1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/fs.h>
5 #include <linux/sort.h>
6 #include <linux/slab.h>
7 #include <linux/iversion.h>
8 #include "super.h"
9 #include "mds_client.h"
10 #include <linux/ceph/decode.h>
11
12 /* unused map expires after 5 minutes */
13 #define CEPH_SNAPID_MAP_TIMEOUT (5 * 60 * HZ)
14
15 /*
16 * Snapshots in ceph are driven in large part by cooperation from the
17 * client. In contrast to local file systems or file servers that
18 * implement snapshots at a single point in the system, ceph's
19 * distributed access to storage requires clients to help decide
20 * whether a write logically occurs before or after a recently created
21 * snapshot.
22 *
23 * This provides a perfect instantanous client-wide snapshot. Between
24 * clients, however, snapshots may appear to be applied at slightly
25 * different points in time, depending on delays in delivering the
26 * snapshot notification.
27 *
28 * Snapshots are _not_ file system-wide. Instead, each snapshot
29 * applies to the subdirectory nested beneath some directory. This
30 * effectively divides the hierarchy into multiple "realms," where all
31 * of the files contained by each realm share the same set of
32 * snapshots. An individual realm's snap set contains snapshots
33 * explicitly created on that realm, as well as any snaps in its
34 * parent's snap set _after_ the point at which the parent became it's
35 * parent (due to, say, a rename). Similarly, snaps from prior parents
36 * during the time intervals during which they were the parent are included.
37 *
38 * The client is spared most of this detail, fortunately... it must only
39 * maintains a hierarchy of realms reflecting the current parent/child
40 * realm relationship, and for each realm has an explicit list of snaps
41 * inherited from prior parents.
42 *
43 * A snap_realm struct is maintained for realms containing every inode
44 * with an open cap in the system. (The needed snap realm information is
45 * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq'
46 * version number is used to ensure that as realm parameters change (new
47 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
48 *
49 * The realm hierarchy drives the generation of a 'snap context' for each
50 * realm, which simply lists the resulting set of snaps for the realm. This
51 * is attached to any writes sent to OSDs.
52 */
53 /*
54 * Unfortunately error handling is a bit mixed here. If we get a snap
55 * update, but don't have enough memory to update our realm hierarchy,
56 * it's not clear what we can do about it (besides complaining to the
57 * console).
58 */
59
60
61 /*
62 * increase ref count for the realm
63 *
64 * caller must hold snap_rwsem.
65 */
ceph_get_snap_realm(struct ceph_mds_client * mdsc,struct ceph_snap_realm * realm)66 void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
67 struct ceph_snap_realm *realm)
68 {
69 lockdep_assert_held(&mdsc->snap_rwsem);
70
71 /*
72 * The 0->1 and 1->0 transitions must take the snap_empty_lock
73 * atomically with the refcount change. Go ahead and bump the
74 * nref here, unless it's 0, in which case we take the spinlock
75 * and then do the increment and remove it from the list.
76 */
77 if (atomic_inc_not_zero(&realm->nref))
78 return;
79
80 spin_lock(&mdsc->snap_empty_lock);
81 if (atomic_inc_return(&realm->nref) == 1)
82 list_del_init(&realm->empty_item);
83 spin_unlock(&mdsc->snap_empty_lock);
84 }
85
__insert_snap_realm(struct rb_root * root,struct ceph_snap_realm * new)86 static void __insert_snap_realm(struct rb_root *root,
87 struct ceph_snap_realm *new)
88 {
89 struct rb_node **p = &root->rb_node;
90 struct rb_node *parent = NULL;
91 struct ceph_snap_realm *r = NULL;
92
93 while (*p) {
94 parent = *p;
95 r = rb_entry(parent, struct ceph_snap_realm, node);
96 if (new->ino < r->ino)
97 p = &(*p)->rb_left;
98 else if (new->ino > r->ino)
99 p = &(*p)->rb_right;
100 else
101 BUG();
102 }
103
104 rb_link_node(&new->node, parent, p);
105 rb_insert_color(&new->node, root);
106 }
107
108 /*
109 * create and get the realm rooted at @ino and bump its ref count.
110 *
111 * caller must hold snap_rwsem for write.
112 */
ceph_create_snap_realm(struct ceph_mds_client * mdsc,u64 ino)113 static struct ceph_snap_realm *ceph_create_snap_realm(
114 struct ceph_mds_client *mdsc,
115 u64 ino)
116 {
117 struct ceph_snap_realm *realm;
118
119 lockdep_assert_held_write(&mdsc->snap_rwsem);
120
121 realm = kzalloc(sizeof(*realm), GFP_NOFS);
122 if (!realm)
123 return ERR_PTR(-ENOMEM);
124
125 /* Do not release the global dummy snaprealm until unmouting */
126 if (ino == CEPH_INO_GLOBAL_SNAPREALM)
127 atomic_set(&realm->nref, 2);
128 else
129 atomic_set(&realm->nref, 1);
130 realm->ino = ino;
131 INIT_LIST_HEAD(&realm->children);
132 INIT_LIST_HEAD(&realm->child_item);
133 INIT_LIST_HEAD(&realm->empty_item);
134 INIT_LIST_HEAD(&realm->dirty_item);
135 INIT_LIST_HEAD(&realm->rebuild_item);
136 INIT_LIST_HEAD(&realm->inodes_with_caps);
137 spin_lock_init(&realm->inodes_with_caps_lock);
138 __insert_snap_realm(&mdsc->snap_realms, realm);
139 mdsc->num_snap_realms++;
140
141 dout("%s %llx %p\n", __func__, realm->ino, realm);
142 return realm;
143 }
144
145 /*
146 * lookup the realm rooted at @ino.
147 *
148 * caller must hold snap_rwsem.
149 */
__lookup_snap_realm(struct ceph_mds_client * mdsc,u64 ino)150 static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
151 u64 ino)
152 {
153 struct rb_node *n = mdsc->snap_realms.rb_node;
154 struct ceph_snap_realm *r;
155
156 lockdep_assert_held(&mdsc->snap_rwsem);
157
158 while (n) {
159 r = rb_entry(n, struct ceph_snap_realm, node);
160 if (ino < r->ino)
161 n = n->rb_left;
162 else if (ino > r->ino)
163 n = n->rb_right;
164 else {
165 dout("%s %llx %p\n", __func__, r->ino, r);
166 return r;
167 }
168 }
169 return NULL;
170 }
171
ceph_lookup_snap_realm(struct ceph_mds_client * mdsc,u64 ino)172 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
173 u64 ino)
174 {
175 struct ceph_snap_realm *r;
176 r = __lookup_snap_realm(mdsc, ino);
177 if (r)
178 ceph_get_snap_realm(mdsc, r);
179 return r;
180 }
181
182 static void __put_snap_realm(struct ceph_mds_client *mdsc,
183 struct ceph_snap_realm *realm);
184
185 /*
186 * called with snap_rwsem (write)
187 */
__destroy_snap_realm(struct ceph_mds_client * mdsc,struct ceph_snap_realm * realm)188 static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
189 struct ceph_snap_realm *realm)
190 {
191 lockdep_assert_held_write(&mdsc->snap_rwsem);
192
193 dout("%s %p %llx\n", __func__, realm, realm->ino);
194
195 rb_erase(&realm->node, &mdsc->snap_realms);
196 mdsc->num_snap_realms--;
197
198 if (realm->parent) {
199 list_del_init(&realm->child_item);
200 __put_snap_realm(mdsc, realm->parent);
201 }
202
203 kfree(realm->prior_parent_snaps);
204 kfree(realm->snaps);
205 ceph_put_snap_context(realm->cached_context);
206 kfree(realm);
207 }
208
209 /*
210 * caller holds snap_rwsem (write)
211 */
__put_snap_realm(struct ceph_mds_client * mdsc,struct ceph_snap_realm * realm)212 static void __put_snap_realm(struct ceph_mds_client *mdsc,
213 struct ceph_snap_realm *realm)
214 {
215 lockdep_assert_held_write(&mdsc->snap_rwsem);
216
217 /*
218 * We do not require the snap_empty_lock here, as any caller that
219 * increments the value must hold the snap_rwsem.
220 */
221 if (atomic_dec_and_test(&realm->nref))
222 __destroy_snap_realm(mdsc, realm);
223 }
224
225 /*
226 * See comments in ceph_get_snap_realm. Caller needn't hold any locks.
227 */
ceph_put_snap_realm(struct ceph_mds_client * mdsc,struct ceph_snap_realm * realm)228 void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
229 struct ceph_snap_realm *realm)
230 {
231 if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock))
232 return;
233
234 if (down_write_trylock(&mdsc->snap_rwsem)) {
235 spin_unlock(&mdsc->snap_empty_lock);
236 __destroy_snap_realm(mdsc, realm);
237 up_write(&mdsc->snap_rwsem);
238 } else {
239 list_add(&realm->empty_item, &mdsc->snap_empty);
240 spin_unlock(&mdsc->snap_empty_lock);
241 }
242 }
243
244 /*
245 * Clean up any realms whose ref counts have dropped to zero. Note
246 * that this does not include realms who were created but not yet
247 * used.
248 *
249 * Called under snap_rwsem (write)
250 */
__cleanup_empty_realms(struct ceph_mds_client * mdsc)251 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
252 {
253 struct ceph_snap_realm *realm;
254
255 lockdep_assert_held_write(&mdsc->snap_rwsem);
256
257 spin_lock(&mdsc->snap_empty_lock);
258 while (!list_empty(&mdsc->snap_empty)) {
259 realm = list_first_entry(&mdsc->snap_empty,
260 struct ceph_snap_realm, empty_item);
261 list_del(&realm->empty_item);
262 spin_unlock(&mdsc->snap_empty_lock);
263 __destroy_snap_realm(mdsc, realm);
264 spin_lock(&mdsc->snap_empty_lock);
265 }
266 spin_unlock(&mdsc->snap_empty_lock);
267 }
268
ceph_cleanup_global_and_empty_realms(struct ceph_mds_client * mdsc)269 void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc)
270 {
271 struct ceph_snap_realm *global_realm;
272
273 down_write(&mdsc->snap_rwsem);
274 global_realm = __lookup_snap_realm(mdsc, CEPH_INO_GLOBAL_SNAPREALM);
275 if (global_realm)
276 ceph_put_snap_realm(mdsc, global_realm);
277 __cleanup_empty_realms(mdsc);
278 up_write(&mdsc->snap_rwsem);
279 }
280
281 /*
282 * adjust the parent realm of a given @realm. adjust child list, and parent
283 * pointers, and ref counts appropriately.
284 *
285 * return true if parent was changed, 0 if unchanged, <0 on error.
286 *
287 * caller must hold snap_rwsem for write.
288 */
adjust_snap_realm_parent(struct ceph_mds_client * mdsc,struct ceph_snap_realm * realm,u64 parentino)289 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
290 struct ceph_snap_realm *realm,
291 u64 parentino)
292 {
293 struct ceph_snap_realm *parent;
294
295 lockdep_assert_held_write(&mdsc->snap_rwsem);
296
297 if (realm->parent_ino == parentino)
298 return 0;
299
300 parent = ceph_lookup_snap_realm(mdsc, parentino);
301 if (!parent) {
302 parent = ceph_create_snap_realm(mdsc, parentino);
303 if (IS_ERR(parent))
304 return PTR_ERR(parent);
305 }
306 dout("%s %llx %p: %llx %p -> %llx %p\n", __func__, realm->ino,
307 realm, realm->parent_ino, realm->parent, parentino, parent);
308 if (realm->parent) {
309 list_del_init(&realm->child_item);
310 ceph_put_snap_realm(mdsc, realm->parent);
311 }
312 realm->parent_ino = parentino;
313 realm->parent = parent;
314 list_add(&realm->child_item, &parent->children);
315 return 1;
316 }
317
318
cmpu64_rev(const void * a,const void * b)319 static int cmpu64_rev(const void *a, const void *b)
320 {
321 if (*(u64 *)a < *(u64 *)b)
322 return 1;
323 if (*(u64 *)a > *(u64 *)b)
324 return -1;
325 return 0;
326 }
327
328
329 /*
330 * build the snap context for a given realm.
331 */
build_snap_context(struct ceph_mds_client * mdsc,struct ceph_snap_realm * realm,struct list_head * realm_queue,struct list_head * dirty_realms)332 static int build_snap_context(struct ceph_mds_client *mdsc,
333 struct ceph_snap_realm *realm,
334 struct list_head *realm_queue,
335 struct list_head *dirty_realms)
336 {
337 struct ceph_snap_realm *parent = realm->parent;
338 struct ceph_snap_context *snapc;
339 int err = 0;
340 u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
341
342 /*
343 * build parent context, if it hasn't been built.
344 * conservatively estimate that all parent snaps might be
345 * included by us.
346 */
347 if (parent) {
348 if (!parent->cached_context) {
349 /* add to the queue head */
350 list_add(&parent->rebuild_item, realm_queue);
351 return 1;
352 }
353 num += parent->cached_context->num_snaps;
354 }
355
356 /* do i actually need to update? not if my context seq
357 matches realm seq, and my parents' does to. (this works
358 because we rebuild_snap_realms() works _downward_ in
359 hierarchy after each update.) */
360 if (realm->cached_context &&
361 realm->cached_context->seq == realm->seq &&
362 (!parent ||
363 realm->cached_context->seq >= parent->cached_context->seq)) {
364 dout("%s %llx %p: %p seq %lld (%u snaps) (unchanged)\n",
365 __func__, realm->ino, realm, realm->cached_context,
366 realm->cached_context->seq,
367 (unsigned int)realm->cached_context->num_snaps);
368 return 0;
369 }
370
371 /* alloc new snap context */
372 err = -ENOMEM;
373 if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
374 goto fail;
375 snapc = ceph_create_snap_context(num, GFP_NOFS);
376 if (!snapc)
377 goto fail;
378
379 /* build (reverse sorted) snap vector */
380 num = 0;
381 snapc->seq = realm->seq;
382 if (parent) {
383 u32 i;
384
385 /* include any of parent's snaps occurring _after_ my
386 parent became my parent */
387 for (i = 0; i < parent->cached_context->num_snaps; i++)
388 if (parent->cached_context->snaps[i] >=
389 realm->parent_since)
390 snapc->snaps[num++] =
391 parent->cached_context->snaps[i];
392 if (parent->cached_context->seq > snapc->seq)
393 snapc->seq = parent->cached_context->seq;
394 }
395 memcpy(snapc->snaps + num, realm->snaps,
396 sizeof(u64)*realm->num_snaps);
397 num += realm->num_snaps;
398 memcpy(snapc->snaps + num, realm->prior_parent_snaps,
399 sizeof(u64)*realm->num_prior_parent_snaps);
400 num += realm->num_prior_parent_snaps;
401
402 sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
403 snapc->num_snaps = num;
404 dout("%s %llx %p: %p seq %lld (%u snaps)\n", __func__, realm->ino,
405 realm, snapc, snapc->seq, (unsigned int) snapc->num_snaps);
406
407 ceph_put_snap_context(realm->cached_context);
408 realm->cached_context = snapc;
409 /* queue realm for cap_snap creation */
410 list_add_tail(&realm->dirty_item, dirty_realms);
411 return 0;
412
413 fail:
414 /*
415 * if we fail, clear old (incorrect) cached_context... hopefully
416 * we'll have better luck building it later
417 */
418 if (realm->cached_context) {
419 ceph_put_snap_context(realm->cached_context);
420 realm->cached_context = NULL;
421 }
422 pr_err("%s %llx %p fail %d\n", __func__, realm->ino, realm, err);
423 return err;
424 }
425
426 /*
427 * rebuild snap context for the given realm and all of its children.
428 */
rebuild_snap_realms(struct ceph_mds_client * mdsc,struct ceph_snap_realm * realm,struct list_head * dirty_realms)429 static void rebuild_snap_realms(struct ceph_mds_client *mdsc,
430 struct ceph_snap_realm *realm,
431 struct list_head *dirty_realms)
432 {
433 LIST_HEAD(realm_queue);
434 int last = 0;
435 bool skip = false;
436
437 list_add_tail(&realm->rebuild_item, &realm_queue);
438
439 while (!list_empty(&realm_queue)) {
440 struct ceph_snap_realm *_realm, *child;
441
442 _realm = list_first_entry(&realm_queue,
443 struct ceph_snap_realm,
444 rebuild_item);
445
446 /*
447 * If the last building failed dues to memory
448 * issue, just empty the realm_queue and return
449 * to avoid infinite loop.
450 */
451 if (last < 0) {
452 list_del_init(&_realm->rebuild_item);
453 continue;
454 }
455
456 last = build_snap_context(mdsc, _realm, &realm_queue,
457 dirty_realms);
458 dout("%s %llx %p, %s\n", __func__, _realm->ino, _realm,
459 last > 0 ? "is deferred" : !last ? "succeeded" : "failed");
460
461 /* is any child in the list ? */
462 list_for_each_entry(child, &_realm->children, child_item) {
463 if (!list_empty(&child->rebuild_item)) {
464 skip = true;
465 break;
466 }
467 }
468
469 if (!skip) {
470 list_for_each_entry(child, &_realm->children, child_item)
471 list_add_tail(&child->rebuild_item, &realm_queue);
472 }
473
474 /* last == 1 means need to build parent first */
475 if (last <= 0)
476 list_del_init(&_realm->rebuild_item);
477 }
478 }
479
480
481 /*
482 * helper to allocate and decode an array of snapids. free prior
483 * instance, if any.
484 */
dup_array(u64 ** dst,__le64 * src,u32 num)485 static int dup_array(u64 **dst, __le64 *src, u32 num)
486 {
487 u32 i;
488
489 kfree(*dst);
490 if (num) {
491 *dst = kcalloc(num, sizeof(u64), GFP_NOFS);
492 if (!*dst)
493 return -ENOMEM;
494 for (i = 0; i < num; i++)
495 (*dst)[i] = get_unaligned_le64(src + i);
496 } else {
497 *dst = NULL;
498 }
499 return 0;
500 }
501
has_new_snaps(struct ceph_snap_context * o,struct ceph_snap_context * n)502 static bool has_new_snaps(struct ceph_snap_context *o,
503 struct ceph_snap_context *n)
504 {
505 if (n->num_snaps == 0)
506 return false;
507 /* snaps are in descending order */
508 return n->snaps[0] > o->seq;
509 }
510
511 /*
512 * When a snapshot is applied, the size/mtime inode metadata is queued
513 * in a ceph_cap_snap (one for each snapshot) until writeback
514 * completes and the metadata can be flushed back to the MDS.
515 *
516 * However, if a (sync) write is currently in-progress when we apply
517 * the snapshot, we have to wait until the write succeeds or fails
518 * (and a final size/mtime is known). In this case the
519 * cap_snap->writing = 1, and is said to be "pending." When the write
520 * finishes, we __ceph_finish_cap_snap().
521 *
522 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
523 * change).
524 */
ceph_queue_cap_snap(struct ceph_inode_info * ci,struct ceph_cap_snap ** pcapsnap)525 static void ceph_queue_cap_snap(struct ceph_inode_info *ci,
526 struct ceph_cap_snap **pcapsnap)
527 {
528 struct inode *inode = &ci->netfs.inode;
529 struct ceph_snap_context *old_snapc, *new_snapc;
530 struct ceph_cap_snap *capsnap = *pcapsnap;
531 struct ceph_buffer *old_blob = NULL;
532 int used, dirty;
533
534 spin_lock(&ci->i_ceph_lock);
535 used = __ceph_caps_used(ci);
536 dirty = __ceph_caps_dirty(ci);
537
538 old_snapc = ci->i_head_snapc;
539 new_snapc = ci->i_snap_realm->cached_context;
540
541 /*
542 * If there is a write in progress, treat that as a dirty Fw,
543 * even though it hasn't completed yet; by the time we finish
544 * up this capsnap it will be.
545 */
546 if (used & CEPH_CAP_FILE_WR)
547 dirty |= CEPH_CAP_FILE_WR;
548
549 if (__ceph_have_pending_cap_snap(ci)) {
550 /* there is no point in queuing multiple "pending" cap_snaps,
551 as no new writes are allowed to start when pending, so any
552 writes in progress now were started before the previous
553 cap_snap. lucky us. */
554 dout("%s %p %llx.%llx already pending\n",
555 __func__, inode, ceph_vinop(inode));
556 goto update_snapc;
557 }
558 if (ci->i_wrbuffer_ref_head == 0 &&
559 !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
560 dout("%s %p %llx.%llx nothing dirty|writing\n",
561 __func__, inode, ceph_vinop(inode));
562 goto update_snapc;
563 }
564
565 BUG_ON(!old_snapc);
566
567 /*
568 * There is no need to send FLUSHSNAP message to MDS if there is
569 * no new snapshot. But when there is dirty pages or on-going
570 * writes, we still need to create cap_snap. cap_snap is needed
571 * by the write path and page writeback path.
572 *
573 * also see ceph_try_drop_cap_snap()
574 */
575 if (has_new_snaps(old_snapc, new_snapc)) {
576 if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
577 capsnap->need_flush = true;
578 } else {
579 if (!(used & CEPH_CAP_FILE_WR) &&
580 ci->i_wrbuffer_ref_head == 0) {
581 dout("%s %p %llx.%llx no new_snap|dirty_page|writing\n",
582 __func__, inode, ceph_vinop(inode));
583 goto update_snapc;
584 }
585 }
586
587 dout("%s %p %llx.%llx cap_snap %p queuing under %p %s %s\n",
588 __func__, inode, ceph_vinop(inode), capsnap, old_snapc,
589 ceph_cap_string(dirty), capsnap->need_flush ? "" : "no_flush");
590 ihold(inode);
591
592 capsnap->follows = old_snapc->seq;
593 capsnap->issued = __ceph_caps_issued(ci, NULL);
594 capsnap->dirty = dirty;
595
596 capsnap->mode = inode->i_mode;
597 capsnap->uid = inode->i_uid;
598 capsnap->gid = inode->i_gid;
599
600 if (dirty & CEPH_CAP_XATTR_EXCL) {
601 old_blob = __ceph_build_xattrs_blob(ci);
602 capsnap->xattr_blob =
603 ceph_buffer_get(ci->i_xattrs.blob);
604 capsnap->xattr_version = ci->i_xattrs.version;
605 } else {
606 capsnap->xattr_blob = NULL;
607 capsnap->xattr_version = 0;
608 }
609
610 capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
611
612 /* dirty page count moved from _head to this cap_snap;
613 all subsequent writes page dirties occur _after_ this
614 snapshot. */
615 capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
616 ci->i_wrbuffer_ref_head = 0;
617 capsnap->context = old_snapc;
618 list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
619
620 if (used & CEPH_CAP_FILE_WR) {
621 dout("%s %p %llx.%llx cap_snap %p snapc %p seq %llu used WR,"
622 " now pending\n", __func__, inode, ceph_vinop(inode),
623 capsnap, old_snapc, old_snapc->seq);
624 capsnap->writing = 1;
625 } else {
626 /* note mtime, size NOW. */
627 __ceph_finish_cap_snap(ci, capsnap);
628 }
629 *pcapsnap = NULL;
630 old_snapc = NULL;
631
632 update_snapc:
633 if (ci->i_wrbuffer_ref_head == 0 &&
634 ci->i_wr_ref == 0 &&
635 ci->i_dirty_caps == 0 &&
636 ci->i_flushing_caps == 0) {
637 ci->i_head_snapc = NULL;
638 } else {
639 ci->i_head_snapc = ceph_get_snap_context(new_snapc);
640 dout(" new snapc is %p\n", new_snapc);
641 }
642 spin_unlock(&ci->i_ceph_lock);
643
644 ceph_buffer_put(old_blob);
645 ceph_put_snap_context(old_snapc);
646 }
647
648 /*
649 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
650 * to be used for the snapshot, to be flushed back to the mds.
651 *
652 * If capsnap can now be flushed, add to snap_flush list, and return 1.
653 *
654 * Caller must hold i_ceph_lock.
655 */
__ceph_finish_cap_snap(struct ceph_inode_info * ci,struct ceph_cap_snap * capsnap)656 int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
657 struct ceph_cap_snap *capsnap)
658 {
659 struct inode *inode = &ci->netfs.inode;
660 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
661
662 BUG_ON(capsnap->writing);
663 capsnap->size = i_size_read(inode);
664 capsnap->mtime = inode->i_mtime;
665 capsnap->atime = inode->i_atime;
666 capsnap->ctime = inode_get_ctime(inode);
667 capsnap->btime = ci->i_btime;
668 capsnap->change_attr = inode_peek_iversion_raw(inode);
669 capsnap->time_warp_seq = ci->i_time_warp_seq;
670 capsnap->truncate_size = ci->i_truncate_size;
671 capsnap->truncate_seq = ci->i_truncate_seq;
672 if (capsnap->dirty_pages) {
673 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
674 "still has %d dirty pages\n", __func__, inode,
675 ceph_vinop(inode), capsnap, capsnap->context,
676 capsnap->context->seq, ceph_cap_string(capsnap->dirty),
677 capsnap->size, capsnap->dirty_pages);
678 return 0;
679 }
680
681 /*
682 * Defer flushing the capsnap if the dirty buffer not flushed yet.
683 * And trigger to flush the buffer immediately.
684 */
685 if (ci->i_wrbuffer_ref) {
686 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
687 "used WRBUFFER, delaying\n", __func__, inode,
688 ceph_vinop(inode), capsnap, capsnap->context,
689 capsnap->context->seq, ceph_cap_string(capsnap->dirty),
690 capsnap->size);
691 ceph_queue_writeback(inode);
692 return 0;
693 }
694
695 ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
696 dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu\n",
697 __func__, inode, ceph_vinop(inode), capsnap, capsnap->context,
698 capsnap->context->seq, ceph_cap_string(capsnap->dirty),
699 capsnap->size);
700
701 spin_lock(&mdsc->snap_flush_lock);
702 if (list_empty(&ci->i_snap_flush_item)) {
703 ihold(inode);
704 list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
705 }
706 spin_unlock(&mdsc->snap_flush_lock);
707 return 1; /* caller may want to ceph_flush_snaps */
708 }
709
710 /*
711 * Queue cap_snaps for snap writeback for this realm and its children.
712 * Called under snap_rwsem, so realm topology won't change.
713 */
queue_realm_cap_snaps(struct ceph_mds_client * mdsc,struct ceph_snap_realm * realm)714 static void queue_realm_cap_snaps(struct ceph_mds_client *mdsc,
715 struct ceph_snap_realm *realm)
716 {
717 struct ceph_inode_info *ci;
718 struct inode *lastinode = NULL;
719 struct ceph_cap_snap *capsnap = NULL;
720
721 dout("%s %p %llx inode\n", __func__, realm, realm->ino);
722
723 spin_lock(&realm->inodes_with_caps_lock);
724 list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
725 struct inode *inode = igrab(&ci->netfs.inode);
726 if (!inode)
727 continue;
728 spin_unlock(&realm->inodes_with_caps_lock);
729 iput(lastinode);
730 lastinode = inode;
731
732 /*
733 * Allocate the capsnap memory outside of ceph_queue_cap_snap()
734 * to reduce very possible but unnecessary frequently memory
735 * allocate/free in this loop.
736 */
737 if (!capsnap) {
738 capsnap = kmem_cache_zalloc(ceph_cap_snap_cachep, GFP_NOFS);
739 if (!capsnap) {
740 pr_err("ENOMEM allocating ceph_cap_snap on %p\n",
741 inode);
742 return;
743 }
744 }
745 capsnap->cap_flush.is_capsnap = true;
746 refcount_set(&capsnap->nref, 1);
747 INIT_LIST_HEAD(&capsnap->cap_flush.i_list);
748 INIT_LIST_HEAD(&capsnap->cap_flush.g_list);
749 INIT_LIST_HEAD(&capsnap->ci_item);
750
751 ceph_queue_cap_snap(ci, &capsnap);
752 spin_lock(&realm->inodes_with_caps_lock);
753 }
754 spin_unlock(&realm->inodes_with_caps_lock);
755 iput(lastinode);
756
757 if (capsnap)
758 kmem_cache_free(ceph_cap_snap_cachep, capsnap);
759 dout("%s %p %llx done\n", __func__, realm, realm->ino);
760 }
761
762 /*
763 * Parse and apply a snapblob "snap trace" from the MDS. This specifies
764 * the snap realm parameters from a given realm and all of its ancestors,
765 * up to the root.
766 *
767 * Caller must hold snap_rwsem for write.
768 */
ceph_update_snap_trace(struct ceph_mds_client * mdsc,void * p,void * e,bool deletion,struct ceph_snap_realm ** realm_ret)769 int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
770 void *p, void *e, bool deletion,
771 struct ceph_snap_realm **realm_ret)
772 {
773 struct ceph_mds_snap_realm *ri; /* encoded */
774 __le64 *snaps; /* encoded */
775 __le64 *prior_parent_snaps; /* encoded */
776 struct ceph_snap_realm *realm;
777 struct ceph_snap_realm *first_realm = NULL;
778 struct ceph_snap_realm *realm_to_rebuild = NULL;
779 struct ceph_client *client = mdsc->fsc->client;
780 int rebuild_snapcs;
781 int err = -ENOMEM;
782 int ret;
783 LIST_HEAD(dirty_realms);
784
785 lockdep_assert_held_write(&mdsc->snap_rwsem);
786
787 dout("%s deletion=%d\n", __func__, deletion);
788 more:
789 realm = NULL;
790 rebuild_snapcs = 0;
791 ceph_decode_need(&p, e, sizeof(*ri), bad);
792 ri = p;
793 p += sizeof(*ri);
794 ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
795 le32_to_cpu(ri->num_prior_parent_snaps)), bad);
796 snaps = p;
797 p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
798 prior_parent_snaps = p;
799 p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
800
801 realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
802 if (!realm) {
803 realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
804 if (IS_ERR(realm)) {
805 err = PTR_ERR(realm);
806 goto fail;
807 }
808 }
809
810 /* ensure the parent is correct */
811 err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
812 if (err < 0)
813 goto fail;
814 rebuild_snapcs += err;
815
816 if (le64_to_cpu(ri->seq) > realm->seq) {
817 dout("%s updating %llx %p %lld -> %lld\n", __func__,
818 realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
819 /* update realm parameters, snap lists */
820 realm->seq = le64_to_cpu(ri->seq);
821 realm->created = le64_to_cpu(ri->created);
822 realm->parent_since = le64_to_cpu(ri->parent_since);
823
824 realm->num_snaps = le32_to_cpu(ri->num_snaps);
825 err = dup_array(&realm->snaps, snaps, realm->num_snaps);
826 if (err < 0)
827 goto fail;
828
829 realm->num_prior_parent_snaps =
830 le32_to_cpu(ri->num_prior_parent_snaps);
831 err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
832 realm->num_prior_parent_snaps);
833 if (err < 0)
834 goto fail;
835
836 if (realm->seq > mdsc->last_snap_seq)
837 mdsc->last_snap_seq = realm->seq;
838
839 rebuild_snapcs = 1;
840 } else if (!realm->cached_context) {
841 dout("%s %llx %p seq %lld new\n", __func__,
842 realm->ino, realm, realm->seq);
843 rebuild_snapcs = 1;
844 } else {
845 dout("%s %llx %p seq %lld unchanged\n", __func__,
846 realm->ino, realm, realm->seq);
847 }
848
849 dout("done with %llx %p, rebuild_snapcs=%d, %p %p\n", realm->ino,
850 realm, rebuild_snapcs, p, e);
851
852 /*
853 * this will always track the uppest parent realm from which
854 * we need to rebuild the snapshot contexts _downward_ in
855 * hierarchy.
856 */
857 if (rebuild_snapcs)
858 realm_to_rebuild = realm;
859
860 /* rebuild_snapcs when we reach the _end_ (root) of the trace */
861 if (realm_to_rebuild && p >= e)
862 rebuild_snap_realms(mdsc, realm_to_rebuild, &dirty_realms);
863
864 if (!first_realm)
865 first_realm = realm;
866 else
867 ceph_put_snap_realm(mdsc, realm);
868
869 if (p < e)
870 goto more;
871
872 /*
873 * queue cap snaps _after_ we've built the new snap contexts,
874 * so that i_head_snapc can be set appropriately.
875 */
876 while (!list_empty(&dirty_realms)) {
877 realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
878 dirty_item);
879 list_del_init(&realm->dirty_item);
880 queue_realm_cap_snaps(mdsc, realm);
881 }
882
883 if (realm_ret)
884 *realm_ret = first_realm;
885 else
886 ceph_put_snap_realm(mdsc, first_realm);
887
888 __cleanup_empty_realms(mdsc);
889 return 0;
890
891 bad:
892 err = -EIO;
893 fail:
894 if (realm && !IS_ERR(realm))
895 ceph_put_snap_realm(mdsc, realm);
896 if (first_realm)
897 ceph_put_snap_realm(mdsc, first_realm);
898 pr_err("%s error %d\n", __func__, err);
899
900 /*
901 * When receiving a corrupted snap trace we don't know what
902 * exactly has happened in MDS side. And we shouldn't continue
903 * writing to OSD, which may corrupt the snapshot contents.
904 *
905 * Just try to blocklist this kclient and then this kclient
906 * must be remounted to continue after the corrupted metadata
907 * fixed in the MDS side.
908 */
909 WRITE_ONCE(mdsc->fsc->mount_state, CEPH_MOUNT_FENCE_IO);
910 ret = ceph_monc_blocklist_add(&client->monc, &client->msgr.inst.addr);
911 if (ret)
912 pr_err("%s failed to blocklist %s: %d\n", __func__,
913 ceph_pr_addr(&client->msgr.inst.addr), ret);
914
915 WARN(1, "%s: %s%sdo remount to continue%s",
916 __func__, ret ? "" : ceph_pr_addr(&client->msgr.inst.addr),
917 ret ? "" : " was blocklisted, ",
918 err == -EIO ? " after corrupted snaptrace is fixed" : "");
919
920 return err;
921 }
922
923
924 /*
925 * Send any cap_snaps that are queued for flush. Try to carry
926 * s_mutex across multiple snap flushes to avoid locking overhead.
927 *
928 * Caller holds no locks.
929 */
flush_snaps(struct ceph_mds_client * mdsc)930 static void flush_snaps(struct ceph_mds_client *mdsc)
931 {
932 struct ceph_inode_info *ci;
933 struct inode *inode;
934 struct ceph_mds_session *session = NULL;
935
936 dout("%s\n", __func__);
937 spin_lock(&mdsc->snap_flush_lock);
938 while (!list_empty(&mdsc->snap_flush_list)) {
939 ci = list_first_entry(&mdsc->snap_flush_list,
940 struct ceph_inode_info, i_snap_flush_item);
941 inode = &ci->netfs.inode;
942 ihold(inode);
943 spin_unlock(&mdsc->snap_flush_lock);
944 ceph_flush_snaps(ci, &session);
945 iput(inode);
946 spin_lock(&mdsc->snap_flush_lock);
947 }
948 spin_unlock(&mdsc->snap_flush_lock);
949
950 ceph_put_mds_session(session);
951 dout("%s done\n", __func__);
952 }
953
954 /**
955 * ceph_change_snap_realm - change the snap_realm for an inode
956 * @inode: inode to move to new snap realm
957 * @realm: new realm to move inode into (may be NULL)
958 *
959 * Detach an inode from its old snaprealm (if any) and attach it to
960 * the new snaprealm (if any). The old snap realm reference held by
961 * the inode is put. If realm is non-NULL, then the caller's reference
962 * to it is taken over by the inode.
963 */
ceph_change_snap_realm(struct inode * inode,struct ceph_snap_realm * realm)964 void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm)
965 {
966 struct ceph_inode_info *ci = ceph_inode(inode);
967 struct ceph_mds_client *mdsc = ceph_inode_to_fs_client(inode)->mdsc;
968 struct ceph_snap_realm *oldrealm = ci->i_snap_realm;
969
970 lockdep_assert_held(&ci->i_ceph_lock);
971
972 if (oldrealm) {
973 spin_lock(&oldrealm->inodes_with_caps_lock);
974 list_del_init(&ci->i_snap_realm_item);
975 if (oldrealm->ino == ci->i_vino.ino)
976 oldrealm->inode = NULL;
977 spin_unlock(&oldrealm->inodes_with_caps_lock);
978 ceph_put_snap_realm(mdsc, oldrealm);
979 }
980
981 ci->i_snap_realm = realm;
982
983 if (realm) {
984 spin_lock(&realm->inodes_with_caps_lock);
985 list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps);
986 if (realm->ino == ci->i_vino.ino)
987 realm->inode = inode;
988 spin_unlock(&realm->inodes_with_caps_lock);
989 }
990 }
991
992 /*
993 * Handle a snap notification from the MDS.
994 *
995 * This can take two basic forms: the simplest is just a snap creation
996 * or deletion notification on an existing realm. This should update the
997 * realm and its children.
998 *
999 * The more difficult case is realm creation, due to snap creation at a
1000 * new point in the file hierarchy, or due to a rename that moves a file or
1001 * directory into another realm.
1002 */
ceph_handle_snap(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,struct ceph_msg * msg)1003 void ceph_handle_snap(struct ceph_mds_client *mdsc,
1004 struct ceph_mds_session *session,
1005 struct ceph_msg *msg)
1006 {
1007 struct super_block *sb = mdsc->fsc->sb;
1008 int mds = session->s_mds;
1009 u64 split;
1010 int op;
1011 int trace_len;
1012 struct ceph_snap_realm *realm = NULL;
1013 void *p = msg->front.iov_base;
1014 void *e = p + msg->front.iov_len;
1015 struct ceph_mds_snap_head *h;
1016 int num_split_inos, num_split_realms;
1017 __le64 *split_inos = NULL, *split_realms = NULL;
1018 int i;
1019 int locked_rwsem = 0;
1020 bool close_sessions = false;
1021
1022 if (!ceph_inc_mds_stopping_blocker(mdsc, session))
1023 return;
1024
1025 /* decode */
1026 if (msg->front.iov_len < sizeof(*h))
1027 goto bad;
1028 h = p;
1029 op = le32_to_cpu(h->op);
1030 split = le64_to_cpu(h->split); /* non-zero if we are splitting an
1031 * existing realm */
1032 num_split_inos = le32_to_cpu(h->num_split_inos);
1033 num_split_realms = le32_to_cpu(h->num_split_realms);
1034 trace_len = le32_to_cpu(h->trace_len);
1035 p += sizeof(*h);
1036
1037 dout("%s from mds%d op %s split %llx tracelen %d\n", __func__,
1038 mds, ceph_snap_op_name(op), split, trace_len);
1039
1040 down_write(&mdsc->snap_rwsem);
1041 locked_rwsem = 1;
1042
1043 if (op == CEPH_SNAP_OP_SPLIT) {
1044 struct ceph_mds_snap_realm *ri;
1045
1046 /*
1047 * A "split" breaks part of an existing realm off into
1048 * a new realm. The MDS provides a list of inodes
1049 * (with caps) and child realms that belong to the new
1050 * child.
1051 */
1052 split_inos = p;
1053 p += sizeof(u64) * num_split_inos;
1054 split_realms = p;
1055 p += sizeof(u64) * num_split_realms;
1056 ceph_decode_need(&p, e, sizeof(*ri), bad);
1057 /* we will peek at realm info here, but will _not_
1058 * advance p, as the realm update will occur below in
1059 * ceph_update_snap_trace. */
1060 ri = p;
1061
1062 realm = ceph_lookup_snap_realm(mdsc, split);
1063 if (!realm) {
1064 realm = ceph_create_snap_realm(mdsc, split);
1065 if (IS_ERR(realm))
1066 goto out;
1067 }
1068
1069 dout("splitting snap_realm %llx %p\n", realm->ino, realm);
1070 for (i = 0; i < num_split_inos; i++) {
1071 struct ceph_vino vino = {
1072 .ino = le64_to_cpu(split_inos[i]),
1073 .snap = CEPH_NOSNAP,
1074 };
1075 struct inode *inode = ceph_find_inode(sb, vino);
1076 struct ceph_inode_info *ci;
1077
1078 if (!inode)
1079 continue;
1080 ci = ceph_inode(inode);
1081
1082 spin_lock(&ci->i_ceph_lock);
1083 if (!ci->i_snap_realm)
1084 goto skip_inode;
1085 /*
1086 * If this inode belongs to a realm that was
1087 * created after our new realm, we experienced
1088 * a race (due to another split notifications
1089 * arriving from a different MDS). So skip
1090 * this inode.
1091 */
1092 if (ci->i_snap_realm->created >
1093 le64_to_cpu(ri->created)) {
1094 dout(" leaving %p %llx.%llx in newer realm %llx %p\n",
1095 inode, ceph_vinop(inode), ci->i_snap_realm->ino,
1096 ci->i_snap_realm);
1097 goto skip_inode;
1098 }
1099 dout(" will move %p %llx.%llx to split realm %llx %p\n",
1100 inode, ceph_vinop(inode), realm->ino, realm);
1101
1102 ceph_get_snap_realm(mdsc, realm);
1103 ceph_change_snap_realm(inode, realm);
1104 spin_unlock(&ci->i_ceph_lock);
1105 iput(inode);
1106 continue;
1107
1108 skip_inode:
1109 spin_unlock(&ci->i_ceph_lock);
1110 iput(inode);
1111 }
1112
1113 /* we may have taken some of the old realm's children. */
1114 for (i = 0; i < num_split_realms; i++) {
1115 struct ceph_snap_realm *child =
1116 __lookup_snap_realm(mdsc,
1117 le64_to_cpu(split_realms[i]));
1118 if (!child)
1119 continue;
1120 adjust_snap_realm_parent(mdsc, child, realm->ino);
1121 }
1122 } else {
1123 /*
1124 * In the non-split case both 'num_split_inos' and
1125 * 'num_split_realms' should be 0, making this a no-op.
1126 * However the MDS happens to populate 'split_realms' list
1127 * in one of the UPDATE op cases by mistake.
1128 *
1129 * Skip both lists just in case to ensure that 'p' is
1130 * positioned at the start of realm info, as expected by
1131 * ceph_update_snap_trace().
1132 */
1133 p += sizeof(u64) * num_split_inos;
1134 p += sizeof(u64) * num_split_realms;
1135 }
1136
1137 /*
1138 * update using the provided snap trace. if we are deleting a
1139 * snap, we can avoid queueing cap_snaps.
1140 */
1141 if (ceph_update_snap_trace(mdsc, p, e,
1142 op == CEPH_SNAP_OP_DESTROY,
1143 NULL)) {
1144 close_sessions = true;
1145 goto bad;
1146 }
1147
1148 if (op == CEPH_SNAP_OP_SPLIT)
1149 /* we took a reference when we created the realm, above */
1150 ceph_put_snap_realm(mdsc, realm);
1151
1152 __cleanup_empty_realms(mdsc);
1153
1154 up_write(&mdsc->snap_rwsem);
1155
1156 flush_snaps(mdsc);
1157 ceph_dec_mds_stopping_blocker(mdsc);
1158 return;
1159
1160 bad:
1161 pr_err("%s corrupt snap message from mds%d\n", __func__, mds);
1162 ceph_msg_dump(msg);
1163 out:
1164 if (locked_rwsem)
1165 up_write(&mdsc->snap_rwsem);
1166
1167 ceph_dec_mds_stopping_blocker(mdsc);
1168
1169 if (close_sessions)
1170 ceph_mdsc_close_sessions(mdsc);
1171 return;
1172 }
1173
ceph_get_snapid_map(struct ceph_mds_client * mdsc,u64 snap)1174 struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
1175 u64 snap)
1176 {
1177 struct ceph_snapid_map *sm, *exist;
1178 struct rb_node **p, *parent;
1179 int ret;
1180
1181 exist = NULL;
1182 spin_lock(&mdsc->snapid_map_lock);
1183 p = &mdsc->snapid_map_tree.rb_node;
1184 while (*p) {
1185 exist = rb_entry(*p, struct ceph_snapid_map, node);
1186 if (snap > exist->snap) {
1187 p = &(*p)->rb_left;
1188 } else if (snap < exist->snap) {
1189 p = &(*p)->rb_right;
1190 } else {
1191 if (atomic_inc_return(&exist->ref) == 1)
1192 list_del_init(&exist->lru);
1193 break;
1194 }
1195 exist = NULL;
1196 }
1197 spin_unlock(&mdsc->snapid_map_lock);
1198 if (exist) {
1199 dout("%s found snapid map %llx -> %x\n", __func__,
1200 exist->snap, exist->dev);
1201 return exist;
1202 }
1203
1204 sm = kmalloc(sizeof(*sm), GFP_NOFS);
1205 if (!sm)
1206 return NULL;
1207
1208 ret = get_anon_bdev(&sm->dev);
1209 if (ret < 0) {
1210 kfree(sm);
1211 return NULL;
1212 }
1213
1214 INIT_LIST_HEAD(&sm->lru);
1215 atomic_set(&sm->ref, 1);
1216 sm->snap = snap;
1217
1218 exist = NULL;
1219 parent = NULL;
1220 p = &mdsc->snapid_map_tree.rb_node;
1221 spin_lock(&mdsc->snapid_map_lock);
1222 while (*p) {
1223 parent = *p;
1224 exist = rb_entry(*p, struct ceph_snapid_map, node);
1225 if (snap > exist->snap)
1226 p = &(*p)->rb_left;
1227 else if (snap < exist->snap)
1228 p = &(*p)->rb_right;
1229 else
1230 break;
1231 exist = NULL;
1232 }
1233 if (exist) {
1234 if (atomic_inc_return(&exist->ref) == 1)
1235 list_del_init(&exist->lru);
1236 } else {
1237 rb_link_node(&sm->node, parent, p);
1238 rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
1239 }
1240 spin_unlock(&mdsc->snapid_map_lock);
1241 if (exist) {
1242 free_anon_bdev(sm->dev);
1243 kfree(sm);
1244 dout("%s found snapid map %llx -> %x\n", __func__,
1245 exist->snap, exist->dev);
1246 return exist;
1247 }
1248
1249 dout("%s create snapid map %llx -> %x\n", __func__,
1250 sm->snap, sm->dev);
1251 return sm;
1252 }
1253
ceph_put_snapid_map(struct ceph_mds_client * mdsc,struct ceph_snapid_map * sm)1254 void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
1255 struct ceph_snapid_map *sm)
1256 {
1257 if (!sm)
1258 return;
1259 if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
1260 if (!RB_EMPTY_NODE(&sm->node)) {
1261 sm->last_used = jiffies;
1262 list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
1263 spin_unlock(&mdsc->snapid_map_lock);
1264 } else {
1265 /* already cleaned up by
1266 * ceph_cleanup_snapid_map() */
1267 spin_unlock(&mdsc->snapid_map_lock);
1268 kfree(sm);
1269 }
1270 }
1271 }
1272
ceph_trim_snapid_map(struct ceph_mds_client * mdsc)1273 void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
1274 {
1275 struct ceph_snapid_map *sm;
1276 unsigned long now;
1277 LIST_HEAD(to_free);
1278
1279 spin_lock(&mdsc->snapid_map_lock);
1280 now = jiffies;
1281
1282 while (!list_empty(&mdsc->snapid_map_lru)) {
1283 sm = list_first_entry(&mdsc->snapid_map_lru,
1284 struct ceph_snapid_map, lru);
1285 if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
1286 break;
1287
1288 rb_erase(&sm->node, &mdsc->snapid_map_tree);
1289 list_move(&sm->lru, &to_free);
1290 }
1291 spin_unlock(&mdsc->snapid_map_lock);
1292
1293 while (!list_empty(&to_free)) {
1294 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1295 list_del(&sm->lru);
1296 dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev);
1297 free_anon_bdev(sm->dev);
1298 kfree(sm);
1299 }
1300 }
1301
ceph_cleanup_snapid_map(struct ceph_mds_client * mdsc)1302 void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
1303 {
1304 struct ceph_snapid_map *sm;
1305 struct rb_node *p;
1306 LIST_HEAD(to_free);
1307
1308 spin_lock(&mdsc->snapid_map_lock);
1309 while ((p = rb_first(&mdsc->snapid_map_tree))) {
1310 sm = rb_entry(p, struct ceph_snapid_map, node);
1311 rb_erase(p, &mdsc->snapid_map_tree);
1312 RB_CLEAR_NODE(p);
1313 list_move(&sm->lru, &to_free);
1314 }
1315 spin_unlock(&mdsc->snapid_map_lock);
1316
1317 while (!list_empty(&to_free)) {
1318 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1319 list_del(&sm->lru);
1320 free_anon_bdev(sm->dev);
1321 if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
1322 pr_err("snapid map %llx -> %x still in use\n",
1323 sm->snap, sm->dev);
1324 }
1325 kfree(sm);
1326 }
1327 }
1328