xref: /openbmc/linux/fs/ceph/mds_client.c (revision e1e38ea1)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/fs.h>
5 #include <linux/wait.h>
6 #include <linux/slab.h>
7 #include <linux/gfp.h>
8 #include <linux/sched.h>
9 #include <linux/debugfs.h>
10 #include <linux/seq_file.h>
11 #include <linux/ratelimit.h>
12 
13 #include "super.h"
14 #include "mds_client.h"
15 
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
22 
23 /*
24  * A cluster of MDS (metadata server) daemons is responsible for
25  * managing the file system namespace (the directory hierarchy and
26  * inodes) and for coordinating shared access to storage.  Metadata is
27  * partitioning hierarchically across a number of servers, and that
28  * partition varies over time as the cluster adjusts the distribution
29  * in order to balance load.
30  *
31  * The MDS client is primarily responsible to managing synchronous
32  * metadata requests for operations like open, unlink, and so forth.
33  * If there is a MDS failure, we find out about it when we (possibly
34  * request and) receive a new MDS map, and can resubmit affected
35  * requests.
36  *
37  * For the most part, though, we take advantage of a lossless
38  * communications channel to the MDS, and do not need to worry about
39  * timing out or resubmitting requests.
40  *
41  * We maintain a stateful "session" with each MDS we interact with.
42  * Within each session, we sent periodic heartbeat messages to ensure
43  * any capabilities or leases we have been issues remain valid.  If
44  * the session times out and goes stale, our leases and capabilities
45  * are no longer valid.
46  */
47 
48 struct ceph_reconnect_state {
49 	int nr_caps;
50 	struct ceph_pagelist *pagelist;
51 	unsigned msg_version;
52 };
53 
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 			    struct list_head *head);
56 
57 static const struct ceph_connection_operations mds_con_ops;
58 
59 
60 /*
61  * mds reply parsing
62  */
63 
64 /*
65  * parse individual inode info
66  */
67 static int parse_reply_info_in(void **p, void *end,
68 			       struct ceph_mds_reply_info_in *info,
69 			       u64 features)
70 {
71 	int err = -EIO;
72 
73 	info->in = *p;
74 	*p += sizeof(struct ceph_mds_reply_inode) +
75 		sizeof(*info->in->fragtree.splits) *
76 		le32_to_cpu(info->in->fragtree.nsplits);
77 
78 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 	ceph_decode_need(p, end, info->symlink_len, bad);
80 	info->symlink = *p;
81 	*p += info->symlink_len;
82 
83 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
84 		ceph_decode_copy_safe(p, end, &info->dir_layout,
85 				      sizeof(info->dir_layout), bad);
86 	else
87 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
88 
89 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
90 	ceph_decode_need(p, end, info->xattr_len, bad);
91 	info->xattr_data = *p;
92 	*p += info->xattr_len;
93 
94 	if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
95 		ceph_decode_64_safe(p, end, info->inline_version, bad);
96 		ceph_decode_32_safe(p, end, info->inline_len, bad);
97 		ceph_decode_need(p, end, info->inline_len, bad);
98 		info->inline_data = *p;
99 		*p += info->inline_len;
100 	} else
101 		info->inline_version = CEPH_INLINE_NONE;
102 
103 	if (features & CEPH_FEATURE_MDS_QUOTA) {
104 		u8 struct_v, struct_compat;
105 		u32 struct_len;
106 
107 		/*
108 		 * both struct_v and struct_compat are expected to be >= 1
109 		 */
110 		ceph_decode_8_safe(p, end, struct_v, bad);
111 		ceph_decode_8_safe(p, end, struct_compat, bad);
112 		if (!struct_v || !struct_compat)
113 			goto bad;
114 		ceph_decode_32_safe(p, end, struct_len, bad);
115 		ceph_decode_need(p, end, struct_len, bad);
116 		ceph_decode_64_safe(p, end, info->max_bytes, bad);
117 		ceph_decode_64_safe(p, end, info->max_files, bad);
118 	} else {
119 		info->max_bytes = 0;
120 		info->max_files = 0;
121 	}
122 
123 	info->pool_ns_len = 0;
124 	info->pool_ns_data = NULL;
125 	if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
126 		ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
127 		if (info->pool_ns_len > 0) {
128 			ceph_decode_need(p, end, info->pool_ns_len, bad);
129 			info->pool_ns_data = *p;
130 			*p += info->pool_ns_len;
131 		}
132 	}
133 
134 	return 0;
135 bad:
136 	return err;
137 }
138 
139 /*
140  * parse a normal reply, which may contain a (dir+)dentry and/or a
141  * target inode.
142  */
143 static int parse_reply_info_trace(void **p, void *end,
144 				  struct ceph_mds_reply_info_parsed *info,
145 				  u64 features)
146 {
147 	int err;
148 
149 	if (info->head->is_dentry) {
150 		err = parse_reply_info_in(p, end, &info->diri, features);
151 		if (err < 0)
152 			goto out_bad;
153 
154 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
155 			goto bad;
156 		info->dirfrag = *p;
157 		*p += sizeof(*info->dirfrag) +
158 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
159 		if (unlikely(*p > end))
160 			goto bad;
161 
162 		ceph_decode_32_safe(p, end, info->dname_len, bad);
163 		ceph_decode_need(p, end, info->dname_len, bad);
164 		info->dname = *p;
165 		*p += info->dname_len;
166 		info->dlease = *p;
167 		*p += sizeof(*info->dlease);
168 	}
169 
170 	if (info->head->is_target) {
171 		err = parse_reply_info_in(p, end, &info->targeti, features);
172 		if (err < 0)
173 			goto out_bad;
174 	}
175 
176 	if (unlikely(*p != end))
177 		goto bad;
178 	return 0;
179 
180 bad:
181 	err = -EIO;
182 out_bad:
183 	pr_err("problem parsing mds trace %d\n", err);
184 	return err;
185 }
186 
187 /*
188  * parse readdir results
189  */
190 static int parse_reply_info_dir(void **p, void *end,
191 				struct ceph_mds_reply_info_parsed *info,
192 				u64 features)
193 {
194 	u32 num, i = 0;
195 	int err;
196 
197 	info->dir_dir = *p;
198 	if (*p + sizeof(*info->dir_dir) > end)
199 		goto bad;
200 	*p += sizeof(*info->dir_dir) +
201 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
202 	if (*p > end)
203 		goto bad;
204 
205 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
206 	num = ceph_decode_32(p);
207 	{
208 		u16 flags = ceph_decode_16(p);
209 		info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
210 		info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
211 		info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
212 		info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH);
213 	}
214 	if (num == 0)
215 		goto done;
216 
217 	BUG_ON(!info->dir_entries);
218 	if ((unsigned long)(info->dir_entries + num) >
219 	    (unsigned long)info->dir_entries + info->dir_buf_size) {
220 		pr_err("dir contents are larger than expected\n");
221 		WARN_ON(1);
222 		goto bad;
223 	}
224 
225 	info->dir_nr = num;
226 	while (num) {
227 		struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
228 		/* dentry */
229 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
230 		rde->name_len = ceph_decode_32(p);
231 		ceph_decode_need(p, end, rde->name_len, bad);
232 		rde->name = *p;
233 		*p += rde->name_len;
234 		dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name);
235 		rde->lease = *p;
236 		*p += sizeof(struct ceph_mds_reply_lease);
237 
238 		/* inode */
239 		err = parse_reply_info_in(p, end, &rde->inode, features);
240 		if (err < 0)
241 			goto out_bad;
242 		/* ceph_readdir_prepopulate() will update it */
243 		rde->offset = 0;
244 		i++;
245 		num--;
246 	}
247 
248 done:
249 	if (*p != end)
250 		goto bad;
251 	return 0;
252 
253 bad:
254 	err = -EIO;
255 out_bad:
256 	pr_err("problem parsing dir contents %d\n", err);
257 	return err;
258 }
259 
260 /*
261  * parse fcntl F_GETLK results
262  */
263 static int parse_reply_info_filelock(void **p, void *end,
264 				     struct ceph_mds_reply_info_parsed *info,
265 				     u64 features)
266 {
267 	if (*p + sizeof(*info->filelock_reply) > end)
268 		goto bad;
269 
270 	info->filelock_reply = *p;
271 	*p += sizeof(*info->filelock_reply);
272 
273 	if (unlikely(*p != end))
274 		goto bad;
275 	return 0;
276 
277 bad:
278 	return -EIO;
279 }
280 
281 /*
282  * parse create results
283  */
284 static int parse_reply_info_create(void **p, void *end,
285 				  struct ceph_mds_reply_info_parsed *info,
286 				  u64 features)
287 {
288 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
289 		if (*p == end) {
290 			info->has_create_ino = false;
291 		} else {
292 			info->has_create_ino = true;
293 			info->ino = ceph_decode_64(p);
294 		}
295 	}
296 
297 	if (unlikely(*p != end))
298 		goto bad;
299 	return 0;
300 
301 bad:
302 	return -EIO;
303 }
304 
305 /*
306  * parse extra results
307  */
308 static int parse_reply_info_extra(void **p, void *end,
309 				  struct ceph_mds_reply_info_parsed *info,
310 				  u64 features)
311 {
312 	u32 op = le32_to_cpu(info->head->op);
313 
314 	if (op == CEPH_MDS_OP_GETFILELOCK)
315 		return parse_reply_info_filelock(p, end, info, features);
316 	else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP)
317 		return parse_reply_info_dir(p, end, info, features);
318 	else if (op == CEPH_MDS_OP_CREATE)
319 		return parse_reply_info_create(p, end, info, features);
320 	else
321 		return -EIO;
322 }
323 
324 /*
325  * parse entire mds reply
326  */
327 static int parse_reply_info(struct ceph_msg *msg,
328 			    struct ceph_mds_reply_info_parsed *info,
329 			    u64 features)
330 {
331 	void *p, *end;
332 	u32 len;
333 	int err;
334 
335 	info->head = msg->front.iov_base;
336 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
337 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
338 
339 	/* trace */
340 	ceph_decode_32_safe(&p, end, len, bad);
341 	if (len > 0) {
342 		ceph_decode_need(&p, end, len, bad);
343 		err = parse_reply_info_trace(&p, p+len, info, features);
344 		if (err < 0)
345 			goto out_bad;
346 	}
347 
348 	/* extra */
349 	ceph_decode_32_safe(&p, end, len, bad);
350 	if (len > 0) {
351 		ceph_decode_need(&p, end, len, bad);
352 		err = parse_reply_info_extra(&p, p+len, info, features);
353 		if (err < 0)
354 			goto out_bad;
355 	}
356 
357 	/* snap blob */
358 	ceph_decode_32_safe(&p, end, len, bad);
359 	info->snapblob_len = len;
360 	info->snapblob = p;
361 	p += len;
362 
363 	if (p != end)
364 		goto bad;
365 	return 0;
366 
367 bad:
368 	err = -EIO;
369 out_bad:
370 	pr_err("mds parse_reply err %d\n", err);
371 	return err;
372 }
373 
374 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
375 {
376 	if (!info->dir_entries)
377 		return;
378 	free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
379 }
380 
381 
382 /*
383  * sessions
384  */
385 const char *ceph_session_state_name(int s)
386 {
387 	switch (s) {
388 	case CEPH_MDS_SESSION_NEW: return "new";
389 	case CEPH_MDS_SESSION_OPENING: return "opening";
390 	case CEPH_MDS_SESSION_OPEN: return "open";
391 	case CEPH_MDS_SESSION_HUNG: return "hung";
392 	case CEPH_MDS_SESSION_CLOSING: return "closing";
393 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
394 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
395 	case CEPH_MDS_SESSION_REJECTED: return "rejected";
396 	default: return "???";
397 	}
398 }
399 
400 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
401 {
402 	if (refcount_inc_not_zero(&s->s_ref)) {
403 		dout("mdsc get_session %p %d -> %d\n", s,
404 		     refcount_read(&s->s_ref)-1, refcount_read(&s->s_ref));
405 		return s;
406 	} else {
407 		dout("mdsc get_session %p 0 -- FAIL\n", s);
408 		return NULL;
409 	}
410 }
411 
412 void ceph_put_mds_session(struct ceph_mds_session *s)
413 {
414 	dout("mdsc put_session %p %d -> %d\n", s,
415 	     refcount_read(&s->s_ref), refcount_read(&s->s_ref)-1);
416 	if (refcount_dec_and_test(&s->s_ref)) {
417 		if (s->s_auth.authorizer)
418 			ceph_auth_destroy_authorizer(s->s_auth.authorizer);
419 		kfree(s);
420 	}
421 }
422 
423 /*
424  * called under mdsc->mutex
425  */
426 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
427 						   int mds)
428 {
429 	struct ceph_mds_session *session;
430 
431 	if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
432 		return NULL;
433 	session = mdsc->sessions[mds];
434 	dout("lookup_mds_session %p %d\n", session,
435 	     refcount_read(&session->s_ref));
436 	get_session(session);
437 	return session;
438 }
439 
440 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
441 {
442 	if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
443 		return false;
444 	else
445 		return true;
446 }
447 
448 static int __verify_registered_session(struct ceph_mds_client *mdsc,
449 				       struct ceph_mds_session *s)
450 {
451 	if (s->s_mds >= mdsc->max_sessions ||
452 	    mdsc->sessions[s->s_mds] != s)
453 		return -ENOENT;
454 	return 0;
455 }
456 
457 /*
458  * create+register a new session for given mds.
459  * called under mdsc->mutex.
460  */
461 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
462 						 int mds)
463 {
464 	struct ceph_mds_session *s;
465 
466 	if (mds >= mdsc->mdsmap->m_num_mds)
467 		return ERR_PTR(-EINVAL);
468 
469 	s = kzalloc(sizeof(*s), GFP_NOFS);
470 	if (!s)
471 		return ERR_PTR(-ENOMEM);
472 
473 	if (mds >= mdsc->max_sessions) {
474 		int newmax = 1 << get_count_order(mds + 1);
475 		struct ceph_mds_session **sa;
476 
477 		dout("%s: realloc to %d\n", __func__, newmax);
478 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
479 		if (!sa)
480 			goto fail_realloc;
481 		if (mdsc->sessions) {
482 			memcpy(sa, mdsc->sessions,
483 			       mdsc->max_sessions * sizeof(void *));
484 			kfree(mdsc->sessions);
485 		}
486 		mdsc->sessions = sa;
487 		mdsc->max_sessions = newmax;
488 	}
489 
490 	dout("%s: mds%d\n", __func__, mds);
491 	s->s_mdsc = mdsc;
492 	s->s_mds = mds;
493 	s->s_state = CEPH_MDS_SESSION_NEW;
494 	s->s_ttl = 0;
495 	s->s_seq = 0;
496 	mutex_init(&s->s_mutex);
497 
498 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
499 
500 	spin_lock_init(&s->s_gen_ttl_lock);
501 	s->s_cap_gen = 0;
502 	s->s_cap_ttl = jiffies - 1;
503 
504 	spin_lock_init(&s->s_cap_lock);
505 	s->s_renew_requested = 0;
506 	s->s_renew_seq = 0;
507 	INIT_LIST_HEAD(&s->s_caps);
508 	s->s_nr_caps = 0;
509 	s->s_trim_caps = 0;
510 	refcount_set(&s->s_ref, 1);
511 	INIT_LIST_HEAD(&s->s_waiting);
512 	INIT_LIST_HEAD(&s->s_unsafe);
513 	s->s_num_cap_releases = 0;
514 	s->s_cap_reconnect = 0;
515 	s->s_cap_iterator = NULL;
516 	INIT_LIST_HEAD(&s->s_cap_releases);
517 	INIT_LIST_HEAD(&s->s_cap_flushing);
518 
519 	mdsc->sessions[mds] = s;
520 	atomic_inc(&mdsc->num_sessions);
521 	refcount_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
522 
523 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
524 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
525 
526 	return s;
527 
528 fail_realloc:
529 	kfree(s);
530 	return ERR_PTR(-ENOMEM);
531 }
532 
533 /*
534  * called under mdsc->mutex
535  */
536 static void __unregister_session(struct ceph_mds_client *mdsc,
537 			       struct ceph_mds_session *s)
538 {
539 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
540 	BUG_ON(mdsc->sessions[s->s_mds] != s);
541 	mdsc->sessions[s->s_mds] = NULL;
542 	ceph_con_close(&s->s_con);
543 	ceph_put_mds_session(s);
544 	atomic_dec(&mdsc->num_sessions);
545 }
546 
547 /*
548  * drop session refs in request.
549  *
550  * should be last request ref, or hold mdsc->mutex
551  */
552 static void put_request_session(struct ceph_mds_request *req)
553 {
554 	if (req->r_session) {
555 		ceph_put_mds_session(req->r_session);
556 		req->r_session = NULL;
557 	}
558 }
559 
560 void ceph_mdsc_release_request(struct kref *kref)
561 {
562 	struct ceph_mds_request *req = container_of(kref,
563 						    struct ceph_mds_request,
564 						    r_kref);
565 	destroy_reply_info(&req->r_reply_info);
566 	if (req->r_request)
567 		ceph_msg_put(req->r_request);
568 	if (req->r_reply)
569 		ceph_msg_put(req->r_reply);
570 	if (req->r_inode) {
571 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
572 		iput(req->r_inode);
573 	}
574 	if (req->r_parent)
575 		ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
576 	iput(req->r_target_inode);
577 	if (req->r_dentry)
578 		dput(req->r_dentry);
579 	if (req->r_old_dentry)
580 		dput(req->r_old_dentry);
581 	if (req->r_old_dentry_dir) {
582 		/*
583 		 * track (and drop pins for) r_old_dentry_dir
584 		 * separately, since r_old_dentry's d_parent may have
585 		 * changed between the dir mutex being dropped and
586 		 * this request being freed.
587 		 */
588 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
589 				  CEPH_CAP_PIN);
590 		iput(req->r_old_dentry_dir);
591 	}
592 	kfree(req->r_path1);
593 	kfree(req->r_path2);
594 	if (req->r_pagelist)
595 		ceph_pagelist_release(req->r_pagelist);
596 	put_request_session(req);
597 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
598 	kfree(req);
599 }
600 
601 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
602 
603 /*
604  * lookup session, bump ref if found.
605  *
606  * called under mdsc->mutex.
607  */
608 static struct ceph_mds_request *
609 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
610 {
611 	struct ceph_mds_request *req;
612 
613 	req = lookup_request(&mdsc->request_tree, tid);
614 	if (req)
615 		ceph_mdsc_get_request(req);
616 
617 	return req;
618 }
619 
620 /*
621  * Register an in-flight request, and assign a tid.  Link to directory
622  * are modifying (if any).
623  *
624  * Called under mdsc->mutex.
625  */
626 static void __register_request(struct ceph_mds_client *mdsc,
627 			       struct ceph_mds_request *req,
628 			       struct inode *dir)
629 {
630 	int ret = 0;
631 
632 	req->r_tid = ++mdsc->last_tid;
633 	if (req->r_num_caps) {
634 		ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation,
635 					req->r_num_caps);
636 		if (ret < 0) {
637 			pr_err("__register_request %p "
638 			       "failed to reserve caps: %d\n", req, ret);
639 			/* set req->r_err to fail early from __do_request */
640 			req->r_err = ret;
641 			return;
642 		}
643 	}
644 	dout("__register_request %p tid %lld\n", req, req->r_tid);
645 	ceph_mdsc_get_request(req);
646 	insert_request(&mdsc->request_tree, req);
647 
648 	req->r_uid = current_fsuid();
649 	req->r_gid = current_fsgid();
650 
651 	if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
652 		mdsc->oldest_tid = req->r_tid;
653 
654 	if (dir) {
655 		ihold(dir);
656 		req->r_unsafe_dir = dir;
657 	}
658 }
659 
660 static void __unregister_request(struct ceph_mds_client *mdsc,
661 				 struct ceph_mds_request *req)
662 {
663 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
664 
665 	/* Never leave an unregistered request on an unsafe list! */
666 	list_del_init(&req->r_unsafe_item);
667 
668 	if (req->r_tid == mdsc->oldest_tid) {
669 		struct rb_node *p = rb_next(&req->r_node);
670 		mdsc->oldest_tid = 0;
671 		while (p) {
672 			struct ceph_mds_request *next_req =
673 				rb_entry(p, struct ceph_mds_request, r_node);
674 			if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
675 				mdsc->oldest_tid = next_req->r_tid;
676 				break;
677 			}
678 			p = rb_next(p);
679 		}
680 	}
681 
682 	erase_request(&mdsc->request_tree, req);
683 
684 	if (req->r_unsafe_dir  &&
685 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
686 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
687 		spin_lock(&ci->i_unsafe_lock);
688 		list_del_init(&req->r_unsafe_dir_item);
689 		spin_unlock(&ci->i_unsafe_lock);
690 	}
691 	if (req->r_target_inode &&
692 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
693 		struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
694 		spin_lock(&ci->i_unsafe_lock);
695 		list_del_init(&req->r_unsafe_target_item);
696 		spin_unlock(&ci->i_unsafe_lock);
697 	}
698 
699 	if (req->r_unsafe_dir) {
700 		iput(req->r_unsafe_dir);
701 		req->r_unsafe_dir = NULL;
702 	}
703 
704 	complete_all(&req->r_safe_completion);
705 
706 	ceph_mdsc_put_request(req);
707 }
708 
709 /*
710  * Walk back up the dentry tree until we hit a dentry representing a
711  * non-snapshot inode. We do this using the rcu_read_lock (which must be held
712  * when calling this) to ensure that the objects won't disappear while we're
713  * working with them. Once we hit a candidate dentry, we attempt to take a
714  * reference to it, and return that as the result.
715  */
716 static struct inode *get_nonsnap_parent(struct dentry *dentry)
717 {
718 	struct inode *inode = NULL;
719 
720 	while (dentry && !IS_ROOT(dentry)) {
721 		inode = d_inode_rcu(dentry);
722 		if (!inode || ceph_snap(inode) == CEPH_NOSNAP)
723 			break;
724 		dentry = dentry->d_parent;
725 	}
726 	if (inode)
727 		inode = igrab(inode);
728 	return inode;
729 }
730 
731 /*
732  * Choose mds to send request to next.  If there is a hint set in the
733  * request (e.g., due to a prior forward hint from the mds), use that.
734  * Otherwise, consult frag tree and/or caps to identify the
735  * appropriate mds.  If all else fails, choose randomly.
736  *
737  * Called under mdsc->mutex.
738  */
739 static int __choose_mds(struct ceph_mds_client *mdsc,
740 			struct ceph_mds_request *req)
741 {
742 	struct inode *inode;
743 	struct ceph_inode_info *ci;
744 	struct ceph_cap *cap;
745 	int mode = req->r_direct_mode;
746 	int mds = -1;
747 	u32 hash = req->r_direct_hash;
748 	bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags);
749 
750 	/*
751 	 * is there a specific mds we should try?  ignore hint if we have
752 	 * no session and the mds is not up (active or recovering).
753 	 */
754 	if (req->r_resend_mds >= 0 &&
755 	    (__have_session(mdsc, req->r_resend_mds) ||
756 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
757 		dout("choose_mds using resend_mds mds%d\n",
758 		     req->r_resend_mds);
759 		return req->r_resend_mds;
760 	}
761 
762 	if (mode == USE_RANDOM_MDS)
763 		goto random;
764 
765 	inode = NULL;
766 	if (req->r_inode) {
767 		if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) {
768 			inode = req->r_inode;
769 			ihold(inode);
770 		} else {
771 			/* req->r_dentry is non-null for LSSNAP request */
772 			rcu_read_lock();
773 			inode = get_nonsnap_parent(req->r_dentry);
774 			rcu_read_unlock();
775 			dout("__choose_mds using snapdir's parent %p\n", inode);
776 		}
777 	} else if (req->r_dentry) {
778 		/* ignore race with rename; old or new d_parent is okay */
779 		struct dentry *parent;
780 		struct inode *dir;
781 
782 		rcu_read_lock();
783 		parent = req->r_dentry->d_parent;
784 		dir = req->r_parent ? : d_inode_rcu(parent);
785 
786 		if (!dir || dir->i_sb != mdsc->fsc->sb) {
787 			/*  not this fs or parent went negative */
788 			inode = d_inode(req->r_dentry);
789 			if (inode)
790 				ihold(inode);
791 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
792 			/* direct snapped/virtual snapdir requests
793 			 * based on parent dir inode */
794 			inode = get_nonsnap_parent(parent);
795 			dout("__choose_mds using nonsnap parent %p\n", inode);
796 		} else {
797 			/* dentry target */
798 			inode = d_inode(req->r_dentry);
799 			if (!inode || mode == USE_AUTH_MDS) {
800 				/* dir + name */
801 				inode = igrab(dir);
802 				hash = ceph_dentry_hash(dir, req->r_dentry);
803 				is_hash = true;
804 			} else {
805 				ihold(inode);
806 			}
807 		}
808 		rcu_read_unlock();
809 	}
810 
811 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
812 	     (int)hash, mode);
813 	if (!inode)
814 		goto random;
815 	ci = ceph_inode(inode);
816 
817 	if (is_hash && S_ISDIR(inode->i_mode)) {
818 		struct ceph_inode_frag frag;
819 		int found;
820 
821 		ceph_choose_frag(ci, hash, &frag, &found);
822 		if (found) {
823 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
824 				u8 r;
825 
826 				/* choose a random replica */
827 				get_random_bytes(&r, 1);
828 				r %= frag.ndist;
829 				mds = frag.dist[r];
830 				dout("choose_mds %p %llx.%llx "
831 				     "frag %u mds%d (%d/%d)\n",
832 				     inode, ceph_vinop(inode),
833 				     frag.frag, mds,
834 				     (int)r, frag.ndist);
835 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
836 				    CEPH_MDS_STATE_ACTIVE)
837 					goto out;
838 			}
839 
840 			/* since this file/dir wasn't known to be
841 			 * replicated, then we want to look for the
842 			 * authoritative mds. */
843 			mode = USE_AUTH_MDS;
844 			if (frag.mds >= 0) {
845 				/* choose auth mds */
846 				mds = frag.mds;
847 				dout("choose_mds %p %llx.%llx "
848 				     "frag %u mds%d (auth)\n",
849 				     inode, ceph_vinop(inode), frag.frag, mds);
850 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
851 				    CEPH_MDS_STATE_ACTIVE)
852 					goto out;
853 			}
854 		}
855 	}
856 
857 	spin_lock(&ci->i_ceph_lock);
858 	cap = NULL;
859 	if (mode == USE_AUTH_MDS)
860 		cap = ci->i_auth_cap;
861 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
862 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
863 	if (!cap) {
864 		spin_unlock(&ci->i_ceph_lock);
865 		iput(inode);
866 		goto random;
867 	}
868 	mds = cap->session->s_mds;
869 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
870 	     inode, ceph_vinop(inode), mds,
871 	     cap == ci->i_auth_cap ? "auth " : "", cap);
872 	spin_unlock(&ci->i_ceph_lock);
873 out:
874 	iput(inode);
875 	return mds;
876 
877 random:
878 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
879 	dout("choose_mds chose random mds%d\n", mds);
880 	return mds;
881 }
882 
883 
884 /*
885  * session messages
886  */
887 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
888 {
889 	struct ceph_msg *msg;
890 	struct ceph_mds_session_head *h;
891 
892 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
893 			   false);
894 	if (!msg) {
895 		pr_err("create_session_msg ENOMEM creating msg\n");
896 		return NULL;
897 	}
898 	h = msg->front.iov_base;
899 	h->op = cpu_to_le32(op);
900 	h->seq = cpu_to_le64(seq);
901 
902 	return msg;
903 }
904 
905 static void encode_supported_features(void **p, void *end)
906 {
907 	static const unsigned char bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED;
908 	static const size_t count = ARRAY_SIZE(bits);
909 
910 	if (count > 0) {
911 		size_t i;
912 		size_t size = ((size_t)bits[count - 1] + 64) / 64 * 8;
913 
914 		BUG_ON(*p + 4 + size > end);
915 		ceph_encode_32(p, size);
916 		memset(*p, 0, size);
917 		for (i = 0; i < count; i++)
918 			((unsigned char*)(*p))[i / 8] |= 1 << (bits[i] % 8);
919 		*p += size;
920 	} else {
921 		BUG_ON(*p + 4 > end);
922 		ceph_encode_32(p, 0);
923 	}
924 }
925 
926 /*
927  * session message, specialization for CEPH_SESSION_REQUEST_OPEN
928  * to include additional client metadata fields.
929  */
930 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
931 {
932 	struct ceph_msg *msg;
933 	struct ceph_mds_session_head *h;
934 	int i = -1;
935 	int extra_bytes = 0;
936 	int metadata_key_count = 0;
937 	struct ceph_options *opt = mdsc->fsc->client->options;
938 	struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
939 	void *p, *end;
940 
941 	const char* metadata[][2] = {
942 		{"hostname", mdsc->nodename},
943 		{"kernel_version", init_utsname()->release},
944 		{"entity_id", opt->name ? : ""},
945 		{"root", fsopt->server_path ? : "/"},
946 		{NULL, NULL}
947 	};
948 
949 	/* Calculate serialized length of metadata */
950 	extra_bytes = 4;  /* map length */
951 	for (i = 0; metadata[i][0]; ++i) {
952 		extra_bytes += 8 + strlen(metadata[i][0]) +
953 			strlen(metadata[i][1]);
954 		metadata_key_count++;
955 	}
956 	/* supported feature */
957 	extra_bytes += 4 + 8;
958 
959 	/* Allocate the message */
960 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes,
961 			   GFP_NOFS, false);
962 	if (!msg) {
963 		pr_err("create_session_msg ENOMEM creating msg\n");
964 		return NULL;
965 	}
966 	p = msg->front.iov_base;
967 	end = p + msg->front.iov_len;
968 
969 	h = p;
970 	h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
971 	h->seq = cpu_to_le64(seq);
972 
973 	/*
974 	 * Serialize client metadata into waiting buffer space, using
975 	 * the format that userspace expects for map<string, string>
976 	 *
977 	 * ClientSession messages with metadata are v2
978 	 */
979 	msg->hdr.version = cpu_to_le16(3);
980 	msg->hdr.compat_version = cpu_to_le16(1);
981 
982 	/* The write pointer, following the session_head structure */
983 	p += sizeof(*h);
984 
985 	/* Number of entries in the map */
986 	ceph_encode_32(&p, metadata_key_count);
987 
988 	/* Two length-prefixed strings for each entry in the map */
989 	for (i = 0; metadata[i][0]; ++i) {
990 		size_t const key_len = strlen(metadata[i][0]);
991 		size_t const val_len = strlen(metadata[i][1]);
992 
993 		ceph_encode_32(&p, key_len);
994 		memcpy(p, metadata[i][0], key_len);
995 		p += key_len;
996 		ceph_encode_32(&p, val_len);
997 		memcpy(p, metadata[i][1], val_len);
998 		p += val_len;
999 	}
1000 
1001 	encode_supported_features(&p, end);
1002 	msg->front.iov_len = p - msg->front.iov_base;
1003 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1004 
1005 	return msg;
1006 }
1007 
1008 /*
1009  * send session open request.
1010  *
1011  * called under mdsc->mutex
1012  */
1013 static int __open_session(struct ceph_mds_client *mdsc,
1014 			  struct ceph_mds_session *session)
1015 {
1016 	struct ceph_msg *msg;
1017 	int mstate;
1018 	int mds = session->s_mds;
1019 
1020 	/* wait for mds to go active? */
1021 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
1022 	dout("open_session to mds%d (%s)\n", mds,
1023 	     ceph_mds_state_name(mstate));
1024 	session->s_state = CEPH_MDS_SESSION_OPENING;
1025 	session->s_renew_requested = jiffies;
1026 
1027 	/* send connect message */
1028 	msg = create_session_open_msg(mdsc, session->s_seq);
1029 	if (!msg)
1030 		return -ENOMEM;
1031 	ceph_con_send(&session->s_con, msg);
1032 	return 0;
1033 }
1034 
1035 /*
1036  * open sessions for any export targets for the given mds
1037  *
1038  * called under mdsc->mutex
1039  */
1040 static struct ceph_mds_session *
1041 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
1042 {
1043 	struct ceph_mds_session *session;
1044 
1045 	session = __ceph_lookup_mds_session(mdsc, target);
1046 	if (!session) {
1047 		session = register_session(mdsc, target);
1048 		if (IS_ERR(session))
1049 			return session;
1050 	}
1051 	if (session->s_state == CEPH_MDS_SESSION_NEW ||
1052 	    session->s_state == CEPH_MDS_SESSION_CLOSING)
1053 		__open_session(mdsc, session);
1054 
1055 	return session;
1056 }
1057 
1058 struct ceph_mds_session *
1059 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
1060 {
1061 	struct ceph_mds_session *session;
1062 
1063 	dout("open_export_target_session to mds%d\n", target);
1064 
1065 	mutex_lock(&mdsc->mutex);
1066 	session = __open_export_target_session(mdsc, target);
1067 	mutex_unlock(&mdsc->mutex);
1068 
1069 	return session;
1070 }
1071 
1072 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
1073 					  struct ceph_mds_session *session)
1074 {
1075 	struct ceph_mds_info *mi;
1076 	struct ceph_mds_session *ts;
1077 	int i, mds = session->s_mds;
1078 
1079 	if (mds >= mdsc->mdsmap->m_num_mds)
1080 		return;
1081 
1082 	mi = &mdsc->mdsmap->m_info[mds];
1083 	dout("open_export_target_sessions for mds%d (%d targets)\n",
1084 	     session->s_mds, mi->num_export_targets);
1085 
1086 	for (i = 0; i < mi->num_export_targets; i++) {
1087 		ts = __open_export_target_session(mdsc, mi->export_targets[i]);
1088 		if (!IS_ERR(ts))
1089 			ceph_put_mds_session(ts);
1090 	}
1091 }
1092 
1093 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
1094 					   struct ceph_mds_session *session)
1095 {
1096 	mutex_lock(&mdsc->mutex);
1097 	__open_export_target_sessions(mdsc, session);
1098 	mutex_unlock(&mdsc->mutex);
1099 }
1100 
1101 /*
1102  * session caps
1103  */
1104 
1105 static void detach_cap_releases(struct ceph_mds_session *session,
1106 				struct list_head *target)
1107 {
1108 	lockdep_assert_held(&session->s_cap_lock);
1109 
1110 	list_splice_init(&session->s_cap_releases, target);
1111 	session->s_num_cap_releases = 0;
1112 	dout("dispose_cap_releases mds%d\n", session->s_mds);
1113 }
1114 
1115 static void dispose_cap_releases(struct ceph_mds_client *mdsc,
1116 				 struct list_head *dispose)
1117 {
1118 	while (!list_empty(dispose)) {
1119 		struct ceph_cap *cap;
1120 		/* zero out the in-progress message */
1121 		cap = list_first_entry(dispose, struct ceph_cap, session_caps);
1122 		list_del(&cap->session_caps);
1123 		ceph_put_cap(mdsc, cap);
1124 	}
1125 }
1126 
1127 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1128 				     struct ceph_mds_session *session)
1129 {
1130 	struct ceph_mds_request *req;
1131 	struct rb_node *p;
1132 
1133 	dout("cleanup_session_requests mds%d\n", session->s_mds);
1134 	mutex_lock(&mdsc->mutex);
1135 	while (!list_empty(&session->s_unsafe)) {
1136 		req = list_first_entry(&session->s_unsafe,
1137 				       struct ceph_mds_request, r_unsafe_item);
1138 		pr_warn_ratelimited(" dropping unsafe request %llu\n",
1139 				    req->r_tid);
1140 		__unregister_request(mdsc, req);
1141 	}
1142 	/* zero r_attempts, so kick_requests() will re-send requests */
1143 	p = rb_first(&mdsc->request_tree);
1144 	while (p) {
1145 		req = rb_entry(p, struct ceph_mds_request, r_node);
1146 		p = rb_next(p);
1147 		if (req->r_session &&
1148 		    req->r_session->s_mds == session->s_mds)
1149 			req->r_attempts = 0;
1150 	}
1151 	mutex_unlock(&mdsc->mutex);
1152 }
1153 
1154 /*
1155  * Helper to safely iterate over all caps associated with a session, with
1156  * special care taken to handle a racing __ceph_remove_cap().
1157  *
1158  * Caller must hold session s_mutex.
1159  */
1160 static int iterate_session_caps(struct ceph_mds_session *session,
1161 				 int (*cb)(struct inode *, struct ceph_cap *,
1162 					    void *), void *arg)
1163 {
1164 	struct list_head *p;
1165 	struct ceph_cap *cap;
1166 	struct inode *inode, *last_inode = NULL;
1167 	struct ceph_cap *old_cap = NULL;
1168 	int ret;
1169 
1170 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1171 	spin_lock(&session->s_cap_lock);
1172 	p = session->s_caps.next;
1173 	while (p != &session->s_caps) {
1174 		cap = list_entry(p, struct ceph_cap, session_caps);
1175 		inode = igrab(&cap->ci->vfs_inode);
1176 		if (!inode) {
1177 			p = p->next;
1178 			continue;
1179 		}
1180 		session->s_cap_iterator = cap;
1181 		spin_unlock(&session->s_cap_lock);
1182 
1183 		if (last_inode) {
1184 			iput(last_inode);
1185 			last_inode = NULL;
1186 		}
1187 		if (old_cap) {
1188 			ceph_put_cap(session->s_mdsc, old_cap);
1189 			old_cap = NULL;
1190 		}
1191 
1192 		ret = cb(inode, cap, arg);
1193 		last_inode = inode;
1194 
1195 		spin_lock(&session->s_cap_lock);
1196 		p = p->next;
1197 		if (!cap->ci) {
1198 			dout("iterate_session_caps  finishing cap %p removal\n",
1199 			     cap);
1200 			BUG_ON(cap->session != session);
1201 			cap->session = NULL;
1202 			list_del_init(&cap->session_caps);
1203 			session->s_nr_caps--;
1204 			if (cap->queue_release) {
1205 				list_add_tail(&cap->session_caps,
1206 					      &session->s_cap_releases);
1207 				session->s_num_cap_releases++;
1208 			} else {
1209 				old_cap = cap;  /* put_cap it w/o locks held */
1210 			}
1211 		}
1212 		if (ret < 0)
1213 			goto out;
1214 	}
1215 	ret = 0;
1216 out:
1217 	session->s_cap_iterator = NULL;
1218 	spin_unlock(&session->s_cap_lock);
1219 
1220 	iput(last_inode);
1221 	if (old_cap)
1222 		ceph_put_cap(session->s_mdsc, old_cap);
1223 
1224 	return ret;
1225 }
1226 
1227 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1228 				  void *arg)
1229 {
1230 	struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg;
1231 	struct ceph_inode_info *ci = ceph_inode(inode);
1232 	LIST_HEAD(to_remove);
1233 	bool drop = false;
1234 	bool invalidate = false;
1235 
1236 	dout("removing cap %p, ci is %p, inode is %p\n",
1237 	     cap, ci, &ci->vfs_inode);
1238 	spin_lock(&ci->i_ceph_lock);
1239 	__ceph_remove_cap(cap, false);
1240 	if (!ci->i_auth_cap) {
1241 		struct ceph_cap_flush *cf;
1242 		struct ceph_mds_client *mdsc = fsc->mdsc;
1243 
1244 		ci->i_ceph_flags |= CEPH_I_CAP_DROPPED;
1245 
1246 		if (ci->i_wrbuffer_ref > 0 &&
1247 		    READ_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
1248 			invalidate = true;
1249 
1250 		while (!list_empty(&ci->i_cap_flush_list)) {
1251 			cf = list_first_entry(&ci->i_cap_flush_list,
1252 					      struct ceph_cap_flush, i_list);
1253 			list_move(&cf->i_list, &to_remove);
1254 		}
1255 
1256 		spin_lock(&mdsc->cap_dirty_lock);
1257 
1258 		list_for_each_entry(cf, &to_remove, i_list)
1259 			list_del(&cf->g_list);
1260 
1261 		if (!list_empty(&ci->i_dirty_item)) {
1262 			pr_warn_ratelimited(
1263 				" dropping dirty %s state for %p %lld\n",
1264 				ceph_cap_string(ci->i_dirty_caps),
1265 				inode, ceph_ino(inode));
1266 			ci->i_dirty_caps = 0;
1267 			list_del_init(&ci->i_dirty_item);
1268 			drop = true;
1269 		}
1270 		if (!list_empty(&ci->i_flushing_item)) {
1271 			pr_warn_ratelimited(
1272 				" dropping dirty+flushing %s state for %p %lld\n",
1273 				ceph_cap_string(ci->i_flushing_caps),
1274 				inode, ceph_ino(inode));
1275 			ci->i_flushing_caps = 0;
1276 			list_del_init(&ci->i_flushing_item);
1277 			mdsc->num_cap_flushing--;
1278 			drop = true;
1279 		}
1280 		spin_unlock(&mdsc->cap_dirty_lock);
1281 
1282 		if (atomic_read(&ci->i_filelock_ref) > 0) {
1283 			/* make further file lock syscall return -EIO */
1284 			ci->i_ceph_flags |= CEPH_I_ERROR_FILELOCK;
1285 			pr_warn_ratelimited(" dropping file locks for %p %lld\n",
1286 					    inode, ceph_ino(inode));
1287 		}
1288 
1289 		if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1290 			list_add(&ci->i_prealloc_cap_flush->i_list, &to_remove);
1291 			ci->i_prealloc_cap_flush = NULL;
1292 		}
1293 	}
1294 	spin_unlock(&ci->i_ceph_lock);
1295 	while (!list_empty(&to_remove)) {
1296 		struct ceph_cap_flush *cf;
1297 		cf = list_first_entry(&to_remove,
1298 				      struct ceph_cap_flush, i_list);
1299 		list_del(&cf->i_list);
1300 		ceph_free_cap_flush(cf);
1301 	}
1302 
1303 	wake_up_all(&ci->i_cap_wq);
1304 	if (invalidate)
1305 		ceph_queue_invalidate(inode);
1306 	if (drop)
1307 		iput(inode);
1308 	return 0;
1309 }
1310 
1311 /*
1312  * caller must hold session s_mutex
1313  */
1314 static void remove_session_caps(struct ceph_mds_session *session)
1315 {
1316 	struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1317 	struct super_block *sb = fsc->sb;
1318 	LIST_HEAD(dispose);
1319 
1320 	dout("remove_session_caps on %p\n", session);
1321 	iterate_session_caps(session, remove_session_caps_cb, fsc);
1322 
1323 	wake_up_all(&fsc->mdsc->cap_flushing_wq);
1324 
1325 	spin_lock(&session->s_cap_lock);
1326 	if (session->s_nr_caps > 0) {
1327 		struct inode *inode;
1328 		struct ceph_cap *cap, *prev = NULL;
1329 		struct ceph_vino vino;
1330 		/*
1331 		 * iterate_session_caps() skips inodes that are being
1332 		 * deleted, we need to wait until deletions are complete.
1333 		 * __wait_on_freeing_inode() is designed for the job,
1334 		 * but it is not exported, so use lookup inode function
1335 		 * to access it.
1336 		 */
1337 		while (!list_empty(&session->s_caps)) {
1338 			cap = list_entry(session->s_caps.next,
1339 					 struct ceph_cap, session_caps);
1340 			if (cap == prev)
1341 				break;
1342 			prev = cap;
1343 			vino = cap->ci->i_vino;
1344 			spin_unlock(&session->s_cap_lock);
1345 
1346 			inode = ceph_find_inode(sb, vino);
1347 			iput(inode);
1348 
1349 			spin_lock(&session->s_cap_lock);
1350 		}
1351 	}
1352 
1353 	// drop cap expires and unlock s_cap_lock
1354 	detach_cap_releases(session, &dispose);
1355 
1356 	BUG_ON(session->s_nr_caps > 0);
1357 	BUG_ON(!list_empty(&session->s_cap_flushing));
1358 	spin_unlock(&session->s_cap_lock);
1359 	dispose_cap_releases(session->s_mdsc, &dispose);
1360 }
1361 
1362 /*
1363  * wake up any threads waiting on this session's caps.  if the cap is
1364  * old (didn't get renewed on the client reconnect), remove it now.
1365  *
1366  * caller must hold s_mutex.
1367  */
1368 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1369 			      void *arg)
1370 {
1371 	struct ceph_inode_info *ci = ceph_inode(inode);
1372 
1373 	if (arg) {
1374 		spin_lock(&ci->i_ceph_lock);
1375 		ci->i_wanted_max_size = 0;
1376 		ci->i_requested_max_size = 0;
1377 		spin_unlock(&ci->i_ceph_lock);
1378 	}
1379 	wake_up_all(&ci->i_cap_wq);
1380 	return 0;
1381 }
1382 
1383 static void wake_up_session_caps(struct ceph_mds_session *session,
1384 				 int reconnect)
1385 {
1386 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1387 	iterate_session_caps(session, wake_up_session_cb,
1388 			     (void *)(unsigned long)reconnect);
1389 }
1390 
1391 /*
1392  * Send periodic message to MDS renewing all currently held caps.  The
1393  * ack will reset the expiration for all caps from this session.
1394  *
1395  * caller holds s_mutex
1396  */
1397 static int send_renew_caps(struct ceph_mds_client *mdsc,
1398 			   struct ceph_mds_session *session)
1399 {
1400 	struct ceph_msg *msg;
1401 	int state;
1402 
1403 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1404 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1405 		pr_info("mds%d caps stale\n", session->s_mds);
1406 	session->s_renew_requested = jiffies;
1407 
1408 	/* do not try to renew caps until a recovering mds has reconnected
1409 	 * with its clients. */
1410 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1411 	if (state < CEPH_MDS_STATE_RECONNECT) {
1412 		dout("send_renew_caps ignoring mds%d (%s)\n",
1413 		     session->s_mds, ceph_mds_state_name(state));
1414 		return 0;
1415 	}
1416 
1417 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1418 		ceph_mds_state_name(state));
1419 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1420 				 ++session->s_renew_seq);
1421 	if (!msg)
1422 		return -ENOMEM;
1423 	ceph_con_send(&session->s_con, msg);
1424 	return 0;
1425 }
1426 
1427 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1428 			     struct ceph_mds_session *session, u64 seq)
1429 {
1430 	struct ceph_msg *msg;
1431 
1432 	dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1433 	     session->s_mds, ceph_session_state_name(session->s_state), seq);
1434 	msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1435 	if (!msg)
1436 		return -ENOMEM;
1437 	ceph_con_send(&session->s_con, msg);
1438 	return 0;
1439 }
1440 
1441 
1442 /*
1443  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1444  *
1445  * Called under session->s_mutex
1446  */
1447 static void renewed_caps(struct ceph_mds_client *mdsc,
1448 			 struct ceph_mds_session *session, int is_renew)
1449 {
1450 	int was_stale;
1451 	int wake = 0;
1452 
1453 	spin_lock(&session->s_cap_lock);
1454 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1455 
1456 	session->s_cap_ttl = session->s_renew_requested +
1457 		mdsc->mdsmap->m_session_timeout*HZ;
1458 
1459 	if (was_stale) {
1460 		if (time_before(jiffies, session->s_cap_ttl)) {
1461 			pr_info("mds%d caps renewed\n", session->s_mds);
1462 			wake = 1;
1463 		} else {
1464 			pr_info("mds%d caps still stale\n", session->s_mds);
1465 		}
1466 	}
1467 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1468 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1469 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1470 	spin_unlock(&session->s_cap_lock);
1471 
1472 	if (wake)
1473 		wake_up_session_caps(session, 0);
1474 }
1475 
1476 /*
1477  * send a session close request
1478  */
1479 static int request_close_session(struct ceph_mds_client *mdsc,
1480 				 struct ceph_mds_session *session)
1481 {
1482 	struct ceph_msg *msg;
1483 
1484 	dout("request_close_session mds%d state %s seq %lld\n",
1485 	     session->s_mds, ceph_session_state_name(session->s_state),
1486 	     session->s_seq);
1487 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1488 	if (!msg)
1489 		return -ENOMEM;
1490 	ceph_con_send(&session->s_con, msg);
1491 	return 1;
1492 }
1493 
1494 /*
1495  * Called with s_mutex held.
1496  */
1497 static int __close_session(struct ceph_mds_client *mdsc,
1498 			 struct ceph_mds_session *session)
1499 {
1500 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1501 		return 0;
1502 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1503 	return request_close_session(mdsc, session);
1504 }
1505 
1506 static bool drop_negative_children(struct dentry *dentry)
1507 {
1508 	struct dentry *child;
1509 	bool all_negative = true;
1510 
1511 	if (!d_is_dir(dentry))
1512 		goto out;
1513 
1514 	spin_lock(&dentry->d_lock);
1515 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
1516 		if (d_really_is_positive(child)) {
1517 			all_negative = false;
1518 			break;
1519 		}
1520 	}
1521 	spin_unlock(&dentry->d_lock);
1522 
1523 	if (all_negative)
1524 		shrink_dcache_parent(dentry);
1525 out:
1526 	return all_negative;
1527 }
1528 
1529 /*
1530  * Trim old(er) caps.
1531  *
1532  * Because we can't cache an inode without one or more caps, we do
1533  * this indirectly: if a cap is unused, we prune its aliases, at which
1534  * point the inode will hopefully get dropped to.
1535  *
1536  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1537  * memory pressure from the MDS, though, so it needn't be perfect.
1538  */
1539 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1540 {
1541 	struct ceph_mds_session *session = arg;
1542 	struct ceph_inode_info *ci = ceph_inode(inode);
1543 	int used, wanted, oissued, mine;
1544 
1545 	if (session->s_trim_caps <= 0)
1546 		return -1;
1547 
1548 	spin_lock(&ci->i_ceph_lock);
1549 	mine = cap->issued | cap->implemented;
1550 	used = __ceph_caps_used(ci);
1551 	wanted = __ceph_caps_file_wanted(ci);
1552 	oissued = __ceph_caps_issued_other(ci, cap);
1553 
1554 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1555 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1556 	     ceph_cap_string(used), ceph_cap_string(wanted));
1557 	if (cap == ci->i_auth_cap) {
1558 		if (ci->i_dirty_caps || ci->i_flushing_caps ||
1559 		    !list_empty(&ci->i_cap_snaps))
1560 			goto out;
1561 		if ((used | wanted) & CEPH_CAP_ANY_WR)
1562 			goto out;
1563 		/* Note: it's possible that i_filelock_ref becomes non-zero
1564 		 * after dropping auth caps. It doesn't hurt because reply
1565 		 * of lock mds request will re-add auth caps. */
1566 		if (atomic_read(&ci->i_filelock_ref) > 0)
1567 			goto out;
1568 	}
1569 	/* The inode has cached pages, but it's no longer used.
1570 	 * we can safely drop it */
1571 	if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1572 	    !(oissued & CEPH_CAP_FILE_CACHE)) {
1573 	  used = 0;
1574 	  oissued = 0;
1575 	}
1576 	if ((used | wanted) & ~oissued & mine)
1577 		goto out;   /* we need these caps */
1578 
1579 	if (oissued) {
1580 		/* we aren't the only cap.. just remove us */
1581 		__ceph_remove_cap(cap, true);
1582 		session->s_trim_caps--;
1583 	} else {
1584 		struct dentry *dentry;
1585 		/* try dropping referring dentries */
1586 		spin_unlock(&ci->i_ceph_lock);
1587 		dentry = d_find_any_alias(inode);
1588 		if (dentry && drop_negative_children(dentry)) {
1589 			int count;
1590 			dput(dentry);
1591 			d_prune_aliases(inode);
1592 			count = atomic_read(&inode->i_count);
1593 			if (count == 1)
1594 				session->s_trim_caps--;
1595 			dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1596 			     inode, cap, count);
1597 		} else {
1598 			dput(dentry);
1599 		}
1600 		return 0;
1601 	}
1602 
1603 out:
1604 	spin_unlock(&ci->i_ceph_lock);
1605 	return 0;
1606 }
1607 
1608 /*
1609  * Trim session cap count down to some max number.
1610  */
1611 int ceph_trim_caps(struct ceph_mds_client *mdsc,
1612 		   struct ceph_mds_session *session,
1613 		   int max_caps)
1614 {
1615 	int trim_caps = session->s_nr_caps - max_caps;
1616 
1617 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1618 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1619 	if (trim_caps > 0) {
1620 		session->s_trim_caps = trim_caps;
1621 		iterate_session_caps(session, trim_caps_cb, session);
1622 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1623 		     session->s_mds, session->s_nr_caps, max_caps,
1624 			trim_caps - session->s_trim_caps);
1625 		session->s_trim_caps = 0;
1626 	}
1627 
1628 	ceph_send_cap_releases(mdsc, session);
1629 	return 0;
1630 }
1631 
1632 static int check_caps_flush(struct ceph_mds_client *mdsc,
1633 			    u64 want_flush_tid)
1634 {
1635 	int ret = 1;
1636 
1637 	spin_lock(&mdsc->cap_dirty_lock);
1638 	if (!list_empty(&mdsc->cap_flush_list)) {
1639 		struct ceph_cap_flush *cf =
1640 			list_first_entry(&mdsc->cap_flush_list,
1641 					 struct ceph_cap_flush, g_list);
1642 		if (cf->tid <= want_flush_tid) {
1643 			dout("check_caps_flush still flushing tid "
1644 			     "%llu <= %llu\n", cf->tid, want_flush_tid);
1645 			ret = 0;
1646 		}
1647 	}
1648 	spin_unlock(&mdsc->cap_dirty_lock);
1649 	return ret;
1650 }
1651 
1652 /*
1653  * flush all dirty inode data to disk.
1654  *
1655  * returns true if we've flushed through want_flush_tid
1656  */
1657 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1658 			    u64 want_flush_tid)
1659 {
1660 	dout("check_caps_flush want %llu\n", want_flush_tid);
1661 
1662 	wait_event(mdsc->cap_flushing_wq,
1663 		   check_caps_flush(mdsc, want_flush_tid));
1664 
1665 	dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1666 }
1667 
1668 /*
1669  * called under s_mutex
1670  */
1671 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1672 			    struct ceph_mds_session *session)
1673 {
1674 	struct ceph_msg *msg = NULL;
1675 	struct ceph_mds_cap_release *head;
1676 	struct ceph_mds_cap_item *item;
1677 	struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc;
1678 	struct ceph_cap *cap;
1679 	LIST_HEAD(tmp_list);
1680 	int num_cap_releases;
1681 	__le32	barrier, *cap_barrier;
1682 
1683 	down_read(&osdc->lock);
1684 	barrier = cpu_to_le32(osdc->epoch_barrier);
1685 	up_read(&osdc->lock);
1686 
1687 	spin_lock(&session->s_cap_lock);
1688 again:
1689 	list_splice_init(&session->s_cap_releases, &tmp_list);
1690 	num_cap_releases = session->s_num_cap_releases;
1691 	session->s_num_cap_releases = 0;
1692 	spin_unlock(&session->s_cap_lock);
1693 
1694 	while (!list_empty(&tmp_list)) {
1695 		if (!msg) {
1696 			msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1697 					PAGE_SIZE, GFP_NOFS, false);
1698 			if (!msg)
1699 				goto out_err;
1700 			head = msg->front.iov_base;
1701 			head->num = cpu_to_le32(0);
1702 			msg->front.iov_len = sizeof(*head);
1703 
1704 			msg->hdr.version = cpu_to_le16(2);
1705 			msg->hdr.compat_version = cpu_to_le16(1);
1706 		}
1707 
1708 		cap = list_first_entry(&tmp_list, struct ceph_cap,
1709 					session_caps);
1710 		list_del(&cap->session_caps);
1711 		num_cap_releases--;
1712 
1713 		head = msg->front.iov_base;
1714 		le32_add_cpu(&head->num, 1);
1715 		item = msg->front.iov_base + msg->front.iov_len;
1716 		item->ino = cpu_to_le64(cap->cap_ino);
1717 		item->cap_id = cpu_to_le64(cap->cap_id);
1718 		item->migrate_seq = cpu_to_le32(cap->mseq);
1719 		item->seq = cpu_to_le32(cap->issue_seq);
1720 		msg->front.iov_len += sizeof(*item);
1721 
1722 		ceph_put_cap(mdsc, cap);
1723 
1724 		if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1725 			// Append cap_barrier field
1726 			cap_barrier = msg->front.iov_base + msg->front.iov_len;
1727 			*cap_barrier = barrier;
1728 			msg->front.iov_len += sizeof(*cap_barrier);
1729 
1730 			msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1731 			dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1732 			ceph_con_send(&session->s_con, msg);
1733 			msg = NULL;
1734 		}
1735 	}
1736 
1737 	BUG_ON(num_cap_releases != 0);
1738 
1739 	spin_lock(&session->s_cap_lock);
1740 	if (!list_empty(&session->s_cap_releases))
1741 		goto again;
1742 	spin_unlock(&session->s_cap_lock);
1743 
1744 	if (msg) {
1745 		// Append cap_barrier field
1746 		cap_barrier = msg->front.iov_base + msg->front.iov_len;
1747 		*cap_barrier = barrier;
1748 		msg->front.iov_len += sizeof(*cap_barrier);
1749 
1750 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1751 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1752 		ceph_con_send(&session->s_con, msg);
1753 	}
1754 	return;
1755 out_err:
1756 	pr_err("send_cap_releases mds%d, failed to allocate message\n",
1757 		session->s_mds);
1758 	spin_lock(&session->s_cap_lock);
1759 	list_splice(&tmp_list, &session->s_cap_releases);
1760 	session->s_num_cap_releases += num_cap_releases;
1761 	spin_unlock(&session->s_cap_lock);
1762 }
1763 
1764 /*
1765  * requests
1766  */
1767 
1768 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1769 				    struct inode *dir)
1770 {
1771 	struct ceph_inode_info *ci = ceph_inode(dir);
1772 	struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1773 	struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1774 	size_t size = sizeof(struct ceph_mds_reply_dir_entry);
1775 	int order, num_entries;
1776 
1777 	spin_lock(&ci->i_ceph_lock);
1778 	num_entries = ci->i_files + ci->i_subdirs;
1779 	spin_unlock(&ci->i_ceph_lock);
1780 	num_entries = max(num_entries, 1);
1781 	num_entries = min(num_entries, opt->max_readdir);
1782 
1783 	order = get_order(size * num_entries);
1784 	while (order >= 0) {
1785 		rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
1786 							     __GFP_NOWARN,
1787 							     order);
1788 		if (rinfo->dir_entries)
1789 			break;
1790 		order--;
1791 	}
1792 	if (!rinfo->dir_entries)
1793 		return -ENOMEM;
1794 
1795 	num_entries = (PAGE_SIZE << order) / size;
1796 	num_entries = min(num_entries, opt->max_readdir);
1797 
1798 	rinfo->dir_buf_size = PAGE_SIZE << order;
1799 	req->r_num_caps = num_entries + 1;
1800 	req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1801 	req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1802 	return 0;
1803 }
1804 
1805 /*
1806  * Create an mds request.
1807  */
1808 struct ceph_mds_request *
1809 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1810 {
1811 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1812 	struct timespec64 ts;
1813 
1814 	if (!req)
1815 		return ERR_PTR(-ENOMEM);
1816 
1817 	mutex_init(&req->r_fill_mutex);
1818 	req->r_mdsc = mdsc;
1819 	req->r_started = jiffies;
1820 	req->r_resend_mds = -1;
1821 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1822 	INIT_LIST_HEAD(&req->r_unsafe_target_item);
1823 	req->r_fmode = -1;
1824 	kref_init(&req->r_kref);
1825 	RB_CLEAR_NODE(&req->r_node);
1826 	INIT_LIST_HEAD(&req->r_wait);
1827 	init_completion(&req->r_completion);
1828 	init_completion(&req->r_safe_completion);
1829 	INIT_LIST_HEAD(&req->r_unsafe_item);
1830 
1831 	ktime_get_coarse_real_ts64(&ts);
1832 	req->r_stamp = timespec64_trunc(ts, mdsc->fsc->sb->s_time_gran);
1833 
1834 	req->r_op = op;
1835 	req->r_direct_mode = mode;
1836 	return req;
1837 }
1838 
1839 /*
1840  * return oldest (lowest) request, tid in request tree, 0 if none.
1841  *
1842  * called under mdsc->mutex.
1843  */
1844 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1845 {
1846 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1847 		return NULL;
1848 	return rb_entry(rb_first(&mdsc->request_tree),
1849 			struct ceph_mds_request, r_node);
1850 }
1851 
1852 static inline  u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1853 {
1854 	return mdsc->oldest_tid;
1855 }
1856 
1857 /*
1858  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1859  * on build_path_from_dentry in fs/cifs/dir.c.
1860  *
1861  * If @stop_on_nosnap, generate path relative to the first non-snapped
1862  * inode.
1863  *
1864  * Encode hidden .snap dirs as a double /, i.e.
1865  *   foo/.snap/bar -> foo//bar
1866  */
1867 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1868 			   int stop_on_nosnap)
1869 {
1870 	struct dentry *temp;
1871 	char *path;
1872 	int len, pos;
1873 	unsigned seq;
1874 
1875 	if (!dentry)
1876 		return ERR_PTR(-EINVAL);
1877 
1878 retry:
1879 	len = 0;
1880 	seq = read_seqbegin(&rename_lock);
1881 	rcu_read_lock();
1882 	for (temp = dentry; !IS_ROOT(temp);) {
1883 		struct inode *inode = d_inode(temp);
1884 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1885 			len++;  /* slash only */
1886 		else if (stop_on_nosnap && inode &&
1887 			 ceph_snap(inode) == CEPH_NOSNAP)
1888 			break;
1889 		else
1890 			len += 1 + temp->d_name.len;
1891 		temp = temp->d_parent;
1892 	}
1893 	rcu_read_unlock();
1894 	if (len)
1895 		len--;  /* no leading '/' */
1896 
1897 	path = kmalloc(len+1, GFP_NOFS);
1898 	if (!path)
1899 		return ERR_PTR(-ENOMEM);
1900 	pos = len;
1901 	path[pos] = 0;	/* trailing null */
1902 	rcu_read_lock();
1903 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1904 		struct inode *inode;
1905 
1906 		spin_lock(&temp->d_lock);
1907 		inode = d_inode(temp);
1908 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1909 			dout("build_path path+%d: %p SNAPDIR\n",
1910 			     pos, temp);
1911 		} else if (stop_on_nosnap && inode &&
1912 			   ceph_snap(inode) == CEPH_NOSNAP) {
1913 			spin_unlock(&temp->d_lock);
1914 			break;
1915 		} else {
1916 			pos -= temp->d_name.len;
1917 			if (pos < 0) {
1918 				spin_unlock(&temp->d_lock);
1919 				break;
1920 			}
1921 			strncpy(path + pos, temp->d_name.name,
1922 				temp->d_name.len);
1923 		}
1924 		spin_unlock(&temp->d_lock);
1925 		if (pos)
1926 			path[--pos] = '/';
1927 		temp = temp->d_parent;
1928 	}
1929 	rcu_read_unlock();
1930 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1931 		pr_err("build_path did not end path lookup where "
1932 		       "expected, namelen is %d, pos is %d\n", len, pos);
1933 		/* presumably this is only possible if racing with a
1934 		   rename of one of the parent directories (we can not
1935 		   lock the dentries above us to prevent this, but
1936 		   retrying should be harmless) */
1937 		kfree(path);
1938 		goto retry;
1939 	}
1940 
1941 	*base = ceph_ino(d_inode(temp));
1942 	*plen = len;
1943 	dout("build_path on %p %d built %llx '%.*s'\n",
1944 	     dentry, d_count(dentry), *base, len, path);
1945 	return path;
1946 }
1947 
1948 static int build_dentry_path(struct dentry *dentry, struct inode *dir,
1949 			     const char **ppath, int *ppathlen, u64 *pino,
1950 			     int *pfreepath)
1951 {
1952 	char *path;
1953 
1954 	rcu_read_lock();
1955 	if (!dir)
1956 		dir = d_inode_rcu(dentry->d_parent);
1957 	if (dir && ceph_snap(dir) == CEPH_NOSNAP) {
1958 		*pino = ceph_ino(dir);
1959 		rcu_read_unlock();
1960 		*ppath = dentry->d_name.name;
1961 		*ppathlen = dentry->d_name.len;
1962 		return 0;
1963 	}
1964 	rcu_read_unlock();
1965 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1966 	if (IS_ERR(path))
1967 		return PTR_ERR(path);
1968 	*ppath = path;
1969 	*pfreepath = 1;
1970 	return 0;
1971 }
1972 
1973 static int build_inode_path(struct inode *inode,
1974 			    const char **ppath, int *ppathlen, u64 *pino,
1975 			    int *pfreepath)
1976 {
1977 	struct dentry *dentry;
1978 	char *path;
1979 
1980 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1981 		*pino = ceph_ino(inode);
1982 		*ppathlen = 0;
1983 		return 0;
1984 	}
1985 	dentry = d_find_alias(inode);
1986 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1987 	dput(dentry);
1988 	if (IS_ERR(path))
1989 		return PTR_ERR(path);
1990 	*ppath = path;
1991 	*pfreepath = 1;
1992 	return 0;
1993 }
1994 
1995 /*
1996  * request arguments may be specified via an inode *, a dentry *, or
1997  * an explicit ino+path.
1998  */
1999 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
2000 				  struct inode *rdiri, const char *rpath,
2001 				  u64 rino, const char **ppath, int *pathlen,
2002 				  u64 *ino, int *freepath)
2003 {
2004 	int r = 0;
2005 
2006 	if (rinode) {
2007 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
2008 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
2009 		     ceph_snap(rinode));
2010 	} else if (rdentry) {
2011 		r = build_dentry_path(rdentry, rdiri, ppath, pathlen, ino,
2012 					freepath);
2013 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
2014 		     *ppath);
2015 	} else if (rpath || rino) {
2016 		*ino = rino;
2017 		*ppath = rpath;
2018 		*pathlen = rpath ? strlen(rpath) : 0;
2019 		dout(" path %.*s\n", *pathlen, rpath);
2020 	}
2021 
2022 	return r;
2023 }
2024 
2025 /*
2026  * called under mdsc->mutex
2027  */
2028 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
2029 					       struct ceph_mds_request *req,
2030 					       int mds, bool drop_cap_releases)
2031 {
2032 	struct ceph_msg *msg;
2033 	struct ceph_mds_request_head *head;
2034 	const char *path1 = NULL;
2035 	const char *path2 = NULL;
2036 	u64 ino1 = 0, ino2 = 0;
2037 	int pathlen1 = 0, pathlen2 = 0;
2038 	int freepath1 = 0, freepath2 = 0;
2039 	int len;
2040 	u16 releases;
2041 	void *p, *end;
2042 	int ret;
2043 
2044 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
2045 			      req->r_parent, req->r_path1, req->r_ino1.ino,
2046 			      &path1, &pathlen1, &ino1, &freepath1);
2047 	if (ret < 0) {
2048 		msg = ERR_PTR(ret);
2049 		goto out;
2050 	}
2051 
2052 	ret = set_request_path_attr(NULL, req->r_old_dentry,
2053 			      req->r_old_dentry_dir,
2054 			      req->r_path2, req->r_ino2.ino,
2055 			      &path2, &pathlen2, &ino2, &freepath2);
2056 	if (ret < 0) {
2057 		msg = ERR_PTR(ret);
2058 		goto out_free1;
2059 	}
2060 
2061 	len = sizeof(*head) +
2062 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
2063 		sizeof(struct ceph_timespec);
2064 
2065 	/* calculate (max) length for cap releases */
2066 	len += sizeof(struct ceph_mds_request_release) *
2067 		(!!req->r_inode_drop + !!req->r_dentry_drop +
2068 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
2069 	if (req->r_dentry_drop)
2070 		len += req->r_dentry->d_name.len;
2071 	if (req->r_old_dentry_drop)
2072 		len += req->r_old_dentry->d_name.len;
2073 
2074 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
2075 	if (!msg) {
2076 		msg = ERR_PTR(-ENOMEM);
2077 		goto out_free2;
2078 	}
2079 
2080 	msg->hdr.version = cpu_to_le16(2);
2081 	msg->hdr.tid = cpu_to_le64(req->r_tid);
2082 
2083 	head = msg->front.iov_base;
2084 	p = msg->front.iov_base + sizeof(*head);
2085 	end = msg->front.iov_base + msg->front.iov_len;
2086 
2087 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
2088 	head->op = cpu_to_le32(req->r_op);
2089 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
2090 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
2091 	head->args = req->r_args;
2092 
2093 	ceph_encode_filepath(&p, end, ino1, path1);
2094 	ceph_encode_filepath(&p, end, ino2, path2);
2095 
2096 	/* make note of release offset, in case we need to replay */
2097 	req->r_request_release_offset = p - msg->front.iov_base;
2098 
2099 	/* cap releases */
2100 	releases = 0;
2101 	if (req->r_inode_drop)
2102 		releases += ceph_encode_inode_release(&p,
2103 		      req->r_inode ? req->r_inode : d_inode(req->r_dentry),
2104 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
2105 	if (req->r_dentry_drop)
2106 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
2107 				req->r_parent, mds, req->r_dentry_drop,
2108 				req->r_dentry_unless);
2109 	if (req->r_old_dentry_drop)
2110 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
2111 				req->r_old_dentry_dir, mds,
2112 				req->r_old_dentry_drop,
2113 				req->r_old_dentry_unless);
2114 	if (req->r_old_inode_drop)
2115 		releases += ceph_encode_inode_release(&p,
2116 		      d_inode(req->r_old_dentry),
2117 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
2118 
2119 	if (drop_cap_releases) {
2120 		releases = 0;
2121 		p = msg->front.iov_base + req->r_request_release_offset;
2122 	}
2123 
2124 	head->num_releases = cpu_to_le16(releases);
2125 
2126 	/* time stamp */
2127 	{
2128 		struct ceph_timespec ts;
2129 		ceph_encode_timespec64(&ts, &req->r_stamp);
2130 		ceph_encode_copy(&p, &ts, sizeof(ts));
2131 	}
2132 
2133 	BUG_ON(p > end);
2134 	msg->front.iov_len = p - msg->front.iov_base;
2135 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2136 
2137 	if (req->r_pagelist) {
2138 		struct ceph_pagelist *pagelist = req->r_pagelist;
2139 		refcount_inc(&pagelist->refcnt);
2140 		ceph_msg_data_add_pagelist(msg, pagelist);
2141 		msg->hdr.data_len = cpu_to_le32(pagelist->length);
2142 	} else {
2143 		msg->hdr.data_len = 0;
2144 	}
2145 
2146 	msg->hdr.data_off = cpu_to_le16(0);
2147 
2148 out_free2:
2149 	if (freepath2)
2150 		kfree((char *)path2);
2151 out_free1:
2152 	if (freepath1)
2153 		kfree((char *)path1);
2154 out:
2155 	return msg;
2156 }
2157 
2158 /*
2159  * called under mdsc->mutex if error, under no mutex if
2160  * success.
2161  */
2162 static void complete_request(struct ceph_mds_client *mdsc,
2163 			     struct ceph_mds_request *req)
2164 {
2165 	if (req->r_callback)
2166 		req->r_callback(mdsc, req);
2167 	else
2168 		complete_all(&req->r_completion);
2169 }
2170 
2171 /*
2172  * called under mdsc->mutex
2173  */
2174 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2175 				  struct ceph_mds_request *req,
2176 				  int mds, bool drop_cap_releases)
2177 {
2178 	struct ceph_mds_request_head *rhead;
2179 	struct ceph_msg *msg;
2180 	int flags = 0;
2181 
2182 	req->r_attempts++;
2183 	if (req->r_inode) {
2184 		struct ceph_cap *cap =
2185 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2186 
2187 		if (cap)
2188 			req->r_sent_on_mseq = cap->mseq;
2189 		else
2190 			req->r_sent_on_mseq = -1;
2191 	}
2192 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2193 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2194 
2195 	if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2196 		void *p;
2197 		/*
2198 		 * Replay.  Do not regenerate message (and rebuild
2199 		 * paths, etc.); just use the original message.
2200 		 * Rebuilding paths will break for renames because
2201 		 * d_move mangles the src name.
2202 		 */
2203 		msg = req->r_request;
2204 		rhead = msg->front.iov_base;
2205 
2206 		flags = le32_to_cpu(rhead->flags);
2207 		flags |= CEPH_MDS_FLAG_REPLAY;
2208 		rhead->flags = cpu_to_le32(flags);
2209 
2210 		if (req->r_target_inode)
2211 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2212 
2213 		rhead->num_retry = req->r_attempts - 1;
2214 
2215 		/* remove cap/dentry releases from message */
2216 		rhead->num_releases = 0;
2217 
2218 		/* time stamp */
2219 		p = msg->front.iov_base + req->r_request_release_offset;
2220 		{
2221 			struct ceph_timespec ts;
2222 			ceph_encode_timespec64(&ts, &req->r_stamp);
2223 			ceph_encode_copy(&p, &ts, sizeof(ts));
2224 		}
2225 
2226 		msg->front.iov_len = p - msg->front.iov_base;
2227 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2228 		return 0;
2229 	}
2230 
2231 	if (req->r_request) {
2232 		ceph_msg_put(req->r_request);
2233 		req->r_request = NULL;
2234 	}
2235 	msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2236 	if (IS_ERR(msg)) {
2237 		req->r_err = PTR_ERR(msg);
2238 		return PTR_ERR(msg);
2239 	}
2240 	req->r_request = msg;
2241 
2242 	rhead = msg->front.iov_base;
2243 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2244 	if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2245 		flags |= CEPH_MDS_FLAG_REPLAY;
2246 	if (req->r_parent)
2247 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2248 	rhead->flags = cpu_to_le32(flags);
2249 	rhead->num_fwd = req->r_num_fwd;
2250 	rhead->num_retry = req->r_attempts - 1;
2251 	rhead->ino = 0;
2252 
2253 	dout(" r_parent = %p\n", req->r_parent);
2254 	return 0;
2255 }
2256 
2257 /*
2258  * send request, or put it on the appropriate wait list.
2259  */
2260 static void __do_request(struct ceph_mds_client *mdsc,
2261 			struct ceph_mds_request *req)
2262 {
2263 	struct ceph_mds_session *session = NULL;
2264 	int mds = -1;
2265 	int err = 0;
2266 
2267 	if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
2268 		if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags))
2269 			__unregister_request(mdsc, req);
2270 		return;
2271 	}
2272 
2273 	if (req->r_timeout &&
2274 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2275 		dout("do_request timed out\n");
2276 		err = -EIO;
2277 		goto finish;
2278 	}
2279 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2280 		dout("do_request forced umount\n");
2281 		err = -EIO;
2282 		goto finish;
2283 	}
2284 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) {
2285 		if (mdsc->mdsmap_err) {
2286 			err = mdsc->mdsmap_err;
2287 			dout("do_request mdsmap err %d\n", err);
2288 			goto finish;
2289 		}
2290 		if (mdsc->mdsmap->m_epoch == 0) {
2291 			dout("do_request no mdsmap, waiting for map\n");
2292 			list_add(&req->r_wait, &mdsc->waiting_for_map);
2293 			return;
2294 		}
2295 		if (!(mdsc->fsc->mount_options->flags &
2296 		      CEPH_MOUNT_OPT_MOUNTWAIT) &&
2297 		    !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) {
2298 			err = -ENOENT;
2299 			pr_info("probably no mds server is up\n");
2300 			goto finish;
2301 		}
2302 	}
2303 
2304 	put_request_session(req);
2305 
2306 	mds = __choose_mds(mdsc, req);
2307 	if (mds < 0 ||
2308 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2309 		dout("do_request no mds or not active, waiting for map\n");
2310 		list_add(&req->r_wait, &mdsc->waiting_for_map);
2311 		return;
2312 	}
2313 
2314 	/* get, open session */
2315 	session = __ceph_lookup_mds_session(mdsc, mds);
2316 	if (!session) {
2317 		session = register_session(mdsc, mds);
2318 		if (IS_ERR(session)) {
2319 			err = PTR_ERR(session);
2320 			goto finish;
2321 		}
2322 	}
2323 	req->r_session = get_session(session);
2324 
2325 	dout("do_request mds%d session %p state %s\n", mds, session,
2326 	     ceph_session_state_name(session->s_state));
2327 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2328 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
2329 		if (session->s_state == CEPH_MDS_SESSION_REJECTED) {
2330 			err = -EACCES;
2331 			goto out_session;
2332 		}
2333 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
2334 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
2335 			__open_session(mdsc, session);
2336 		list_add(&req->r_wait, &session->s_waiting);
2337 		goto out_session;
2338 	}
2339 
2340 	/* send request */
2341 	req->r_resend_mds = -1;   /* forget any previous mds hint */
2342 
2343 	if (req->r_request_started == 0)   /* note request start time */
2344 		req->r_request_started = jiffies;
2345 
2346 	err = __prepare_send_request(mdsc, req, mds, false);
2347 	if (!err) {
2348 		ceph_msg_get(req->r_request);
2349 		ceph_con_send(&session->s_con, req->r_request);
2350 	}
2351 
2352 out_session:
2353 	ceph_put_mds_session(session);
2354 finish:
2355 	if (err) {
2356 		dout("__do_request early error %d\n", err);
2357 		req->r_err = err;
2358 		complete_request(mdsc, req);
2359 		__unregister_request(mdsc, req);
2360 	}
2361 	return;
2362 }
2363 
2364 /*
2365  * called under mdsc->mutex
2366  */
2367 static void __wake_requests(struct ceph_mds_client *mdsc,
2368 			    struct list_head *head)
2369 {
2370 	struct ceph_mds_request *req;
2371 	LIST_HEAD(tmp_list);
2372 
2373 	list_splice_init(head, &tmp_list);
2374 
2375 	while (!list_empty(&tmp_list)) {
2376 		req = list_entry(tmp_list.next,
2377 				 struct ceph_mds_request, r_wait);
2378 		list_del_init(&req->r_wait);
2379 		dout(" wake request %p tid %llu\n", req, req->r_tid);
2380 		__do_request(mdsc, req);
2381 	}
2382 }
2383 
2384 /*
2385  * Wake up threads with requests pending for @mds, so that they can
2386  * resubmit their requests to a possibly different mds.
2387  */
2388 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2389 {
2390 	struct ceph_mds_request *req;
2391 	struct rb_node *p = rb_first(&mdsc->request_tree);
2392 
2393 	dout("kick_requests mds%d\n", mds);
2394 	while (p) {
2395 		req = rb_entry(p, struct ceph_mds_request, r_node);
2396 		p = rb_next(p);
2397 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2398 			continue;
2399 		if (req->r_attempts > 0)
2400 			continue; /* only new requests */
2401 		if (req->r_session &&
2402 		    req->r_session->s_mds == mds) {
2403 			dout(" kicking tid %llu\n", req->r_tid);
2404 			list_del_init(&req->r_wait);
2405 			__do_request(mdsc, req);
2406 		}
2407 	}
2408 }
2409 
2410 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2411 			      struct ceph_mds_request *req)
2412 {
2413 	dout("submit_request on %p\n", req);
2414 	mutex_lock(&mdsc->mutex);
2415 	__register_request(mdsc, req, NULL);
2416 	__do_request(mdsc, req);
2417 	mutex_unlock(&mdsc->mutex);
2418 }
2419 
2420 /*
2421  * Synchrously perform an mds request.  Take care of all of the
2422  * session setup, forwarding, retry details.
2423  */
2424 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2425 			 struct inode *dir,
2426 			 struct ceph_mds_request *req)
2427 {
2428 	int err;
2429 
2430 	dout("do_request on %p\n", req);
2431 
2432 	/* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */
2433 	if (req->r_inode)
2434 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2435 	if (req->r_parent)
2436 		ceph_get_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
2437 	if (req->r_old_dentry_dir)
2438 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2439 				  CEPH_CAP_PIN);
2440 
2441 	/* issue */
2442 	mutex_lock(&mdsc->mutex);
2443 	__register_request(mdsc, req, dir);
2444 	__do_request(mdsc, req);
2445 
2446 	if (req->r_err) {
2447 		err = req->r_err;
2448 		goto out;
2449 	}
2450 
2451 	/* wait */
2452 	mutex_unlock(&mdsc->mutex);
2453 	dout("do_request waiting\n");
2454 	if (!req->r_timeout && req->r_wait_for_completion) {
2455 		err = req->r_wait_for_completion(mdsc, req);
2456 	} else {
2457 		long timeleft = wait_for_completion_killable_timeout(
2458 					&req->r_completion,
2459 					ceph_timeout_jiffies(req->r_timeout));
2460 		if (timeleft > 0)
2461 			err = 0;
2462 		else if (!timeleft)
2463 			err = -EIO;  /* timed out */
2464 		else
2465 			err = timeleft;  /* killed */
2466 	}
2467 	dout("do_request waited, got %d\n", err);
2468 	mutex_lock(&mdsc->mutex);
2469 
2470 	/* only abort if we didn't race with a real reply */
2471 	if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
2472 		err = le32_to_cpu(req->r_reply_info.head->result);
2473 	} else if (err < 0) {
2474 		dout("aborted request %lld with %d\n", req->r_tid, err);
2475 
2476 		/*
2477 		 * ensure we aren't running concurrently with
2478 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2479 		 * rely on locks (dir mutex) held by our caller.
2480 		 */
2481 		mutex_lock(&req->r_fill_mutex);
2482 		req->r_err = err;
2483 		set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
2484 		mutex_unlock(&req->r_fill_mutex);
2485 
2486 		if (req->r_parent &&
2487 		    (req->r_op & CEPH_MDS_OP_WRITE))
2488 			ceph_invalidate_dir_request(req);
2489 	} else {
2490 		err = req->r_err;
2491 	}
2492 
2493 out:
2494 	mutex_unlock(&mdsc->mutex);
2495 	dout("do_request %p done, result %d\n", req, err);
2496 	return err;
2497 }
2498 
2499 /*
2500  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2501  * namespace request.
2502  */
2503 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2504 {
2505 	struct inode *dir = req->r_parent;
2506 	struct inode *old_dir = req->r_old_dentry_dir;
2507 
2508 	dout("invalidate_dir_request %p %p (complete, lease(s))\n", dir, old_dir);
2509 
2510 	ceph_dir_clear_complete(dir);
2511 	if (old_dir)
2512 		ceph_dir_clear_complete(old_dir);
2513 	if (req->r_dentry)
2514 		ceph_invalidate_dentry_lease(req->r_dentry);
2515 	if (req->r_old_dentry)
2516 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2517 }
2518 
2519 /*
2520  * Handle mds reply.
2521  *
2522  * We take the session mutex and parse and process the reply immediately.
2523  * This preserves the logical ordering of replies, capabilities, etc., sent
2524  * by the MDS as they are applied to our local cache.
2525  */
2526 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2527 {
2528 	struct ceph_mds_client *mdsc = session->s_mdsc;
2529 	struct ceph_mds_request *req;
2530 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2531 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2532 	struct ceph_snap_realm *realm;
2533 	u64 tid;
2534 	int err, result;
2535 	int mds = session->s_mds;
2536 
2537 	if (msg->front.iov_len < sizeof(*head)) {
2538 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2539 		ceph_msg_dump(msg);
2540 		return;
2541 	}
2542 
2543 	/* get request, session */
2544 	tid = le64_to_cpu(msg->hdr.tid);
2545 	mutex_lock(&mdsc->mutex);
2546 	req = lookup_get_request(mdsc, tid);
2547 	if (!req) {
2548 		dout("handle_reply on unknown tid %llu\n", tid);
2549 		mutex_unlock(&mdsc->mutex);
2550 		return;
2551 	}
2552 	dout("handle_reply %p\n", req);
2553 
2554 	/* correct session? */
2555 	if (req->r_session != session) {
2556 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2557 		       " not mds%d\n", tid, session->s_mds,
2558 		       req->r_session ? req->r_session->s_mds : -1);
2559 		mutex_unlock(&mdsc->mutex);
2560 		goto out;
2561 	}
2562 
2563 	/* dup? */
2564 	if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) ||
2565 	    (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) {
2566 		pr_warn("got a dup %s reply on %llu from mds%d\n",
2567 			   head->safe ? "safe" : "unsafe", tid, mds);
2568 		mutex_unlock(&mdsc->mutex);
2569 		goto out;
2570 	}
2571 	if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) {
2572 		pr_warn("got unsafe after safe on %llu from mds%d\n",
2573 			   tid, mds);
2574 		mutex_unlock(&mdsc->mutex);
2575 		goto out;
2576 	}
2577 
2578 	result = le32_to_cpu(head->result);
2579 
2580 	/*
2581 	 * Handle an ESTALE
2582 	 * if we're not talking to the authority, send to them
2583 	 * if the authority has changed while we weren't looking,
2584 	 * send to new authority
2585 	 * Otherwise we just have to return an ESTALE
2586 	 */
2587 	if (result == -ESTALE) {
2588 		dout("got ESTALE on request %llu\n", req->r_tid);
2589 		req->r_resend_mds = -1;
2590 		if (req->r_direct_mode != USE_AUTH_MDS) {
2591 			dout("not using auth, setting for that now\n");
2592 			req->r_direct_mode = USE_AUTH_MDS;
2593 			__do_request(mdsc, req);
2594 			mutex_unlock(&mdsc->mutex);
2595 			goto out;
2596 		} else  {
2597 			int mds = __choose_mds(mdsc, req);
2598 			if (mds >= 0 && mds != req->r_session->s_mds) {
2599 				dout("but auth changed, so resending\n");
2600 				__do_request(mdsc, req);
2601 				mutex_unlock(&mdsc->mutex);
2602 				goto out;
2603 			}
2604 		}
2605 		dout("have to return ESTALE on request %llu\n", req->r_tid);
2606 	}
2607 
2608 
2609 	if (head->safe) {
2610 		set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags);
2611 		__unregister_request(mdsc, req);
2612 
2613 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2614 			/*
2615 			 * We already handled the unsafe response, now do the
2616 			 * cleanup.  No need to examine the response; the MDS
2617 			 * doesn't include any result info in the safe
2618 			 * response.  And even if it did, there is nothing
2619 			 * useful we could do with a revised return value.
2620 			 */
2621 			dout("got safe reply %llu, mds%d\n", tid, mds);
2622 
2623 			/* last unsafe request during umount? */
2624 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2625 				complete_all(&mdsc->safe_umount_waiters);
2626 			mutex_unlock(&mdsc->mutex);
2627 			goto out;
2628 		}
2629 	} else {
2630 		set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags);
2631 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2632 		if (req->r_unsafe_dir) {
2633 			struct ceph_inode_info *ci =
2634 					ceph_inode(req->r_unsafe_dir);
2635 			spin_lock(&ci->i_unsafe_lock);
2636 			list_add_tail(&req->r_unsafe_dir_item,
2637 				      &ci->i_unsafe_dirops);
2638 			spin_unlock(&ci->i_unsafe_lock);
2639 		}
2640 	}
2641 
2642 	dout("handle_reply tid %lld result %d\n", tid, result);
2643 	rinfo = &req->r_reply_info;
2644 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2645 	mutex_unlock(&mdsc->mutex);
2646 
2647 	mutex_lock(&session->s_mutex);
2648 	if (err < 0) {
2649 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2650 		ceph_msg_dump(msg);
2651 		goto out_err;
2652 	}
2653 
2654 	/* snap trace */
2655 	realm = NULL;
2656 	if (rinfo->snapblob_len) {
2657 		down_write(&mdsc->snap_rwsem);
2658 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2659 				rinfo->snapblob + rinfo->snapblob_len,
2660 				le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2661 				&realm);
2662 		downgrade_write(&mdsc->snap_rwsem);
2663 	} else {
2664 		down_read(&mdsc->snap_rwsem);
2665 	}
2666 
2667 	/* insert trace into our cache */
2668 	mutex_lock(&req->r_fill_mutex);
2669 	current->journal_info = req;
2670 	err = ceph_fill_trace(mdsc->fsc->sb, req);
2671 	if (err == 0) {
2672 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2673 				    req->r_op == CEPH_MDS_OP_LSSNAP))
2674 			ceph_readdir_prepopulate(req, req->r_session);
2675 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2676 	}
2677 	current->journal_info = NULL;
2678 	mutex_unlock(&req->r_fill_mutex);
2679 
2680 	up_read(&mdsc->snap_rwsem);
2681 	if (realm)
2682 		ceph_put_snap_realm(mdsc, realm);
2683 
2684 	if (err == 0 && req->r_target_inode &&
2685 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2686 		struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2687 		spin_lock(&ci->i_unsafe_lock);
2688 		list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2689 		spin_unlock(&ci->i_unsafe_lock);
2690 	}
2691 out_err:
2692 	mutex_lock(&mdsc->mutex);
2693 	if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
2694 		if (err) {
2695 			req->r_err = err;
2696 		} else {
2697 			req->r_reply =  ceph_msg_get(msg);
2698 			set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags);
2699 		}
2700 	} else {
2701 		dout("reply arrived after request %lld was aborted\n", tid);
2702 	}
2703 	mutex_unlock(&mdsc->mutex);
2704 
2705 	mutex_unlock(&session->s_mutex);
2706 
2707 	/* kick calling process */
2708 	complete_request(mdsc, req);
2709 out:
2710 	ceph_mdsc_put_request(req);
2711 	return;
2712 }
2713 
2714 
2715 
2716 /*
2717  * handle mds notification that our request has been forwarded.
2718  */
2719 static void handle_forward(struct ceph_mds_client *mdsc,
2720 			   struct ceph_mds_session *session,
2721 			   struct ceph_msg *msg)
2722 {
2723 	struct ceph_mds_request *req;
2724 	u64 tid = le64_to_cpu(msg->hdr.tid);
2725 	u32 next_mds;
2726 	u32 fwd_seq;
2727 	int err = -EINVAL;
2728 	void *p = msg->front.iov_base;
2729 	void *end = p + msg->front.iov_len;
2730 
2731 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2732 	next_mds = ceph_decode_32(&p);
2733 	fwd_seq = ceph_decode_32(&p);
2734 
2735 	mutex_lock(&mdsc->mutex);
2736 	req = lookup_get_request(mdsc, tid);
2737 	if (!req) {
2738 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2739 		goto out;  /* dup reply? */
2740 	}
2741 
2742 	if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
2743 		dout("forward tid %llu aborted, unregistering\n", tid);
2744 		__unregister_request(mdsc, req);
2745 	} else if (fwd_seq <= req->r_num_fwd) {
2746 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2747 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2748 	} else {
2749 		/* resend. forward race not possible; mds would drop */
2750 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2751 		BUG_ON(req->r_err);
2752 		BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags));
2753 		req->r_attempts = 0;
2754 		req->r_num_fwd = fwd_seq;
2755 		req->r_resend_mds = next_mds;
2756 		put_request_session(req);
2757 		__do_request(mdsc, req);
2758 	}
2759 	ceph_mdsc_put_request(req);
2760 out:
2761 	mutex_unlock(&mdsc->mutex);
2762 	return;
2763 
2764 bad:
2765 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2766 }
2767 
2768 /*
2769  * handle a mds session control message
2770  */
2771 static void handle_session(struct ceph_mds_session *session,
2772 			   struct ceph_msg *msg)
2773 {
2774 	struct ceph_mds_client *mdsc = session->s_mdsc;
2775 	u32 op;
2776 	u64 seq;
2777 	int mds = session->s_mds;
2778 	struct ceph_mds_session_head *h = msg->front.iov_base;
2779 	int wake = 0;
2780 
2781 	/* decode */
2782 	if (msg->front.iov_len < sizeof(*h))
2783 		goto bad;
2784 	op = le32_to_cpu(h->op);
2785 	seq = le64_to_cpu(h->seq);
2786 
2787 	mutex_lock(&mdsc->mutex);
2788 	if (op == CEPH_SESSION_CLOSE) {
2789 		get_session(session);
2790 		__unregister_session(mdsc, session);
2791 	}
2792 	/* FIXME: this ttl calculation is generous */
2793 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2794 	mutex_unlock(&mdsc->mutex);
2795 
2796 	mutex_lock(&session->s_mutex);
2797 
2798 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2799 	     mds, ceph_session_op_name(op), session,
2800 	     ceph_session_state_name(session->s_state), seq);
2801 
2802 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2803 		session->s_state = CEPH_MDS_SESSION_OPEN;
2804 		pr_info("mds%d came back\n", session->s_mds);
2805 	}
2806 
2807 	switch (op) {
2808 	case CEPH_SESSION_OPEN:
2809 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2810 			pr_info("mds%d reconnect success\n", session->s_mds);
2811 		session->s_state = CEPH_MDS_SESSION_OPEN;
2812 		renewed_caps(mdsc, session, 0);
2813 		wake = 1;
2814 		if (mdsc->stopping)
2815 			__close_session(mdsc, session);
2816 		break;
2817 
2818 	case CEPH_SESSION_RENEWCAPS:
2819 		if (session->s_renew_seq == seq)
2820 			renewed_caps(mdsc, session, 1);
2821 		break;
2822 
2823 	case CEPH_SESSION_CLOSE:
2824 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2825 			pr_info("mds%d reconnect denied\n", session->s_mds);
2826 		cleanup_session_requests(mdsc, session);
2827 		remove_session_caps(session);
2828 		wake = 2; /* for good measure */
2829 		wake_up_all(&mdsc->session_close_wq);
2830 		break;
2831 
2832 	case CEPH_SESSION_STALE:
2833 		pr_info("mds%d caps went stale, renewing\n",
2834 			session->s_mds);
2835 		spin_lock(&session->s_gen_ttl_lock);
2836 		session->s_cap_gen++;
2837 		session->s_cap_ttl = jiffies - 1;
2838 		spin_unlock(&session->s_gen_ttl_lock);
2839 		send_renew_caps(mdsc, session);
2840 		break;
2841 
2842 	case CEPH_SESSION_RECALL_STATE:
2843 		ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2844 		break;
2845 
2846 	case CEPH_SESSION_FLUSHMSG:
2847 		send_flushmsg_ack(mdsc, session, seq);
2848 		break;
2849 
2850 	case CEPH_SESSION_FORCE_RO:
2851 		dout("force_session_readonly %p\n", session);
2852 		spin_lock(&session->s_cap_lock);
2853 		session->s_readonly = true;
2854 		spin_unlock(&session->s_cap_lock);
2855 		wake_up_session_caps(session, 0);
2856 		break;
2857 
2858 	case CEPH_SESSION_REJECT:
2859 		WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING);
2860 		pr_info("mds%d rejected session\n", session->s_mds);
2861 		session->s_state = CEPH_MDS_SESSION_REJECTED;
2862 		cleanup_session_requests(mdsc, session);
2863 		remove_session_caps(session);
2864 		wake = 2; /* for good measure */
2865 		break;
2866 
2867 	default:
2868 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2869 		WARN_ON(1);
2870 	}
2871 
2872 	mutex_unlock(&session->s_mutex);
2873 	if (wake) {
2874 		mutex_lock(&mdsc->mutex);
2875 		__wake_requests(mdsc, &session->s_waiting);
2876 		if (wake == 2)
2877 			kick_requests(mdsc, mds);
2878 		mutex_unlock(&mdsc->mutex);
2879 	}
2880 	if (op == CEPH_SESSION_CLOSE)
2881 		ceph_put_mds_session(session);
2882 	return;
2883 
2884 bad:
2885 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2886 	       (int)msg->front.iov_len);
2887 	ceph_msg_dump(msg);
2888 	return;
2889 }
2890 
2891 
2892 /*
2893  * called under session->mutex.
2894  */
2895 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2896 				   struct ceph_mds_session *session)
2897 {
2898 	struct ceph_mds_request *req, *nreq;
2899 	struct rb_node *p;
2900 	int err;
2901 
2902 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2903 
2904 	mutex_lock(&mdsc->mutex);
2905 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2906 		err = __prepare_send_request(mdsc, req, session->s_mds, true);
2907 		if (!err) {
2908 			ceph_msg_get(req->r_request);
2909 			ceph_con_send(&session->s_con, req->r_request);
2910 		}
2911 	}
2912 
2913 	/*
2914 	 * also re-send old requests when MDS enters reconnect stage. So that MDS
2915 	 * can process completed request in clientreplay stage.
2916 	 */
2917 	p = rb_first(&mdsc->request_tree);
2918 	while (p) {
2919 		req = rb_entry(p, struct ceph_mds_request, r_node);
2920 		p = rb_next(p);
2921 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2922 			continue;
2923 		if (req->r_attempts == 0)
2924 			continue; /* only old requests */
2925 		if (req->r_session &&
2926 		    req->r_session->s_mds == session->s_mds) {
2927 			err = __prepare_send_request(mdsc, req,
2928 						     session->s_mds, true);
2929 			if (!err) {
2930 				ceph_msg_get(req->r_request);
2931 				ceph_con_send(&session->s_con, req->r_request);
2932 			}
2933 		}
2934 	}
2935 	mutex_unlock(&mdsc->mutex);
2936 }
2937 
2938 /*
2939  * Encode information about a cap for a reconnect with the MDS.
2940  */
2941 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2942 			  void *arg)
2943 {
2944 	union {
2945 		struct ceph_mds_cap_reconnect v2;
2946 		struct ceph_mds_cap_reconnect_v1 v1;
2947 	} rec;
2948 	struct ceph_inode_info *ci = cap->ci;
2949 	struct ceph_reconnect_state *recon_state = arg;
2950 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2951 	char *path;
2952 	int pathlen, err;
2953 	u64 pathbase;
2954 	u64 snap_follows;
2955 	struct dentry *dentry;
2956 
2957 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2958 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2959 	     ceph_cap_string(cap->issued));
2960 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2961 	if (err)
2962 		return err;
2963 
2964 	dentry = d_find_alias(inode);
2965 	if (dentry) {
2966 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2967 		if (IS_ERR(path)) {
2968 			err = PTR_ERR(path);
2969 			goto out_dput;
2970 		}
2971 	} else {
2972 		path = NULL;
2973 		pathlen = 0;
2974 		pathbase = 0;
2975 	}
2976 
2977 	spin_lock(&ci->i_ceph_lock);
2978 	cap->seq = 0;        /* reset cap seq */
2979 	cap->issue_seq = 0;  /* and issue_seq */
2980 	cap->mseq = 0;       /* and migrate_seq */
2981 	cap->cap_gen = cap->session->s_cap_gen;
2982 
2983 	if (recon_state->msg_version >= 2) {
2984 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2985 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2986 		rec.v2.issued = cpu_to_le32(cap->issued);
2987 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2988 		rec.v2.pathbase = cpu_to_le64(pathbase);
2989 		rec.v2.flock_len = (__force __le32)
2990 			((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1);
2991 	} else {
2992 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2993 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2994 		rec.v1.issued = cpu_to_le32(cap->issued);
2995 		rec.v1.size = cpu_to_le64(inode->i_size);
2996 		ceph_encode_timespec64(&rec.v1.mtime, &inode->i_mtime);
2997 		ceph_encode_timespec64(&rec.v1.atime, &inode->i_atime);
2998 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2999 		rec.v1.pathbase = cpu_to_le64(pathbase);
3000 	}
3001 
3002 	if (list_empty(&ci->i_cap_snaps)) {
3003 		snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0;
3004 	} else {
3005 		struct ceph_cap_snap *capsnap =
3006 			list_first_entry(&ci->i_cap_snaps,
3007 					 struct ceph_cap_snap, ci_item);
3008 		snap_follows = capsnap->follows;
3009 	}
3010 	spin_unlock(&ci->i_ceph_lock);
3011 
3012 	if (recon_state->msg_version >= 2) {
3013 		int num_fcntl_locks, num_flock_locks;
3014 		struct ceph_filelock *flocks = NULL;
3015 		size_t struct_len, total_len = 0;
3016 		u8 struct_v = 0;
3017 
3018 encode_again:
3019 		if (rec.v2.flock_len) {
3020 			ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
3021 		} else {
3022 			num_fcntl_locks = 0;
3023 			num_flock_locks = 0;
3024 		}
3025 		if (num_fcntl_locks + num_flock_locks > 0) {
3026 			flocks = kmalloc_array(num_fcntl_locks + num_flock_locks,
3027 					       sizeof(struct ceph_filelock),
3028 					       GFP_NOFS);
3029 			if (!flocks) {
3030 				err = -ENOMEM;
3031 				goto out_free;
3032 			}
3033 			err = ceph_encode_locks_to_buffer(inode, flocks,
3034 							  num_fcntl_locks,
3035 							  num_flock_locks);
3036 			if (err) {
3037 				kfree(flocks);
3038 				flocks = NULL;
3039 				if (err == -ENOSPC)
3040 					goto encode_again;
3041 				goto out_free;
3042 			}
3043 		} else {
3044 			kfree(flocks);
3045 			flocks = NULL;
3046 		}
3047 
3048 		if (recon_state->msg_version >= 3) {
3049 			/* version, compat_version and struct_len */
3050 			total_len = 2 * sizeof(u8) + sizeof(u32);
3051 			struct_v = 2;
3052 		}
3053 		/*
3054 		 * number of encoded locks is stable, so copy to pagelist
3055 		 */
3056 		struct_len = 2 * sizeof(u32) +
3057 			    (num_fcntl_locks + num_flock_locks) *
3058 			    sizeof(struct ceph_filelock);
3059 		rec.v2.flock_len = cpu_to_le32(struct_len);
3060 
3061 		struct_len += sizeof(rec.v2);
3062 		struct_len += sizeof(u32) + pathlen;
3063 
3064 		if (struct_v >= 2)
3065 			struct_len += sizeof(u64); /* snap_follows */
3066 
3067 		total_len += struct_len;
3068 		err = ceph_pagelist_reserve(pagelist, total_len);
3069 
3070 		if (!err) {
3071 			if (recon_state->msg_version >= 3) {
3072 				ceph_pagelist_encode_8(pagelist, struct_v);
3073 				ceph_pagelist_encode_8(pagelist, 1);
3074 				ceph_pagelist_encode_32(pagelist, struct_len);
3075 			}
3076 			ceph_pagelist_encode_string(pagelist, path, pathlen);
3077 			ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2));
3078 			ceph_locks_to_pagelist(flocks, pagelist,
3079 					       num_fcntl_locks,
3080 					       num_flock_locks);
3081 			if (struct_v >= 2)
3082 				ceph_pagelist_encode_64(pagelist, snap_follows);
3083 		}
3084 		kfree(flocks);
3085 	} else {
3086 		size_t size = sizeof(u32) + pathlen + sizeof(rec.v1);
3087 		err = ceph_pagelist_reserve(pagelist, size);
3088 		if (!err) {
3089 			ceph_pagelist_encode_string(pagelist, path, pathlen);
3090 			ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1));
3091 		}
3092 	}
3093 
3094 	recon_state->nr_caps++;
3095 out_free:
3096 	kfree(path);
3097 out_dput:
3098 	dput(dentry);
3099 	return err;
3100 }
3101 
3102 
3103 /*
3104  * If an MDS fails and recovers, clients need to reconnect in order to
3105  * reestablish shared state.  This includes all caps issued through
3106  * this session _and_ the snap_realm hierarchy.  Because it's not
3107  * clear which snap realms the mds cares about, we send everything we
3108  * know about.. that ensures we'll then get any new info the
3109  * recovering MDS might have.
3110  *
3111  * This is a relatively heavyweight operation, but it's rare.
3112  *
3113  * called with mdsc->mutex held.
3114  */
3115 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
3116 			       struct ceph_mds_session *session)
3117 {
3118 	struct ceph_msg *reply;
3119 	struct rb_node *p;
3120 	int mds = session->s_mds;
3121 	int err = -ENOMEM;
3122 	int s_nr_caps;
3123 	struct ceph_pagelist *pagelist;
3124 	struct ceph_reconnect_state recon_state;
3125 	LIST_HEAD(dispose);
3126 
3127 	pr_info("mds%d reconnect start\n", mds);
3128 
3129 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
3130 	if (!pagelist)
3131 		goto fail_nopagelist;
3132 	ceph_pagelist_init(pagelist);
3133 
3134 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
3135 	if (!reply)
3136 		goto fail_nomsg;
3137 
3138 	mutex_lock(&session->s_mutex);
3139 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
3140 	session->s_seq = 0;
3141 
3142 	dout("session %p state %s\n", session,
3143 	     ceph_session_state_name(session->s_state));
3144 
3145 	spin_lock(&session->s_gen_ttl_lock);
3146 	session->s_cap_gen++;
3147 	spin_unlock(&session->s_gen_ttl_lock);
3148 
3149 	spin_lock(&session->s_cap_lock);
3150 	/* don't know if session is readonly */
3151 	session->s_readonly = 0;
3152 	/*
3153 	 * notify __ceph_remove_cap() that we are composing cap reconnect.
3154 	 * If a cap get released before being added to the cap reconnect,
3155 	 * __ceph_remove_cap() should skip queuing cap release.
3156 	 */
3157 	session->s_cap_reconnect = 1;
3158 	/* drop old cap expires; we're about to reestablish that state */
3159 	detach_cap_releases(session, &dispose);
3160 	spin_unlock(&session->s_cap_lock);
3161 	dispose_cap_releases(mdsc, &dispose);
3162 
3163 	/* trim unused caps to reduce MDS's cache rejoin time */
3164 	if (mdsc->fsc->sb->s_root)
3165 		shrink_dcache_parent(mdsc->fsc->sb->s_root);
3166 
3167 	ceph_con_close(&session->s_con);
3168 	ceph_con_open(&session->s_con,
3169 		      CEPH_ENTITY_TYPE_MDS, mds,
3170 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
3171 
3172 	/* replay unsafe requests */
3173 	replay_unsafe_requests(mdsc, session);
3174 
3175 	down_read(&mdsc->snap_rwsem);
3176 
3177 	/* traverse this session's caps */
3178 	s_nr_caps = session->s_nr_caps;
3179 	err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
3180 	if (err)
3181 		goto fail;
3182 
3183 	recon_state.nr_caps = 0;
3184 	recon_state.pagelist = pagelist;
3185 	if (session->s_con.peer_features & CEPH_FEATURE_MDSENC)
3186 		recon_state.msg_version = 3;
3187 	else if (session->s_con.peer_features & CEPH_FEATURE_FLOCK)
3188 		recon_state.msg_version = 2;
3189 	else
3190 		recon_state.msg_version = 1;
3191 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
3192 	if (err < 0)
3193 		goto fail;
3194 
3195 	spin_lock(&session->s_cap_lock);
3196 	session->s_cap_reconnect = 0;
3197 	spin_unlock(&session->s_cap_lock);
3198 
3199 	/*
3200 	 * snaprealms.  we provide mds with the ino, seq (version), and
3201 	 * parent for all of our realms.  If the mds has any newer info,
3202 	 * it will tell us.
3203 	 */
3204 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
3205 		struct ceph_snap_realm *realm =
3206 			rb_entry(p, struct ceph_snap_realm, node);
3207 		struct ceph_mds_snaprealm_reconnect sr_rec;
3208 
3209 		dout(" adding snap realm %llx seq %lld parent %llx\n",
3210 		     realm->ino, realm->seq, realm->parent_ino);
3211 		sr_rec.ino = cpu_to_le64(realm->ino);
3212 		sr_rec.seq = cpu_to_le64(realm->seq);
3213 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
3214 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
3215 		if (err)
3216 			goto fail;
3217 	}
3218 
3219 	reply->hdr.version = cpu_to_le16(recon_state.msg_version);
3220 
3221 	/* raced with cap release? */
3222 	if (s_nr_caps != recon_state.nr_caps) {
3223 		struct page *page = list_first_entry(&pagelist->head,
3224 						     struct page, lru);
3225 		__le32 *addr = kmap_atomic(page);
3226 		*addr = cpu_to_le32(recon_state.nr_caps);
3227 		kunmap_atomic(addr);
3228 	}
3229 
3230 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
3231 	ceph_msg_data_add_pagelist(reply, pagelist);
3232 
3233 	ceph_early_kick_flushing_caps(mdsc, session);
3234 
3235 	ceph_con_send(&session->s_con, reply);
3236 
3237 	mutex_unlock(&session->s_mutex);
3238 
3239 	mutex_lock(&mdsc->mutex);
3240 	__wake_requests(mdsc, &session->s_waiting);
3241 	mutex_unlock(&mdsc->mutex);
3242 
3243 	up_read(&mdsc->snap_rwsem);
3244 	return;
3245 
3246 fail:
3247 	ceph_msg_put(reply);
3248 	up_read(&mdsc->snap_rwsem);
3249 	mutex_unlock(&session->s_mutex);
3250 fail_nomsg:
3251 	ceph_pagelist_release(pagelist);
3252 fail_nopagelist:
3253 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3254 	return;
3255 }
3256 
3257 
3258 /*
3259  * compare old and new mdsmaps, kicking requests
3260  * and closing out old connections as necessary
3261  *
3262  * called under mdsc->mutex.
3263  */
3264 static void check_new_map(struct ceph_mds_client *mdsc,
3265 			  struct ceph_mdsmap *newmap,
3266 			  struct ceph_mdsmap *oldmap)
3267 {
3268 	int i;
3269 	int oldstate, newstate;
3270 	struct ceph_mds_session *s;
3271 
3272 	dout("check_new_map new %u old %u\n",
3273 	     newmap->m_epoch, oldmap->m_epoch);
3274 
3275 	for (i = 0; i < oldmap->m_num_mds && i < mdsc->max_sessions; i++) {
3276 		if (!mdsc->sessions[i])
3277 			continue;
3278 		s = mdsc->sessions[i];
3279 		oldstate = ceph_mdsmap_get_state(oldmap, i);
3280 		newstate = ceph_mdsmap_get_state(newmap, i);
3281 
3282 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3283 		     i, ceph_mds_state_name(oldstate),
3284 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3285 		     ceph_mds_state_name(newstate),
3286 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3287 		     ceph_session_state_name(s->s_state));
3288 
3289 		if (i >= newmap->m_num_mds ||
3290 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
3291 			   ceph_mdsmap_get_addr(newmap, i),
3292 			   sizeof(struct ceph_entity_addr))) {
3293 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3294 				/* the session never opened, just close it
3295 				 * out now */
3296 				get_session(s);
3297 				__unregister_session(mdsc, s);
3298 				__wake_requests(mdsc, &s->s_waiting);
3299 				ceph_put_mds_session(s);
3300 			} else if (i >= newmap->m_num_mds) {
3301 				/* force close session for stopped mds */
3302 				get_session(s);
3303 				__unregister_session(mdsc, s);
3304 				__wake_requests(mdsc, &s->s_waiting);
3305 				kick_requests(mdsc, i);
3306 				mutex_unlock(&mdsc->mutex);
3307 
3308 				mutex_lock(&s->s_mutex);
3309 				cleanup_session_requests(mdsc, s);
3310 				remove_session_caps(s);
3311 				mutex_unlock(&s->s_mutex);
3312 
3313 				ceph_put_mds_session(s);
3314 
3315 				mutex_lock(&mdsc->mutex);
3316 			} else {
3317 				/* just close it */
3318 				mutex_unlock(&mdsc->mutex);
3319 				mutex_lock(&s->s_mutex);
3320 				mutex_lock(&mdsc->mutex);
3321 				ceph_con_close(&s->s_con);
3322 				mutex_unlock(&s->s_mutex);
3323 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
3324 			}
3325 		} else if (oldstate == newstate) {
3326 			continue;  /* nothing new with this mds */
3327 		}
3328 
3329 		/*
3330 		 * send reconnect?
3331 		 */
3332 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3333 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
3334 			mutex_unlock(&mdsc->mutex);
3335 			send_mds_reconnect(mdsc, s);
3336 			mutex_lock(&mdsc->mutex);
3337 		}
3338 
3339 		/*
3340 		 * kick request on any mds that has gone active.
3341 		 */
3342 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3343 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
3344 			if (oldstate != CEPH_MDS_STATE_CREATING &&
3345 			    oldstate != CEPH_MDS_STATE_STARTING)
3346 				pr_info("mds%d recovery completed\n", s->s_mds);
3347 			kick_requests(mdsc, i);
3348 			ceph_kick_flushing_caps(mdsc, s);
3349 			wake_up_session_caps(s, 1);
3350 		}
3351 	}
3352 
3353 	for (i = 0; i < newmap->m_num_mds && i < mdsc->max_sessions; i++) {
3354 		s = mdsc->sessions[i];
3355 		if (!s)
3356 			continue;
3357 		if (!ceph_mdsmap_is_laggy(newmap, i))
3358 			continue;
3359 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3360 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
3361 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
3362 			dout(" connecting to export targets of laggy mds%d\n",
3363 			     i);
3364 			__open_export_target_sessions(mdsc, s);
3365 		}
3366 	}
3367 }
3368 
3369 
3370 
3371 /*
3372  * leases
3373  */
3374 
3375 /*
3376  * caller must hold session s_mutex, dentry->d_lock
3377  */
3378 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3379 {
3380 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3381 
3382 	ceph_put_mds_session(di->lease_session);
3383 	di->lease_session = NULL;
3384 }
3385 
3386 static void handle_lease(struct ceph_mds_client *mdsc,
3387 			 struct ceph_mds_session *session,
3388 			 struct ceph_msg *msg)
3389 {
3390 	struct super_block *sb = mdsc->fsc->sb;
3391 	struct inode *inode;
3392 	struct dentry *parent, *dentry;
3393 	struct ceph_dentry_info *di;
3394 	int mds = session->s_mds;
3395 	struct ceph_mds_lease *h = msg->front.iov_base;
3396 	u32 seq;
3397 	struct ceph_vino vino;
3398 	struct qstr dname;
3399 	int release = 0;
3400 
3401 	dout("handle_lease from mds%d\n", mds);
3402 
3403 	/* decode */
3404 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3405 		goto bad;
3406 	vino.ino = le64_to_cpu(h->ino);
3407 	vino.snap = CEPH_NOSNAP;
3408 	seq = le32_to_cpu(h->seq);
3409 	dname.len = get_unaligned_le32(h + 1);
3410 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len)
3411 		goto bad;
3412 	dname.name = (void *)(h + 1) + sizeof(u32);
3413 
3414 	/* lookup inode */
3415 	inode = ceph_find_inode(sb, vino);
3416 	dout("handle_lease %s, ino %llx %p %.*s\n",
3417 	     ceph_lease_op_name(h->action), vino.ino, inode,
3418 	     dname.len, dname.name);
3419 
3420 	mutex_lock(&session->s_mutex);
3421 	session->s_seq++;
3422 
3423 	if (!inode) {
3424 		dout("handle_lease no inode %llx\n", vino.ino);
3425 		goto release;
3426 	}
3427 
3428 	/* dentry */
3429 	parent = d_find_alias(inode);
3430 	if (!parent) {
3431 		dout("no parent dentry on inode %p\n", inode);
3432 		WARN_ON(1);
3433 		goto release;  /* hrm... */
3434 	}
3435 	dname.hash = full_name_hash(parent, dname.name, dname.len);
3436 	dentry = d_lookup(parent, &dname);
3437 	dput(parent);
3438 	if (!dentry)
3439 		goto release;
3440 
3441 	spin_lock(&dentry->d_lock);
3442 	di = ceph_dentry(dentry);
3443 	switch (h->action) {
3444 	case CEPH_MDS_LEASE_REVOKE:
3445 		if (di->lease_session == session) {
3446 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3447 				h->seq = cpu_to_le32(di->lease_seq);
3448 			__ceph_mdsc_drop_dentry_lease(dentry);
3449 		}
3450 		release = 1;
3451 		break;
3452 
3453 	case CEPH_MDS_LEASE_RENEW:
3454 		if (di->lease_session == session &&
3455 		    di->lease_gen == session->s_cap_gen &&
3456 		    di->lease_renew_from &&
3457 		    di->lease_renew_after == 0) {
3458 			unsigned long duration =
3459 				msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3460 
3461 			di->lease_seq = seq;
3462 			di->time = di->lease_renew_from + duration;
3463 			di->lease_renew_after = di->lease_renew_from +
3464 				(duration >> 1);
3465 			di->lease_renew_from = 0;
3466 		}
3467 		break;
3468 	}
3469 	spin_unlock(&dentry->d_lock);
3470 	dput(dentry);
3471 
3472 	if (!release)
3473 		goto out;
3474 
3475 release:
3476 	/* let's just reuse the same message */
3477 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3478 	ceph_msg_get(msg);
3479 	ceph_con_send(&session->s_con, msg);
3480 
3481 out:
3482 	iput(inode);
3483 	mutex_unlock(&session->s_mutex);
3484 	return;
3485 
3486 bad:
3487 	pr_err("corrupt lease message\n");
3488 	ceph_msg_dump(msg);
3489 }
3490 
3491 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3492 			      struct inode *inode,
3493 			      struct dentry *dentry, char action,
3494 			      u32 seq)
3495 {
3496 	struct ceph_msg *msg;
3497 	struct ceph_mds_lease *lease;
3498 	int len = sizeof(*lease) + sizeof(u32);
3499 	int dnamelen = 0;
3500 
3501 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3502 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
3503 	dnamelen = dentry->d_name.len;
3504 	len += dnamelen;
3505 
3506 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3507 	if (!msg)
3508 		return;
3509 	lease = msg->front.iov_base;
3510 	lease->action = action;
3511 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3512 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3513 	lease->seq = cpu_to_le32(seq);
3514 	put_unaligned_le32(dnamelen, lease + 1);
3515 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3516 
3517 	/*
3518 	 * if this is a preemptive lease RELEASE, no need to
3519 	 * flush request stream, since the actual request will
3520 	 * soon follow.
3521 	 */
3522 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3523 
3524 	ceph_con_send(&session->s_con, msg);
3525 }
3526 
3527 /*
3528  * lock unlock sessions, to wait ongoing session activities
3529  */
3530 static void lock_unlock_sessions(struct ceph_mds_client *mdsc)
3531 {
3532 	int i;
3533 
3534 	mutex_lock(&mdsc->mutex);
3535 	for (i = 0; i < mdsc->max_sessions; i++) {
3536 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3537 		if (!s)
3538 			continue;
3539 		mutex_unlock(&mdsc->mutex);
3540 		mutex_lock(&s->s_mutex);
3541 		mutex_unlock(&s->s_mutex);
3542 		ceph_put_mds_session(s);
3543 		mutex_lock(&mdsc->mutex);
3544 	}
3545 	mutex_unlock(&mdsc->mutex);
3546 }
3547 
3548 
3549 
3550 /*
3551  * delayed work -- periodically trim expired leases, renew caps with mds
3552  */
3553 static void schedule_delayed(struct ceph_mds_client *mdsc)
3554 {
3555 	int delay = 5;
3556 	unsigned hz = round_jiffies_relative(HZ * delay);
3557 	schedule_delayed_work(&mdsc->delayed_work, hz);
3558 }
3559 
3560 static void delayed_work(struct work_struct *work)
3561 {
3562 	int i;
3563 	struct ceph_mds_client *mdsc =
3564 		container_of(work, struct ceph_mds_client, delayed_work.work);
3565 	int renew_interval;
3566 	int renew_caps;
3567 
3568 	dout("mdsc delayed_work\n");
3569 	ceph_check_delayed_caps(mdsc);
3570 
3571 	mutex_lock(&mdsc->mutex);
3572 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3573 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3574 				   mdsc->last_renew_caps);
3575 	if (renew_caps)
3576 		mdsc->last_renew_caps = jiffies;
3577 
3578 	for (i = 0; i < mdsc->max_sessions; i++) {
3579 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3580 		if (!s)
3581 			continue;
3582 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3583 			dout("resending session close request for mds%d\n",
3584 			     s->s_mds);
3585 			request_close_session(mdsc, s);
3586 			ceph_put_mds_session(s);
3587 			continue;
3588 		}
3589 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3590 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3591 				s->s_state = CEPH_MDS_SESSION_HUNG;
3592 				pr_info("mds%d hung\n", s->s_mds);
3593 			}
3594 		}
3595 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3596 			/* this mds is failed or recovering, just wait */
3597 			ceph_put_mds_session(s);
3598 			continue;
3599 		}
3600 		mutex_unlock(&mdsc->mutex);
3601 
3602 		mutex_lock(&s->s_mutex);
3603 		if (renew_caps)
3604 			send_renew_caps(mdsc, s);
3605 		else
3606 			ceph_con_keepalive(&s->s_con);
3607 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3608 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3609 			ceph_send_cap_releases(mdsc, s);
3610 		mutex_unlock(&s->s_mutex);
3611 		ceph_put_mds_session(s);
3612 
3613 		mutex_lock(&mdsc->mutex);
3614 	}
3615 	mutex_unlock(&mdsc->mutex);
3616 
3617 	schedule_delayed(mdsc);
3618 }
3619 
3620 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3621 
3622 {
3623 	struct ceph_mds_client *mdsc;
3624 
3625 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3626 	if (!mdsc)
3627 		return -ENOMEM;
3628 	mdsc->fsc = fsc;
3629 	mutex_init(&mdsc->mutex);
3630 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3631 	if (!mdsc->mdsmap) {
3632 		kfree(mdsc);
3633 		return -ENOMEM;
3634 	}
3635 
3636 	fsc->mdsc = mdsc;
3637 	init_completion(&mdsc->safe_umount_waiters);
3638 	init_waitqueue_head(&mdsc->session_close_wq);
3639 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3640 	mdsc->sessions = NULL;
3641 	atomic_set(&mdsc->num_sessions, 0);
3642 	mdsc->max_sessions = 0;
3643 	mdsc->stopping = 0;
3644 	atomic64_set(&mdsc->quotarealms_count, 0);
3645 	mdsc->last_snap_seq = 0;
3646 	init_rwsem(&mdsc->snap_rwsem);
3647 	mdsc->snap_realms = RB_ROOT;
3648 	INIT_LIST_HEAD(&mdsc->snap_empty);
3649 	spin_lock_init(&mdsc->snap_empty_lock);
3650 	mdsc->last_tid = 0;
3651 	mdsc->oldest_tid = 0;
3652 	mdsc->request_tree = RB_ROOT;
3653 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3654 	mdsc->last_renew_caps = jiffies;
3655 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3656 	spin_lock_init(&mdsc->cap_delay_lock);
3657 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3658 	spin_lock_init(&mdsc->snap_flush_lock);
3659 	mdsc->last_cap_flush_tid = 1;
3660 	INIT_LIST_HEAD(&mdsc->cap_flush_list);
3661 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3662 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3663 	mdsc->num_cap_flushing = 0;
3664 	spin_lock_init(&mdsc->cap_dirty_lock);
3665 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3666 	spin_lock_init(&mdsc->dentry_lru_lock);
3667 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3668 
3669 	ceph_caps_init(mdsc);
3670 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3671 
3672 	init_rwsem(&mdsc->pool_perm_rwsem);
3673 	mdsc->pool_perm_tree = RB_ROOT;
3674 
3675 	strscpy(mdsc->nodename, utsname()->nodename,
3676 		sizeof(mdsc->nodename));
3677 	return 0;
3678 }
3679 
3680 /*
3681  * Wait for safe replies on open mds requests.  If we time out, drop
3682  * all requests from the tree to avoid dangling dentry refs.
3683  */
3684 static void wait_requests(struct ceph_mds_client *mdsc)
3685 {
3686 	struct ceph_options *opts = mdsc->fsc->client->options;
3687 	struct ceph_mds_request *req;
3688 
3689 	mutex_lock(&mdsc->mutex);
3690 	if (__get_oldest_req(mdsc)) {
3691 		mutex_unlock(&mdsc->mutex);
3692 
3693 		dout("wait_requests waiting for requests\n");
3694 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3695 				    ceph_timeout_jiffies(opts->mount_timeout));
3696 
3697 		/* tear down remaining requests */
3698 		mutex_lock(&mdsc->mutex);
3699 		while ((req = __get_oldest_req(mdsc))) {
3700 			dout("wait_requests timed out on tid %llu\n",
3701 			     req->r_tid);
3702 			__unregister_request(mdsc, req);
3703 		}
3704 	}
3705 	mutex_unlock(&mdsc->mutex);
3706 	dout("wait_requests done\n");
3707 }
3708 
3709 /*
3710  * called before mount is ro, and before dentries are torn down.
3711  * (hmm, does this still race with new lookups?)
3712  */
3713 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3714 {
3715 	dout("pre_umount\n");
3716 	mdsc->stopping = 1;
3717 
3718 	lock_unlock_sessions(mdsc);
3719 	ceph_flush_dirty_caps(mdsc);
3720 	wait_requests(mdsc);
3721 
3722 	/*
3723 	 * wait for reply handlers to drop their request refs and
3724 	 * their inode/dcache refs
3725 	 */
3726 	ceph_msgr_flush();
3727 }
3728 
3729 /*
3730  * wait for all write mds requests to flush.
3731  */
3732 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3733 {
3734 	struct ceph_mds_request *req = NULL, *nextreq;
3735 	struct rb_node *n;
3736 
3737 	mutex_lock(&mdsc->mutex);
3738 	dout("wait_unsafe_requests want %lld\n", want_tid);
3739 restart:
3740 	req = __get_oldest_req(mdsc);
3741 	while (req && req->r_tid <= want_tid) {
3742 		/* find next request */
3743 		n = rb_next(&req->r_node);
3744 		if (n)
3745 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3746 		else
3747 			nextreq = NULL;
3748 		if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3749 		    (req->r_op & CEPH_MDS_OP_WRITE)) {
3750 			/* write op */
3751 			ceph_mdsc_get_request(req);
3752 			if (nextreq)
3753 				ceph_mdsc_get_request(nextreq);
3754 			mutex_unlock(&mdsc->mutex);
3755 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3756 			     req->r_tid, want_tid);
3757 			wait_for_completion(&req->r_safe_completion);
3758 			mutex_lock(&mdsc->mutex);
3759 			ceph_mdsc_put_request(req);
3760 			if (!nextreq)
3761 				break;  /* next dne before, so we're done! */
3762 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3763 				/* next request was removed from tree */
3764 				ceph_mdsc_put_request(nextreq);
3765 				goto restart;
3766 			}
3767 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3768 		}
3769 		req = nextreq;
3770 	}
3771 	mutex_unlock(&mdsc->mutex);
3772 	dout("wait_unsafe_requests done\n");
3773 }
3774 
3775 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3776 {
3777 	u64 want_tid, want_flush;
3778 
3779 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3780 		return;
3781 
3782 	dout("sync\n");
3783 	mutex_lock(&mdsc->mutex);
3784 	want_tid = mdsc->last_tid;
3785 	mutex_unlock(&mdsc->mutex);
3786 
3787 	ceph_flush_dirty_caps(mdsc);
3788 	spin_lock(&mdsc->cap_dirty_lock);
3789 	want_flush = mdsc->last_cap_flush_tid;
3790 	if (!list_empty(&mdsc->cap_flush_list)) {
3791 		struct ceph_cap_flush *cf =
3792 			list_last_entry(&mdsc->cap_flush_list,
3793 					struct ceph_cap_flush, g_list);
3794 		cf->wake = true;
3795 	}
3796 	spin_unlock(&mdsc->cap_dirty_lock);
3797 
3798 	dout("sync want tid %lld flush_seq %lld\n",
3799 	     want_tid, want_flush);
3800 
3801 	wait_unsafe_requests(mdsc, want_tid);
3802 	wait_caps_flush(mdsc, want_flush);
3803 }
3804 
3805 /*
3806  * true if all sessions are closed, or we force unmount
3807  */
3808 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped)
3809 {
3810 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3811 		return true;
3812 	return atomic_read(&mdsc->num_sessions) <= skipped;
3813 }
3814 
3815 /*
3816  * called after sb is ro.
3817  */
3818 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3819 {
3820 	struct ceph_options *opts = mdsc->fsc->client->options;
3821 	struct ceph_mds_session *session;
3822 	int i;
3823 	int skipped = 0;
3824 
3825 	dout("close_sessions\n");
3826 
3827 	/* close sessions */
3828 	mutex_lock(&mdsc->mutex);
3829 	for (i = 0; i < mdsc->max_sessions; i++) {
3830 		session = __ceph_lookup_mds_session(mdsc, i);
3831 		if (!session)
3832 			continue;
3833 		mutex_unlock(&mdsc->mutex);
3834 		mutex_lock(&session->s_mutex);
3835 		if (__close_session(mdsc, session) <= 0)
3836 			skipped++;
3837 		mutex_unlock(&session->s_mutex);
3838 		ceph_put_mds_session(session);
3839 		mutex_lock(&mdsc->mutex);
3840 	}
3841 	mutex_unlock(&mdsc->mutex);
3842 
3843 	dout("waiting for sessions to close\n");
3844 	wait_event_timeout(mdsc->session_close_wq,
3845 			   done_closing_sessions(mdsc, skipped),
3846 			   ceph_timeout_jiffies(opts->mount_timeout));
3847 
3848 	/* tear down remaining sessions */
3849 	mutex_lock(&mdsc->mutex);
3850 	for (i = 0; i < mdsc->max_sessions; i++) {
3851 		if (mdsc->sessions[i]) {
3852 			session = get_session(mdsc->sessions[i]);
3853 			__unregister_session(mdsc, session);
3854 			mutex_unlock(&mdsc->mutex);
3855 			mutex_lock(&session->s_mutex);
3856 			remove_session_caps(session);
3857 			mutex_unlock(&session->s_mutex);
3858 			ceph_put_mds_session(session);
3859 			mutex_lock(&mdsc->mutex);
3860 		}
3861 	}
3862 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3863 	mutex_unlock(&mdsc->mutex);
3864 
3865 	ceph_cleanup_empty_realms(mdsc);
3866 
3867 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3868 
3869 	dout("stopped\n");
3870 }
3871 
3872 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3873 {
3874 	struct ceph_mds_session *session;
3875 	int mds;
3876 
3877 	dout("force umount\n");
3878 
3879 	mutex_lock(&mdsc->mutex);
3880 	for (mds = 0; mds < mdsc->max_sessions; mds++) {
3881 		session = __ceph_lookup_mds_session(mdsc, mds);
3882 		if (!session)
3883 			continue;
3884 		mutex_unlock(&mdsc->mutex);
3885 		mutex_lock(&session->s_mutex);
3886 		__close_session(mdsc, session);
3887 		if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3888 			cleanup_session_requests(mdsc, session);
3889 			remove_session_caps(session);
3890 		}
3891 		mutex_unlock(&session->s_mutex);
3892 		ceph_put_mds_session(session);
3893 		mutex_lock(&mdsc->mutex);
3894 		kick_requests(mdsc, mds);
3895 	}
3896 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3897 	mutex_unlock(&mdsc->mutex);
3898 }
3899 
3900 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3901 {
3902 	dout("stop\n");
3903 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3904 	if (mdsc->mdsmap)
3905 		ceph_mdsmap_destroy(mdsc->mdsmap);
3906 	kfree(mdsc->sessions);
3907 	ceph_caps_finalize(mdsc);
3908 	ceph_pool_perm_destroy(mdsc);
3909 }
3910 
3911 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3912 {
3913 	struct ceph_mds_client *mdsc = fsc->mdsc;
3914 	dout("mdsc_destroy %p\n", mdsc);
3915 
3916 	if (!mdsc)
3917 		return;
3918 
3919 	/* flush out any connection work with references to us */
3920 	ceph_msgr_flush();
3921 
3922 	ceph_mdsc_stop(mdsc);
3923 
3924 	fsc->mdsc = NULL;
3925 	kfree(mdsc);
3926 	dout("mdsc_destroy %p done\n", mdsc);
3927 }
3928 
3929 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3930 {
3931 	struct ceph_fs_client *fsc = mdsc->fsc;
3932 	const char *mds_namespace = fsc->mount_options->mds_namespace;
3933 	void *p = msg->front.iov_base;
3934 	void *end = p + msg->front.iov_len;
3935 	u32 epoch;
3936 	u32 map_len;
3937 	u32 num_fs;
3938 	u32 mount_fscid = (u32)-1;
3939 	u8 struct_v, struct_cv;
3940 	int err = -EINVAL;
3941 
3942 	ceph_decode_need(&p, end, sizeof(u32), bad);
3943 	epoch = ceph_decode_32(&p);
3944 
3945 	dout("handle_fsmap epoch %u\n", epoch);
3946 
3947 	ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3948 	struct_v = ceph_decode_8(&p);
3949 	struct_cv = ceph_decode_8(&p);
3950 	map_len = ceph_decode_32(&p);
3951 
3952 	ceph_decode_need(&p, end, sizeof(u32) * 3, bad);
3953 	p += sizeof(u32) * 2; /* skip epoch and legacy_client_fscid */
3954 
3955 	num_fs = ceph_decode_32(&p);
3956 	while (num_fs-- > 0) {
3957 		void *info_p, *info_end;
3958 		u32 info_len;
3959 		u8 info_v, info_cv;
3960 		u32 fscid, namelen;
3961 
3962 		ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3963 		info_v = ceph_decode_8(&p);
3964 		info_cv = ceph_decode_8(&p);
3965 		info_len = ceph_decode_32(&p);
3966 		ceph_decode_need(&p, end, info_len, bad);
3967 		info_p = p;
3968 		info_end = p + info_len;
3969 		p = info_end;
3970 
3971 		ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad);
3972 		fscid = ceph_decode_32(&info_p);
3973 		namelen = ceph_decode_32(&info_p);
3974 		ceph_decode_need(&info_p, info_end, namelen, bad);
3975 
3976 		if (mds_namespace &&
3977 		    strlen(mds_namespace) == namelen &&
3978 		    !strncmp(mds_namespace, (char *)info_p, namelen)) {
3979 			mount_fscid = fscid;
3980 			break;
3981 		}
3982 	}
3983 
3984 	ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch);
3985 	if (mount_fscid != (u32)-1) {
3986 		fsc->client->monc.fs_cluster_id = mount_fscid;
3987 		ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP,
3988 				   0, true);
3989 		ceph_monc_renew_subs(&fsc->client->monc);
3990 	} else {
3991 		err = -ENOENT;
3992 		goto err_out;
3993 	}
3994 	return;
3995 
3996 bad:
3997 	pr_err("error decoding fsmap\n");
3998 err_out:
3999 	mutex_lock(&mdsc->mutex);
4000 	mdsc->mdsmap_err = err;
4001 	__wake_requests(mdsc, &mdsc->waiting_for_map);
4002 	mutex_unlock(&mdsc->mutex);
4003 }
4004 
4005 /*
4006  * handle mds map update.
4007  */
4008 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
4009 {
4010 	u32 epoch;
4011 	u32 maplen;
4012 	void *p = msg->front.iov_base;
4013 	void *end = p + msg->front.iov_len;
4014 	struct ceph_mdsmap *newmap, *oldmap;
4015 	struct ceph_fsid fsid;
4016 	int err = -EINVAL;
4017 
4018 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
4019 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
4020 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
4021 		return;
4022 	epoch = ceph_decode_32(&p);
4023 	maplen = ceph_decode_32(&p);
4024 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
4025 
4026 	/* do we need it? */
4027 	mutex_lock(&mdsc->mutex);
4028 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
4029 		dout("handle_map epoch %u <= our %u\n",
4030 		     epoch, mdsc->mdsmap->m_epoch);
4031 		mutex_unlock(&mdsc->mutex);
4032 		return;
4033 	}
4034 
4035 	newmap = ceph_mdsmap_decode(&p, end);
4036 	if (IS_ERR(newmap)) {
4037 		err = PTR_ERR(newmap);
4038 		goto bad_unlock;
4039 	}
4040 
4041 	/* swap into place */
4042 	if (mdsc->mdsmap) {
4043 		oldmap = mdsc->mdsmap;
4044 		mdsc->mdsmap = newmap;
4045 		check_new_map(mdsc, newmap, oldmap);
4046 		ceph_mdsmap_destroy(oldmap);
4047 	} else {
4048 		mdsc->mdsmap = newmap;  /* first mds map */
4049 	}
4050 	mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size,
4051 					MAX_LFS_FILESIZE);
4052 
4053 	__wake_requests(mdsc, &mdsc->waiting_for_map);
4054 	ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
4055 			  mdsc->mdsmap->m_epoch);
4056 
4057 	mutex_unlock(&mdsc->mutex);
4058 	schedule_delayed(mdsc);
4059 	return;
4060 
4061 bad_unlock:
4062 	mutex_unlock(&mdsc->mutex);
4063 bad:
4064 	pr_err("error decoding mdsmap %d\n", err);
4065 	return;
4066 }
4067 
4068 static struct ceph_connection *con_get(struct ceph_connection *con)
4069 {
4070 	struct ceph_mds_session *s = con->private;
4071 
4072 	if (get_session(s)) {
4073 		dout("mdsc con_get %p ok (%d)\n", s, refcount_read(&s->s_ref));
4074 		return con;
4075 	}
4076 	dout("mdsc con_get %p FAIL\n", s);
4077 	return NULL;
4078 }
4079 
4080 static void con_put(struct ceph_connection *con)
4081 {
4082 	struct ceph_mds_session *s = con->private;
4083 
4084 	dout("mdsc con_put %p (%d)\n", s, refcount_read(&s->s_ref) - 1);
4085 	ceph_put_mds_session(s);
4086 }
4087 
4088 /*
4089  * if the client is unresponsive for long enough, the mds will kill
4090  * the session entirely.
4091  */
4092 static void peer_reset(struct ceph_connection *con)
4093 {
4094 	struct ceph_mds_session *s = con->private;
4095 	struct ceph_mds_client *mdsc = s->s_mdsc;
4096 
4097 	pr_warn("mds%d closed our session\n", s->s_mds);
4098 	send_mds_reconnect(mdsc, s);
4099 }
4100 
4101 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
4102 {
4103 	struct ceph_mds_session *s = con->private;
4104 	struct ceph_mds_client *mdsc = s->s_mdsc;
4105 	int type = le16_to_cpu(msg->hdr.type);
4106 
4107 	mutex_lock(&mdsc->mutex);
4108 	if (__verify_registered_session(mdsc, s) < 0) {
4109 		mutex_unlock(&mdsc->mutex);
4110 		goto out;
4111 	}
4112 	mutex_unlock(&mdsc->mutex);
4113 
4114 	switch (type) {
4115 	case CEPH_MSG_MDS_MAP:
4116 		ceph_mdsc_handle_mdsmap(mdsc, msg);
4117 		break;
4118 	case CEPH_MSG_FS_MAP_USER:
4119 		ceph_mdsc_handle_fsmap(mdsc, msg);
4120 		break;
4121 	case CEPH_MSG_CLIENT_SESSION:
4122 		handle_session(s, msg);
4123 		break;
4124 	case CEPH_MSG_CLIENT_REPLY:
4125 		handle_reply(s, msg);
4126 		break;
4127 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
4128 		handle_forward(mdsc, s, msg);
4129 		break;
4130 	case CEPH_MSG_CLIENT_CAPS:
4131 		ceph_handle_caps(s, msg);
4132 		break;
4133 	case CEPH_MSG_CLIENT_SNAP:
4134 		ceph_handle_snap(mdsc, s, msg);
4135 		break;
4136 	case CEPH_MSG_CLIENT_LEASE:
4137 		handle_lease(mdsc, s, msg);
4138 		break;
4139 	case CEPH_MSG_CLIENT_QUOTA:
4140 		ceph_handle_quota(mdsc, s, msg);
4141 		break;
4142 
4143 	default:
4144 		pr_err("received unknown message type %d %s\n", type,
4145 		       ceph_msg_type_name(type));
4146 	}
4147 out:
4148 	ceph_msg_put(msg);
4149 }
4150 
4151 /*
4152  * authentication
4153  */
4154 
4155 /*
4156  * Note: returned pointer is the address of a structure that's
4157  * managed separately.  Caller must *not* attempt to free it.
4158  */
4159 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
4160 					int *proto, int force_new)
4161 {
4162 	struct ceph_mds_session *s = con->private;
4163 	struct ceph_mds_client *mdsc = s->s_mdsc;
4164 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4165 	struct ceph_auth_handshake *auth = &s->s_auth;
4166 
4167 	if (force_new && auth->authorizer) {
4168 		ceph_auth_destroy_authorizer(auth->authorizer);
4169 		auth->authorizer = NULL;
4170 	}
4171 	if (!auth->authorizer) {
4172 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
4173 						      auth);
4174 		if (ret)
4175 			return ERR_PTR(ret);
4176 	} else {
4177 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
4178 						      auth);
4179 		if (ret)
4180 			return ERR_PTR(ret);
4181 	}
4182 	*proto = ac->protocol;
4183 
4184 	return auth;
4185 }
4186 
4187 static int add_authorizer_challenge(struct ceph_connection *con,
4188 				    void *challenge_buf, int challenge_buf_len)
4189 {
4190 	struct ceph_mds_session *s = con->private;
4191 	struct ceph_mds_client *mdsc = s->s_mdsc;
4192 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4193 
4194 	return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer,
4195 					    challenge_buf, challenge_buf_len);
4196 }
4197 
4198 static int verify_authorizer_reply(struct ceph_connection *con)
4199 {
4200 	struct ceph_mds_session *s = con->private;
4201 	struct ceph_mds_client *mdsc = s->s_mdsc;
4202 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4203 
4204 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer);
4205 }
4206 
4207 static int invalidate_authorizer(struct ceph_connection *con)
4208 {
4209 	struct ceph_mds_session *s = con->private;
4210 	struct ceph_mds_client *mdsc = s->s_mdsc;
4211 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4212 
4213 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
4214 
4215 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
4216 }
4217 
4218 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
4219 				struct ceph_msg_header *hdr, int *skip)
4220 {
4221 	struct ceph_msg *msg;
4222 	int type = (int) le16_to_cpu(hdr->type);
4223 	int front_len = (int) le32_to_cpu(hdr->front_len);
4224 
4225 	if (con->in_msg)
4226 		return con->in_msg;
4227 
4228 	*skip = 0;
4229 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
4230 	if (!msg) {
4231 		pr_err("unable to allocate msg type %d len %d\n",
4232 		       type, front_len);
4233 		return NULL;
4234 	}
4235 
4236 	return msg;
4237 }
4238 
4239 static int mds_sign_message(struct ceph_msg *msg)
4240 {
4241        struct ceph_mds_session *s = msg->con->private;
4242        struct ceph_auth_handshake *auth = &s->s_auth;
4243 
4244        return ceph_auth_sign_message(auth, msg);
4245 }
4246 
4247 static int mds_check_message_signature(struct ceph_msg *msg)
4248 {
4249        struct ceph_mds_session *s = msg->con->private;
4250        struct ceph_auth_handshake *auth = &s->s_auth;
4251 
4252        return ceph_auth_check_message_signature(auth, msg);
4253 }
4254 
4255 static const struct ceph_connection_operations mds_con_ops = {
4256 	.get = con_get,
4257 	.put = con_put,
4258 	.dispatch = dispatch,
4259 	.get_authorizer = get_authorizer,
4260 	.add_authorizer_challenge = add_authorizer_challenge,
4261 	.verify_authorizer_reply = verify_authorizer_reply,
4262 	.invalidate_authorizer = invalidate_authorizer,
4263 	.peer_reset = peer_reset,
4264 	.alloc_msg = mds_alloc_msg,
4265 	.sign_message = mds_sign_message,
4266 	.check_message_signature = mds_check_message_signature,
4267 };
4268 
4269 /* eof */
4270