1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/gfp.h> 7 #include <linux/sched.h> 8 #include <linux/debugfs.h> 9 #include <linux/seq_file.h> 10 #include <linux/utsname.h> 11 #include <linux/ratelimit.h> 12 13 #include "super.h" 14 #include "mds_client.h" 15 16 #include <linux/ceph/ceph_features.h> 17 #include <linux/ceph/messenger.h> 18 #include <linux/ceph/decode.h> 19 #include <linux/ceph/pagelist.h> 20 #include <linux/ceph/auth.h> 21 #include <linux/ceph/debugfs.h> 22 23 /* 24 * A cluster of MDS (metadata server) daemons is responsible for 25 * managing the file system namespace (the directory hierarchy and 26 * inodes) and for coordinating shared access to storage. Metadata is 27 * partitioning hierarchically across a number of servers, and that 28 * partition varies over time as the cluster adjusts the distribution 29 * in order to balance load. 30 * 31 * The MDS client is primarily responsible to managing synchronous 32 * metadata requests for operations like open, unlink, and so forth. 33 * If there is a MDS failure, we find out about it when we (possibly 34 * request and) receive a new MDS map, and can resubmit affected 35 * requests. 36 * 37 * For the most part, though, we take advantage of a lossless 38 * communications channel to the MDS, and do not need to worry about 39 * timing out or resubmitting requests. 40 * 41 * We maintain a stateful "session" with each MDS we interact with. 42 * Within each session, we sent periodic heartbeat messages to ensure 43 * any capabilities or leases we have been issues remain valid. If 44 * the session times out and goes stale, our leases and capabilities 45 * are no longer valid. 46 */ 47 48 struct ceph_reconnect_state { 49 int nr_caps; 50 struct ceph_pagelist *pagelist; 51 unsigned msg_version; 52 }; 53 54 static void __wake_requests(struct ceph_mds_client *mdsc, 55 struct list_head *head); 56 57 static const struct ceph_connection_operations mds_con_ops; 58 59 60 /* 61 * mds reply parsing 62 */ 63 64 /* 65 * parse individual inode info 66 */ 67 static int parse_reply_info_in(void **p, void *end, 68 struct ceph_mds_reply_info_in *info, 69 u64 features) 70 { 71 int err = -EIO; 72 73 info->in = *p; 74 *p += sizeof(struct ceph_mds_reply_inode) + 75 sizeof(*info->in->fragtree.splits) * 76 le32_to_cpu(info->in->fragtree.nsplits); 77 78 ceph_decode_32_safe(p, end, info->symlink_len, bad); 79 ceph_decode_need(p, end, info->symlink_len, bad); 80 info->symlink = *p; 81 *p += info->symlink_len; 82 83 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 84 ceph_decode_copy_safe(p, end, &info->dir_layout, 85 sizeof(info->dir_layout), bad); 86 else 87 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 88 89 ceph_decode_32_safe(p, end, info->xattr_len, bad); 90 ceph_decode_need(p, end, info->xattr_len, bad); 91 info->xattr_data = *p; 92 *p += info->xattr_len; 93 94 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 95 ceph_decode_64_safe(p, end, info->inline_version, bad); 96 ceph_decode_32_safe(p, end, info->inline_len, bad); 97 ceph_decode_need(p, end, info->inline_len, bad); 98 info->inline_data = *p; 99 *p += info->inline_len; 100 } else 101 info->inline_version = CEPH_INLINE_NONE; 102 103 info->pool_ns_len = 0; 104 info->pool_ns_data = NULL; 105 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) { 106 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 107 if (info->pool_ns_len > 0) { 108 ceph_decode_need(p, end, info->pool_ns_len, bad); 109 info->pool_ns_data = *p; 110 *p += info->pool_ns_len; 111 } 112 } 113 114 return 0; 115 bad: 116 return err; 117 } 118 119 /* 120 * parse a normal reply, which may contain a (dir+)dentry and/or a 121 * target inode. 122 */ 123 static int parse_reply_info_trace(void **p, void *end, 124 struct ceph_mds_reply_info_parsed *info, 125 u64 features) 126 { 127 int err; 128 129 if (info->head->is_dentry) { 130 err = parse_reply_info_in(p, end, &info->diri, features); 131 if (err < 0) 132 goto out_bad; 133 134 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 135 goto bad; 136 info->dirfrag = *p; 137 *p += sizeof(*info->dirfrag) + 138 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 139 if (unlikely(*p > end)) 140 goto bad; 141 142 ceph_decode_32_safe(p, end, info->dname_len, bad); 143 ceph_decode_need(p, end, info->dname_len, bad); 144 info->dname = *p; 145 *p += info->dname_len; 146 info->dlease = *p; 147 *p += sizeof(*info->dlease); 148 } 149 150 if (info->head->is_target) { 151 err = parse_reply_info_in(p, end, &info->targeti, features); 152 if (err < 0) 153 goto out_bad; 154 } 155 156 if (unlikely(*p != end)) 157 goto bad; 158 return 0; 159 160 bad: 161 err = -EIO; 162 out_bad: 163 pr_err("problem parsing mds trace %d\n", err); 164 return err; 165 } 166 167 /* 168 * parse readdir results 169 */ 170 static int parse_reply_info_dir(void **p, void *end, 171 struct ceph_mds_reply_info_parsed *info, 172 u64 features) 173 { 174 u32 num, i = 0; 175 int err; 176 177 info->dir_dir = *p; 178 if (*p + sizeof(*info->dir_dir) > end) 179 goto bad; 180 *p += sizeof(*info->dir_dir) + 181 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 182 if (*p > end) 183 goto bad; 184 185 ceph_decode_need(p, end, sizeof(num) + 2, bad); 186 num = ceph_decode_32(p); 187 { 188 u16 flags = ceph_decode_16(p); 189 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END); 190 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE); 191 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER); 192 } 193 if (num == 0) 194 goto done; 195 196 BUG_ON(!info->dir_entries); 197 if ((unsigned long)(info->dir_entries + num) > 198 (unsigned long)info->dir_entries + info->dir_buf_size) { 199 pr_err("dir contents are larger than expected\n"); 200 WARN_ON(1); 201 goto bad; 202 } 203 204 info->dir_nr = num; 205 while (num) { 206 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 207 /* dentry */ 208 ceph_decode_need(p, end, sizeof(u32)*2, bad); 209 rde->name_len = ceph_decode_32(p); 210 ceph_decode_need(p, end, rde->name_len, bad); 211 rde->name = *p; 212 *p += rde->name_len; 213 dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name); 214 rde->lease = *p; 215 *p += sizeof(struct ceph_mds_reply_lease); 216 217 /* inode */ 218 err = parse_reply_info_in(p, end, &rde->inode, features); 219 if (err < 0) 220 goto out_bad; 221 /* ceph_readdir_prepopulate() will update it */ 222 rde->offset = 0; 223 i++; 224 num--; 225 } 226 227 done: 228 if (*p != end) 229 goto bad; 230 return 0; 231 232 bad: 233 err = -EIO; 234 out_bad: 235 pr_err("problem parsing dir contents %d\n", err); 236 return err; 237 } 238 239 /* 240 * parse fcntl F_GETLK results 241 */ 242 static int parse_reply_info_filelock(void **p, void *end, 243 struct ceph_mds_reply_info_parsed *info, 244 u64 features) 245 { 246 if (*p + sizeof(*info->filelock_reply) > end) 247 goto bad; 248 249 info->filelock_reply = *p; 250 *p += sizeof(*info->filelock_reply); 251 252 if (unlikely(*p != end)) 253 goto bad; 254 return 0; 255 256 bad: 257 return -EIO; 258 } 259 260 /* 261 * parse create results 262 */ 263 static int parse_reply_info_create(void **p, void *end, 264 struct ceph_mds_reply_info_parsed *info, 265 u64 features) 266 { 267 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) { 268 if (*p == end) { 269 info->has_create_ino = false; 270 } else { 271 info->has_create_ino = true; 272 info->ino = ceph_decode_64(p); 273 } 274 } 275 276 if (unlikely(*p != end)) 277 goto bad; 278 return 0; 279 280 bad: 281 return -EIO; 282 } 283 284 /* 285 * parse extra results 286 */ 287 static int parse_reply_info_extra(void **p, void *end, 288 struct ceph_mds_reply_info_parsed *info, 289 u64 features) 290 { 291 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 292 return parse_reply_info_filelock(p, end, info, features); 293 else if (info->head->op == CEPH_MDS_OP_READDIR || 294 info->head->op == CEPH_MDS_OP_LSSNAP) 295 return parse_reply_info_dir(p, end, info, features); 296 else if (info->head->op == CEPH_MDS_OP_CREATE) 297 return parse_reply_info_create(p, end, info, features); 298 else 299 return -EIO; 300 } 301 302 /* 303 * parse entire mds reply 304 */ 305 static int parse_reply_info(struct ceph_msg *msg, 306 struct ceph_mds_reply_info_parsed *info, 307 u64 features) 308 { 309 void *p, *end; 310 u32 len; 311 int err; 312 313 info->head = msg->front.iov_base; 314 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 315 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 316 317 /* trace */ 318 ceph_decode_32_safe(&p, end, len, bad); 319 if (len > 0) { 320 ceph_decode_need(&p, end, len, bad); 321 err = parse_reply_info_trace(&p, p+len, info, features); 322 if (err < 0) 323 goto out_bad; 324 } 325 326 /* extra */ 327 ceph_decode_32_safe(&p, end, len, bad); 328 if (len > 0) { 329 ceph_decode_need(&p, end, len, bad); 330 err = parse_reply_info_extra(&p, p+len, info, features); 331 if (err < 0) 332 goto out_bad; 333 } 334 335 /* snap blob */ 336 ceph_decode_32_safe(&p, end, len, bad); 337 info->snapblob_len = len; 338 info->snapblob = p; 339 p += len; 340 341 if (p != end) 342 goto bad; 343 return 0; 344 345 bad: 346 err = -EIO; 347 out_bad: 348 pr_err("mds parse_reply err %d\n", err); 349 return err; 350 } 351 352 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 353 { 354 if (!info->dir_entries) 355 return; 356 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size)); 357 } 358 359 360 /* 361 * sessions 362 */ 363 const char *ceph_session_state_name(int s) 364 { 365 switch (s) { 366 case CEPH_MDS_SESSION_NEW: return "new"; 367 case CEPH_MDS_SESSION_OPENING: return "opening"; 368 case CEPH_MDS_SESSION_OPEN: return "open"; 369 case CEPH_MDS_SESSION_HUNG: return "hung"; 370 case CEPH_MDS_SESSION_CLOSING: return "closing"; 371 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 372 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 373 default: return "???"; 374 } 375 } 376 377 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 378 { 379 if (atomic_inc_not_zero(&s->s_ref)) { 380 dout("mdsc get_session %p %d -> %d\n", s, 381 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 382 return s; 383 } else { 384 dout("mdsc get_session %p 0 -- FAIL", s); 385 return NULL; 386 } 387 } 388 389 void ceph_put_mds_session(struct ceph_mds_session *s) 390 { 391 dout("mdsc put_session %p %d -> %d\n", s, 392 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 393 if (atomic_dec_and_test(&s->s_ref)) { 394 if (s->s_auth.authorizer) 395 ceph_auth_destroy_authorizer(s->s_auth.authorizer); 396 kfree(s); 397 } 398 } 399 400 /* 401 * called under mdsc->mutex 402 */ 403 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 404 int mds) 405 { 406 struct ceph_mds_session *session; 407 408 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 409 return NULL; 410 session = mdsc->sessions[mds]; 411 dout("lookup_mds_session %p %d\n", session, 412 atomic_read(&session->s_ref)); 413 get_session(session); 414 return session; 415 } 416 417 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 418 { 419 if (mds >= mdsc->max_sessions) 420 return false; 421 return mdsc->sessions[mds]; 422 } 423 424 static int __verify_registered_session(struct ceph_mds_client *mdsc, 425 struct ceph_mds_session *s) 426 { 427 if (s->s_mds >= mdsc->max_sessions || 428 mdsc->sessions[s->s_mds] != s) 429 return -ENOENT; 430 return 0; 431 } 432 433 /* 434 * create+register a new session for given mds. 435 * called under mdsc->mutex. 436 */ 437 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 438 int mds) 439 { 440 struct ceph_mds_session *s; 441 442 if (mds >= mdsc->mdsmap->m_max_mds) 443 return ERR_PTR(-EINVAL); 444 445 s = kzalloc(sizeof(*s), GFP_NOFS); 446 if (!s) 447 return ERR_PTR(-ENOMEM); 448 s->s_mdsc = mdsc; 449 s->s_mds = mds; 450 s->s_state = CEPH_MDS_SESSION_NEW; 451 s->s_ttl = 0; 452 s->s_seq = 0; 453 mutex_init(&s->s_mutex); 454 455 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 456 457 spin_lock_init(&s->s_gen_ttl_lock); 458 s->s_cap_gen = 0; 459 s->s_cap_ttl = jiffies - 1; 460 461 spin_lock_init(&s->s_cap_lock); 462 s->s_renew_requested = 0; 463 s->s_renew_seq = 0; 464 INIT_LIST_HEAD(&s->s_caps); 465 s->s_nr_caps = 0; 466 s->s_trim_caps = 0; 467 atomic_set(&s->s_ref, 1); 468 INIT_LIST_HEAD(&s->s_waiting); 469 INIT_LIST_HEAD(&s->s_unsafe); 470 s->s_num_cap_releases = 0; 471 s->s_cap_reconnect = 0; 472 s->s_cap_iterator = NULL; 473 INIT_LIST_HEAD(&s->s_cap_releases); 474 INIT_LIST_HEAD(&s->s_cap_flushing); 475 476 dout("register_session mds%d\n", mds); 477 if (mds >= mdsc->max_sessions) { 478 int newmax = 1 << get_count_order(mds+1); 479 struct ceph_mds_session **sa; 480 481 dout("register_session realloc to %d\n", newmax); 482 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 483 if (sa == NULL) 484 goto fail_realloc; 485 if (mdsc->sessions) { 486 memcpy(sa, mdsc->sessions, 487 mdsc->max_sessions * sizeof(void *)); 488 kfree(mdsc->sessions); 489 } 490 mdsc->sessions = sa; 491 mdsc->max_sessions = newmax; 492 } 493 mdsc->sessions[mds] = s; 494 atomic_inc(&mdsc->num_sessions); 495 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 496 497 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 498 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 499 500 return s; 501 502 fail_realloc: 503 kfree(s); 504 return ERR_PTR(-ENOMEM); 505 } 506 507 /* 508 * called under mdsc->mutex 509 */ 510 static void __unregister_session(struct ceph_mds_client *mdsc, 511 struct ceph_mds_session *s) 512 { 513 dout("__unregister_session mds%d %p\n", s->s_mds, s); 514 BUG_ON(mdsc->sessions[s->s_mds] != s); 515 mdsc->sessions[s->s_mds] = NULL; 516 ceph_con_close(&s->s_con); 517 ceph_put_mds_session(s); 518 atomic_dec(&mdsc->num_sessions); 519 } 520 521 /* 522 * drop session refs in request. 523 * 524 * should be last request ref, or hold mdsc->mutex 525 */ 526 static void put_request_session(struct ceph_mds_request *req) 527 { 528 if (req->r_session) { 529 ceph_put_mds_session(req->r_session); 530 req->r_session = NULL; 531 } 532 } 533 534 void ceph_mdsc_release_request(struct kref *kref) 535 { 536 struct ceph_mds_request *req = container_of(kref, 537 struct ceph_mds_request, 538 r_kref); 539 destroy_reply_info(&req->r_reply_info); 540 if (req->r_request) 541 ceph_msg_put(req->r_request); 542 if (req->r_reply) 543 ceph_msg_put(req->r_reply); 544 if (req->r_inode) { 545 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 546 iput(req->r_inode); 547 } 548 if (req->r_locked_dir) 549 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 550 iput(req->r_target_inode); 551 if (req->r_dentry) 552 dput(req->r_dentry); 553 if (req->r_old_dentry) 554 dput(req->r_old_dentry); 555 if (req->r_old_dentry_dir) { 556 /* 557 * track (and drop pins for) r_old_dentry_dir 558 * separately, since r_old_dentry's d_parent may have 559 * changed between the dir mutex being dropped and 560 * this request being freed. 561 */ 562 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 563 CEPH_CAP_PIN); 564 iput(req->r_old_dentry_dir); 565 } 566 kfree(req->r_path1); 567 kfree(req->r_path2); 568 if (req->r_pagelist) 569 ceph_pagelist_release(req->r_pagelist); 570 put_request_session(req); 571 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 572 kfree(req); 573 } 574 575 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node) 576 577 /* 578 * lookup session, bump ref if found. 579 * 580 * called under mdsc->mutex. 581 */ 582 static struct ceph_mds_request * 583 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid) 584 { 585 struct ceph_mds_request *req; 586 587 req = lookup_request(&mdsc->request_tree, tid); 588 if (req) 589 ceph_mdsc_get_request(req); 590 591 return req; 592 } 593 594 /* 595 * Register an in-flight request, and assign a tid. Link to directory 596 * are modifying (if any). 597 * 598 * Called under mdsc->mutex. 599 */ 600 static void __register_request(struct ceph_mds_client *mdsc, 601 struct ceph_mds_request *req, 602 struct inode *dir) 603 { 604 req->r_tid = ++mdsc->last_tid; 605 if (req->r_num_caps) 606 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 607 req->r_num_caps); 608 dout("__register_request %p tid %lld\n", req, req->r_tid); 609 ceph_mdsc_get_request(req); 610 insert_request(&mdsc->request_tree, req); 611 612 req->r_uid = current_fsuid(); 613 req->r_gid = current_fsgid(); 614 615 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) 616 mdsc->oldest_tid = req->r_tid; 617 618 if (dir) { 619 ihold(dir); 620 req->r_unsafe_dir = dir; 621 } 622 } 623 624 static void __unregister_request(struct ceph_mds_client *mdsc, 625 struct ceph_mds_request *req) 626 { 627 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 628 629 if (req->r_tid == mdsc->oldest_tid) { 630 struct rb_node *p = rb_next(&req->r_node); 631 mdsc->oldest_tid = 0; 632 while (p) { 633 struct ceph_mds_request *next_req = 634 rb_entry(p, struct ceph_mds_request, r_node); 635 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { 636 mdsc->oldest_tid = next_req->r_tid; 637 break; 638 } 639 p = rb_next(p); 640 } 641 } 642 643 erase_request(&mdsc->request_tree, req); 644 645 if (req->r_unsafe_dir && req->r_got_unsafe) { 646 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 647 spin_lock(&ci->i_unsafe_lock); 648 list_del_init(&req->r_unsafe_dir_item); 649 spin_unlock(&ci->i_unsafe_lock); 650 } 651 if (req->r_target_inode && req->r_got_unsafe) { 652 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 653 spin_lock(&ci->i_unsafe_lock); 654 list_del_init(&req->r_unsafe_target_item); 655 spin_unlock(&ci->i_unsafe_lock); 656 } 657 658 if (req->r_unsafe_dir) { 659 iput(req->r_unsafe_dir); 660 req->r_unsafe_dir = NULL; 661 } 662 663 complete_all(&req->r_safe_completion); 664 665 ceph_mdsc_put_request(req); 666 } 667 668 /* 669 * Choose mds to send request to next. If there is a hint set in the 670 * request (e.g., due to a prior forward hint from the mds), use that. 671 * Otherwise, consult frag tree and/or caps to identify the 672 * appropriate mds. If all else fails, choose randomly. 673 * 674 * Called under mdsc->mutex. 675 */ 676 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 677 { 678 /* 679 * we don't need to worry about protecting the d_parent access 680 * here because we never renaming inside the snapped namespace 681 * except to resplice to another snapdir, and either the old or new 682 * result is a valid result. 683 */ 684 while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP) 685 dentry = dentry->d_parent; 686 return dentry; 687 } 688 689 static int __choose_mds(struct ceph_mds_client *mdsc, 690 struct ceph_mds_request *req) 691 { 692 struct inode *inode; 693 struct ceph_inode_info *ci; 694 struct ceph_cap *cap; 695 int mode = req->r_direct_mode; 696 int mds = -1; 697 u32 hash = req->r_direct_hash; 698 bool is_hash = req->r_direct_is_hash; 699 700 /* 701 * is there a specific mds we should try? ignore hint if we have 702 * no session and the mds is not up (active or recovering). 703 */ 704 if (req->r_resend_mds >= 0 && 705 (__have_session(mdsc, req->r_resend_mds) || 706 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 707 dout("choose_mds using resend_mds mds%d\n", 708 req->r_resend_mds); 709 return req->r_resend_mds; 710 } 711 712 if (mode == USE_RANDOM_MDS) 713 goto random; 714 715 inode = NULL; 716 if (req->r_inode) { 717 inode = req->r_inode; 718 } else if (req->r_dentry) { 719 /* ignore race with rename; old or new d_parent is okay */ 720 struct dentry *parent = req->r_dentry->d_parent; 721 struct inode *dir = d_inode(parent); 722 723 if (dir->i_sb != mdsc->fsc->sb) { 724 /* not this fs! */ 725 inode = d_inode(req->r_dentry); 726 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 727 /* direct snapped/virtual snapdir requests 728 * based on parent dir inode */ 729 struct dentry *dn = get_nonsnap_parent(parent); 730 inode = d_inode(dn); 731 dout("__choose_mds using nonsnap parent %p\n", inode); 732 } else { 733 /* dentry target */ 734 inode = d_inode(req->r_dentry); 735 if (!inode || mode == USE_AUTH_MDS) { 736 /* dir + name */ 737 inode = dir; 738 hash = ceph_dentry_hash(dir, req->r_dentry); 739 is_hash = true; 740 } 741 } 742 } 743 744 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 745 (int)hash, mode); 746 if (!inode) 747 goto random; 748 ci = ceph_inode(inode); 749 750 if (is_hash && S_ISDIR(inode->i_mode)) { 751 struct ceph_inode_frag frag; 752 int found; 753 754 ceph_choose_frag(ci, hash, &frag, &found); 755 if (found) { 756 if (mode == USE_ANY_MDS && frag.ndist > 0) { 757 u8 r; 758 759 /* choose a random replica */ 760 get_random_bytes(&r, 1); 761 r %= frag.ndist; 762 mds = frag.dist[r]; 763 dout("choose_mds %p %llx.%llx " 764 "frag %u mds%d (%d/%d)\n", 765 inode, ceph_vinop(inode), 766 frag.frag, mds, 767 (int)r, frag.ndist); 768 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 769 CEPH_MDS_STATE_ACTIVE) 770 return mds; 771 } 772 773 /* since this file/dir wasn't known to be 774 * replicated, then we want to look for the 775 * authoritative mds. */ 776 mode = USE_AUTH_MDS; 777 if (frag.mds >= 0) { 778 /* choose auth mds */ 779 mds = frag.mds; 780 dout("choose_mds %p %llx.%llx " 781 "frag %u mds%d (auth)\n", 782 inode, ceph_vinop(inode), frag.frag, mds); 783 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 784 CEPH_MDS_STATE_ACTIVE) 785 return mds; 786 } 787 } 788 } 789 790 spin_lock(&ci->i_ceph_lock); 791 cap = NULL; 792 if (mode == USE_AUTH_MDS) 793 cap = ci->i_auth_cap; 794 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 795 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 796 if (!cap) { 797 spin_unlock(&ci->i_ceph_lock); 798 goto random; 799 } 800 mds = cap->session->s_mds; 801 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 802 inode, ceph_vinop(inode), mds, 803 cap == ci->i_auth_cap ? "auth " : "", cap); 804 spin_unlock(&ci->i_ceph_lock); 805 return mds; 806 807 random: 808 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 809 dout("choose_mds chose random mds%d\n", mds); 810 return mds; 811 } 812 813 814 /* 815 * session messages 816 */ 817 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 818 { 819 struct ceph_msg *msg; 820 struct ceph_mds_session_head *h; 821 822 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 823 false); 824 if (!msg) { 825 pr_err("create_session_msg ENOMEM creating msg\n"); 826 return NULL; 827 } 828 h = msg->front.iov_base; 829 h->op = cpu_to_le32(op); 830 h->seq = cpu_to_le64(seq); 831 832 return msg; 833 } 834 835 /* 836 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 837 * to include additional client metadata fields. 838 */ 839 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq) 840 { 841 struct ceph_msg *msg; 842 struct ceph_mds_session_head *h; 843 int i = -1; 844 int metadata_bytes = 0; 845 int metadata_key_count = 0; 846 struct ceph_options *opt = mdsc->fsc->client->options; 847 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options; 848 void *p; 849 850 const char* metadata[][2] = { 851 {"hostname", utsname()->nodename}, 852 {"kernel_version", utsname()->release}, 853 {"entity_id", opt->name ? : ""}, 854 {"root", fsopt->server_path ? : "/"}, 855 {NULL, NULL} 856 }; 857 858 /* Calculate serialized length of metadata */ 859 metadata_bytes = 4; /* map length */ 860 for (i = 0; metadata[i][0] != NULL; ++i) { 861 metadata_bytes += 8 + strlen(metadata[i][0]) + 862 strlen(metadata[i][1]); 863 metadata_key_count++; 864 } 865 866 /* Allocate the message */ 867 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes, 868 GFP_NOFS, false); 869 if (!msg) { 870 pr_err("create_session_msg ENOMEM creating msg\n"); 871 return NULL; 872 } 873 h = msg->front.iov_base; 874 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN); 875 h->seq = cpu_to_le64(seq); 876 877 /* 878 * Serialize client metadata into waiting buffer space, using 879 * the format that userspace expects for map<string, string> 880 * 881 * ClientSession messages with metadata are v2 882 */ 883 msg->hdr.version = cpu_to_le16(2); 884 msg->hdr.compat_version = cpu_to_le16(1); 885 886 /* The write pointer, following the session_head structure */ 887 p = msg->front.iov_base + sizeof(*h); 888 889 /* Number of entries in the map */ 890 ceph_encode_32(&p, metadata_key_count); 891 892 /* Two length-prefixed strings for each entry in the map */ 893 for (i = 0; metadata[i][0] != NULL; ++i) { 894 size_t const key_len = strlen(metadata[i][0]); 895 size_t const val_len = strlen(metadata[i][1]); 896 897 ceph_encode_32(&p, key_len); 898 memcpy(p, metadata[i][0], key_len); 899 p += key_len; 900 ceph_encode_32(&p, val_len); 901 memcpy(p, metadata[i][1], val_len); 902 p += val_len; 903 } 904 905 return msg; 906 } 907 908 /* 909 * send session open request. 910 * 911 * called under mdsc->mutex 912 */ 913 static int __open_session(struct ceph_mds_client *mdsc, 914 struct ceph_mds_session *session) 915 { 916 struct ceph_msg *msg; 917 int mstate; 918 int mds = session->s_mds; 919 920 /* wait for mds to go active? */ 921 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 922 dout("open_session to mds%d (%s)\n", mds, 923 ceph_mds_state_name(mstate)); 924 session->s_state = CEPH_MDS_SESSION_OPENING; 925 session->s_renew_requested = jiffies; 926 927 /* send connect message */ 928 msg = create_session_open_msg(mdsc, session->s_seq); 929 if (!msg) 930 return -ENOMEM; 931 ceph_con_send(&session->s_con, msg); 932 return 0; 933 } 934 935 /* 936 * open sessions for any export targets for the given mds 937 * 938 * called under mdsc->mutex 939 */ 940 static struct ceph_mds_session * 941 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 942 { 943 struct ceph_mds_session *session; 944 945 session = __ceph_lookup_mds_session(mdsc, target); 946 if (!session) { 947 session = register_session(mdsc, target); 948 if (IS_ERR(session)) 949 return session; 950 } 951 if (session->s_state == CEPH_MDS_SESSION_NEW || 952 session->s_state == CEPH_MDS_SESSION_CLOSING) 953 __open_session(mdsc, session); 954 955 return session; 956 } 957 958 struct ceph_mds_session * 959 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 960 { 961 struct ceph_mds_session *session; 962 963 dout("open_export_target_session to mds%d\n", target); 964 965 mutex_lock(&mdsc->mutex); 966 session = __open_export_target_session(mdsc, target); 967 mutex_unlock(&mdsc->mutex); 968 969 return session; 970 } 971 972 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 973 struct ceph_mds_session *session) 974 { 975 struct ceph_mds_info *mi; 976 struct ceph_mds_session *ts; 977 int i, mds = session->s_mds; 978 979 if (mds >= mdsc->mdsmap->m_max_mds) 980 return; 981 982 mi = &mdsc->mdsmap->m_info[mds]; 983 dout("open_export_target_sessions for mds%d (%d targets)\n", 984 session->s_mds, mi->num_export_targets); 985 986 for (i = 0; i < mi->num_export_targets; i++) { 987 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 988 if (!IS_ERR(ts)) 989 ceph_put_mds_session(ts); 990 } 991 } 992 993 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 994 struct ceph_mds_session *session) 995 { 996 mutex_lock(&mdsc->mutex); 997 __open_export_target_sessions(mdsc, session); 998 mutex_unlock(&mdsc->mutex); 999 } 1000 1001 /* 1002 * session caps 1003 */ 1004 1005 /* caller holds s_cap_lock, we drop it */ 1006 static void cleanup_cap_releases(struct ceph_mds_client *mdsc, 1007 struct ceph_mds_session *session) 1008 __releases(session->s_cap_lock) 1009 { 1010 LIST_HEAD(tmp_list); 1011 list_splice_init(&session->s_cap_releases, &tmp_list); 1012 session->s_num_cap_releases = 0; 1013 spin_unlock(&session->s_cap_lock); 1014 1015 dout("cleanup_cap_releases mds%d\n", session->s_mds); 1016 while (!list_empty(&tmp_list)) { 1017 struct ceph_cap *cap; 1018 /* zero out the in-progress message */ 1019 cap = list_first_entry(&tmp_list, 1020 struct ceph_cap, session_caps); 1021 list_del(&cap->session_caps); 1022 ceph_put_cap(mdsc, cap); 1023 } 1024 } 1025 1026 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1027 struct ceph_mds_session *session) 1028 { 1029 struct ceph_mds_request *req; 1030 struct rb_node *p; 1031 1032 dout("cleanup_session_requests mds%d\n", session->s_mds); 1033 mutex_lock(&mdsc->mutex); 1034 while (!list_empty(&session->s_unsafe)) { 1035 req = list_first_entry(&session->s_unsafe, 1036 struct ceph_mds_request, r_unsafe_item); 1037 list_del_init(&req->r_unsafe_item); 1038 pr_warn_ratelimited(" dropping unsafe request %llu\n", 1039 req->r_tid); 1040 __unregister_request(mdsc, req); 1041 } 1042 /* zero r_attempts, so kick_requests() will re-send requests */ 1043 p = rb_first(&mdsc->request_tree); 1044 while (p) { 1045 req = rb_entry(p, struct ceph_mds_request, r_node); 1046 p = rb_next(p); 1047 if (req->r_session && 1048 req->r_session->s_mds == session->s_mds) 1049 req->r_attempts = 0; 1050 } 1051 mutex_unlock(&mdsc->mutex); 1052 } 1053 1054 /* 1055 * Helper to safely iterate over all caps associated with a session, with 1056 * special care taken to handle a racing __ceph_remove_cap(). 1057 * 1058 * Caller must hold session s_mutex. 1059 */ 1060 static int iterate_session_caps(struct ceph_mds_session *session, 1061 int (*cb)(struct inode *, struct ceph_cap *, 1062 void *), void *arg) 1063 { 1064 struct list_head *p; 1065 struct ceph_cap *cap; 1066 struct inode *inode, *last_inode = NULL; 1067 struct ceph_cap *old_cap = NULL; 1068 int ret; 1069 1070 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 1071 spin_lock(&session->s_cap_lock); 1072 p = session->s_caps.next; 1073 while (p != &session->s_caps) { 1074 cap = list_entry(p, struct ceph_cap, session_caps); 1075 inode = igrab(&cap->ci->vfs_inode); 1076 if (!inode) { 1077 p = p->next; 1078 continue; 1079 } 1080 session->s_cap_iterator = cap; 1081 spin_unlock(&session->s_cap_lock); 1082 1083 if (last_inode) { 1084 iput(last_inode); 1085 last_inode = NULL; 1086 } 1087 if (old_cap) { 1088 ceph_put_cap(session->s_mdsc, old_cap); 1089 old_cap = NULL; 1090 } 1091 1092 ret = cb(inode, cap, arg); 1093 last_inode = inode; 1094 1095 spin_lock(&session->s_cap_lock); 1096 p = p->next; 1097 if (cap->ci == NULL) { 1098 dout("iterate_session_caps finishing cap %p removal\n", 1099 cap); 1100 BUG_ON(cap->session != session); 1101 cap->session = NULL; 1102 list_del_init(&cap->session_caps); 1103 session->s_nr_caps--; 1104 if (cap->queue_release) { 1105 list_add_tail(&cap->session_caps, 1106 &session->s_cap_releases); 1107 session->s_num_cap_releases++; 1108 } else { 1109 old_cap = cap; /* put_cap it w/o locks held */ 1110 } 1111 } 1112 if (ret < 0) 1113 goto out; 1114 } 1115 ret = 0; 1116 out: 1117 session->s_cap_iterator = NULL; 1118 spin_unlock(&session->s_cap_lock); 1119 1120 iput(last_inode); 1121 if (old_cap) 1122 ceph_put_cap(session->s_mdsc, old_cap); 1123 1124 return ret; 1125 } 1126 1127 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 1128 void *arg) 1129 { 1130 struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg; 1131 struct ceph_inode_info *ci = ceph_inode(inode); 1132 LIST_HEAD(to_remove); 1133 bool drop = false; 1134 bool invalidate = false; 1135 1136 dout("removing cap %p, ci is %p, inode is %p\n", 1137 cap, ci, &ci->vfs_inode); 1138 spin_lock(&ci->i_ceph_lock); 1139 __ceph_remove_cap(cap, false); 1140 if (!ci->i_auth_cap) { 1141 struct ceph_cap_flush *cf; 1142 struct ceph_mds_client *mdsc = fsc->mdsc; 1143 1144 ci->i_ceph_flags |= CEPH_I_CAP_DROPPED; 1145 1146 if (ci->i_wrbuffer_ref > 0 && 1147 ACCESS_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 1148 invalidate = true; 1149 1150 while (!list_empty(&ci->i_cap_flush_list)) { 1151 cf = list_first_entry(&ci->i_cap_flush_list, 1152 struct ceph_cap_flush, i_list); 1153 list_del(&cf->i_list); 1154 list_add(&cf->i_list, &to_remove); 1155 } 1156 1157 spin_lock(&mdsc->cap_dirty_lock); 1158 1159 list_for_each_entry(cf, &to_remove, i_list) 1160 list_del(&cf->g_list); 1161 1162 if (!list_empty(&ci->i_dirty_item)) { 1163 pr_warn_ratelimited( 1164 " dropping dirty %s state for %p %lld\n", 1165 ceph_cap_string(ci->i_dirty_caps), 1166 inode, ceph_ino(inode)); 1167 ci->i_dirty_caps = 0; 1168 list_del_init(&ci->i_dirty_item); 1169 drop = true; 1170 } 1171 if (!list_empty(&ci->i_flushing_item)) { 1172 pr_warn_ratelimited( 1173 " dropping dirty+flushing %s state for %p %lld\n", 1174 ceph_cap_string(ci->i_flushing_caps), 1175 inode, ceph_ino(inode)); 1176 ci->i_flushing_caps = 0; 1177 list_del_init(&ci->i_flushing_item); 1178 mdsc->num_cap_flushing--; 1179 drop = true; 1180 } 1181 spin_unlock(&mdsc->cap_dirty_lock); 1182 1183 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) { 1184 list_add(&ci->i_prealloc_cap_flush->i_list, &to_remove); 1185 ci->i_prealloc_cap_flush = NULL; 1186 } 1187 } 1188 spin_unlock(&ci->i_ceph_lock); 1189 while (!list_empty(&to_remove)) { 1190 struct ceph_cap_flush *cf; 1191 cf = list_first_entry(&to_remove, 1192 struct ceph_cap_flush, i_list); 1193 list_del(&cf->i_list); 1194 ceph_free_cap_flush(cf); 1195 } 1196 1197 wake_up_all(&ci->i_cap_wq); 1198 if (invalidate) 1199 ceph_queue_invalidate(inode); 1200 if (drop) 1201 iput(inode); 1202 return 0; 1203 } 1204 1205 /* 1206 * caller must hold session s_mutex 1207 */ 1208 static void remove_session_caps(struct ceph_mds_session *session) 1209 { 1210 struct ceph_fs_client *fsc = session->s_mdsc->fsc; 1211 struct super_block *sb = fsc->sb; 1212 dout("remove_session_caps on %p\n", session); 1213 iterate_session_caps(session, remove_session_caps_cb, fsc); 1214 1215 wake_up_all(&fsc->mdsc->cap_flushing_wq); 1216 1217 spin_lock(&session->s_cap_lock); 1218 if (session->s_nr_caps > 0) { 1219 struct inode *inode; 1220 struct ceph_cap *cap, *prev = NULL; 1221 struct ceph_vino vino; 1222 /* 1223 * iterate_session_caps() skips inodes that are being 1224 * deleted, we need to wait until deletions are complete. 1225 * __wait_on_freeing_inode() is designed for the job, 1226 * but it is not exported, so use lookup inode function 1227 * to access it. 1228 */ 1229 while (!list_empty(&session->s_caps)) { 1230 cap = list_entry(session->s_caps.next, 1231 struct ceph_cap, session_caps); 1232 if (cap == prev) 1233 break; 1234 prev = cap; 1235 vino = cap->ci->i_vino; 1236 spin_unlock(&session->s_cap_lock); 1237 1238 inode = ceph_find_inode(sb, vino); 1239 iput(inode); 1240 1241 spin_lock(&session->s_cap_lock); 1242 } 1243 } 1244 1245 // drop cap expires and unlock s_cap_lock 1246 cleanup_cap_releases(session->s_mdsc, session); 1247 1248 BUG_ON(session->s_nr_caps > 0); 1249 BUG_ON(!list_empty(&session->s_cap_flushing)); 1250 } 1251 1252 /* 1253 * wake up any threads waiting on this session's caps. if the cap is 1254 * old (didn't get renewed on the client reconnect), remove it now. 1255 * 1256 * caller must hold s_mutex. 1257 */ 1258 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1259 void *arg) 1260 { 1261 struct ceph_inode_info *ci = ceph_inode(inode); 1262 1263 if (arg) { 1264 spin_lock(&ci->i_ceph_lock); 1265 ci->i_wanted_max_size = 0; 1266 ci->i_requested_max_size = 0; 1267 spin_unlock(&ci->i_ceph_lock); 1268 } 1269 wake_up_all(&ci->i_cap_wq); 1270 return 0; 1271 } 1272 1273 static void wake_up_session_caps(struct ceph_mds_session *session, 1274 int reconnect) 1275 { 1276 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1277 iterate_session_caps(session, wake_up_session_cb, 1278 (void *)(unsigned long)reconnect); 1279 } 1280 1281 /* 1282 * Send periodic message to MDS renewing all currently held caps. The 1283 * ack will reset the expiration for all caps from this session. 1284 * 1285 * caller holds s_mutex 1286 */ 1287 static int send_renew_caps(struct ceph_mds_client *mdsc, 1288 struct ceph_mds_session *session) 1289 { 1290 struct ceph_msg *msg; 1291 int state; 1292 1293 if (time_after_eq(jiffies, session->s_cap_ttl) && 1294 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1295 pr_info("mds%d caps stale\n", session->s_mds); 1296 session->s_renew_requested = jiffies; 1297 1298 /* do not try to renew caps until a recovering mds has reconnected 1299 * with its clients. */ 1300 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1301 if (state < CEPH_MDS_STATE_RECONNECT) { 1302 dout("send_renew_caps ignoring mds%d (%s)\n", 1303 session->s_mds, ceph_mds_state_name(state)); 1304 return 0; 1305 } 1306 1307 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1308 ceph_mds_state_name(state)); 1309 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1310 ++session->s_renew_seq); 1311 if (!msg) 1312 return -ENOMEM; 1313 ceph_con_send(&session->s_con, msg); 1314 return 0; 1315 } 1316 1317 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 1318 struct ceph_mds_session *session, u64 seq) 1319 { 1320 struct ceph_msg *msg; 1321 1322 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 1323 session->s_mds, ceph_session_state_name(session->s_state), seq); 1324 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 1325 if (!msg) 1326 return -ENOMEM; 1327 ceph_con_send(&session->s_con, msg); 1328 return 0; 1329 } 1330 1331 1332 /* 1333 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1334 * 1335 * Called under session->s_mutex 1336 */ 1337 static void renewed_caps(struct ceph_mds_client *mdsc, 1338 struct ceph_mds_session *session, int is_renew) 1339 { 1340 int was_stale; 1341 int wake = 0; 1342 1343 spin_lock(&session->s_cap_lock); 1344 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1345 1346 session->s_cap_ttl = session->s_renew_requested + 1347 mdsc->mdsmap->m_session_timeout*HZ; 1348 1349 if (was_stale) { 1350 if (time_before(jiffies, session->s_cap_ttl)) { 1351 pr_info("mds%d caps renewed\n", session->s_mds); 1352 wake = 1; 1353 } else { 1354 pr_info("mds%d caps still stale\n", session->s_mds); 1355 } 1356 } 1357 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1358 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1359 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1360 spin_unlock(&session->s_cap_lock); 1361 1362 if (wake) 1363 wake_up_session_caps(session, 0); 1364 } 1365 1366 /* 1367 * send a session close request 1368 */ 1369 static int request_close_session(struct ceph_mds_client *mdsc, 1370 struct ceph_mds_session *session) 1371 { 1372 struct ceph_msg *msg; 1373 1374 dout("request_close_session mds%d state %s seq %lld\n", 1375 session->s_mds, ceph_session_state_name(session->s_state), 1376 session->s_seq); 1377 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1378 if (!msg) 1379 return -ENOMEM; 1380 ceph_con_send(&session->s_con, msg); 1381 return 0; 1382 } 1383 1384 /* 1385 * Called with s_mutex held. 1386 */ 1387 static int __close_session(struct ceph_mds_client *mdsc, 1388 struct ceph_mds_session *session) 1389 { 1390 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1391 return 0; 1392 session->s_state = CEPH_MDS_SESSION_CLOSING; 1393 return request_close_session(mdsc, session); 1394 } 1395 1396 /* 1397 * Trim old(er) caps. 1398 * 1399 * Because we can't cache an inode without one or more caps, we do 1400 * this indirectly: if a cap is unused, we prune its aliases, at which 1401 * point the inode will hopefully get dropped to. 1402 * 1403 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1404 * memory pressure from the MDS, though, so it needn't be perfect. 1405 */ 1406 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1407 { 1408 struct ceph_mds_session *session = arg; 1409 struct ceph_inode_info *ci = ceph_inode(inode); 1410 int used, wanted, oissued, mine; 1411 1412 if (session->s_trim_caps <= 0) 1413 return -1; 1414 1415 spin_lock(&ci->i_ceph_lock); 1416 mine = cap->issued | cap->implemented; 1417 used = __ceph_caps_used(ci); 1418 wanted = __ceph_caps_file_wanted(ci); 1419 oissued = __ceph_caps_issued_other(ci, cap); 1420 1421 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 1422 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1423 ceph_cap_string(used), ceph_cap_string(wanted)); 1424 if (cap == ci->i_auth_cap) { 1425 if (ci->i_dirty_caps || ci->i_flushing_caps || 1426 !list_empty(&ci->i_cap_snaps)) 1427 goto out; 1428 if ((used | wanted) & CEPH_CAP_ANY_WR) 1429 goto out; 1430 } 1431 /* The inode has cached pages, but it's no longer used. 1432 * we can safely drop it */ 1433 if (wanted == 0 && used == CEPH_CAP_FILE_CACHE && 1434 !(oissued & CEPH_CAP_FILE_CACHE)) { 1435 used = 0; 1436 oissued = 0; 1437 } 1438 if ((used | wanted) & ~oissued & mine) 1439 goto out; /* we need these caps */ 1440 1441 session->s_trim_caps--; 1442 if (oissued) { 1443 /* we aren't the only cap.. just remove us */ 1444 __ceph_remove_cap(cap, true); 1445 } else { 1446 /* try dropping referring dentries */ 1447 spin_unlock(&ci->i_ceph_lock); 1448 d_prune_aliases(inode); 1449 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1450 inode, cap, atomic_read(&inode->i_count)); 1451 return 0; 1452 } 1453 1454 out: 1455 spin_unlock(&ci->i_ceph_lock); 1456 return 0; 1457 } 1458 1459 /* 1460 * Trim session cap count down to some max number. 1461 */ 1462 static int trim_caps(struct ceph_mds_client *mdsc, 1463 struct ceph_mds_session *session, 1464 int max_caps) 1465 { 1466 int trim_caps = session->s_nr_caps - max_caps; 1467 1468 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1469 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1470 if (trim_caps > 0) { 1471 session->s_trim_caps = trim_caps; 1472 iterate_session_caps(session, trim_caps_cb, session); 1473 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1474 session->s_mds, session->s_nr_caps, max_caps, 1475 trim_caps - session->s_trim_caps); 1476 session->s_trim_caps = 0; 1477 } 1478 1479 ceph_send_cap_releases(mdsc, session); 1480 return 0; 1481 } 1482 1483 static int check_caps_flush(struct ceph_mds_client *mdsc, 1484 u64 want_flush_tid) 1485 { 1486 int ret = 1; 1487 1488 spin_lock(&mdsc->cap_dirty_lock); 1489 if (!list_empty(&mdsc->cap_flush_list)) { 1490 struct ceph_cap_flush *cf = 1491 list_first_entry(&mdsc->cap_flush_list, 1492 struct ceph_cap_flush, g_list); 1493 if (cf->tid <= want_flush_tid) { 1494 dout("check_caps_flush still flushing tid " 1495 "%llu <= %llu\n", cf->tid, want_flush_tid); 1496 ret = 0; 1497 } 1498 } 1499 spin_unlock(&mdsc->cap_dirty_lock); 1500 return ret; 1501 } 1502 1503 /* 1504 * flush all dirty inode data to disk. 1505 * 1506 * returns true if we've flushed through want_flush_tid 1507 */ 1508 static void wait_caps_flush(struct ceph_mds_client *mdsc, 1509 u64 want_flush_tid) 1510 { 1511 dout("check_caps_flush want %llu\n", want_flush_tid); 1512 1513 wait_event(mdsc->cap_flushing_wq, 1514 check_caps_flush(mdsc, want_flush_tid)); 1515 1516 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid); 1517 } 1518 1519 /* 1520 * called under s_mutex 1521 */ 1522 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1523 struct ceph_mds_session *session) 1524 { 1525 struct ceph_msg *msg = NULL; 1526 struct ceph_mds_cap_release *head; 1527 struct ceph_mds_cap_item *item; 1528 struct ceph_cap *cap; 1529 LIST_HEAD(tmp_list); 1530 int num_cap_releases; 1531 1532 spin_lock(&session->s_cap_lock); 1533 again: 1534 list_splice_init(&session->s_cap_releases, &tmp_list); 1535 num_cap_releases = session->s_num_cap_releases; 1536 session->s_num_cap_releases = 0; 1537 spin_unlock(&session->s_cap_lock); 1538 1539 while (!list_empty(&tmp_list)) { 1540 if (!msg) { 1541 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, 1542 PAGE_SIZE, GFP_NOFS, false); 1543 if (!msg) 1544 goto out_err; 1545 head = msg->front.iov_base; 1546 head->num = cpu_to_le32(0); 1547 msg->front.iov_len = sizeof(*head); 1548 } 1549 cap = list_first_entry(&tmp_list, struct ceph_cap, 1550 session_caps); 1551 list_del(&cap->session_caps); 1552 num_cap_releases--; 1553 1554 head = msg->front.iov_base; 1555 le32_add_cpu(&head->num, 1); 1556 item = msg->front.iov_base + msg->front.iov_len; 1557 item->ino = cpu_to_le64(cap->cap_ino); 1558 item->cap_id = cpu_to_le64(cap->cap_id); 1559 item->migrate_seq = cpu_to_le32(cap->mseq); 1560 item->seq = cpu_to_le32(cap->issue_seq); 1561 msg->front.iov_len += sizeof(*item); 1562 1563 ceph_put_cap(mdsc, cap); 1564 1565 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1566 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1567 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1568 ceph_con_send(&session->s_con, msg); 1569 msg = NULL; 1570 } 1571 } 1572 1573 BUG_ON(num_cap_releases != 0); 1574 1575 spin_lock(&session->s_cap_lock); 1576 if (!list_empty(&session->s_cap_releases)) 1577 goto again; 1578 spin_unlock(&session->s_cap_lock); 1579 1580 if (msg) { 1581 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1582 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1583 ceph_con_send(&session->s_con, msg); 1584 } 1585 return; 1586 out_err: 1587 pr_err("send_cap_releases mds%d, failed to allocate message\n", 1588 session->s_mds); 1589 spin_lock(&session->s_cap_lock); 1590 list_splice(&tmp_list, &session->s_cap_releases); 1591 session->s_num_cap_releases += num_cap_releases; 1592 spin_unlock(&session->s_cap_lock); 1593 } 1594 1595 /* 1596 * requests 1597 */ 1598 1599 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 1600 struct inode *dir) 1601 { 1602 struct ceph_inode_info *ci = ceph_inode(dir); 1603 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 1604 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 1605 size_t size = sizeof(struct ceph_mds_reply_dir_entry); 1606 int order, num_entries; 1607 1608 spin_lock(&ci->i_ceph_lock); 1609 num_entries = ci->i_files + ci->i_subdirs; 1610 spin_unlock(&ci->i_ceph_lock); 1611 num_entries = max(num_entries, 1); 1612 num_entries = min(num_entries, opt->max_readdir); 1613 1614 order = get_order(size * num_entries); 1615 while (order >= 0) { 1616 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL | 1617 __GFP_NOWARN, 1618 order); 1619 if (rinfo->dir_entries) 1620 break; 1621 order--; 1622 } 1623 if (!rinfo->dir_entries) 1624 return -ENOMEM; 1625 1626 num_entries = (PAGE_SIZE << order) / size; 1627 num_entries = min(num_entries, opt->max_readdir); 1628 1629 rinfo->dir_buf_size = PAGE_SIZE << order; 1630 req->r_num_caps = num_entries + 1; 1631 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 1632 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 1633 return 0; 1634 } 1635 1636 /* 1637 * Create an mds request. 1638 */ 1639 struct ceph_mds_request * 1640 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1641 { 1642 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1643 1644 if (!req) 1645 return ERR_PTR(-ENOMEM); 1646 1647 mutex_init(&req->r_fill_mutex); 1648 req->r_mdsc = mdsc; 1649 req->r_started = jiffies; 1650 req->r_resend_mds = -1; 1651 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1652 INIT_LIST_HEAD(&req->r_unsafe_target_item); 1653 req->r_fmode = -1; 1654 kref_init(&req->r_kref); 1655 RB_CLEAR_NODE(&req->r_node); 1656 INIT_LIST_HEAD(&req->r_wait); 1657 init_completion(&req->r_completion); 1658 init_completion(&req->r_safe_completion); 1659 INIT_LIST_HEAD(&req->r_unsafe_item); 1660 1661 req->r_stamp = current_fs_time(mdsc->fsc->sb); 1662 1663 req->r_op = op; 1664 req->r_direct_mode = mode; 1665 return req; 1666 } 1667 1668 /* 1669 * return oldest (lowest) request, tid in request tree, 0 if none. 1670 * 1671 * called under mdsc->mutex. 1672 */ 1673 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1674 { 1675 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1676 return NULL; 1677 return rb_entry(rb_first(&mdsc->request_tree), 1678 struct ceph_mds_request, r_node); 1679 } 1680 1681 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1682 { 1683 return mdsc->oldest_tid; 1684 } 1685 1686 /* 1687 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1688 * on build_path_from_dentry in fs/cifs/dir.c. 1689 * 1690 * If @stop_on_nosnap, generate path relative to the first non-snapped 1691 * inode. 1692 * 1693 * Encode hidden .snap dirs as a double /, i.e. 1694 * foo/.snap/bar -> foo//bar 1695 */ 1696 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1697 int stop_on_nosnap) 1698 { 1699 struct dentry *temp; 1700 char *path; 1701 int len, pos; 1702 unsigned seq; 1703 1704 if (dentry == NULL) 1705 return ERR_PTR(-EINVAL); 1706 1707 retry: 1708 len = 0; 1709 seq = read_seqbegin(&rename_lock); 1710 rcu_read_lock(); 1711 for (temp = dentry; !IS_ROOT(temp);) { 1712 struct inode *inode = d_inode(temp); 1713 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1714 len++; /* slash only */ 1715 else if (stop_on_nosnap && inode && 1716 ceph_snap(inode) == CEPH_NOSNAP) 1717 break; 1718 else 1719 len += 1 + temp->d_name.len; 1720 temp = temp->d_parent; 1721 } 1722 rcu_read_unlock(); 1723 if (len) 1724 len--; /* no leading '/' */ 1725 1726 path = kmalloc(len+1, GFP_NOFS); 1727 if (path == NULL) 1728 return ERR_PTR(-ENOMEM); 1729 pos = len; 1730 path[pos] = 0; /* trailing null */ 1731 rcu_read_lock(); 1732 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1733 struct inode *inode; 1734 1735 spin_lock(&temp->d_lock); 1736 inode = d_inode(temp); 1737 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1738 dout("build_path path+%d: %p SNAPDIR\n", 1739 pos, temp); 1740 } else if (stop_on_nosnap && inode && 1741 ceph_snap(inode) == CEPH_NOSNAP) { 1742 spin_unlock(&temp->d_lock); 1743 break; 1744 } else { 1745 pos -= temp->d_name.len; 1746 if (pos < 0) { 1747 spin_unlock(&temp->d_lock); 1748 break; 1749 } 1750 strncpy(path + pos, temp->d_name.name, 1751 temp->d_name.len); 1752 } 1753 spin_unlock(&temp->d_lock); 1754 if (pos) 1755 path[--pos] = '/'; 1756 temp = temp->d_parent; 1757 } 1758 rcu_read_unlock(); 1759 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1760 pr_err("build_path did not end path lookup where " 1761 "expected, namelen is %d, pos is %d\n", len, pos); 1762 /* presumably this is only possible if racing with a 1763 rename of one of the parent directories (we can not 1764 lock the dentries above us to prevent this, but 1765 retrying should be harmless) */ 1766 kfree(path); 1767 goto retry; 1768 } 1769 1770 *base = ceph_ino(d_inode(temp)); 1771 *plen = len; 1772 dout("build_path on %p %d built %llx '%.*s'\n", 1773 dentry, d_count(dentry), *base, len, path); 1774 return path; 1775 } 1776 1777 static int build_dentry_path(struct dentry *dentry, 1778 const char **ppath, int *ppathlen, u64 *pino, 1779 int *pfreepath) 1780 { 1781 char *path; 1782 1783 if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) { 1784 *pino = ceph_ino(d_inode(dentry->d_parent)); 1785 *ppath = dentry->d_name.name; 1786 *ppathlen = dentry->d_name.len; 1787 return 0; 1788 } 1789 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1790 if (IS_ERR(path)) 1791 return PTR_ERR(path); 1792 *ppath = path; 1793 *pfreepath = 1; 1794 return 0; 1795 } 1796 1797 static int build_inode_path(struct inode *inode, 1798 const char **ppath, int *ppathlen, u64 *pino, 1799 int *pfreepath) 1800 { 1801 struct dentry *dentry; 1802 char *path; 1803 1804 if (ceph_snap(inode) == CEPH_NOSNAP) { 1805 *pino = ceph_ino(inode); 1806 *ppathlen = 0; 1807 return 0; 1808 } 1809 dentry = d_find_alias(inode); 1810 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1811 dput(dentry); 1812 if (IS_ERR(path)) 1813 return PTR_ERR(path); 1814 *ppath = path; 1815 *pfreepath = 1; 1816 return 0; 1817 } 1818 1819 /* 1820 * request arguments may be specified via an inode *, a dentry *, or 1821 * an explicit ino+path. 1822 */ 1823 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1824 const char *rpath, u64 rino, 1825 const char **ppath, int *pathlen, 1826 u64 *ino, int *freepath) 1827 { 1828 int r = 0; 1829 1830 if (rinode) { 1831 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1832 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1833 ceph_snap(rinode)); 1834 } else if (rdentry) { 1835 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1836 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1837 *ppath); 1838 } else if (rpath || rino) { 1839 *ino = rino; 1840 *ppath = rpath; 1841 *pathlen = rpath ? strlen(rpath) : 0; 1842 dout(" path %.*s\n", *pathlen, rpath); 1843 } 1844 1845 return r; 1846 } 1847 1848 /* 1849 * called under mdsc->mutex 1850 */ 1851 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1852 struct ceph_mds_request *req, 1853 int mds, bool drop_cap_releases) 1854 { 1855 struct ceph_msg *msg; 1856 struct ceph_mds_request_head *head; 1857 const char *path1 = NULL; 1858 const char *path2 = NULL; 1859 u64 ino1 = 0, ino2 = 0; 1860 int pathlen1 = 0, pathlen2 = 0; 1861 int freepath1 = 0, freepath2 = 0; 1862 int len; 1863 u16 releases; 1864 void *p, *end; 1865 int ret; 1866 1867 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1868 req->r_path1, req->r_ino1.ino, 1869 &path1, &pathlen1, &ino1, &freepath1); 1870 if (ret < 0) { 1871 msg = ERR_PTR(ret); 1872 goto out; 1873 } 1874 1875 ret = set_request_path_attr(NULL, req->r_old_dentry, 1876 req->r_path2, req->r_ino2.ino, 1877 &path2, &pathlen2, &ino2, &freepath2); 1878 if (ret < 0) { 1879 msg = ERR_PTR(ret); 1880 goto out_free1; 1881 } 1882 1883 len = sizeof(*head) + 1884 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) + 1885 sizeof(struct ceph_timespec); 1886 1887 /* calculate (max) length for cap releases */ 1888 len += sizeof(struct ceph_mds_request_release) * 1889 (!!req->r_inode_drop + !!req->r_dentry_drop + 1890 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1891 if (req->r_dentry_drop) 1892 len += req->r_dentry->d_name.len; 1893 if (req->r_old_dentry_drop) 1894 len += req->r_old_dentry->d_name.len; 1895 1896 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1897 if (!msg) { 1898 msg = ERR_PTR(-ENOMEM); 1899 goto out_free2; 1900 } 1901 1902 msg->hdr.version = cpu_to_le16(2); 1903 msg->hdr.tid = cpu_to_le64(req->r_tid); 1904 1905 head = msg->front.iov_base; 1906 p = msg->front.iov_base + sizeof(*head); 1907 end = msg->front.iov_base + msg->front.iov_len; 1908 1909 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1910 head->op = cpu_to_le32(req->r_op); 1911 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); 1912 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); 1913 head->args = req->r_args; 1914 1915 ceph_encode_filepath(&p, end, ino1, path1); 1916 ceph_encode_filepath(&p, end, ino2, path2); 1917 1918 /* make note of release offset, in case we need to replay */ 1919 req->r_request_release_offset = p - msg->front.iov_base; 1920 1921 /* cap releases */ 1922 releases = 0; 1923 if (req->r_inode_drop) 1924 releases += ceph_encode_inode_release(&p, 1925 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 1926 mds, req->r_inode_drop, req->r_inode_unless, 0); 1927 if (req->r_dentry_drop) 1928 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1929 mds, req->r_dentry_drop, req->r_dentry_unless); 1930 if (req->r_old_dentry_drop) 1931 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1932 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1933 if (req->r_old_inode_drop) 1934 releases += ceph_encode_inode_release(&p, 1935 d_inode(req->r_old_dentry), 1936 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1937 1938 if (drop_cap_releases) { 1939 releases = 0; 1940 p = msg->front.iov_base + req->r_request_release_offset; 1941 } 1942 1943 head->num_releases = cpu_to_le16(releases); 1944 1945 /* time stamp */ 1946 { 1947 struct ceph_timespec ts; 1948 ceph_encode_timespec(&ts, &req->r_stamp); 1949 ceph_encode_copy(&p, &ts, sizeof(ts)); 1950 } 1951 1952 BUG_ON(p > end); 1953 msg->front.iov_len = p - msg->front.iov_base; 1954 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1955 1956 if (req->r_pagelist) { 1957 struct ceph_pagelist *pagelist = req->r_pagelist; 1958 atomic_inc(&pagelist->refcnt); 1959 ceph_msg_data_add_pagelist(msg, pagelist); 1960 msg->hdr.data_len = cpu_to_le32(pagelist->length); 1961 } else { 1962 msg->hdr.data_len = 0; 1963 } 1964 1965 msg->hdr.data_off = cpu_to_le16(0); 1966 1967 out_free2: 1968 if (freepath2) 1969 kfree((char *)path2); 1970 out_free1: 1971 if (freepath1) 1972 kfree((char *)path1); 1973 out: 1974 return msg; 1975 } 1976 1977 /* 1978 * called under mdsc->mutex if error, under no mutex if 1979 * success. 1980 */ 1981 static void complete_request(struct ceph_mds_client *mdsc, 1982 struct ceph_mds_request *req) 1983 { 1984 if (req->r_callback) 1985 req->r_callback(mdsc, req); 1986 else 1987 complete_all(&req->r_completion); 1988 } 1989 1990 /* 1991 * called under mdsc->mutex 1992 */ 1993 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1994 struct ceph_mds_request *req, 1995 int mds, bool drop_cap_releases) 1996 { 1997 struct ceph_mds_request_head *rhead; 1998 struct ceph_msg *msg; 1999 int flags = 0; 2000 2001 req->r_attempts++; 2002 if (req->r_inode) { 2003 struct ceph_cap *cap = 2004 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 2005 2006 if (cap) 2007 req->r_sent_on_mseq = cap->mseq; 2008 else 2009 req->r_sent_on_mseq = -1; 2010 } 2011 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 2012 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 2013 2014 if (req->r_got_unsafe) { 2015 void *p; 2016 /* 2017 * Replay. Do not regenerate message (and rebuild 2018 * paths, etc.); just use the original message. 2019 * Rebuilding paths will break for renames because 2020 * d_move mangles the src name. 2021 */ 2022 msg = req->r_request; 2023 rhead = msg->front.iov_base; 2024 2025 flags = le32_to_cpu(rhead->flags); 2026 flags |= CEPH_MDS_FLAG_REPLAY; 2027 rhead->flags = cpu_to_le32(flags); 2028 2029 if (req->r_target_inode) 2030 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 2031 2032 rhead->num_retry = req->r_attempts - 1; 2033 2034 /* remove cap/dentry releases from message */ 2035 rhead->num_releases = 0; 2036 2037 /* time stamp */ 2038 p = msg->front.iov_base + req->r_request_release_offset; 2039 { 2040 struct ceph_timespec ts; 2041 ceph_encode_timespec(&ts, &req->r_stamp); 2042 ceph_encode_copy(&p, &ts, sizeof(ts)); 2043 } 2044 2045 msg->front.iov_len = p - msg->front.iov_base; 2046 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2047 return 0; 2048 } 2049 2050 if (req->r_request) { 2051 ceph_msg_put(req->r_request); 2052 req->r_request = NULL; 2053 } 2054 msg = create_request_message(mdsc, req, mds, drop_cap_releases); 2055 if (IS_ERR(msg)) { 2056 req->r_err = PTR_ERR(msg); 2057 return PTR_ERR(msg); 2058 } 2059 req->r_request = msg; 2060 2061 rhead = msg->front.iov_base; 2062 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 2063 if (req->r_got_unsafe) 2064 flags |= CEPH_MDS_FLAG_REPLAY; 2065 if (req->r_locked_dir) 2066 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 2067 rhead->flags = cpu_to_le32(flags); 2068 rhead->num_fwd = req->r_num_fwd; 2069 rhead->num_retry = req->r_attempts - 1; 2070 rhead->ino = 0; 2071 2072 dout(" r_locked_dir = %p\n", req->r_locked_dir); 2073 return 0; 2074 } 2075 2076 /* 2077 * send request, or put it on the appropriate wait list. 2078 */ 2079 static int __do_request(struct ceph_mds_client *mdsc, 2080 struct ceph_mds_request *req) 2081 { 2082 struct ceph_mds_session *session = NULL; 2083 int mds = -1; 2084 int err = 0; 2085 2086 if (req->r_err || req->r_got_result) { 2087 if (req->r_aborted) 2088 __unregister_request(mdsc, req); 2089 goto out; 2090 } 2091 2092 if (req->r_timeout && 2093 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 2094 dout("do_request timed out\n"); 2095 err = -EIO; 2096 goto finish; 2097 } 2098 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 2099 dout("do_request forced umount\n"); 2100 err = -EIO; 2101 goto finish; 2102 } 2103 2104 put_request_session(req); 2105 2106 mds = __choose_mds(mdsc, req); 2107 if (mds < 0 || 2108 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 2109 if (mdsc->mdsmap_err) { 2110 err = mdsc->mdsmap_err; 2111 dout("do_request mdsmap err %d\n", err); 2112 goto finish; 2113 } 2114 dout("do_request no mds or not active, waiting for map\n"); 2115 list_add(&req->r_wait, &mdsc->waiting_for_map); 2116 goto out; 2117 } 2118 2119 /* get, open session */ 2120 session = __ceph_lookup_mds_session(mdsc, mds); 2121 if (!session) { 2122 session = register_session(mdsc, mds); 2123 if (IS_ERR(session)) { 2124 err = PTR_ERR(session); 2125 goto finish; 2126 } 2127 } 2128 req->r_session = get_session(session); 2129 2130 dout("do_request mds%d session %p state %s\n", mds, session, 2131 ceph_session_state_name(session->s_state)); 2132 if (session->s_state != CEPH_MDS_SESSION_OPEN && 2133 session->s_state != CEPH_MDS_SESSION_HUNG) { 2134 if (session->s_state == CEPH_MDS_SESSION_NEW || 2135 session->s_state == CEPH_MDS_SESSION_CLOSING) 2136 __open_session(mdsc, session); 2137 list_add(&req->r_wait, &session->s_waiting); 2138 goto out_session; 2139 } 2140 2141 /* send request */ 2142 req->r_resend_mds = -1; /* forget any previous mds hint */ 2143 2144 if (req->r_request_started == 0) /* note request start time */ 2145 req->r_request_started = jiffies; 2146 2147 err = __prepare_send_request(mdsc, req, mds, false); 2148 if (!err) { 2149 ceph_msg_get(req->r_request); 2150 ceph_con_send(&session->s_con, req->r_request); 2151 } 2152 2153 out_session: 2154 ceph_put_mds_session(session); 2155 finish: 2156 if (err) { 2157 dout("__do_request early error %d\n", err); 2158 req->r_err = err; 2159 complete_request(mdsc, req); 2160 __unregister_request(mdsc, req); 2161 } 2162 out: 2163 return err; 2164 } 2165 2166 /* 2167 * called under mdsc->mutex 2168 */ 2169 static void __wake_requests(struct ceph_mds_client *mdsc, 2170 struct list_head *head) 2171 { 2172 struct ceph_mds_request *req; 2173 LIST_HEAD(tmp_list); 2174 2175 list_splice_init(head, &tmp_list); 2176 2177 while (!list_empty(&tmp_list)) { 2178 req = list_entry(tmp_list.next, 2179 struct ceph_mds_request, r_wait); 2180 list_del_init(&req->r_wait); 2181 dout(" wake request %p tid %llu\n", req, req->r_tid); 2182 __do_request(mdsc, req); 2183 } 2184 } 2185 2186 /* 2187 * Wake up threads with requests pending for @mds, so that they can 2188 * resubmit their requests to a possibly different mds. 2189 */ 2190 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 2191 { 2192 struct ceph_mds_request *req; 2193 struct rb_node *p = rb_first(&mdsc->request_tree); 2194 2195 dout("kick_requests mds%d\n", mds); 2196 while (p) { 2197 req = rb_entry(p, struct ceph_mds_request, r_node); 2198 p = rb_next(p); 2199 if (req->r_got_unsafe) 2200 continue; 2201 if (req->r_attempts > 0) 2202 continue; /* only new requests */ 2203 if (req->r_session && 2204 req->r_session->s_mds == mds) { 2205 dout(" kicking tid %llu\n", req->r_tid); 2206 list_del_init(&req->r_wait); 2207 __do_request(mdsc, req); 2208 } 2209 } 2210 } 2211 2212 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 2213 struct ceph_mds_request *req) 2214 { 2215 dout("submit_request on %p\n", req); 2216 mutex_lock(&mdsc->mutex); 2217 __register_request(mdsc, req, NULL); 2218 __do_request(mdsc, req); 2219 mutex_unlock(&mdsc->mutex); 2220 } 2221 2222 /* 2223 * Synchrously perform an mds request. Take care of all of the 2224 * session setup, forwarding, retry details. 2225 */ 2226 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 2227 struct inode *dir, 2228 struct ceph_mds_request *req) 2229 { 2230 int err; 2231 2232 dout("do_request on %p\n", req); 2233 2234 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 2235 if (req->r_inode) 2236 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 2237 if (req->r_locked_dir) 2238 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 2239 if (req->r_old_dentry_dir) 2240 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 2241 CEPH_CAP_PIN); 2242 2243 /* issue */ 2244 mutex_lock(&mdsc->mutex); 2245 __register_request(mdsc, req, dir); 2246 __do_request(mdsc, req); 2247 2248 if (req->r_err) { 2249 err = req->r_err; 2250 goto out; 2251 } 2252 2253 /* wait */ 2254 mutex_unlock(&mdsc->mutex); 2255 dout("do_request waiting\n"); 2256 if (!req->r_timeout && req->r_wait_for_completion) { 2257 err = req->r_wait_for_completion(mdsc, req); 2258 } else { 2259 long timeleft = wait_for_completion_killable_timeout( 2260 &req->r_completion, 2261 ceph_timeout_jiffies(req->r_timeout)); 2262 if (timeleft > 0) 2263 err = 0; 2264 else if (!timeleft) 2265 err = -EIO; /* timed out */ 2266 else 2267 err = timeleft; /* killed */ 2268 } 2269 dout("do_request waited, got %d\n", err); 2270 mutex_lock(&mdsc->mutex); 2271 2272 /* only abort if we didn't race with a real reply */ 2273 if (req->r_got_result) { 2274 err = le32_to_cpu(req->r_reply_info.head->result); 2275 } else if (err < 0) { 2276 dout("aborted request %lld with %d\n", req->r_tid, err); 2277 2278 /* 2279 * ensure we aren't running concurrently with 2280 * ceph_fill_trace or ceph_readdir_prepopulate, which 2281 * rely on locks (dir mutex) held by our caller. 2282 */ 2283 mutex_lock(&req->r_fill_mutex); 2284 req->r_err = err; 2285 req->r_aborted = true; 2286 mutex_unlock(&req->r_fill_mutex); 2287 2288 if (req->r_locked_dir && 2289 (req->r_op & CEPH_MDS_OP_WRITE)) 2290 ceph_invalidate_dir_request(req); 2291 } else { 2292 err = req->r_err; 2293 } 2294 2295 out: 2296 mutex_unlock(&mdsc->mutex); 2297 dout("do_request %p done, result %d\n", req, err); 2298 return err; 2299 } 2300 2301 /* 2302 * Invalidate dir's completeness, dentry lease state on an aborted MDS 2303 * namespace request. 2304 */ 2305 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2306 { 2307 struct inode *inode = req->r_locked_dir; 2308 2309 dout("invalidate_dir_request %p (complete, lease(s))\n", inode); 2310 2311 ceph_dir_clear_complete(inode); 2312 if (req->r_dentry) 2313 ceph_invalidate_dentry_lease(req->r_dentry); 2314 if (req->r_old_dentry) 2315 ceph_invalidate_dentry_lease(req->r_old_dentry); 2316 } 2317 2318 /* 2319 * Handle mds reply. 2320 * 2321 * We take the session mutex and parse and process the reply immediately. 2322 * This preserves the logical ordering of replies, capabilities, etc., sent 2323 * by the MDS as they are applied to our local cache. 2324 */ 2325 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2326 { 2327 struct ceph_mds_client *mdsc = session->s_mdsc; 2328 struct ceph_mds_request *req; 2329 struct ceph_mds_reply_head *head = msg->front.iov_base; 2330 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2331 struct ceph_snap_realm *realm; 2332 u64 tid; 2333 int err, result; 2334 int mds = session->s_mds; 2335 2336 if (msg->front.iov_len < sizeof(*head)) { 2337 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2338 ceph_msg_dump(msg); 2339 return; 2340 } 2341 2342 /* get request, session */ 2343 tid = le64_to_cpu(msg->hdr.tid); 2344 mutex_lock(&mdsc->mutex); 2345 req = lookup_get_request(mdsc, tid); 2346 if (!req) { 2347 dout("handle_reply on unknown tid %llu\n", tid); 2348 mutex_unlock(&mdsc->mutex); 2349 return; 2350 } 2351 dout("handle_reply %p\n", req); 2352 2353 /* correct session? */ 2354 if (req->r_session != session) { 2355 pr_err("mdsc_handle_reply got %llu on session mds%d" 2356 " not mds%d\n", tid, session->s_mds, 2357 req->r_session ? req->r_session->s_mds : -1); 2358 mutex_unlock(&mdsc->mutex); 2359 goto out; 2360 } 2361 2362 /* dup? */ 2363 if ((req->r_got_unsafe && !head->safe) || 2364 (req->r_got_safe && head->safe)) { 2365 pr_warn("got a dup %s reply on %llu from mds%d\n", 2366 head->safe ? "safe" : "unsafe", tid, mds); 2367 mutex_unlock(&mdsc->mutex); 2368 goto out; 2369 } 2370 if (req->r_got_safe) { 2371 pr_warn("got unsafe after safe on %llu from mds%d\n", 2372 tid, mds); 2373 mutex_unlock(&mdsc->mutex); 2374 goto out; 2375 } 2376 2377 result = le32_to_cpu(head->result); 2378 2379 /* 2380 * Handle an ESTALE 2381 * if we're not talking to the authority, send to them 2382 * if the authority has changed while we weren't looking, 2383 * send to new authority 2384 * Otherwise we just have to return an ESTALE 2385 */ 2386 if (result == -ESTALE) { 2387 dout("got ESTALE on request %llu", req->r_tid); 2388 req->r_resend_mds = -1; 2389 if (req->r_direct_mode != USE_AUTH_MDS) { 2390 dout("not using auth, setting for that now"); 2391 req->r_direct_mode = USE_AUTH_MDS; 2392 __do_request(mdsc, req); 2393 mutex_unlock(&mdsc->mutex); 2394 goto out; 2395 } else { 2396 int mds = __choose_mds(mdsc, req); 2397 if (mds >= 0 && mds != req->r_session->s_mds) { 2398 dout("but auth changed, so resending"); 2399 __do_request(mdsc, req); 2400 mutex_unlock(&mdsc->mutex); 2401 goto out; 2402 } 2403 } 2404 dout("have to return ESTALE on request %llu", req->r_tid); 2405 } 2406 2407 2408 if (head->safe) { 2409 req->r_got_safe = true; 2410 __unregister_request(mdsc, req); 2411 2412 if (req->r_got_unsafe) { 2413 /* 2414 * We already handled the unsafe response, now do the 2415 * cleanup. No need to examine the response; the MDS 2416 * doesn't include any result info in the safe 2417 * response. And even if it did, there is nothing 2418 * useful we could do with a revised return value. 2419 */ 2420 dout("got safe reply %llu, mds%d\n", tid, mds); 2421 list_del_init(&req->r_unsafe_item); 2422 2423 /* last unsafe request during umount? */ 2424 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2425 complete_all(&mdsc->safe_umount_waiters); 2426 mutex_unlock(&mdsc->mutex); 2427 goto out; 2428 } 2429 } else { 2430 req->r_got_unsafe = true; 2431 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2432 if (req->r_unsafe_dir) { 2433 struct ceph_inode_info *ci = 2434 ceph_inode(req->r_unsafe_dir); 2435 spin_lock(&ci->i_unsafe_lock); 2436 list_add_tail(&req->r_unsafe_dir_item, 2437 &ci->i_unsafe_dirops); 2438 spin_unlock(&ci->i_unsafe_lock); 2439 } 2440 } 2441 2442 dout("handle_reply tid %lld result %d\n", tid, result); 2443 rinfo = &req->r_reply_info; 2444 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2445 mutex_unlock(&mdsc->mutex); 2446 2447 mutex_lock(&session->s_mutex); 2448 if (err < 0) { 2449 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2450 ceph_msg_dump(msg); 2451 goto out_err; 2452 } 2453 2454 /* snap trace */ 2455 realm = NULL; 2456 if (rinfo->snapblob_len) { 2457 down_write(&mdsc->snap_rwsem); 2458 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2459 rinfo->snapblob + rinfo->snapblob_len, 2460 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 2461 &realm); 2462 downgrade_write(&mdsc->snap_rwsem); 2463 } else { 2464 down_read(&mdsc->snap_rwsem); 2465 } 2466 2467 /* insert trace into our cache */ 2468 mutex_lock(&req->r_fill_mutex); 2469 current->journal_info = req; 2470 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2471 if (err == 0) { 2472 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 2473 req->r_op == CEPH_MDS_OP_LSSNAP)) 2474 ceph_readdir_prepopulate(req, req->r_session); 2475 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2476 } 2477 current->journal_info = NULL; 2478 mutex_unlock(&req->r_fill_mutex); 2479 2480 up_read(&mdsc->snap_rwsem); 2481 if (realm) 2482 ceph_put_snap_realm(mdsc, realm); 2483 2484 if (err == 0 && req->r_got_unsafe && req->r_target_inode) { 2485 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 2486 spin_lock(&ci->i_unsafe_lock); 2487 list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops); 2488 spin_unlock(&ci->i_unsafe_lock); 2489 } 2490 out_err: 2491 mutex_lock(&mdsc->mutex); 2492 if (!req->r_aborted) { 2493 if (err) { 2494 req->r_err = err; 2495 } else { 2496 req->r_reply = ceph_msg_get(msg); 2497 req->r_got_result = true; 2498 } 2499 } else { 2500 dout("reply arrived after request %lld was aborted\n", tid); 2501 } 2502 mutex_unlock(&mdsc->mutex); 2503 2504 mutex_unlock(&session->s_mutex); 2505 2506 /* kick calling process */ 2507 complete_request(mdsc, req); 2508 out: 2509 ceph_mdsc_put_request(req); 2510 return; 2511 } 2512 2513 2514 2515 /* 2516 * handle mds notification that our request has been forwarded. 2517 */ 2518 static void handle_forward(struct ceph_mds_client *mdsc, 2519 struct ceph_mds_session *session, 2520 struct ceph_msg *msg) 2521 { 2522 struct ceph_mds_request *req; 2523 u64 tid = le64_to_cpu(msg->hdr.tid); 2524 u32 next_mds; 2525 u32 fwd_seq; 2526 int err = -EINVAL; 2527 void *p = msg->front.iov_base; 2528 void *end = p + msg->front.iov_len; 2529 2530 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2531 next_mds = ceph_decode_32(&p); 2532 fwd_seq = ceph_decode_32(&p); 2533 2534 mutex_lock(&mdsc->mutex); 2535 req = lookup_get_request(mdsc, tid); 2536 if (!req) { 2537 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2538 goto out; /* dup reply? */ 2539 } 2540 2541 if (req->r_aborted) { 2542 dout("forward tid %llu aborted, unregistering\n", tid); 2543 __unregister_request(mdsc, req); 2544 } else if (fwd_seq <= req->r_num_fwd) { 2545 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2546 tid, next_mds, req->r_num_fwd, fwd_seq); 2547 } else { 2548 /* resend. forward race not possible; mds would drop */ 2549 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2550 BUG_ON(req->r_err); 2551 BUG_ON(req->r_got_result); 2552 req->r_attempts = 0; 2553 req->r_num_fwd = fwd_seq; 2554 req->r_resend_mds = next_mds; 2555 put_request_session(req); 2556 __do_request(mdsc, req); 2557 } 2558 ceph_mdsc_put_request(req); 2559 out: 2560 mutex_unlock(&mdsc->mutex); 2561 return; 2562 2563 bad: 2564 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2565 } 2566 2567 /* 2568 * handle a mds session control message 2569 */ 2570 static void handle_session(struct ceph_mds_session *session, 2571 struct ceph_msg *msg) 2572 { 2573 struct ceph_mds_client *mdsc = session->s_mdsc; 2574 u32 op; 2575 u64 seq; 2576 int mds = session->s_mds; 2577 struct ceph_mds_session_head *h = msg->front.iov_base; 2578 int wake = 0; 2579 2580 /* decode */ 2581 if (msg->front.iov_len != sizeof(*h)) 2582 goto bad; 2583 op = le32_to_cpu(h->op); 2584 seq = le64_to_cpu(h->seq); 2585 2586 mutex_lock(&mdsc->mutex); 2587 if (op == CEPH_SESSION_CLOSE) 2588 __unregister_session(mdsc, session); 2589 /* FIXME: this ttl calculation is generous */ 2590 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2591 mutex_unlock(&mdsc->mutex); 2592 2593 mutex_lock(&session->s_mutex); 2594 2595 dout("handle_session mds%d %s %p state %s seq %llu\n", 2596 mds, ceph_session_op_name(op), session, 2597 ceph_session_state_name(session->s_state), seq); 2598 2599 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2600 session->s_state = CEPH_MDS_SESSION_OPEN; 2601 pr_info("mds%d came back\n", session->s_mds); 2602 } 2603 2604 switch (op) { 2605 case CEPH_SESSION_OPEN: 2606 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2607 pr_info("mds%d reconnect success\n", session->s_mds); 2608 session->s_state = CEPH_MDS_SESSION_OPEN; 2609 renewed_caps(mdsc, session, 0); 2610 wake = 1; 2611 if (mdsc->stopping) 2612 __close_session(mdsc, session); 2613 break; 2614 2615 case CEPH_SESSION_RENEWCAPS: 2616 if (session->s_renew_seq == seq) 2617 renewed_caps(mdsc, session, 1); 2618 break; 2619 2620 case CEPH_SESSION_CLOSE: 2621 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2622 pr_info("mds%d reconnect denied\n", session->s_mds); 2623 cleanup_session_requests(mdsc, session); 2624 remove_session_caps(session); 2625 wake = 2; /* for good measure */ 2626 wake_up_all(&mdsc->session_close_wq); 2627 break; 2628 2629 case CEPH_SESSION_STALE: 2630 pr_info("mds%d caps went stale, renewing\n", 2631 session->s_mds); 2632 spin_lock(&session->s_gen_ttl_lock); 2633 session->s_cap_gen++; 2634 session->s_cap_ttl = jiffies - 1; 2635 spin_unlock(&session->s_gen_ttl_lock); 2636 send_renew_caps(mdsc, session); 2637 break; 2638 2639 case CEPH_SESSION_RECALL_STATE: 2640 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2641 break; 2642 2643 case CEPH_SESSION_FLUSHMSG: 2644 send_flushmsg_ack(mdsc, session, seq); 2645 break; 2646 2647 case CEPH_SESSION_FORCE_RO: 2648 dout("force_session_readonly %p\n", session); 2649 spin_lock(&session->s_cap_lock); 2650 session->s_readonly = true; 2651 spin_unlock(&session->s_cap_lock); 2652 wake_up_session_caps(session, 0); 2653 break; 2654 2655 default: 2656 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2657 WARN_ON(1); 2658 } 2659 2660 mutex_unlock(&session->s_mutex); 2661 if (wake) { 2662 mutex_lock(&mdsc->mutex); 2663 __wake_requests(mdsc, &session->s_waiting); 2664 if (wake == 2) 2665 kick_requests(mdsc, mds); 2666 mutex_unlock(&mdsc->mutex); 2667 } 2668 return; 2669 2670 bad: 2671 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2672 (int)msg->front.iov_len); 2673 ceph_msg_dump(msg); 2674 return; 2675 } 2676 2677 2678 /* 2679 * called under session->mutex. 2680 */ 2681 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2682 struct ceph_mds_session *session) 2683 { 2684 struct ceph_mds_request *req, *nreq; 2685 struct rb_node *p; 2686 int err; 2687 2688 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2689 2690 mutex_lock(&mdsc->mutex); 2691 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2692 err = __prepare_send_request(mdsc, req, session->s_mds, true); 2693 if (!err) { 2694 ceph_msg_get(req->r_request); 2695 ceph_con_send(&session->s_con, req->r_request); 2696 } 2697 } 2698 2699 /* 2700 * also re-send old requests when MDS enters reconnect stage. So that MDS 2701 * can process completed request in clientreplay stage. 2702 */ 2703 p = rb_first(&mdsc->request_tree); 2704 while (p) { 2705 req = rb_entry(p, struct ceph_mds_request, r_node); 2706 p = rb_next(p); 2707 if (req->r_got_unsafe) 2708 continue; 2709 if (req->r_attempts == 0) 2710 continue; /* only old requests */ 2711 if (req->r_session && 2712 req->r_session->s_mds == session->s_mds) { 2713 err = __prepare_send_request(mdsc, req, 2714 session->s_mds, true); 2715 if (!err) { 2716 ceph_msg_get(req->r_request); 2717 ceph_con_send(&session->s_con, req->r_request); 2718 } 2719 } 2720 } 2721 mutex_unlock(&mdsc->mutex); 2722 } 2723 2724 /* 2725 * Encode information about a cap for a reconnect with the MDS. 2726 */ 2727 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2728 void *arg) 2729 { 2730 union { 2731 struct ceph_mds_cap_reconnect v2; 2732 struct ceph_mds_cap_reconnect_v1 v1; 2733 } rec; 2734 struct ceph_inode_info *ci; 2735 struct ceph_reconnect_state *recon_state = arg; 2736 struct ceph_pagelist *pagelist = recon_state->pagelist; 2737 char *path; 2738 int pathlen, err; 2739 u64 pathbase; 2740 u64 snap_follows; 2741 struct dentry *dentry; 2742 2743 ci = cap->ci; 2744 2745 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2746 inode, ceph_vinop(inode), cap, cap->cap_id, 2747 ceph_cap_string(cap->issued)); 2748 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2749 if (err) 2750 return err; 2751 2752 dentry = d_find_alias(inode); 2753 if (dentry) { 2754 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2755 if (IS_ERR(path)) { 2756 err = PTR_ERR(path); 2757 goto out_dput; 2758 } 2759 } else { 2760 path = NULL; 2761 pathlen = 0; 2762 pathbase = 0; 2763 } 2764 2765 spin_lock(&ci->i_ceph_lock); 2766 cap->seq = 0; /* reset cap seq */ 2767 cap->issue_seq = 0; /* and issue_seq */ 2768 cap->mseq = 0; /* and migrate_seq */ 2769 cap->cap_gen = cap->session->s_cap_gen; 2770 2771 if (recon_state->msg_version >= 2) { 2772 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2773 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2774 rec.v2.issued = cpu_to_le32(cap->issued); 2775 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2776 rec.v2.pathbase = cpu_to_le64(pathbase); 2777 rec.v2.flock_len = 0; 2778 } else { 2779 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2780 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2781 rec.v1.issued = cpu_to_le32(cap->issued); 2782 rec.v1.size = cpu_to_le64(inode->i_size); 2783 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2784 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2785 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2786 rec.v1.pathbase = cpu_to_le64(pathbase); 2787 } 2788 2789 if (list_empty(&ci->i_cap_snaps)) { 2790 snap_follows = 0; 2791 } else { 2792 struct ceph_cap_snap *capsnap = 2793 list_first_entry(&ci->i_cap_snaps, 2794 struct ceph_cap_snap, ci_item); 2795 snap_follows = capsnap->follows; 2796 } 2797 spin_unlock(&ci->i_ceph_lock); 2798 2799 if (recon_state->msg_version >= 2) { 2800 int num_fcntl_locks, num_flock_locks; 2801 struct ceph_filelock *flocks; 2802 size_t struct_len, total_len = 0; 2803 u8 struct_v = 0; 2804 2805 encode_again: 2806 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 2807 flocks = kmalloc((num_fcntl_locks+num_flock_locks) * 2808 sizeof(struct ceph_filelock), GFP_NOFS); 2809 if (!flocks) { 2810 err = -ENOMEM; 2811 goto out_free; 2812 } 2813 err = ceph_encode_locks_to_buffer(inode, flocks, 2814 num_fcntl_locks, 2815 num_flock_locks); 2816 if (err) { 2817 kfree(flocks); 2818 if (err == -ENOSPC) 2819 goto encode_again; 2820 goto out_free; 2821 } 2822 2823 if (recon_state->msg_version >= 3) { 2824 /* version, compat_version and struct_len */ 2825 total_len = 2 * sizeof(u8) + sizeof(u32); 2826 struct_v = 2; 2827 } 2828 /* 2829 * number of encoded locks is stable, so copy to pagelist 2830 */ 2831 struct_len = 2 * sizeof(u32) + 2832 (num_fcntl_locks + num_flock_locks) * 2833 sizeof(struct ceph_filelock); 2834 rec.v2.flock_len = cpu_to_le32(struct_len); 2835 2836 struct_len += sizeof(rec.v2); 2837 struct_len += sizeof(u32) + pathlen; 2838 2839 if (struct_v >= 2) 2840 struct_len += sizeof(u64); /* snap_follows */ 2841 2842 total_len += struct_len; 2843 err = ceph_pagelist_reserve(pagelist, total_len); 2844 2845 if (!err) { 2846 if (recon_state->msg_version >= 3) { 2847 ceph_pagelist_encode_8(pagelist, struct_v); 2848 ceph_pagelist_encode_8(pagelist, 1); 2849 ceph_pagelist_encode_32(pagelist, struct_len); 2850 } 2851 ceph_pagelist_encode_string(pagelist, path, pathlen); 2852 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2)); 2853 ceph_locks_to_pagelist(flocks, pagelist, 2854 num_fcntl_locks, 2855 num_flock_locks); 2856 if (struct_v >= 2) 2857 ceph_pagelist_encode_64(pagelist, snap_follows); 2858 } 2859 kfree(flocks); 2860 } else { 2861 size_t size = sizeof(u32) + pathlen + sizeof(rec.v1); 2862 err = ceph_pagelist_reserve(pagelist, size); 2863 if (!err) { 2864 ceph_pagelist_encode_string(pagelist, path, pathlen); 2865 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1)); 2866 } 2867 } 2868 2869 recon_state->nr_caps++; 2870 out_free: 2871 kfree(path); 2872 out_dput: 2873 dput(dentry); 2874 return err; 2875 } 2876 2877 2878 /* 2879 * If an MDS fails and recovers, clients need to reconnect in order to 2880 * reestablish shared state. This includes all caps issued through 2881 * this session _and_ the snap_realm hierarchy. Because it's not 2882 * clear which snap realms the mds cares about, we send everything we 2883 * know about.. that ensures we'll then get any new info the 2884 * recovering MDS might have. 2885 * 2886 * This is a relatively heavyweight operation, but it's rare. 2887 * 2888 * called with mdsc->mutex held. 2889 */ 2890 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2891 struct ceph_mds_session *session) 2892 { 2893 struct ceph_msg *reply; 2894 struct rb_node *p; 2895 int mds = session->s_mds; 2896 int err = -ENOMEM; 2897 int s_nr_caps; 2898 struct ceph_pagelist *pagelist; 2899 struct ceph_reconnect_state recon_state; 2900 2901 pr_info("mds%d reconnect start\n", mds); 2902 2903 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2904 if (!pagelist) 2905 goto fail_nopagelist; 2906 ceph_pagelist_init(pagelist); 2907 2908 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2909 if (!reply) 2910 goto fail_nomsg; 2911 2912 mutex_lock(&session->s_mutex); 2913 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2914 session->s_seq = 0; 2915 2916 dout("session %p state %s\n", session, 2917 ceph_session_state_name(session->s_state)); 2918 2919 spin_lock(&session->s_gen_ttl_lock); 2920 session->s_cap_gen++; 2921 spin_unlock(&session->s_gen_ttl_lock); 2922 2923 spin_lock(&session->s_cap_lock); 2924 /* don't know if session is readonly */ 2925 session->s_readonly = 0; 2926 /* 2927 * notify __ceph_remove_cap() that we are composing cap reconnect. 2928 * If a cap get released before being added to the cap reconnect, 2929 * __ceph_remove_cap() should skip queuing cap release. 2930 */ 2931 session->s_cap_reconnect = 1; 2932 /* drop old cap expires; we're about to reestablish that state */ 2933 cleanup_cap_releases(mdsc, session); 2934 2935 /* trim unused caps to reduce MDS's cache rejoin time */ 2936 if (mdsc->fsc->sb->s_root) 2937 shrink_dcache_parent(mdsc->fsc->sb->s_root); 2938 2939 ceph_con_close(&session->s_con); 2940 ceph_con_open(&session->s_con, 2941 CEPH_ENTITY_TYPE_MDS, mds, 2942 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2943 2944 /* replay unsafe requests */ 2945 replay_unsafe_requests(mdsc, session); 2946 2947 down_read(&mdsc->snap_rwsem); 2948 2949 /* traverse this session's caps */ 2950 s_nr_caps = session->s_nr_caps; 2951 err = ceph_pagelist_encode_32(pagelist, s_nr_caps); 2952 if (err) 2953 goto fail; 2954 2955 recon_state.nr_caps = 0; 2956 recon_state.pagelist = pagelist; 2957 if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) 2958 recon_state.msg_version = 3; 2959 else if (session->s_con.peer_features & CEPH_FEATURE_FLOCK) 2960 recon_state.msg_version = 2; 2961 else 2962 recon_state.msg_version = 1; 2963 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2964 if (err < 0) 2965 goto fail; 2966 2967 spin_lock(&session->s_cap_lock); 2968 session->s_cap_reconnect = 0; 2969 spin_unlock(&session->s_cap_lock); 2970 2971 /* 2972 * snaprealms. we provide mds with the ino, seq (version), and 2973 * parent for all of our realms. If the mds has any newer info, 2974 * it will tell us. 2975 */ 2976 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2977 struct ceph_snap_realm *realm = 2978 rb_entry(p, struct ceph_snap_realm, node); 2979 struct ceph_mds_snaprealm_reconnect sr_rec; 2980 2981 dout(" adding snap realm %llx seq %lld parent %llx\n", 2982 realm->ino, realm->seq, realm->parent_ino); 2983 sr_rec.ino = cpu_to_le64(realm->ino); 2984 sr_rec.seq = cpu_to_le64(realm->seq); 2985 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2986 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2987 if (err) 2988 goto fail; 2989 } 2990 2991 reply->hdr.version = cpu_to_le16(recon_state.msg_version); 2992 2993 /* raced with cap release? */ 2994 if (s_nr_caps != recon_state.nr_caps) { 2995 struct page *page = list_first_entry(&pagelist->head, 2996 struct page, lru); 2997 __le32 *addr = kmap_atomic(page); 2998 *addr = cpu_to_le32(recon_state.nr_caps); 2999 kunmap_atomic(addr); 3000 } 3001 3002 reply->hdr.data_len = cpu_to_le32(pagelist->length); 3003 ceph_msg_data_add_pagelist(reply, pagelist); 3004 3005 ceph_early_kick_flushing_caps(mdsc, session); 3006 3007 ceph_con_send(&session->s_con, reply); 3008 3009 mutex_unlock(&session->s_mutex); 3010 3011 mutex_lock(&mdsc->mutex); 3012 __wake_requests(mdsc, &session->s_waiting); 3013 mutex_unlock(&mdsc->mutex); 3014 3015 up_read(&mdsc->snap_rwsem); 3016 return; 3017 3018 fail: 3019 ceph_msg_put(reply); 3020 up_read(&mdsc->snap_rwsem); 3021 mutex_unlock(&session->s_mutex); 3022 fail_nomsg: 3023 ceph_pagelist_release(pagelist); 3024 fail_nopagelist: 3025 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 3026 return; 3027 } 3028 3029 3030 /* 3031 * compare old and new mdsmaps, kicking requests 3032 * and closing out old connections as necessary 3033 * 3034 * called under mdsc->mutex. 3035 */ 3036 static void check_new_map(struct ceph_mds_client *mdsc, 3037 struct ceph_mdsmap *newmap, 3038 struct ceph_mdsmap *oldmap) 3039 { 3040 int i; 3041 int oldstate, newstate; 3042 struct ceph_mds_session *s; 3043 3044 dout("check_new_map new %u old %u\n", 3045 newmap->m_epoch, oldmap->m_epoch); 3046 3047 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 3048 if (mdsc->sessions[i] == NULL) 3049 continue; 3050 s = mdsc->sessions[i]; 3051 oldstate = ceph_mdsmap_get_state(oldmap, i); 3052 newstate = ceph_mdsmap_get_state(newmap, i); 3053 3054 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 3055 i, ceph_mds_state_name(oldstate), 3056 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 3057 ceph_mds_state_name(newstate), 3058 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 3059 ceph_session_state_name(s->s_state)); 3060 3061 if (i >= newmap->m_max_mds || 3062 memcmp(ceph_mdsmap_get_addr(oldmap, i), 3063 ceph_mdsmap_get_addr(newmap, i), 3064 sizeof(struct ceph_entity_addr))) { 3065 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 3066 /* the session never opened, just close it 3067 * out now */ 3068 __wake_requests(mdsc, &s->s_waiting); 3069 __unregister_session(mdsc, s); 3070 } else { 3071 /* just close it */ 3072 mutex_unlock(&mdsc->mutex); 3073 mutex_lock(&s->s_mutex); 3074 mutex_lock(&mdsc->mutex); 3075 ceph_con_close(&s->s_con); 3076 mutex_unlock(&s->s_mutex); 3077 s->s_state = CEPH_MDS_SESSION_RESTARTING; 3078 } 3079 } else if (oldstate == newstate) { 3080 continue; /* nothing new with this mds */ 3081 } 3082 3083 /* 3084 * send reconnect? 3085 */ 3086 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 3087 newstate >= CEPH_MDS_STATE_RECONNECT) { 3088 mutex_unlock(&mdsc->mutex); 3089 send_mds_reconnect(mdsc, s); 3090 mutex_lock(&mdsc->mutex); 3091 } 3092 3093 /* 3094 * kick request on any mds that has gone active. 3095 */ 3096 if (oldstate < CEPH_MDS_STATE_ACTIVE && 3097 newstate >= CEPH_MDS_STATE_ACTIVE) { 3098 if (oldstate != CEPH_MDS_STATE_CREATING && 3099 oldstate != CEPH_MDS_STATE_STARTING) 3100 pr_info("mds%d recovery completed\n", s->s_mds); 3101 kick_requests(mdsc, i); 3102 ceph_kick_flushing_caps(mdsc, s); 3103 wake_up_session_caps(s, 1); 3104 } 3105 } 3106 3107 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 3108 s = mdsc->sessions[i]; 3109 if (!s) 3110 continue; 3111 if (!ceph_mdsmap_is_laggy(newmap, i)) 3112 continue; 3113 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3114 s->s_state == CEPH_MDS_SESSION_HUNG || 3115 s->s_state == CEPH_MDS_SESSION_CLOSING) { 3116 dout(" connecting to export targets of laggy mds%d\n", 3117 i); 3118 __open_export_target_sessions(mdsc, s); 3119 } 3120 } 3121 } 3122 3123 3124 3125 /* 3126 * leases 3127 */ 3128 3129 /* 3130 * caller must hold session s_mutex, dentry->d_lock 3131 */ 3132 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 3133 { 3134 struct ceph_dentry_info *di = ceph_dentry(dentry); 3135 3136 ceph_put_mds_session(di->lease_session); 3137 di->lease_session = NULL; 3138 } 3139 3140 static void handle_lease(struct ceph_mds_client *mdsc, 3141 struct ceph_mds_session *session, 3142 struct ceph_msg *msg) 3143 { 3144 struct super_block *sb = mdsc->fsc->sb; 3145 struct inode *inode; 3146 struct dentry *parent, *dentry; 3147 struct ceph_dentry_info *di; 3148 int mds = session->s_mds; 3149 struct ceph_mds_lease *h = msg->front.iov_base; 3150 u32 seq; 3151 struct ceph_vino vino; 3152 struct qstr dname; 3153 int release = 0; 3154 3155 dout("handle_lease from mds%d\n", mds); 3156 3157 /* decode */ 3158 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 3159 goto bad; 3160 vino.ino = le64_to_cpu(h->ino); 3161 vino.snap = CEPH_NOSNAP; 3162 seq = le32_to_cpu(h->seq); 3163 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 3164 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 3165 if (dname.len != get_unaligned_le32(h+1)) 3166 goto bad; 3167 3168 /* lookup inode */ 3169 inode = ceph_find_inode(sb, vino); 3170 dout("handle_lease %s, ino %llx %p %.*s\n", 3171 ceph_lease_op_name(h->action), vino.ino, inode, 3172 dname.len, dname.name); 3173 3174 mutex_lock(&session->s_mutex); 3175 session->s_seq++; 3176 3177 if (inode == NULL) { 3178 dout("handle_lease no inode %llx\n", vino.ino); 3179 goto release; 3180 } 3181 3182 /* dentry */ 3183 parent = d_find_alias(inode); 3184 if (!parent) { 3185 dout("no parent dentry on inode %p\n", inode); 3186 WARN_ON(1); 3187 goto release; /* hrm... */ 3188 } 3189 dname.hash = full_name_hash(parent, dname.name, dname.len); 3190 dentry = d_lookup(parent, &dname); 3191 dput(parent); 3192 if (!dentry) 3193 goto release; 3194 3195 spin_lock(&dentry->d_lock); 3196 di = ceph_dentry(dentry); 3197 switch (h->action) { 3198 case CEPH_MDS_LEASE_REVOKE: 3199 if (di->lease_session == session) { 3200 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 3201 h->seq = cpu_to_le32(di->lease_seq); 3202 __ceph_mdsc_drop_dentry_lease(dentry); 3203 } 3204 release = 1; 3205 break; 3206 3207 case CEPH_MDS_LEASE_RENEW: 3208 if (di->lease_session == session && 3209 di->lease_gen == session->s_cap_gen && 3210 di->lease_renew_from && 3211 di->lease_renew_after == 0) { 3212 unsigned long duration = 3213 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 3214 3215 di->lease_seq = seq; 3216 di->time = di->lease_renew_from + duration; 3217 di->lease_renew_after = di->lease_renew_from + 3218 (duration >> 1); 3219 di->lease_renew_from = 0; 3220 } 3221 break; 3222 } 3223 spin_unlock(&dentry->d_lock); 3224 dput(dentry); 3225 3226 if (!release) 3227 goto out; 3228 3229 release: 3230 /* let's just reuse the same message */ 3231 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 3232 ceph_msg_get(msg); 3233 ceph_con_send(&session->s_con, msg); 3234 3235 out: 3236 iput(inode); 3237 mutex_unlock(&session->s_mutex); 3238 return; 3239 3240 bad: 3241 pr_err("corrupt lease message\n"); 3242 ceph_msg_dump(msg); 3243 } 3244 3245 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 3246 struct inode *inode, 3247 struct dentry *dentry, char action, 3248 u32 seq) 3249 { 3250 struct ceph_msg *msg; 3251 struct ceph_mds_lease *lease; 3252 int len = sizeof(*lease) + sizeof(u32); 3253 int dnamelen = 0; 3254 3255 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 3256 inode, dentry, ceph_lease_op_name(action), session->s_mds); 3257 dnamelen = dentry->d_name.len; 3258 len += dnamelen; 3259 3260 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 3261 if (!msg) 3262 return; 3263 lease = msg->front.iov_base; 3264 lease->action = action; 3265 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 3266 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 3267 lease->seq = cpu_to_le32(seq); 3268 put_unaligned_le32(dnamelen, lease + 1); 3269 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 3270 3271 /* 3272 * if this is a preemptive lease RELEASE, no need to 3273 * flush request stream, since the actual request will 3274 * soon follow. 3275 */ 3276 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 3277 3278 ceph_con_send(&session->s_con, msg); 3279 } 3280 3281 /* 3282 * drop all leases (and dentry refs) in preparation for umount 3283 */ 3284 static void drop_leases(struct ceph_mds_client *mdsc) 3285 { 3286 int i; 3287 3288 dout("drop_leases\n"); 3289 mutex_lock(&mdsc->mutex); 3290 for (i = 0; i < mdsc->max_sessions; i++) { 3291 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3292 if (!s) 3293 continue; 3294 mutex_unlock(&mdsc->mutex); 3295 mutex_lock(&s->s_mutex); 3296 mutex_unlock(&s->s_mutex); 3297 ceph_put_mds_session(s); 3298 mutex_lock(&mdsc->mutex); 3299 } 3300 mutex_unlock(&mdsc->mutex); 3301 } 3302 3303 3304 3305 /* 3306 * delayed work -- periodically trim expired leases, renew caps with mds 3307 */ 3308 static void schedule_delayed(struct ceph_mds_client *mdsc) 3309 { 3310 int delay = 5; 3311 unsigned hz = round_jiffies_relative(HZ * delay); 3312 schedule_delayed_work(&mdsc->delayed_work, hz); 3313 } 3314 3315 static void delayed_work(struct work_struct *work) 3316 { 3317 int i; 3318 struct ceph_mds_client *mdsc = 3319 container_of(work, struct ceph_mds_client, delayed_work.work); 3320 int renew_interval; 3321 int renew_caps; 3322 3323 dout("mdsc delayed_work\n"); 3324 ceph_check_delayed_caps(mdsc); 3325 3326 mutex_lock(&mdsc->mutex); 3327 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 3328 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 3329 mdsc->last_renew_caps); 3330 if (renew_caps) 3331 mdsc->last_renew_caps = jiffies; 3332 3333 for (i = 0; i < mdsc->max_sessions; i++) { 3334 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3335 if (s == NULL) 3336 continue; 3337 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 3338 dout("resending session close request for mds%d\n", 3339 s->s_mds); 3340 request_close_session(mdsc, s); 3341 ceph_put_mds_session(s); 3342 continue; 3343 } 3344 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 3345 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 3346 s->s_state = CEPH_MDS_SESSION_HUNG; 3347 pr_info("mds%d hung\n", s->s_mds); 3348 } 3349 } 3350 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 3351 /* this mds is failed or recovering, just wait */ 3352 ceph_put_mds_session(s); 3353 continue; 3354 } 3355 mutex_unlock(&mdsc->mutex); 3356 3357 mutex_lock(&s->s_mutex); 3358 if (renew_caps) 3359 send_renew_caps(mdsc, s); 3360 else 3361 ceph_con_keepalive(&s->s_con); 3362 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3363 s->s_state == CEPH_MDS_SESSION_HUNG) 3364 ceph_send_cap_releases(mdsc, s); 3365 mutex_unlock(&s->s_mutex); 3366 ceph_put_mds_session(s); 3367 3368 mutex_lock(&mdsc->mutex); 3369 } 3370 mutex_unlock(&mdsc->mutex); 3371 3372 schedule_delayed(mdsc); 3373 } 3374 3375 int ceph_mdsc_init(struct ceph_fs_client *fsc) 3376 3377 { 3378 struct ceph_mds_client *mdsc; 3379 3380 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 3381 if (!mdsc) 3382 return -ENOMEM; 3383 mdsc->fsc = fsc; 3384 fsc->mdsc = mdsc; 3385 mutex_init(&mdsc->mutex); 3386 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3387 if (mdsc->mdsmap == NULL) { 3388 kfree(mdsc); 3389 return -ENOMEM; 3390 } 3391 3392 init_completion(&mdsc->safe_umount_waiters); 3393 init_waitqueue_head(&mdsc->session_close_wq); 3394 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3395 mdsc->sessions = NULL; 3396 atomic_set(&mdsc->num_sessions, 0); 3397 mdsc->max_sessions = 0; 3398 mdsc->stopping = 0; 3399 mdsc->last_snap_seq = 0; 3400 init_rwsem(&mdsc->snap_rwsem); 3401 mdsc->snap_realms = RB_ROOT; 3402 INIT_LIST_HEAD(&mdsc->snap_empty); 3403 spin_lock_init(&mdsc->snap_empty_lock); 3404 mdsc->last_tid = 0; 3405 mdsc->oldest_tid = 0; 3406 mdsc->request_tree = RB_ROOT; 3407 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3408 mdsc->last_renew_caps = jiffies; 3409 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3410 spin_lock_init(&mdsc->cap_delay_lock); 3411 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3412 spin_lock_init(&mdsc->snap_flush_lock); 3413 mdsc->last_cap_flush_tid = 1; 3414 INIT_LIST_HEAD(&mdsc->cap_flush_list); 3415 INIT_LIST_HEAD(&mdsc->cap_dirty); 3416 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3417 mdsc->num_cap_flushing = 0; 3418 spin_lock_init(&mdsc->cap_dirty_lock); 3419 init_waitqueue_head(&mdsc->cap_flushing_wq); 3420 spin_lock_init(&mdsc->dentry_lru_lock); 3421 INIT_LIST_HEAD(&mdsc->dentry_lru); 3422 3423 ceph_caps_init(mdsc); 3424 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3425 3426 init_rwsem(&mdsc->pool_perm_rwsem); 3427 mdsc->pool_perm_tree = RB_ROOT; 3428 3429 return 0; 3430 } 3431 3432 /* 3433 * Wait for safe replies on open mds requests. If we time out, drop 3434 * all requests from the tree to avoid dangling dentry refs. 3435 */ 3436 static void wait_requests(struct ceph_mds_client *mdsc) 3437 { 3438 struct ceph_options *opts = mdsc->fsc->client->options; 3439 struct ceph_mds_request *req; 3440 3441 mutex_lock(&mdsc->mutex); 3442 if (__get_oldest_req(mdsc)) { 3443 mutex_unlock(&mdsc->mutex); 3444 3445 dout("wait_requests waiting for requests\n"); 3446 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3447 ceph_timeout_jiffies(opts->mount_timeout)); 3448 3449 /* tear down remaining requests */ 3450 mutex_lock(&mdsc->mutex); 3451 while ((req = __get_oldest_req(mdsc))) { 3452 dout("wait_requests timed out on tid %llu\n", 3453 req->r_tid); 3454 __unregister_request(mdsc, req); 3455 } 3456 } 3457 mutex_unlock(&mdsc->mutex); 3458 dout("wait_requests done\n"); 3459 } 3460 3461 /* 3462 * called before mount is ro, and before dentries are torn down. 3463 * (hmm, does this still race with new lookups?) 3464 */ 3465 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3466 { 3467 dout("pre_umount\n"); 3468 mdsc->stopping = 1; 3469 3470 drop_leases(mdsc); 3471 ceph_flush_dirty_caps(mdsc); 3472 wait_requests(mdsc); 3473 3474 /* 3475 * wait for reply handlers to drop their request refs and 3476 * their inode/dcache refs 3477 */ 3478 ceph_msgr_flush(); 3479 } 3480 3481 /* 3482 * wait for all write mds requests to flush. 3483 */ 3484 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3485 { 3486 struct ceph_mds_request *req = NULL, *nextreq; 3487 struct rb_node *n; 3488 3489 mutex_lock(&mdsc->mutex); 3490 dout("wait_unsafe_requests want %lld\n", want_tid); 3491 restart: 3492 req = __get_oldest_req(mdsc); 3493 while (req && req->r_tid <= want_tid) { 3494 /* find next request */ 3495 n = rb_next(&req->r_node); 3496 if (n) 3497 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3498 else 3499 nextreq = NULL; 3500 if (req->r_op != CEPH_MDS_OP_SETFILELOCK && 3501 (req->r_op & CEPH_MDS_OP_WRITE)) { 3502 /* write op */ 3503 ceph_mdsc_get_request(req); 3504 if (nextreq) 3505 ceph_mdsc_get_request(nextreq); 3506 mutex_unlock(&mdsc->mutex); 3507 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3508 req->r_tid, want_tid); 3509 wait_for_completion(&req->r_safe_completion); 3510 mutex_lock(&mdsc->mutex); 3511 ceph_mdsc_put_request(req); 3512 if (!nextreq) 3513 break; /* next dne before, so we're done! */ 3514 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3515 /* next request was removed from tree */ 3516 ceph_mdsc_put_request(nextreq); 3517 goto restart; 3518 } 3519 ceph_mdsc_put_request(nextreq); /* won't go away */ 3520 } 3521 req = nextreq; 3522 } 3523 mutex_unlock(&mdsc->mutex); 3524 dout("wait_unsafe_requests done\n"); 3525 } 3526 3527 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3528 { 3529 u64 want_tid, want_flush; 3530 3531 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 3532 return; 3533 3534 dout("sync\n"); 3535 mutex_lock(&mdsc->mutex); 3536 want_tid = mdsc->last_tid; 3537 mutex_unlock(&mdsc->mutex); 3538 3539 ceph_flush_dirty_caps(mdsc); 3540 spin_lock(&mdsc->cap_dirty_lock); 3541 want_flush = mdsc->last_cap_flush_tid; 3542 if (!list_empty(&mdsc->cap_flush_list)) { 3543 struct ceph_cap_flush *cf = 3544 list_last_entry(&mdsc->cap_flush_list, 3545 struct ceph_cap_flush, g_list); 3546 cf->wake = true; 3547 } 3548 spin_unlock(&mdsc->cap_dirty_lock); 3549 3550 dout("sync want tid %lld flush_seq %lld\n", 3551 want_tid, want_flush); 3552 3553 wait_unsafe_requests(mdsc, want_tid); 3554 wait_caps_flush(mdsc, want_flush); 3555 } 3556 3557 /* 3558 * true if all sessions are closed, or we force unmount 3559 */ 3560 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3561 { 3562 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 3563 return true; 3564 return atomic_read(&mdsc->num_sessions) == 0; 3565 } 3566 3567 /* 3568 * called after sb is ro. 3569 */ 3570 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3571 { 3572 struct ceph_options *opts = mdsc->fsc->client->options; 3573 struct ceph_mds_session *session; 3574 int i; 3575 3576 dout("close_sessions\n"); 3577 3578 /* close sessions */ 3579 mutex_lock(&mdsc->mutex); 3580 for (i = 0; i < mdsc->max_sessions; i++) { 3581 session = __ceph_lookup_mds_session(mdsc, i); 3582 if (!session) 3583 continue; 3584 mutex_unlock(&mdsc->mutex); 3585 mutex_lock(&session->s_mutex); 3586 __close_session(mdsc, session); 3587 mutex_unlock(&session->s_mutex); 3588 ceph_put_mds_session(session); 3589 mutex_lock(&mdsc->mutex); 3590 } 3591 mutex_unlock(&mdsc->mutex); 3592 3593 dout("waiting for sessions to close\n"); 3594 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3595 ceph_timeout_jiffies(opts->mount_timeout)); 3596 3597 /* tear down remaining sessions */ 3598 mutex_lock(&mdsc->mutex); 3599 for (i = 0; i < mdsc->max_sessions; i++) { 3600 if (mdsc->sessions[i]) { 3601 session = get_session(mdsc->sessions[i]); 3602 __unregister_session(mdsc, session); 3603 mutex_unlock(&mdsc->mutex); 3604 mutex_lock(&session->s_mutex); 3605 remove_session_caps(session); 3606 mutex_unlock(&session->s_mutex); 3607 ceph_put_mds_session(session); 3608 mutex_lock(&mdsc->mutex); 3609 } 3610 } 3611 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3612 mutex_unlock(&mdsc->mutex); 3613 3614 ceph_cleanup_empty_realms(mdsc); 3615 3616 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3617 3618 dout("stopped\n"); 3619 } 3620 3621 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) 3622 { 3623 struct ceph_mds_session *session; 3624 int mds; 3625 3626 dout("force umount\n"); 3627 3628 mutex_lock(&mdsc->mutex); 3629 for (mds = 0; mds < mdsc->max_sessions; mds++) { 3630 session = __ceph_lookup_mds_session(mdsc, mds); 3631 if (!session) 3632 continue; 3633 mutex_unlock(&mdsc->mutex); 3634 mutex_lock(&session->s_mutex); 3635 __close_session(mdsc, session); 3636 if (session->s_state == CEPH_MDS_SESSION_CLOSING) { 3637 cleanup_session_requests(mdsc, session); 3638 remove_session_caps(session); 3639 } 3640 mutex_unlock(&session->s_mutex); 3641 ceph_put_mds_session(session); 3642 mutex_lock(&mdsc->mutex); 3643 kick_requests(mdsc, mds); 3644 } 3645 __wake_requests(mdsc, &mdsc->waiting_for_map); 3646 mutex_unlock(&mdsc->mutex); 3647 } 3648 3649 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3650 { 3651 dout("stop\n"); 3652 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3653 if (mdsc->mdsmap) 3654 ceph_mdsmap_destroy(mdsc->mdsmap); 3655 kfree(mdsc->sessions); 3656 ceph_caps_finalize(mdsc); 3657 ceph_pool_perm_destroy(mdsc); 3658 } 3659 3660 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3661 { 3662 struct ceph_mds_client *mdsc = fsc->mdsc; 3663 3664 dout("mdsc_destroy %p\n", mdsc); 3665 ceph_mdsc_stop(mdsc); 3666 3667 /* flush out any connection work with references to us */ 3668 ceph_msgr_flush(); 3669 3670 fsc->mdsc = NULL; 3671 kfree(mdsc); 3672 dout("mdsc_destroy %p done\n", mdsc); 3673 } 3674 3675 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3676 { 3677 struct ceph_fs_client *fsc = mdsc->fsc; 3678 const char *mds_namespace = fsc->mount_options->mds_namespace; 3679 void *p = msg->front.iov_base; 3680 void *end = p + msg->front.iov_len; 3681 u32 epoch; 3682 u32 map_len; 3683 u32 num_fs; 3684 u32 mount_fscid = (u32)-1; 3685 u8 struct_v, struct_cv; 3686 int err = -EINVAL; 3687 3688 ceph_decode_need(&p, end, sizeof(u32), bad); 3689 epoch = ceph_decode_32(&p); 3690 3691 dout("handle_fsmap epoch %u\n", epoch); 3692 3693 ceph_decode_need(&p, end, 2 + sizeof(u32), bad); 3694 struct_v = ceph_decode_8(&p); 3695 struct_cv = ceph_decode_8(&p); 3696 map_len = ceph_decode_32(&p); 3697 3698 ceph_decode_need(&p, end, sizeof(u32) * 3, bad); 3699 p += sizeof(u32) * 2; /* skip epoch and legacy_client_fscid */ 3700 3701 num_fs = ceph_decode_32(&p); 3702 while (num_fs-- > 0) { 3703 void *info_p, *info_end; 3704 u32 info_len; 3705 u8 info_v, info_cv; 3706 u32 fscid, namelen; 3707 3708 ceph_decode_need(&p, end, 2 + sizeof(u32), bad); 3709 info_v = ceph_decode_8(&p); 3710 info_cv = ceph_decode_8(&p); 3711 info_len = ceph_decode_32(&p); 3712 ceph_decode_need(&p, end, info_len, bad); 3713 info_p = p; 3714 info_end = p + info_len; 3715 p = info_end; 3716 3717 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad); 3718 fscid = ceph_decode_32(&info_p); 3719 namelen = ceph_decode_32(&info_p); 3720 ceph_decode_need(&info_p, info_end, namelen, bad); 3721 3722 if (mds_namespace && 3723 strlen(mds_namespace) == namelen && 3724 !strncmp(mds_namespace, (char *)info_p, namelen)) { 3725 mount_fscid = fscid; 3726 break; 3727 } 3728 } 3729 3730 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch); 3731 if (mount_fscid != (u32)-1) { 3732 fsc->client->monc.fs_cluster_id = mount_fscid; 3733 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP, 3734 0, true); 3735 ceph_monc_renew_subs(&fsc->client->monc); 3736 } else { 3737 err = -ENOENT; 3738 goto err_out; 3739 } 3740 return; 3741 bad: 3742 pr_err("error decoding fsmap\n"); 3743 err_out: 3744 mutex_lock(&mdsc->mutex); 3745 mdsc->mdsmap_err = -ENOENT; 3746 __wake_requests(mdsc, &mdsc->waiting_for_map); 3747 mutex_unlock(&mdsc->mutex); 3748 return; 3749 } 3750 3751 /* 3752 * handle mds map update. 3753 */ 3754 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3755 { 3756 u32 epoch; 3757 u32 maplen; 3758 void *p = msg->front.iov_base; 3759 void *end = p + msg->front.iov_len; 3760 struct ceph_mdsmap *newmap, *oldmap; 3761 struct ceph_fsid fsid; 3762 int err = -EINVAL; 3763 3764 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3765 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3766 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3767 return; 3768 epoch = ceph_decode_32(&p); 3769 maplen = ceph_decode_32(&p); 3770 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3771 3772 /* do we need it? */ 3773 mutex_lock(&mdsc->mutex); 3774 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3775 dout("handle_map epoch %u <= our %u\n", 3776 epoch, mdsc->mdsmap->m_epoch); 3777 mutex_unlock(&mdsc->mutex); 3778 return; 3779 } 3780 3781 newmap = ceph_mdsmap_decode(&p, end); 3782 if (IS_ERR(newmap)) { 3783 err = PTR_ERR(newmap); 3784 goto bad_unlock; 3785 } 3786 3787 /* swap into place */ 3788 if (mdsc->mdsmap) { 3789 oldmap = mdsc->mdsmap; 3790 mdsc->mdsmap = newmap; 3791 check_new_map(mdsc, newmap, oldmap); 3792 ceph_mdsmap_destroy(oldmap); 3793 } else { 3794 mdsc->mdsmap = newmap; /* first mds map */ 3795 } 3796 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3797 3798 __wake_requests(mdsc, &mdsc->waiting_for_map); 3799 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP, 3800 mdsc->mdsmap->m_epoch); 3801 3802 mutex_unlock(&mdsc->mutex); 3803 schedule_delayed(mdsc); 3804 return; 3805 3806 bad_unlock: 3807 mutex_unlock(&mdsc->mutex); 3808 bad: 3809 pr_err("error decoding mdsmap %d\n", err); 3810 return; 3811 } 3812 3813 static struct ceph_connection *con_get(struct ceph_connection *con) 3814 { 3815 struct ceph_mds_session *s = con->private; 3816 3817 if (get_session(s)) { 3818 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3819 return con; 3820 } 3821 dout("mdsc con_get %p FAIL\n", s); 3822 return NULL; 3823 } 3824 3825 static void con_put(struct ceph_connection *con) 3826 { 3827 struct ceph_mds_session *s = con->private; 3828 3829 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3830 ceph_put_mds_session(s); 3831 } 3832 3833 /* 3834 * if the client is unresponsive for long enough, the mds will kill 3835 * the session entirely. 3836 */ 3837 static void peer_reset(struct ceph_connection *con) 3838 { 3839 struct ceph_mds_session *s = con->private; 3840 struct ceph_mds_client *mdsc = s->s_mdsc; 3841 3842 pr_warn("mds%d closed our session\n", s->s_mds); 3843 send_mds_reconnect(mdsc, s); 3844 } 3845 3846 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3847 { 3848 struct ceph_mds_session *s = con->private; 3849 struct ceph_mds_client *mdsc = s->s_mdsc; 3850 int type = le16_to_cpu(msg->hdr.type); 3851 3852 mutex_lock(&mdsc->mutex); 3853 if (__verify_registered_session(mdsc, s) < 0) { 3854 mutex_unlock(&mdsc->mutex); 3855 goto out; 3856 } 3857 mutex_unlock(&mdsc->mutex); 3858 3859 switch (type) { 3860 case CEPH_MSG_MDS_MAP: 3861 ceph_mdsc_handle_mdsmap(mdsc, msg); 3862 break; 3863 case CEPH_MSG_FS_MAP_USER: 3864 ceph_mdsc_handle_fsmap(mdsc, msg); 3865 break; 3866 case CEPH_MSG_CLIENT_SESSION: 3867 handle_session(s, msg); 3868 break; 3869 case CEPH_MSG_CLIENT_REPLY: 3870 handle_reply(s, msg); 3871 break; 3872 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3873 handle_forward(mdsc, s, msg); 3874 break; 3875 case CEPH_MSG_CLIENT_CAPS: 3876 ceph_handle_caps(s, msg); 3877 break; 3878 case CEPH_MSG_CLIENT_SNAP: 3879 ceph_handle_snap(mdsc, s, msg); 3880 break; 3881 case CEPH_MSG_CLIENT_LEASE: 3882 handle_lease(mdsc, s, msg); 3883 break; 3884 3885 default: 3886 pr_err("received unknown message type %d %s\n", type, 3887 ceph_msg_type_name(type)); 3888 } 3889 out: 3890 ceph_msg_put(msg); 3891 } 3892 3893 /* 3894 * authentication 3895 */ 3896 3897 /* 3898 * Note: returned pointer is the address of a structure that's 3899 * managed separately. Caller must *not* attempt to free it. 3900 */ 3901 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 3902 int *proto, int force_new) 3903 { 3904 struct ceph_mds_session *s = con->private; 3905 struct ceph_mds_client *mdsc = s->s_mdsc; 3906 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3907 struct ceph_auth_handshake *auth = &s->s_auth; 3908 3909 if (force_new && auth->authorizer) { 3910 ceph_auth_destroy_authorizer(auth->authorizer); 3911 auth->authorizer = NULL; 3912 } 3913 if (!auth->authorizer) { 3914 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3915 auth); 3916 if (ret) 3917 return ERR_PTR(ret); 3918 } else { 3919 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3920 auth); 3921 if (ret) 3922 return ERR_PTR(ret); 3923 } 3924 *proto = ac->protocol; 3925 3926 return auth; 3927 } 3928 3929 3930 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3931 { 3932 struct ceph_mds_session *s = con->private; 3933 struct ceph_mds_client *mdsc = s->s_mdsc; 3934 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3935 3936 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len); 3937 } 3938 3939 static int invalidate_authorizer(struct ceph_connection *con) 3940 { 3941 struct ceph_mds_session *s = con->private; 3942 struct ceph_mds_client *mdsc = s->s_mdsc; 3943 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3944 3945 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3946 3947 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3948 } 3949 3950 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 3951 struct ceph_msg_header *hdr, int *skip) 3952 { 3953 struct ceph_msg *msg; 3954 int type = (int) le16_to_cpu(hdr->type); 3955 int front_len = (int) le32_to_cpu(hdr->front_len); 3956 3957 if (con->in_msg) 3958 return con->in_msg; 3959 3960 *skip = 0; 3961 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 3962 if (!msg) { 3963 pr_err("unable to allocate msg type %d len %d\n", 3964 type, front_len); 3965 return NULL; 3966 } 3967 3968 return msg; 3969 } 3970 3971 static int mds_sign_message(struct ceph_msg *msg) 3972 { 3973 struct ceph_mds_session *s = msg->con->private; 3974 struct ceph_auth_handshake *auth = &s->s_auth; 3975 3976 return ceph_auth_sign_message(auth, msg); 3977 } 3978 3979 static int mds_check_message_signature(struct ceph_msg *msg) 3980 { 3981 struct ceph_mds_session *s = msg->con->private; 3982 struct ceph_auth_handshake *auth = &s->s_auth; 3983 3984 return ceph_auth_check_message_signature(auth, msg); 3985 } 3986 3987 static const struct ceph_connection_operations mds_con_ops = { 3988 .get = con_get, 3989 .put = con_put, 3990 .dispatch = dispatch, 3991 .get_authorizer = get_authorizer, 3992 .verify_authorizer_reply = verify_authorizer_reply, 3993 .invalidate_authorizer = invalidate_authorizer, 3994 .peer_reset = peer_reset, 3995 .alloc_msg = mds_alloc_msg, 3996 .sign_message = mds_sign_message, 3997 .check_message_signature = mds_check_message_signature, 3998 }; 3999 4000 /* eof */ 4001