bdev(sm->dev);
1067 		kfree(sm);
1068 		dout("found snapid map %llx -> %x\n", exist->snap, exist->dev);
1069 		return exist;
1070 	}
1071 
1072 	dout("create snapid map %llx -> %x\n", sm->snap, sm->dev);
1073 	return sm;
1074 }
1075 
1076 void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
1077 			 struct ceph_snapid_map *sm)
1078 {
1079 	if (!sm)
1080 		return;
1081 	if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
1082 		if (!RB_EMPTY_NODE(&sm->node)) {
1083 			sm->last_used = jiffies;
1084 			list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
1085 			spin_unlock(&mdsc->snapid_map_lock);
1086 		} else {
1087 			/* already cleaned up by
1088 			 * ceph_cleanup_snapid_map() */
1089 			spin_unlock(&mdsc->snapid_map_lock);
1090 			kfree(sm);
1091 		}
1092 	}
1093 }
1094 
1095 void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
1096 {
1097 	struct ceph_snapid_map *sm;
1098 	unsigned long now;
1099 	LIST_HEAD(to_free);
1100 
1101 	spin_lock(&mdsc->snapid_map_lock);
1102 	now = jiffies;
1103 
1104 	while (!list_empty(&mdsc->snapid_map_lru)) {
1105 		sm = list_first_entry(&mdsc->snapid_map_lru,
1106 				      struct ceph_snapid_map, lru);
1107 		if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
1108 			break;
1109 
1110 		rb_erase(&sm->node, &mdsc->snapid_map_tree);
1111 		list_move(&sm->lru, &to_free);
1112 	}
1113 	spin_unlock(&mdsc->snapid_map_lock);
1114 
1115 	while (!list_empty(&to_free)) {
1116 		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1117 		list_del(&sm->lru);
1118 		dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev);
1119 		free_anon_bdev(sm->dev);
1120 		kfree(sm);
1121 	}
1122 }
1123 
1124 void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
1125 {
1126 	struct ceph_snapid_map *sm;
1127 	struct rb_node *p;
1128 	LIST_HEAD(to_free);
1129 
1130 	spin_lock(&mdsc->snapid_map_lock);
1131 	while ((p = rb_first(&mdsc->snapid_map_tree))) {
1132 		sm = rb_entry(p, struct ceph_snapid_map, node);
1133 		rb_erase(p, &mdsc->snapid_map_tree);
1134 		RB_CLEAR_NODE(p);
1135 		list_move(&sm->lru, &to_free);
1136 	}
1137 	spin_unlock(&mdsc->snapid_map_lock);
1138 
1139 	while (!list_empty(&to_free)) {
1140 		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1141 		list_del(&sm->lru);
1142 		free_anon_bdev(sm->dev);
1143 		if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
1144 			pr_err("snapid map %llx -> %x still in use\n",
1145 			       sm->snap, sm->dev);
1146 		}
1147 	}
1148 }
1149