xref: /openbmc/linux/fs/ceph/mds_client.c (revision d7a3d85e)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/gfp.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 
12 #include "super.h"
13 #include "mds_client.h"
14 
15 #include <linux/ceph/ceph_features.h>
16 #include <linux/ceph/messenger.h>
17 #include <linux/ceph/decode.h>
18 #include <linux/ceph/pagelist.h>
19 #include <linux/ceph/auth.h>
20 #include <linux/ceph/debugfs.h>
21 
22 /*
23  * A cluster of MDS (metadata server) daemons is responsible for
24  * managing the file system namespace (the directory hierarchy and
25  * inodes) and for coordinating shared access to storage.  Metadata is
26  * partitioning hierarchically across a number of servers, and that
27  * partition varies over time as the cluster adjusts the distribution
28  * in order to balance load.
29  *
30  * The MDS client is primarily responsible to managing synchronous
31  * metadata requests for operations like open, unlink, and so forth.
32  * If there is a MDS failure, we find out about it when we (possibly
33  * request and) receive a new MDS map, and can resubmit affected
34  * requests.
35  *
36  * For the most part, though, we take advantage of a lossless
37  * communications channel to the MDS, and do not need to worry about
38  * timing out or resubmitting requests.
39  *
40  * We maintain a stateful "session" with each MDS we interact with.
41  * Within each session, we sent periodic heartbeat messages to ensure
42  * any capabilities or leases we have been issues remain valid.  If
43  * the session times out and goes stale, our leases and capabilities
44  * are no longer valid.
45  */
46 
47 struct ceph_reconnect_state {
48 	int nr_caps;
49 	struct ceph_pagelist *pagelist;
50 	bool flock;
51 };
52 
53 static void __wake_requests(struct ceph_mds_client *mdsc,
54 			    struct list_head *head);
55 
56 static const struct ceph_connection_operations mds_con_ops;
57 
58 
59 /*
60  * mds reply parsing
61  */
62 
63 /*
64  * parse individual inode info
65  */
66 static int parse_reply_info_in(void **p, void *end,
67 			       struct ceph_mds_reply_info_in *info,
68 			       u64 features)
69 {
70 	int err = -EIO;
71 
72 	info->in = *p;
73 	*p += sizeof(struct ceph_mds_reply_inode) +
74 		sizeof(*info->in->fragtree.splits) *
75 		le32_to_cpu(info->in->fragtree.nsplits);
76 
77 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
78 	ceph_decode_need(p, end, info->symlink_len, bad);
79 	info->symlink = *p;
80 	*p += info->symlink_len;
81 
82 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
83 		ceph_decode_copy_safe(p, end, &info->dir_layout,
84 				      sizeof(info->dir_layout), bad);
85 	else
86 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
87 
88 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
89 	ceph_decode_need(p, end, info->xattr_len, bad);
90 	info->xattr_data = *p;
91 	*p += info->xattr_len;
92 
93 	if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
94 		ceph_decode_64_safe(p, end, info->inline_version, bad);
95 		ceph_decode_32_safe(p, end, info->inline_len, bad);
96 		ceph_decode_need(p, end, info->inline_len, bad);
97 		info->inline_data = *p;
98 		*p += info->inline_len;
99 	} else
100 		info->inline_version = CEPH_INLINE_NONE;
101 
102 	return 0;
103 bad:
104 	return err;
105 }
106 
107 /*
108  * parse a normal reply, which may contain a (dir+)dentry and/or a
109  * target inode.
110  */
111 static int parse_reply_info_trace(void **p, void *end,
112 				  struct ceph_mds_reply_info_parsed *info,
113 				  u64 features)
114 {
115 	int err;
116 
117 	if (info->head->is_dentry) {
118 		err = parse_reply_info_in(p, end, &info->diri, features);
119 		if (err < 0)
120 			goto out_bad;
121 
122 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
123 			goto bad;
124 		info->dirfrag = *p;
125 		*p += sizeof(*info->dirfrag) +
126 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
127 		if (unlikely(*p > end))
128 			goto bad;
129 
130 		ceph_decode_32_safe(p, end, info->dname_len, bad);
131 		ceph_decode_need(p, end, info->dname_len, bad);
132 		info->dname = *p;
133 		*p += info->dname_len;
134 		info->dlease = *p;
135 		*p += sizeof(*info->dlease);
136 	}
137 
138 	if (info->head->is_target) {
139 		err = parse_reply_info_in(p, end, &info->targeti, features);
140 		if (err < 0)
141 			goto out_bad;
142 	}
143 
144 	if (unlikely(*p != end))
145 		goto bad;
146 	return 0;
147 
148 bad:
149 	err = -EIO;
150 out_bad:
151 	pr_err("problem parsing mds trace %d\n", err);
152 	return err;
153 }
154 
155 /*
156  * parse readdir results
157  */
158 static int parse_reply_info_dir(void **p, void *end,
159 				struct ceph_mds_reply_info_parsed *info,
160 				u64 features)
161 {
162 	u32 num, i = 0;
163 	int err;
164 
165 	info->dir_dir = *p;
166 	if (*p + sizeof(*info->dir_dir) > end)
167 		goto bad;
168 	*p += sizeof(*info->dir_dir) +
169 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
170 	if (*p > end)
171 		goto bad;
172 
173 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
174 	num = ceph_decode_32(p);
175 	info->dir_end = ceph_decode_8(p);
176 	info->dir_complete = ceph_decode_8(p);
177 	if (num == 0)
178 		goto done;
179 
180 	BUG_ON(!info->dir_in);
181 	info->dir_dname = (void *)(info->dir_in + num);
182 	info->dir_dname_len = (void *)(info->dir_dname + num);
183 	info->dir_dlease = (void *)(info->dir_dname_len + num);
184 	if ((unsigned long)(info->dir_dlease + num) >
185 	    (unsigned long)info->dir_in + info->dir_buf_size) {
186 		pr_err("dir contents are larger than expected\n");
187 		WARN_ON(1);
188 		goto bad;
189 	}
190 
191 	info->dir_nr = num;
192 	while (num) {
193 		/* dentry */
194 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
195 		info->dir_dname_len[i] = ceph_decode_32(p);
196 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
197 		info->dir_dname[i] = *p;
198 		*p += info->dir_dname_len[i];
199 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
200 		     info->dir_dname[i]);
201 		info->dir_dlease[i] = *p;
202 		*p += sizeof(struct ceph_mds_reply_lease);
203 
204 		/* inode */
205 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
206 		if (err < 0)
207 			goto out_bad;
208 		i++;
209 		num--;
210 	}
211 
212 done:
213 	if (*p != end)
214 		goto bad;
215 	return 0;
216 
217 bad:
218 	err = -EIO;
219 out_bad:
220 	pr_err("problem parsing dir contents %d\n", err);
221 	return err;
222 }
223 
224 /*
225  * parse fcntl F_GETLK results
226  */
227 static int parse_reply_info_filelock(void **p, void *end,
228 				     struct ceph_mds_reply_info_parsed *info,
229 				     u64 features)
230 {
231 	if (*p + sizeof(*info->filelock_reply) > end)
232 		goto bad;
233 
234 	info->filelock_reply = *p;
235 	*p += sizeof(*info->filelock_reply);
236 
237 	if (unlikely(*p != end))
238 		goto bad;
239 	return 0;
240 
241 bad:
242 	return -EIO;
243 }
244 
245 /*
246  * parse create results
247  */
248 static int parse_reply_info_create(void **p, void *end,
249 				  struct ceph_mds_reply_info_parsed *info,
250 				  u64 features)
251 {
252 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
253 		if (*p == end) {
254 			info->has_create_ino = false;
255 		} else {
256 			info->has_create_ino = true;
257 			info->ino = ceph_decode_64(p);
258 		}
259 	}
260 
261 	if (unlikely(*p != end))
262 		goto bad;
263 	return 0;
264 
265 bad:
266 	return -EIO;
267 }
268 
269 /*
270  * parse extra results
271  */
272 static int parse_reply_info_extra(void **p, void *end,
273 				  struct ceph_mds_reply_info_parsed *info,
274 				  u64 features)
275 {
276 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
277 		return parse_reply_info_filelock(p, end, info, features);
278 	else if (info->head->op == CEPH_MDS_OP_READDIR ||
279 		 info->head->op == CEPH_MDS_OP_LSSNAP)
280 		return parse_reply_info_dir(p, end, info, features);
281 	else if (info->head->op == CEPH_MDS_OP_CREATE)
282 		return parse_reply_info_create(p, end, info, features);
283 	else
284 		return -EIO;
285 }
286 
287 /*
288  * parse entire mds reply
289  */
290 static int parse_reply_info(struct ceph_msg *msg,
291 			    struct ceph_mds_reply_info_parsed *info,
292 			    u64 features)
293 {
294 	void *p, *end;
295 	u32 len;
296 	int err;
297 
298 	info->head = msg->front.iov_base;
299 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
300 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
301 
302 	/* trace */
303 	ceph_decode_32_safe(&p, end, len, bad);
304 	if (len > 0) {
305 		ceph_decode_need(&p, end, len, bad);
306 		err = parse_reply_info_trace(&p, p+len, info, features);
307 		if (err < 0)
308 			goto out_bad;
309 	}
310 
311 	/* extra */
312 	ceph_decode_32_safe(&p, end, len, bad);
313 	if (len > 0) {
314 		ceph_decode_need(&p, end, len, bad);
315 		err = parse_reply_info_extra(&p, p+len, info, features);
316 		if (err < 0)
317 			goto out_bad;
318 	}
319 
320 	/* snap blob */
321 	ceph_decode_32_safe(&p, end, len, bad);
322 	info->snapblob_len = len;
323 	info->snapblob = p;
324 	p += len;
325 
326 	if (p != end)
327 		goto bad;
328 	return 0;
329 
330 bad:
331 	err = -EIO;
332 out_bad:
333 	pr_err("mds parse_reply err %d\n", err);
334 	return err;
335 }
336 
337 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
338 {
339 	if (!info->dir_in)
340 		return;
341 	free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size));
342 }
343 
344 
345 /*
346  * sessions
347  */
348 const char *ceph_session_state_name(int s)
349 {
350 	switch (s) {
351 	case CEPH_MDS_SESSION_NEW: return "new";
352 	case CEPH_MDS_SESSION_OPENING: return "opening";
353 	case CEPH_MDS_SESSION_OPEN: return "open";
354 	case CEPH_MDS_SESSION_HUNG: return "hung";
355 	case CEPH_MDS_SESSION_CLOSING: return "closing";
356 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
357 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
358 	default: return "???";
359 	}
360 }
361 
362 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
363 {
364 	if (atomic_inc_not_zero(&s->s_ref)) {
365 		dout("mdsc get_session %p %d -> %d\n", s,
366 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
367 		return s;
368 	} else {
369 		dout("mdsc get_session %p 0 -- FAIL", s);
370 		return NULL;
371 	}
372 }
373 
374 void ceph_put_mds_session(struct ceph_mds_session *s)
375 {
376 	dout("mdsc put_session %p %d -> %d\n", s,
377 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
378 	if (atomic_dec_and_test(&s->s_ref)) {
379 		if (s->s_auth.authorizer)
380 			ceph_auth_destroy_authorizer(
381 				s->s_mdsc->fsc->client->monc.auth,
382 				s->s_auth.authorizer);
383 		kfree(s);
384 	}
385 }
386 
387 /*
388  * called under mdsc->mutex
389  */
390 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
391 						   int mds)
392 {
393 	struct ceph_mds_session *session;
394 
395 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
396 		return NULL;
397 	session = mdsc->sessions[mds];
398 	dout("lookup_mds_session %p %d\n", session,
399 	     atomic_read(&session->s_ref));
400 	get_session(session);
401 	return session;
402 }
403 
404 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
405 {
406 	if (mds >= mdsc->max_sessions)
407 		return false;
408 	return mdsc->sessions[mds];
409 }
410 
411 static int __verify_registered_session(struct ceph_mds_client *mdsc,
412 				       struct ceph_mds_session *s)
413 {
414 	if (s->s_mds >= mdsc->max_sessions ||
415 	    mdsc->sessions[s->s_mds] != s)
416 		return -ENOENT;
417 	return 0;
418 }
419 
420 /*
421  * create+register a new session for given mds.
422  * called under mdsc->mutex.
423  */
424 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
425 						 int mds)
426 {
427 	struct ceph_mds_session *s;
428 
429 	if (mds >= mdsc->mdsmap->m_max_mds)
430 		return ERR_PTR(-EINVAL);
431 
432 	s = kzalloc(sizeof(*s), GFP_NOFS);
433 	if (!s)
434 		return ERR_PTR(-ENOMEM);
435 	s->s_mdsc = mdsc;
436 	s->s_mds = mds;
437 	s->s_state = CEPH_MDS_SESSION_NEW;
438 	s->s_ttl = 0;
439 	s->s_seq = 0;
440 	mutex_init(&s->s_mutex);
441 
442 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
443 
444 	spin_lock_init(&s->s_gen_ttl_lock);
445 	s->s_cap_gen = 0;
446 	s->s_cap_ttl = jiffies - 1;
447 
448 	spin_lock_init(&s->s_cap_lock);
449 	s->s_renew_requested = 0;
450 	s->s_renew_seq = 0;
451 	INIT_LIST_HEAD(&s->s_caps);
452 	s->s_nr_caps = 0;
453 	s->s_trim_caps = 0;
454 	atomic_set(&s->s_ref, 1);
455 	INIT_LIST_HEAD(&s->s_waiting);
456 	INIT_LIST_HEAD(&s->s_unsafe);
457 	s->s_num_cap_releases = 0;
458 	s->s_cap_reconnect = 0;
459 	s->s_cap_iterator = NULL;
460 	INIT_LIST_HEAD(&s->s_cap_releases);
461 	INIT_LIST_HEAD(&s->s_cap_releases_done);
462 	INIT_LIST_HEAD(&s->s_cap_flushing);
463 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
464 
465 	dout("register_session mds%d\n", mds);
466 	if (mds >= mdsc->max_sessions) {
467 		int newmax = 1 << get_count_order(mds+1);
468 		struct ceph_mds_session **sa;
469 
470 		dout("register_session realloc to %d\n", newmax);
471 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
472 		if (sa == NULL)
473 			goto fail_realloc;
474 		if (mdsc->sessions) {
475 			memcpy(sa, mdsc->sessions,
476 			       mdsc->max_sessions * sizeof(void *));
477 			kfree(mdsc->sessions);
478 		}
479 		mdsc->sessions = sa;
480 		mdsc->max_sessions = newmax;
481 	}
482 	mdsc->sessions[mds] = s;
483 	atomic_inc(&mdsc->num_sessions);
484 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
485 
486 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
487 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
488 
489 	return s;
490 
491 fail_realloc:
492 	kfree(s);
493 	return ERR_PTR(-ENOMEM);
494 }
495 
496 /*
497  * called under mdsc->mutex
498  */
499 static void __unregister_session(struct ceph_mds_client *mdsc,
500 			       struct ceph_mds_session *s)
501 {
502 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
503 	BUG_ON(mdsc->sessions[s->s_mds] != s);
504 	mdsc->sessions[s->s_mds] = NULL;
505 	ceph_con_close(&s->s_con);
506 	ceph_put_mds_session(s);
507 	atomic_dec(&mdsc->num_sessions);
508 }
509 
510 /*
511  * drop session refs in request.
512  *
513  * should be last request ref, or hold mdsc->mutex
514  */
515 static void put_request_session(struct ceph_mds_request *req)
516 {
517 	if (req->r_session) {
518 		ceph_put_mds_session(req->r_session);
519 		req->r_session = NULL;
520 	}
521 }
522 
523 void ceph_mdsc_release_request(struct kref *kref)
524 {
525 	struct ceph_mds_request *req = container_of(kref,
526 						    struct ceph_mds_request,
527 						    r_kref);
528 	destroy_reply_info(&req->r_reply_info);
529 	if (req->r_request)
530 		ceph_msg_put(req->r_request);
531 	if (req->r_reply)
532 		ceph_msg_put(req->r_reply);
533 	if (req->r_inode) {
534 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
535 		iput(req->r_inode);
536 	}
537 	if (req->r_locked_dir)
538 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
539 	iput(req->r_target_inode);
540 	if (req->r_dentry)
541 		dput(req->r_dentry);
542 	if (req->r_old_dentry)
543 		dput(req->r_old_dentry);
544 	if (req->r_old_dentry_dir) {
545 		/*
546 		 * track (and drop pins for) r_old_dentry_dir
547 		 * separately, since r_old_dentry's d_parent may have
548 		 * changed between the dir mutex being dropped and
549 		 * this request being freed.
550 		 */
551 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
552 				  CEPH_CAP_PIN);
553 		iput(req->r_old_dentry_dir);
554 	}
555 	kfree(req->r_path1);
556 	kfree(req->r_path2);
557 	if (req->r_pagelist)
558 		ceph_pagelist_release(req->r_pagelist);
559 	put_request_session(req);
560 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
561 	kfree(req);
562 }
563 
564 /*
565  * lookup session, bump ref if found.
566  *
567  * called under mdsc->mutex.
568  */
569 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
570 					     u64 tid)
571 {
572 	struct ceph_mds_request *req;
573 	struct rb_node *n = mdsc->request_tree.rb_node;
574 
575 	while (n) {
576 		req = rb_entry(n, struct ceph_mds_request, r_node);
577 		if (tid < req->r_tid)
578 			n = n->rb_left;
579 		else if (tid > req->r_tid)
580 			n = n->rb_right;
581 		else {
582 			ceph_mdsc_get_request(req);
583 			return req;
584 		}
585 	}
586 	return NULL;
587 }
588 
589 static void __insert_request(struct ceph_mds_client *mdsc,
590 			     struct ceph_mds_request *new)
591 {
592 	struct rb_node **p = &mdsc->request_tree.rb_node;
593 	struct rb_node *parent = NULL;
594 	struct ceph_mds_request *req = NULL;
595 
596 	while (*p) {
597 		parent = *p;
598 		req = rb_entry(parent, struct ceph_mds_request, r_node);
599 		if (new->r_tid < req->r_tid)
600 			p = &(*p)->rb_left;
601 		else if (new->r_tid > req->r_tid)
602 			p = &(*p)->rb_right;
603 		else
604 			BUG();
605 	}
606 
607 	rb_link_node(&new->r_node, parent, p);
608 	rb_insert_color(&new->r_node, &mdsc->request_tree);
609 }
610 
611 /*
612  * Register an in-flight request, and assign a tid.  Link to directory
613  * are modifying (if any).
614  *
615  * Called under mdsc->mutex.
616  */
617 static void __register_request(struct ceph_mds_client *mdsc,
618 			       struct ceph_mds_request *req,
619 			       struct inode *dir)
620 {
621 	req->r_tid = ++mdsc->last_tid;
622 	if (req->r_num_caps)
623 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
624 				  req->r_num_caps);
625 	dout("__register_request %p tid %lld\n", req, req->r_tid);
626 	ceph_mdsc_get_request(req);
627 	__insert_request(mdsc, req);
628 
629 	req->r_uid = current_fsuid();
630 	req->r_gid = current_fsgid();
631 
632 	if (dir) {
633 		struct ceph_inode_info *ci = ceph_inode(dir);
634 
635 		ihold(dir);
636 		spin_lock(&ci->i_unsafe_lock);
637 		req->r_unsafe_dir = dir;
638 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
639 		spin_unlock(&ci->i_unsafe_lock);
640 	}
641 }
642 
643 static void __unregister_request(struct ceph_mds_client *mdsc,
644 				 struct ceph_mds_request *req)
645 {
646 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
647 	rb_erase(&req->r_node, &mdsc->request_tree);
648 	RB_CLEAR_NODE(&req->r_node);
649 
650 	if (req->r_unsafe_dir) {
651 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
652 
653 		spin_lock(&ci->i_unsafe_lock);
654 		list_del_init(&req->r_unsafe_dir_item);
655 		spin_unlock(&ci->i_unsafe_lock);
656 
657 		iput(req->r_unsafe_dir);
658 		req->r_unsafe_dir = NULL;
659 	}
660 
661 	complete_all(&req->r_safe_completion);
662 
663 	ceph_mdsc_put_request(req);
664 }
665 
666 /*
667  * Choose mds to send request to next.  If there is a hint set in the
668  * request (e.g., due to a prior forward hint from the mds), use that.
669  * Otherwise, consult frag tree and/or caps to identify the
670  * appropriate mds.  If all else fails, choose randomly.
671  *
672  * Called under mdsc->mutex.
673  */
674 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
675 {
676 	/*
677 	 * we don't need to worry about protecting the d_parent access
678 	 * here because we never renaming inside the snapped namespace
679 	 * except to resplice to another snapdir, and either the old or new
680 	 * result is a valid result.
681 	 */
682 	while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP)
683 		dentry = dentry->d_parent;
684 	return dentry;
685 }
686 
687 static int __choose_mds(struct ceph_mds_client *mdsc,
688 			struct ceph_mds_request *req)
689 {
690 	struct inode *inode;
691 	struct ceph_inode_info *ci;
692 	struct ceph_cap *cap;
693 	int mode = req->r_direct_mode;
694 	int mds = -1;
695 	u32 hash = req->r_direct_hash;
696 	bool is_hash = req->r_direct_is_hash;
697 
698 	/*
699 	 * is there a specific mds we should try?  ignore hint if we have
700 	 * no session and the mds is not up (active or recovering).
701 	 */
702 	if (req->r_resend_mds >= 0 &&
703 	    (__have_session(mdsc, req->r_resend_mds) ||
704 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
705 		dout("choose_mds using resend_mds mds%d\n",
706 		     req->r_resend_mds);
707 		return req->r_resend_mds;
708 	}
709 
710 	if (mode == USE_RANDOM_MDS)
711 		goto random;
712 
713 	inode = NULL;
714 	if (req->r_inode) {
715 		inode = req->r_inode;
716 	} else if (req->r_dentry) {
717 		/* ignore race with rename; old or new d_parent is okay */
718 		struct dentry *parent = req->r_dentry->d_parent;
719 		struct inode *dir = d_inode(parent);
720 
721 		if (dir->i_sb != mdsc->fsc->sb) {
722 			/* not this fs! */
723 			inode = d_inode(req->r_dentry);
724 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
725 			/* direct snapped/virtual snapdir requests
726 			 * based on parent dir inode */
727 			struct dentry *dn = get_nonsnap_parent(parent);
728 			inode = d_inode(dn);
729 			dout("__choose_mds using nonsnap parent %p\n", inode);
730 		} else {
731 			/* dentry target */
732 			inode = d_inode(req->r_dentry);
733 			if (!inode || mode == USE_AUTH_MDS) {
734 				/* dir + name */
735 				inode = dir;
736 				hash = ceph_dentry_hash(dir, req->r_dentry);
737 				is_hash = true;
738 			}
739 		}
740 	}
741 
742 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
743 	     (int)hash, mode);
744 	if (!inode)
745 		goto random;
746 	ci = ceph_inode(inode);
747 
748 	if (is_hash && S_ISDIR(inode->i_mode)) {
749 		struct ceph_inode_frag frag;
750 		int found;
751 
752 		ceph_choose_frag(ci, hash, &frag, &found);
753 		if (found) {
754 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
755 				u8 r;
756 
757 				/* choose a random replica */
758 				get_random_bytes(&r, 1);
759 				r %= frag.ndist;
760 				mds = frag.dist[r];
761 				dout("choose_mds %p %llx.%llx "
762 				     "frag %u mds%d (%d/%d)\n",
763 				     inode, ceph_vinop(inode),
764 				     frag.frag, mds,
765 				     (int)r, frag.ndist);
766 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
767 				    CEPH_MDS_STATE_ACTIVE)
768 					return mds;
769 			}
770 
771 			/* since this file/dir wasn't known to be
772 			 * replicated, then we want to look for the
773 			 * authoritative mds. */
774 			mode = USE_AUTH_MDS;
775 			if (frag.mds >= 0) {
776 				/* choose auth mds */
777 				mds = frag.mds;
778 				dout("choose_mds %p %llx.%llx "
779 				     "frag %u mds%d (auth)\n",
780 				     inode, ceph_vinop(inode), frag.frag, mds);
781 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
782 				    CEPH_MDS_STATE_ACTIVE)
783 					return mds;
784 			}
785 		}
786 	}
787 
788 	spin_lock(&ci->i_ceph_lock);
789 	cap = NULL;
790 	if (mode == USE_AUTH_MDS)
791 		cap = ci->i_auth_cap;
792 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
793 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
794 	if (!cap) {
795 		spin_unlock(&ci->i_ceph_lock);
796 		goto random;
797 	}
798 	mds = cap->session->s_mds;
799 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
800 	     inode, ceph_vinop(inode), mds,
801 	     cap == ci->i_auth_cap ? "auth " : "", cap);
802 	spin_unlock(&ci->i_ceph_lock);
803 	return mds;
804 
805 random:
806 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
807 	dout("choose_mds chose random mds%d\n", mds);
808 	return mds;
809 }
810 
811 
812 /*
813  * session messages
814  */
815 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
816 {
817 	struct ceph_msg *msg;
818 	struct ceph_mds_session_head *h;
819 
820 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
821 			   false);
822 	if (!msg) {
823 		pr_err("create_session_msg ENOMEM creating msg\n");
824 		return NULL;
825 	}
826 	h = msg->front.iov_base;
827 	h->op = cpu_to_le32(op);
828 	h->seq = cpu_to_le64(seq);
829 
830 	return msg;
831 }
832 
833 /*
834  * session message, specialization for CEPH_SESSION_REQUEST_OPEN
835  * to include additional client metadata fields.
836  */
837 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
838 {
839 	struct ceph_msg *msg;
840 	struct ceph_mds_session_head *h;
841 	int i = -1;
842 	int metadata_bytes = 0;
843 	int metadata_key_count = 0;
844 	struct ceph_options *opt = mdsc->fsc->client->options;
845 	void *p;
846 
847 	const char* metadata[][2] = {
848 		{"hostname", utsname()->nodename},
849 		{"kernel_version", utsname()->release},
850 		{"entity_id", opt->name ? opt->name : ""},
851 		{NULL, NULL}
852 	};
853 
854 	/* Calculate serialized length of metadata */
855 	metadata_bytes = 4;  /* map length */
856 	for (i = 0; metadata[i][0] != NULL; ++i) {
857 		metadata_bytes += 8 + strlen(metadata[i][0]) +
858 			strlen(metadata[i][1]);
859 		metadata_key_count++;
860 	}
861 
862 	/* Allocate the message */
863 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
864 			   GFP_NOFS, false);
865 	if (!msg) {
866 		pr_err("create_session_msg ENOMEM creating msg\n");
867 		return NULL;
868 	}
869 	h = msg->front.iov_base;
870 	h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
871 	h->seq = cpu_to_le64(seq);
872 
873 	/*
874 	 * Serialize client metadata into waiting buffer space, using
875 	 * the format that userspace expects for map<string, string>
876 	 *
877 	 * ClientSession messages with metadata are v2
878 	 */
879 	msg->hdr.version = cpu_to_le16(2);
880 	msg->hdr.compat_version = cpu_to_le16(1);
881 
882 	/* The write pointer, following the session_head structure */
883 	p = msg->front.iov_base + sizeof(*h);
884 
885 	/* Number of entries in the map */
886 	ceph_encode_32(&p, metadata_key_count);
887 
888 	/* Two length-prefixed strings for each entry in the map */
889 	for (i = 0; metadata[i][0] != NULL; ++i) {
890 		size_t const key_len = strlen(metadata[i][0]);
891 		size_t const val_len = strlen(metadata[i][1]);
892 
893 		ceph_encode_32(&p, key_len);
894 		memcpy(p, metadata[i][0], key_len);
895 		p += key_len;
896 		ceph_encode_32(&p, val_len);
897 		memcpy(p, metadata[i][1], val_len);
898 		p += val_len;
899 	}
900 
901 	return msg;
902 }
903 
904 /*
905  * send session open request.
906  *
907  * called under mdsc->mutex
908  */
909 static int __open_session(struct ceph_mds_client *mdsc,
910 			  struct ceph_mds_session *session)
911 {
912 	struct ceph_msg *msg;
913 	int mstate;
914 	int mds = session->s_mds;
915 
916 	/* wait for mds to go active? */
917 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
918 	dout("open_session to mds%d (%s)\n", mds,
919 	     ceph_mds_state_name(mstate));
920 	session->s_state = CEPH_MDS_SESSION_OPENING;
921 	session->s_renew_requested = jiffies;
922 
923 	/* send connect message */
924 	msg = create_session_open_msg(mdsc, session->s_seq);
925 	if (!msg)
926 		return -ENOMEM;
927 	ceph_con_send(&session->s_con, msg);
928 	return 0;
929 }
930 
931 /*
932  * open sessions for any export targets for the given mds
933  *
934  * called under mdsc->mutex
935  */
936 static struct ceph_mds_session *
937 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
938 {
939 	struct ceph_mds_session *session;
940 
941 	session = __ceph_lookup_mds_session(mdsc, target);
942 	if (!session) {
943 		session = register_session(mdsc, target);
944 		if (IS_ERR(session))
945 			return session;
946 	}
947 	if (session->s_state == CEPH_MDS_SESSION_NEW ||
948 	    session->s_state == CEPH_MDS_SESSION_CLOSING)
949 		__open_session(mdsc, session);
950 
951 	return session;
952 }
953 
954 struct ceph_mds_session *
955 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
956 {
957 	struct ceph_mds_session *session;
958 
959 	dout("open_export_target_session to mds%d\n", target);
960 
961 	mutex_lock(&mdsc->mutex);
962 	session = __open_export_target_session(mdsc, target);
963 	mutex_unlock(&mdsc->mutex);
964 
965 	return session;
966 }
967 
968 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
969 					  struct ceph_mds_session *session)
970 {
971 	struct ceph_mds_info *mi;
972 	struct ceph_mds_session *ts;
973 	int i, mds = session->s_mds;
974 
975 	if (mds >= mdsc->mdsmap->m_max_mds)
976 		return;
977 
978 	mi = &mdsc->mdsmap->m_info[mds];
979 	dout("open_export_target_sessions for mds%d (%d targets)\n",
980 	     session->s_mds, mi->num_export_targets);
981 
982 	for (i = 0; i < mi->num_export_targets; i++) {
983 		ts = __open_export_target_session(mdsc, mi->export_targets[i]);
984 		if (!IS_ERR(ts))
985 			ceph_put_mds_session(ts);
986 	}
987 }
988 
989 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
990 					   struct ceph_mds_session *session)
991 {
992 	mutex_lock(&mdsc->mutex);
993 	__open_export_target_sessions(mdsc, session);
994 	mutex_unlock(&mdsc->mutex);
995 }
996 
997 /*
998  * session caps
999  */
1000 
1001 /*
1002  * Free preallocated cap messages assigned to this session
1003  */
1004 static void cleanup_cap_releases(struct ceph_mds_session *session)
1005 {
1006 	struct ceph_msg *msg;
1007 
1008 	spin_lock(&session->s_cap_lock);
1009 	while (!list_empty(&session->s_cap_releases)) {
1010 		msg = list_first_entry(&session->s_cap_releases,
1011 				       struct ceph_msg, list_head);
1012 		list_del_init(&msg->list_head);
1013 		ceph_msg_put(msg);
1014 	}
1015 	while (!list_empty(&session->s_cap_releases_done)) {
1016 		msg = list_first_entry(&session->s_cap_releases_done,
1017 				       struct ceph_msg, list_head);
1018 		list_del_init(&msg->list_head);
1019 		ceph_msg_put(msg);
1020 	}
1021 	spin_unlock(&session->s_cap_lock);
1022 }
1023 
1024 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1025 				     struct ceph_mds_session *session)
1026 {
1027 	struct ceph_mds_request *req;
1028 	struct rb_node *p;
1029 
1030 	dout("cleanup_session_requests mds%d\n", session->s_mds);
1031 	mutex_lock(&mdsc->mutex);
1032 	while (!list_empty(&session->s_unsafe)) {
1033 		req = list_first_entry(&session->s_unsafe,
1034 				       struct ceph_mds_request, r_unsafe_item);
1035 		list_del_init(&req->r_unsafe_item);
1036 		pr_info(" dropping unsafe request %llu\n", req->r_tid);
1037 		__unregister_request(mdsc, req);
1038 	}
1039 	/* zero r_attempts, so kick_requests() will re-send requests */
1040 	p = rb_first(&mdsc->request_tree);
1041 	while (p) {
1042 		req = rb_entry(p, struct ceph_mds_request, r_node);
1043 		p = rb_next(p);
1044 		if (req->r_session &&
1045 		    req->r_session->s_mds == session->s_mds)
1046 			req->r_attempts = 0;
1047 	}
1048 	mutex_unlock(&mdsc->mutex);
1049 }
1050 
1051 /*
1052  * Helper to safely iterate over all caps associated with a session, with
1053  * special care taken to handle a racing __ceph_remove_cap().
1054  *
1055  * Caller must hold session s_mutex.
1056  */
1057 static int iterate_session_caps(struct ceph_mds_session *session,
1058 				 int (*cb)(struct inode *, struct ceph_cap *,
1059 					    void *), void *arg)
1060 {
1061 	struct list_head *p;
1062 	struct ceph_cap *cap;
1063 	struct inode *inode, *last_inode = NULL;
1064 	struct ceph_cap *old_cap = NULL;
1065 	int ret;
1066 
1067 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1068 	spin_lock(&session->s_cap_lock);
1069 	p = session->s_caps.next;
1070 	while (p != &session->s_caps) {
1071 		cap = list_entry(p, struct ceph_cap, session_caps);
1072 		inode = igrab(&cap->ci->vfs_inode);
1073 		if (!inode) {
1074 			p = p->next;
1075 			continue;
1076 		}
1077 		session->s_cap_iterator = cap;
1078 		spin_unlock(&session->s_cap_lock);
1079 
1080 		if (last_inode) {
1081 			iput(last_inode);
1082 			last_inode = NULL;
1083 		}
1084 		if (old_cap) {
1085 			ceph_put_cap(session->s_mdsc, old_cap);
1086 			old_cap = NULL;
1087 		}
1088 
1089 		ret = cb(inode, cap, arg);
1090 		last_inode = inode;
1091 
1092 		spin_lock(&session->s_cap_lock);
1093 		p = p->next;
1094 		if (cap->ci == NULL) {
1095 			dout("iterate_session_caps  finishing cap %p removal\n",
1096 			     cap);
1097 			BUG_ON(cap->session != session);
1098 			list_del_init(&cap->session_caps);
1099 			session->s_nr_caps--;
1100 			cap->session = NULL;
1101 			old_cap = cap;  /* put_cap it w/o locks held */
1102 		}
1103 		if (ret < 0)
1104 			goto out;
1105 	}
1106 	ret = 0;
1107 out:
1108 	session->s_cap_iterator = NULL;
1109 	spin_unlock(&session->s_cap_lock);
1110 
1111 	iput(last_inode);
1112 	if (old_cap)
1113 		ceph_put_cap(session->s_mdsc, old_cap);
1114 
1115 	return ret;
1116 }
1117 
1118 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1119 				  void *arg)
1120 {
1121 	struct ceph_inode_info *ci = ceph_inode(inode);
1122 	int drop = 0;
1123 
1124 	dout("removing cap %p, ci is %p, inode is %p\n",
1125 	     cap, ci, &ci->vfs_inode);
1126 	spin_lock(&ci->i_ceph_lock);
1127 	__ceph_remove_cap(cap, false);
1128 	if (!ci->i_auth_cap) {
1129 		struct ceph_mds_client *mdsc =
1130 			ceph_sb_to_client(inode->i_sb)->mdsc;
1131 
1132 		spin_lock(&mdsc->cap_dirty_lock);
1133 		if (!list_empty(&ci->i_dirty_item)) {
1134 			pr_info(" dropping dirty %s state for %p %lld\n",
1135 				ceph_cap_string(ci->i_dirty_caps),
1136 				inode, ceph_ino(inode));
1137 			ci->i_dirty_caps = 0;
1138 			list_del_init(&ci->i_dirty_item);
1139 			drop = 1;
1140 		}
1141 		if (!list_empty(&ci->i_flushing_item)) {
1142 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1143 				ceph_cap_string(ci->i_flushing_caps),
1144 				inode, ceph_ino(inode));
1145 			ci->i_flushing_caps = 0;
1146 			list_del_init(&ci->i_flushing_item);
1147 			mdsc->num_cap_flushing--;
1148 			drop = 1;
1149 		}
1150 		spin_unlock(&mdsc->cap_dirty_lock);
1151 	}
1152 	spin_unlock(&ci->i_ceph_lock);
1153 	while (drop--)
1154 		iput(inode);
1155 	return 0;
1156 }
1157 
1158 /*
1159  * caller must hold session s_mutex
1160  */
1161 static void remove_session_caps(struct ceph_mds_session *session)
1162 {
1163 	dout("remove_session_caps on %p\n", session);
1164 	iterate_session_caps(session, remove_session_caps_cb, NULL);
1165 
1166 	spin_lock(&session->s_cap_lock);
1167 	if (session->s_nr_caps > 0) {
1168 		struct super_block *sb = session->s_mdsc->fsc->sb;
1169 		struct inode *inode;
1170 		struct ceph_cap *cap, *prev = NULL;
1171 		struct ceph_vino vino;
1172 		/*
1173 		 * iterate_session_caps() skips inodes that are being
1174 		 * deleted, we need to wait until deletions are complete.
1175 		 * __wait_on_freeing_inode() is designed for the job,
1176 		 * but it is not exported, so use lookup inode function
1177 		 * to access it.
1178 		 */
1179 		while (!list_empty(&session->s_caps)) {
1180 			cap = list_entry(session->s_caps.next,
1181 					 struct ceph_cap, session_caps);
1182 			if (cap == prev)
1183 				break;
1184 			prev = cap;
1185 			vino = cap->ci->i_vino;
1186 			spin_unlock(&session->s_cap_lock);
1187 
1188 			inode = ceph_find_inode(sb, vino);
1189 			iput(inode);
1190 
1191 			spin_lock(&session->s_cap_lock);
1192 		}
1193 	}
1194 	spin_unlock(&session->s_cap_lock);
1195 
1196 	BUG_ON(session->s_nr_caps > 0);
1197 	BUG_ON(!list_empty(&session->s_cap_flushing));
1198 	cleanup_cap_releases(session);
1199 }
1200 
1201 /*
1202  * wake up any threads waiting on this session's caps.  if the cap is
1203  * old (didn't get renewed on the client reconnect), remove it now.
1204  *
1205  * caller must hold s_mutex.
1206  */
1207 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1208 			      void *arg)
1209 {
1210 	struct ceph_inode_info *ci = ceph_inode(inode);
1211 
1212 	wake_up_all(&ci->i_cap_wq);
1213 	if (arg) {
1214 		spin_lock(&ci->i_ceph_lock);
1215 		ci->i_wanted_max_size = 0;
1216 		ci->i_requested_max_size = 0;
1217 		spin_unlock(&ci->i_ceph_lock);
1218 	}
1219 	return 0;
1220 }
1221 
1222 static void wake_up_session_caps(struct ceph_mds_session *session,
1223 				 int reconnect)
1224 {
1225 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1226 	iterate_session_caps(session, wake_up_session_cb,
1227 			     (void *)(unsigned long)reconnect);
1228 }
1229 
1230 /*
1231  * Send periodic message to MDS renewing all currently held caps.  The
1232  * ack will reset the expiration for all caps from this session.
1233  *
1234  * caller holds s_mutex
1235  */
1236 static int send_renew_caps(struct ceph_mds_client *mdsc,
1237 			   struct ceph_mds_session *session)
1238 {
1239 	struct ceph_msg *msg;
1240 	int state;
1241 
1242 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1243 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1244 		pr_info("mds%d caps stale\n", session->s_mds);
1245 	session->s_renew_requested = jiffies;
1246 
1247 	/* do not try to renew caps until a recovering mds has reconnected
1248 	 * with its clients. */
1249 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1250 	if (state < CEPH_MDS_STATE_RECONNECT) {
1251 		dout("send_renew_caps ignoring mds%d (%s)\n",
1252 		     session->s_mds, ceph_mds_state_name(state));
1253 		return 0;
1254 	}
1255 
1256 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1257 		ceph_mds_state_name(state));
1258 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1259 				 ++session->s_renew_seq);
1260 	if (!msg)
1261 		return -ENOMEM;
1262 	ceph_con_send(&session->s_con, msg);
1263 	return 0;
1264 }
1265 
1266 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1267 			     struct ceph_mds_session *session, u64 seq)
1268 {
1269 	struct ceph_msg *msg;
1270 
1271 	dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1272 	     session->s_mds, ceph_session_state_name(session->s_state), seq);
1273 	msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1274 	if (!msg)
1275 		return -ENOMEM;
1276 	ceph_con_send(&session->s_con, msg);
1277 	return 0;
1278 }
1279 
1280 
1281 /*
1282  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1283  *
1284  * Called under session->s_mutex
1285  */
1286 static void renewed_caps(struct ceph_mds_client *mdsc,
1287 			 struct ceph_mds_session *session, int is_renew)
1288 {
1289 	int was_stale;
1290 	int wake = 0;
1291 
1292 	spin_lock(&session->s_cap_lock);
1293 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1294 
1295 	session->s_cap_ttl = session->s_renew_requested +
1296 		mdsc->mdsmap->m_session_timeout*HZ;
1297 
1298 	if (was_stale) {
1299 		if (time_before(jiffies, session->s_cap_ttl)) {
1300 			pr_info("mds%d caps renewed\n", session->s_mds);
1301 			wake = 1;
1302 		} else {
1303 			pr_info("mds%d caps still stale\n", session->s_mds);
1304 		}
1305 	}
1306 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1307 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1308 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1309 	spin_unlock(&session->s_cap_lock);
1310 
1311 	if (wake)
1312 		wake_up_session_caps(session, 0);
1313 }
1314 
1315 /*
1316  * send a session close request
1317  */
1318 static int request_close_session(struct ceph_mds_client *mdsc,
1319 				 struct ceph_mds_session *session)
1320 {
1321 	struct ceph_msg *msg;
1322 
1323 	dout("request_close_session mds%d state %s seq %lld\n",
1324 	     session->s_mds, ceph_session_state_name(session->s_state),
1325 	     session->s_seq);
1326 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1327 	if (!msg)
1328 		return -ENOMEM;
1329 	ceph_con_send(&session->s_con, msg);
1330 	return 0;
1331 }
1332 
1333 /*
1334  * Called with s_mutex held.
1335  */
1336 static int __close_session(struct ceph_mds_client *mdsc,
1337 			 struct ceph_mds_session *session)
1338 {
1339 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1340 		return 0;
1341 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1342 	return request_close_session(mdsc, session);
1343 }
1344 
1345 /*
1346  * Trim old(er) caps.
1347  *
1348  * Because we can't cache an inode without one or more caps, we do
1349  * this indirectly: if a cap is unused, we prune its aliases, at which
1350  * point the inode will hopefully get dropped to.
1351  *
1352  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1353  * memory pressure from the MDS, though, so it needn't be perfect.
1354  */
1355 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1356 {
1357 	struct ceph_mds_session *session = arg;
1358 	struct ceph_inode_info *ci = ceph_inode(inode);
1359 	int used, wanted, oissued, mine;
1360 
1361 	if (session->s_trim_caps <= 0)
1362 		return -1;
1363 
1364 	spin_lock(&ci->i_ceph_lock);
1365 	mine = cap->issued | cap->implemented;
1366 	used = __ceph_caps_used(ci);
1367 	wanted = __ceph_caps_file_wanted(ci);
1368 	oissued = __ceph_caps_issued_other(ci, cap);
1369 
1370 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1371 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1372 	     ceph_cap_string(used), ceph_cap_string(wanted));
1373 	if (cap == ci->i_auth_cap) {
1374 		if (ci->i_dirty_caps | ci->i_flushing_caps)
1375 			goto out;
1376 		if ((used | wanted) & CEPH_CAP_ANY_WR)
1377 			goto out;
1378 	}
1379 	if ((used | wanted) & ~oissued & mine)
1380 		goto out;   /* we need these caps */
1381 
1382 	session->s_trim_caps--;
1383 	if (oissued) {
1384 		/* we aren't the only cap.. just remove us */
1385 		__ceph_remove_cap(cap, true);
1386 	} else {
1387 		/* try to drop referring dentries */
1388 		spin_unlock(&ci->i_ceph_lock);
1389 		d_prune_aliases(inode);
1390 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1391 		     inode, cap, atomic_read(&inode->i_count));
1392 		return 0;
1393 	}
1394 
1395 out:
1396 	spin_unlock(&ci->i_ceph_lock);
1397 	return 0;
1398 }
1399 
1400 /*
1401  * Trim session cap count down to some max number.
1402  */
1403 static int trim_caps(struct ceph_mds_client *mdsc,
1404 		     struct ceph_mds_session *session,
1405 		     int max_caps)
1406 {
1407 	int trim_caps = session->s_nr_caps - max_caps;
1408 
1409 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1410 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1411 	if (trim_caps > 0) {
1412 		session->s_trim_caps = trim_caps;
1413 		iterate_session_caps(session, trim_caps_cb, session);
1414 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1415 		     session->s_mds, session->s_nr_caps, max_caps,
1416 			trim_caps - session->s_trim_caps);
1417 		session->s_trim_caps = 0;
1418 	}
1419 
1420 	ceph_add_cap_releases(mdsc, session);
1421 	ceph_send_cap_releases(mdsc, session);
1422 	return 0;
1423 }
1424 
1425 /*
1426  * Allocate cap_release messages.  If there is a partially full message
1427  * in the queue, try to allocate enough to cover it's remainder, so that
1428  * we can send it immediately.
1429  *
1430  * Called under s_mutex.
1431  */
1432 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1433 			  struct ceph_mds_session *session)
1434 {
1435 	struct ceph_msg *msg, *partial = NULL;
1436 	struct ceph_mds_cap_release *head;
1437 	int err = -ENOMEM;
1438 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1439 	int num;
1440 
1441 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1442 	     extra);
1443 
1444 	spin_lock(&session->s_cap_lock);
1445 
1446 	if (!list_empty(&session->s_cap_releases)) {
1447 		msg = list_first_entry(&session->s_cap_releases,
1448 				       struct ceph_msg,
1449 				 list_head);
1450 		head = msg->front.iov_base;
1451 		num = le32_to_cpu(head->num);
1452 		if (num) {
1453 			dout(" partial %p with (%d/%d)\n", msg, num,
1454 			     (int)CEPH_CAPS_PER_RELEASE);
1455 			extra += CEPH_CAPS_PER_RELEASE - num;
1456 			partial = msg;
1457 		}
1458 	}
1459 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1460 		spin_unlock(&session->s_cap_lock);
1461 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1462 				   GFP_NOFS, false);
1463 		if (!msg)
1464 			goto out_unlocked;
1465 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1466 		     (int)msg->front.iov_len);
1467 		head = msg->front.iov_base;
1468 		head->num = cpu_to_le32(0);
1469 		msg->front.iov_len = sizeof(*head);
1470 		spin_lock(&session->s_cap_lock);
1471 		list_add(&msg->list_head, &session->s_cap_releases);
1472 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1473 	}
1474 
1475 	if (partial) {
1476 		head = partial->front.iov_base;
1477 		num = le32_to_cpu(head->num);
1478 		dout(" queueing partial %p with %d/%d\n", partial, num,
1479 		     (int)CEPH_CAPS_PER_RELEASE);
1480 		list_move_tail(&partial->list_head,
1481 			       &session->s_cap_releases_done);
1482 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1483 	}
1484 	err = 0;
1485 	spin_unlock(&session->s_cap_lock);
1486 out_unlocked:
1487 	return err;
1488 }
1489 
1490 static int check_cap_flush(struct inode *inode, u64 want_flush_seq)
1491 {
1492 	struct ceph_inode_info *ci = ceph_inode(inode);
1493 	int ret;
1494 	spin_lock(&ci->i_ceph_lock);
1495 	if (ci->i_flushing_caps)
1496 		ret = ci->i_cap_flush_seq >= want_flush_seq;
1497 	else
1498 		ret = 1;
1499 	spin_unlock(&ci->i_ceph_lock);
1500 	return ret;
1501 }
1502 
1503 /*
1504  * flush all dirty inode data to disk.
1505  *
1506  * returns true if we've flushed through want_flush_seq
1507  */
1508 static void wait_caps_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1509 {
1510 	int mds;
1511 
1512 	dout("check_cap_flush want %lld\n", want_flush_seq);
1513 	mutex_lock(&mdsc->mutex);
1514 	for (mds = 0; mds < mdsc->max_sessions; mds++) {
1515 		struct ceph_mds_session *session = mdsc->sessions[mds];
1516 		struct inode *inode = NULL;
1517 
1518 		if (!session)
1519 			continue;
1520 		get_session(session);
1521 		mutex_unlock(&mdsc->mutex);
1522 
1523 		mutex_lock(&session->s_mutex);
1524 		if (!list_empty(&session->s_cap_flushing)) {
1525 			struct ceph_inode_info *ci =
1526 				list_entry(session->s_cap_flushing.next,
1527 					   struct ceph_inode_info,
1528 					   i_flushing_item);
1529 
1530 			if (!check_cap_flush(&ci->vfs_inode, want_flush_seq)) {
1531 				dout("check_cap_flush still flushing %p "
1532 				     "seq %lld <= %lld to mds%d\n",
1533 				     &ci->vfs_inode, ci->i_cap_flush_seq,
1534 				     want_flush_seq, session->s_mds);
1535 				inode = igrab(&ci->vfs_inode);
1536 			}
1537 		}
1538 		mutex_unlock(&session->s_mutex);
1539 		ceph_put_mds_session(session);
1540 
1541 		if (inode) {
1542 			wait_event(mdsc->cap_flushing_wq,
1543 				   check_cap_flush(inode, want_flush_seq));
1544 			iput(inode);
1545 		}
1546 
1547 		mutex_lock(&mdsc->mutex);
1548 	}
1549 
1550 	mutex_unlock(&mdsc->mutex);
1551 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1552 }
1553 
1554 /*
1555  * called under s_mutex
1556  */
1557 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1558 			    struct ceph_mds_session *session)
1559 {
1560 	struct ceph_msg *msg;
1561 
1562 	dout("send_cap_releases mds%d\n", session->s_mds);
1563 	spin_lock(&session->s_cap_lock);
1564 	while (!list_empty(&session->s_cap_releases_done)) {
1565 		msg = list_first_entry(&session->s_cap_releases_done,
1566 				 struct ceph_msg, list_head);
1567 		list_del_init(&msg->list_head);
1568 		spin_unlock(&session->s_cap_lock);
1569 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1570 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1571 		ceph_con_send(&session->s_con, msg);
1572 		spin_lock(&session->s_cap_lock);
1573 	}
1574 	spin_unlock(&session->s_cap_lock);
1575 }
1576 
1577 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1578 				 struct ceph_mds_session *session)
1579 {
1580 	struct ceph_msg *msg;
1581 	struct ceph_mds_cap_release *head;
1582 	unsigned num;
1583 
1584 	dout("discard_cap_releases mds%d\n", session->s_mds);
1585 
1586 	if (!list_empty(&session->s_cap_releases)) {
1587 		/* zero out the in-progress message */
1588 		msg = list_first_entry(&session->s_cap_releases,
1589 					struct ceph_msg, list_head);
1590 		head = msg->front.iov_base;
1591 		num = le32_to_cpu(head->num);
1592 		dout("discard_cap_releases mds%d %p %u\n",
1593 		     session->s_mds, msg, num);
1594 		head->num = cpu_to_le32(0);
1595 		msg->front.iov_len = sizeof(*head);
1596 		session->s_num_cap_releases += num;
1597 	}
1598 
1599 	/* requeue completed messages */
1600 	while (!list_empty(&session->s_cap_releases_done)) {
1601 		msg = list_first_entry(&session->s_cap_releases_done,
1602 				 struct ceph_msg, list_head);
1603 		list_del_init(&msg->list_head);
1604 
1605 		head = msg->front.iov_base;
1606 		num = le32_to_cpu(head->num);
1607 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1608 		     num);
1609 		session->s_num_cap_releases += num;
1610 		head->num = cpu_to_le32(0);
1611 		msg->front.iov_len = sizeof(*head);
1612 		list_add(&msg->list_head, &session->s_cap_releases);
1613 	}
1614 }
1615 
1616 /*
1617  * requests
1618  */
1619 
1620 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1621 				    struct inode *dir)
1622 {
1623 	struct ceph_inode_info *ci = ceph_inode(dir);
1624 	struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1625 	struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1626 	size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) +
1627 		      sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease);
1628 	int order, num_entries;
1629 
1630 	spin_lock(&ci->i_ceph_lock);
1631 	num_entries = ci->i_files + ci->i_subdirs;
1632 	spin_unlock(&ci->i_ceph_lock);
1633 	num_entries = max(num_entries, 1);
1634 	num_entries = min(num_entries, opt->max_readdir);
1635 
1636 	order = get_order(size * num_entries);
1637 	while (order >= 0) {
1638 		rinfo->dir_in = (void*)__get_free_pages(GFP_NOFS | __GFP_NOWARN,
1639 							order);
1640 		if (rinfo->dir_in)
1641 			break;
1642 		order--;
1643 	}
1644 	if (!rinfo->dir_in)
1645 		return -ENOMEM;
1646 
1647 	num_entries = (PAGE_SIZE << order) / size;
1648 	num_entries = min(num_entries, opt->max_readdir);
1649 
1650 	rinfo->dir_buf_size = PAGE_SIZE << order;
1651 	req->r_num_caps = num_entries + 1;
1652 	req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1653 	req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1654 	return 0;
1655 }
1656 
1657 /*
1658  * Create an mds request.
1659  */
1660 struct ceph_mds_request *
1661 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1662 {
1663 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1664 
1665 	if (!req)
1666 		return ERR_PTR(-ENOMEM);
1667 
1668 	mutex_init(&req->r_fill_mutex);
1669 	req->r_mdsc = mdsc;
1670 	req->r_started = jiffies;
1671 	req->r_resend_mds = -1;
1672 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1673 	req->r_fmode = -1;
1674 	kref_init(&req->r_kref);
1675 	INIT_LIST_HEAD(&req->r_wait);
1676 	init_completion(&req->r_completion);
1677 	init_completion(&req->r_safe_completion);
1678 	INIT_LIST_HEAD(&req->r_unsafe_item);
1679 
1680 	req->r_stamp = CURRENT_TIME;
1681 
1682 	req->r_op = op;
1683 	req->r_direct_mode = mode;
1684 	return req;
1685 }
1686 
1687 /*
1688  * return oldest (lowest) request, tid in request tree, 0 if none.
1689  *
1690  * called under mdsc->mutex.
1691  */
1692 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1693 {
1694 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1695 		return NULL;
1696 	return rb_entry(rb_first(&mdsc->request_tree),
1697 			struct ceph_mds_request, r_node);
1698 }
1699 
1700 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1701 {
1702 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1703 
1704 	if (req)
1705 		return req->r_tid;
1706 	return 0;
1707 }
1708 
1709 /*
1710  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1711  * on build_path_from_dentry in fs/cifs/dir.c.
1712  *
1713  * If @stop_on_nosnap, generate path relative to the first non-snapped
1714  * inode.
1715  *
1716  * Encode hidden .snap dirs as a double /, i.e.
1717  *   foo/.snap/bar -> foo//bar
1718  */
1719 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1720 			   int stop_on_nosnap)
1721 {
1722 	struct dentry *temp;
1723 	char *path;
1724 	int len, pos;
1725 	unsigned seq;
1726 
1727 	if (dentry == NULL)
1728 		return ERR_PTR(-EINVAL);
1729 
1730 retry:
1731 	len = 0;
1732 	seq = read_seqbegin(&rename_lock);
1733 	rcu_read_lock();
1734 	for (temp = dentry; !IS_ROOT(temp);) {
1735 		struct inode *inode = d_inode(temp);
1736 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1737 			len++;  /* slash only */
1738 		else if (stop_on_nosnap && inode &&
1739 			 ceph_snap(inode) == CEPH_NOSNAP)
1740 			break;
1741 		else
1742 			len += 1 + temp->d_name.len;
1743 		temp = temp->d_parent;
1744 	}
1745 	rcu_read_unlock();
1746 	if (len)
1747 		len--;  /* no leading '/' */
1748 
1749 	path = kmalloc(len+1, GFP_NOFS);
1750 	if (path == NULL)
1751 		return ERR_PTR(-ENOMEM);
1752 	pos = len;
1753 	path[pos] = 0;	/* trailing null */
1754 	rcu_read_lock();
1755 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1756 		struct inode *inode;
1757 
1758 		spin_lock(&temp->d_lock);
1759 		inode = d_inode(temp);
1760 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1761 			dout("build_path path+%d: %p SNAPDIR\n",
1762 			     pos, temp);
1763 		} else if (stop_on_nosnap && inode &&
1764 			   ceph_snap(inode) == CEPH_NOSNAP) {
1765 			spin_unlock(&temp->d_lock);
1766 			break;
1767 		} else {
1768 			pos -= temp->d_name.len;
1769 			if (pos < 0) {
1770 				spin_unlock(&temp->d_lock);
1771 				break;
1772 			}
1773 			strncpy(path + pos, temp->d_name.name,
1774 				temp->d_name.len);
1775 		}
1776 		spin_unlock(&temp->d_lock);
1777 		if (pos)
1778 			path[--pos] = '/';
1779 		temp = temp->d_parent;
1780 	}
1781 	rcu_read_unlock();
1782 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1783 		pr_err("build_path did not end path lookup where "
1784 		       "expected, namelen is %d, pos is %d\n", len, pos);
1785 		/* presumably this is only possible if racing with a
1786 		   rename of one of the parent directories (we can not
1787 		   lock the dentries above us to prevent this, but
1788 		   retrying should be harmless) */
1789 		kfree(path);
1790 		goto retry;
1791 	}
1792 
1793 	*base = ceph_ino(d_inode(temp));
1794 	*plen = len;
1795 	dout("build_path on %p %d built %llx '%.*s'\n",
1796 	     dentry, d_count(dentry), *base, len, path);
1797 	return path;
1798 }
1799 
1800 static int build_dentry_path(struct dentry *dentry,
1801 			     const char **ppath, int *ppathlen, u64 *pino,
1802 			     int *pfreepath)
1803 {
1804 	char *path;
1805 
1806 	if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) {
1807 		*pino = ceph_ino(d_inode(dentry->d_parent));
1808 		*ppath = dentry->d_name.name;
1809 		*ppathlen = dentry->d_name.len;
1810 		return 0;
1811 	}
1812 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1813 	if (IS_ERR(path))
1814 		return PTR_ERR(path);
1815 	*ppath = path;
1816 	*pfreepath = 1;
1817 	return 0;
1818 }
1819 
1820 static int build_inode_path(struct inode *inode,
1821 			    const char **ppath, int *ppathlen, u64 *pino,
1822 			    int *pfreepath)
1823 {
1824 	struct dentry *dentry;
1825 	char *path;
1826 
1827 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1828 		*pino = ceph_ino(inode);
1829 		*ppathlen = 0;
1830 		return 0;
1831 	}
1832 	dentry = d_find_alias(inode);
1833 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1834 	dput(dentry);
1835 	if (IS_ERR(path))
1836 		return PTR_ERR(path);
1837 	*ppath = path;
1838 	*pfreepath = 1;
1839 	return 0;
1840 }
1841 
1842 /*
1843  * request arguments may be specified via an inode *, a dentry *, or
1844  * an explicit ino+path.
1845  */
1846 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1847 				  const char *rpath, u64 rino,
1848 				  const char **ppath, int *pathlen,
1849 				  u64 *ino, int *freepath)
1850 {
1851 	int r = 0;
1852 
1853 	if (rinode) {
1854 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1855 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1856 		     ceph_snap(rinode));
1857 	} else if (rdentry) {
1858 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1859 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1860 		     *ppath);
1861 	} else if (rpath || rino) {
1862 		*ino = rino;
1863 		*ppath = rpath;
1864 		*pathlen = rpath ? strlen(rpath) : 0;
1865 		dout(" path %.*s\n", *pathlen, rpath);
1866 	}
1867 
1868 	return r;
1869 }
1870 
1871 /*
1872  * called under mdsc->mutex
1873  */
1874 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1875 					       struct ceph_mds_request *req,
1876 					       int mds, bool drop_cap_releases)
1877 {
1878 	struct ceph_msg *msg;
1879 	struct ceph_mds_request_head *head;
1880 	const char *path1 = NULL;
1881 	const char *path2 = NULL;
1882 	u64 ino1 = 0, ino2 = 0;
1883 	int pathlen1 = 0, pathlen2 = 0;
1884 	int freepath1 = 0, freepath2 = 0;
1885 	int len;
1886 	u16 releases;
1887 	void *p, *end;
1888 	int ret;
1889 
1890 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1891 			      req->r_path1, req->r_ino1.ino,
1892 			      &path1, &pathlen1, &ino1, &freepath1);
1893 	if (ret < 0) {
1894 		msg = ERR_PTR(ret);
1895 		goto out;
1896 	}
1897 
1898 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1899 			      req->r_path2, req->r_ino2.ino,
1900 			      &path2, &pathlen2, &ino2, &freepath2);
1901 	if (ret < 0) {
1902 		msg = ERR_PTR(ret);
1903 		goto out_free1;
1904 	}
1905 
1906 	len = sizeof(*head) +
1907 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1908 		sizeof(struct timespec);
1909 
1910 	/* calculate (max) length for cap releases */
1911 	len += sizeof(struct ceph_mds_request_release) *
1912 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1913 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1914 	if (req->r_dentry_drop)
1915 		len += req->r_dentry->d_name.len;
1916 	if (req->r_old_dentry_drop)
1917 		len += req->r_old_dentry->d_name.len;
1918 
1919 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1920 	if (!msg) {
1921 		msg = ERR_PTR(-ENOMEM);
1922 		goto out_free2;
1923 	}
1924 
1925 	msg->hdr.version = cpu_to_le16(2);
1926 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1927 
1928 	head = msg->front.iov_base;
1929 	p = msg->front.iov_base + sizeof(*head);
1930 	end = msg->front.iov_base + msg->front.iov_len;
1931 
1932 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1933 	head->op = cpu_to_le32(req->r_op);
1934 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1935 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1936 	head->args = req->r_args;
1937 
1938 	ceph_encode_filepath(&p, end, ino1, path1);
1939 	ceph_encode_filepath(&p, end, ino2, path2);
1940 
1941 	/* make note of release offset, in case we need to replay */
1942 	req->r_request_release_offset = p - msg->front.iov_base;
1943 
1944 	/* cap releases */
1945 	releases = 0;
1946 	if (req->r_inode_drop)
1947 		releases += ceph_encode_inode_release(&p,
1948 		      req->r_inode ? req->r_inode : d_inode(req->r_dentry),
1949 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1950 	if (req->r_dentry_drop)
1951 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1952 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1953 	if (req->r_old_dentry_drop)
1954 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1955 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1956 	if (req->r_old_inode_drop)
1957 		releases += ceph_encode_inode_release(&p,
1958 		      d_inode(req->r_old_dentry),
1959 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1960 
1961 	if (drop_cap_releases) {
1962 		releases = 0;
1963 		p = msg->front.iov_base + req->r_request_release_offset;
1964 	}
1965 
1966 	head->num_releases = cpu_to_le16(releases);
1967 
1968 	/* time stamp */
1969 	{
1970 		struct ceph_timespec ts;
1971 		ceph_encode_timespec(&ts, &req->r_stamp);
1972 		ceph_encode_copy(&p, &ts, sizeof(ts));
1973 	}
1974 
1975 	BUG_ON(p > end);
1976 	msg->front.iov_len = p - msg->front.iov_base;
1977 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1978 
1979 	if (req->r_pagelist) {
1980 		struct ceph_pagelist *pagelist = req->r_pagelist;
1981 		atomic_inc(&pagelist->refcnt);
1982 		ceph_msg_data_add_pagelist(msg, pagelist);
1983 		msg->hdr.data_len = cpu_to_le32(pagelist->length);
1984 	} else {
1985 		msg->hdr.data_len = 0;
1986 	}
1987 
1988 	msg->hdr.data_off = cpu_to_le16(0);
1989 
1990 out_free2:
1991 	if (freepath2)
1992 		kfree((char *)path2);
1993 out_free1:
1994 	if (freepath1)
1995 		kfree((char *)path1);
1996 out:
1997 	return msg;
1998 }
1999 
2000 /*
2001  * called under mdsc->mutex if error, under no mutex if
2002  * success.
2003  */
2004 static void complete_request(struct ceph_mds_client *mdsc,
2005 			     struct ceph_mds_request *req)
2006 {
2007 	if (req->r_callback)
2008 		req->r_callback(mdsc, req);
2009 	else
2010 		complete_all(&req->r_completion);
2011 }
2012 
2013 /*
2014  * called under mdsc->mutex
2015  */
2016 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2017 				  struct ceph_mds_request *req,
2018 				  int mds, bool drop_cap_releases)
2019 {
2020 	struct ceph_mds_request_head *rhead;
2021 	struct ceph_msg *msg;
2022 	int flags = 0;
2023 
2024 	req->r_attempts++;
2025 	if (req->r_inode) {
2026 		struct ceph_cap *cap =
2027 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2028 
2029 		if (cap)
2030 			req->r_sent_on_mseq = cap->mseq;
2031 		else
2032 			req->r_sent_on_mseq = -1;
2033 	}
2034 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2035 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2036 
2037 	if (req->r_got_unsafe) {
2038 		void *p;
2039 		/*
2040 		 * Replay.  Do not regenerate message (and rebuild
2041 		 * paths, etc.); just use the original message.
2042 		 * Rebuilding paths will break for renames because
2043 		 * d_move mangles the src name.
2044 		 */
2045 		msg = req->r_request;
2046 		rhead = msg->front.iov_base;
2047 
2048 		flags = le32_to_cpu(rhead->flags);
2049 		flags |= CEPH_MDS_FLAG_REPLAY;
2050 		rhead->flags = cpu_to_le32(flags);
2051 
2052 		if (req->r_target_inode)
2053 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2054 
2055 		rhead->num_retry = req->r_attempts - 1;
2056 
2057 		/* remove cap/dentry releases from message */
2058 		rhead->num_releases = 0;
2059 
2060 		/* time stamp */
2061 		p = msg->front.iov_base + req->r_request_release_offset;
2062 		{
2063 			struct ceph_timespec ts;
2064 			ceph_encode_timespec(&ts, &req->r_stamp);
2065 			ceph_encode_copy(&p, &ts, sizeof(ts));
2066 		}
2067 
2068 		msg->front.iov_len = p - msg->front.iov_base;
2069 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2070 		return 0;
2071 	}
2072 
2073 	if (req->r_request) {
2074 		ceph_msg_put(req->r_request);
2075 		req->r_request = NULL;
2076 	}
2077 	msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2078 	if (IS_ERR(msg)) {
2079 		req->r_err = PTR_ERR(msg);
2080 		complete_request(mdsc, req);
2081 		return PTR_ERR(msg);
2082 	}
2083 	req->r_request = msg;
2084 
2085 	rhead = msg->front.iov_base;
2086 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2087 	if (req->r_got_unsafe)
2088 		flags |= CEPH_MDS_FLAG_REPLAY;
2089 	if (req->r_locked_dir)
2090 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2091 	rhead->flags = cpu_to_le32(flags);
2092 	rhead->num_fwd = req->r_num_fwd;
2093 	rhead->num_retry = req->r_attempts - 1;
2094 	rhead->ino = 0;
2095 
2096 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
2097 	return 0;
2098 }
2099 
2100 /*
2101  * send request, or put it on the appropriate wait list.
2102  */
2103 static int __do_request(struct ceph_mds_client *mdsc,
2104 			struct ceph_mds_request *req)
2105 {
2106 	struct ceph_mds_session *session = NULL;
2107 	int mds = -1;
2108 	int err = -EAGAIN;
2109 
2110 	if (req->r_err || req->r_got_result) {
2111 		if (req->r_aborted)
2112 			__unregister_request(mdsc, req);
2113 		goto out;
2114 	}
2115 
2116 	if (req->r_timeout &&
2117 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2118 		dout("do_request timed out\n");
2119 		err = -EIO;
2120 		goto finish;
2121 	}
2122 
2123 	put_request_session(req);
2124 
2125 	mds = __choose_mds(mdsc, req);
2126 	if (mds < 0 ||
2127 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2128 		dout("do_request no mds or not active, waiting for map\n");
2129 		list_add(&req->r_wait, &mdsc->waiting_for_map);
2130 		goto out;
2131 	}
2132 
2133 	/* get, open session */
2134 	session = __ceph_lookup_mds_session(mdsc, mds);
2135 	if (!session) {
2136 		session = register_session(mdsc, mds);
2137 		if (IS_ERR(session)) {
2138 			err = PTR_ERR(session);
2139 			goto finish;
2140 		}
2141 	}
2142 	req->r_session = get_session(session);
2143 
2144 	dout("do_request mds%d session %p state %s\n", mds, session,
2145 	     ceph_session_state_name(session->s_state));
2146 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2147 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
2148 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
2149 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
2150 			__open_session(mdsc, session);
2151 		list_add(&req->r_wait, &session->s_waiting);
2152 		goto out_session;
2153 	}
2154 
2155 	/* send request */
2156 	req->r_resend_mds = -1;   /* forget any previous mds hint */
2157 
2158 	if (req->r_request_started == 0)   /* note request start time */
2159 		req->r_request_started = jiffies;
2160 
2161 	err = __prepare_send_request(mdsc, req, mds, false);
2162 	if (!err) {
2163 		ceph_msg_get(req->r_request);
2164 		ceph_con_send(&session->s_con, req->r_request);
2165 	}
2166 
2167 out_session:
2168 	ceph_put_mds_session(session);
2169 out:
2170 	return err;
2171 
2172 finish:
2173 	req->r_err = err;
2174 	complete_request(mdsc, req);
2175 	goto out;
2176 }
2177 
2178 /*
2179  * called under mdsc->mutex
2180  */
2181 static void __wake_requests(struct ceph_mds_client *mdsc,
2182 			    struct list_head *head)
2183 {
2184 	struct ceph_mds_request *req;
2185 	LIST_HEAD(tmp_list);
2186 
2187 	list_splice_init(head, &tmp_list);
2188 
2189 	while (!list_empty(&tmp_list)) {
2190 		req = list_entry(tmp_list.next,
2191 				 struct ceph_mds_request, r_wait);
2192 		list_del_init(&req->r_wait);
2193 		dout(" wake request %p tid %llu\n", req, req->r_tid);
2194 		__do_request(mdsc, req);
2195 	}
2196 }
2197 
2198 /*
2199  * Wake up threads with requests pending for @mds, so that they can
2200  * resubmit their requests to a possibly different mds.
2201  */
2202 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2203 {
2204 	struct ceph_mds_request *req;
2205 	struct rb_node *p = rb_first(&mdsc->request_tree);
2206 
2207 	dout("kick_requests mds%d\n", mds);
2208 	while (p) {
2209 		req = rb_entry(p, struct ceph_mds_request, r_node);
2210 		p = rb_next(p);
2211 		if (req->r_got_unsafe)
2212 			continue;
2213 		if (req->r_attempts > 0)
2214 			continue; /* only new requests */
2215 		if (req->r_session &&
2216 		    req->r_session->s_mds == mds) {
2217 			dout(" kicking tid %llu\n", req->r_tid);
2218 			list_del_init(&req->r_wait);
2219 			__do_request(mdsc, req);
2220 		}
2221 	}
2222 }
2223 
2224 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2225 			      struct ceph_mds_request *req)
2226 {
2227 	dout("submit_request on %p\n", req);
2228 	mutex_lock(&mdsc->mutex);
2229 	__register_request(mdsc, req, NULL);
2230 	__do_request(mdsc, req);
2231 	mutex_unlock(&mdsc->mutex);
2232 }
2233 
2234 /*
2235  * Synchrously perform an mds request.  Take care of all of the
2236  * session setup, forwarding, retry details.
2237  */
2238 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2239 			 struct inode *dir,
2240 			 struct ceph_mds_request *req)
2241 {
2242 	int err;
2243 
2244 	dout("do_request on %p\n", req);
2245 
2246 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2247 	if (req->r_inode)
2248 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2249 	if (req->r_locked_dir)
2250 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2251 	if (req->r_old_dentry_dir)
2252 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2253 				  CEPH_CAP_PIN);
2254 
2255 	/* issue */
2256 	mutex_lock(&mdsc->mutex);
2257 	__register_request(mdsc, req, dir);
2258 	__do_request(mdsc, req);
2259 
2260 	if (req->r_err) {
2261 		err = req->r_err;
2262 		__unregister_request(mdsc, req);
2263 		dout("do_request early error %d\n", err);
2264 		goto out;
2265 	}
2266 
2267 	/* wait */
2268 	mutex_unlock(&mdsc->mutex);
2269 	dout("do_request waiting\n");
2270 	if (req->r_timeout) {
2271 		err = (long)wait_for_completion_killable_timeout(
2272 			&req->r_completion, req->r_timeout);
2273 		if (err == 0)
2274 			err = -EIO;
2275 	} else if (req->r_wait_for_completion) {
2276 		err = req->r_wait_for_completion(mdsc, req);
2277 	} else {
2278 		err = wait_for_completion_killable(&req->r_completion);
2279 	}
2280 	dout("do_request waited, got %d\n", err);
2281 	mutex_lock(&mdsc->mutex);
2282 
2283 	/* only abort if we didn't race with a real reply */
2284 	if (req->r_got_result) {
2285 		err = le32_to_cpu(req->r_reply_info.head->result);
2286 	} else if (err < 0) {
2287 		dout("aborted request %lld with %d\n", req->r_tid, err);
2288 
2289 		/*
2290 		 * ensure we aren't running concurrently with
2291 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2292 		 * rely on locks (dir mutex) held by our caller.
2293 		 */
2294 		mutex_lock(&req->r_fill_mutex);
2295 		req->r_err = err;
2296 		req->r_aborted = true;
2297 		mutex_unlock(&req->r_fill_mutex);
2298 
2299 		if (req->r_locked_dir &&
2300 		    (req->r_op & CEPH_MDS_OP_WRITE))
2301 			ceph_invalidate_dir_request(req);
2302 	} else {
2303 		err = req->r_err;
2304 	}
2305 
2306 out:
2307 	mutex_unlock(&mdsc->mutex);
2308 	dout("do_request %p done, result %d\n", req, err);
2309 	return err;
2310 }
2311 
2312 /*
2313  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2314  * namespace request.
2315  */
2316 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2317 {
2318 	struct inode *inode = req->r_locked_dir;
2319 
2320 	dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2321 
2322 	ceph_dir_clear_complete(inode);
2323 	if (req->r_dentry)
2324 		ceph_invalidate_dentry_lease(req->r_dentry);
2325 	if (req->r_old_dentry)
2326 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2327 }
2328 
2329 /*
2330  * Handle mds reply.
2331  *
2332  * We take the session mutex and parse and process the reply immediately.
2333  * This preserves the logical ordering of replies, capabilities, etc., sent
2334  * by the MDS as they are applied to our local cache.
2335  */
2336 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2337 {
2338 	struct ceph_mds_client *mdsc = session->s_mdsc;
2339 	struct ceph_mds_request *req;
2340 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2341 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2342 	struct ceph_snap_realm *realm;
2343 	u64 tid;
2344 	int err, result;
2345 	int mds = session->s_mds;
2346 
2347 	if (msg->front.iov_len < sizeof(*head)) {
2348 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2349 		ceph_msg_dump(msg);
2350 		return;
2351 	}
2352 
2353 	/* get request, session */
2354 	tid = le64_to_cpu(msg->hdr.tid);
2355 	mutex_lock(&mdsc->mutex);
2356 	req = __lookup_request(mdsc, tid);
2357 	if (!req) {
2358 		dout("handle_reply on unknown tid %llu\n", tid);
2359 		mutex_unlock(&mdsc->mutex);
2360 		return;
2361 	}
2362 	dout("handle_reply %p\n", req);
2363 
2364 	/* correct session? */
2365 	if (req->r_session != session) {
2366 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2367 		       " not mds%d\n", tid, session->s_mds,
2368 		       req->r_session ? req->r_session->s_mds : -1);
2369 		mutex_unlock(&mdsc->mutex);
2370 		goto out;
2371 	}
2372 
2373 	/* dup? */
2374 	if ((req->r_got_unsafe && !head->safe) ||
2375 	    (req->r_got_safe && head->safe)) {
2376 		pr_warn("got a dup %s reply on %llu from mds%d\n",
2377 			   head->safe ? "safe" : "unsafe", tid, mds);
2378 		mutex_unlock(&mdsc->mutex);
2379 		goto out;
2380 	}
2381 	if (req->r_got_safe && !head->safe) {
2382 		pr_warn("got unsafe after safe on %llu from mds%d\n",
2383 			   tid, mds);
2384 		mutex_unlock(&mdsc->mutex);
2385 		goto out;
2386 	}
2387 
2388 	result = le32_to_cpu(head->result);
2389 
2390 	/*
2391 	 * Handle an ESTALE
2392 	 * if we're not talking to the authority, send to them
2393 	 * if the authority has changed while we weren't looking,
2394 	 * send to new authority
2395 	 * Otherwise we just have to return an ESTALE
2396 	 */
2397 	if (result == -ESTALE) {
2398 		dout("got ESTALE on request %llu", req->r_tid);
2399 		req->r_resend_mds = -1;
2400 		if (req->r_direct_mode != USE_AUTH_MDS) {
2401 			dout("not using auth, setting for that now");
2402 			req->r_direct_mode = USE_AUTH_MDS;
2403 			__do_request(mdsc, req);
2404 			mutex_unlock(&mdsc->mutex);
2405 			goto out;
2406 		} else  {
2407 			int mds = __choose_mds(mdsc, req);
2408 			if (mds >= 0 && mds != req->r_session->s_mds) {
2409 				dout("but auth changed, so resending");
2410 				__do_request(mdsc, req);
2411 				mutex_unlock(&mdsc->mutex);
2412 				goto out;
2413 			}
2414 		}
2415 		dout("have to return ESTALE on request %llu", req->r_tid);
2416 	}
2417 
2418 
2419 	if (head->safe) {
2420 		req->r_got_safe = true;
2421 		__unregister_request(mdsc, req);
2422 
2423 		if (req->r_got_unsafe) {
2424 			/*
2425 			 * We already handled the unsafe response, now do the
2426 			 * cleanup.  No need to examine the response; the MDS
2427 			 * doesn't include any result info in the safe
2428 			 * response.  And even if it did, there is nothing
2429 			 * useful we could do with a revised return value.
2430 			 */
2431 			dout("got safe reply %llu, mds%d\n", tid, mds);
2432 			list_del_init(&req->r_unsafe_item);
2433 
2434 			/* last unsafe request during umount? */
2435 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2436 				complete_all(&mdsc->safe_umount_waiters);
2437 			mutex_unlock(&mdsc->mutex);
2438 			goto out;
2439 		}
2440 	} else {
2441 		req->r_got_unsafe = true;
2442 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2443 	}
2444 
2445 	dout("handle_reply tid %lld result %d\n", tid, result);
2446 	rinfo = &req->r_reply_info;
2447 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2448 	mutex_unlock(&mdsc->mutex);
2449 
2450 	mutex_lock(&session->s_mutex);
2451 	if (err < 0) {
2452 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2453 		ceph_msg_dump(msg);
2454 		goto out_err;
2455 	}
2456 
2457 	/* snap trace */
2458 	realm = NULL;
2459 	if (rinfo->snapblob_len) {
2460 		down_write(&mdsc->snap_rwsem);
2461 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2462 				rinfo->snapblob + rinfo->snapblob_len,
2463 				le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2464 				&realm);
2465 		downgrade_write(&mdsc->snap_rwsem);
2466 	} else {
2467 		down_read(&mdsc->snap_rwsem);
2468 	}
2469 
2470 	/* insert trace into our cache */
2471 	mutex_lock(&req->r_fill_mutex);
2472 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2473 	if (err == 0) {
2474 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2475 				    req->r_op == CEPH_MDS_OP_LSSNAP))
2476 			ceph_readdir_prepopulate(req, req->r_session);
2477 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2478 	}
2479 	mutex_unlock(&req->r_fill_mutex);
2480 
2481 	up_read(&mdsc->snap_rwsem);
2482 	if (realm)
2483 		ceph_put_snap_realm(mdsc, realm);
2484 out_err:
2485 	mutex_lock(&mdsc->mutex);
2486 	if (!req->r_aborted) {
2487 		if (err) {
2488 			req->r_err = err;
2489 		} else {
2490 			req->r_reply = msg;
2491 			ceph_msg_get(msg);
2492 			req->r_got_result = true;
2493 		}
2494 	} else {
2495 		dout("reply arrived after request %lld was aborted\n", tid);
2496 	}
2497 	mutex_unlock(&mdsc->mutex);
2498 
2499 	ceph_add_cap_releases(mdsc, req->r_session);
2500 	mutex_unlock(&session->s_mutex);
2501 
2502 	/* kick calling process */
2503 	complete_request(mdsc, req);
2504 out:
2505 	ceph_mdsc_put_request(req);
2506 	return;
2507 }
2508 
2509 
2510 
2511 /*
2512  * handle mds notification that our request has been forwarded.
2513  */
2514 static void handle_forward(struct ceph_mds_client *mdsc,
2515 			   struct ceph_mds_session *session,
2516 			   struct ceph_msg *msg)
2517 {
2518 	struct ceph_mds_request *req;
2519 	u64 tid = le64_to_cpu(msg->hdr.tid);
2520 	u32 next_mds;
2521 	u32 fwd_seq;
2522 	int err = -EINVAL;
2523 	void *p = msg->front.iov_base;
2524 	void *end = p + msg->front.iov_len;
2525 
2526 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2527 	next_mds = ceph_decode_32(&p);
2528 	fwd_seq = ceph_decode_32(&p);
2529 
2530 	mutex_lock(&mdsc->mutex);
2531 	req = __lookup_request(mdsc, tid);
2532 	if (!req) {
2533 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2534 		goto out;  /* dup reply? */
2535 	}
2536 
2537 	if (req->r_aborted) {
2538 		dout("forward tid %llu aborted, unregistering\n", tid);
2539 		__unregister_request(mdsc, req);
2540 	} else if (fwd_seq <= req->r_num_fwd) {
2541 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2542 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2543 	} else {
2544 		/* resend. forward race not possible; mds would drop */
2545 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2546 		BUG_ON(req->r_err);
2547 		BUG_ON(req->r_got_result);
2548 		req->r_attempts = 0;
2549 		req->r_num_fwd = fwd_seq;
2550 		req->r_resend_mds = next_mds;
2551 		put_request_session(req);
2552 		__do_request(mdsc, req);
2553 	}
2554 	ceph_mdsc_put_request(req);
2555 out:
2556 	mutex_unlock(&mdsc->mutex);
2557 	return;
2558 
2559 bad:
2560 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2561 }
2562 
2563 /*
2564  * handle a mds session control message
2565  */
2566 static void handle_session(struct ceph_mds_session *session,
2567 			   struct ceph_msg *msg)
2568 {
2569 	struct ceph_mds_client *mdsc = session->s_mdsc;
2570 	u32 op;
2571 	u64 seq;
2572 	int mds = session->s_mds;
2573 	struct ceph_mds_session_head *h = msg->front.iov_base;
2574 	int wake = 0;
2575 
2576 	/* decode */
2577 	if (msg->front.iov_len != sizeof(*h))
2578 		goto bad;
2579 	op = le32_to_cpu(h->op);
2580 	seq = le64_to_cpu(h->seq);
2581 
2582 	mutex_lock(&mdsc->mutex);
2583 	if (op == CEPH_SESSION_CLOSE)
2584 		__unregister_session(mdsc, session);
2585 	/* FIXME: this ttl calculation is generous */
2586 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2587 	mutex_unlock(&mdsc->mutex);
2588 
2589 	mutex_lock(&session->s_mutex);
2590 
2591 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2592 	     mds, ceph_session_op_name(op), session,
2593 	     ceph_session_state_name(session->s_state), seq);
2594 
2595 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2596 		session->s_state = CEPH_MDS_SESSION_OPEN;
2597 		pr_info("mds%d came back\n", session->s_mds);
2598 	}
2599 
2600 	switch (op) {
2601 	case CEPH_SESSION_OPEN:
2602 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2603 			pr_info("mds%d reconnect success\n", session->s_mds);
2604 		session->s_state = CEPH_MDS_SESSION_OPEN;
2605 		renewed_caps(mdsc, session, 0);
2606 		wake = 1;
2607 		if (mdsc->stopping)
2608 			__close_session(mdsc, session);
2609 		break;
2610 
2611 	case CEPH_SESSION_RENEWCAPS:
2612 		if (session->s_renew_seq == seq)
2613 			renewed_caps(mdsc, session, 1);
2614 		break;
2615 
2616 	case CEPH_SESSION_CLOSE:
2617 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2618 			pr_info("mds%d reconnect denied\n", session->s_mds);
2619 		cleanup_session_requests(mdsc, session);
2620 		remove_session_caps(session);
2621 		wake = 2; /* for good measure */
2622 		wake_up_all(&mdsc->session_close_wq);
2623 		break;
2624 
2625 	case CEPH_SESSION_STALE:
2626 		pr_info("mds%d caps went stale, renewing\n",
2627 			session->s_mds);
2628 		spin_lock(&session->s_gen_ttl_lock);
2629 		session->s_cap_gen++;
2630 		session->s_cap_ttl = jiffies - 1;
2631 		spin_unlock(&session->s_gen_ttl_lock);
2632 		send_renew_caps(mdsc, session);
2633 		break;
2634 
2635 	case CEPH_SESSION_RECALL_STATE:
2636 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2637 		break;
2638 
2639 	case CEPH_SESSION_FLUSHMSG:
2640 		send_flushmsg_ack(mdsc, session, seq);
2641 		break;
2642 
2643 	case CEPH_SESSION_FORCE_RO:
2644 		dout("force_session_readonly %p\n", session);
2645 		spin_lock(&session->s_cap_lock);
2646 		session->s_readonly = true;
2647 		spin_unlock(&session->s_cap_lock);
2648 		wake_up_session_caps(session, 0);
2649 		break;
2650 
2651 	default:
2652 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2653 		WARN_ON(1);
2654 	}
2655 
2656 	mutex_unlock(&session->s_mutex);
2657 	if (wake) {
2658 		mutex_lock(&mdsc->mutex);
2659 		__wake_requests(mdsc, &session->s_waiting);
2660 		if (wake == 2)
2661 			kick_requests(mdsc, mds);
2662 		mutex_unlock(&mdsc->mutex);
2663 	}
2664 	return;
2665 
2666 bad:
2667 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2668 	       (int)msg->front.iov_len);
2669 	ceph_msg_dump(msg);
2670 	return;
2671 }
2672 
2673 
2674 /*
2675  * called under session->mutex.
2676  */
2677 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2678 				   struct ceph_mds_session *session)
2679 {
2680 	struct ceph_mds_request *req, *nreq;
2681 	struct rb_node *p;
2682 	int err;
2683 
2684 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2685 
2686 	mutex_lock(&mdsc->mutex);
2687 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2688 		err = __prepare_send_request(mdsc, req, session->s_mds, true);
2689 		if (!err) {
2690 			ceph_msg_get(req->r_request);
2691 			ceph_con_send(&session->s_con, req->r_request);
2692 		}
2693 	}
2694 
2695 	/*
2696 	 * also re-send old requests when MDS enters reconnect stage. So that MDS
2697 	 * can process completed request in clientreplay stage.
2698 	 */
2699 	p = rb_first(&mdsc->request_tree);
2700 	while (p) {
2701 		req = rb_entry(p, struct ceph_mds_request, r_node);
2702 		p = rb_next(p);
2703 		if (req->r_got_unsafe)
2704 			continue;
2705 		if (req->r_attempts == 0)
2706 			continue; /* only old requests */
2707 		if (req->r_session &&
2708 		    req->r_session->s_mds == session->s_mds) {
2709 			err = __prepare_send_request(mdsc, req,
2710 						     session->s_mds, true);
2711 			if (!err) {
2712 				ceph_msg_get(req->r_request);
2713 				ceph_con_send(&session->s_con, req->r_request);
2714 			}
2715 		}
2716 	}
2717 	mutex_unlock(&mdsc->mutex);
2718 }
2719 
2720 /*
2721  * Encode information about a cap for a reconnect with the MDS.
2722  */
2723 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2724 			  void *arg)
2725 {
2726 	union {
2727 		struct ceph_mds_cap_reconnect v2;
2728 		struct ceph_mds_cap_reconnect_v1 v1;
2729 	} rec;
2730 	size_t reclen;
2731 	struct ceph_inode_info *ci;
2732 	struct ceph_reconnect_state *recon_state = arg;
2733 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2734 	char *path;
2735 	int pathlen, err;
2736 	u64 pathbase;
2737 	struct dentry *dentry;
2738 
2739 	ci = cap->ci;
2740 
2741 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2742 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2743 	     ceph_cap_string(cap->issued));
2744 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2745 	if (err)
2746 		return err;
2747 
2748 	dentry = d_find_alias(inode);
2749 	if (dentry) {
2750 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2751 		if (IS_ERR(path)) {
2752 			err = PTR_ERR(path);
2753 			goto out_dput;
2754 		}
2755 	} else {
2756 		path = NULL;
2757 		pathlen = 0;
2758 	}
2759 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2760 	if (err)
2761 		goto out_free;
2762 
2763 	spin_lock(&ci->i_ceph_lock);
2764 	cap->seq = 0;        /* reset cap seq */
2765 	cap->issue_seq = 0;  /* and issue_seq */
2766 	cap->mseq = 0;       /* and migrate_seq */
2767 	cap->cap_gen = cap->session->s_cap_gen;
2768 
2769 	if (recon_state->flock) {
2770 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2771 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2772 		rec.v2.issued = cpu_to_le32(cap->issued);
2773 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2774 		rec.v2.pathbase = cpu_to_le64(pathbase);
2775 		rec.v2.flock_len = 0;
2776 		reclen = sizeof(rec.v2);
2777 	} else {
2778 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2779 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2780 		rec.v1.issued = cpu_to_le32(cap->issued);
2781 		rec.v1.size = cpu_to_le64(inode->i_size);
2782 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2783 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2784 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2785 		rec.v1.pathbase = cpu_to_le64(pathbase);
2786 		reclen = sizeof(rec.v1);
2787 	}
2788 	spin_unlock(&ci->i_ceph_lock);
2789 
2790 	if (recon_state->flock) {
2791 		int num_fcntl_locks, num_flock_locks;
2792 		struct ceph_filelock *flocks;
2793 
2794 encode_again:
2795 		ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2796 		flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2797 				 sizeof(struct ceph_filelock), GFP_NOFS);
2798 		if (!flocks) {
2799 			err = -ENOMEM;
2800 			goto out_free;
2801 		}
2802 		err = ceph_encode_locks_to_buffer(inode, flocks,
2803 						  num_fcntl_locks,
2804 						  num_flock_locks);
2805 		if (err) {
2806 			kfree(flocks);
2807 			if (err == -ENOSPC)
2808 				goto encode_again;
2809 			goto out_free;
2810 		}
2811 		/*
2812 		 * number of encoded locks is stable, so copy to pagelist
2813 		 */
2814 		rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2815 				    (num_fcntl_locks+num_flock_locks) *
2816 				    sizeof(struct ceph_filelock));
2817 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2818 		if (!err)
2819 			err = ceph_locks_to_pagelist(flocks, pagelist,
2820 						     num_fcntl_locks,
2821 						     num_flock_locks);
2822 		kfree(flocks);
2823 	} else {
2824 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2825 	}
2826 
2827 	recon_state->nr_caps++;
2828 out_free:
2829 	kfree(path);
2830 out_dput:
2831 	dput(dentry);
2832 	return err;
2833 }
2834 
2835 
2836 /*
2837  * If an MDS fails and recovers, clients need to reconnect in order to
2838  * reestablish shared state.  This includes all caps issued through
2839  * this session _and_ the snap_realm hierarchy.  Because it's not
2840  * clear which snap realms the mds cares about, we send everything we
2841  * know about.. that ensures we'll then get any new info the
2842  * recovering MDS might have.
2843  *
2844  * This is a relatively heavyweight operation, but it's rare.
2845  *
2846  * called with mdsc->mutex held.
2847  */
2848 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2849 			       struct ceph_mds_session *session)
2850 {
2851 	struct ceph_msg *reply;
2852 	struct rb_node *p;
2853 	int mds = session->s_mds;
2854 	int err = -ENOMEM;
2855 	int s_nr_caps;
2856 	struct ceph_pagelist *pagelist;
2857 	struct ceph_reconnect_state recon_state;
2858 
2859 	pr_info("mds%d reconnect start\n", mds);
2860 
2861 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2862 	if (!pagelist)
2863 		goto fail_nopagelist;
2864 	ceph_pagelist_init(pagelist);
2865 
2866 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2867 	if (!reply)
2868 		goto fail_nomsg;
2869 
2870 	mutex_lock(&session->s_mutex);
2871 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2872 	session->s_seq = 0;
2873 
2874 	dout("session %p state %s\n", session,
2875 	     ceph_session_state_name(session->s_state));
2876 
2877 	spin_lock(&session->s_gen_ttl_lock);
2878 	session->s_cap_gen++;
2879 	spin_unlock(&session->s_gen_ttl_lock);
2880 
2881 	spin_lock(&session->s_cap_lock);
2882 	/* don't know if session is readonly */
2883 	session->s_readonly = 0;
2884 	/*
2885 	 * notify __ceph_remove_cap() that we are composing cap reconnect.
2886 	 * If a cap get released before being added to the cap reconnect,
2887 	 * __ceph_remove_cap() should skip queuing cap release.
2888 	 */
2889 	session->s_cap_reconnect = 1;
2890 	/* drop old cap expires; we're about to reestablish that state */
2891 	discard_cap_releases(mdsc, session);
2892 	spin_unlock(&session->s_cap_lock);
2893 
2894 	/* trim unused caps to reduce MDS's cache rejoin time */
2895 	if (mdsc->fsc->sb->s_root)
2896 		shrink_dcache_parent(mdsc->fsc->sb->s_root);
2897 
2898 	ceph_con_close(&session->s_con);
2899 	ceph_con_open(&session->s_con,
2900 		      CEPH_ENTITY_TYPE_MDS, mds,
2901 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2902 
2903 	/* replay unsafe requests */
2904 	replay_unsafe_requests(mdsc, session);
2905 
2906 	down_read(&mdsc->snap_rwsem);
2907 
2908 	/* traverse this session's caps */
2909 	s_nr_caps = session->s_nr_caps;
2910 	err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2911 	if (err)
2912 		goto fail;
2913 
2914 	recon_state.nr_caps = 0;
2915 	recon_state.pagelist = pagelist;
2916 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2917 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2918 	if (err < 0)
2919 		goto fail;
2920 
2921 	spin_lock(&session->s_cap_lock);
2922 	session->s_cap_reconnect = 0;
2923 	spin_unlock(&session->s_cap_lock);
2924 
2925 	/*
2926 	 * snaprealms.  we provide mds with the ino, seq (version), and
2927 	 * parent for all of our realms.  If the mds has any newer info,
2928 	 * it will tell us.
2929 	 */
2930 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2931 		struct ceph_snap_realm *realm =
2932 			rb_entry(p, struct ceph_snap_realm, node);
2933 		struct ceph_mds_snaprealm_reconnect sr_rec;
2934 
2935 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2936 		     realm->ino, realm->seq, realm->parent_ino);
2937 		sr_rec.ino = cpu_to_le64(realm->ino);
2938 		sr_rec.seq = cpu_to_le64(realm->seq);
2939 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2940 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2941 		if (err)
2942 			goto fail;
2943 	}
2944 
2945 	if (recon_state.flock)
2946 		reply->hdr.version = cpu_to_le16(2);
2947 
2948 	/* raced with cap release? */
2949 	if (s_nr_caps != recon_state.nr_caps) {
2950 		struct page *page = list_first_entry(&pagelist->head,
2951 						     struct page, lru);
2952 		__le32 *addr = kmap_atomic(page);
2953 		*addr = cpu_to_le32(recon_state.nr_caps);
2954 		kunmap_atomic(addr);
2955 	}
2956 
2957 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2958 	ceph_msg_data_add_pagelist(reply, pagelist);
2959 	ceph_con_send(&session->s_con, reply);
2960 
2961 	mutex_unlock(&session->s_mutex);
2962 
2963 	mutex_lock(&mdsc->mutex);
2964 	__wake_requests(mdsc, &session->s_waiting);
2965 	mutex_unlock(&mdsc->mutex);
2966 
2967 	up_read(&mdsc->snap_rwsem);
2968 	return;
2969 
2970 fail:
2971 	ceph_msg_put(reply);
2972 	up_read(&mdsc->snap_rwsem);
2973 	mutex_unlock(&session->s_mutex);
2974 fail_nomsg:
2975 	ceph_pagelist_release(pagelist);
2976 fail_nopagelist:
2977 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2978 	return;
2979 }
2980 
2981 
2982 /*
2983  * compare old and new mdsmaps, kicking requests
2984  * and closing out old connections as necessary
2985  *
2986  * called under mdsc->mutex.
2987  */
2988 static void check_new_map(struct ceph_mds_client *mdsc,
2989 			  struct ceph_mdsmap *newmap,
2990 			  struct ceph_mdsmap *oldmap)
2991 {
2992 	int i;
2993 	int oldstate, newstate;
2994 	struct ceph_mds_session *s;
2995 
2996 	dout("check_new_map new %u old %u\n",
2997 	     newmap->m_epoch, oldmap->m_epoch);
2998 
2999 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
3000 		if (mdsc->sessions[i] == NULL)
3001 			continue;
3002 		s = mdsc->sessions[i];
3003 		oldstate = ceph_mdsmap_get_state(oldmap, i);
3004 		newstate = ceph_mdsmap_get_state(newmap, i);
3005 
3006 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3007 		     i, ceph_mds_state_name(oldstate),
3008 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3009 		     ceph_mds_state_name(newstate),
3010 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3011 		     ceph_session_state_name(s->s_state));
3012 
3013 		if (i >= newmap->m_max_mds ||
3014 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
3015 			   ceph_mdsmap_get_addr(newmap, i),
3016 			   sizeof(struct ceph_entity_addr))) {
3017 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3018 				/* the session never opened, just close it
3019 				 * out now */
3020 				__wake_requests(mdsc, &s->s_waiting);
3021 				__unregister_session(mdsc, s);
3022 			} else {
3023 				/* just close it */
3024 				mutex_unlock(&mdsc->mutex);
3025 				mutex_lock(&s->s_mutex);
3026 				mutex_lock(&mdsc->mutex);
3027 				ceph_con_close(&s->s_con);
3028 				mutex_unlock(&s->s_mutex);
3029 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
3030 			}
3031 		} else if (oldstate == newstate) {
3032 			continue;  /* nothing new with this mds */
3033 		}
3034 
3035 		/*
3036 		 * send reconnect?
3037 		 */
3038 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3039 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
3040 			mutex_unlock(&mdsc->mutex);
3041 			send_mds_reconnect(mdsc, s);
3042 			mutex_lock(&mdsc->mutex);
3043 		}
3044 
3045 		/*
3046 		 * kick request on any mds that has gone active.
3047 		 */
3048 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3049 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
3050 			if (oldstate != CEPH_MDS_STATE_CREATING &&
3051 			    oldstate != CEPH_MDS_STATE_STARTING)
3052 				pr_info("mds%d recovery completed\n", s->s_mds);
3053 			kick_requests(mdsc, i);
3054 			ceph_kick_flushing_caps(mdsc, s);
3055 			wake_up_session_caps(s, 1);
3056 		}
3057 	}
3058 
3059 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
3060 		s = mdsc->sessions[i];
3061 		if (!s)
3062 			continue;
3063 		if (!ceph_mdsmap_is_laggy(newmap, i))
3064 			continue;
3065 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3066 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
3067 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
3068 			dout(" connecting to export targets of laggy mds%d\n",
3069 			     i);
3070 			__open_export_target_sessions(mdsc, s);
3071 		}
3072 	}
3073 }
3074 
3075 
3076 
3077 /*
3078  * leases
3079  */
3080 
3081 /*
3082  * caller must hold session s_mutex, dentry->d_lock
3083  */
3084 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3085 {
3086 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3087 
3088 	ceph_put_mds_session(di->lease_session);
3089 	di->lease_session = NULL;
3090 }
3091 
3092 static void handle_lease(struct ceph_mds_client *mdsc,
3093 			 struct ceph_mds_session *session,
3094 			 struct ceph_msg *msg)
3095 {
3096 	struct super_block *sb = mdsc->fsc->sb;
3097 	struct inode *inode;
3098 	struct dentry *parent, *dentry;
3099 	struct ceph_dentry_info *di;
3100 	int mds = session->s_mds;
3101 	struct ceph_mds_lease *h = msg->front.iov_base;
3102 	u32 seq;
3103 	struct ceph_vino vino;
3104 	struct qstr dname;
3105 	int release = 0;
3106 
3107 	dout("handle_lease from mds%d\n", mds);
3108 
3109 	/* decode */
3110 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3111 		goto bad;
3112 	vino.ino = le64_to_cpu(h->ino);
3113 	vino.snap = CEPH_NOSNAP;
3114 	seq = le32_to_cpu(h->seq);
3115 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3116 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3117 	if (dname.len != get_unaligned_le32(h+1))
3118 		goto bad;
3119 
3120 	/* lookup inode */
3121 	inode = ceph_find_inode(sb, vino);
3122 	dout("handle_lease %s, ino %llx %p %.*s\n",
3123 	     ceph_lease_op_name(h->action), vino.ino, inode,
3124 	     dname.len, dname.name);
3125 
3126 	mutex_lock(&session->s_mutex);
3127 	session->s_seq++;
3128 
3129 	if (inode == NULL) {
3130 		dout("handle_lease no inode %llx\n", vino.ino);
3131 		goto release;
3132 	}
3133 
3134 	/* dentry */
3135 	parent = d_find_alias(inode);
3136 	if (!parent) {
3137 		dout("no parent dentry on inode %p\n", inode);
3138 		WARN_ON(1);
3139 		goto release;  /* hrm... */
3140 	}
3141 	dname.hash = full_name_hash(dname.name, dname.len);
3142 	dentry = d_lookup(parent, &dname);
3143 	dput(parent);
3144 	if (!dentry)
3145 		goto release;
3146 
3147 	spin_lock(&dentry->d_lock);
3148 	di = ceph_dentry(dentry);
3149 	switch (h->action) {
3150 	case CEPH_MDS_LEASE_REVOKE:
3151 		if (di->lease_session == session) {
3152 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3153 				h->seq = cpu_to_le32(di->lease_seq);
3154 			__ceph_mdsc_drop_dentry_lease(dentry);
3155 		}
3156 		release = 1;
3157 		break;
3158 
3159 	case CEPH_MDS_LEASE_RENEW:
3160 		if (di->lease_session == session &&
3161 		    di->lease_gen == session->s_cap_gen &&
3162 		    di->lease_renew_from &&
3163 		    di->lease_renew_after == 0) {
3164 			unsigned long duration =
3165 				msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3166 
3167 			di->lease_seq = seq;
3168 			dentry->d_time = di->lease_renew_from + duration;
3169 			di->lease_renew_after = di->lease_renew_from +
3170 				(duration >> 1);
3171 			di->lease_renew_from = 0;
3172 		}
3173 		break;
3174 	}
3175 	spin_unlock(&dentry->d_lock);
3176 	dput(dentry);
3177 
3178 	if (!release)
3179 		goto out;
3180 
3181 release:
3182 	/* let's just reuse the same message */
3183 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3184 	ceph_msg_get(msg);
3185 	ceph_con_send(&session->s_con, msg);
3186 
3187 out:
3188 	iput(inode);
3189 	mutex_unlock(&session->s_mutex);
3190 	return;
3191 
3192 bad:
3193 	pr_err("corrupt lease message\n");
3194 	ceph_msg_dump(msg);
3195 }
3196 
3197 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3198 			      struct inode *inode,
3199 			      struct dentry *dentry, char action,
3200 			      u32 seq)
3201 {
3202 	struct ceph_msg *msg;
3203 	struct ceph_mds_lease *lease;
3204 	int len = sizeof(*lease) + sizeof(u32);
3205 	int dnamelen = 0;
3206 
3207 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3208 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
3209 	dnamelen = dentry->d_name.len;
3210 	len += dnamelen;
3211 
3212 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3213 	if (!msg)
3214 		return;
3215 	lease = msg->front.iov_base;
3216 	lease->action = action;
3217 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3218 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3219 	lease->seq = cpu_to_le32(seq);
3220 	put_unaligned_le32(dnamelen, lease + 1);
3221 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3222 
3223 	/*
3224 	 * if this is a preemptive lease RELEASE, no need to
3225 	 * flush request stream, since the actual request will
3226 	 * soon follow.
3227 	 */
3228 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3229 
3230 	ceph_con_send(&session->s_con, msg);
3231 }
3232 
3233 /*
3234  * Preemptively release a lease we expect to invalidate anyway.
3235  * Pass @inode always, @dentry is optional.
3236  */
3237 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
3238 			     struct dentry *dentry)
3239 {
3240 	struct ceph_dentry_info *di;
3241 	struct ceph_mds_session *session;
3242 	u32 seq;
3243 
3244 	BUG_ON(inode == NULL);
3245 	BUG_ON(dentry == NULL);
3246 
3247 	/* is dentry lease valid? */
3248 	spin_lock(&dentry->d_lock);
3249 	di = ceph_dentry(dentry);
3250 	if (!di || !di->lease_session ||
3251 	    di->lease_session->s_mds < 0 ||
3252 	    di->lease_gen != di->lease_session->s_cap_gen ||
3253 	    !time_before(jiffies, dentry->d_time)) {
3254 		dout("lease_release inode %p dentry %p -- "
3255 		     "no lease\n",
3256 		     inode, dentry);
3257 		spin_unlock(&dentry->d_lock);
3258 		return;
3259 	}
3260 
3261 	/* we do have a lease on this dentry; note mds and seq */
3262 	session = ceph_get_mds_session(di->lease_session);
3263 	seq = di->lease_seq;
3264 	__ceph_mdsc_drop_dentry_lease(dentry);
3265 	spin_unlock(&dentry->d_lock);
3266 
3267 	dout("lease_release inode %p dentry %p to mds%d\n",
3268 	     inode, dentry, session->s_mds);
3269 	ceph_mdsc_lease_send_msg(session, inode, dentry,
3270 				 CEPH_MDS_LEASE_RELEASE, seq);
3271 	ceph_put_mds_session(session);
3272 }
3273 
3274 /*
3275  * drop all leases (and dentry refs) in preparation for umount
3276  */
3277 static void drop_leases(struct ceph_mds_client *mdsc)
3278 {
3279 	int i;
3280 
3281 	dout("drop_leases\n");
3282 	mutex_lock(&mdsc->mutex);
3283 	for (i = 0; i < mdsc->max_sessions; i++) {
3284 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3285 		if (!s)
3286 			continue;
3287 		mutex_unlock(&mdsc->mutex);
3288 		mutex_lock(&s->s_mutex);
3289 		mutex_unlock(&s->s_mutex);
3290 		ceph_put_mds_session(s);
3291 		mutex_lock(&mdsc->mutex);
3292 	}
3293 	mutex_unlock(&mdsc->mutex);
3294 }
3295 
3296 
3297 
3298 /*
3299  * delayed work -- periodically trim expired leases, renew caps with mds
3300  */
3301 static void schedule_delayed(struct ceph_mds_client *mdsc)
3302 {
3303 	int delay = 5;
3304 	unsigned hz = round_jiffies_relative(HZ * delay);
3305 	schedule_delayed_work(&mdsc->delayed_work, hz);
3306 }
3307 
3308 static void delayed_work(struct work_struct *work)
3309 {
3310 	int i;
3311 	struct ceph_mds_client *mdsc =
3312 		container_of(work, struct ceph_mds_client, delayed_work.work);
3313 	int renew_interval;
3314 	int renew_caps;
3315 
3316 	dout("mdsc delayed_work\n");
3317 	ceph_check_delayed_caps(mdsc);
3318 
3319 	mutex_lock(&mdsc->mutex);
3320 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3321 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3322 				   mdsc->last_renew_caps);
3323 	if (renew_caps)
3324 		mdsc->last_renew_caps = jiffies;
3325 
3326 	for (i = 0; i < mdsc->max_sessions; i++) {
3327 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3328 		if (s == NULL)
3329 			continue;
3330 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3331 			dout("resending session close request for mds%d\n",
3332 			     s->s_mds);
3333 			request_close_session(mdsc, s);
3334 			ceph_put_mds_session(s);
3335 			continue;
3336 		}
3337 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3338 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3339 				s->s_state = CEPH_MDS_SESSION_HUNG;
3340 				pr_info("mds%d hung\n", s->s_mds);
3341 			}
3342 		}
3343 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3344 			/* this mds is failed or recovering, just wait */
3345 			ceph_put_mds_session(s);
3346 			continue;
3347 		}
3348 		mutex_unlock(&mdsc->mutex);
3349 
3350 		mutex_lock(&s->s_mutex);
3351 		if (renew_caps)
3352 			send_renew_caps(mdsc, s);
3353 		else
3354 			ceph_con_keepalive(&s->s_con);
3355 		ceph_add_cap_releases(mdsc, s);
3356 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3357 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3358 			ceph_send_cap_releases(mdsc, s);
3359 		mutex_unlock(&s->s_mutex);
3360 		ceph_put_mds_session(s);
3361 
3362 		mutex_lock(&mdsc->mutex);
3363 	}
3364 	mutex_unlock(&mdsc->mutex);
3365 
3366 	schedule_delayed(mdsc);
3367 }
3368 
3369 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3370 
3371 {
3372 	struct ceph_mds_client *mdsc;
3373 
3374 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3375 	if (!mdsc)
3376 		return -ENOMEM;
3377 	mdsc->fsc = fsc;
3378 	fsc->mdsc = mdsc;
3379 	mutex_init(&mdsc->mutex);
3380 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3381 	if (mdsc->mdsmap == NULL) {
3382 		kfree(mdsc);
3383 		return -ENOMEM;
3384 	}
3385 
3386 	init_completion(&mdsc->safe_umount_waiters);
3387 	init_waitqueue_head(&mdsc->session_close_wq);
3388 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3389 	mdsc->sessions = NULL;
3390 	atomic_set(&mdsc->num_sessions, 0);
3391 	mdsc->max_sessions = 0;
3392 	mdsc->stopping = 0;
3393 	init_rwsem(&mdsc->snap_rwsem);
3394 	mdsc->snap_realms = RB_ROOT;
3395 	INIT_LIST_HEAD(&mdsc->snap_empty);
3396 	spin_lock_init(&mdsc->snap_empty_lock);
3397 	mdsc->last_tid = 0;
3398 	mdsc->request_tree = RB_ROOT;
3399 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3400 	mdsc->last_renew_caps = jiffies;
3401 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3402 	spin_lock_init(&mdsc->cap_delay_lock);
3403 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3404 	spin_lock_init(&mdsc->snap_flush_lock);
3405 	mdsc->cap_flush_seq = 0;
3406 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3407 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3408 	mdsc->num_cap_flushing = 0;
3409 	spin_lock_init(&mdsc->cap_dirty_lock);
3410 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3411 	spin_lock_init(&mdsc->dentry_lru_lock);
3412 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3413 
3414 	ceph_caps_init(mdsc);
3415 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3416 
3417 	return 0;
3418 }
3419 
3420 /*
3421  * Wait for safe replies on open mds requests.  If we time out, drop
3422  * all requests from the tree to avoid dangling dentry refs.
3423  */
3424 static void wait_requests(struct ceph_mds_client *mdsc)
3425 {
3426 	struct ceph_mds_request *req;
3427 	struct ceph_fs_client *fsc = mdsc->fsc;
3428 
3429 	mutex_lock(&mdsc->mutex);
3430 	if (__get_oldest_req(mdsc)) {
3431 		mutex_unlock(&mdsc->mutex);
3432 
3433 		dout("wait_requests waiting for requests\n");
3434 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3435 				    fsc->client->options->mount_timeout * HZ);
3436 
3437 		/* tear down remaining requests */
3438 		mutex_lock(&mdsc->mutex);
3439 		while ((req = __get_oldest_req(mdsc))) {
3440 			dout("wait_requests timed out on tid %llu\n",
3441 			     req->r_tid);
3442 			__unregister_request(mdsc, req);
3443 		}
3444 	}
3445 	mutex_unlock(&mdsc->mutex);
3446 	dout("wait_requests done\n");
3447 }
3448 
3449 /*
3450  * called before mount is ro, and before dentries are torn down.
3451  * (hmm, does this still race with new lookups?)
3452  */
3453 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3454 {
3455 	dout("pre_umount\n");
3456 	mdsc->stopping = 1;
3457 
3458 	drop_leases(mdsc);
3459 	ceph_flush_dirty_caps(mdsc);
3460 	wait_requests(mdsc);
3461 
3462 	/*
3463 	 * wait for reply handlers to drop their request refs and
3464 	 * their inode/dcache refs
3465 	 */
3466 	ceph_msgr_flush();
3467 }
3468 
3469 /*
3470  * wait for all write mds requests to flush.
3471  */
3472 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3473 {
3474 	struct ceph_mds_request *req = NULL, *nextreq;
3475 	struct rb_node *n;
3476 
3477 	mutex_lock(&mdsc->mutex);
3478 	dout("wait_unsafe_requests want %lld\n", want_tid);
3479 restart:
3480 	req = __get_oldest_req(mdsc);
3481 	while (req && req->r_tid <= want_tid) {
3482 		/* find next request */
3483 		n = rb_next(&req->r_node);
3484 		if (n)
3485 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3486 		else
3487 			nextreq = NULL;
3488 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3489 			/* write op */
3490 			ceph_mdsc_get_request(req);
3491 			if (nextreq)
3492 				ceph_mdsc_get_request(nextreq);
3493 			mutex_unlock(&mdsc->mutex);
3494 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3495 			     req->r_tid, want_tid);
3496 			wait_for_completion(&req->r_safe_completion);
3497 			mutex_lock(&mdsc->mutex);
3498 			ceph_mdsc_put_request(req);
3499 			if (!nextreq)
3500 				break;  /* next dne before, so we're done! */
3501 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3502 				/* next request was removed from tree */
3503 				ceph_mdsc_put_request(nextreq);
3504 				goto restart;
3505 			}
3506 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3507 		}
3508 		req = nextreq;
3509 	}
3510 	mutex_unlock(&mdsc->mutex);
3511 	dout("wait_unsafe_requests done\n");
3512 }
3513 
3514 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3515 {
3516 	u64 want_tid, want_flush;
3517 
3518 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3519 		return;
3520 
3521 	dout("sync\n");
3522 	mutex_lock(&mdsc->mutex);
3523 	want_tid = mdsc->last_tid;
3524 	mutex_unlock(&mdsc->mutex);
3525 
3526 	ceph_flush_dirty_caps(mdsc);
3527 	spin_lock(&mdsc->cap_dirty_lock);
3528 	want_flush = mdsc->cap_flush_seq;
3529 	spin_unlock(&mdsc->cap_dirty_lock);
3530 
3531 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3532 
3533 	wait_unsafe_requests(mdsc, want_tid);
3534 	wait_caps_flush(mdsc, want_flush);
3535 }
3536 
3537 /*
3538  * true if all sessions are closed, or we force unmount
3539  */
3540 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3541 {
3542 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3543 		return true;
3544 	return atomic_read(&mdsc->num_sessions) == 0;
3545 }
3546 
3547 /*
3548  * called after sb is ro.
3549  */
3550 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3551 {
3552 	struct ceph_mds_session *session;
3553 	int i;
3554 	struct ceph_fs_client *fsc = mdsc->fsc;
3555 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3556 
3557 	dout("close_sessions\n");
3558 
3559 	/* close sessions */
3560 	mutex_lock(&mdsc->mutex);
3561 	for (i = 0; i < mdsc->max_sessions; i++) {
3562 		session = __ceph_lookup_mds_session(mdsc, i);
3563 		if (!session)
3564 			continue;
3565 		mutex_unlock(&mdsc->mutex);
3566 		mutex_lock(&session->s_mutex);
3567 		__close_session(mdsc, session);
3568 		mutex_unlock(&session->s_mutex);
3569 		ceph_put_mds_session(session);
3570 		mutex_lock(&mdsc->mutex);
3571 	}
3572 	mutex_unlock(&mdsc->mutex);
3573 
3574 	dout("waiting for sessions to close\n");
3575 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3576 			   timeout);
3577 
3578 	/* tear down remaining sessions */
3579 	mutex_lock(&mdsc->mutex);
3580 	for (i = 0; i < mdsc->max_sessions; i++) {
3581 		if (mdsc->sessions[i]) {
3582 			session = get_session(mdsc->sessions[i]);
3583 			__unregister_session(mdsc, session);
3584 			mutex_unlock(&mdsc->mutex);
3585 			mutex_lock(&session->s_mutex);
3586 			remove_session_caps(session);
3587 			mutex_unlock(&session->s_mutex);
3588 			ceph_put_mds_session(session);
3589 			mutex_lock(&mdsc->mutex);
3590 		}
3591 	}
3592 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3593 	mutex_unlock(&mdsc->mutex);
3594 
3595 	ceph_cleanup_empty_realms(mdsc);
3596 
3597 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3598 
3599 	dout("stopped\n");
3600 }
3601 
3602 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3603 {
3604 	dout("stop\n");
3605 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3606 	if (mdsc->mdsmap)
3607 		ceph_mdsmap_destroy(mdsc->mdsmap);
3608 	kfree(mdsc->sessions);
3609 	ceph_caps_finalize(mdsc);
3610 }
3611 
3612 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3613 {
3614 	struct ceph_mds_client *mdsc = fsc->mdsc;
3615 
3616 	dout("mdsc_destroy %p\n", mdsc);
3617 	ceph_mdsc_stop(mdsc);
3618 
3619 	/* flush out any connection work with references to us */
3620 	ceph_msgr_flush();
3621 
3622 	fsc->mdsc = NULL;
3623 	kfree(mdsc);
3624 	dout("mdsc_destroy %p done\n", mdsc);
3625 }
3626 
3627 
3628 /*
3629  * handle mds map update.
3630  */
3631 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3632 {
3633 	u32 epoch;
3634 	u32 maplen;
3635 	void *p = msg->front.iov_base;
3636 	void *end = p + msg->front.iov_len;
3637 	struct ceph_mdsmap *newmap, *oldmap;
3638 	struct ceph_fsid fsid;
3639 	int err = -EINVAL;
3640 
3641 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3642 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3643 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3644 		return;
3645 	epoch = ceph_decode_32(&p);
3646 	maplen = ceph_decode_32(&p);
3647 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3648 
3649 	/* do we need it? */
3650 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3651 	mutex_lock(&mdsc->mutex);
3652 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3653 		dout("handle_map epoch %u <= our %u\n",
3654 		     epoch, mdsc->mdsmap->m_epoch);
3655 		mutex_unlock(&mdsc->mutex);
3656 		return;
3657 	}
3658 
3659 	newmap = ceph_mdsmap_decode(&p, end);
3660 	if (IS_ERR(newmap)) {
3661 		err = PTR_ERR(newmap);
3662 		goto bad_unlock;
3663 	}
3664 
3665 	/* swap into place */
3666 	if (mdsc->mdsmap) {
3667 		oldmap = mdsc->mdsmap;
3668 		mdsc->mdsmap = newmap;
3669 		check_new_map(mdsc, newmap, oldmap);
3670 		ceph_mdsmap_destroy(oldmap);
3671 	} else {
3672 		mdsc->mdsmap = newmap;  /* first mds map */
3673 	}
3674 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3675 
3676 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3677 
3678 	mutex_unlock(&mdsc->mutex);
3679 	schedule_delayed(mdsc);
3680 	return;
3681 
3682 bad_unlock:
3683 	mutex_unlock(&mdsc->mutex);
3684 bad:
3685 	pr_err("error decoding mdsmap %d\n", err);
3686 	return;
3687 }
3688 
3689 static struct ceph_connection *con_get(struct ceph_connection *con)
3690 {
3691 	struct ceph_mds_session *s = con->private;
3692 
3693 	if (get_session(s)) {
3694 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3695 		return con;
3696 	}
3697 	dout("mdsc con_get %p FAIL\n", s);
3698 	return NULL;
3699 }
3700 
3701 static void con_put(struct ceph_connection *con)
3702 {
3703 	struct ceph_mds_session *s = con->private;
3704 
3705 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3706 	ceph_put_mds_session(s);
3707 }
3708 
3709 /*
3710  * if the client is unresponsive for long enough, the mds will kill
3711  * the session entirely.
3712  */
3713 static void peer_reset(struct ceph_connection *con)
3714 {
3715 	struct ceph_mds_session *s = con->private;
3716 	struct ceph_mds_client *mdsc = s->s_mdsc;
3717 
3718 	pr_warn("mds%d closed our session\n", s->s_mds);
3719 	send_mds_reconnect(mdsc, s);
3720 }
3721 
3722 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3723 {
3724 	struct ceph_mds_session *s = con->private;
3725 	struct ceph_mds_client *mdsc = s->s_mdsc;
3726 	int type = le16_to_cpu(msg->hdr.type);
3727 
3728 	mutex_lock(&mdsc->mutex);
3729 	if (__verify_registered_session(mdsc, s) < 0) {
3730 		mutex_unlock(&mdsc->mutex);
3731 		goto out;
3732 	}
3733 	mutex_unlock(&mdsc->mutex);
3734 
3735 	switch (type) {
3736 	case CEPH_MSG_MDS_MAP:
3737 		ceph_mdsc_handle_map(mdsc, msg);
3738 		break;
3739 	case CEPH_MSG_CLIENT_SESSION:
3740 		handle_session(s, msg);
3741 		break;
3742 	case CEPH_MSG_CLIENT_REPLY:
3743 		handle_reply(s, msg);
3744 		break;
3745 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3746 		handle_forward(mdsc, s, msg);
3747 		break;
3748 	case CEPH_MSG_CLIENT_CAPS:
3749 		ceph_handle_caps(s, msg);
3750 		break;
3751 	case CEPH_MSG_CLIENT_SNAP:
3752 		ceph_handle_snap(mdsc, s, msg);
3753 		break;
3754 	case CEPH_MSG_CLIENT_LEASE:
3755 		handle_lease(mdsc, s, msg);
3756 		break;
3757 
3758 	default:
3759 		pr_err("received unknown message type %d %s\n", type,
3760 		       ceph_msg_type_name(type));
3761 	}
3762 out:
3763 	ceph_msg_put(msg);
3764 }
3765 
3766 /*
3767  * authentication
3768  */
3769 
3770 /*
3771  * Note: returned pointer is the address of a structure that's
3772  * managed separately.  Caller must *not* attempt to free it.
3773  */
3774 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3775 					int *proto, int force_new)
3776 {
3777 	struct ceph_mds_session *s = con->private;
3778 	struct ceph_mds_client *mdsc = s->s_mdsc;
3779 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3780 	struct ceph_auth_handshake *auth = &s->s_auth;
3781 
3782 	if (force_new && auth->authorizer) {
3783 		ceph_auth_destroy_authorizer(ac, auth->authorizer);
3784 		auth->authorizer = NULL;
3785 	}
3786 	if (!auth->authorizer) {
3787 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3788 						      auth);
3789 		if (ret)
3790 			return ERR_PTR(ret);
3791 	} else {
3792 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3793 						      auth);
3794 		if (ret)
3795 			return ERR_PTR(ret);
3796 	}
3797 	*proto = ac->protocol;
3798 
3799 	return auth;
3800 }
3801 
3802 
3803 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3804 {
3805 	struct ceph_mds_session *s = con->private;
3806 	struct ceph_mds_client *mdsc = s->s_mdsc;
3807 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3808 
3809 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3810 }
3811 
3812 static int invalidate_authorizer(struct ceph_connection *con)
3813 {
3814 	struct ceph_mds_session *s = con->private;
3815 	struct ceph_mds_client *mdsc = s->s_mdsc;
3816 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3817 
3818 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3819 
3820 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3821 }
3822 
3823 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3824 				struct ceph_msg_header *hdr, int *skip)
3825 {
3826 	struct ceph_msg *msg;
3827 	int type = (int) le16_to_cpu(hdr->type);
3828 	int front_len = (int) le32_to_cpu(hdr->front_len);
3829 
3830 	if (con->in_msg)
3831 		return con->in_msg;
3832 
3833 	*skip = 0;
3834 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3835 	if (!msg) {
3836 		pr_err("unable to allocate msg type %d len %d\n",
3837 		       type, front_len);
3838 		return NULL;
3839 	}
3840 
3841 	return msg;
3842 }
3843 
3844 static int sign_message(struct ceph_connection *con, struct ceph_msg *msg)
3845 {
3846        struct ceph_mds_session *s = con->private;
3847        struct ceph_auth_handshake *auth = &s->s_auth;
3848        return ceph_auth_sign_message(auth, msg);
3849 }
3850 
3851 static int check_message_signature(struct ceph_connection *con, struct ceph_msg *msg)
3852 {
3853        struct ceph_mds_session *s = con->private;
3854        struct ceph_auth_handshake *auth = &s->s_auth;
3855        return ceph_auth_check_message_signature(auth, msg);
3856 }
3857 
3858 static const struct ceph_connection_operations mds_con_ops = {
3859 	.get = con_get,
3860 	.put = con_put,
3861 	.dispatch = dispatch,
3862 	.get_authorizer = get_authorizer,
3863 	.verify_authorizer_reply = verify_authorizer_reply,
3864 	.invalidate_authorizer = invalidate_authorizer,
3865 	.peer_reset = peer_reset,
3866 	.alloc_msg = mds_alloc_msg,
3867 	.sign_message = sign_message,
3868 	.check_message_signature = check_message_signature,
3869 };
3870 
3871 /* eof */
3872