1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/sort.h> 5 #include <linux/slab.h> 6 #include "super.h" 7 #include "mds_client.h" 8 #include <linux/ceph/decode.h> 9 10 /* unused map expires after 5 minutes */ 11 #define CEPH_SNAPID_MAP_TIMEOUT (5 * 60 * HZ) 12 13 /* 14 * Snapshots in ceph are driven in large part by cooperation from the 15 * client. In contrast to local file systems or file servers that 16 * implement snapshots at a single point in the system, ceph's 17 * distributed access to storage requires clients to help decide 18 * whether a write logically occurs before or after a recently created 19 * snapshot. 20 * 21 * This provides a perfect instantanous client-wide snapshot. Between 22 * clients, however, snapshots may appear to be applied at slightly 23 * different points in time, depending on delays in delivering the 24 * snapshot notification. 25 * 26 * Snapshots are _not_ file system-wide. Instead, each snapshot 27 * applies to the subdirectory nested beneath some directory. This 28 * effectively divides the hierarchy into multiple "realms," where all 29 * of the files contained by each realm share the same set of 30 * snapshots. An individual realm's snap set contains snapshots 31 * explicitly created on that realm, as well as any snaps in its 32 * parent's snap set _after_ the point at which the parent became it's 33 * parent (due to, say, a rename). Similarly, snaps from prior parents 34 * during the time intervals during which they were the parent are included. 35 * 36 * The client is spared most of this detail, fortunately... it must only 37 * maintains a hierarchy of realms reflecting the current parent/child 38 * realm relationship, and for each realm has an explicit list of snaps 39 * inherited from prior parents. 40 * 41 * A snap_realm struct is maintained for realms containing every inode 42 * with an open cap in the system. (The needed snap realm information is 43 * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq' 44 * version number is used to ensure that as realm parameters change (new 45 * snapshot, new parent, etc.) the client's realm hierarchy is updated. 46 * 47 * The realm hierarchy drives the generation of a 'snap context' for each 48 * realm, which simply lists the resulting set of snaps for the realm. This 49 * is attached to any writes sent to OSDs. 50 */ 51 /* 52 * Unfortunately error handling is a bit mixed here. If we get a snap 53 * update, but don't have enough memory to update our realm hierarchy, 54 * it's not clear what we can do about it (besides complaining to the 55 * console). 56 */ 57 58 59 /* 60 * increase ref count for the realm 61 * 62 * caller must hold snap_rwsem for write. 63 */ 64 void ceph_get_snap_realm(struct ceph_mds_client *mdsc, 65 struct ceph_snap_realm *realm) 66 { 67 dout("get_realm %p %d -> %d\n", realm, 68 atomic_read(&realm->nref), atomic_read(&realm->nref)+1); 69 /* 70 * since we _only_ increment realm refs or empty the empty 71 * list with snap_rwsem held, adjusting the empty list here is 72 * safe. we do need to protect against concurrent empty list 73 * additions, however. 74 */ 75 if (atomic_inc_return(&realm->nref) == 1) { 76 spin_lock(&mdsc->snap_empty_lock); 77 list_del_init(&realm->empty_item); 78 spin_unlock(&mdsc->snap_empty_lock); 79 } 80 } 81 82 static void __insert_snap_realm(struct rb_root *root, 83 struct ceph_snap_realm *new) 84 { 85 struct rb_node **p = &root->rb_node; 86 struct rb_node *parent = NULL; 87 struct ceph_snap_realm *r = NULL; 88 89 while (*p) { 90 parent = *p; 91 r = rb_entry(parent, struct ceph_snap_realm, node); 92 if (new->ino < r->ino) 93 p = &(*p)->rb_left; 94 else if (new->ino > r->ino) 95 p = &(*p)->rb_right; 96 else 97 BUG(); 98 } 99 100 rb_link_node(&new->node, parent, p); 101 rb_insert_color(&new->node, root); 102 } 103 104 /* 105 * create and get the realm rooted at @ino and bump its ref count. 106 * 107 * caller must hold snap_rwsem for write. 108 */ 109 static struct ceph_snap_realm *ceph_create_snap_realm( 110 struct ceph_mds_client *mdsc, 111 u64 ino) 112 { 113 struct ceph_snap_realm *realm; 114 115 realm = kzalloc(sizeof(*realm), GFP_NOFS); 116 if (!realm) 117 return ERR_PTR(-ENOMEM); 118 119 atomic_set(&realm->nref, 1); /* for caller */ 120 realm->ino = ino; 121 INIT_LIST_HEAD(&realm->children); 122 INIT_LIST_HEAD(&realm->child_item); 123 INIT_LIST_HEAD(&realm->empty_item); 124 INIT_LIST_HEAD(&realm->dirty_item); 125 INIT_LIST_HEAD(&realm->inodes_with_caps); 126 spin_lock_init(&realm->inodes_with_caps_lock); 127 __insert_snap_realm(&mdsc->snap_realms, realm); 128 mdsc->num_snap_realms++; 129 130 dout("create_snap_realm %llx %p\n", realm->ino, realm); 131 return realm; 132 } 133 134 /* 135 * lookup the realm rooted at @ino. 136 * 137 * caller must hold snap_rwsem for write. 138 */ 139 static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc, 140 u64 ino) 141 { 142 struct rb_node *n = mdsc->snap_realms.rb_node; 143 struct ceph_snap_realm *r; 144 145 while (n) { 146 r = rb_entry(n, struct ceph_snap_realm, node); 147 if (ino < r->ino) 148 n = n->rb_left; 149 else if (ino > r->ino) 150 n = n->rb_right; 151 else { 152 dout("lookup_snap_realm %llx %p\n", r->ino, r); 153 return r; 154 } 155 } 156 return NULL; 157 } 158 159 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc, 160 u64 ino) 161 { 162 struct ceph_snap_realm *r; 163 r = __lookup_snap_realm(mdsc, ino); 164 if (r) 165 ceph_get_snap_realm(mdsc, r); 166 return r; 167 } 168 169 static void __put_snap_realm(struct ceph_mds_client *mdsc, 170 struct ceph_snap_realm *realm); 171 172 /* 173 * called with snap_rwsem (write) 174 */ 175 static void __destroy_snap_realm(struct ceph_mds_client *mdsc, 176 struct ceph_snap_realm *realm) 177 { 178 dout("__destroy_snap_realm %p %llx\n", realm, realm->ino); 179 180 rb_erase(&realm->node, &mdsc->snap_realms); 181 mdsc->num_snap_realms--; 182 183 if (realm->parent) { 184 list_del_init(&realm->child_item); 185 __put_snap_realm(mdsc, realm->parent); 186 } 187 188 kfree(realm->prior_parent_snaps); 189 kfree(realm->snaps); 190 ceph_put_snap_context(realm->cached_context); 191 kfree(realm); 192 } 193 194 /* 195 * caller holds snap_rwsem (write) 196 */ 197 static void __put_snap_realm(struct ceph_mds_client *mdsc, 198 struct ceph_snap_realm *realm) 199 { 200 dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm, 201 atomic_read(&realm->nref), atomic_read(&realm->nref)-1); 202 if (atomic_dec_and_test(&realm->nref)) 203 __destroy_snap_realm(mdsc, realm); 204 } 205 206 /* 207 * caller needn't hold any locks 208 */ 209 void ceph_put_snap_realm(struct ceph_mds_client *mdsc, 210 struct ceph_snap_realm *realm) 211 { 212 dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm, 213 atomic_read(&realm->nref), atomic_read(&realm->nref)-1); 214 if (!atomic_dec_and_test(&realm->nref)) 215 return; 216 217 if (down_write_trylock(&mdsc->snap_rwsem)) { 218 __destroy_snap_realm(mdsc, realm); 219 up_write(&mdsc->snap_rwsem); 220 } else { 221 spin_lock(&mdsc->snap_empty_lock); 222 list_add(&realm->empty_item, &mdsc->snap_empty); 223 spin_unlock(&mdsc->snap_empty_lock); 224 } 225 } 226 227 /* 228 * Clean up any realms whose ref counts have dropped to zero. Note 229 * that this does not include realms who were created but not yet 230 * used. 231 * 232 * Called under snap_rwsem (write) 233 */ 234 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc) 235 { 236 struct ceph_snap_realm *realm; 237 238 spin_lock(&mdsc->snap_empty_lock); 239 while (!list_empty(&mdsc->snap_empty)) { 240 realm = list_first_entry(&mdsc->snap_empty, 241 struct ceph_snap_realm, empty_item); 242 list_del(&realm->empty_item); 243 spin_unlock(&mdsc->snap_empty_lock); 244 __destroy_snap_realm(mdsc, realm); 245 spin_lock(&mdsc->snap_empty_lock); 246 } 247 spin_unlock(&mdsc->snap_empty_lock); 248 } 249 250 void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc) 251 { 252 down_write(&mdsc->snap_rwsem); 253 __cleanup_empty_realms(mdsc); 254 up_write(&mdsc->snap_rwsem); 255 } 256 257 /* 258 * adjust the parent realm of a given @realm. adjust child list, and parent 259 * pointers, and ref counts appropriately. 260 * 261 * return true if parent was changed, 0 if unchanged, <0 on error. 262 * 263 * caller must hold snap_rwsem for write. 264 */ 265 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc, 266 struct ceph_snap_realm *realm, 267 u64 parentino) 268 { 269 struct ceph_snap_realm *parent; 270 271 if (realm->parent_ino == parentino) 272 return 0; 273 274 parent = ceph_lookup_snap_realm(mdsc, parentino); 275 if (!parent) { 276 parent = ceph_create_snap_realm(mdsc, parentino); 277 if (IS_ERR(parent)) 278 return PTR_ERR(parent); 279 } 280 dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n", 281 realm->ino, realm, realm->parent_ino, realm->parent, 282 parentino, parent); 283 if (realm->parent) { 284 list_del_init(&realm->child_item); 285 ceph_put_snap_realm(mdsc, realm->parent); 286 } 287 realm->parent_ino = parentino; 288 realm->parent = parent; 289 list_add(&realm->child_item, &parent->children); 290 return 1; 291 } 292 293 294 static int cmpu64_rev(const void *a, const void *b) 295 { 296 if (*(u64 *)a < *(u64 *)b) 297 return 1; 298 if (*(u64 *)a > *(u64 *)b) 299 return -1; 300 return 0; 301 } 302 303 304 /* 305 * build the snap context for a given realm. 306 */ 307 static int build_snap_context(struct ceph_snap_realm *realm, 308 struct list_head* dirty_realms) 309 { 310 struct ceph_snap_realm *parent = realm->parent; 311 struct ceph_snap_context *snapc; 312 int err = 0; 313 u32 num = realm->num_prior_parent_snaps + realm->num_snaps; 314 315 /* 316 * build parent context, if it hasn't been built. 317 * conservatively estimate that all parent snaps might be 318 * included by us. 319 */ 320 if (parent) { 321 if (!parent->cached_context) { 322 err = build_snap_context(parent, dirty_realms); 323 if (err) 324 goto fail; 325 } 326 num += parent->cached_context->num_snaps; 327 } 328 329 /* do i actually need to update? not if my context seq 330 matches realm seq, and my parents' does to. (this works 331 because we rebuild_snap_realms() works _downward_ in 332 hierarchy after each update.) */ 333 if (realm->cached_context && 334 realm->cached_context->seq == realm->seq && 335 (!parent || 336 realm->cached_context->seq >= parent->cached_context->seq)) { 337 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)" 338 " (unchanged)\n", 339 realm->ino, realm, realm->cached_context, 340 realm->cached_context->seq, 341 (unsigned int)realm->cached_context->num_snaps); 342 return 0; 343 } 344 345 /* alloc new snap context */ 346 err = -ENOMEM; 347 if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64)) 348 goto fail; 349 snapc = ceph_create_snap_context(num, GFP_NOFS); 350 if (!snapc) 351 goto fail; 352 353 /* build (reverse sorted) snap vector */ 354 num = 0; 355 snapc->seq = realm->seq; 356 if (parent) { 357 u32 i; 358 359 /* include any of parent's snaps occurring _after_ my 360 parent became my parent */ 361 for (i = 0; i < parent->cached_context->num_snaps; i++) 362 if (parent->cached_context->snaps[i] >= 363 realm->parent_since) 364 snapc->snaps[num++] = 365 parent->cached_context->snaps[i]; 366 if (parent->cached_context->seq > snapc->seq) 367 snapc->seq = parent->cached_context->seq; 368 } 369 memcpy(snapc->snaps + num, realm->snaps, 370 sizeof(u64)*realm->num_snaps); 371 num += realm->num_snaps; 372 memcpy(snapc->snaps + num, realm->prior_parent_snaps, 373 sizeof(u64)*realm->num_prior_parent_snaps); 374 num += realm->num_prior_parent_snaps; 375 376 sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL); 377 snapc->num_snaps = num; 378 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n", 379 realm->ino, realm, snapc, snapc->seq, 380 (unsigned int) snapc->num_snaps); 381 382 ceph_put_snap_context(realm->cached_context); 383 realm->cached_context = snapc; 384 /* queue realm for cap_snap creation */ 385 list_add_tail(&realm->dirty_item, dirty_realms); 386 return 0; 387 388 fail: 389 /* 390 * if we fail, clear old (incorrect) cached_context... hopefully 391 * we'll have better luck building it later 392 */ 393 if (realm->cached_context) { 394 ceph_put_snap_context(realm->cached_context); 395 realm->cached_context = NULL; 396 } 397 pr_err("build_snap_context %llx %p fail %d\n", realm->ino, 398 realm, err); 399 return err; 400 } 401 402 /* 403 * rebuild snap context for the given realm and all of its children. 404 */ 405 static void rebuild_snap_realms(struct ceph_snap_realm *realm, 406 struct list_head *dirty_realms) 407 { 408 struct ceph_snap_realm *child; 409 410 dout("rebuild_snap_realms %llx %p\n", realm->ino, realm); 411 build_snap_context(realm, dirty_realms); 412 413 list_for_each_entry(child, &realm->children, child_item) 414 rebuild_snap_realms(child, dirty_realms); 415 } 416 417 418 /* 419 * helper to allocate and decode an array of snapids. free prior 420 * instance, if any. 421 */ 422 static int dup_array(u64 **dst, __le64 *src, u32 num) 423 { 424 u32 i; 425 426 kfree(*dst); 427 if (num) { 428 *dst = kcalloc(num, sizeof(u64), GFP_NOFS); 429 if (!*dst) 430 return -ENOMEM; 431 for (i = 0; i < num; i++) 432 (*dst)[i] = get_unaligned_le64(src + i); 433 } else { 434 *dst = NULL; 435 } 436 return 0; 437 } 438 439 static bool has_new_snaps(struct ceph_snap_context *o, 440 struct ceph_snap_context *n) 441 { 442 if (n->num_snaps == 0) 443 return false; 444 /* snaps are in descending order */ 445 return n->snaps[0] > o->seq; 446 } 447 448 /* 449 * When a snapshot is applied, the size/mtime inode metadata is queued 450 * in a ceph_cap_snap (one for each snapshot) until writeback 451 * completes and the metadata can be flushed back to the MDS. 452 * 453 * However, if a (sync) write is currently in-progress when we apply 454 * the snapshot, we have to wait until the write succeeds or fails 455 * (and a final size/mtime is known). In this case the 456 * cap_snap->writing = 1, and is said to be "pending." When the write 457 * finishes, we __ceph_finish_cap_snap(). 458 * 459 * Caller must hold snap_rwsem for read (i.e., the realm topology won't 460 * change). 461 */ 462 void ceph_queue_cap_snap(struct ceph_inode_info *ci) 463 { 464 struct inode *inode = &ci->vfs_inode; 465 struct ceph_cap_snap *capsnap; 466 struct ceph_snap_context *old_snapc, *new_snapc; 467 int used, dirty; 468 469 capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS); 470 if (!capsnap) { 471 pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode); 472 return; 473 } 474 475 spin_lock(&ci->i_ceph_lock); 476 used = __ceph_caps_used(ci); 477 dirty = __ceph_caps_dirty(ci); 478 479 old_snapc = ci->i_head_snapc; 480 new_snapc = ci->i_snap_realm->cached_context; 481 482 /* 483 * If there is a write in progress, treat that as a dirty Fw, 484 * even though it hasn't completed yet; by the time we finish 485 * up this capsnap it will be. 486 */ 487 if (used & CEPH_CAP_FILE_WR) 488 dirty |= CEPH_CAP_FILE_WR; 489 490 if (__ceph_have_pending_cap_snap(ci)) { 491 /* there is no point in queuing multiple "pending" cap_snaps, 492 as no new writes are allowed to start when pending, so any 493 writes in progress now were started before the previous 494 cap_snap. lucky us. */ 495 dout("queue_cap_snap %p already pending\n", inode); 496 goto update_snapc; 497 } 498 if (ci->i_wrbuffer_ref_head == 0 && 499 !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) { 500 dout("queue_cap_snap %p nothing dirty|writing\n", inode); 501 goto update_snapc; 502 } 503 504 BUG_ON(!old_snapc); 505 506 /* 507 * There is no need to send FLUSHSNAP message to MDS if there is 508 * no new snapshot. But when there is dirty pages or on-going 509 * writes, we still need to create cap_snap. cap_snap is needed 510 * by the write path and page writeback path. 511 * 512 * also see ceph_try_drop_cap_snap() 513 */ 514 if (has_new_snaps(old_snapc, new_snapc)) { 515 if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR)) 516 capsnap->need_flush = true; 517 } else { 518 if (!(used & CEPH_CAP_FILE_WR) && 519 ci->i_wrbuffer_ref_head == 0) { 520 dout("queue_cap_snap %p " 521 "no new_snap|dirty_page|writing\n", inode); 522 goto update_snapc; 523 } 524 } 525 526 dout("queue_cap_snap %p cap_snap %p queuing under %p %s %s\n", 527 inode, capsnap, old_snapc, ceph_cap_string(dirty), 528 capsnap->need_flush ? "" : "no_flush"); 529 ihold(inode); 530 531 refcount_set(&capsnap->nref, 1); 532 INIT_LIST_HEAD(&capsnap->ci_item); 533 534 capsnap->follows = old_snapc->seq; 535 capsnap->issued = __ceph_caps_issued(ci, NULL); 536 capsnap->dirty = dirty; 537 538 capsnap->mode = inode->i_mode; 539 capsnap->uid = inode->i_uid; 540 capsnap->gid = inode->i_gid; 541 542 if (dirty & CEPH_CAP_XATTR_EXCL) { 543 __ceph_build_xattrs_blob(ci); 544 capsnap->xattr_blob = 545 ceph_buffer_get(ci->i_xattrs.blob); 546 capsnap->xattr_version = ci->i_xattrs.version; 547 } else { 548 capsnap->xattr_blob = NULL; 549 capsnap->xattr_version = 0; 550 } 551 552 capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE; 553 554 /* dirty page count moved from _head to this cap_snap; 555 all subsequent writes page dirties occur _after_ this 556 snapshot. */ 557 capsnap->dirty_pages = ci->i_wrbuffer_ref_head; 558 ci->i_wrbuffer_ref_head = 0; 559 capsnap->context = old_snapc; 560 list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps); 561 562 if (used & CEPH_CAP_FILE_WR) { 563 dout("queue_cap_snap %p cap_snap %p snapc %p" 564 " seq %llu used WR, now pending\n", inode, 565 capsnap, old_snapc, old_snapc->seq); 566 capsnap->writing = 1; 567 } else { 568 /* note mtime, size NOW. */ 569 __ceph_finish_cap_snap(ci, capsnap); 570 } 571 capsnap = NULL; 572 old_snapc = NULL; 573 574 update_snapc: 575 if (ci->i_wrbuffer_ref_head == 0 && 576 ci->i_wr_ref == 0 && 577 ci->i_dirty_caps == 0 && 578 ci->i_flushing_caps == 0) { 579 ci->i_head_snapc = NULL; 580 } else { 581 ci->i_head_snapc = ceph_get_snap_context(new_snapc); 582 dout(" new snapc is %p\n", new_snapc); 583 } 584 spin_unlock(&ci->i_ceph_lock); 585 586 kfree(capsnap); 587 ceph_put_snap_context(old_snapc); 588 } 589 590 /* 591 * Finalize the size, mtime for a cap_snap.. that is, settle on final values 592 * to be used for the snapshot, to be flushed back to the mds. 593 * 594 * If capsnap can now be flushed, add to snap_flush list, and return 1. 595 * 596 * Caller must hold i_ceph_lock. 597 */ 598 int __ceph_finish_cap_snap(struct ceph_inode_info *ci, 599 struct ceph_cap_snap *capsnap) 600 { 601 struct inode *inode = &ci->vfs_inode; 602 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 603 604 BUG_ON(capsnap->writing); 605 capsnap->size = inode->i_size; 606 capsnap->mtime = inode->i_mtime; 607 capsnap->atime = inode->i_atime; 608 capsnap->ctime = inode->i_ctime; 609 capsnap->time_warp_seq = ci->i_time_warp_seq; 610 capsnap->truncate_size = ci->i_truncate_size; 611 capsnap->truncate_seq = ci->i_truncate_seq; 612 if (capsnap->dirty_pages) { 613 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu " 614 "still has %d dirty pages\n", inode, capsnap, 615 capsnap->context, capsnap->context->seq, 616 ceph_cap_string(capsnap->dirty), capsnap->size, 617 capsnap->dirty_pages); 618 return 0; 619 } 620 621 ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS; 622 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n", 623 inode, capsnap, capsnap->context, 624 capsnap->context->seq, ceph_cap_string(capsnap->dirty), 625 capsnap->size); 626 627 spin_lock(&mdsc->snap_flush_lock); 628 if (list_empty(&ci->i_snap_flush_item)) 629 list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list); 630 spin_unlock(&mdsc->snap_flush_lock); 631 return 1; /* caller may want to ceph_flush_snaps */ 632 } 633 634 /* 635 * Queue cap_snaps for snap writeback for this realm and its children. 636 * Called under snap_rwsem, so realm topology won't change. 637 */ 638 static void queue_realm_cap_snaps(struct ceph_snap_realm *realm) 639 { 640 struct ceph_inode_info *ci; 641 struct inode *lastinode = NULL; 642 643 dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino); 644 645 spin_lock(&realm->inodes_with_caps_lock); 646 list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) { 647 struct inode *inode = igrab(&ci->vfs_inode); 648 if (!inode) 649 continue; 650 spin_unlock(&realm->inodes_with_caps_lock); 651 iput(lastinode); 652 lastinode = inode; 653 ceph_queue_cap_snap(ci); 654 spin_lock(&realm->inodes_with_caps_lock); 655 } 656 spin_unlock(&realm->inodes_with_caps_lock); 657 iput(lastinode); 658 659 dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino); 660 } 661 662 /* 663 * Parse and apply a snapblob "snap trace" from the MDS. This specifies 664 * the snap realm parameters from a given realm and all of its ancestors, 665 * up to the root. 666 * 667 * Caller must hold snap_rwsem for write. 668 */ 669 int ceph_update_snap_trace(struct ceph_mds_client *mdsc, 670 void *p, void *e, bool deletion, 671 struct ceph_snap_realm **realm_ret) 672 { 673 struct ceph_mds_snap_realm *ri; /* encoded */ 674 __le64 *snaps; /* encoded */ 675 __le64 *prior_parent_snaps; /* encoded */ 676 struct ceph_snap_realm *realm = NULL; 677 struct ceph_snap_realm *first_realm = NULL; 678 int invalidate = 0; 679 int err = -ENOMEM; 680 LIST_HEAD(dirty_realms); 681 682 dout("update_snap_trace deletion=%d\n", deletion); 683 more: 684 ceph_decode_need(&p, e, sizeof(*ri), bad); 685 ri = p; 686 p += sizeof(*ri); 687 ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) + 688 le32_to_cpu(ri->num_prior_parent_snaps)), bad); 689 snaps = p; 690 p += sizeof(u64) * le32_to_cpu(ri->num_snaps); 691 prior_parent_snaps = p; 692 p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps); 693 694 realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino)); 695 if (!realm) { 696 realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino)); 697 if (IS_ERR(realm)) { 698 err = PTR_ERR(realm); 699 goto fail; 700 } 701 } 702 703 /* ensure the parent is correct */ 704 err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent)); 705 if (err < 0) 706 goto fail; 707 invalidate += err; 708 709 if (le64_to_cpu(ri->seq) > realm->seq) { 710 dout("update_snap_trace updating %llx %p %lld -> %lld\n", 711 realm->ino, realm, realm->seq, le64_to_cpu(ri->seq)); 712 /* update realm parameters, snap lists */ 713 realm->seq = le64_to_cpu(ri->seq); 714 realm->created = le64_to_cpu(ri->created); 715 realm->parent_since = le64_to_cpu(ri->parent_since); 716 717 realm->num_snaps = le32_to_cpu(ri->num_snaps); 718 err = dup_array(&realm->snaps, snaps, realm->num_snaps); 719 if (err < 0) 720 goto fail; 721 722 realm->num_prior_parent_snaps = 723 le32_to_cpu(ri->num_prior_parent_snaps); 724 err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps, 725 realm->num_prior_parent_snaps); 726 if (err < 0) 727 goto fail; 728 729 if (realm->seq > mdsc->last_snap_seq) 730 mdsc->last_snap_seq = realm->seq; 731 732 invalidate = 1; 733 } else if (!realm->cached_context) { 734 dout("update_snap_trace %llx %p seq %lld new\n", 735 realm->ino, realm, realm->seq); 736 invalidate = 1; 737 } else { 738 dout("update_snap_trace %llx %p seq %lld unchanged\n", 739 realm->ino, realm, realm->seq); 740 } 741 742 dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino, 743 realm, invalidate, p, e); 744 745 /* invalidate when we reach the _end_ (root) of the trace */ 746 if (invalidate && p >= e) 747 rebuild_snap_realms(realm, &dirty_realms); 748 749 if (!first_realm) 750 first_realm = realm; 751 else 752 ceph_put_snap_realm(mdsc, realm); 753 754 if (p < e) 755 goto more; 756 757 /* 758 * queue cap snaps _after_ we've built the new snap contexts, 759 * so that i_head_snapc can be set appropriately. 760 */ 761 while (!list_empty(&dirty_realms)) { 762 realm = list_first_entry(&dirty_realms, struct ceph_snap_realm, 763 dirty_item); 764 list_del_init(&realm->dirty_item); 765 queue_realm_cap_snaps(realm); 766 } 767 768 if (realm_ret) 769 *realm_ret = first_realm; 770 else 771 ceph_put_snap_realm(mdsc, first_realm); 772 773 __cleanup_empty_realms(mdsc); 774 return 0; 775 776 bad: 777 err = -EINVAL; 778 fail: 779 if (realm && !IS_ERR(realm)) 780 ceph_put_snap_realm(mdsc, realm); 781 if (first_realm) 782 ceph_put_snap_realm(mdsc, first_realm); 783 pr_err("update_snap_trace error %d\n", err); 784 return err; 785 } 786 787 788 /* 789 * Send any cap_snaps that are queued for flush. Try to carry 790 * s_mutex across multiple snap flushes to avoid locking overhead. 791 * 792 * Caller holds no locks. 793 */ 794 static void flush_snaps(struct ceph_mds_client *mdsc) 795 { 796 struct ceph_inode_info *ci; 797 struct inode *inode; 798 struct ceph_mds_session *session = NULL; 799 800 dout("flush_snaps\n"); 801 spin_lock(&mdsc->snap_flush_lock); 802 while (!list_empty(&mdsc->snap_flush_list)) { 803 ci = list_first_entry(&mdsc->snap_flush_list, 804 struct ceph_inode_info, i_snap_flush_item); 805 inode = &ci->vfs_inode; 806 ihold(inode); 807 spin_unlock(&mdsc->snap_flush_lock); 808 ceph_flush_snaps(ci, &session); 809 iput(inode); 810 spin_lock(&mdsc->snap_flush_lock); 811 } 812 spin_unlock(&mdsc->snap_flush_lock); 813 814 if (session) { 815 mutex_unlock(&session->s_mutex); 816 ceph_put_mds_session(session); 817 } 818 dout("flush_snaps done\n"); 819 } 820 821 822 /* 823 * Handle a snap notification from the MDS. 824 * 825 * This can take two basic forms: the simplest is just a snap creation 826 * or deletion notification on an existing realm. This should update the 827 * realm and its children. 828 * 829 * The more difficult case is realm creation, due to snap creation at a 830 * new point in the file hierarchy, or due to a rename that moves a file or 831 * directory into another realm. 832 */ 833 void ceph_handle_snap(struct ceph_mds_client *mdsc, 834 struct ceph_mds_session *session, 835 struct ceph_msg *msg) 836 { 837 struct super_block *sb = mdsc->fsc->sb; 838 int mds = session->s_mds; 839 u64 split; 840 int op; 841 int trace_len; 842 struct ceph_snap_realm *realm = NULL; 843 void *p = msg->front.iov_base; 844 void *e = p + msg->front.iov_len; 845 struct ceph_mds_snap_head *h; 846 int num_split_inos, num_split_realms; 847 __le64 *split_inos = NULL, *split_realms = NULL; 848 int i; 849 int locked_rwsem = 0; 850 851 /* decode */ 852 if (msg->front.iov_len < sizeof(*h)) 853 goto bad; 854 h = p; 855 op = le32_to_cpu(h->op); 856 split = le64_to_cpu(h->split); /* non-zero if we are splitting an 857 * existing realm */ 858 num_split_inos = le32_to_cpu(h->num_split_inos); 859 num_split_realms = le32_to_cpu(h->num_split_realms); 860 trace_len = le32_to_cpu(h->trace_len); 861 p += sizeof(*h); 862 863 dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds, 864 ceph_snap_op_name(op), split, trace_len); 865 866 mutex_lock(&session->s_mutex); 867 session->s_seq++; 868 mutex_unlock(&session->s_mutex); 869 870 down_write(&mdsc->snap_rwsem); 871 locked_rwsem = 1; 872 873 if (op == CEPH_SNAP_OP_SPLIT) { 874 struct ceph_mds_snap_realm *ri; 875 876 /* 877 * A "split" breaks part of an existing realm off into 878 * a new realm. The MDS provides a list of inodes 879 * (with caps) and child realms that belong to the new 880 * child. 881 */ 882 split_inos = p; 883 p += sizeof(u64) * num_split_inos; 884 split_realms = p; 885 p += sizeof(u64) * num_split_realms; 886 ceph_decode_need(&p, e, sizeof(*ri), bad); 887 /* we will peek at realm info here, but will _not_ 888 * advance p, as the realm update will occur below in 889 * ceph_update_snap_trace. */ 890 ri = p; 891 892 realm = ceph_lookup_snap_realm(mdsc, split); 893 if (!realm) { 894 realm = ceph_create_snap_realm(mdsc, split); 895 if (IS_ERR(realm)) 896 goto out; 897 } 898 899 dout("splitting snap_realm %llx %p\n", realm->ino, realm); 900 for (i = 0; i < num_split_inos; i++) { 901 struct ceph_vino vino = { 902 .ino = le64_to_cpu(split_inos[i]), 903 .snap = CEPH_NOSNAP, 904 }; 905 struct inode *inode = ceph_find_inode(sb, vino); 906 struct ceph_inode_info *ci; 907 struct ceph_snap_realm *oldrealm; 908 909 if (!inode) 910 continue; 911 ci = ceph_inode(inode); 912 913 spin_lock(&ci->i_ceph_lock); 914 if (!ci->i_snap_realm) 915 goto skip_inode; 916 /* 917 * If this inode belongs to a realm that was 918 * created after our new realm, we experienced 919 * a race (due to another split notifications 920 * arriving from a different MDS). So skip 921 * this inode. 922 */ 923 if (ci->i_snap_realm->created > 924 le64_to_cpu(ri->created)) { 925 dout(" leaving %p in newer realm %llx %p\n", 926 inode, ci->i_snap_realm->ino, 927 ci->i_snap_realm); 928 goto skip_inode; 929 } 930 dout(" will move %p to split realm %llx %p\n", 931 inode, realm->ino, realm); 932 /* 933 * Move the inode to the new realm 934 */ 935 oldrealm = ci->i_snap_realm; 936 spin_lock(&oldrealm->inodes_with_caps_lock); 937 list_del_init(&ci->i_snap_realm_item); 938 spin_unlock(&oldrealm->inodes_with_caps_lock); 939 940 spin_lock(&realm->inodes_with_caps_lock); 941 list_add(&ci->i_snap_realm_item, 942 &realm->inodes_with_caps); 943 ci->i_snap_realm = realm; 944 if (realm->ino == ci->i_vino.ino) 945 realm->inode = inode; 946 spin_unlock(&realm->inodes_with_caps_lock); 947 948 spin_unlock(&ci->i_ceph_lock); 949 950 ceph_get_snap_realm(mdsc, realm); 951 ceph_put_snap_realm(mdsc, oldrealm); 952 953 iput(inode); 954 continue; 955 956 skip_inode: 957 spin_unlock(&ci->i_ceph_lock); 958 iput(inode); 959 } 960 961 /* we may have taken some of the old realm's children. */ 962 for (i = 0; i < num_split_realms; i++) { 963 struct ceph_snap_realm *child = 964 __lookup_snap_realm(mdsc, 965 le64_to_cpu(split_realms[i])); 966 if (!child) 967 continue; 968 adjust_snap_realm_parent(mdsc, child, realm->ino); 969 } 970 } 971 972 /* 973 * update using the provided snap trace. if we are deleting a 974 * snap, we can avoid queueing cap_snaps. 975 */ 976 ceph_update_snap_trace(mdsc, p, e, 977 op == CEPH_SNAP_OP_DESTROY, NULL); 978 979 if (op == CEPH_SNAP_OP_SPLIT) 980 /* we took a reference when we created the realm, above */ 981 ceph_put_snap_realm(mdsc, realm); 982 983 __cleanup_empty_realms(mdsc); 984 985 up_write(&mdsc->snap_rwsem); 986 987 flush_snaps(mdsc); 988 return; 989 990 bad: 991 pr_err("corrupt snap message from mds%d\n", mds); 992 ceph_msg_dump(msg); 993 out: 994 if (locked_rwsem) 995 up_write(&mdsc->snap_rwsem); 996 return; 997 } 998 999 struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc, 1000 u64 snap) 1001 { 1002 struct ceph_snapid_map *sm, *exist; 1003 struct rb_node **p, *parent; 1004 int ret; 1005 1006 exist = NULL; 1007 spin_lock(&mdsc->snapid_map_lock); 1008 p = &mdsc->snapid_map_tree.rb_node; 1009 while (*p) { 1010 exist = rb_entry(*p, struct ceph_snapid_map, node); 1011 if (snap > exist->snap) { 1012 p = &(*p)->rb_left; 1013 } else if (snap < exist->snap) { 1014 p = &(*p)->rb_right; 1015 } else { 1016 if (atomic_inc_return(&exist->ref) == 1) 1017 list_del_init(&exist->lru); 1018 break; 1019 } 1020 exist = NULL; 1021 } 1022 spin_unlock(&mdsc->snapid_map_lock); 1023 if (exist) { 1024 dout("found snapid map %llx -> %x\n", exist->snap, exist->dev); 1025 return exist; 1026 } 1027 1028 sm = kmalloc(sizeof(*sm), GFP_NOFS); 1029 if (!sm) 1030 return NULL; 1031 1032 ret = get_anon_bdev(&sm->dev); 1033 if (ret < 0) { 1034 kfree(sm); 1035 return NULL; 1036 } 1037 1038 INIT_LIST_HEAD(&sm->lru); 1039 atomic_set(&sm->ref, 1); 1040 sm->snap = snap; 1041 1042 exist = NULL; 1043 parent = NULL; 1044 p = &mdsc->snapid_map_tree.rb_node; 1045 spin_lock(&mdsc->snapid_map_lock); 1046 while (*p) { 1047 parent = *p; 1048 exist = rb_entry(*p, struct ceph_snapid_map, node); 1049 if (snap > exist->snap) 1050 p = &(*p)->rb_left; 1051 else if (snap < exist->snap) 1052 p = &(*p)->rb_right; 1053 else 1054 break; 1055 exist = NULL; 1056 } 1057 if (exist) { 1058 if (atomic_inc_return(&exist->ref) == 1) 1059 list_del_init(&exist->lru); 1060 } else { 1061 rb_link_node(&sm->node, parent, p); 1062 rb_insert_color(&sm->node, &mdsc->snapid_map_tree); 1063 } 1064 spin_unlock(&mdsc->snapid_map_lock); 1065 if (exist) { 1066 free_anon_bdev(sm->dev); 1067 kfree(sm); 1068 dout("found snapid map %llx -> %x\n", exist->snap, exist->dev); 1069 return exist; 1070 } 1071 1072 dout("create snapid map %llx -> %x\n", sm->snap, sm->dev); 1073 return sm; 1074 } 1075 1076 void ceph_put_snapid_map(struct ceph_mds_client* mdsc, 1077 struct ceph_snapid_map *sm) 1078 { 1079 if (!sm) 1080 return; 1081 if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) { 1082 if (!RB_EMPTY_NODE(&sm->node)) { 1083 sm->last_used = jiffies; 1084 list_add_tail(&sm->lru, &mdsc->snapid_map_lru); 1085 spin_unlock(&mdsc->snapid_map_lock); 1086 } else { 1087 /* already cleaned up by 1088 * ceph_cleanup_snapid_map() */ 1089 spin_unlock(&mdsc->snapid_map_lock); 1090 kfree(sm); 1091 } 1092 } 1093 } 1094 1095 void ceph_trim_snapid_map(struct ceph_mds_client *mdsc) 1096 { 1097 struct ceph_snapid_map *sm; 1098 unsigned long now; 1099 LIST_HEAD(to_free); 1100 1101 spin_lock(&mdsc->snapid_map_lock); 1102 now = jiffies; 1103 1104 while (!list_empty(&mdsc->snapid_map_lru)) { 1105 sm = list_first_entry(&mdsc->snapid_map_lru, 1106 struct ceph_snapid_map, lru); 1107 if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now)) 1108 break; 1109 1110 rb_erase(&sm->node, &mdsc->snapid_map_tree); 1111 list_move(&sm->lru, &to_free); 1112 } 1113 spin_unlock(&mdsc->snapid_map_lock); 1114 1115 while (!list_empty(&to_free)) { 1116 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru); 1117 list_del(&sm->lru); 1118 dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev); 1119 free_anon_bdev(sm->dev); 1120 kfree(sm); 1121 } 1122 } 1123 1124 void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc) 1125 { 1126 struct ceph_snapid_map *sm; 1127 struct rb_node *p; 1128 LIST_HEAD(to_free); 1129 1130 spin_lock(&mdsc->snapid_map_lock); 1131 while ((p = rb_first(&mdsc->snapid_map_tree))) { 1132 sm = rb_entry(p, struct ceph_snapid_map, node); 1133 rb_erase(p, &mdsc->snapid_map_tree); 1134 RB_CLEAR_NODE(p); 1135 list_move(&sm->lru, &to_free); 1136 } 1137 spin_unlock(&mdsc->snapid_map_lock); 1138 1139 while (!list_empty(&to_free)) { 1140 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru); 1141 list_del(&sm->lru); 1142 free_anon_bdev(sm->dev); 1143 if (WARN_ON_ONCE(atomic_read(&sm->ref))) { 1144 pr_err("snapid map %llx -> %x still in use\n", 1145 sm->snap, sm->dev); 1146 } 1147 } 1148 } 1149