1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/fs.h> 5 #include <linux/wait.h> 6 #include <linux/slab.h> 7 #include <linux/gfp.h> 8 #include <linux/sched.h> 9 #include <linux/debugfs.h> 10 #include <linux/seq_file.h> 11 #include <linux/ratelimit.h> 12 #include <linux/bits.h> 13 #include <linux/ktime.h> 14 #include <linux/bitmap.h> 15 16 #include "super.h" 17 #include "mds_client.h" 18 #include "crypto.h" 19 20 #include <linux/ceph/ceph_features.h> 21 #include <linux/ceph/messenger.h> 22 #include <linux/ceph/decode.h> 23 #include <linux/ceph/pagelist.h> 24 #include <linux/ceph/auth.h> 25 #include <linux/ceph/debugfs.h> 26 27 #define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE) 28 29 /* 30 * A cluster of MDS (metadata server) daemons is responsible for 31 * managing the file system namespace (the directory hierarchy and 32 * inodes) and for coordinating shared access to storage. Metadata is 33 * partitioning hierarchically across a number of servers, and that 34 * partition varies over time as the cluster adjusts the distribution 35 * in order to balance load. 36 * 37 * The MDS client is primarily responsible to managing synchronous 38 * metadata requests for operations like open, unlink, and so forth. 39 * If there is a MDS failure, we find out about it when we (possibly 40 * request and) receive a new MDS map, and can resubmit affected 41 * requests. 42 * 43 * For the most part, though, we take advantage of a lossless 44 * communications channel to the MDS, and do not need to worry about 45 * timing out or resubmitting requests. 46 * 47 * We maintain a stateful "session" with each MDS we interact with. 48 * Within each session, we sent periodic heartbeat messages to ensure 49 * any capabilities or leases we have been issues remain valid. If 50 * the session times out and goes stale, our leases and capabilities 51 * are no longer valid. 52 */ 53 54 struct ceph_reconnect_state { 55 struct ceph_mds_session *session; 56 int nr_caps, nr_realms; 57 struct ceph_pagelist *pagelist; 58 unsigned msg_version; 59 bool allow_multi; 60 }; 61 62 static void __wake_requests(struct ceph_mds_client *mdsc, 63 struct list_head *head); 64 static void ceph_cap_release_work(struct work_struct *work); 65 static void ceph_cap_reclaim_work(struct work_struct *work); 66 67 static const struct ceph_connection_operations mds_con_ops; 68 69 70 /* 71 * mds reply parsing 72 */ 73 74 static int parse_reply_info_quota(void **p, void *end, 75 struct ceph_mds_reply_info_in *info) 76 { 77 u8 struct_v, struct_compat; 78 u32 struct_len; 79 80 ceph_decode_8_safe(p, end, struct_v, bad); 81 ceph_decode_8_safe(p, end, struct_compat, bad); 82 /* struct_v is expected to be >= 1. we only 83 * understand encoding with struct_compat == 1. */ 84 if (!struct_v || struct_compat != 1) 85 goto bad; 86 ceph_decode_32_safe(p, end, struct_len, bad); 87 ceph_decode_need(p, end, struct_len, bad); 88 end = *p + struct_len; 89 ceph_decode_64_safe(p, end, info->max_bytes, bad); 90 ceph_decode_64_safe(p, end, info->max_files, bad); 91 *p = end; 92 return 0; 93 bad: 94 return -EIO; 95 } 96 97 /* 98 * parse individual inode info 99 */ 100 static int parse_reply_info_in(void **p, void *end, 101 struct ceph_mds_reply_info_in *info, 102 u64 features) 103 { 104 int err = 0; 105 u8 struct_v = 0; 106 107 if (features == (u64)-1) { 108 u32 struct_len; 109 u8 struct_compat; 110 ceph_decode_8_safe(p, end, struct_v, bad); 111 ceph_decode_8_safe(p, end, struct_compat, bad); 112 /* struct_v is expected to be >= 1. we only understand 113 * encoding with struct_compat == 1. */ 114 if (!struct_v || struct_compat != 1) 115 goto bad; 116 ceph_decode_32_safe(p, end, struct_len, bad); 117 ceph_decode_need(p, end, struct_len, bad); 118 end = *p + struct_len; 119 } 120 121 ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad); 122 info->in = *p; 123 *p += sizeof(struct ceph_mds_reply_inode) + 124 sizeof(*info->in->fragtree.splits) * 125 le32_to_cpu(info->in->fragtree.nsplits); 126 127 ceph_decode_32_safe(p, end, info->symlink_len, bad); 128 ceph_decode_need(p, end, info->symlink_len, bad); 129 info->symlink = *p; 130 *p += info->symlink_len; 131 132 ceph_decode_copy_safe(p, end, &info->dir_layout, 133 sizeof(info->dir_layout), bad); 134 ceph_decode_32_safe(p, end, info->xattr_len, bad); 135 ceph_decode_need(p, end, info->xattr_len, bad); 136 info->xattr_data = *p; 137 *p += info->xattr_len; 138 139 if (features == (u64)-1) { 140 /* inline data */ 141 ceph_decode_64_safe(p, end, info->inline_version, bad); 142 ceph_decode_32_safe(p, end, info->inline_len, bad); 143 ceph_decode_need(p, end, info->inline_len, bad); 144 info->inline_data = *p; 145 *p += info->inline_len; 146 /* quota */ 147 err = parse_reply_info_quota(p, end, info); 148 if (err < 0) 149 goto out_bad; 150 /* pool namespace */ 151 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 152 if (info->pool_ns_len > 0) { 153 ceph_decode_need(p, end, info->pool_ns_len, bad); 154 info->pool_ns_data = *p; 155 *p += info->pool_ns_len; 156 } 157 158 /* btime */ 159 ceph_decode_need(p, end, sizeof(info->btime), bad); 160 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 161 162 /* change attribute */ 163 ceph_decode_64_safe(p, end, info->change_attr, bad); 164 165 /* dir pin */ 166 if (struct_v >= 2) { 167 ceph_decode_32_safe(p, end, info->dir_pin, bad); 168 } else { 169 info->dir_pin = -ENODATA; 170 } 171 172 /* snapshot birth time, remains zero for v<=2 */ 173 if (struct_v >= 3) { 174 ceph_decode_need(p, end, sizeof(info->snap_btime), bad); 175 ceph_decode_copy(p, &info->snap_btime, 176 sizeof(info->snap_btime)); 177 } else { 178 memset(&info->snap_btime, 0, sizeof(info->snap_btime)); 179 } 180 181 /* snapshot count, remains zero for v<=3 */ 182 if (struct_v >= 4) { 183 ceph_decode_64_safe(p, end, info->rsnaps, bad); 184 } else { 185 info->rsnaps = 0; 186 } 187 188 if (struct_v >= 5) { 189 u32 alen; 190 191 ceph_decode_32_safe(p, end, alen, bad); 192 193 while (alen--) { 194 u32 len; 195 196 /* key */ 197 ceph_decode_32_safe(p, end, len, bad); 198 ceph_decode_skip_n(p, end, len, bad); 199 /* value */ 200 ceph_decode_32_safe(p, end, len, bad); 201 ceph_decode_skip_n(p, end, len, bad); 202 } 203 } 204 205 /* fscrypt flag -- ignore */ 206 if (struct_v >= 6) 207 ceph_decode_skip_8(p, end, bad); 208 209 info->fscrypt_auth = NULL; 210 info->fscrypt_auth_len = 0; 211 info->fscrypt_file = NULL; 212 info->fscrypt_file_len = 0; 213 if (struct_v >= 7) { 214 ceph_decode_32_safe(p, end, info->fscrypt_auth_len, bad); 215 if (info->fscrypt_auth_len) { 216 info->fscrypt_auth = kmalloc(info->fscrypt_auth_len, 217 GFP_KERNEL); 218 if (!info->fscrypt_auth) 219 return -ENOMEM; 220 ceph_decode_copy_safe(p, end, info->fscrypt_auth, 221 info->fscrypt_auth_len, bad); 222 } 223 ceph_decode_32_safe(p, end, info->fscrypt_file_len, bad); 224 if (info->fscrypt_file_len) { 225 info->fscrypt_file = kmalloc(info->fscrypt_file_len, 226 GFP_KERNEL); 227 if (!info->fscrypt_file) 228 return -ENOMEM; 229 ceph_decode_copy_safe(p, end, info->fscrypt_file, 230 info->fscrypt_file_len, bad); 231 } 232 } 233 *p = end; 234 } else { 235 /* legacy (unversioned) struct */ 236 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 237 ceph_decode_64_safe(p, end, info->inline_version, bad); 238 ceph_decode_32_safe(p, end, info->inline_len, bad); 239 ceph_decode_need(p, end, info->inline_len, bad); 240 info->inline_data = *p; 241 *p += info->inline_len; 242 } else 243 info->inline_version = CEPH_INLINE_NONE; 244 245 if (features & CEPH_FEATURE_MDS_QUOTA) { 246 err = parse_reply_info_quota(p, end, info); 247 if (err < 0) 248 goto out_bad; 249 } else { 250 info->max_bytes = 0; 251 info->max_files = 0; 252 } 253 254 info->pool_ns_len = 0; 255 info->pool_ns_data = NULL; 256 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) { 257 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 258 if (info->pool_ns_len > 0) { 259 ceph_decode_need(p, end, info->pool_ns_len, bad); 260 info->pool_ns_data = *p; 261 *p += info->pool_ns_len; 262 } 263 } 264 265 if (features & CEPH_FEATURE_FS_BTIME) { 266 ceph_decode_need(p, end, sizeof(info->btime), bad); 267 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 268 ceph_decode_64_safe(p, end, info->change_attr, bad); 269 } 270 271 info->dir_pin = -ENODATA; 272 /* info->snap_btime and info->rsnaps remain zero */ 273 } 274 return 0; 275 bad: 276 err = -EIO; 277 out_bad: 278 return err; 279 } 280 281 static int parse_reply_info_dir(void **p, void *end, 282 struct ceph_mds_reply_dirfrag **dirfrag, 283 u64 features) 284 { 285 if (features == (u64)-1) { 286 u8 struct_v, struct_compat; 287 u32 struct_len; 288 ceph_decode_8_safe(p, end, struct_v, bad); 289 ceph_decode_8_safe(p, end, struct_compat, bad); 290 /* struct_v is expected to be >= 1. we only understand 291 * encoding whose struct_compat == 1. */ 292 if (!struct_v || struct_compat != 1) 293 goto bad; 294 ceph_decode_32_safe(p, end, struct_len, bad); 295 ceph_decode_need(p, end, struct_len, bad); 296 end = *p + struct_len; 297 } 298 299 ceph_decode_need(p, end, sizeof(**dirfrag), bad); 300 *dirfrag = *p; 301 *p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist); 302 if (unlikely(*p > end)) 303 goto bad; 304 if (features == (u64)-1) 305 *p = end; 306 return 0; 307 bad: 308 return -EIO; 309 } 310 311 static int parse_reply_info_lease(void **p, void *end, 312 struct ceph_mds_reply_lease **lease, 313 u64 features, u32 *altname_len, u8 **altname) 314 { 315 u8 struct_v; 316 u32 struct_len; 317 void *lend; 318 319 if (features == (u64)-1) { 320 u8 struct_compat; 321 322 ceph_decode_8_safe(p, end, struct_v, bad); 323 ceph_decode_8_safe(p, end, struct_compat, bad); 324 325 /* struct_v is expected to be >= 1. we only understand 326 * encoding whose struct_compat == 1. */ 327 if (!struct_v || struct_compat != 1) 328 goto bad; 329 330 ceph_decode_32_safe(p, end, struct_len, bad); 331 } else { 332 struct_len = sizeof(**lease); 333 *altname_len = 0; 334 *altname = NULL; 335 } 336 337 lend = *p + struct_len; 338 ceph_decode_need(p, end, struct_len, bad); 339 *lease = *p; 340 *p += sizeof(**lease); 341 342 if (features == (u64)-1) { 343 if (struct_v >= 2) { 344 ceph_decode_32_safe(p, end, *altname_len, bad); 345 ceph_decode_need(p, end, *altname_len, bad); 346 *altname = *p; 347 *p += *altname_len; 348 } else { 349 *altname = NULL; 350 *altname_len = 0; 351 } 352 } 353 *p = lend; 354 return 0; 355 bad: 356 return -EIO; 357 } 358 359 /* 360 * parse a normal reply, which may contain a (dir+)dentry and/or a 361 * target inode. 362 */ 363 static int parse_reply_info_trace(void **p, void *end, 364 struct ceph_mds_reply_info_parsed *info, 365 u64 features) 366 { 367 int err; 368 369 if (info->head->is_dentry) { 370 err = parse_reply_info_in(p, end, &info->diri, features); 371 if (err < 0) 372 goto out_bad; 373 374 err = parse_reply_info_dir(p, end, &info->dirfrag, features); 375 if (err < 0) 376 goto out_bad; 377 378 ceph_decode_32_safe(p, end, info->dname_len, bad); 379 ceph_decode_need(p, end, info->dname_len, bad); 380 info->dname = *p; 381 *p += info->dname_len; 382 383 err = parse_reply_info_lease(p, end, &info->dlease, features, 384 &info->altname_len, &info->altname); 385 if (err < 0) 386 goto out_bad; 387 } 388 389 if (info->head->is_target) { 390 err = parse_reply_info_in(p, end, &info->targeti, features); 391 if (err < 0) 392 goto out_bad; 393 } 394 395 if (unlikely(*p != end)) 396 goto bad; 397 return 0; 398 399 bad: 400 err = -EIO; 401 out_bad: 402 pr_err("problem parsing mds trace %d\n", err); 403 return err; 404 } 405 406 /* 407 * parse readdir results 408 */ 409 static int parse_reply_info_readdir(void **p, void *end, 410 struct ceph_mds_request *req, 411 u64 features) 412 { 413 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 414 u32 num, i = 0; 415 int err; 416 417 err = parse_reply_info_dir(p, end, &info->dir_dir, features); 418 if (err < 0) 419 goto out_bad; 420 421 ceph_decode_need(p, end, sizeof(num) + 2, bad); 422 num = ceph_decode_32(p); 423 { 424 u16 flags = ceph_decode_16(p); 425 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END); 426 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE); 427 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER); 428 info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH); 429 } 430 if (num == 0) 431 goto done; 432 433 BUG_ON(!info->dir_entries); 434 if ((unsigned long)(info->dir_entries + num) > 435 (unsigned long)info->dir_entries + info->dir_buf_size) { 436 pr_err("dir contents are larger than expected\n"); 437 WARN_ON(1); 438 goto bad; 439 } 440 441 info->dir_nr = num; 442 while (num) { 443 struct inode *inode = d_inode(req->r_dentry); 444 struct ceph_inode_info *ci = ceph_inode(inode); 445 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 446 struct fscrypt_str tname = FSTR_INIT(NULL, 0); 447 struct fscrypt_str oname = FSTR_INIT(NULL, 0); 448 struct ceph_fname fname; 449 u32 altname_len, _name_len; 450 u8 *altname, *_name; 451 452 /* dentry */ 453 ceph_decode_32_safe(p, end, _name_len, bad); 454 ceph_decode_need(p, end, _name_len, bad); 455 _name = *p; 456 *p += _name_len; 457 dout("parsed dir dname '%.*s'\n", _name_len, _name); 458 459 if (info->hash_order) 460 rde->raw_hash = ceph_str_hash(ci->i_dir_layout.dl_dir_hash, 461 _name, _name_len); 462 463 /* dentry lease */ 464 err = parse_reply_info_lease(p, end, &rde->lease, features, 465 &altname_len, &altname); 466 if (err) 467 goto out_bad; 468 469 /* 470 * Try to dencrypt the dentry names and update them 471 * in the ceph_mds_reply_dir_entry struct. 472 */ 473 fname.dir = inode; 474 fname.name = _name; 475 fname.name_len = _name_len; 476 fname.ctext = altname; 477 fname.ctext_len = altname_len; 478 /* 479 * The _name_len maybe larger than altname_len, such as 480 * when the human readable name length is in range of 481 * (CEPH_NOHASH_NAME_MAX, CEPH_NOHASH_NAME_MAX + SHA256_DIGEST_SIZE), 482 * then the copy in ceph_fname_to_usr will corrupt the 483 * data if there has no encryption key. 484 * 485 * Just set the no_copy flag and then if there has no 486 * encryption key the oname.name will be assigned to 487 * _name always. 488 */ 489 fname.no_copy = true; 490 if (altname_len == 0) { 491 /* 492 * Set tname to _name, and this will be used 493 * to do the base64_decode in-place. It's 494 * safe because the decoded string should 495 * always be shorter, which is 3/4 of origin 496 * string. 497 */ 498 tname.name = _name; 499 500 /* 501 * Set oname to _name too, and this will be 502 * used to do the dencryption in-place. 503 */ 504 oname.name = _name; 505 oname.len = _name_len; 506 } else { 507 /* 508 * This will do the decryption only in-place 509 * from altname cryptext directly. 510 */ 511 oname.name = altname; 512 oname.len = altname_len; 513 } 514 rde->is_nokey = false; 515 err = ceph_fname_to_usr(&fname, &tname, &oname, &rde->is_nokey); 516 if (err) { 517 pr_err("%s unable to decode %.*s, got %d\n", __func__, 518 _name_len, _name, err); 519 goto out_bad; 520 } 521 rde->name = oname.name; 522 rde->name_len = oname.len; 523 524 /* inode */ 525 err = parse_reply_info_in(p, end, &rde->inode, features); 526 if (err < 0) 527 goto out_bad; 528 /* ceph_readdir_prepopulate() will update it */ 529 rde->offset = 0; 530 i++; 531 num--; 532 } 533 534 done: 535 /* Skip over any unrecognized fields */ 536 *p = end; 537 return 0; 538 539 bad: 540 err = -EIO; 541 out_bad: 542 pr_err("problem parsing dir contents %d\n", err); 543 return err; 544 } 545 546 /* 547 * parse fcntl F_GETLK results 548 */ 549 static int parse_reply_info_filelock(void **p, void *end, 550 struct ceph_mds_reply_info_parsed *info, 551 u64 features) 552 { 553 if (*p + sizeof(*info->filelock_reply) > end) 554 goto bad; 555 556 info->filelock_reply = *p; 557 558 /* Skip over any unrecognized fields */ 559 *p = end; 560 return 0; 561 bad: 562 return -EIO; 563 } 564 565 566 #if BITS_PER_LONG == 64 567 568 #define DELEGATED_INO_AVAILABLE xa_mk_value(1) 569 570 static int ceph_parse_deleg_inos(void **p, void *end, 571 struct ceph_mds_session *s) 572 { 573 u32 sets; 574 575 ceph_decode_32_safe(p, end, sets, bad); 576 dout("got %u sets of delegated inodes\n", sets); 577 while (sets--) { 578 u64 start, len; 579 580 ceph_decode_64_safe(p, end, start, bad); 581 ceph_decode_64_safe(p, end, len, bad); 582 583 /* Don't accept a delegation of system inodes */ 584 if (start < CEPH_INO_SYSTEM_BASE) { 585 pr_warn_ratelimited("ceph: ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n", 586 start, len); 587 continue; 588 } 589 while (len--) { 590 int err = xa_insert(&s->s_delegated_inos, start++, 591 DELEGATED_INO_AVAILABLE, 592 GFP_KERNEL); 593 if (!err) { 594 dout("added delegated inode 0x%llx\n", 595 start - 1); 596 } else if (err == -EBUSY) { 597 pr_warn("MDS delegated inode 0x%llx more than once.\n", 598 start - 1); 599 } else { 600 return err; 601 } 602 } 603 } 604 return 0; 605 bad: 606 return -EIO; 607 } 608 609 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 610 { 611 unsigned long ino; 612 void *val; 613 614 xa_for_each(&s->s_delegated_inos, ino, val) { 615 val = xa_erase(&s->s_delegated_inos, ino); 616 if (val == DELEGATED_INO_AVAILABLE) 617 return ino; 618 } 619 return 0; 620 } 621 622 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 623 { 624 return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE, 625 GFP_KERNEL); 626 } 627 #else /* BITS_PER_LONG == 64 */ 628 /* 629 * FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just 630 * ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top 631 * and bottom words? 632 */ 633 static int ceph_parse_deleg_inos(void **p, void *end, 634 struct ceph_mds_session *s) 635 { 636 u32 sets; 637 638 ceph_decode_32_safe(p, end, sets, bad); 639 if (sets) 640 ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad); 641 return 0; 642 bad: 643 return -EIO; 644 } 645 646 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 647 { 648 return 0; 649 } 650 651 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 652 { 653 return 0; 654 } 655 #endif /* BITS_PER_LONG == 64 */ 656 657 /* 658 * parse create results 659 */ 660 static int parse_reply_info_create(void **p, void *end, 661 struct ceph_mds_reply_info_parsed *info, 662 u64 features, struct ceph_mds_session *s) 663 { 664 int ret; 665 666 if (features == (u64)-1 || 667 (features & CEPH_FEATURE_REPLY_CREATE_INODE)) { 668 if (*p == end) { 669 /* Malformed reply? */ 670 info->has_create_ino = false; 671 } else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) { 672 info->has_create_ino = true; 673 /* struct_v, struct_compat, and len */ 674 ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad); 675 ceph_decode_64_safe(p, end, info->ino, bad); 676 ret = ceph_parse_deleg_inos(p, end, s); 677 if (ret) 678 return ret; 679 } else { 680 /* legacy */ 681 ceph_decode_64_safe(p, end, info->ino, bad); 682 info->has_create_ino = true; 683 } 684 } else { 685 if (*p != end) 686 goto bad; 687 } 688 689 /* Skip over any unrecognized fields */ 690 *p = end; 691 return 0; 692 bad: 693 return -EIO; 694 } 695 696 static int parse_reply_info_getvxattr(void **p, void *end, 697 struct ceph_mds_reply_info_parsed *info, 698 u64 features) 699 { 700 u32 value_len; 701 702 ceph_decode_skip_8(p, end, bad); /* skip current version: 1 */ 703 ceph_decode_skip_8(p, end, bad); /* skip first version: 1 */ 704 ceph_decode_skip_32(p, end, bad); /* skip payload length */ 705 706 ceph_decode_32_safe(p, end, value_len, bad); 707 708 if (value_len == end - *p) { 709 info->xattr_info.xattr_value = *p; 710 info->xattr_info.xattr_value_len = value_len; 711 *p = end; 712 return value_len; 713 } 714 bad: 715 return -EIO; 716 } 717 718 /* 719 * parse extra results 720 */ 721 static int parse_reply_info_extra(void **p, void *end, 722 struct ceph_mds_request *req, 723 u64 features, struct ceph_mds_session *s) 724 { 725 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 726 u32 op = le32_to_cpu(info->head->op); 727 728 if (op == CEPH_MDS_OP_GETFILELOCK) 729 return parse_reply_info_filelock(p, end, info, features); 730 else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP) 731 return parse_reply_info_readdir(p, end, req, features); 732 else if (op == CEPH_MDS_OP_CREATE) 733 return parse_reply_info_create(p, end, info, features, s); 734 else if (op == CEPH_MDS_OP_GETVXATTR) 735 return parse_reply_info_getvxattr(p, end, info, features); 736 else 737 return -EIO; 738 } 739 740 /* 741 * parse entire mds reply 742 */ 743 static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg, 744 struct ceph_mds_request *req, u64 features) 745 { 746 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 747 void *p, *end; 748 u32 len; 749 int err; 750 751 info->head = msg->front.iov_base; 752 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 753 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 754 755 /* trace */ 756 ceph_decode_32_safe(&p, end, len, bad); 757 if (len > 0) { 758 ceph_decode_need(&p, end, len, bad); 759 err = parse_reply_info_trace(&p, p+len, info, features); 760 if (err < 0) 761 goto out_bad; 762 } 763 764 /* extra */ 765 ceph_decode_32_safe(&p, end, len, bad); 766 if (len > 0) { 767 ceph_decode_need(&p, end, len, bad); 768 err = parse_reply_info_extra(&p, p+len, req, features, s); 769 if (err < 0) 770 goto out_bad; 771 } 772 773 /* snap blob */ 774 ceph_decode_32_safe(&p, end, len, bad); 775 info->snapblob_len = len; 776 info->snapblob = p; 777 p += len; 778 779 if (p != end) 780 goto bad; 781 return 0; 782 783 bad: 784 err = -EIO; 785 out_bad: 786 pr_err("mds parse_reply err %d\n", err); 787 ceph_msg_dump(msg); 788 return err; 789 } 790 791 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 792 { 793 int i; 794 795 kfree(info->diri.fscrypt_auth); 796 kfree(info->diri.fscrypt_file); 797 kfree(info->targeti.fscrypt_auth); 798 kfree(info->targeti.fscrypt_file); 799 if (!info->dir_entries) 800 return; 801 802 for (i = 0; i < info->dir_nr; i++) { 803 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 804 805 kfree(rde->inode.fscrypt_auth); 806 kfree(rde->inode.fscrypt_file); 807 } 808 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size)); 809 } 810 811 /* 812 * In async unlink case the kclient won't wait for the first reply 813 * from MDS and just drop all the links and unhash the dentry and then 814 * succeeds immediately. 815 * 816 * For any new create/link/rename,etc requests followed by using the 817 * same file names we must wait for the first reply of the inflight 818 * unlink request, or the MDS possibly will fail these following 819 * requests with -EEXIST if the inflight async unlink request was 820 * delayed for some reasons. 821 * 822 * And the worst case is that for the none async openc request it will 823 * successfully open the file if the CDentry hasn't been unlinked yet, 824 * but later the previous delayed async unlink request will remove the 825 * CDenty. That means the just created file is possiblly deleted later 826 * by accident. 827 * 828 * We need to wait for the inflight async unlink requests to finish 829 * when creating new files/directories by using the same file names. 830 */ 831 int ceph_wait_on_conflict_unlink(struct dentry *dentry) 832 { 833 struct ceph_fs_client *fsc = ceph_sb_to_client(dentry->d_sb); 834 struct dentry *pdentry = dentry->d_parent; 835 struct dentry *udentry, *found = NULL; 836 struct ceph_dentry_info *di; 837 struct qstr dname; 838 u32 hash = dentry->d_name.hash; 839 int err; 840 841 dname.name = dentry->d_name.name; 842 dname.len = dentry->d_name.len; 843 844 rcu_read_lock(); 845 hash_for_each_possible_rcu(fsc->async_unlink_conflict, di, 846 hnode, hash) { 847 udentry = di->dentry; 848 849 spin_lock(&udentry->d_lock); 850 if (udentry->d_name.hash != hash) 851 goto next; 852 if (unlikely(udentry->d_parent != pdentry)) 853 goto next; 854 if (!hash_hashed(&di->hnode)) 855 goto next; 856 857 if (!test_bit(CEPH_DENTRY_ASYNC_UNLINK_BIT, &di->flags)) 858 pr_warn("%s dentry %p:%pd async unlink bit is not set\n", 859 __func__, dentry, dentry); 860 861 if (!d_same_name(udentry, pdentry, &dname)) 862 goto next; 863 864 spin_unlock(&udentry->d_lock); 865 found = dget(udentry); 866 break; 867 next: 868 spin_unlock(&udentry->d_lock); 869 } 870 rcu_read_unlock(); 871 872 if (likely(!found)) 873 return 0; 874 875 dout("%s dentry %p:%pd conflict with old %p:%pd\n", __func__, 876 dentry, dentry, found, found); 877 878 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_UNLINK_BIT, 879 TASK_KILLABLE); 880 dput(found); 881 return err; 882 } 883 884 885 /* 886 * sessions 887 */ 888 const char *ceph_session_state_name(int s) 889 { 890 switch (s) { 891 case CEPH_MDS_SESSION_NEW: return "new"; 892 case CEPH_MDS_SESSION_OPENING: return "opening"; 893 case CEPH_MDS_SESSION_OPEN: return "open"; 894 case CEPH_MDS_SESSION_HUNG: return "hung"; 895 case CEPH_MDS_SESSION_CLOSING: return "closing"; 896 case CEPH_MDS_SESSION_CLOSED: return "closed"; 897 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 898 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 899 case CEPH_MDS_SESSION_REJECTED: return "rejected"; 900 default: return "???"; 901 } 902 } 903 904 struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s) 905 { 906 if (refcount_inc_not_zero(&s->s_ref)) 907 return s; 908 return NULL; 909 } 910 911 void ceph_put_mds_session(struct ceph_mds_session *s) 912 { 913 if (IS_ERR_OR_NULL(s)) 914 return; 915 916 if (refcount_dec_and_test(&s->s_ref)) { 917 if (s->s_auth.authorizer) 918 ceph_auth_destroy_authorizer(s->s_auth.authorizer); 919 WARN_ON(mutex_is_locked(&s->s_mutex)); 920 xa_destroy(&s->s_delegated_inos); 921 kfree(s); 922 } 923 } 924 925 /* 926 * called under mdsc->mutex 927 */ 928 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 929 int mds) 930 { 931 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 932 return NULL; 933 return ceph_get_mds_session(mdsc->sessions[mds]); 934 } 935 936 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 937 { 938 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 939 return false; 940 else 941 return true; 942 } 943 944 static int __verify_registered_session(struct ceph_mds_client *mdsc, 945 struct ceph_mds_session *s) 946 { 947 if (s->s_mds >= mdsc->max_sessions || 948 mdsc->sessions[s->s_mds] != s) 949 return -ENOENT; 950 return 0; 951 } 952 953 /* 954 * create+register a new session for given mds. 955 * called under mdsc->mutex. 956 */ 957 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 958 int mds) 959 { 960 struct ceph_mds_session *s; 961 962 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) 963 return ERR_PTR(-EIO); 964 965 if (mds >= mdsc->mdsmap->possible_max_rank) 966 return ERR_PTR(-EINVAL); 967 968 s = kzalloc(sizeof(*s), GFP_NOFS); 969 if (!s) 970 return ERR_PTR(-ENOMEM); 971 972 if (mds >= mdsc->max_sessions) { 973 int newmax = 1 << get_count_order(mds + 1); 974 struct ceph_mds_session **sa; 975 976 dout("%s: realloc to %d\n", __func__, newmax); 977 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 978 if (!sa) 979 goto fail_realloc; 980 if (mdsc->sessions) { 981 memcpy(sa, mdsc->sessions, 982 mdsc->max_sessions * sizeof(void *)); 983 kfree(mdsc->sessions); 984 } 985 mdsc->sessions = sa; 986 mdsc->max_sessions = newmax; 987 } 988 989 dout("%s: mds%d\n", __func__, mds); 990 s->s_mdsc = mdsc; 991 s->s_mds = mds; 992 s->s_state = CEPH_MDS_SESSION_NEW; 993 mutex_init(&s->s_mutex); 994 995 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 996 997 atomic_set(&s->s_cap_gen, 1); 998 s->s_cap_ttl = jiffies - 1; 999 1000 spin_lock_init(&s->s_cap_lock); 1001 INIT_LIST_HEAD(&s->s_caps); 1002 refcount_set(&s->s_ref, 1); 1003 INIT_LIST_HEAD(&s->s_waiting); 1004 INIT_LIST_HEAD(&s->s_unsafe); 1005 xa_init(&s->s_delegated_inos); 1006 INIT_LIST_HEAD(&s->s_cap_releases); 1007 INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work); 1008 1009 INIT_LIST_HEAD(&s->s_cap_dirty); 1010 INIT_LIST_HEAD(&s->s_cap_flushing); 1011 1012 mdsc->sessions[mds] = s; 1013 atomic_inc(&mdsc->num_sessions); 1014 refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 1015 1016 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 1017 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 1018 1019 return s; 1020 1021 fail_realloc: 1022 kfree(s); 1023 return ERR_PTR(-ENOMEM); 1024 } 1025 1026 /* 1027 * called under mdsc->mutex 1028 */ 1029 static void __unregister_session(struct ceph_mds_client *mdsc, 1030 struct ceph_mds_session *s) 1031 { 1032 dout("__unregister_session mds%d %p\n", s->s_mds, s); 1033 BUG_ON(mdsc->sessions[s->s_mds] != s); 1034 mdsc->sessions[s->s_mds] = NULL; 1035 ceph_con_close(&s->s_con); 1036 ceph_put_mds_session(s); 1037 atomic_dec(&mdsc->num_sessions); 1038 } 1039 1040 /* 1041 * drop session refs in request. 1042 * 1043 * should be last request ref, or hold mdsc->mutex 1044 */ 1045 static void put_request_session(struct ceph_mds_request *req) 1046 { 1047 if (req->r_session) { 1048 ceph_put_mds_session(req->r_session); 1049 req->r_session = NULL; 1050 } 1051 } 1052 1053 void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc, 1054 void (*cb)(struct ceph_mds_session *), 1055 bool check_state) 1056 { 1057 int mds; 1058 1059 mutex_lock(&mdsc->mutex); 1060 for (mds = 0; mds < mdsc->max_sessions; ++mds) { 1061 struct ceph_mds_session *s; 1062 1063 s = __ceph_lookup_mds_session(mdsc, mds); 1064 if (!s) 1065 continue; 1066 1067 if (check_state && !check_session_state(s)) { 1068 ceph_put_mds_session(s); 1069 continue; 1070 } 1071 1072 mutex_unlock(&mdsc->mutex); 1073 cb(s); 1074 ceph_put_mds_session(s); 1075 mutex_lock(&mdsc->mutex); 1076 } 1077 mutex_unlock(&mdsc->mutex); 1078 } 1079 1080 void ceph_mdsc_release_request(struct kref *kref) 1081 { 1082 struct ceph_mds_request *req = container_of(kref, 1083 struct ceph_mds_request, 1084 r_kref); 1085 ceph_mdsc_release_dir_caps_no_check(req); 1086 destroy_reply_info(&req->r_reply_info); 1087 if (req->r_request) 1088 ceph_msg_put(req->r_request); 1089 if (req->r_reply) 1090 ceph_msg_put(req->r_reply); 1091 if (req->r_inode) { 1092 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1093 iput(req->r_inode); 1094 } 1095 if (req->r_parent) { 1096 ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN); 1097 iput(req->r_parent); 1098 } 1099 iput(req->r_target_inode); 1100 iput(req->r_new_inode); 1101 if (req->r_dentry) 1102 dput(req->r_dentry); 1103 if (req->r_old_dentry) 1104 dput(req->r_old_dentry); 1105 if (req->r_old_dentry_dir) { 1106 /* 1107 * track (and drop pins for) r_old_dentry_dir 1108 * separately, since r_old_dentry's d_parent may have 1109 * changed between the dir mutex being dropped and 1110 * this request being freed. 1111 */ 1112 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 1113 CEPH_CAP_PIN); 1114 iput(req->r_old_dentry_dir); 1115 } 1116 kfree(req->r_path1); 1117 kfree(req->r_path2); 1118 put_cred(req->r_cred); 1119 if (req->r_pagelist) 1120 ceph_pagelist_release(req->r_pagelist); 1121 kfree(req->r_fscrypt_auth); 1122 kfree(req->r_altname); 1123 put_request_session(req); 1124 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 1125 WARN_ON_ONCE(!list_empty(&req->r_wait)); 1126 kmem_cache_free(ceph_mds_request_cachep, req); 1127 } 1128 1129 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node) 1130 1131 /* 1132 * lookup session, bump ref if found. 1133 * 1134 * called under mdsc->mutex. 1135 */ 1136 static struct ceph_mds_request * 1137 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid) 1138 { 1139 struct ceph_mds_request *req; 1140 1141 req = lookup_request(&mdsc->request_tree, tid); 1142 if (req) 1143 ceph_mdsc_get_request(req); 1144 1145 return req; 1146 } 1147 1148 /* 1149 * Register an in-flight request, and assign a tid. Link to directory 1150 * are modifying (if any). 1151 * 1152 * Called under mdsc->mutex. 1153 */ 1154 static void __register_request(struct ceph_mds_client *mdsc, 1155 struct ceph_mds_request *req, 1156 struct inode *dir) 1157 { 1158 int ret = 0; 1159 1160 req->r_tid = ++mdsc->last_tid; 1161 if (req->r_num_caps) { 1162 ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation, 1163 req->r_num_caps); 1164 if (ret < 0) { 1165 pr_err("__register_request %p " 1166 "failed to reserve caps: %d\n", req, ret); 1167 /* set req->r_err to fail early from __do_request */ 1168 req->r_err = ret; 1169 return; 1170 } 1171 } 1172 dout("__register_request %p tid %lld\n", req, req->r_tid); 1173 ceph_mdsc_get_request(req); 1174 insert_request(&mdsc->request_tree, req); 1175 1176 req->r_cred = get_current_cred(); 1177 1178 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) 1179 mdsc->oldest_tid = req->r_tid; 1180 1181 if (dir) { 1182 struct ceph_inode_info *ci = ceph_inode(dir); 1183 1184 ihold(dir); 1185 req->r_unsafe_dir = dir; 1186 spin_lock(&ci->i_unsafe_lock); 1187 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 1188 spin_unlock(&ci->i_unsafe_lock); 1189 } 1190 } 1191 1192 static void __unregister_request(struct ceph_mds_client *mdsc, 1193 struct ceph_mds_request *req) 1194 { 1195 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 1196 1197 /* Never leave an unregistered request on an unsafe list! */ 1198 list_del_init(&req->r_unsafe_item); 1199 1200 if (req->r_tid == mdsc->oldest_tid) { 1201 struct rb_node *p = rb_next(&req->r_node); 1202 mdsc->oldest_tid = 0; 1203 while (p) { 1204 struct ceph_mds_request *next_req = 1205 rb_entry(p, struct ceph_mds_request, r_node); 1206 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { 1207 mdsc->oldest_tid = next_req->r_tid; 1208 break; 1209 } 1210 p = rb_next(p); 1211 } 1212 } 1213 1214 erase_request(&mdsc->request_tree, req); 1215 1216 if (req->r_unsafe_dir) { 1217 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 1218 spin_lock(&ci->i_unsafe_lock); 1219 list_del_init(&req->r_unsafe_dir_item); 1220 spin_unlock(&ci->i_unsafe_lock); 1221 } 1222 if (req->r_target_inode && 1223 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 1224 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 1225 spin_lock(&ci->i_unsafe_lock); 1226 list_del_init(&req->r_unsafe_target_item); 1227 spin_unlock(&ci->i_unsafe_lock); 1228 } 1229 1230 if (req->r_unsafe_dir) { 1231 iput(req->r_unsafe_dir); 1232 req->r_unsafe_dir = NULL; 1233 } 1234 1235 complete_all(&req->r_safe_completion); 1236 1237 ceph_mdsc_put_request(req); 1238 } 1239 1240 /* 1241 * Walk back up the dentry tree until we hit a dentry representing a 1242 * non-snapshot inode. We do this using the rcu_read_lock (which must be held 1243 * when calling this) to ensure that the objects won't disappear while we're 1244 * working with them. Once we hit a candidate dentry, we attempt to take a 1245 * reference to it, and return that as the result. 1246 */ 1247 static struct inode *get_nonsnap_parent(struct dentry *dentry) 1248 { 1249 struct inode *inode = NULL; 1250 1251 while (dentry && !IS_ROOT(dentry)) { 1252 inode = d_inode_rcu(dentry); 1253 if (!inode || ceph_snap(inode) == CEPH_NOSNAP) 1254 break; 1255 dentry = dentry->d_parent; 1256 } 1257 if (inode) 1258 inode = igrab(inode); 1259 return inode; 1260 } 1261 1262 /* 1263 * Choose mds to send request to next. If there is a hint set in the 1264 * request (e.g., due to a prior forward hint from the mds), use that. 1265 * Otherwise, consult frag tree and/or caps to identify the 1266 * appropriate mds. If all else fails, choose randomly. 1267 * 1268 * Called under mdsc->mutex. 1269 */ 1270 static int __choose_mds(struct ceph_mds_client *mdsc, 1271 struct ceph_mds_request *req, 1272 bool *random) 1273 { 1274 struct inode *inode; 1275 struct ceph_inode_info *ci; 1276 struct ceph_cap *cap; 1277 int mode = req->r_direct_mode; 1278 int mds = -1; 1279 u32 hash = req->r_direct_hash; 1280 bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags); 1281 1282 if (random) 1283 *random = false; 1284 1285 /* 1286 * is there a specific mds we should try? ignore hint if we have 1287 * no session and the mds is not up (active or recovering). 1288 */ 1289 if (req->r_resend_mds >= 0 && 1290 (__have_session(mdsc, req->r_resend_mds) || 1291 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 1292 dout("%s using resend_mds mds%d\n", __func__, 1293 req->r_resend_mds); 1294 return req->r_resend_mds; 1295 } 1296 1297 if (mode == USE_RANDOM_MDS) 1298 goto random; 1299 1300 inode = NULL; 1301 if (req->r_inode) { 1302 if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) { 1303 inode = req->r_inode; 1304 ihold(inode); 1305 } else { 1306 /* req->r_dentry is non-null for LSSNAP request */ 1307 rcu_read_lock(); 1308 inode = get_nonsnap_parent(req->r_dentry); 1309 rcu_read_unlock(); 1310 dout("%s using snapdir's parent %p\n", __func__, inode); 1311 } 1312 } else if (req->r_dentry) { 1313 /* ignore race with rename; old or new d_parent is okay */ 1314 struct dentry *parent; 1315 struct inode *dir; 1316 1317 rcu_read_lock(); 1318 parent = READ_ONCE(req->r_dentry->d_parent); 1319 dir = req->r_parent ? : d_inode_rcu(parent); 1320 1321 if (!dir || dir->i_sb != mdsc->fsc->sb) { 1322 /* not this fs or parent went negative */ 1323 inode = d_inode(req->r_dentry); 1324 if (inode) 1325 ihold(inode); 1326 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 1327 /* direct snapped/virtual snapdir requests 1328 * based on parent dir inode */ 1329 inode = get_nonsnap_parent(parent); 1330 dout("%s using nonsnap parent %p\n", __func__, inode); 1331 } else { 1332 /* dentry target */ 1333 inode = d_inode(req->r_dentry); 1334 if (!inode || mode == USE_AUTH_MDS) { 1335 /* dir + name */ 1336 inode = igrab(dir); 1337 hash = ceph_dentry_hash(dir, req->r_dentry); 1338 is_hash = true; 1339 } else { 1340 ihold(inode); 1341 } 1342 } 1343 rcu_read_unlock(); 1344 } 1345 1346 dout("%s %p is_hash=%d (0x%x) mode %d\n", __func__, inode, (int)is_hash, 1347 hash, mode); 1348 if (!inode) 1349 goto random; 1350 ci = ceph_inode(inode); 1351 1352 if (is_hash && S_ISDIR(inode->i_mode)) { 1353 struct ceph_inode_frag frag; 1354 int found; 1355 1356 ceph_choose_frag(ci, hash, &frag, &found); 1357 if (found) { 1358 if (mode == USE_ANY_MDS && frag.ndist > 0) { 1359 u8 r; 1360 1361 /* choose a random replica */ 1362 get_random_bytes(&r, 1); 1363 r %= frag.ndist; 1364 mds = frag.dist[r]; 1365 dout("%s %p %llx.%llx frag %u mds%d (%d/%d)\n", 1366 __func__, inode, ceph_vinop(inode), 1367 frag.frag, mds, (int)r, frag.ndist); 1368 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1369 CEPH_MDS_STATE_ACTIVE && 1370 !ceph_mdsmap_is_laggy(mdsc->mdsmap, mds)) 1371 goto out; 1372 } 1373 1374 /* since this file/dir wasn't known to be 1375 * replicated, then we want to look for the 1376 * authoritative mds. */ 1377 if (frag.mds >= 0) { 1378 /* choose auth mds */ 1379 mds = frag.mds; 1380 dout("%s %p %llx.%llx frag %u mds%d (auth)\n", 1381 __func__, inode, ceph_vinop(inode), 1382 frag.frag, mds); 1383 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1384 CEPH_MDS_STATE_ACTIVE) { 1385 if (!ceph_mdsmap_is_laggy(mdsc->mdsmap, 1386 mds)) 1387 goto out; 1388 } 1389 } 1390 mode = USE_AUTH_MDS; 1391 } 1392 } 1393 1394 spin_lock(&ci->i_ceph_lock); 1395 cap = NULL; 1396 if (mode == USE_AUTH_MDS) 1397 cap = ci->i_auth_cap; 1398 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 1399 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 1400 if (!cap) { 1401 spin_unlock(&ci->i_ceph_lock); 1402 iput(inode); 1403 goto random; 1404 } 1405 mds = cap->session->s_mds; 1406 dout("%s %p %llx.%llx mds%d (%scap %p)\n", __func__, 1407 inode, ceph_vinop(inode), mds, 1408 cap == ci->i_auth_cap ? "auth " : "", cap); 1409 spin_unlock(&ci->i_ceph_lock); 1410 out: 1411 iput(inode); 1412 return mds; 1413 1414 random: 1415 if (random) 1416 *random = true; 1417 1418 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 1419 dout("%s chose random mds%d\n", __func__, mds); 1420 return mds; 1421 } 1422 1423 1424 /* 1425 * session messages 1426 */ 1427 struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq) 1428 { 1429 struct ceph_msg *msg; 1430 struct ceph_mds_session_head *h; 1431 1432 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 1433 false); 1434 if (!msg) { 1435 pr_err("ENOMEM creating session %s msg\n", 1436 ceph_session_op_name(op)); 1437 return NULL; 1438 } 1439 h = msg->front.iov_base; 1440 h->op = cpu_to_le32(op); 1441 h->seq = cpu_to_le64(seq); 1442 1443 return msg; 1444 } 1445 1446 static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED; 1447 #define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8) 1448 static int encode_supported_features(void **p, void *end) 1449 { 1450 static const size_t count = ARRAY_SIZE(feature_bits); 1451 1452 if (count > 0) { 1453 size_t i; 1454 size_t size = FEATURE_BYTES(count); 1455 unsigned long bit; 1456 1457 if (WARN_ON_ONCE(*p + 4 + size > end)) 1458 return -ERANGE; 1459 1460 ceph_encode_32(p, size); 1461 memset(*p, 0, size); 1462 for (i = 0; i < count; i++) { 1463 bit = feature_bits[i]; 1464 ((unsigned char *)(*p))[bit / 8] |= BIT(bit % 8); 1465 } 1466 *p += size; 1467 } else { 1468 if (WARN_ON_ONCE(*p + 4 > end)) 1469 return -ERANGE; 1470 1471 ceph_encode_32(p, 0); 1472 } 1473 1474 return 0; 1475 } 1476 1477 static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED; 1478 #define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8) 1479 static int encode_metric_spec(void **p, void *end) 1480 { 1481 static const size_t count = ARRAY_SIZE(metric_bits); 1482 1483 /* header */ 1484 if (WARN_ON_ONCE(*p + 2 > end)) 1485 return -ERANGE; 1486 1487 ceph_encode_8(p, 1); /* version */ 1488 ceph_encode_8(p, 1); /* compat */ 1489 1490 if (count > 0) { 1491 size_t i; 1492 size_t size = METRIC_BYTES(count); 1493 1494 if (WARN_ON_ONCE(*p + 4 + 4 + size > end)) 1495 return -ERANGE; 1496 1497 /* metric spec info length */ 1498 ceph_encode_32(p, 4 + size); 1499 1500 /* metric spec */ 1501 ceph_encode_32(p, size); 1502 memset(*p, 0, size); 1503 for (i = 0; i < count; i++) 1504 ((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8); 1505 *p += size; 1506 } else { 1507 if (WARN_ON_ONCE(*p + 4 + 4 > end)) 1508 return -ERANGE; 1509 1510 /* metric spec info length */ 1511 ceph_encode_32(p, 4); 1512 /* metric spec */ 1513 ceph_encode_32(p, 0); 1514 } 1515 1516 return 0; 1517 } 1518 1519 /* 1520 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 1521 * to include additional client metadata fields. 1522 */ 1523 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq) 1524 { 1525 struct ceph_msg *msg; 1526 struct ceph_mds_session_head *h; 1527 int i; 1528 int extra_bytes = 0; 1529 int metadata_key_count = 0; 1530 struct ceph_options *opt = mdsc->fsc->client->options; 1531 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options; 1532 size_t size, count; 1533 void *p, *end; 1534 int ret; 1535 1536 const char* metadata[][2] = { 1537 {"hostname", mdsc->nodename}, 1538 {"kernel_version", init_utsname()->release}, 1539 {"entity_id", opt->name ? : ""}, 1540 {"root", fsopt->server_path ? : "/"}, 1541 {NULL, NULL} 1542 }; 1543 1544 /* Calculate serialized length of metadata */ 1545 extra_bytes = 4; /* map length */ 1546 for (i = 0; metadata[i][0]; ++i) { 1547 extra_bytes += 8 + strlen(metadata[i][0]) + 1548 strlen(metadata[i][1]); 1549 metadata_key_count++; 1550 } 1551 1552 /* supported feature */ 1553 size = 0; 1554 count = ARRAY_SIZE(feature_bits); 1555 if (count > 0) 1556 size = FEATURE_BYTES(count); 1557 extra_bytes += 4 + size; 1558 1559 /* metric spec */ 1560 size = 0; 1561 count = ARRAY_SIZE(metric_bits); 1562 if (count > 0) 1563 size = METRIC_BYTES(count); 1564 extra_bytes += 2 + 4 + 4 + size; 1565 1566 /* Allocate the message */ 1567 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes, 1568 GFP_NOFS, false); 1569 if (!msg) { 1570 pr_err("ENOMEM creating session open msg\n"); 1571 return ERR_PTR(-ENOMEM); 1572 } 1573 p = msg->front.iov_base; 1574 end = p + msg->front.iov_len; 1575 1576 h = p; 1577 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN); 1578 h->seq = cpu_to_le64(seq); 1579 1580 /* 1581 * Serialize client metadata into waiting buffer space, using 1582 * the format that userspace expects for map<string, string> 1583 * 1584 * ClientSession messages with metadata are v4 1585 */ 1586 msg->hdr.version = cpu_to_le16(4); 1587 msg->hdr.compat_version = cpu_to_le16(1); 1588 1589 /* The write pointer, following the session_head structure */ 1590 p += sizeof(*h); 1591 1592 /* Number of entries in the map */ 1593 ceph_encode_32(&p, metadata_key_count); 1594 1595 /* Two length-prefixed strings for each entry in the map */ 1596 for (i = 0; metadata[i][0]; ++i) { 1597 size_t const key_len = strlen(metadata[i][0]); 1598 size_t const val_len = strlen(metadata[i][1]); 1599 1600 ceph_encode_32(&p, key_len); 1601 memcpy(p, metadata[i][0], key_len); 1602 p += key_len; 1603 ceph_encode_32(&p, val_len); 1604 memcpy(p, metadata[i][1], val_len); 1605 p += val_len; 1606 } 1607 1608 ret = encode_supported_features(&p, end); 1609 if (ret) { 1610 pr_err("encode_supported_features failed!\n"); 1611 ceph_msg_put(msg); 1612 return ERR_PTR(ret); 1613 } 1614 1615 ret = encode_metric_spec(&p, end); 1616 if (ret) { 1617 pr_err("encode_metric_spec failed!\n"); 1618 ceph_msg_put(msg); 1619 return ERR_PTR(ret); 1620 } 1621 1622 msg->front.iov_len = p - msg->front.iov_base; 1623 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1624 1625 return msg; 1626 } 1627 1628 /* 1629 * send session open request. 1630 * 1631 * called under mdsc->mutex 1632 */ 1633 static int __open_session(struct ceph_mds_client *mdsc, 1634 struct ceph_mds_session *session) 1635 { 1636 struct ceph_msg *msg; 1637 int mstate; 1638 int mds = session->s_mds; 1639 1640 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) 1641 return -EIO; 1642 1643 /* wait for mds to go active? */ 1644 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 1645 dout("open_session to mds%d (%s)\n", mds, 1646 ceph_mds_state_name(mstate)); 1647 session->s_state = CEPH_MDS_SESSION_OPENING; 1648 session->s_renew_requested = jiffies; 1649 1650 /* send connect message */ 1651 msg = create_session_open_msg(mdsc, session->s_seq); 1652 if (IS_ERR(msg)) 1653 return PTR_ERR(msg); 1654 ceph_con_send(&session->s_con, msg); 1655 return 0; 1656 } 1657 1658 /* 1659 * open sessions for any export targets for the given mds 1660 * 1661 * called under mdsc->mutex 1662 */ 1663 static struct ceph_mds_session * 1664 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 1665 { 1666 struct ceph_mds_session *session; 1667 int ret; 1668 1669 session = __ceph_lookup_mds_session(mdsc, target); 1670 if (!session) { 1671 session = register_session(mdsc, target); 1672 if (IS_ERR(session)) 1673 return session; 1674 } 1675 if (session->s_state == CEPH_MDS_SESSION_NEW || 1676 session->s_state == CEPH_MDS_SESSION_CLOSING) { 1677 ret = __open_session(mdsc, session); 1678 if (ret) 1679 return ERR_PTR(ret); 1680 } 1681 1682 return session; 1683 } 1684 1685 struct ceph_mds_session * 1686 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 1687 { 1688 struct ceph_mds_session *session; 1689 1690 dout("open_export_target_session to mds%d\n", target); 1691 1692 mutex_lock(&mdsc->mutex); 1693 session = __open_export_target_session(mdsc, target); 1694 mutex_unlock(&mdsc->mutex); 1695 1696 return session; 1697 } 1698 1699 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 1700 struct ceph_mds_session *session) 1701 { 1702 struct ceph_mds_info *mi; 1703 struct ceph_mds_session *ts; 1704 int i, mds = session->s_mds; 1705 1706 if (mds >= mdsc->mdsmap->possible_max_rank) 1707 return; 1708 1709 mi = &mdsc->mdsmap->m_info[mds]; 1710 dout("open_export_target_sessions for mds%d (%d targets)\n", 1711 session->s_mds, mi->num_export_targets); 1712 1713 for (i = 0; i < mi->num_export_targets; i++) { 1714 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 1715 ceph_put_mds_session(ts); 1716 } 1717 } 1718 1719 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 1720 struct ceph_mds_session *session) 1721 { 1722 mutex_lock(&mdsc->mutex); 1723 __open_export_target_sessions(mdsc, session); 1724 mutex_unlock(&mdsc->mutex); 1725 } 1726 1727 /* 1728 * session caps 1729 */ 1730 1731 static void detach_cap_releases(struct ceph_mds_session *session, 1732 struct list_head *target) 1733 { 1734 lockdep_assert_held(&session->s_cap_lock); 1735 1736 list_splice_init(&session->s_cap_releases, target); 1737 session->s_num_cap_releases = 0; 1738 dout("dispose_cap_releases mds%d\n", session->s_mds); 1739 } 1740 1741 static void dispose_cap_releases(struct ceph_mds_client *mdsc, 1742 struct list_head *dispose) 1743 { 1744 while (!list_empty(dispose)) { 1745 struct ceph_cap *cap; 1746 /* zero out the in-progress message */ 1747 cap = list_first_entry(dispose, struct ceph_cap, session_caps); 1748 list_del(&cap->session_caps); 1749 ceph_put_cap(mdsc, cap); 1750 } 1751 } 1752 1753 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1754 struct ceph_mds_session *session) 1755 { 1756 struct ceph_mds_request *req; 1757 struct rb_node *p; 1758 1759 dout("cleanup_session_requests mds%d\n", session->s_mds); 1760 mutex_lock(&mdsc->mutex); 1761 while (!list_empty(&session->s_unsafe)) { 1762 req = list_first_entry(&session->s_unsafe, 1763 struct ceph_mds_request, r_unsafe_item); 1764 pr_warn_ratelimited(" dropping unsafe request %llu\n", 1765 req->r_tid); 1766 if (req->r_target_inode) 1767 mapping_set_error(req->r_target_inode->i_mapping, -EIO); 1768 if (req->r_unsafe_dir) 1769 mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO); 1770 __unregister_request(mdsc, req); 1771 } 1772 /* zero r_attempts, so kick_requests() will re-send requests */ 1773 p = rb_first(&mdsc->request_tree); 1774 while (p) { 1775 req = rb_entry(p, struct ceph_mds_request, r_node); 1776 p = rb_next(p); 1777 if (req->r_session && 1778 req->r_session->s_mds == session->s_mds) 1779 req->r_attempts = 0; 1780 } 1781 mutex_unlock(&mdsc->mutex); 1782 } 1783 1784 /* 1785 * Helper to safely iterate over all caps associated with a session, with 1786 * special care taken to handle a racing __ceph_remove_cap(). 1787 * 1788 * Caller must hold session s_mutex. 1789 */ 1790 int ceph_iterate_session_caps(struct ceph_mds_session *session, 1791 int (*cb)(struct inode *, int mds, void *), 1792 void *arg) 1793 { 1794 struct list_head *p; 1795 struct ceph_cap *cap; 1796 struct inode *inode, *last_inode = NULL; 1797 struct ceph_cap *old_cap = NULL; 1798 int ret; 1799 1800 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 1801 spin_lock(&session->s_cap_lock); 1802 p = session->s_caps.next; 1803 while (p != &session->s_caps) { 1804 int mds; 1805 1806 cap = list_entry(p, struct ceph_cap, session_caps); 1807 inode = igrab(&cap->ci->netfs.inode); 1808 if (!inode) { 1809 p = p->next; 1810 continue; 1811 } 1812 session->s_cap_iterator = cap; 1813 mds = cap->mds; 1814 spin_unlock(&session->s_cap_lock); 1815 1816 if (last_inode) { 1817 iput(last_inode); 1818 last_inode = NULL; 1819 } 1820 if (old_cap) { 1821 ceph_put_cap(session->s_mdsc, old_cap); 1822 old_cap = NULL; 1823 } 1824 1825 ret = cb(inode, mds, arg); 1826 last_inode = inode; 1827 1828 spin_lock(&session->s_cap_lock); 1829 p = p->next; 1830 if (!cap->ci) { 1831 dout("iterate_session_caps finishing cap %p removal\n", 1832 cap); 1833 BUG_ON(cap->session != session); 1834 cap->session = NULL; 1835 list_del_init(&cap->session_caps); 1836 session->s_nr_caps--; 1837 atomic64_dec(&session->s_mdsc->metric.total_caps); 1838 if (cap->queue_release) 1839 __ceph_queue_cap_release(session, cap); 1840 else 1841 old_cap = cap; /* put_cap it w/o locks held */ 1842 } 1843 if (ret < 0) 1844 goto out; 1845 } 1846 ret = 0; 1847 out: 1848 session->s_cap_iterator = NULL; 1849 spin_unlock(&session->s_cap_lock); 1850 1851 iput(last_inode); 1852 if (old_cap) 1853 ceph_put_cap(session->s_mdsc, old_cap); 1854 1855 return ret; 1856 } 1857 1858 static int remove_session_caps_cb(struct inode *inode, int mds, void *arg) 1859 { 1860 struct ceph_inode_info *ci = ceph_inode(inode); 1861 bool invalidate = false; 1862 struct ceph_cap *cap; 1863 int iputs = 0; 1864 1865 spin_lock(&ci->i_ceph_lock); 1866 cap = __get_cap_for_mds(ci, mds); 1867 if (cap) { 1868 dout(" removing cap %p, ci is %p, inode is %p\n", 1869 cap, ci, &ci->netfs.inode); 1870 1871 iputs = ceph_purge_inode_cap(inode, cap, &invalidate); 1872 } 1873 spin_unlock(&ci->i_ceph_lock); 1874 1875 if (cap) 1876 wake_up_all(&ci->i_cap_wq); 1877 if (invalidate) 1878 ceph_queue_invalidate(inode); 1879 while (iputs--) 1880 iput(inode); 1881 return 0; 1882 } 1883 1884 /* 1885 * caller must hold session s_mutex 1886 */ 1887 static void remove_session_caps(struct ceph_mds_session *session) 1888 { 1889 struct ceph_fs_client *fsc = session->s_mdsc->fsc; 1890 struct super_block *sb = fsc->sb; 1891 LIST_HEAD(dispose); 1892 1893 dout("remove_session_caps on %p\n", session); 1894 ceph_iterate_session_caps(session, remove_session_caps_cb, fsc); 1895 1896 wake_up_all(&fsc->mdsc->cap_flushing_wq); 1897 1898 spin_lock(&session->s_cap_lock); 1899 if (session->s_nr_caps > 0) { 1900 struct inode *inode; 1901 struct ceph_cap *cap, *prev = NULL; 1902 struct ceph_vino vino; 1903 /* 1904 * iterate_session_caps() skips inodes that are being 1905 * deleted, we need to wait until deletions are complete. 1906 * __wait_on_freeing_inode() is designed for the job, 1907 * but it is not exported, so use lookup inode function 1908 * to access it. 1909 */ 1910 while (!list_empty(&session->s_caps)) { 1911 cap = list_entry(session->s_caps.next, 1912 struct ceph_cap, session_caps); 1913 if (cap == prev) 1914 break; 1915 prev = cap; 1916 vino = cap->ci->i_vino; 1917 spin_unlock(&session->s_cap_lock); 1918 1919 inode = ceph_find_inode(sb, vino); 1920 iput(inode); 1921 1922 spin_lock(&session->s_cap_lock); 1923 } 1924 } 1925 1926 // drop cap expires and unlock s_cap_lock 1927 detach_cap_releases(session, &dispose); 1928 1929 BUG_ON(session->s_nr_caps > 0); 1930 BUG_ON(!list_empty(&session->s_cap_flushing)); 1931 spin_unlock(&session->s_cap_lock); 1932 dispose_cap_releases(session->s_mdsc, &dispose); 1933 } 1934 1935 enum { 1936 RECONNECT, 1937 RENEWCAPS, 1938 FORCE_RO, 1939 }; 1940 1941 /* 1942 * wake up any threads waiting on this session's caps. if the cap is 1943 * old (didn't get renewed on the client reconnect), remove it now. 1944 * 1945 * caller must hold s_mutex. 1946 */ 1947 static int wake_up_session_cb(struct inode *inode, int mds, void *arg) 1948 { 1949 struct ceph_inode_info *ci = ceph_inode(inode); 1950 unsigned long ev = (unsigned long)arg; 1951 1952 if (ev == RECONNECT) { 1953 spin_lock(&ci->i_ceph_lock); 1954 ci->i_wanted_max_size = 0; 1955 ci->i_requested_max_size = 0; 1956 spin_unlock(&ci->i_ceph_lock); 1957 } else if (ev == RENEWCAPS) { 1958 struct ceph_cap *cap; 1959 1960 spin_lock(&ci->i_ceph_lock); 1961 cap = __get_cap_for_mds(ci, mds); 1962 /* mds did not re-issue stale cap */ 1963 if (cap && cap->cap_gen < atomic_read(&cap->session->s_cap_gen)) 1964 cap->issued = cap->implemented = CEPH_CAP_PIN; 1965 spin_unlock(&ci->i_ceph_lock); 1966 } else if (ev == FORCE_RO) { 1967 } 1968 wake_up_all(&ci->i_cap_wq); 1969 return 0; 1970 } 1971 1972 static void wake_up_session_caps(struct ceph_mds_session *session, int ev) 1973 { 1974 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1975 ceph_iterate_session_caps(session, wake_up_session_cb, 1976 (void *)(unsigned long)ev); 1977 } 1978 1979 /* 1980 * Send periodic message to MDS renewing all currently held caps. The 1981 * ack will reset the expiration for all caps from this session. 1982 * 1983 * caller holds s_mutex 1984 */ 1985 static int send_renew_caps(struct ceph_mds_client *mdsc, 1986 struct ceph_mds_session *session) 1987 { 1988 struct ceph_msg *msg; 1989 int state; 1990 1991 if (time_after_eq(jiffies, session->s_cap_ttl) && 1992 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1993 pr_info("mds%d caps stale\n", session->s_mds); 1994 session->s_renew_requested = jiffies; 1995 1996 /* do not try to renew caps until a recovering mds has reconnected 1997 * with its clients. */ 1998 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1999 if (state < CEPH_MDS_STATE_RECONNECT) { 2000 dout("send_renew_caps ignoring mds%d (%s)\n", 2001 session->s_mds, ceph_mds_state_name(state)); 2002 return 0; 2003 } 2004 2005 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 2006 ceph_mds_state_name(state)); 2007 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 2008 ++session->s_renew_seq); 2009 if (!msg) 2010 return -ENOMEM; 2011 ceph_con_send(&session->s_con, msg); 2012 return 0; 2013 } 2014 2015 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 2016 struct ceph_mds_session *session, u64 seq) 2017 { 2018 struct ceph_msg *msg; 2019 2020 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 2021 session->s_mds, ceph_session_state_name(session->s_state), seq); 2022 msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 2023 if (!msg) 2024 return -ENOMEM; 2025 ceph_con_send(&session->s_con, msg); 2026 return 0; 2027 } 2028 2029 2030 /* 2031 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 2032 * 2033 * Called under session->s_mutex 2034 */ 2035 static void renewed_caps(struct ceph_mds_client *mdsc, 2036 struct ceph_mds_session *session, int is_renew) 2037 { 2038 int was_stale; 2039 int wake = 0; 2040 2041 spin_lock(&session->s_cap_lock); 2042 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 2043 2044 session->s_cap_ttl = session->s_renew_requested + 2045 mdsc->mdsmap->m_session_timeout*HZ; 2046 2047 if (was_stale) { 2048 if (time_before(jiffies, session->s_cap_ttl)) { 2049 pr_info("mds%d caps renewed\n", session->s_mds); 2050 wake = 1; 2051 } else { 2052 pr_info("mds%d caps still stale\n", session->s_mds); 2053 } 2054 } 2055 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 2056 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 2057 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 2058 spin_unlock(&session->s_cap_lock); 2059 2060 if (wake) 2061 wake_up_session_caps(session, RENEWCAPS); 2062 } 2063 2064 /* 2065 * send a session close request 2066 */ 2067 static int request_close_session(struct ceph_mds_session *session) 2068 { 2069 struct ceph_msg *msg; 2070 2071 dout("request_close_session mds%d state %s seq %lld\n", 2072 session->s_mds, ceph_session_state_name(session->s_state), 2073 session->s_seq); 2074 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE, 2075 session->s_seq); 2076 if (!msg) 2077 return -ENOMEM; 2078 ceph_con_send(&session->s_con, msg); 2079 return 1; 2080 } 2081 2082 /* 2083 * Called with s_mutex held. 2084 */ 2085 static int __close_session(struct ceph_mds_client *mdsc, 2086 struct ceph_mds_session *session) 2087 { 2088 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 2089 return 0; 2090 session->s_state = CEPH_MDS_SESSION_CLOSING; 2091 return request_close_session(session); 2092 } 2093 2094 static bool drop_negative_children(struct dentry *dentry) 2095 { 2096 struct dentry *child; 2097 bool all_negative = true; 2098 2099 if (!d_is_dir(dentry)) 2100 goto out; 2101 2102 spin_lock(&dentry->d_lock); 2103 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 2104 if (d_really_is_positive(child)) { 2105 all_negative = false; 2106 break; 2107 } 2108 } 2109 spin_unlock(&dentry->d_lock); 2110 2111 if (all_negative) 2112 shrink_dcache_parent(dentry); 2113 out: 2114 return all_negative; 2115 } 2116 2117 /* 2118 * Trim old(er) caps. 2119 * 2120 * Because we can't cache an inode without one or more caps, we do 2121 * this indirectly: if a cap is unused, we prune its aliases, at which 2122 * point the inode will hopefully get dropped to. 2123 * 2124 * Yes, this is a bit sloppy. Our only real goal here is to respond to 2125 * memory pressure from the MDS, though, so it needn't be perfect. 2126 */ 2127 static int trim_caps_cb(struct inode *inode, int mds, void *arg) 2128 { 2129 int *remaining = arg; 2130 struct ceph_inode_info *ci = ceph_inode(inode); 2131 int used, wanted, oissued, mine; 2132 struct ceph_cap *cap; 2133 2134 if (*remaining <= 0) 2135 return -1; 2136 2137 spin_lock(&ci->i_ceph_lock); 2138 cap = __get_cap_for_mds(ci, mds); 2139 if (!cap) { 2140 spin_unlock(&ci->i_ceph_lock); 2141 return 0; 2142 } 2143 mine = cap->issued | cap->implemented; 2144 used = __ceph_caps_used(ci); 2145 wanted = __ceph_caps_file_wanted(ci); 2146 oissued = __ceph_caps_issued_other(ci, cap); 2147 2148 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 2149 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 2150 ceph_cap_string(used), ceph_cap_string(wanted)); 2151 if (cap == ci->i_auth_cap) { 2152 if (ci->i_dirty_caps || ci->i_flushing_caps || 2153 !list_empty(&ci->i_cap_snaps)) 2154 goto out; 2155 if ((used | wanted) & CEPH_CAP_ANY_WR) 2156 goto out; 2157 /* Note: it's possible that i_filelock_ref becomes non-zero 2158 * after dropping auth caps. It doesn't hurt because reply 2159 * of lock mds request will re-add auth caps. */ 2160 if (atomic_read(&ci->i_filelock_ref) > 0) 2161 goto out; 2162 } 2163 /* The inode has cached pages, but it's no longer used. 2164 * we can safely drop it */ 2165 if (S_ISREG(inode->i_mode) && 2166 wanted == 0 && used == CEPH_CAP_FILE_CACHE && 2167 !(oissued & CEPH_CAP_FILE_CACHE)) { 2168 used = 0; 2169 oissued = 0; 2170 } 2171 if ((used | wanted) & ~oissued & mine) 2172 goto out; /* we need these caps */ 2173 2174 if (oissued) { 2175 /* we aren't the only cap.. just remove us */ 2176 ceph_remove_cap(cap, true); 2177 (*remaining)--; 2178 } else { 2179 struct dentry *dentry; 2180 /* try dropping referring dentries */ 2181 spin_unlock(&ci->i_ceph_lock); 2182 dentry = d_find_any_alias(inode); 2183 if (dentry && drop_negative_children(dentry)) { 2184 int count; 2185 dput(dentry); 2186 d_prune_aliases(inode); 2187 count = atomic_read(&inode->i_count); 2188 if (count == 1) 2189 (*remaining)--; 2190 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 2191 inode, cap, count); 2192 } else { 2193 dput(dentry); 2194 } 2195 return 0; 2196 } 2197 2198 out: 2199 spin_unlock(&ci->i_ceph_lock); 2200 return 0; 2201 } 2202 2203 /* 2204 * Trim session cap count down to some max number. 2205 */ 2206 int ceph_trim_caps(struct ceph_mds_client *mdsc, 2207 struct ceph_mds_session *session, 2208 int max_caps) 2209 { 2210 int trim_caps = session->s_nr_caps - max_caps; 2211 2212 dout("trim_caps mds%d start: %d / %d, trim %d\n", 2213 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 2214 if (trim_caps > 0) { 2215 int remaining = trim_caps; 2216 2217 ceph_iterate_session_caps(session, trim_caps_cb, &remaining); 2218 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 2219 session->s_mds, session->s_nr_caps, max_caps, 2220 trim_caps - remaining); 2221 } 2222 2223 ceph_flush_cap_releases(mdsc, session); 2224 return 0; 2225 } 2226 2227 static int check_caps_flush(struct ceph_mds_client *mdsc, 2228 u64 want_flush_tid) 2229 { 2230 int ret = 1; 2231 2232 spin_lock(&mdsc->cap_dirty_lock); 2233 if (!list_empty(&mdsc->cap_flush_list)) { 2234 struct ceph_cap_flush *cf = 2235 list_first_entry(&mdsc->cap_flush_list, 2236 struct ceph_cap_flush, g_list); 2237 if (cf->tid <= want_flush_tid) { 2238 dout("check_caps_flush still flushing tid " 2239 "%llu <= %llu\n", cf->tid, want_flush_tid); 2240 ret = 0; 2241 } 2242 } 2243 spin_unlock(&mdsc->cap_dirty_lock); 2244 return ret; 2245 } 2246 2247 /* 2248 * flush all dirty inode data to disk. 2249 * 2250 * returns true if we've flushed through want_flush_tid 2251 */ 2252 static void wait_caps_flush(struct ceph_mds_client *mdsc, 2253 u64 want_flush_tid) 2254 { 2255 dout("check_caps_flush want %llu\n", want_flush_tid); 2256 2257 wait_event(mdsc->cap_flushing_wq, 2258 check_caps_flush(mdsc, want_flush_tid)); 2259 2260 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid); 2261 } 2262 2263 /* 2264 * called under s_mutex 2265 */ 2266 static void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 2267 struct ceph_mds_session *session) 2268 { 2269 struct ceph_msg *msg = NULL; 2270 struct ceph_mds_cap_release *head; 2271 struct ceph_mds_cap_item *item; 2272 struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc; 2273 struct ceph_cap *cap; 2274 LIST_HEAD(tmp_list); 2275 int num_cap_releases; 2276 __le32 barrier, *cap_barrier; 2277 2278 down_read(&osdc->lock); 2279 barrier = cpu_to_le32(osdc->epoch_barrier); 2280 up_read(&osdc->lock); 2281 2282 spin_lock(&session->s_cap_lock); 2283 again: 2284 list_splice_init(&session->s_cap_releases, &tmp_list); 2285 num_cap_releases = session->s_num_cap_releases; 2286 session->s_num_cap_releases = 0; 2287 spin_unlock(&session->s_cap_lock); 2288 2289 while (!list_empty(&tmp_list)) { 2290 if (!msg) { 2291 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, 2292 PAGE_SIZE, GFP_NOFS, false); 2293 if (!msg) 2294 goto out_err; 2295 head = msg->front.iov_base; 2296 head->num = cpu_to_le32(0); 2297 msg->front.iov_len = sizeof(*head); 2298 2299 msg->hdr.version = cpu_to_le16(2); 2300 msg->hdr.compat_version = cpu_to_le16(1); 2301 } 2302 2303 cap = list_first_entry(&tmp_list, struct ceph_cap, 2304 session_caps); 2305 list_del(&cap->session_caps); 2306 num_cap_releases--; 2307 2308 head = msg->front.iov_base; 2309 put_unaligned_le32(get_unaligned_le32(&head->num) + 1, 2310 &head->num); 2311 item = msg->front.iov_base + msg->front.iov_len; 2312 item->ino = cpu_to_le64(cap->cap_ino); 2313 item->cap_id = cpu_to_le64(cap->cap_id); 2314 item->migrate_seq = cpu_to_le32(cap->mseq); 2315 item->seq = cpu_to_le32(cap->issue_seq); 2316 msg->front.iov_len += sizeof(*item); 2317 2318 ceph_put_cap(mdsc, cap); 2319 2320 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 2321 // Append cap_barrier field 2322 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2323 *cap_barrier = barrier; 2324 msg->front.iov_len += sizeof(*cap_barrier); 2325 2326 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2327 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 2328 ceph_con_send(&session->s_con, msg); 2329 msg = NULL; 2330 } 2331 } 2332 2333 BUG_ON(num_cap_releases != 0); 2334 2335 spin_lock(&session->s_cap_lock); 2336 if (!list_empty(&session->s_cap_releases)) 2337 goto again; 2338 spin_unlock(&session->s_cap_lock); 2339 2340 if (msg) { 2341 // Append cap_barrier field 2342 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2343 *cap_barrier = barrier; 2344 msg->front.iov_len += sizeof(*cap_barrier); 2345 2346 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2347 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 2348 ceph_con_send(&session->s_con, msg); 2349 } 2350 return; 2351 out_err: 2352 pr_err("send_cap_releases mds%d, failed to allocate message\n", 2353 session->s_mds); 2354 spin_lock(&session->s_cap_lock); 2355 list_splice(&tmp_list, &session->s_cap_releases); 2356 session->s_num_cap_releases += num_cap_releases; 2357 spin_unlock(&session->s_cap_lock); 2358 } 2359 2360 static void ceph_cap_release_work(struct work_struct *work) 2361 { 2362 struct ceph_mds_session *session = 2363 container_of(work, struct ceph_mds_session, s_cap_release_work); 2364 2365 mutex_lock(&session->s_mutex); 2366 if (session->s_state == CEPH_MDS_SESSION_OPEN || 2367 session->s_state == CEPH_MDS_SESSION_HUNG) 2368 ceph_send_cap_releases(session->s_mdsc, session); 2369 mutex_unlock(&session->s_mutex); 2370 ceph_put_mds_session(session); 2371 } 2372 2373 void ceph_flush_cap_releases(struct ceph_mds_client *mdsc, 2374 struct ceph_mds_session *session) 2375 { 2376 if (mdsc->stopping) 2377 return; 2378 2379 ceph_get_mds_session(session); 2380 if (queue_work(mdsc->fsc->cap_wq, 2381 &session->s_cap_release_work)) { 2382 dout("cap release work queued\n"); 2383 } else { 2384 ceph_put_mds_session(session); 2385 dout("failed to queue cap release work\n"); 2386 } 2387 } 2388 2389 /* 2390 * caller holds session->s_cap_lock 2391 */ 2392 void __ceph_queue_cap_release(struct ceph_mds_session *session, 2393 struct ceph_cap *cap) 2394 { 2395 list_add_tail(&cap->session_caps, &session->s_cap_releases); 2396 session->s_num_cap_releases++; 2397 2398 if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE)) 2399 ceph_flush_cap_releases(session->s_mdsc, session); 2400 } 2401 2402 static void ceph_cap_reclaim_work(struct work_struct *work) 2403 { 2404 struct ceph_mds_client *mdsc = 2405 container_of(work, struct ceph_mds_client, cap_reclaim_work); 2406 int ret = ceph_trim_dentries(mdsc); 2407 if (ret == -EAGAIN) 2408 ceph_queue_cap_reclaim_work(mdsc); 2409 } 2410 2411 void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc) 2412 { 2413 if (mdsc->stopping) 2414 return; 2415 2416 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) { 2417 dout("caps reclaim work queued\n"); 2418 } else { 2419 dout("failed to queue caps release work\n"); 2420 } 2421 } 2422 2423 void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr) 2424 { 2425 int val; 2426 if (!nr) 2427 return; 2428 val = atomic_add_return(nr, &mdsc->cap_reclaim_pending); 2429 if ((val % CEPH_CAPS_PER_RELEASE) < nr) { 2430 atomic_set(&mdsc->cap_reclaim_pending, 0); 2431 ceph_queue_cap_reclaim_work(mdsc); 2432 } 2433 } 2434 2435 /* 2436 * requests 2437 */ 2438 2439 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 2440 struct inode *dir) 2441 { 2442 struct ceph_inode_info *ci = ceph_inode(dir); 2443 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 2444 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 2445 size_t size = sizeof(struct ceph_mds_reply_dir_entry); 2446 unsigned int num_entries; 2447 int order; 2448 2449 spin_lock(&ci->i_ceph_lock); 2450 num_entries = ci->i_files + ci->i_subdirs; 2451 spin_unlock(&ci->i_ceph_lock); 2452 num_entries = max(num_entries, 1U); 2453 num_entries = min(num_entries, opt->max_readdir); 2454 2455 order = get_order(size * num_entries); 2456 while (order >= 0) { 2457 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL | 2458 __GFP_NOWARN | 2459 __GFP_ZERO, 2460 order); 2461 if (rinfo->dir_entries) 2462 break; 2463 order--; 2464 } 2465 if (!rinfo->dir_entries) 2466 return -ENOMEM; 2467 2468 num_entries = (PAGE_SIZE << order) / size; 2469 num_entries = min(num_entries, opt->max_readdir); 2470 2471 rinfo->dir_buf_size = PAGE_SIZE << order; 2472 req->r_num_caps = num_entries + 1; 2473 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 2474 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 2475 return 0; 2476 } 2477 2478 /* 2479 * Create an mds request. 2480 */ 2481 struct ceph_mds_request * 2482 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 2483 { 2484 struct ceph_mds_request *req; 2485 2486 req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS); 2487 if (!req) 2488 return ERR_PTR(-ENOMEM); 2489 2490 mutex_init(&req->r_fill_mutex); 2491 req->r_mdsc = mdsc; 2492 req->r_started = jiffies; 2493 req->r_start_latency = ktime_get(); 2494 req->r_resend_mds = -1; 2495 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 2496 INIT_LIST_HEAD(&req->r_unsafe_target_item); 2497 req->r_fmode = -1; 2498 req->r_feature_needed = -1; 2499 kref_init(&req->r_kref); 2500 RB_CLEAR_NODE(&req->r_node); 2501 INIT_LIST_HEAD(&req->r_wait); 2502 init_completion(&req->r_completion); 2503 init_completion(&req->r_safe_completion); 2504 INIT_LIST_HEAD(&req->r_unsafe_item); 2505 2506 ktime_get_coarse_real_ts64(&req->r_stamp); 2507 2508 req->r_op = op; 2509 req->r_direct_mode = mode; 2510 return req; 2511 } 2512 2513 /* 2514 * return oldest (lowest) request, tid in request tree, 0 if none. 2515 * 2516 * called under mdsc->mutex. 2517 */ 2518 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 2519 { 2520 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 2521 return NULL; 2522 return rb_entry(rb_first(&mdsc->request_tree), 2523 struct ceph_mds_request, r_node); 2524 } 2525 2526 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 2527 { 2528 return mdsc->oldest_tid; 2529 } 2530 2531 #if IS_ENABLED(CONFIG_FS_ENCRYPTION) 2532 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) 2533 { 2534 struct inode *dir = req->r_parent; 2535 struct dentry *dentry = req->r_dentry; 2536 u8 *cryptbuf = NULL; 2537 u32 len = 0; 2538 int ret = 0; 2539 2540 /* only encode if we have parent and dentry */ 2541 if (!dir || !dentry) 2542 goto success; 2543 2544 /* No-op unless this is encrypted */ 2545 if (!IS_ENCRYPTED(dir)) 2546 goto success; 2547 2548 ret = ceph_fscrypt_prepare_readdir(dir); 2549 if (ret < 0) 2550 return ERR_PTR(ret); 2551 2552 /* No key? Just ignore it. */ 2553 if (!fscrypt_has_encryption_key(dir)) 2554 goto success; 2555 2556 if (!fscrypt_fname_encrypted_size(dir, dentry->d_name.len, NAME_MAX, 2557 &len)) { 2558 WARN_ON_ONCE(1); 2559 return ERR_PTR(-ENAMETOOLONG); 2560 } 2561 2562 /* No need to append altname if name is short enough */ 2563 if (len <= CEPH_NOHASH_NAME_MAX) { 2564 len = 0; 2565 goto success; 2566 } 2567 2568 cryptbuf = kmalloc(len, GFP_KERNEL); 2569 if (!cryptbuf) 2570 return ERR_PTR(-ENOMEM); 2571 2572 ret = fscrypt_fname_encrypt(dir, &dentry->d_name, cryptbuf, len); 2573 if (ret) { 2574 kfree(cryptbuf); 2575 return ERR_PTR(ret); 2576 } 2577 success: 2578 *plen = len; 2579 return cryptbuf; 2580 } 2581 #else 2582 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) 2583 { 2584 *plen = 0; 2585 return NULL; 2586 } 2587 #endif 2588 2589 /** 2590 * ceph_mdsc_build_path - build a path string to a given dentry 2591 * @dentry: dentry to which path should be built 2592 * @plen: returned length of string 2593 * @pbase: returned base inode number 2594 * @for_wire: is this path going to be sent to the MDS? 2595 * 2596 * Build a string that represents the path to the dentry. This is mostly called 2597 * for two different purposes: 2598 * 2599 * 1) we need to build a path string to send to the MDS (for_wire == true) 2600 * 2) we need a path string for local presentation (e.g. debugfs) 2601 * (for_wire == false) 2602 * 2603 * The path is built in reverse, starting with the dentry. Walk back up toward 2604 * the root, building the path until the first non-snapped inode is reached 2605 * (for_wire) or the root inode is reached (!for_wire). 2606 * 2607 * Encode hidden .snap dirs as a double /, i.e. 2608 * foo/.snap/bar -> foo//bar 2609 */ 2610 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *pbase, 2611 int for_wire) 2612 { 2613 struct dentry *cur; 2614 struct inode *inode; 2615 char *path; 2616 int pos; 2617 unsigned seq; 2618 u64 base; 2619 2620 if (!dentry) 2621 return ERR_PTR(-EINVAL); 2622 2623 path = __getname(); 2624 if (!path) 2625 return ERR_PTR(-ENOMEM); 2626 retry: 2627 pos = PATH_MAX - 1; 2628 path[pos] = '\0'; 2629 2630 seq = read_seqbegin(&rename_lock); 2631 cur = dget(dentry); 2632 for (;;) { 2633 struct dentry *parent; 2634 2635 spin_lock(&cur->d_lock); 2636 inode = d_inode(cur); 2637 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 2638 dout("build_path path+%d: %p SNAPDIR\n", 2639 pos, cur); 2640 spin_unlock(&cur->d_lock); 2641 parent = dget_parent(cur); 2642 } else if (for_wire && inode && dentry != cur && 2643 ceph_snap(inode) == CEPH_NOSNAP) { 2644 spin_unlock(&cur->d_lock); 2645 pos++; /* get rid of any prepended '/' */ 2646 break; 2647 } else if (!for_wire || !IS_ENCRYPTED(d_inode(cur->d_parent))) { 2648 pos -= cur->d_name.len; 2649 if (pos < 0) { 2650 spin_unlock(&cur->d_lock); 2651 break; 2652 } 2653 memcpy(path + pos, cur->d_name.name, cur->d_name.len); 2654 spin_unlock(&cur->d_lock); 2655 parent = dget_parent(cur); 2656 } else { 2657 int len, ret; 2658 char buf[NAME_MAX]; 2659 2660 /* 2661 * Proactively copy name into buf, in case we need to 2662 * present it as-is. 2663 */ 2664 memcpy(buf, cur->d_name.name, cur->d_name.len); 2665 len = cur->d_name.len; 2666 spin_unlock(&cur->d_lock); 2667 parent = dget_parent(cur); 2668 2669 ret = ceph_fscrypt_prepare_readdir(d_inode(parent)); 2670 if (ret < 0) { 2671 dput(parent); 2672 dput(cur); 2673 return ERR_PTR(ret); 2674 } 2675 2676 if (fscrypt_has_encryption_key(d_inode(parent))) { 2677 len = ceph_encode_encrypted_fname(d_inode(parent), 2678 cur, buf); 2679 if (len < 0) { 2680 dput(parent); 2681 dput(cur); 2682 return ERR_PTR(len); 2683 } 2684 } 2685 pos -= len; 2686 if (pos < 0) { 2687 dput(parent); 2688 break; 2689 } 2690 memcpy(path + pos, buf, len); 2691 } 2692 dput(cur); 2693 cur = parent; 2694 2695 /* Are we at the root? */ 2696 if (IS_ROOT(cur)) 2697 break; 2698 2699 /* Are we out of buffer? */ 2700 if (--pos < 0) 2701 break; 2702 2703 path[pos] = '/'; 2704 } 2705 inode = d_inode(cur); 2706 base = inode ? ceph_ino(inode) : 0; 2707 dput(cur); 2708 2709 if (read_seqretry(&rename_lock, seq)) 2710 goto retry; 2711 2712 if (pos < 0) { 2713 /* 2714 * A rename didn't occur, but somehow we didn't end up where 2715 * we thought we would. Throw a warning and try again. 2716 */ 2717 pr_warn("build_path did not end path lookup where expected (pos = %d)\n", 2718 pos); 2719 goto retry; 2720 } 2721 2722 *pbase = base; 2723 *plen = PATH_MAX - 1 - pos; 2724 dout("build_path on %p %d built %llx '%.*s'\n", 2725 dentry, d_count(dentry), base, *plen, path + pos); 2726 return path + pos; 2727 } 2728 2729 static int build_dentry_path(struct dentry *dentry, struct inode *dir, 2730 const char **ppath, int *ppathlen, u64 *pino, 2731 bool *pfreepath, bool parent_locked) 2732 { 2733 char *path; 2734 2735 rcu_read_lock(); 2736 if (!dir) 2737 dir = d_inode_rcu(dentry->d_parent); 2738 if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP && 2739 !IS_ENCRYPTED(dir)) { 2740 *pino = ceph_ino(dir); 2741 rcu_read_unlock(); 2742 *ppath = dentry->d_name.name; 2743 *ppathlen = dentry->d_name.len; 2744 return 0; 2745 } 2746 rcu_read_unlock(); 2747 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 2748 if (IS_ERR(path)) 2749 return PTR_ERR(path); 2750 *ppath = path; 2751 *pfreepath = true; 2752 return 0; 2753 } 2754 2755 static int build_inode_path(struct inode *inode, 2756 const char **ppath, int *ppathlen, u64 *pino, 2757 bool *pfreepath) 2758 { 2759 struct dentry *dentry; 2760 char *path; 2761 2762 if (ceph_snap(inode) == CEPH_NOSNAP) { 2763 *pino = ceph_ino(inode); 2764 *ppathlen = 0; 2765 return 0; 2766 } 2767 dentry = d_find_alias(inode); 2768 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 2769 dput(dentry); 2770 if (IS_ERR(path)) 2771 return PTR_ERR(path); 2772 *ppath = path; 2773 *pfreepath = true; 2774 return 0; 2775 } 2776 2777 /* 2778 * request arguments may be specified via an inode *, a dentry *, or 2779 * an explicit ino+path. 2780 */ 2781 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 2782 struct inode *rdiri, const char *rpath, 2783 u64 rino, const char **ppath, int *pathlen, 2784 u64 *ino, bool *freepath, bool parent_locked) 2785 { 2786 int r = 0; 2787 2788 if (rinode) { 2789 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 2790 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 2791 ceph_snap(rinode)); 2792 } else if (rdentry) { 2793 r = build_dentry_path(rdentry, rdiri, ppath, pathlen, ino, 2794 freepath, parent_locked); 2795 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 2796 *ppath); 2797 } else if (rpath || rino) { 2798 *ino = rino; 2799 *ppath = rpath; 2800 *pathlen = rpath ? strlen(rpath) : 0; 2801 dout(" path %.*s\n", *pathlen, rpath); 2802 } 2803 2804 return r; 2805 } 2806 2807 static void encode_mclientrequest_tail(void **p, 2808 const struct ceph_mds_request *req) 2809 { 2810 struct ceph_timespec ts; 2811 int i; 2812 2813 ceph_encode_timespec64(&ts, &req->r_stamp); 2814 ceph_encode_copy(p, &ts, sizeof(ts)); 2815 2816 /* v4: gid_list */ 2817 ceph_encode_32(p, req->r_cred->group_info->ngroups); 2818 for (i = 0; i < req->r_cred->group_info->ngroups; i++) 2819 ceph_encode_64(p, from_kgid(&init_user_ns, 2820 req->r_cred->group_info->gid[i])); 2821 2822 /* v5: altname */ 2823 ceph_encode_32(p, req->r_altname_len); 2824 ceph_encode_copy(p, req->r_altname, req->r_altname_len); 2825 2826 /* v6: fscrypt_auth and fscrypt_file */ 2827 if (req->r_fscrypt_auth) { 2828 u32 authlen = ceph_fscrypt_auth_len(req->r_fscrypt_auth); 2829 2830 ceph_encode_32(p, authlen); 2831 ceph_encode_copy(p, req->r_fscrypt_auth, authlen); 2832 } else { 2833 ceph_encode_32(p, 0); 2834 } 2835 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) { 2836 ceph_encode_32(p, sizeof(__le64)); 2837 ceph_encode_64(p, req->r_fscrypt_file); 2838 } else { 2839 ceph_encode_32(p, 0); 2840 } 2841 } 2842 2843 static struct ceph_mds_request_head_legacy * 2844 find_legacy_request_head(void *p, u64 features) 2845 { 2846 bool legacy = !(features & CEPH_FEATURE_FS_BTIME); 2847 struct ceph_mds_request_head_old *ohead; 2848 2849 if (legacy) 2850 return (struct ceph_mds_request_head_legacy *)p; 2851 ohead = (struct ceph_mds_request_head_old *)p; 2852 return (struct ceph_mds_request_head_legacy *)&ohead->oldest_client_tid; 2853 } 2854 2855 /* 2856 * called under mdsc->mutex 2857 */ 2858 static struct ceph_msg *create_request_message(struct ceph_mds_session *session, 2859 struct ceph_mds_request *req, 2860 bool drop_cap_releases) 2861 { 2862 int mds = session->s_mds; 2863 struct ceph_mds_client *mdsc = session->s_mdsc; 2864 struct ceph_msg *msg; 2865 struct ceph_mds_request_head_legacy *lhead; 2866 const char *path1 = NULL; 2867 const char *path2 = NULL; 2868 u64 ino1 = 0, ino2 = 0; 2869 int pathlen1 = 0, pathlen2 = 0; 2870 bool freepath1 = false, freepath2 = false; 2871 struct dentry *old_dentry = NULL; 2872 int len; 2873 u16 releases; 2874 void *p, *end; 2875 int ret; 2876 bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME); 2877 bool old_version = !test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, 2878 &session->s_features); 2879 2880 ret = set_request_path_attr(req->r_inode, req->r_dentry, 2881 req->r_parent, req->r_path1, req->r_ino1.ino, 2882 &path1, &pathlen1, &ino1, &freepath1, 2883 test_bit(CEPH_MDS_R_PARENT_LOCKED, 2884 &req->r_req_flags)); 2885 if (ret < 0) { 2886 msg = ERR_PTR(ret); 2887 goto out; 2888 } 2889 2890 /* If r_old_dentry is set, then assume that its parent is locked */ 2891 if (req->r_old_dentry && 2892 !(req->r_old_dentry->d_flags & DCACHE_DISCONNECTED)) 2893 old_dentry = req->r_old_dentry; 2894 ret = set_request_path_attr(NULL, old_dentry, 2895 req->r_old_dentry_dir, 2896 req->r_path2, req->r_ino2.ino, 2897 &path2, &pathlen2, &ino2, &freepath2, true); 2898 if (ret < 0) { 2899 msg = ERR_PTR(ret); 2900 goto out_free1; 2901 } 2902 2903 req->r_altname = get_fscrypt_altname(req, &req->r_altname_len); 2904 if (IS_ERR(req->r_altname)) { 2905 msg = ERR_CAST(req->r_altname); 2906 req->r_altname = NULL; 2907 goto out_free2; 2908 } 2909 2910 /* 2911 * For old cephs without supporting the 32bit retry/fwd feature 2912 * it will copy the raw memories directly when decoding the 2913 * requests. While new cephs will decode the head depending the 2914 * version member, so we need to make sure it will be compatible 2915 * with them both. 2916 */ 2917 if (legacy) 2918 len = sizeof(struct ceph_mds_request_head_legacy); 2919 else if (old_version) 2920 len = sizeof(struct ceph_mds_request_head_old); 2921 else 2922 len = sizeof(struct ceph_mds_request_head); 2923 2924 /* filepaths */ 2925 len += 2 * (1 + sizeof(u32) + sizeof(u64)); 2926 len += pathlen1 + pathlen2; 2927 2928 /* cap releases */ 2929 len += sizeof(struct ceph_mds_request_release) * 2930 (!!req->r_inode_drop + !!req->r_dentry_drop + 2931 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 2932 2933 if (req->r_dentry_drop) 2934 len += pathlen1; 2935 if (req->r_old_dentry_drop) 2936 len += pathlen2; 2937 2938 /* MClientRequest tail */ 2939 2940 /* req->r_stamp */ 2941 len += sizeof(struct ceph_timespec); 2942 2943 /* gid list */ 2944 len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups); 2945 2946 /* alternate name */ 2947 len += sizeof(u32) + req->r_altname_len; 2948 2949 /* fscrypt_auth */ 2950 len += sizeof(u32); // fscrypt_auth 2951 if (req->r_fscrypt_auth) 2952 len += ceph_fscrypt_auth_len(req->r_fscrypt_auth); 2953 2954 /* fscrypt_file */ 2955 len += sizeof(u32); 2956 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) 2957 len += sizeof(__le64); 2958 2959 msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false); 2960 if (!msg) { 2961 msg = ERR_PTR(-ENOMEM); 2962 goto out_free2; 2963 } 2964 2965 msg->hdr.tid = cpu_to_le64(req->r_tid); 2966 2967 lhead = find_legacy_request_head(msg->front.iov_base, 2968 session->s_con.peer_features); 2969 2970 /* 2971 * The ceph_mds_request_head_legacy didn't contain a version field, and 2972 * one was added when we moved the message version from 3->4. 2973 */ 2974 if (legacy) { 2975 msg->hdr.version = cpu_to_le16(3); 2976 p = msg->front.iov_base + sizeof(*lhead); 2977 } else if (old_version) { 2978 struct ceph_mds_request_head_old *ohead = msg->front.iov_base; 2979 2980 msg->hdr.version = cpu_to_le16(4); 2981 ohead->version = cpu_to_le16(1); 2982 p = msg->front.iov_base + sizeof(*ohead); 2983 } else { 2984 struct ceph_mds_request_head *nhead = msg->front.iov_base; 2985 2986 msg->hdr.version = cpu_to_le16(6); 2987 nhead->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION); 2988 p = msg->front.iov_base + sizeof(*nhead); 2989 } 2990 2991 end = msg->front.iov_base + msg->front.iov_len; 2992 2993 lhead->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 2994 lhead->op = cpu_to_le32(req->r_op); 2995 lhead->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, 2996 req->r_cred->fsuid)); 2997 lhead->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, 2998 req->r_cred->fsgid)); 2999 lhead->ino = cpu_to_le64(req->r_deleg_ino); 3000 lhead->args = req->r_args; 3001 3002 ceph_encode_filepath(&p, end, ino1, path1); 3003 ceph_encode_filepath(&p, end, ino2, path2); 3004 3005 /* make note of release offset, in case we need to replay */ 3006 req->r_request_release_offset = p - msg->front.iov_base; 3007 3008 /* cap releases */ 3009 releases = 0; 3010 if (req->r_inode_drop) 3011 releases += ceph_encode_inode_release(&p, 3012 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 3013 mds, req->r_inode_drop, req->r_inode_unless, 3014 req->r_op == CEPH_MDS_OP_READDIR); 3015 if (req->r_dentry_drop) { 3016 ret = ceph_encode_dentry_release(&p, req->r_dentry, 3017 req->r_parent, mds, req->r_dentry_drop, 3018 req->r_dentry_unless); 3019 if (ret < 0) 3020 goto out_err; 3021 releases += ret; 3022 } 3023 if (req->r_old_dentry_drop) { 3024 ret = ceph_encode_dentry_release(&p, req->r_old_dentry, 3025 req->r_old_dentry_dir, mds, 3026 req->r_old_dentry_drop, 3027 req->r_old_dentry_unless); 3028 if (ret < 0) 3029 goto out_err; 3030 releases += ret; 3031 } 3032 if (req->r_old_inode_drop) 3033 releases += ceph_encode_inode_release(&p, 3034 d_inode(req->r_old_dentry), 3035 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 3036 3037 if (drop_cap_releases) { 3038 releases = 0; 3039 p = msg->front.iov_base + req->r_request_release_offset; 3040 } 3041 3042 lhead->num_releases = cpu_to_le16(releases); 3043 3044 encode_mclientrequest_tail(&p, req); 3045 3046 if (WARN_ON_ONCE(p > end)) { 3047 ceph_msg_put(msg); 3048 msg = ERR_PTR(-ERANGE); 3049 goto out_free2; 3050 } 3051 3052 msg->front.iov_len = p - msg->front.iov_base; 3053 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 3054 3055 if (req->r_pagelist) { 3056 struct ceph_pagelist *pagelist = req->r_pagelist; 3057 ceph_msg_data_add_pagelist(msg, pagelist); 3058 msg->hdr.data_len = cpu_to_le32(pagelist->length); 3059 } else { 3060 msg->hdr.data_len = 0; 3061 } 3062 3063 msg->hdr.data_off = cpu_to_le16(0); 3064 3065 out_free2: 3066 if (freepath2) 3067 ceph_mdsc_free_path((char *)path2, pathlen2); 3068 out_free1: 3069 if (freepath1) 3070 ceph_mdsc_free_path((char *)path1, pathlen1); 3071 out: 3072 return msg; 3073 out_err: 3074 ceph_msg_put(msg); 3075 msg = ERR_PTR(ret); 3076 goto out_free2; 3077 } 3078 3079 /* 3080 * called under mdsc->mutex if error, under no mutex if 3081 * success. 3082 */ 3083 static void complete_request(struct ceph_mds_client *mdsc, 3084 struct ceph_mds_request *req) 3085 { 3086 req->r_end_latency = ktime_get(); 3087 3088 if (req->r_callback) 3089 req->r_callback(mdsc, req); 3090 complete_all(&req->r_completion); 3091 } 3092 3093 /* 3094 * called under mdsc->mutex 3095 */ 3096 static int __prepare_send_request(struct ceph_mds_session *session, 3097 struct ceph_mds_request *req, 3098 bool drop_cap_releases) 3099 { 3100 int mds = session->s_mds; 3101 struct ceph_mds_client *mdsc = session->s_mdsc; 3102 struct ceph_mds_request_head_legacy *lhead; 3103 struct ceph_mds_request_head *nhead; 3104 struct ceph_msg *msg; 3105 int flags = 0, old_max_retry; 3106 bool old_version = !test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, 3107 &session->s_features); 3108 3109 /* 3110 * Avoid inifinite retrying after overflow. The client will 3111 * increase the retry count and if the MDS is old version, 3112 * so we limit to retry at most 256 times. 3113 */ 3114 if (req->r_attempts) { 3115 old_max_retry = sizeof_field(struct ceph_mds_request_head_old, 3116 num_retry); 3117 old_max_retry = 1 << (old_max_retry * BITS_PER_BYTE); 3118 if ((old_version && req->r_attempts >= old_max_retry) || 3119 ((uint32_t)req->r_attempts >= U32_MAX)) { 3120 pr_warn_ratelimited("%s request tid %llu seq overflow\n", 3121 __func__, req->r_tid); 3122 return -EMULTIHOP; 3123 } 3124 } 3125 3126 req->r_attempts++; 3127 if (req->r_inode) { 3128 struct ceph_cap *cap = 3129 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 3130 3131 if (cap) 3132 req->r_sent_on_mseq = cap->mseq; 3133 else 3134 req->r_sent_on_mseq = -1; 3135 } 3136 dout("%s %p tid %lld %s (attempt %d)\n", __func__, req, 3137 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 3138 3139 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3140 void *p; 3141 3142 /* 3143 * Replay. Do not regenerate message (and rebuild 3144 * paths, etc.); just use the original message. 3145 * Rebuilding paths will break for renames because 3146 * d_move mangles the src name. 3147 */ 3148 msg = req->r_request; 3149 lhead = find_legacy_request_head(msg->front.iov_base, 3150 session->s_con.peer_features); 3151 3152 flags = le32_to_cpu(lhead->flags); 3153 flags |= CEPH_MDS_FLAG_REPLAY; 3154 lhead->flags = cpu_to_le32(flags); 3155 3156 if (req->r_target_inode) 3157 lhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 3158 3159 lhead->num_retry = req->r_attempts - 1; 3160 if (!old_version) { 3161 nhead = (struct ceph_mds_request_head*)msg->front.iov_base; 3162 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); 3163 } 3164 3165 /* remove cap/dentry releases from message */ 3166 lhead->num_releases = 0; 3167 3168 p = msg->front.iov_base + req->r_request_release_offset; 3169 encode_mclientrequest_tail(&p, req); 3170 3171 msg->front.iov_len = p - msg->front.iov_base; 3172 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 3173 return 0; 3174 } 3175 3176 if (req->r_request) { 3177 ceph_msg_put(req->r_request); 3178 req->r_request = NULL; 3179 } 3180 msg = create_request_message(session, req, drop_cap_releases); 3181 if (IS_ERR(msg)) { 3182 req->r_err = PTR_ERR(msg); 3183 return PTR_ERR(msg); 3184 } 3185 req->r_request = msg; 3186 3187 lhead = find_legacy_request_head(msg->front.iov_base, 3188 session->s_con.peer_features); 3189 lhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 3190 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3191 flags |= CEPH_MDS_FLAG_REPLAY; 3192 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) 3193 flags |= CEPH_MDS_FLAG_ASYNC; 3194 if (req->r_parent) 3195 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 3196 lhead->flags = cpu_to_le32(flags); 3197 lhead->num_fwd = req->r_num_fwd; 3198 lhead->num_retry = req->r_attempts - 1; 3199 if (!old_version) { 3200 nhead = (struct ceph_mds_request_head*)msg->front.iov_base; 3201 nhead->ext_num_fwd = cpu_to_le32(req->r_num_fwd); 3202 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); 3203 } 3204 3205 dout(" r_parent = %p\n", req->r_parent); 3206 return 0; 3207 } 3208 3209 /* 3210 * called under mdsc->mutex 3211 */ 3212 static int __send_request(struct ceph_mds_session *session, 3213 struct ceph_mds_request *req, 3214 bool drop_cap_releases) 3215 { 3216 int err; 3217 3218 err = __prepare_send_request(session, req, drop_cap_releases); 3219 if (!err) { 3220 ceph_msg_get(req->r_request); 3221 ceph_con_send(&session->s_con, req->r_request); 3222 } 3223 3224 return err; 3225 } 3226 3227 /* 3228 * send request, or put it on the appropriate wait list. 3229 */ 3230 static void __do_request(struct ceph_mds_client *mdsc, 3231 struct ceph_mds_request *req) 3232 { 3233 struct ceph_mds_session *session = NULL; 3234 int mds = -1; 3235 int err = 0; 3236 bool random; 3237 3238 if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3239 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) 3240 __unregister_request(mdsc, req); 3241 return; 3242 } 3243 3244 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) { 3245 dout("do_request metadata corrupted\n"); 3246 err = -EIO; 3247 goto finish; 3248 } 3249 if (req->r_timeout && 3250 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 3251 dout("do_request timed out\n"); 3252 err = -ETIMEDOUT; 3253 goto finish; 3254 } 3255 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 3256 dout("do_request forced umount\n"); 3257 err = -EIO; 3258 goto finish; 3259 } 3260 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) { 3261 if (mdsc->mdsmap_err) { 3262 err = mdsc->mdsmap_err; 3263 dout("do_request mdsmap err %d\n", err); 3264 goto finish; 3265 } 3266 if (mdsc->mdsmap->m_epoch == 0) { 3267 dout("do_request no mdsmap, waiting for map\n"); 3268 list_add(&req->r_wait, &mdsc->waiting_for_map); 3269 return; 3270 } 3271 if (!(mdsc->fsc->mount_options->flags & 3272 CEPH_MOUNT_OPT_MOUNTWAIT) && 3273 !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) { 3274 err = -EHOSTUNREACH; 3275 goto finish; 3276 } 3277 } 3278 3279 put_request_session(req); 3280 3281 mds = __choose_mds(mdsc, req, &random); 3282 if (mds < 0 || 3283 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 3284 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 3285 err = -EJUKEBOX; 3286 goto finish; 3287 } 3288 dout("do_request no mds or not active, waiting for map\n"); 3289 list_add(&req->r_wait, &mdsc->waiting_for_map); 3290 return; 3291 } 3292 3293 /* get, open session */ 3294 session = __ceph_lookup_mds_session(mdsc, mds); 3295 if (!session) { 3296 session = register_session(mdsc, mds); 3297 if (IS_ERR(session)) { 3298 err = PTR_ERR(session); 3299 goto finish; 3300 } 3301 } 3302 req->r_session = ceph_get_mds_session(session); 3303 3304 dout("do_request mds%d session %p state %s\n", mds, session, 3305 ceph_session_state_name(session->s_state)); 3306 3307 /* 3308 * The old ceph will crash the MDSs when see unknown OPs 3309 */ 3310 if (req->r_feature_needed > 0 && 3311 !test_bit(req->r_feature_needed, &session->s_features)) { 3312 err = -EOPNOTSUPP; 3313 goto out_session; 3314 } 3315 3316 if (session->s_state != CEPH_MDS_SESSION_OPEN && 3317 session->s_state != CEPH_MDS_SESSION_HUNG) { 3318 /* 3319 * We cannot queue async requests since the caps and delegated 3320 * inodes are bound to the session. Just return -EJUKEBOX and 3321 * let the caller retry a sync request in that case. 3322 */ 3323 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 3324 err = -EJUKEBOX; 3325 goto out_session; 3326 } 3327 3328 /* 3329 * If the session has been REJECTED, then return a hard error, 3330 * unless it's a CLEANRECOVER mount, in which case we'll queue 3331 * it to the mdsc queue. 3332 */ 3333 if (session->s_state == CEPH_MDS_SESSION_REJECTED) { 3334 if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER)) 3335 list_add(&req->r_wait, &mdsc->waiting_for_map); 3336 else 3337 err = -EACCES; 3338 goto out_session; 3339 } 3340 3341 if (session->s_state == CEPH_MDS_SESSION_NEW || 3342 session->s_state == CEPH_MDS_SESSION_CLOSING) { 3343 err = __open_session(mdsc, session); 3344 if (err) 3345 goto out_session; 3346 /* retry the same mds later */ 3347 if (random) 3348 req->r_resend_mds = mds; 3349 } 3350 list_add(&req->r_wait, &session->s_waiting); 3351 goto out_session; 3352 } 3353 3354 /* send request */ 3355 req->r_resend_mds = -1; /* forget any previous mds hint */ 3356 3357 if (req->r_request_started == 0) /* note request start time */ 3358 req->r_request_started = jiffies; 3359 3360 /* 3361 * For async create we will choose the auth MDS of frag in parent 3362 * directory to send the request and ususally this works fine, but 3363 * if the migrated the dirtory to another MDS before it could handle 3364 * it the request will be forwarded. 3365 * 3366 * And then the auth cap will be changed. 3367 */ 3368 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && req->r_num_fwd) { 3369 struct ceph_dentry_info *di = ceph_dentry(req->r_dentry); 3370 struct ceph_inode_info *ci; 3371 struct ceph_cap *cap; 3372 3373 /* 3374 * The request maybe handled very fast and the new inode 3375 * hasn't been linked to the dentry yet. We need to wait 3376 * for the ceph_finish_async_create(), which shouldn't be 3377 * stuck too long or fail in thoery, to finish when forwarding 3378 * the request. 3379 */ 3380 if (!d_inode(req->r_dentry)) { 3381 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_CREATE_BIT, 3382 TASK_KILLABLE); 3383 if (err) { 3384 mutex_lock(&req->r_fill_mutex); 3385 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3386 mutex_unlock(&req->r_fill_mutex); 3387 goto out_session; 3388 } 3389 } 3390 3391 ci = ceph_inode(d_inode(req->r_dentry)); 3392 3393 spin_lock(&ci->i_ceph_lock); 3394 cap = ci->i_auth_cap; 3395 if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE && mds != cap->mds) { 3396 dout("do_request session changed for auth cap %d -> %d\n", 3397 cap->session->s_mds, session->s_mds); 3398 3399 /* Remove the auth cap from old session */ 3400 spin_lock(&cap->session->s_cap_lock); 3401 cap->session->s_nr_caps--; 3402 list_del_init(&cap->session_caps); 3403 spin_unlock(&cap->session->s_cap_lock); 3404 3405 /* Add the auth cap to the new session */ 3406 cap->mds = mds; 3407 cap->session = session; 3408 spin_lock(&session->s_cap_lock); 3409 session->s_nr_caps++; 3410 list_add_tail(&cap->session_caps, &session->s_caps); 3411 spin_unlock(&session->s_cap_lock); 3412 3413 change_auth_cap_ses(ci, session); 3414 } 3415 spin_unlock(&ci->i_ceph_lock); 3416 } 3417 3418 err = __send_request(session, req, false); 3419 3420 out_session: 3421 ceph_put_mds_session(session); 3422 finish: 3423 if (err) { 3424 dout("__do_request early error %d\n", err); 3425 req->r_err = err; 3426 complete_request(mdsc, req); 3427 __unregister_request(mdsc, req); 3428 } 3429 return; 3430 } 3431 3432 /* 3433 * called under mdsc->mutex 3434 */ 3435 static void __wake_requests(struct ceph_mds_client *mdsc, 3436 struct list_head *head) 3437 { 3438 struct ceph_mds_request *req; 3439 LIST_HEAD(tmp_list); 3440 3441 list_splice_init(head, &tmp_list); 3442 3443 while (!list_empty(&tmp_list)) { 3444 req = list_entry(tmp_list.next, 3445 struct ceph_mds_request, r_wait); 3446 list_del_init(&req->r_wait); 3447 dout(" wake request %p tid %llu\n", req, req->r_tid); 3448 __do_request(mdsc, req); 3449 } 3450 } 3451 3452 /* 3453 * Wake up threads with requests pending for @mds, so that they can 3454 * resubmit their requests to a possibly different mds. 3455 */ 3456 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 3457 { 3458 struct ceph_mds_request *req; 3459 struct rb_node *p = rb_first(&mdsc->request_tree); 3460 3461 dout("kick_requests mds%d\n", mds); 3462 while (p) { 3463 req = rb_entry(p, struct ceph_mds_request, r_node); 3464 p = rb_next(p); 3465 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3466 continue; 3467 if (req->r_attempts > 0) 3468 continue; /* only new requests */ 3469 if (req->r_session && 3470 req->r_session->s_mds == mds) { 3471 dout(" kicking tid %llu\n", req->r_tid); 3472 list_del_init(&req->r_wait); 3473 __do_request(mdsc, req); 3474 } 3475 } 3476 } 3477 3478 int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir, 3479 struct ceph_mds_request *req) 3480 { 3481 int err = 0; 3482 3483 /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */ 3484 if (req->r_inode) 3485 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 3486 if (req->r_parent) { 3487 struct ceph_inode_info *ci = ceph_inode(req->r_parent); 3488 int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ? 3489 CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD; 3490 spin_lock(&ci->i_ceph_lock); 3491 ceph_take_cap_refs(ci, CEPH_CAP_PIN, false); 3492 __ceph_touch_fmode(ci, mdsc, fmode); 3493 spin_unlock(&ci->i_ceph_lock); 3494 } 3495 if (req->r_old_dentry_dir) 3496 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 3497 CEPH_CAP_PIN); 3498 3499 if (req->r_inode) { 3500 err = ceph_wait_on_async_create(req->r_inode); 3501 if (err) { 3502 dout("%s: wait for async create returned: %d\n", 3503 __func__, err); 3504 return err; 3505 } 3506 } 3507 3508 if (!err && req->r_old_inode) { 3509 err = ceph_wait_on_async_create(req->r_old_inode); 3510 if (err) { 3511 dout("%s: wait for async create returned: %d\n", 3512 __func__, err); 3513 return err; 3514 } 3515 } 3516 3517 dout("submit_request on %p for inode %p\n", req, dir); 3518 mutex_lock(&mdsc->mutex); 3519 __register_request(mdsc, req, dir); 3520 __do_request(mdsc, req); 3521 err = req->r_err; 3522 mutex_unlock(&mdsc->mutex); 3523 return err; 3524 } 3525 3526 int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc, 3527 struct ceph_mds_request *req, 3528 ceph_mds_request_wait_callback_t wait_func) 3529 { 3530 int err; 3531 3532 /* wait */ 3533 dout("do_request waiting\n"); 3534 if (wait_func) { 3535 err = wait_func(mdsc, req); 3536 } else { 3537 long timeleft = wait_for_completion_killable_timeout( 3538 &req->r_completion, 3539 ceph_timeout_jiffies(req->r_timeout)); 3540 if (timeleft > 0) 3541 err = 0; 3542 else if (!timeleft) 3543 err = -ETIMEDOUT; /* timed out */ 3544 else 3545 err = timeleft; /* killed */ 3546 } 3547 dout("do_request waited, got %d\n", err); 3548 mutex_lock(&mdsc->mutex); 3549 3550 /* only abort if we didn't race with a real reply */ 3551 if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3552 err = le32_to_cpu(req->r_reply_info.head->result); 3553 } else if (err < 0) { 3554 dout("aborted request %lld with %d\n", req->r_tid, err); 3555 3556 /* 3557 * ensure we aren't running concurrently with 3558 * ceph_fill_trace or ceph_readdir_prepopulate, which 3559 * rely on locks (dir mutex) held by our caller. 3560 */ 3561 mutex_lock(&req->r_fill_mutex); 3562 req->r_err = err; 3563 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3564 mutex_unlock(&req->r_fill_mutex); 3565 3566 if (req->r_parent && 3567 (req->r_op & CEPH_MDS_OP_WRITE)) 3568 ceph_invalidate_dir_request(req); 3569 } else { 3570 err = req->r_err; 3571 } 3572 3573 mutex_unlock(&mdsc->mutex); 3574 return err; 3575 } 3576 3577 /* 3578 * Synchrously perform an mds request. Take care of all of the 3579 * session setup, forwarding, retry details. 3580 */ 3581 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 3582 struct inode *dir, 3583 struct ceph_mds_request *req) 3584 { 3585 int err; 3586 3587 dout("do_request on %p\n", req); 3588 3589 /* issue */ 3590 err = ceph_mdsc_submit_request(mdsc, dir, req); 3591 if (!err) 3592 err = ceph_mdsc_wait_request(mdsc, req, NULL); 3593 dout("do_request %p done, result %d\n", req, err); 3594 return err; 3595 } 3596 3597 /* 3598 * Invalidate dir's completeness, dentry lease state on an aborted MDS 3599 * namespace request. 3600 */ 3601 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 3602 { 3603 struct inode *dir = req->r_parent; 3604 struct inode *old_dir = req->r_old_dentry_dir; 3605 3606 dout("invalidate_dir_request %p %p (complete, lease(s))\n", dir, old_dir); 3607 3608 ceph_dir_clear_complete(dir); 3609 if (old_dir) 3610 ceph_dir_clear_complete(old_dir); 3611 if (req->r_dentry) 3612 ceph_invalidate_dentry_lease(req->r_dentry); 3613 if (req->r_old_dentry) 3614 ceph_invalidate_dentry_lease(req->r_old_dentry); 3615 } 3616 3617 /* 3618 * Handle mds reply. 3619 * 3620 * We take the session mutex and parse and process the reply immediately. 3621 * This preserves the logical ordering of replies, capabilities, etc., sent 3622 * by the MDS as they are applied to our local cache. 3623 */ 3624 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 3625 { 3626 struct ceph_mds_client *mdsc = session->s_mdsc; 3627 struct ceph_mds_request *req; 3628 struct ceph_mds_reply_head *head = msg->front.iov_base; 3629 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 3630 struct ceph_snap_realm *realm; 3631 u64 tid; 3632 int err, result; 3633 int mds = session->s_mds; 3634 bool close_sessions = false; 3635 3636 if (msg->front.iov_len < sizeof(*head)) { 3637 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 3638 ceph_msg_dump(msg); 3639 return; 3640 } 3641 3642 /* get request, session */ 3643 tid = le64_to_cpu(msg->hdr.tid); 3644 mutex_lock(&mdsc->mutex); 3645 req = lookup_get_request(mdsc, tid); 3646 if (!req) { 3647 dout("handle_reply on unknown tid %llu\n", tid); 3648 mutex_unlock(&mdsc->mutex); 3649 return; 3650 } 3651 dout("handle_reply %p\n", req); 3652 3653 /* correct session? */ 3654 if (req->r_session != session) { 3655 pr_err("mdsc_handle_reply got %llu on session mds%d" 3656 " not mds%d\n", tid, session->s_mds, 3657 req->r_session ? req->r_session->s_mds : -1); 3658 mutex_unlock(&mdsc->mutex); 3659 goto out; 3660 } 3661 3662 /* dup? */ 3663 if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) || 3664 (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) { 3665 pr_warn("got a dup %s reply on %llu from mds%d\n", 3666 head->safe ? "safe" : "unsafe", tid, mds); 3667 mutex_unlock(&mdsc->mutex); 3668 goto out; 3669 } 3670 if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) { 3671 pr_warn("got unsafe after safe on %llu from mds%d\n", 3672 tid, mds); 3673 mutex_unlock(&mdsc->mutex); 3674 goto out; 3675 } 3676 3677 result = le32_to_cpu(head->result); 3678 3679 if (head->safe) { 3680 set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags); 3681 __unregister_request(mdsc, req); 3682 3683 /* last request during umount? */ 3684 if (mdsc->stopping && !__get_oldest_req(mdsc)) 3685 complete_all(&mdsc->safe_umount_waiters); 3686 3687 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3688 /* 3689 * We already handled the unsafe response, now do the 3690 * cleanup. No need to examine the response; the MDS 3691 * doesn't include any result info in the safe 3692 * response. And even if it did, there is nothing 3693 * useful we could do with a revised return value. 3694 */ 3695 dout("got safe reply %llu, mds%d\n", tid, mds); 3696 3697 mutex_unlock(&mdsc->mutex); 3698 goto out; 3699 } 3700 } else { 3701 set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags); 3702 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 3703 } 3704 3705 dout("handle_reply tid %lld result %d\n", tid, result); 3706 if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features)) 3707 err = parse_reply_info(session, msg, req, (u64)-1); 3708 else 3709 err = parse_reply_info(session, msg, req, 3710 session->s_con.peer_features); 3711 mutex_unlock(&mdsc->mutex); 3712 3713 /* Must find target inode outside of mutexes to avoid deadlocks */ 3714 rinfo = &req->r_reply_info; 3715 if ((err >= 0) && rinfo->head->is_target) { 3716 struct inode *in = xchg(&req->r_new_inode, NULL); 3717 struct ceph_vino tvino = { 3718 .ino = le64_to_cpu(rinfo->targeti.in->ino), 3719 .snap = le64_to_cpu(rinfo->targeti.in->snapid) 3720 }; 3721 3722 /* 3723 * If we ended up opening an existing inode, discard 3724 * r_new_inode 3725 */ 3726 if (req->r_op == CEPH_MDS_OP_CREATE && 3727 !req->r_reply_info.has_create_ino) { 3728 /* This should never happen on an async create */ 3729 WARN_ON_ONCE(req->r_deleg_ino); 3730 iput(in); 3731 in = NULL; 3732 } 3733 3734 in = ceph_get_inode(mdsc->fsc->sb, tvino, in); 3735 if (IS_ERR(in)) { 3736 err = PTR_ERR(in); 3737 mutex_lock(&session->s_mutex); 3738 goto out_err; 3739 } 3740 req->r_target_inode = in; 3741 } 3742 3743 mutex_lock(&session->s_mutex); 3744 if (err < 0) { 3745 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 3746 ceph_msg_dump(msg); 3747 goto out_err; 3748 } 3749 3750 /* snap trace */ 3751 realm = NULL; 3752 if (rinfo->snapblob_len) { 3753 down_write(&mdsc->snap_rwsem); 3754 err = ceph_update_snap_trace(mdsc, rinfo->snapblob, 3755 rinfo->snapblob + rinfo->snapblob_len, 3756 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 3757 &realm); 3758 if (err) { 3759 up_write(&mdsc->snap_rwsem); 3760 close_sessions = true; 3761 if (err == -EIO) 3762 ceph_msg_dump(msg); 3763 goto out_err; 3764 } 3765 downgrade_write(&mdsc->snap_rwsem); 3766 } else { 3767 down_read(&mdsc->snap_rwsem); 3768 } 3769 3770 /* insert trace into our cache */ 3771 mutex_lock(&req->r_fill_mutex); 3772 current->journal_info = req; 3773 err = ceph_fill_trace(mdsc->fsc->sb, req); 3774 if (err == 0) { 3775 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 3776 req->r_op == CEPH_MDS_OP_LSSNAP)) 3777 err = ceph_readdir_prepopulate(req, req->r_session); 3778 } 3779 current->journal_info = NULL; 3780 mutex_unlock(&req->r_fill_mutex); 3781 3782 up_read(&mdsc->snap_rwsem); 3783 if (realm) 3784 ceph_put_snap_realm(mdsc, realm); 3785 3786 if (err == 0) { 3787 if (req->r_target_inode && 3788 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3789 struct ceph_inode_info *ci = 3790 ceph_inode(req->r_target_inode); 3791 spin_lock(&ci->i_unsafe_lock); 3792 list_add_tail(&req->r_unsafe_target_item, 3793 &ci->i_unsafe_iops); 3794 spin_unlock(&ci->i_unsafe_lock); 3795 } 3796 3797 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 3798 } 3799 out_err: 3800 mutex_lock(&mdsc->mutex); 3801 if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 3802 if (err) { 3803 req->r_err = err; 3804 } else { 3805 req->r_reply = ceph_msg_get(msg); 3806 set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags); 3807 } 3808 } else { 3809 dout("reply arrived after request %lld was aborted\n", tid); 3810 } 3811 mutex_unlock(&mdsc->mutex); 3812 3813 mutex_unlock(&session->s_mutex); 3814 3815 /* kick calling process */ 3816 complete_request(mdsc, req); 3817 3818 ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency, 3819 req->r_end_latency, err); 3820 out: 3821 ceph_mdsc_put_request(req); 3822 3823 /* Defer closing the sessions after s_mutex lock being released */ 3824 if (close_sessions) 3825 ceph_mdsc_close_sessions(mdsc); 3826 return; 3827 } 3828 3829 3830 3831 /* 3832 * handle mds notification that our request has been forwarded. 3833 */ 3834 static void handle_forward(struct ceph_mds_client *mdsc, 3835 struct ceph_mds_session *session, 3836 struct ceph_msg *msg) 3837 { 3838 struct ceph_mds_request *req; 3839 u64 tid = le64_to_cpu(msg->hdr.tid); 3840 u32 next_mds; 3841 u32 fwd_seq; 3842 int err = -EINVAL; 3843 void *p = msg->front.iov_base; 3844 void *end = p + msg->front.iov_len; 3845 bool aborted = false; 3846 3847 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 3848 next_mds = ceph_decode_32(&p); 3849 fwd_seq = ceph_decode_32(&p); 3850 3851 mutex_lock(&mdsc->mutex); 3852 req = lookup_get_request(mdsc, tid); 3853 if (!req) { 3854 mutex_unlock(&mdsc->mutex); 3855 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 3856 return; /* dup reply? */ 3857 } 3858 3859 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 3860 dout("forward tid %llu aborted, unregistering\n", tid); 3861 __unregister_request(mdsc, req); 3862 } else if (fwd_seq <= req->r_num_fwd || (uint32_t)fwd_seq >= U32_MAX) { 3863 /* 3864 * Avoid inifinite retrying after overflow. 3865 * 3866 * The MDS will increase the fwd count and in client side 3867 * if the num_fwd is less than the one saved in request 3868 * that means the MDS is an old version and overflowed of 3869 * 8 bits. 3870 */ 3871 mutex_lock(&req->r_fill_mutex); 3872 req->r_err = -EMULTIHOP; 3873 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3874 mutex_unlock(&req->r_fill_mutex); 3875 aborted = true; 3876 pr_warn_ratelimited("forward tid %llu seq overflow\n", tid); 3877 } else { 3878 /* resend. forward race not possible; mds would drop */ 3879 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 3880 BUG_ON(req->r_err); 3881 BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)); 3882 req->r_attempts = 0; 3883 req->r_num_fwd = fwd_seq; 3884 req->r_resend_mds = next_mds; 3885 put_request_session(req); 3886 __do_request(mdsc, req); 3887 } 3888 mutex_unlock(&mdsc->mutex); 3889 3890 /* kick calling process */ 3891 if (aborted) 3892 complete_request(mdsc, req); 3893 ceph_mdsc_put_request(req); 3894 return; 3895 3896 bad: 3897 pr_err("mdsc_handle_forward decode error err=%d\n", err); 3898 ceph_msg_dump(msg); 3899 } 3900 3901 static int __decode_session_metadata(void **p, void *end, 3902 bool *blocklisted) 3903 { 3904 /* map<string,string> */ 3905 u32 n; 3906 bool err_str; 3907 ceph_decode_32_safe(p, end, n, bad); 3908 while (n-- > 0) { 3909 u32 len; 3910 ceph_decode_32_safe(p, end, len, bad); 3911 ceph_decode_need(p, end, len, bad); 3912 err_str = !strncmp(*p, "error_string", len); 3913 *p += len; 3914 ceph_decode_32_safe(p, end, len, bad); 3915 ceph_decode_need(p, end, len, bad); 3916 /* 3917 * Match "blocklisted (blacklisted)" from newer MDSes, 3918 * or "blacklisted" from older MDSes. 3919 */ 3920 if (err_str && strnstr(*p, "blacklisted", len)) 3921 *blocklisted = true; 3922 *p += len; 3923 } 3924 return 0; 3925 bad: 3926 return -1; 3927 } 3928 3929 /* 3930 * handle a mds session control message 3931 */ 3932 static void handle_session(struct ceph_mds_session *session, 3933 struct ceph_msg *msg) 3934 { 3935 struct ceph_mds_client *mdsc = session->s_mdsc; 3936 int mds = session->s_mds; 3937 int msg_version = le16_to_cpu(msg->hdr.version); 3938 void *p = msg->front.iov_base; 3939 void *end = p + msg->front.iov_len; 3940 struct ceph_mds_session_head *h; 3941 u32 op; 3942 u64 seq, features = 0; 3943 int wake = 0; 3944 bool blocklisted = false; 3945 3946 /* decode */ 3947 ceph_decode_need(&p, end, sizeof(*h), bad); 3948 h = p; 3949 p += sizeof(*h); 3950 3951 op = le32_to_cpu(h->op); 3952 seq = le64_to_cpu(h->seq); 3953 3954 if (msg_version >= 3) { 3955 u32 len; 3956 /* version >= 2 and < 5, decode metadata, skip otherwise 3957 * as it's handled via flags. 3958 */ 3959 if (msg_version >= 5) 3960 ceph_decode_skip_map(&p, end, string, string, bad); 3961 else if (__decode_session_metadata(&p, end, &blocklisted) < 0) 3962 goto bad; 3963 3964 /* version >= 3, feature bits */ 3965 ceph_decode_32_safe(&p, end, len, bad); 3966 if (len) { 3967 ceph_decode_64_safe(&p, end, features, bad); 3968 p += len - sizeof(features); 3969 } 3970 } 3971 3972 if (msg_version >= 5) { 3973 u32 flags, len; 3974 3975 /* version >= 4 */ 3976 ceph_decode_skip_16(&p, end, bad); /* struct_v, struct_cv */ 3977 ceph_decode_32_safe(&p, end, len, bad); /* len */ 3978 ceph_decode_skip_n(&p, end, len, bad); /* metric_spec */ 3979 3980 /* version >= 5, flags */ 3981 ceph_decode_32_safe(&p, end, flags, bad); 3982 if (flags & CEPH_SESSION_BLOCKLISTED) { 3983 pr_warn("mds%d session blocklisted\n", session->s_mds); 3984 blocklisted = true; 3985 } 3986 } 3987 3988 mutex_lock(&mdsc->mutex); 3989 if (op == CEPH_SESSION_CLOSE) { 3990 ceph_get_mds_session(session); 3991 __unregister_session(mdsc, session); 3992 } 3993 /* FIXME: this ttl calculation is generous */ 3994 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 3995 mutex_unlock(&mdsc->mutex); 3996 3997 mutex_lock(&session->s_mutex); 3998 3999 dout("handle_session mds%d %s %p state %s seq %llu\n", 4000 mds, ceph_session_op_name(op), session, 4001 ceph_session_state_name(session->s_state), seq); 4002 4003 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 4004 session->s_state = CEPH_MDS_SESSION_OPEN; 4005 pr_info("mds%d came back\n", session->s_mds); 4006 } 4007 4008 switch (op) { 4009 case CEPH_SESSION_OPEN: 4010 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 4011 pr_info("mds%d reconnect success\n", session->s_mds); 4012 4013 if (session->s_state == CEPH_MDS_SESSION_OPEN) { 4014 pr_notice("mds%d is already opened\n", session->s_mds); 4015 } else { 4016 session->s_state = CEPH_MDS_SESSION_OPEN; 4017 session->s_features = features; 4018 renewed_caps(mdsc, session, 0); 4019 if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT, 4020 &session->s_features)) 4021 metric_schedule_delayed(&mdsc->metric); 4022 } 4023 4024 /* 4025 * The connection maybe broken and the session in client 4026 * side has been reinitialized, need to update the seq 4027 * anyway. 4028 */ 4029 if (!session->s_seq && seq) 4030 session->s_seq = seq; 4031 4032 wake = 1; 4033 if (mdsc->stopping) 4034 __close_session(mdsc, session); 4035 break; 4036 4037 case CEPH_SESSION_RENEWCAPS: 4038 if (session->s_renew_seq == seq) 4039 renewed_caps(mdsc, session, 1); 4040 break; 4041 4042 case CEPH_SESSION_CLOSE: 4043 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 4044 pr_info("mds%d reconnect denied\n", session->s_mds); 4045 session->s_state = CEPH_MDS_SESSION_CLOSED; 4046 cleanup_session_requests(mdsc, session); 4047 remove_session_caps(session); 4048 wake = 2; /* for good measure */ 4049 wake_up_all(&mdsc->session_close_wq); 4050 break; 4051 4052 case CEPH_SESSION_STALE: 4053 pr_info("mds%d caps went stale, renewing\n", 4054 session->s_mds); 4055 atomic_inc(&session->s_cap_gen); 4056 session->s_cap_ttl = jiffies - 1; 4057 send_renew_caps(mdsc, session); 4058 break; 4059 4060 case CEPH_SESSION_RECALL_STATE: 4061 ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 4062 break; 4063 4064 case CEPH_SESSION_FLUSHMSG: 4065 /* flush cap releases */ 4066 spin_lock(&session->s_cap_lock); 4067 if (session->s_num_cap_releases) 4068 ceph_flush_cap_releases(mdsc, session); 4069 spin_unlock(&session->s_cap_lock); 4070 4071 send_flushmsg_ack(mdsc, session, seq); 4072 break; 4073 4074 case CEPH_SESSION_FORCE_RO: 4075 dout("force_session_readonly %p\n", session); 4076 spin_lock(&session->s_cap_lock); 4077 session->s_readonly = true; 4078 spin_unlock(&session->s_cap_lock); 4079 wake_up_session_caps(session, FORCE_RO); 4080 break; 4081 4082 case CEPH_SESSION_REJECT: 4083 WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING); 4084 pr_info("mds%d rejected session\n", session->s_mds); 4085 session->s_state = CEPH_MDS_SESSION_REJECTED; 4086 cleanup_session_requests(mdsc, session); 4087 remove_session_caps(session); 4088 if (blocklisted) 4089 mdsc->fsc->blocklisted = true; 4090 wake = 2; /* for good measure */ 4091 break; 4092 4093 default: 4094 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 4095 WARN_ON(1); 4096 } 4097 4098 mutex_unlock(&session->s_mutex); 4099 if (wake) { 4100 mutex_lock(&mdsc->mutex); 4101 __wake_requests(mdsc, &session->s_waiting); 4102 if (wake == 2) 4103 kick_requests(mdsc, mds); 4104 mutex_unlock(&mdsc->mutex); 4105 } 4106 if (op == CEPH_SESSION_CLOSE) 4107 ceph_put_mds_session(session); 4108 return; 4109 4110 bad: 4111 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 4112 (int)msg->front.iov_len); 4113 ceph_msg_dump(msg); 4114 return; 4115 } 4116 4117 void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req) 4118 { 4119 int dcaps; 4120 4121 dcaps = xchg(&req->r_dir_caps, 0); 4122 if (dcaps) { 4123 dout("releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 4124 ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps); 4125 } 4126 } 4127 4128 void ceph_mdsc_release_dir_caps_no_check(struct ceph_mds_request *req) 4129 { 4130 int dcaps; 4131 4132 dcaps = xchg(&req->r_dir_caps, 0); 4133 if (dcaps) { 4134 dout("releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 4135 ceph_put_cap_refs_no_check_caps(ceph_inode(req->r_parent), 4136 dcaps); 4137 } 4138 } 4139 4140 /* 4141 * called under session->mutex. 4142 */ 4143 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 4144 struct ceph_mds_session *session) 4145 { 4146 struct ceph_mds_request *req, *nreq; 4147 struct rb_node *p; 4148 4149 dout("replay_unsafe_requests mds%d\n", session->s_mds); 4150 4151 mutex_lock(&mdsc->mutex); 4152 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) 4153 __send_request(session, req, true); 4154 4155 /* 4156 * also re-send old requests when MDS enters reconnect stage. So that MDS 4157 * can process completed request in clientreplay stage. 4158 */ 4159 p = rb_first(&mdsc->request_tree); 4160 while (p) { 4161 req = rb_entry(p, struct ceph_mds_request, r_node); 4162 p = rb_next(p); 4163 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 4164 continue; 4165 if (req->r_attempts == 0) 4166 continue; /* only old requests */ 4167 if (!req->r_session) 4168 continue; 4169 if (req->r_session->s_mds != session->s_mds) 4170 continue; 4171 4172 ceph_mdsc_release_dir_caps_no_check(req); 4173 4174 __send_request(session, req, true); 4175 } 4176 mutex_unlock(&mdsc->mutex); 4177 } 4178 4179 static int send_reconnect_partial(struct ceph_reconnect_state *recon_state) 4180 { 4181 struct ceph_msg *reply; 4182 struct ceph_pagelist *_pagelist; 4183 struct page *page; 4184 __le32 *addr; 4185 int err = -ENOMEM; 4186 4187 if (!recon_state->allow_multi) 4188 return -ENOSPC; 4189 4190 /* can't handle message that contains both caps and realm */ 4191 BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms); 4192 4193 /* pre-allocate new pagelist */ 4194 _pagelist = ceph_pagelist_alloc(GFP_NOFS); 4195 if (!_pagelist) 4196 return -ENOMEM; 4197 4198 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4199 if (!reply) 4200 goto fail_msg; 4201 4202 /* placeholder for nr_caps */ 4203 err = ceph_pagelist_encode_32(_pagelist, 0); 4204 if (err < 0) 4205 goto fail; 4206 4207 if (recon_state->nr_caps) { 4208 /* currently encoding caps */ 4209 err = ceph_pagelist_encode_32(recon_state->pagelist, 0); 4210 if (err) 4211 goto fail; 4212 } else { 4213 /* placeholder for nr_realms (currently encoding relams) */ 4214 err = ceph_pagelist_encode_32(_pagelist, 0); 4215 if (err < 0) 4216 goto fail; 4217 } 4218 4219 err = ceph_pagelist_encode_8(recon_state->pagelist, 1); 4220 if (err) 4221 goto fail; 4222 4223 page = list_first_entry(&recon_state->pagelist->head, struct page, lru); 4224 addr = kmap_atomic(page); 4225 if (recon_state->nr_caps) { 4226 /* currently encoding caps */ 4227 *addr = cpu_to_le32(recon_state->nr_caps); 4228 } else { 4229 /* currently encoding relams */ 4230 *(addr + 1) = cpu_to_le32(recon_state->nr_realms); 4231 } 4232 kunmap_atomic(addr); 4233 4234 reply->hdr.version = cpu_to_le16(5); 4235 reply->hdr.compat_version = cpu_to_le16(4); 4236 4237 reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length); 4238 ceph_msg_data_add_pagelist(reply, recon_state->pagelist); 4239 4240 ceph_con_send(&recon_state->session->s_con, reply); 4241 ceph_pagelist_release(recon_state->pagelist); 4242 4243 recon_state->pagelist = _pagelist; 4244 recon_state->nr_caps = 0; 4245 recon_state->nr_realms = 0; 4246 recon_state->msg_version = 5; 4247 return 0; 4248 fail: 4249 ceph_msg_put(reply); 4250 fail_msg: 4251 ceph_pagelist_release(_pagelist); 4252 return err; 4253 } 4254 4255 static struct dentry* d_find_primary(struct inode *inode) 4256 { 4257 struct dentry *alias, *dn = NULL; 4258 4259 if (hlist_empty(&inode->i_dentry)) 4260 return NULL; 4261 4262 spin_lock(&inode->i_lock); 4263 if (hlist_empty(&inode->i_dentry)) 4264 goto out_unlock; 4265 4266 if (S_ISDIR(inode->i_mode)) { 4267 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 4268 if (!IS_ROOT(alias)) 4269 dn = dget(alias); 4270 goto out_unlock; 4271 } 4272 4273 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 4274 spin_lock(&alias->d_lock); 4275 if (!d_unhashed(alias) && 4276 (ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) { 4277 dn = dget_dlock(alias); 4278 } 4279 spin_unlock(&alias->d_lock); 4280 if (dn) 4281 break; 4282 } 4283 out_unlock: 4284 spin_unlock(&inode->i_lock); 4285 return dn; 4286 } 4287 4288 /* 4289 * Encode information about a cap for a reconnect with the MDS. 4290 */ 4291 static int reconnect_caps_cb(struct inode *inode, int mds, void *arg) 4292 { 4293 union { 4294 struct ceph_mds_cap_reconnect v2; 4295 struct ceph_mds_cap_reconnect_v1 v1; 4296 } rec; 4297 struct ceph_inode_info *ci = ceph_inode(inode); 4298 struct ceph_reconnect_state *recon_state = arg; 4299 struct ceph_pagelist *pagelist = recon_state->pagelist; 4300 struct dentry *dentry; 4301 struct ceph_cap *cap; 4302 char *path; 4303 int pathlen = 0, err; 4304 u64 pathbase; 4305 u64 snap_follows; 4306 4307 dentry = d_find_primary(inode); 4308 if (dentry) { 4309 /* set pathbase to parent dir when msg_version >= 2 */ 4310 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 4311 recon_state->msg_version >= 2); 4312 dput(dentry); 4313 if (IS_ERR(path)) { 4314 err = PTR_ERR(path); 4315 goto out_err; 4316 } 4317 } else { 4318 path = NULL; 4319 pathbase = 0; 4320 } 4321 4322 spin_lock(&ci->i_ceph_lock); 4323 cap = __get_cap_for_mds(ci, mds); 4324 if (!cap) { 4325 spin_unlock(&ci->i_ceph_lock); 4326 err = 0; 4327 goto out_err; 4328 } 4329 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 4330 inode, ceph_vinop(inode), cap, cap->cap_id, 4331 ceph_cap_string(cap->issued)); 4332 4333 cap->seq = 0; /* reset cap seq */ 4334 cap->issue_seq = 0; /* and issue_seq */ 4335 cap->mseq = 0; /* and migrate_seq */ 4336 cap->cap_gen = atomic_read(&cap->session->s_cap_gen); 4337 4338 /* These are lost when the session goes away */ 4339 if (S_ISDIR(inode->i_mode)) { 4340 if (cap->issued & CEPH_CAP_DIR_CREATE) { 4341 ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns)); 4342 memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout)); 4343 } 4344 cap->issued &= ~CEPH_CAP_ANY_DIR_OPS; 4345 } 4346 4347 if (recon_state->msg_version >= 2) { 4348 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 4349 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 4350 rec.v2.issued = cpu_to_le32(cap->issued); 4351 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 4352 rec.v2.pathbase = cpu_to_le64(pathbase); 4353 rec.v2.flock_len = (__force __le32) 4354 ((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1); 4355 } else { 4356 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 4357 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 4358 rec.v1.issued = cpu_to_le32(cap->issued); 4359 rec.v1.size = cpu_to_le64(i_size_read(inode)); 4360 ceph_encode_timespec64(&rec.v1.mtime, &inode->i_mtime); 4361 ceph_encode_timespec64(&rec.v1.atime, &inode->i_atime); 4362 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 4363 rec.v1.pathbase = cpu_to_le64(pathbase); 4364 } 4365 4366 if (list_empty(&ci->i_cap_snaps)) { 4367 snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0; 4368 } else { 4369 struct ceph_cap_snap *capsnap = 4370 list_first_entry(&ci->i_cap_snaps, 4371 struct ceph_cap_snap, ci_item); 4372 snap_follows = capsnap->follows; 4373 } 4374 spin_unlock(&ci->i_ceph_lock); 4375 4376 if (recon_state->msg_version >= 2) { 4377 int num_fcntl_locks, num_flock_locks; 4378 struct ceph_filelock *flocks = NULL; 4379 size_t struct_len, total_len = sizeof(u64); 4380 u8 struct_v = 0; 4381 4382 encode_again: 4383 if (rec.v2.flock_len) { 4384 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 4385 } else { 4386 num_fcntl_locks = 0; 4387 num_flock_locks = 0; 4388 } 4389 if (num_fcntl_locks + num_flock_locks > 0) { 4390 flocks = kmalloc_array(num_fcntl_locks + num_flock_locks, 4391 sizeof(struct ceph_filelock), 4392 GFP_NOFS); 4393 if (!flocks) { 4394 err = -ENOMEM; 4395 goto out_err; 4396 } 4397 err = ceph_encode_locks_to_buffer(inode, flocks, 4398 num_fcntl_locks, 4399 num_flock_locks); 4400 if (err) { 4401 kfree(flocks); 4402 flocks = NULL; 4403 if (err == -ENOSPC) 4404 goto encode_again; 4405 goto out_err; 4406 } 4407 } else { 4408 kfree(flocks); 4409 flocks = NULL; 4410 } 4411 4412 if (recon_state->msg_version >= 3) { 4413 /* version, compat_version and struct_len */ 4414 total_len += 2 * sizeof(u8) + sizeof(u32); 4415 struct_v = 2; 4416 } 4417 /* 4418 * number of encoded locks is stable, so copy to pagelist 4419 */ 4420 struct_len = 2 * sizeof(u32) + 4421 (num_fcntl_locks + num_flock_locks) * 4422 sizeof(struct ceph_filelock); 4423 rec.v2.flock_len = cpu_to_le32(struct_len); 4424 4425 struct_len += sizeof(u32) + pathlen + sizeof(rec.v2); 4426 4427 if (struct_v >= 2) 4428 struct_len += sizeof(u64); /* snap_follows */ 4429 4430 total_len += struct_len; 4431 4432 if (pagelist->length + total_len > RECONNECT_MAX_SIZE) { 4433 err = send_reconnect_partial(recon_state); 4434 if (err) 4435 goto out_freeflocks; 4436 pagelist = recon_state->pagelist; 4437 } 4438 4439 err = ceph_pagelist_reserve(pagelist, total_len); 4440 if (err) 4441 goto out_freeflocks; 4442 4443 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4444 if (recon_state->msg_version >= 3) { 4445 ceph_pagelist_encode_8(pagelist, struct_v); 4446 ceph_pagelist_encode_8(pagelist, 1); 4447 ceph_pagelist_encode_32(pagelist, struct_len); 4448 } 4449 ceph_pagelist_encode_string(pagelist, path, pathlen); 4450 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2)); 4451 ceph_locks_to_pagelist(flocks, pagelist, 4452 num_fcntl_locks, num_flock_locks); 4453 if (struct_v >= 2) 4454 ceph_pagelist_encode_64(pagelist, snap_follows); 4455 out_freeflocks: 4456 kfree(flocks); 4457 } else { 4458 err = ceph_pagelist_reserve(pagelist, 4459 sizeof(u64) + sizeof(u32) + 4460 pathlen + sizeof(rec.v1)); 4461 if (err) 4462 goto out_err; 4463 4464 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4465 ceph_pagelist_encode_string(pagelist, path, pathlen); 4466 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1)); 4467 } 4468 4469 out_err: 4470 ceph_mdsc_free_path(path, pathlen); 4471 if (!err) 4472 recon_state->nr_caps++; 4473 return err; 4474 } 4475 4476 static int encode_snap_realms(struct ceph_mds_client *mdsc, 4477 struct ceph_reconnect_state *recon_state) 4478 { 4479 struct rb_node *p; 4480 struct ceph_pagelist *pagelist = recon_state->pagelist; 4481 int err = 0; 4482 4483 if (recon_state->msg_version >= 4) { 4484 err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms); 4485 if (err < 0) 4486 goto fail; 4487 } 4488 4489 /* 4490 * snaprealms. we provide mds with the ino, seq (version), and 4491 * parent for all of our realms. If the mds has any newer info, 4492 * it will tell us. 4493 */ 4494 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 4495 struct ceph_snap_realm *realm = 4496 rb_entry(p, struct ceph_snap_realm, node); 4497 struct ceph_mds_snaprealm_reconnect sr_rec; 4498 4499 if (recon_state->msg_version >= 4) { 4500 size_t need = sizeof(u8) * 2 + sizeof(u32) + 4501 sizeof(sr_rec); 4502 4503 if (pagelist->length + need > RECONNECT_MAX_SIZE) { 4504 err = send_reconnect_partial(recon_state); 4505 if (err) 4506 goto fail; 4507 pagelist = recon_state->pagelist; 4508 } 4509 4510 err = ceph_pagelist_reserve(pagelist, need); 4511 if (err) 4512 goto fail; 4513 4514 ceph_pagelist_encode_8(pagelist, 1); 4515 ceph_pagelist_encode_8(pagelist, 1); 4516 ceph_pagelist_encode_32(pagelist, sizeof(sr_rec)); 4517 } 4518 4519 dout(" adding snap realm %llx seq %lld parent %llx\n", 4520 realm->ino, realm->seq, realm->parent_ino); 4521 sr_rec.ino = cpu_to_le64(realm->ino); 4522 sr_rec.seq = cpu_to_le64(realm->seq); 4523 sr_rec.parent = cpu_to_le64(realm->parent_ino); 4524 4525 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 4526 if (err) 4527 goto fail; 4528 4529 recon_state->nr_realms++; 4530 } 4531 fail: 4532 return err; 4533 } 4534 4535 4536 /* 4537 * If an MDS fails and recovers, clients need to reconnect in order to 4538 * reestablish shared state. This includes all caps issued through 4539 * this session _and_ the snap_realm hierarchy. Because it's not 4540 * clear which snap realms the mds cares about, we send everything we 4541 * know about.. that ensures we'll then get any new info the 4542 * recovering MDS might have. 4543 * 4544 * This is a relatively heavyweight operation, but it's rare. 4545 */ 4546 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 4547 struct ceph_mds_session *session) 4548 { 4549 struct ceph_msg *reply; 4550 int mds = session->s_mds; 4551 int err = -ENOMEM; 4552 struct ceph_reconnect_state recon_state = { 4553 .session = session, 4554 }; 4555 LIST_HEAD(dispose); 4556 4557 pr_info("mds%d reconnect start\n", mds); 4558 4559 recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS); 4560 if (!recon_state.pagelist) 4561 goto fail_nopagelist; 4562 4563 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4564 if (!reply) 4565 goto fail_nomsg; 4566 4567 xa_destroy(&session->s_delegated_inos); 4568 4569 mutex_lock(&session->s_mutex); 4570 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 4571 session->s_seq = 0; 4572 4573 dout("session %p state %s\n", session, 4574 ceph_session_state_name(session->s_state)); 4575 4576 atomic_inc(&session->s_cap_gen); 4577 4578 spin_lock(&session->s_cap_lock); 4579 /* don't know if session is readonly */ 4580 session->s_readonly = 0; 4581 /* 4582 * notify __ceph_remove_cap() that we are composing cap reconnect. 4583 * If a cap get released before being added to the cap reconnect, 4584 * __ceph_remove_cap() should skip queuing cap release. 4585 */ 4586 session->s_cap_reconnect = 1; 4587 /* drop old cap expires; we're about to reestablish that state */ 4588 detach_cap_releases(session, &dispose); 4589 spin_unlock(&session->s_cap_lock); 4590 dispose_cap_releases(mdsc, &dispose); 4591 4592 /* trim unused caps to reduce MDS's cache rejoin time */ 4593 if (mdsc->fsc->sb->s_root) 4594 shrink_dcache_parent(mdsc->fsc->sb->s_root); 4595 4596 ceph_con_close(&session->s_con); 4597 ceph_con_open(&session->s_con, 4598 CEPH_ENTITY_TYPE_MDS, mds, 4599 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 4600 4601 /* replay unsafe requests */ 4602 replay_unsafe_requests(mdsc, session); 4603 4604 ceph_early_kick_flushing_caps(mdsc, session); 4605 4606 down_read(&mdsc->snap_rwsem); 4607 4608 /* placeholder for nr_caps */ 4609 err = ceph_pagelist_encode_32(recon_state.pagelist, 0); 4610 if (err) 4611 goto fail; 4612 4613 if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) { 4614 recon_state.msg_version = 3; 4615 recon_state.allow_multi = true; 4616 } else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) { 4617 recon_state.msg_version = 3; 4618 } else { 4619 recon_state.msg_version = 2; 4620 } 4621 /* trsaverse this session's caps */ 4622 err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state); 4623 4624 spin_lock(&session->s_cap_lock); 4625 session->s_cap_reconnect = 0; 4626 spin_unlock(&session->s_cap_lock); 4627 4628 if (err < 0) 4629 goto fail; 4630 4631 /* check if all realms can be encoded into current message */ 4632 if (mdsc->num_snap_realms) { 4633 size_t total_len = 4634 recon_state.pagelist->length + 4635 mdsc->num_snap_realms * 4636 sizeof(struct ceph_mds_snaprealm_reconnect); 4637 if (recon_state.msg_version >= 4) { 4638 /* number of realms */ 4639 total_len += sizeof(u32); 4640 /* version, compat_version and struct_len */ 4641 total_len += mdsc->num_snap_realms * 4642 (2 * sizeof(u8) + sizeof(u32)); 4643 } 4644 if (total_len > RECONNECT_MAX_SIZE) { 4645 if (!recon_state.allow_multi) { 4646 err = -ENOSPC; 4647 goto fail; 4648 } 4649 if (recon_state.nr_caps) { 4650 err = send_reconnect_partial(&recon_state); 4651 if (err) 4652 goto fail; 4653 } 4654 recon_state.msg_version = 5; 4655 } 4656 } 4657 4658 err = encode_snap_realms(mdsc, &recon_state); 4659 if (err < 0) 4660 goto fail; 4661 4662 if (recon_state.msg_version >= 5) { 4663 err = ceph_pagelist_encode_8(recon_state.pagelist, 0); 4664 if (err < 0) 4665 goto fail; 4666 } 4667 4668 if (recon_state.nr_caps || recon_state.nr_realms) { 4669 struct page *page = 4670 list_first_entry(&recon_state.pagelist->head, 4671 struct page, lru); 4672 __le32 *addr = kmap_atomic(page); 4673 if (recon_state.nr_caps) { 4674 WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms); 4675 *addr = cpu_to_le32(recon_state.nr_caps); 4676 } else if (recon_state.msg_version >= 4) { 4677 *(addr + 1) = cpu_to_le32(recon_state.nr_realms); 4678 } 4679 kunmap_atomic(addr); 4680 } 4681 4682 reply->hdr.version = cpu_to_le16(recon_state.msg_version); 4683 if (recon_state.msg_version >= 4) 4684 reply->hdr.compat_version = cpu_to_le16(4); 4685 4686 reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length); 4687 ceph_msg_data_add_pagelist(reply, recon_state.pagelist); 4688 4689 ceph_con_send(&session->s_con, reply); 4690 4691 mutex_unlock(&session->s_mutex); 4692 4693 mutex_lock(&mdsc->mutex); 4694 __wake_requests(mdsc, &session->s_waiting); 4695 mutex_unlock(&mdsc->mutex); 4696 4697 up_read(&mdsc->snap_rwsem); 4698 ceph_pagelist_release(recon_state.pagelist); 4699 return; 4700 4701 fail: 4702 ceph_msg_put(reply); 4703 up_read(&mdsc->snap_rwsem); 4704 mutex_unlock(&session->s_mutex); 4705 fail_nomsg: 4706 ceph_pagelist_release(recon_state.pagelist); 4707 fail_nopagelist: 4708 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 4709 return; 4710 } 4711 4712 4713 /* 4714 * compare old and new mdsmaps, kicking requests 4715 * and closing out old connections as necessary 4716 * 4717 * called under mdsc->mutex. 4718 */ 4719 static void check_new_map(struct ceph_mds_client *mdsc, 4720 struct ceph_mdsmap *newmap, 4721 struct ceph_mdsmap *oldmap) 4722 { 4723 int i, j, err; 4724 int oldstate, newstate; 4725 struct ceph_mds_session *s; 4726 unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0}; 4727 4728 dout("check_new_map new %u old %u\n", 4729 newmap->m_epoch, oldmap->m_epoch); 4730 4731 if (newmap->m_info) { 4732 for (i = 0; i < newmap->possible_max_rank; i++) { 4733 for (j = 0; j < newmap->m_info[i].num_export_targets; j++) 4734 set_bit(newmap->m_info[i].export_targets[j], targets); 4735 } 4736 } 4737 4738 for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) { 4739 if (!mdsc->sessions[i]) 4740 continue; 4741 s = mdsc->sessions[i]; 4742 oldstate = ceph_mdsmap_get_state(oldmap, i); 4743 newstate = ceph_mdsmap_get_state(newmap, i); 4744 4745 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 4746 i, ceph_mds_state_name(oldstate), 4747 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 4748 ceph_mds_state_name(newstate), 4749 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 4750 ceph_session_state_name(s->s_state)); 4751 4752 if (i >= newmap->possible_max_rank) { 4753 /* force close session for stopped mds */ 4754 ceph_get_mds_session(s); 4755 __unregister_session(mdsc, s); 4756 __wake_requests(mdsc, &s->s_waiting); 4757 mutex_unlock(&mdsc->mutex); 4758 4759 mutex_lock(&s->s_mutex); 4760 cleanup_session_requests(mdsc, s); 4761 remove_session_caps(s); 4762 mutex_unlock(&s->s_mutex); 4763 4764 ceph_put_mds_session(s); 4765 4766 mutex_lock(&mdsc->mutex); 4767 kick_requests(mdsc, i); 4768 continue; 4769 } 4770 4771 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 4772 ceph_mdsmap_get_addr(newmap, i), 4773 sizeof(struct ceph_entity_addr))) { 4774 /* just close it */ 4775 mutex_unlock(&mdsc->mutex); 4776 mutex_lock(&s->s_mutex); 4777 mutex_lock(&mdsc->mutex); 4778 ceph_con_close(&s->s_con); 4779 mutex_unlock(&s->s_mutex); 4780 s->s_state = CEPH_MDS_SESSION_RESTARTING; 4781 } else if (oldstate == newstate) { 4782 continue; /* nothing new with this mds */ 4783 } 4784 4785 /* 4786 * send reconnect? 4787 */ 4788 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 4789 newstate >= CEPH_MDS_STATE_RECONNECT) { 4790 mutex_unlock(&mdsc->mutex); 4791 clear_bit(i, targets); 4792 send_mds_reconnect(mdsc, s); 4793 mutex_lock(&mdsc->mutex); 4794 } 4795 4796 /* 4797 * kick request on any mds that has gone active. 4798 */ 4799 if (oldstate < CEPH_MDS_STATE_ACTIVE && 4800 newstate >= CEPH_MDS_STATE_ACTIVE) { 4801 if (oldstate != CEPH_MDS_STATE_CREATING && 4802 oldstate != CEPH_MDS_STATE_STARTING) 4803 pr_info("mds%d recovery completed\n", s->s_mds); 4804 kick_requests(mdsc, i); 4805 mutex_unlock(&mdsc->mutex); 4806 mutex_lock(&s->s_mutex); 4807 mutex_lock(&mdsc->mutex); 4808 ceph_kick_flushing_caps(mdsc, s); 4809 mutex_unlock(&s->s_mutex); 4810 wake_up_session_caps(s, RECONNECT); 4811 } 4812 } 4813 4814 /* 4815 * Only open and reconnect sessions that don't exist yet. 4816 */ 4817 for (i = 0; i < newmap->possible_max_rank; i++) { 4818 /* 4819 * In case the import MDS is crashed just after 4820 * the EImportStart journal is flushed, so when 4821 * a standby MDS takes over it and is replaying 4822 * the EImportStart journal the new MDS daemon 4823 * will wait the client to reconnect it, but the 4824 * client may never register/open the session yet. 4825 * 4826 * Will try to reconnect that MDS daemon if the 4827 * rank number is in the export targets array and 4828 * is the up:reconnect state. 4829 */ 4830 newstate = ceph_mdsmap_get_state(newmap, i); 4831 if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT) 4832 continue; 4833 4834 /* 4835 * The session maybe registered and opened by some 4836 * requests which were choosing random MDSes during 4837 * the mdsc->mutex's unlock/lock gap below in rare 4838 * case. But the related MDS daemon will just queue 4839 * that requests and be still waiting for the client's 4840 * reconnection request in up:reconnect state. 4841 */ 4842 s = __ceph_lookup_mds_session(mdsc, i); 4843 if (likely(!s)) { 4844 s = __open_export_target_session(mdsc, i); 4845 if (IS_ERR(s)) { 4846 err = PTR_ERR(s); 4847 pr_err("failed to open export target session, err %d\n", 4848 err); 4849 continue; 4850 } 4851 } 4852 dout("send reconnect to export target mds.%d\n", i); 4853 mutex_unlock(&mdsc->mutex); 4854 send_mds_reconnect(mdsc, s); 4855 ceph_put_mds_session(s); 4856 mutex_lock(&mdsc->mutex); 4857 } 4858 4859 for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) { 4860 s = mdsc->sessions[i]; 4861 if (!s) 4862 continue; 4863 if (!ceph_mdsmap_is_laggy(newmap, i)) 4864 continue; 4865 if (s->s_state == CEPH_MDS_SESSION_OPEN || 4866 s->s_state == CEPH_MDS_SESSION_HUNG || 4867 s->s_state == CEPH_MDS_SESSION_CLOSING) { 4868 dout(" connecting to export targets of laggy mds%d\n", 4869 i); 4870 __open_export_target_sessions(mdsc, s); 4871 } 4872 } 4873 } 4874 4875 4876 4877 /* 4878 * leases 4879 */ 4880 4881 /* 4882 * caller must hold session s_mutex, dentry->d_lock 4883 */ 4884 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 4885 { 4886 struct ceph_dentry_info *di = ceph_dentry(dentry); 4887 4888 ceph_put_mds_session(di->lease_session); 4889 di->lease_session = NULL; 4890 } 4891 4892 static void handle_lease(struct ceph_mds_client *mdsc, 4893 struct ceph_mds_session *session, 4894 struct ceph_msg *msg) 4895 { 4896 struct super_block *sb = mdsc->fsc->sb; 4897 struct inode *inode; 4898 struct dentry *parent, *dentry; 4899 struct ceph_dentry_info *di; 4900 int mds = session->s_mds; 4901 struct ceph_mds_lease *h = msg->front.iov_base; 4902 u32 seq; 4903 struct ceph_vino vino; 4904 struct qstr dname; 4905 int release = 0; 4906 4907 dout("handle_lease from mds%d\n", mds); 4908 4909 if (!ceph_inc_mds_stopping_blocker(mdsc, session)) 4910 return; 4911 4912 /* decode */ 4913 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 4914 goto bad; 4915 vino.ino = le64_to_cpu(h->ino); 4916 vino.snap = CEPH_NOSNAP; 4917 seq = le32_to_cpu(h->seq); 4918 dname.len = get_unaligned_le32(h + 1); 4919 if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len) 4920 goto bad; 4921 dname.name = (void *)(h + 1) + sizeof(u32); 4922 4923 /* lookup inode */ 4924 inode = ceph_find_inode(sb, vino); 4925 dout("handle_lease %s, ino %llx %p %.*s\n", 4926 ceph_lease_op_name(h->action), vino.ino, inode, 4927 dname.len, dname.name); 4928 4929 mutex_lock(&session->s_mutex); 4930 if (!inode) { 4931 dout("handle_lease no inode %llx\n", vino.ino); 4932 goto release; 4933 } 4934 4935 /* dentry */ 4936 parent = d_find_alias(inode); 4937 if (!parent) { 4938 dout("no parent dentry on inode %p\n", inode); 4939 WARN_ON(1); 4940 goto release; /* hrm... */ 4941 } 4942 dname.hash = full_name_hash(parent, dname.name, dname.len); 4943 dentry = d_lookup(parent, &dname); 4944 dput(parent); 4945 if (!dentry) 4946 goto release; 4947 4948 spin_lock(&dentry->d_lock); 4949 di = ceph_dentry(dentry); 4950 switch (h->action) { 4951 case CEPH_MDS_LEASE_REVOKE: 4952 if (di->lease_session == session) { 4953 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 4954 h->seq = cpu_to_le32(di->lease_seq); 4955 __ceph_mdsc_drop_dentry_lease(dentry); 4956 } 4957 release = 1; 4958 break; 4959 4960 case CEPH_MDS_LEASE_RENEW: 4961 if (di->lease_session == session && 4962 di->lease_gen == atomic_read(&session->s_cap_gen) && 4963 di->lease_renew_from && 4964 di->lease_renew_after == 0) { 4965 unsigned long duration = 4966 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 4967 4968 di->lease_seq = seq; 4969 di->time = di->lease_renew_from + duration; 4970 di->lease_renew_after = di->lease_renew_from + 4971 (duration >> 1); 4972 di->lease_renew_from = 0; 4973 } 4974 break; 4975 } 4976 spin_unlock(&dentry->d_lock); 4977 dput(dentry); 4978 4979 if (!release) 4980 goto out; 4981 4982 release: 4983 /* let's just reuse the same message */ 4984 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 4985 ceph_msg_get(msg); 4986 ceph_con_send(&session->s_con, msg); 4987 4988 out: 4989 mutex_unlock(&session->s_mutex); 4990 iput(inode); 4991 4992 ceph_dec_mds_stopping_blocker(mdsc); 4993 return; 4994 4995 bad: 4996 ceph_dec_mds_stopping_blocker(mdsc); 4997 4998 pr_err("corrupt lease message\n"); 4999 ceph_msg_dump(msg); 5000 } 5001 5002 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 5003 struct dentry *dentry, char action, 5004 u32 seq) 5005 { 5006 struct ceph_msg *msg; 5007 struct ceph_mds_lease *lease; 5008 struct inode *dir; 5009 int len = sizeof(*lease) + sizeof(u32) + NAME_MAX; 5010 5011 dout("lease_send_msg identry %p %s to mds%d\n", 5012 dentry, ceph_lease_op_name(action), session->s_mds); 5013 5014 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 5015 if (!msg) 5016 return; 5017 lease = msg->front.iov_base; 5018 lease->action = action; 5019 lease->seq = cpu_to_le32(seq); 5020 5021 spin_lock(&dentry->d_lock); 5022 dir = d_inode(dentry->d_parent); 5023 lease->ino = cpu_to_le64(ceph_ino(dir)); 5024 lease->first = lease->last = cpu_to_le64(ceph_snap(dir)); 5025 5026 put_unaligned_le32(dentry->d_name.len, lease + 1); 5027 memcpy((void *)(lease + 1) + 4, 5028 dentry->d_name.name, dentry->d_name.len); 5029 spin_unlock(&dentry->d_lock); 5030 5031 ceph_con_send(&session->s_con, msg); 5032 } 5033 5034 /* 5035 * lock unlock the session, to wait ongoing session activities 5036 */ 5037 static void lock_unlock_session(struct ceph_mds_session *s) 5038 { 5039 mutex_lock(&s->s_mutex); 5040 mutex_unlock(&s->s_mutex); 5041 } 5042 5043 static void maybe_recover_session(struct ceph_mds_client *mdsc) 5044 { 5045 struct ceph_fs_client *fsc = mdsc->fsc; 5046 5047 if (!ceph_test_mount_opt(fsc, CLEANRECOVER)) 5048 return; 5049 5050 if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED) 5051 return; 5052 5053 if (!READ_ONCE(fsc->blocklisted)) 5054 return; 5055 5056 pr_info("auto reconnect after blocklisted\n"); 5057 ceph_force_reconnect(fsc->sb); 5058 } 5059 5060 bool check_session_state(struct ceph_mds_session *s) 5061 { 5062 switch (s->s_state) { 5063 case CEPH_MDS_SESSION_OPEN: 5064 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 5065 s->s_state = CEPH_MDS_SESSION_HUNG; 5066 pr_info("mds%d hung\n", s->s_mds); 5067 } 5068 break; 5069 case CEPH_MDS_SESSION_CLOSING: 5070 case CEPH_MDS_SESSION_NEW: 5071 case CEPH_MDS_SESSION_RESTARTING: 5072 case CEPH_MDS_SESSION_CLOSED: 5073 case CEPH_MDS_SESSION_REJECTED: 5074 return false; 5075 } 5076 5077 return true; 5078 } 5079 5080 /* 5081 * If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply, 5082 * then we need to retransmit that request. 5083 */ 5084 void inc_session_sequence(struct ceph_mds_session *s) 5085 { 5086 lockdep_assert_held(&s->s_mutex); 5087 5088 s->s_seq++; 5089 5090 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 5091 int ret; 5092 5093 dout("resending session close request for mds%d\n", s->s_mds); 5094 ret = request_close_session(s); 5095 if (ret < 0) 5096 pr_err("unable to close session to mds%d: %d\n", 5097 s->s_mds, ret); 5098 } 5099 } 5100 5101 /* 5102 * delayed work -- periodically trim expired leases, renew caps with mds. If 5103 * the @delay parameter is set to 0 or if it's more than 5 secs, the default 5104 * workqueue delay value of 5 secs will be used. 5105 */ 5106 static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay) 5107 { 5108 unsigned long max_delay = HZ * 5; 5109 5110 /* 5 secs default delay */ 5111 if (!delay || (delay > max_delay)) 5112 delay = max_delay; 5113 schedule_delayed_work(&mdsc->delayed_work, 5114 round_jiffies_relative(delay)); 5115 } 5116 5117 static void delayed_work(struct work_struct *work) 5118 { 5119 struct ceph_mds_client *mdsc = 5120 container_of(work, struct ceph_mds_client, delayed_work.work); 5121 unsigned long delay; 5122 int renew_interval; 5123 int renew_caps; 5124 int i; 5125 5126 dout("mdsc delayed_work\n"); 5127 5128 if (mdsc->stopping >= CEPH_MDSC_STOPPING_FLUSHED) 5129 return; 5130 5131 mutex_lock(&mdsc->mutex); 5132 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 5133 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 5134 mdsc->last_renew_caps); 5135 if (renew_caps) 5136 mdsc->last_renew_caps = jiffies; 5137 5138 for (i = 0; i < mdsc->max_sessions; i++) { 5139 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 5140 if (!s) 5141 continue; 5142 5143 if (!check_session_state(s)) { 5144 ceph_put_mds_session(s); 5145 continue; 5146 } 5147 mutex_unlock(&mdsc->mutex); 5148 5149 mutex_lock(&s->s_mutex); 5150 if (renew_caps) 5151 send_renew_caps(mdsc, s); 5152 else 5153 ceph_con_keepalive(&s->s_con); 5154 if (s->s_state == CEPH_MDS_SESSION_OPEN || 5155 s->s_state == CEPH_MDS_SESSION_HUNG) 5156 ceph_send_cap_releases(mdsc, s); 5157 mutex_unlock(&s->s_mutex); 5158 ceph_put_mds_session(s); 5159 5160 mutex_lock(&mdsc->mutex); 5161 } 5162 mutex_unlock(&mdsc->mutex); 5163 5164 delay = ceph_check_delayed_caps(mdsc); 5165 5166 ceph_queue_cap_reclaim_work(mdsc); 5167 5168 ceph_trim_snapid_map(mdsc); 5169 5170 maybe_recover_session(mdsc); 5171 5172 schedule_delayed(mdsc, delay); 5173 } 5174 5175 int ceph_mdsc_init(struct ceph_fs_client *fsc) 5176 5177 { 5178 struct ceph_mds_client *mdsc; 5179 int err; 5180 5181 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 5182 if (!mdsc) 5183 return -ENOMEM; 5184 mdsc->fsc = fsc; 5185 mutex_init(&mdsc->mutex); 5186 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 5187 if (!mdsc->mdsmap) { 5188 err = -ENOMEM; 5189 goto err_mdsc; 5190 } 5191 5192 init_completion(&mdsc->safe_umount_waiters); 5193 spin_lock_init(&mdsc->stopping_lock); 5194 atomic_set(&mdsc->stopping_blockers, 0); 5195 init_completion(&mdsc->stopping_waiter); 5196 init_waitqueue_head(&mdsc->session_close_wq); 5197 INIT_LIST_HEAD(&mdsc->waiting_for_map); 5198 mdsc->quotarealms_inodes = RB_ROOT; 5199 mutex_init(&mdsc->quotarealms_inodes_mutex); 5200 init_rwsem(&mdsc->snap_rwsem); 5201 mdsc->snap_realms = RB_ROOT; 5202 INIT_LIST_HEAD(&mdsc->snap_empty); 5203 spin_lock_init(&mdsc->snap_empty_lock); 5204 mdsc->request_tree = RB_ROOT; 5205 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 5206 mdsc->last_renew_caps = jiffies; 5207 INIT_LIST_HEAD(&mdsc->cap_delay_list); 5208 INIT_LIST_HEAD(&mdsc->cap_wait_list); 5209 spin_lock_init(&mdsc->cap_delay_lock); 5210 INIT_LIST_HEAD(&mdsc->snap_flush_list); 5211 spin_lock_init(&mdsc->snap_flush_lock); 5212 mdsc->last_cap_flush_tid = 1; 5213 INIT_LIST_HEAD(&mdsc->cap_flush_list); 5214 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 5215 spin_lock_init(&mdsc->cap_dirty_lock); 5216 init_waitqueue_head(&mdsc->cap_flushing_wq); 5217 INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work); 5218 err = ceph_metric_init(&mdsc->metric); 5219 if (err) 5220 goto err_mdsmap; 5221 5222 spin_lock_init(&mdsc->dentry_list_lock); 5223 INIT_LIST_HEAD(&mdsc->dentry_leases); 5224 INIT_LIST_HEAD(&mdsc->dentry_dir_leases); 5225 5226 ceph_caps_init(mdsc); 5227 ceph_adjust_caps_max_min(mdsc, fsc->mount_options); 5228 5229 spin_lock_init(&mdsc->snapid_map_lock); 5230 mdsc->snapid_map_tree = RB_ROOT; 5231 INIT_LIST_HEAD(&mdsc->snapid_map_lru); 5232 5233 init_rwsem(&mdsc->pool_perm_rwsem); 5234 mdsc->pool_perm_tree = RB_ROOT; 5235 5236 strscpy(mdsc->nodename, utsname()->nodename, 5237 sizeof(mdsc->nodename)); 5238 5239 fsc->mdsc = mdsc; 5240 return 0; 5241 5242 err_mdsmap: 5243 kfree(mdsc->mdsmap); 5244 err_mdsc: 5245 kfree(mdsc); 5246 return err; 5247 } 5248 5249 /* 5250 * Wait for safe replies on open mds requests. If we time out, drop 5251 * all requests from the tree to avoid dangling dentry refs. 5252 */ 5253 static void wait_requests(struct ceph_mds_client *mdsc) 5254 { 5255 struct ceph_options *opts = mdsc->fsc->client->options; 5256 struct ceph_mds_request *req; 5257 5258 mutex_lock(&mdsc->mutex); 5259 if (__get_oldest_req(mdsc)) { 5260 mutex_unlock(&mdsc->mutex); 5261 5262 dout("wait_requests waiting for requests\n"); 5263 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 5264 ceph_timeout_jiffies(opts->mount_timeout)); 5265 5266 /* tear down remaining requests */ 5267 mutex_lock(&mdsc->mutex); 5268 while ((req = __get_oldest_req(mdsc))) { 5269 dout("wait_requests timed out on tid %llu\n", 5270 req->r_tid); 5271 list_del_init(&req->r_wait); 5272 __unregister_request(mdsc, req); 5273 } 5274 } 5275 mutex_unlock(&mdsc->mutex); 5276 dout("wait_requests done\n"); 5277 } 5278 5279 void send_flush_mdlog(struct ceph_mds_session *s) 5280 { 5281 struct ceph_msg *msg; 5282 5283 /* 5284 * Pre-luminous MDS crashes when it sees an unknown session request 5285 */ 5286 if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS)) 5287 return; 5288 5289 mutex_lock(&s->s_mutex); 5290 dout("request mdlog flush to mds%d (%s)s seq %lld\n", s->s_mds, 5291 ceph_session_state_name(s->s_state), s->s_seq); 5292 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG, 5293 s->s_seq); 5294 if (!msg) { 5295 pr_err("failed to request mdlog flush to mds%d (%s) seq %lld\n", 5296 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); 5297 } else { 5298 ceph_con_send(&s->s_con, msg); 5299 } 5300 mutex_unlock(&s->s_mutex); 5301 } 5302 5303 /* 5304 * called before mount is ro, and before dentries are torn down. 5305 * (hmm, does this still race with new lookups?) 5306 */ 5307 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 5308 { 5309 dout("pre_umount\n"); 5310 mdsc->stopping = CEPH_MDSC_STOPPING_BEGIN; 5311 5312 ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true); 5313 ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false); 5314 ceph_flush_dirty_caps(mdsc); 5315 wait_requests(mdsc); 5316 5317 /* 5318 * wait for reply handlers to drop their request refs and 5319 * their inode/dcache refs 5320 */ 5321 ceph_msgr_flush(); 5322 5323 ceph_cleanup_quotarealms_inodes(mdsc); 5324 } 5325 5326 /* 5327 * flush the mdlog and wait for all write mds requests to flush. 5328 */ 5329 static void flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client *mdsc, 5330 u64 want_tid) 5331 { 5332 struct ceph_mds_request *req = NULL, *nextreq; 5333 struct ceph_mds_session *last_session = NULL; 5334 struct rb_node *n; 5335 5336 mutex_lock(&mdsc->mutex); 5337 dout("%s want %lld\n", __func__, want_tid); 5338 restart: 5339 req = __get_oldest_req(mdsc); 5340 while (req && req->r_tid <= want_tid) { 5341 /* find next request */ 5342 n = rb_next(&req->r_node); 5343 if (n) 5344 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 5345 else 5346 nextreq = NULL; 5347 if (req->r_op != CEPH_MDS_OP_SETFILELOCK && 5348 (req->r_op & CEPH_MDS_OP_WRITE)) { 5349 struct ceph_mds_session *s = req->r_session; 5350 5351 if (!s) { 5352 req = nextreq; 5353 continue; 5354 } 5355 5356 /* write op */ 5357 ceph_mdsc_get_request(req); 5358 if (nextreq) 5359 ceph_mdsc_get_request(nextreq); 5360 s = ceph_get_mds_session(s); 5361 mutex_unlock(&mdsc->mutex); 5362 5363 /* send flush mdlog request to MDS */ 5364 if (last_session != s) { 5365 send_flush_mdlog(s); 5366 ceph_put_mds_session(last_session); 5367 last_session = s; 5368 } else { 5369 ceph_put_mds_session(s); 5370 } 5371 dout("%s wait on %llu (want %llu)\n", __func__, 5372 req->r_tid, want_tid); 5373 wait_for_completion(&req->r_safe_completion); 5374 5375 mutex_lock(&mdsc->mutex); 5376 ceph_mdsc_put_request(req); 5377 if (!nextreq) 5378 break; /* next dne before, so we're done! */ 5379 if (RB_EMPTY_NODE(&nextreq->r_node)) { 5380 /* next request was removed from tree */ 5381 ceph_mdsc_put_request(nextreq); 5382 goto restart; 5383 } 5384 ceph_mdsc_put_request(nextreq); /* won't go away */ 5385 } 5386 req = nextreq; 5387 } 5388 mutex_unlock(&mdsc->mutex); 5389 ceph_put_mds_session(last_session); 5390 dout("%s done\n", __func__); 5391 } 5392 5393 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 5394 { 5395 u64 want_tid, want_flush; 5396 5397 if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN) 5398 return; 5399 5400 dout("sync\n"); 5401 mutex_lock(&mdsc->mutex); 5402 want_tid = mdsc->last_tid; 5403 mutex_unlock(&mdsc->mutex); 5404 5405 ceph_flush_dirty_caps(mdsc); 5406 spin_lock(&mdsc->cap_dirty_lock); 5407 want_flush = mdsc->last_cap_flush_tid; 5408 if (!list_empty(&mdsc->cap_flush_list)) { 5409 struct ceph_cap_flush *cf = 5410 list_last_entry(&mdsc->cap_flush_list, 5411 struct ceph_cap_flush, g_list); 5412 cf->wake = true; 5413 } 5414 spin_unlock(&mdsc->cap_dirty_lock); 5415 5416 dout("sync want tid %lld flush_seq %lld\n", 5417 want_tid, want_flush); 5418 5419 flush_mdlog_and_wait_mdsc_unsafe_requests(mdsc, want_tid); 5420 wait_caps_flush(mdsc, want_flush); 5421 } 5422 5423 /* 5424 * true if all sessions are closed, or we force unmount 5425 */ 5426 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped) 5427 { 5428 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 5429 return true; 5430 return atomic_read(&mdsc->num_sessions) <= skipped; 5431 } 5432 5433 /* 5434 * called after sb is ro or when metadata corrupted. 5435 */ 5436 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 5437 { 5438 struct ceph_options *opts = mdsc->fsc->client->options; 5439 struct ceph_mds_session *session; 5440 int i; 5441 int skipped = 0; 5442 5443 dout("close_sessions\n"); 5444 5445 /* close sessions */ 5446 mutex_lock(&mdsc->mutex); 5447 for (i = 0; i < mdsc->max_sessions; i++) { 5448 session = __ceph_lookup_mds_session(mdsc, i); 5449 if (!session) 5450 continue; 5451 mutex_unlock(&mdsc->mutex); 5452 mutex_lock(&session->s_mutex); 5453 if (__close_session(mdsc, session) <= 0) 5454 skipped++; 5455 mutex_unlock(&session->s_mutex); 5456 ceph_put_mds_session(session); 5457 mutex_lock(&mdsc->mutex); 5458 } 5459 mutex_unlock(&mdsc->mutex); 5460 5461 dout("waiting for sessions to close\n"); 5462 wait_event_timeout(mdsc->session_close_wq, 5463 done_closing_sessions(mdsc, skipped), 5464 ceph_timeout_jiffies(opts->mount_timeout)); 5465 5466 /* tear down remaining sessions */ 5467 mutex_lock(&mdsc->mutex); 5468 for (i = 0; i < mdsc->max_sessions; i++) { 5469 if (mdsc->sessions[i]) { 5470 session = ceph_get_mds_session(mdsc->sessions[i]); 5471 __unregister_session(mdsc, session); 5472 mutex_unlock(&mdsc->mutex); 5473 mutex_lock(&session->s_mutex); 5474 remove_session_caps(session); 5475 mutex_unlock(&session->s_mutex); 5476 ceph_put_mds_session(session); 5477 mutex_lock(&mdsc->mutex); 5478 } 5479 } 5480 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 5481 mutex_unlock(&mdsc->mutex); 5482 5483 ceph_cleanup_snapid_map(mdsc); 5484 ceph_cleanup_global_and_empty_realms(mdsc); 5485 5486 cancel_work_sync(&mdsc->cap_reclaim_work); 5487 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 5488 5489 dout("stopped\n"); 5490 } 5491 5492 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) 5493 { 5494 struct ceph_mds_session *session; 5495 int mds; 5496 5497 dout("force umount\n"); 5498 5499 mutex_lock(&mdsc->mutex); 5500 for (mds = 0; mds < mdsc->max_sessions; mds++) { 5501 session = __ceph_lookup_mds_session(mdsc, mds); 5502 if (!session) 5503 continue; 5504 5505 if (session->s_state == CEPH_MDS_SESSION_REJECTED) 5506 __unregister_session(mdsc, session); 5507 __wake_requests(mdsc, &session->s_waiting); 5508 mutex_unlock(&mdsc->mutex); 5509 5510 mutex_lock(&session->s_mutex); 5511 __close_session(mdsc, session); 5512 if (session->s_state == CEPH_MDS_SESSION_CLOSING) { 5513 cleanup_session_requests(mdsc, session); 5514 remove_session_caps(session); 5515 } 5516 mutex_unlock(&session->s_mutex); 5517 ceph_put_mds_session(session); 5518 5519 mutex_lock(&mdsc->mutex); 5520 kick_requests(mdsc, mds); 5521 } 5522 __wake_requests(mdsc, &mdsc->waiting_for_map); 5523 mutex_unlock(&mdsc->mutex); 5524 } 5525 5526 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 5527 { 5528 dout("stop\n"); 5529 /* 5530 * Make sure the delayed work stopped before releasing 5531 * the resources. 5532 * 5533 * Because the cancel_delayed_work_sync() will only 5534 * guarantee that the work finishes executing. But the 5535 * delayed work will re-arm itself again after that. 5536 */ 5537 flush_delayed_work(&mdsc->delayed_work); 5538 5539 if (mdsc->mdsmap) 5540 ceph_mdsmap_destroy(mdsc->mdsmap); 5541 kfree(mdsc->sessions); 5542 ceph_caps_finalize(mdsc); 5543 ceph_pool_perm_destroy(mdsc); 5544 } 5545 5546 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 5547 { 5548 struct ceph_mds_client *mdsc = fsc->mdsc; 5549 dout("mdsc_destroy %p\n", mdsc); 5550 5551 if (!mdsc) 5552 return; 5553 5554 /* flush out any connection work with references to us */ 5555 ceph_msgr_flush(); 5556 5557 ceph_mdsc_stop(mdsc); 5558 5559 ceph_metric_destroy(&mdsc->metric); 5560 5561 fsc->mdsc = NULL; 5562 kfree(mdsc); 5563 dout("mdsc_destroy %p done\n", mdsc); 5564 } 5565 5566 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 5567 { 5568 struct ceph_fs_client *fsc = mdsc->fsc; 5569 const char *mds_namespace = fsc->mount_options->mds_namespace; 5570 void *p = msg->front.iov_base; 5571 void *end = p + msg->front.iov_len; 5572 u32 epoch; 5573 u32 num_fs; 5574 u32 mount_fscid = (u32)-1; 5575 int err = -EINVAL; 5576 5577 ceph_decode_need(&p, end, sizeof(u32), bad); 5578 epoch = ceph_decode_32(&p); 5579 5580 dout("handle_fsmap epoch %u\n", epoch); 5581 5582 /* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */ 5583 ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad); 5584 5585 ceph_decode_32_safe(&p, end, num_fs, bad); 5586 while (num_fs-- > 0) { 5587 void *info_p, *info_end; 5588 u32 info_len; 5589 u32 fscid, namelen; 5590 5591 ceph_decode_need(&p, end, 2 + sizeof(u32), bad); 5592 p += 2; // info_v, info_cv 5593 info_len = ceph_decode_32(&p); 5594 ceph_decode_need(&p, end, info_len, bad); 5595 info_p = p; 5596 info_end = p + info_len; 5597 p = info_end; 5598 5599 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad); 5600 fscid = ceph_decode_32(&info_p); 5601 namelen = ceph_decode_32(&info_p); 5602 ceph_decode_need(&info_p, info_end, namelen, bad); 5603 5604 if (mds_namespace && 5605 strlen(mds_namespace) == namelen && 5606 !strncmp(mds_namespace, (char *)info_p, namelen)) { 5607 mount_fscid = fscid; 5608 break; 5609 } 5610 } 5611 5612 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch); 5613 if (mount_fscid != (u32)-1) { 5614 fsc->client->monc.fs_cluster_id = mount_fscid; 5615 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP, 5616 0, true); 5617 ceph_monc_renew_subs(&fsc->client->monc); 5618 } else { 5619 err = -ENOENT; 5620 goto err_out; 5621 } 5622 return; 5623 5624 bad: 5625 pr_err("error decoding fsmap %d. Shutting down mount.\n", err); 5626 ceph_umount_begin(mdsc->fsc->sb); 5627 ceph_msg_dump(msg); 5628 err_out: 5629 mutex_lock(&mdsc->mutex); 5630 mdsc->mdsmap_err = err; 5631 __wake_requests(mdsc, &mdsc->waiting_for_map); 5632 mutex_unlock(&mdsc->mutex); 5633 } 5634 5635 /* 5636 * handle mds map update. 5637 */ 5638 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 5639 { 5640 u32 epoch; 5641 u32 maplen; 5642 void *p = msg->front.iov_base; 5643 void *end = p + msg->front.iov_len; 5644 struct ceph_mdsmap *newmap, *oldmap; 5645 struct ceph_fsid fsid; 5646 int err = -EINVAL; 5647 5648 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 5649 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 5650 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 5651 return; 5652 epoch = ceph_decode_32(&p); 5653 maplen = ceph_decode_32(&p); 5654 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 5655 5656 /* do we need it? */ 5657 mutex_lock(&mdsc->mutex); 5658 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 5659 dout("handle_map epoch %u <= our %u\n", 5660 epoch, mdsc->mdsmap->m_epoch); 5661 mutex_unlock(&mdsc->mutex); 5662 return; 5663 } 5664 5665 newmap = ceph_mdsmap_decode(&p, end, ceph_msgr2(mdsc->fsc->client)); 5666 if (IS_ERR(newmap)) { 5667 err = PTR_ERR(newmap); 5668 goto bad_unlock; 5669 } 5670 5671 /* swap into place */ 5672 if (mdsc->mdsmap) { 5673 oldmap = mdsc->mdsmap; 5674 mdsc->mdsmap = newmap; 5675 check_new_map(mdsc, newmap, oldmap); 5676 ceph_mdsmap_destroy(oldmap); 5677 } else { 5678 mdsc->mdsmap = newmap; /* first mds map */ 5679 } 5680 mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size, 5681 MAX_LFS_FILESIZE); 5682 5683 __wake_requests(mdsc, &mdsc->waiting_for_map); 5684 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP, 5685 mdsc->mdsmap->m_epoch); 5686 5687 mutex_unlock(&mdsc->mutex); 5688 schedule_delayed(mdsc, 0); 5689 return; 5690 5691 bad_unlock: 5692 mutex_unlock(&mdsc->mutex); 5693 bad: 5694 pr_err("error decoding mdsmap %d. Shutting down mount.\n", err); 5695 ceph_umount_begin(mdsc->fsc->sb); 5696 ceph_msg_dump(msg); 5697 return; 5698 } 5699 5700 static struct ceph_connection *mds_get_con(struct ceph_connection *con) 5701 { 5702 struct ceph_mds_session *s = con->private; 5703 5704 if (ceph_get_mds_session(s)) 5705 return con; 5706 return NULL; 5707 } 5708 5709 static void mds_put_con(struct ceph_connection *con) 5710 { 5711 struct ceph_mds_session *s = con->private; 5712 5713 ceph_put_mds_session(s); 5714 } 5715 5716 /* 5717 * if the client is unresponsive for long enough, the mds will kill 5718 * the session entirely. 5719 */ 5720 static void mds_peer_reset(struct ceph_connection *con) 5721 { 5722 struct ceph_mds_session *s = con->private; 5723 struct ceph_mds_client *mdsc = s->s_mdsc; 5724 5725 pr_warn("mds%d closed our session\n", s->s_mds); 5726 if (READ_ONCE(mdsc->fsc->mount_state) != CEPH_MOUNT_FENCE_IO) 5727 send_mds_reconnect(mdsc, s); 5728 } 5729 5730 static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg) 5731 { 5732 struct ceph_mds_session *s = con->private; 5733 struct ceph_mds_client *mdsc = s->s_mdsc; 5734 int type = le16_to_cpu(msg->hdr.type); 5735 5736 mutex_lock(&mdsc->mutex); 5737 if (__verify_registered_session(mdsc, s) < 0) { 5738 mutex_unlock(&mdsc->mutex); 5739 goto out; 5740 } 5741 mutex_unlock(&mdsc->mutex); 5742 5743 switch (type) { 5744 case CEPH_MSG_MDS_MAP: 5745 ceph_mdsc_handle_mdsmap(mdsc, msg); 5746 break; 5747 case CEPH_MSG_FS_MAP_USER: 5748 ceph_mdsc_handle_fsmap(mdsc, msg); 5749 break; 5750 case CEPH_MSG_CLIENT_SESSION: 5751 handle_session(s, msg); 5752 break; 5753 case CEPH_MSG_CLIENT_REPLY: 5754 handle_reply(s, msg); 5755 break; 5756 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 5757 handle_forward(mdsc, s, msg); 5758 break; 5759 case CEPH_MSG_CLIENT_CAPS: 5760 ceph_handle_caps(s, msg); 5761 break; 5762 case CEPH_MSG_CLIENT_SNAP: 5763 ceph_handle_snap(mdsc, s, msg); 5764 break; 5765 case CEPH_MSG_CLIENT_LEASE: 5766 handle_lease(mdsc, s, msg); 5767 break; 5768 case CEPH_MSG_CLIENT_QUOTA: 5769 ceph_handle_quota(mdsc, s, msg); 5770 break; 5771 5772 default: 5773 pr_err("received unknown message type %d %s\n", type, 5774 ceph_msg_type_name(type)); 5775 } 5776 out: 5777 ceph_msg_put(msg); 5778 } 5779 5780 /* 5781 * authentication 5782 */ 5783 5784 /* 5785 * Note: returned pointer is the address of a structure that's 5786 * managed separately. Caller must *not* attempt to free it. 5787 */ 5788 static struct ceph_auth_handshake * 5789 mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new) 5790 { 5791 struct ceph_mds_session *s = con->private; 5792 struct ceph_mds_client *mdsc = s->s_mdsc; 5793 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5794 struct ceph_auth_handshake *auth = &s->s_auth; 5795 int ret; 5796 5797 ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 5798 force_new, proto, NULL, NULL); 5799 if (ret) 5800 return ERR_PTR(ret); 5801 5802 return auth; 5803 } 5804 5805 static int mds_add_authorizer_challenge(struct ceph_connection *con, 5806 void *challenge_buf, int challenge_buf_len) 5807 { 5808 struct ceph_mds_session *s = con->private; 5809 struct ceph_mds_client *mdsc = s->s_mdsc; 5810 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5811 5812 return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer, 5813 challenge_buf, challenge_buf_len); 5814 } 5815 5816 static int mds_verify_authorizer_reply(struct ceph_connection *con) 5817 { 5818 struct ceph_mds_session *s = con->private; 5819 struct ceph_mds_client *mdsc = s->s_mdsc; 5820 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5821 struct ceph_auth_handshake *auth = &s->s_auth; 5822 5823 return ceph_auth_verify_authorizer_reply(ac, auth->authorizer, 5824 auth->authorizer_reply_buf, auth->authorizer_reply_buf_len, 5825 NULL, NULL, NULL, NULL); 5826 } 5827 5828 static int mds_invalidate_authorizer(struct ceph_connection *con) 5829 { 5830 struct ceph_mds_session *s = con->private; 5831 struct ceph_mds_client *mdsc = s->s_mdsc; 5832 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5833 5834 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 5835 5836 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 5837 } 5838 5839 static int mds_get_auth_request(struct ceph_connection *con, 5840 void *buf, int *buf_len, 5841 void **authorizer, int *authorizer_len) 5842 { 5843 struct ceph_mds_session *s = con->private; 5844 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 5845 struct ceph_auth_handshake *auth = &s->s_auth; 5846 int ret; 5847 5848 ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 5849 buf, buf_len); 5850 if (ret) 5851 return ret; 5852 5853 *authorizer = auth->authorizer_buf; 5854 *authorizer_len = auth->authorizer_buf_len; 5855 return 0; 5856 } 5857 5858 static int mds_handle_auth_reply_more(struct ceph_connection *con, 5859 void *reply, int reply_len, 5860 void *buf, int *buf_len, 5861 void **authorizer, int *authorizer_len) 5862 { 5863 struct ceph_mds_session *s = con->private; 5864 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 5865 struct ceph_auth_handshake *auth = &s->s_auth; 5866 int ret; 5867 5868 ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len, 5869 buf, buf_len); 5870 if (ret) 5871 return ret; 5872 5873 *authorizer = auth->authorizer_buf; 5874 *authorizer_len = auth->authorizer_buf_len; 5875 return 0; 5876 } 5877 5878 static int mds_handle_auth_done(struct ceph_connection *con, 5879 u64 global_id, void *reply, int reply_len, 5880 u8 *session_key, int *session_key_len, 5881 u8 *con_secret, int *con_secret_len) 5882 { 5883 struct ceph_mds_session *s = con->private; 5884 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 5885 struct ceph_auth_handshake *auth = &s->s_auth; 5886 5887 return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len, 5888 session_key, session_key_len, 5889 con_secret, con_secret_len); 5890 } 5891 5892 static int mds_handle_auth_bad_method(struct ceph_connection *con, 5893 int used_proto, int result, 5894 const int *allowed_protos, int proto_cnt, 5895 const int *allowed_modes, int mode_cnt) 5896 { 5897 struct ceph_mds_session *s = con->private; 5898 struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc; 5899 int ret; 5900 5901 if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS, 5902 used_proto, result, 5903 allowed_protos, proto_cnt, 5904 allowed_modes, mode_cnt)) { 5905 ret = ceph_monc_validate_auth(monc); 5906 if (ret) 5907 return ret; 5908 } 5909 5910 return -EACCES; 5911 } 5912 5913 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 5914 struct ceph_msg_header *hdr, int *skip) 5915 { 5916 struct ceph_msg *msg; 5917 int type = (int) le16_to_cpu(hdr->type); 5918 int front_len = (int) le32_to_cpu(hdr->front_len); 5919 5920 if (con->in_msg) 5921 return con->in_msg; 5922 5923 *skip = 0; 5924 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 5925 if (!msg) { 5926 pr_err("unable to allocate msg type %d len %d\n", 5927 type, front_len); 5928 return NULL; 5929 } 5930 5931 return msg; 5932 } 5933 5934 static int mds_sign_message(struct ceph_msg *msg) 5935 { 5936 struct ceph_mds_session *s = msg->con->private; 5937 struct ceph_auth_handshake *auth = &s->s_auth; 5938 5939 return ceph_auth_sign_message(auth, msg); 5940 } 5941 5942 static int mds_check_message_signature(struct ceph_msg *msg) 5943 { 5944 struct ceph_mds_session *s = msg->con->private; 5945 struct ceph_auth_handshake *auth = &s->s_auth; 5946 5947 return ceph_auth_check_message_signature(auth, msg); 5948 } 5949 5950 static const struct ceph_connection_operations mds_con_ops = { 5951 .get = mds_get_con, 5952 .put = mds_put_con, 5953 .alloc_msg = mds_alloc_msg, 5954 .dispatch = mds_dispatch, 5955 .peer_reset = mds_peer_reset, 5956 .get_authorizer = mds_get_authorizer, 5957 .add_authorizer_challenge = mds_add_authorizer_challenge, 5958 .verify_authorizer_reply = mds_verify_authorizer_reply, 5959 .invalidate_authorizer = mds_invalidate_authorizer, 5960 .sign_message = mds_sign_message, 5961 .check_message_signature = mds_check_message_signature, 5962 .get_auth_request = mds_get_auth_request, 5963 .handle_auth_reply_more = mds_handle_auth_reply_more, 5964 .handle_auth_done = mds_handle_auth_done, 5965 .handle_auth_bad_method = mds_handle_auth_bad_method, 5966 }; 5967 5968 /* eof */ 5969