1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/gfp.h> 7 #include <linux/sched.h> 8 #include <linux/debugfs.h> 9 #include <linux/seq_file.h> 10 #include <linux/utsname.h> 11 12 #include "super.h" 13 #include "mds_client.h" 14 15 #include <linux/ceph/ceph_features.h> 16 #include <linux/ceph/messenger.h> 17 #include <linux/ceph/decode.h> 18 #include <linux/ceph/pagelist.h> 19 #include <linux/ceph/auth.h> 20 #include <linux/ceph/debugfs.h> 21 22 /* 23 * A cluster of MDS (metadata server) daemons is responsible for 24 * managing the file system namespace (the directory hierarchy and 25 * inodes) and for coordinating shared access to storage. Metadata is 26 * partitioning hierarchically across a number of servers, and that 27 * partition varies over time as the cluster adjusts the distribution 28 * in order to balance load. 29 * 30 * The MDS client is primarily responsible to managing synchronous 31 * metadata requests for operations like open, unlink, and so forth. 32 * If there is a MDS failure, we find out about it when we (possibly 33 * request and) receive a new MDS map, and can resubmit affected 34 * requests. 35 * 36 * For the most part, though, we take advantage of a lossless 37 * communications channel to the MDS, and do not need to worry about 38 * timing out or resubmitting requests. 39 * 40 * We maintain a stateful "session" with each MDS we interact with. 41 * Within each session, we sent periodic heartbeat messages to ensure 42 * any capabilities or leases we have been issues remain valid. If 43 * the session times out and goes stale, our leases and capabilities 44 * are no longer valid. 45 */ 46 47 struct ceph_reconnect_state { 48 int nr_caps; 49 struct ceph_pagelist *pagelist; 50 bool flock; 51 }; 52 53 static void __wake_requests(struct ceph_mds_client *mdsc, 54 struct list_head *head); 55 56 static const struct ceph_connection_operations mds_con_ops; 57 58 59 /* 60 * mds reply parsing 61 */ 62 63 /* 64 * parse individual inode info 65 */ 66 static int parse_reply_info_in(void **p, void *end, 67 struct ceph_mds_reply_info_in *info, 68 u64 features) 69 { 70 int err = -EIO; 71 72 info->in = *p; 73 *p += sizeof(struct ceph_mds_reply_inode) + 74 sizeof(*info->in->fragtree.splits) * 75 le32_to_cpu(info->in->fragtree.nsplits); 76 77 ceph_decode_32_safe(p, end, info->symlink_len, bad); 78 ceph_decode_need(p, end, info->symlink_len, bad); 79 info->symlink = *p; 80 *p += info->symlink_len; 81 82 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 83 ceph_decode_copy_safe(p, end, &info->dir_layout, 84 sizeof(info->dir_layout), bad); 85 else 86 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 87 88 ceph_decode_32_safe(p, end, info->xattr_len, bad); 89 ceph_decode_need(p, end, info->xattr_len, bad); 90 info->xattr_data = *p; 91 *p += info->xattr_len; 92 93 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 94 ceph_decode_64_safe(p, end, info->inline_version, bad); 95 ceph_decode_32_safe(p, end, info->inline_len, bad); 96 ceph_decode_need(p, end, info->inline_len, bad); 97 info->inline_data = *p; 98 *p += info->inline_len; 99 } else 100 info->inline_version = CEPH_INLINE_NONE; 101 102 return 0; 103 bad: 104 return err; 105 } 106 107 /* 108 * parse a normal reply, which may contain a (dir+)dentry and/or a 109 * target inode. 110 */ 111 static int parse_reply_info_trace(void **p, void *end, 112 struct ceph_mds_reply_info_parsed *info, 113 u64 features) 114 { 115 int err; 116 117 if (info->head->is_dentry) { 118 err = parse_reply_info_in(p, end, &info->diri, features); 119 if (err < 0) 120 goto out_bad; 121 122 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 123 goto bad; 124 info->dirfrag = *p; 125 *p += sizeof(*info->dirfrag) + 126 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 127 if (unlikely(*p > end)) 128 goto bad; 129 130 ceph_decode_32_safe(p, end, info->dname_len, bad); 131 ceph_decode_need(p, end, info->dname_len, bad); 132 info->dname = *p; 133 *p += info->dname_len; 134 info->dlease = *p; 135 *p += sizeof(*info->dlease); 136 } 137 138 if (info->head->is_target) { 139 err = parse_reply_info_in(p, end, &info->targeti, features); 140 if (err < 0) 141 goto out_bad; 142 } 143 144 if (unlikely(*p != end)) 145 goto bad; 146 return 0; 147 148 bad: 149 err = -EIO; 150 out_bad: 151 pr_err("problem parsing mds trace %d\n", err); 152 return err; 153 } 154 155 /* 156 * parse readdir results 157 */ 158 static int parse_reply_info_dir(void **p, void *end, 159 struct ceph_mds_reply_info_parsed *info, 160 u64 features) 161 { 162 u32 num, i = 0; 163 int err; 164 165 info->dir_dir = *p; 166 if (*p + sizeof(*info->dir_dir) > end) 167 goto bad; 168 *p += sizeof(*info->dir_dir) + 169 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 170 if (*p > end) 171 goto bad; 172 173 ceph_decode_need(p, end, sizeof(num) + 2, bad); 174 num = ceph_decode_32(p); 175 info->dir_end = ceph_decode_8(p); 176 info->dir_complete = ceph_decode_8(p); 177 if (num == 0) 178 goto done; 179 180 BUG_ON(!info->dir_in); 181 info->dir_dname = (void *)(info->dir_in + num); 182 info->dir_dname_len = (void *)(info->dir_dname + num); 183 info->dir_dlease = (void *)(info->dir_dname_len + num); 184 if ((unsigned long)(info->dir_dlease + num) > 185 (unsigned long)info->dir_in + info->dir_buf_size) { 186 pr_err("dir contents are larger than expected\n"); 187 WARN_ON(1); 188 goto bad; 189 } 190 191 info->dir_nr = num; 192 while (num) { 193 /* dentry */ 194 ceph_decode_need(p, end, sizeof(u32)*2, bad); 195 info->dir_dname_len[i] = ceph_decode_32(p); 196 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 197 info->dir_dname[i] = *p; 198 *p += info->dir_dname_len[i]; 199 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 200 info->dir_dname[i]); 201 info->dir_dlease[i] = *p; 202 *p += sizeof(struct ceph_mds_reply_lease); 203 204 /* inode */ 205 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 206 if (err < 0) 207 goto out_bad; 208 i++; 209 num--; 210 } 211 212 done: 213 if (*p != end) 214 goto bad; 215 return 0; 216 217 bad: 218 err = -EIO; 219 out_bad: 220 pr_err("problem parsing dir contents %d\n", err); 221 return err; 222 } 223 224 /* 225 * parse fcntl F_GETLK results 226 */ 227 static int parse_reply_info_filelock(void **p, void *end, 228 struct ceph_mds_reply_info_parsed *info, 229 u64 features) 230 { 231 if (*p + sizeof(*info->filelock_reply) > end) 232 goto bad; 233 234 info->filelock_reply = *p; 235 *p += sizeof(*info->filelock_reply); 236 237 if (unlikely(*p != end)) 238 goto bad; 239 return 0; 240 241 bad: 242 return -EIO; 243 } 244 245 /* 246 * parse create results 247 */ 248 static int parse_reply_info_create(void **p, void *end, 249 struct ceph_mds_reply_info_parsed *info, 250 u64 features) 251 { 252 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) { 253 if (*p == end) { 254 info->has_create_ino = false; 255 } else { 256 info->has_create_ino = true; 257 info->ino = ceph_decode_64(p); 258 } 259 } 260 261 if (unlikely(*p != end)) 262 goto bad; 263 return 0; 264 265 bad: 266 return -EIO; 267 } 268 269 /* 270 * parse extra results 271 */ 272 static int parse_reply_info_extra(void **p, void *end, 273 struct ceph_mds_reply_info_parsed *info, 274 u64 features) 275 { 276 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 277 return parse_reply_info_filelock(p, end, info, features); 278 else if (info->head->op == CEPH_MDS_OP_READDIR || 279 info->head->op == CEPH_MDS_OP_LSSNAP) 280 return parse_reply_info_dir(p, end, info, features); 281 else if (info->head->op == CEPH_MDS_OP_CREATE) 282 return parse_reply_info_create(p, end, info, features); 283 else 284 return -EIO; 285 } 286 287 /* 288 * parse entire mds reply 289 */ 290 static int parse_reply_info(struct ceph_msg *msg, 291 struct ceph_mds_reply_info_parsed *info, 292 u64 features) 293 { 294 void *p, *end; 295 u32 len; 296 int err; 297 298 info->head = msg->front.iov_base; 299 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 300 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 301 302 /* trace */ 303 ceph_decode_32_safe(&p, end, len, bad); 304 if (len > 0) { 305 ceph_decode_need(&p, end, len, bad); 306 err = parse_reply_info_trace(&p, p+len, info, features); 307 if (err < 0) 308 goto out_bad; 309 } 310 311 /* extra */ 312 ceph_decode_32_safe(&p, end, len, bad); 313 if (len > 0) { 314 ceph_decode_need(&p, end, len, bad); 315 err = parse_reply_info_extra(&p, p+len, info, features); 316 if (err < 0) 317 goto out_bad; 318 } 319 320 /* snap blob */ 321 ceph_decode_32_safe(&p, end, len, bad); 322 info->snapblob_len = len; 323 info->snapblob = p; 324 p += len; 325 326 if (p != end) 327 goto bad; 328 return 0; 329 330 bad: 331 err = -EIO; 332 out_bad: 333 pr_err("mds parse_reply err %d\n", err); 334 return err; 335 } 336 337 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 338 { 339 if (!info->dir_in) 340 return; 341 free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size)); 342 } 343 344 345 /* 346 * sessions 347 */ 348 const char *ceph_session_state_name(int s) 349 { 350 switch (s) { 351 case CEPH_MDS_SESSION_NEW: return "new"; 352 case CEPH_MDS_SESSION_OPENING: return "opening"; 353 case CEPH_MDS_SESSION_OPEN: return "open"; 354 case CEPH_MDS_SESSION_HUNG: return "hung"; 355 case CEPH_MDS_SESSION_CLOSING: return "closing"; 356 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 357 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 358 default: return "???"; 359 } 360 } 361 362 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 363 { 364 if (atomic_inc_not_zero(&s->s_ref)) { 365 dout("mdsc get_session %p %d -> %d\n", s, 366 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 367 return s; 368 } else { 369 dout("mdsc get_session %p 0 -- FAIL", s); 370 return NULL; 371 } 372 } 373 374 void ceph_put_mds_session(struct ceph_mds_session *s) 375 { 376 dout("mdsc put_session %p %d -> %d\n", s, 377 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 378 if (atomic_dec_and_test(&s->s_ref)) { 379 if (s->s_auth.authorizer) 380 ceph_auth_destroy_authorizer( 381 s->s_mdsc->fsc->client->monc.auth, 382 s->s_auth.authorizer); 383 kfree(s); 384 } 385 } 386 387 /* 388 * called under mdsc->mutex 389 */ 390 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 391 int mds) 392 { 393 struct ceph_mds_session *session; 394 395 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 396 return NULL; 397 session = mdsc->sessions[mds]; 398 dout("lookup_mds_session %p %d\n", session, 399 atomic_read(&session->s_ref)); 400 get_session(session); 401 return session; 402 } 403 404 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 405 { 406 if (mds >= mdsc->max_sessions) 407 return false; 408 return mdsc->sessions[mds]; 409 } 410 411 static int __verify_registered_session(struct ceph_mds_client *mdsc, 412 struct ceph_mds_session *s) 413 { 414 if (s->s_mds >= mdsc->max_sessions || 415 mdsc->sessions[s->s_mds] != s) 416 return -ENOENT; 417 return 0; 418 } 419 420 /* 421 * create+register a new session for given mds. 422 * called under mdsc->mutex. 423 */ 424 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 425 int mds) 426 { 427 struct ceph_mds_session *s; 428 429 if (mds >= mdsc->mdsmap->m_max_mds) 430 return ERR_PTR(-EINVAL); 431 432 s = kzalloc(sizeof(*s), GFP_NOFS); 433 if (!s) 434 return ERR_PTR(-ENOMEM); 435 s->s_mdsc = mdsc; 436 s->s_mds = mds; 437 s->s_state = CEPH_MDS_SESSION_NEW; 438 s->s_ttl = 0; 439 s->s_seq = 0; 440 mutex_init(&s->s_mutex); 441 442 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 443 444 spin_lock_init(&s->s_gen_ttl_lock); 445 s->s_cap_gen = 0; 446 s->s_cap_ttl = jiffies - 1; 447 448 spin_lock_init(&s->s_cap_lock); 449 s->s_renew_requested = 0; 450 s->s_renew_seq = 0; 451 INIT_LIST_HEAD(&s->s_caps); 452 s->s_nr_caps = 0; 453 s->s_trim_caps = 0; 454 atomic_set(&s->s_ref, 1); 455 INIT_LIST_HEAD(&s->s_waiting); 456 INIT_LIST_HEAD(&s->s_unsafe); 457 s->s_num_cap_releases = 0; 458 s->s_cap_reconnect = 0; 459 s->s_cap_iterator = NULL; 460 INIT_LIST_HEAD(&s->s_cap_releases); 461 INIT_LIST_HEAD(&s->s_cap_releases_done); 462 INIT_LIST_HEAD(&s->s_cap_flushing); 463 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 464 465 dout("register_session mds%d\n", mds); 466 if (mds >= mdsc->max_sessions) { 467 int newmax = 1 << get_count_order(mds+1); 468 struct ceph_mds_session **sa; 469 470 dout("register_session realloc to %d\n", newmax); 471 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 472 if (sa == NULL) 473 goto fail_realloc; 474 if (mdsc->sessions) { 475 memcpy(sa, mdsc->sessions, 476 mdsc->max_sessions * sizeof(void *)); 477 kfree(mdsc->sessions); 478 } 479 mdsc->sessions = sa; 480 mdsc->max_sessions = newmax; 481 } 482 mdsc->sessions[mds] = s; 483 atomic_inc(&mdsc->num_sessions); 484 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 485 486 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 487 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 488 489 return s; 490 491 fail_realloc: 492 kfree(s); 493 return ERR_PTR(-ENOMEM); 494 } 495 496 /* 497 * called under mdsc->mutex 498 */ 499 static void __unregister_session(struct ceph_mds_client *mdsc, 500 struct ceph_mds_session *s) 501 { 502 dout("__unregister_session mds%d %p\n", s->s_mds, s); 503 BUG_ON(mdsc->sessions[s->s_mds] != s); 504 mdsc->sessions[s->s_mds] = NULL; 505 ceph_con_close(&s->s_con); 506 ceph_put_mds_session(s); 507 atomic_dec(&mdsc->num_sessions); 508 } 509 510 /* 511 * drop session refs in request. 512 * 513 * should be last request ref, or hold mdsc->mutex 514 */ 515 static void put_request_session(struct ceph_mds_request *req) 516 { 517 if (req->r_session) { 518 ceph_put_mds_session(req->r_session); 519 req->r_session = NULL; 520 } 521 } 522 523 void ceph_mdsc_release_request(struct kref *kref) 524 { 525 struct ceph_mds_request *req = container_of(kref, 526 struct ceph_mds_request, 527 r_kref); 528 destroy_reply_info(&req->r_reply_info); 529 if (req->r_request) 530 ceph_msg_put(req->r_request); 531 if (req->r_reply) 532 ceph_msg_put(req->r_reply); 533 if (req->r_inode) { 534 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 535 iput(req->r_inode); 536 } 537 if (req->r_locked_dir) 538 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 539 iput(req->r_target_inode); 540 if (req->r_dentry) 541 dput(req->r_dentry); 542 if (req->r_old_dentry) 543 dput(req->r_old_dentry); 544 if (req->r_old_dentry_dir) { 545 /* 546 * track (and drop pins for) r_old_dentry_dir 547 * separately, since r_old_dentry's d_parent may have 548 * changed between the dir mutex being dropped and 549 * this request being freed. 550 */ 551 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 552 CEPH_CAP_PIN); 553 iput(req->r_old_dentry_dir); 554 } 555 kfree(req->r_path1); 556 kfree(req->r_path2); 557 if (req->r_pagelist) 558 ceph_pagelist_release(req->r_pagelist); 559 put_request_session(req); 560 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 561 kfree(req); 562 } 563 564 /* 565 * lookup session, bump ref if found. 566 * 567 * called under mdsc->mutex. 568 */ 569 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 570 u64 tid) 571 { 572 struct ceph_mds_request *req; 573 struct rb_node *n = mdsc->request_tree.rb_node; 574 575 while (n) { 576 req = rb_entry(n, struct ceph_mds_request, r_node); 577 if (tid < req->r_tid) 578 n = n->rb_left; 579 else if (tid > req->r_tid) 580 n = n->rb_right; 581 else { 582 ceph_mdsc_get_request(req); 583 return req; 584 } 585 } 586 return NULL; 587 } 588 589 static void __insert_request(struct ceph_mds_client *mdsc, 590 struct ceph_mds_request *new) 591 { 592 struct rb_node **p = &mdsc->request_tree.rb_node; 593 struct rb_node *parent = NULL; 594 struct ceph_mds_request *req = NULL; 595 596 while (*p) { 597 parent = *p; 598 req = rb_entry(parent, struct ceph_mds_request, r_node); 599 if (new->r_tid < req->r_tid) 600 p = &(*p)->rb_left; 601 else if (new->r_tid > req->r_tid) 602 p = &(*p)->rb_right; 603 else 604 BUG(); 605 } 606 607 rb_link_node(&new->r_node, parent, p); 608 rb_insert_color(&new->r_node, &mdsc->request_tree); 609 } 610 611 /* 612 * Register an in-flight request, and assign a tid. Link to directory 613 * are modifying (if any). 614 * 615 * Called under mdsc->mutex. 616 */ 617 static void __register_request(struct ceph_mds_client *mdsc, 618 struct ceph_mds_request *req, 619 struct inode *dir) 620 { 621 req->r_tid = ++mdsc->last_tid; 622 if (req->r_num_caps) 623 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 624 req->r_num_caps); 625 dout("__register_request %p tid %lld\n", req, req->r_tid); 626 ceph_mdsc_get_request(req); 627 __insert_request(mdsc, req); 628 629 req->r_uid = current_fsuid(); 630 req->r_gid = current_fsgid(); 631 632 if (dir) { 633 struct ceph_inode_info *ci = ceph_inode(dir); 634 635 ihold(dir); 636 spin_lock(&ci->i_unsafe_lock); 637 req->r_unsafe_dir = dir; 638 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 639 spin_unlock(&ci->i_unsafe_lock); 640 } 641 } 642 643 static void __unregister_request(struct ceph_mds_client *mdsc, 644 struct ceph_mds_request *req) 645 { 646 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 647 rb_erase(&req->r_node, &mdsc->request_tree); 648 RB_CLEAR_NODE(&req->r_node); 649 650 if (req->r_unsafe_dir) { 651 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 652 653 spin_lock(&ci->i_unsafe_lock); 654 list_del_init(&req->r_unsafe_dir_item); 655 spin_unlock(&ci->i_unsafe_lock); 656 657 iput(req->r_unsafe_dir); 658 req->r_unsafe_dir = NULL; 659 } 660 661 complete_all(&req->r_safe_completion); 662 663 ceph_mdsc_put_request(req); 664 } 665 666 /* 667 * Choose mds to send request to next. If there is a hint set in the 668 * request (e.g., due to a prior forward hint from the mds), use that. 669 * Otherwise, consult frag tree and/or caps to identify the 670 * appropriate mds. If all else fails, choose randomly. 671 * 672 * Called under mdsc->mutex. 673 */ 674 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 675 { 676 /* 677 * we don't need to worry about protecting the d_parent access 678 * here because we never renaming inside the snapped namespace 679 * except to resplice to another snapdir, and either the old or new 680 * result is a valid result. 681 */ 682 while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP) 683 dentry = dentry->d_parent; 684 return dentry; 685 } 686 687 static int __choose_mds(struct ceph_mds_client *mdsc, 688 struct ceph_mds_request *req) 689 { 690 struct inode *inode; 691 struct ceph_inode_info *ci; 692 struct ceph_cap *cap; 693 int mode = req->r_direct_mode; 694 int mds = -1; 695 u32 hash = req->r_direct_hash; 696 bool is_hash = req->r_direct_is_hash; 697 698 /* 699 * is there a specific mds we should try? ignore hint if we have 700 * no session and the mds is not up (active or recovering). 701 */ 702 if (req->r_resend_mds >= 0 && 703 (__have_session(mdsc, req->r_resend_mds) || 704 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 705 dout("choose_mds using resend_mds mds%d\n", 706 req->r_resend_mds); 707 return req->r_resend_mds; 708 } 709 710 if (mode == USE_RANDOM_MDS) 711 goto random; 712 713 inode = NULL; 714 if (req->r_inode) { 715 inode = req->r_inode; 716 } else if (req->r_dentry) { 717 /* ignore race with rename; old or new d_parent is okay */ 718 struct dentry *parent = req->r_dentry->d_parent; 719 struct inode *dir = d_inode(parent); 720 721 if (dir->i_sb != mdsc->fsc->sb) { 722 /* not this fs! */ 723 inode = d_inode(req->r_dentry); 724 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 725 /* direct snapped/virtual snapdir requests 726 * based on parent dir inode */ 727 struct dentry *dn = get_nonsnap_parent(parent); 728 inode = d_inode(dn); 729 dout("__choose_mds using nonsnap parent %p\n", inode); 730 } else { 731 /* dentry target */ 732 inode = d_inode(req->r_dentry); 733 if (!inode || mode == USE_AUTH_MDS) { 734 /* dir + name */ 735 inode = dir; 736 hash = ceph_dentry_hash(dir, req->r_dentry); 737 is_hash = true; 738 } 739 } 740 } 741 742 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 743 (int)hash, mode); 744 if (!inode) 745 goto random; 746 ci = ceph_inode(inode); 747 748 if (is_hash && S_ISDIR(inode->i_mode)) { 749 struct ceph_inode_frag frag; 750 int found; 751 752 ceph_choose_frag(ci, hash, &frag, &found); 753 if (found) { 754 if (mode == USE_ANY_MDS && frag.ndist > 0) { 755 u8 r; 756 757 /* choose a random replica */ 758 get_random_bytes(&r, 1); 759 r %= frag.ndist; 760 mds = frag.dist[r]; 761 dout("choose_mds %p %llx.%llx " 762 "frag %u mds%d (%d/%d)\n", 763 inode, ceph_vinop(inode), 764 frag.frag, mds, 765 (int)r, frag.ndist); 766 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 767 CEPH_MDS_STATE_ACTIVE) 768 return mds; 769 } 770 771 /* since this file/dir wasn't known to be 772 * replicated, then we want to look for the 773 * authoritative mds. */ 774 mode = USE_AUTH_MDS; 775 if (frag.mds >= 0) { 776 /* choose auth mds */ 777 mds = frag.mds; 778 dout("choose_mds %p %llx.%llx " 779 "frag %u mds%d (auth)\n", 780 inode, ceph_vinop(inode), frag.frag, mds); 781 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 782 CEPH_MDS_STATE_ACTIVE) 783 return mds; 784 } 785 } 786 } 787 788 spin_lock(&ci->i_ceph_lock); 789 cap = NULL; 790 if (mode == USE_AUTH_MDS) 791 cap = ci->i_auth_cap; 792 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 793 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 794 if (!cap) { 795 spin_unlock(&ci->i_ceph_lock); 796 goto random; 797 } 798 mds = cap->session->s_mds; 799 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 800 inode, ceph_vinop(inode), mds, 801 cap == ci->i_auth_cap ? "auth " : "", cap); 802 spin_unlock(&ci->i_ceph_lock); 803 return mds; 804 805 random: 806 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 807 dout("choose_mds chose random mds%d\n", mds); 808 return mds; 809 } 810 811 812 /* 813 * session messages 814 */ 815 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 816 { 817 struct ceph_msg *msg; 818 struct ceph_mds_session_head *h; 819 820 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 821 false); 822 if (!msg) { 823 pr_err("create_session_msg ENOMEM creating msg\n"); 824 return NULL; 825 } 826 h = msg->front.iov_base; 827 h->op = cpu_to_le32(op); 828 h->seq = cpu_to_le64(seq); 829 830 return msg; 831 } 832 833 /* 834 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 835 * to include additional client metadata fields. 836 */ 837 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq) 838 { 839 struct ceph_msg *msg; 840 struct ceph_mds_session_head *h; 841 int i = -1; 842 int metadata_bytes = 0; 843 int metadata_key_count = 0; 844 struct ceph_options *opt = mdsc->fsc->client->options; 845 void *p; 846 847 const char* metadata[][2] = { 848 {"hostname", utsname()->nodename}, 849 {"kernel_version", utsname()->release}, 850 {"entity_id", opt->name ? opt->name : ""}, 851 {NULL, NULL} 852 }; 853 854 /* Calculate serialized length of metadata */ 855 metadata_bytes = 4; /* map length */ 856 for (i = 0; metadata[i][0] != NULL; ++i) { 857 metadata_bytes += 8 + strlen(metadata[i][0]) + 858 strlen(metadata[i][1]); 859 metadata_key_count++; 860 } 861 862 /* Allocate the message */ 863 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes, 864 GFP_NOFS, false); 865 if (!msg) { 866 pr_err("create_session_msg ENOMEM creating msg\n"); 867 return NULL; 868 } 869 h = msg->front.iov_base; 870 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN); 871 h->seq = cpu_to_le64(seq); 872 873 /* 874 * Serialize client metadata into waiting buffer space, using 875 * the format that userspace expects for map<string, string> 876 * 877 * ClientSession messages with metadata are v2 878 */ 879 msg->hdr.version = cpu_to_le16(2); 880 msg->hdr.compat_version = cpu_to_le16(1); 881 882 /* The write pointer, following the session_head structure */ 883 p = msg->front.iov_base + sizeof(*h); 884 885 /* Number of entries in the map */ 886 ceph_encode_32(&p, metadata_key_count); 887 888 /* Two length-prefixed strings for each entry in the map */ 889 for (i = 0; metadata[i][0] != NULL; ++i) { 890 size_t const key_len = strlen(metadata[i][0]); 891 size_t const val_len = strlen(metadata[i][1]); 892 893 ceph_encode_32(&p, key_len); 894 memcpy(p, metadata[i][0], key_len); 895 p += key_len; 896 ceph_encode_32(&p, val_len); 897 memcpy(p, metadata[i][1], val_len); 898 p += val_len; 899 } 900 901 return msg; 902 } 903 904 /* 905 * send session open request. 906 * 907 * called under mdsc->mutex 908 */ 909 static int __open_session(struct ceph_mds_client *mdsc, 910 struct ceph_mds_session *session) 911 { 912 struct ceph_msg *msg; 913 int mstate; 914 int mds = session->s_mds; 915 916 /* wait for mds to go active? */ 917 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 918 dout("open_session to mds%d (%s)\n", mds, 919 ceph_mds_state_name(mstate)); 920 session->s_state = CEPH_MDS_SESSION_OPENING; 921 session->s_renew_requested = jiffies; 922 923 /* send connect message */ 924 msg = create_session_open_msg(mdsc, session->s_seq); 925 if (!msg) 926 return -ENOMEM; 927 ceph_con_send(&session->s_con, msg); 928 return 0; 929 } 930 931 /* 932 * open sessions for any export targets for the given mds 933 * 934 * called under mdsc->mutex 935 */ 936 static struct ceph_mds_session * 937 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 938 { 939 struct ceph_mds_session *session; 940 941 session = __ceph_lookup_mds_session(mdsc, target); 942 if (!session) { 943 session = register_session(mdsc, target); 944 if (IS_ERR(session)) 945 return session; 946 } 947 if (session->s_state == CEPH_MDS_SESSION_NEW || 948 session->s_state == CEPH_MDS_SESSION_CLOSING) 949 __open_session(mdsc, session); 950 951 return session; 952 } 953 954 struct ceph_mds_session * 955 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 956 { 957 struct ceph_mds_session *session; 958 959 dout("open_export_target_session to mds%d\n", target); 960 961 mutex_lock(&mdsc->mutex); 962 session = __open_export_target_session(mdsc, target); 963 mutex_unlock(&mdsc->mutex); 964 965 return session; 966 } 967 968 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 969 struct ceph_mds_session *session) 970 { 971 struct ceph_mds_info *mi; 972 struct ceph_mds_session *ts; 973 int i, mds = session->s_mds; 974 975 if (mds >= mdsc->mdsmap->m_max_mds) 976 return; 977 978 mi = &mdsc->mdsmap->m_info[mds]; 979 dout("open_export_target_sessions for mds%d (%d targets)\n", 980 session->s_mds, mi->num_export_targets); 981 982 for (i = 0; i < mi->num_export_targets; i++) { 983 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 984 if (!IS_ERR(ts)) 985 ceph_put_mds_session(ts); 986 } 987 } 988 989 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 990 struct ceph_mds_session *session) 991 { 992 mutex_lock(&mdsc->mutex); 993 __open_export_target_sessions(mdsc, session); 994 mutex_unlock(&mdsc->mutex); 995 } 996 997 /* 998 * session caps 999 */ 1000 1001 /* 1002 * Free preallocated cap messages assigned to this session 1003 */ 1004 static void cleanup_cap_releases(struct ceph_mds_session *session) 1005 { 1006 struct ceph_msg *msg; 1007 1008 spin_lock(&session->s_cap_lock); 1009 while (!list_empty(&session->s_cap_releases)) { 1010 msg = list_first_entry(&session->s_cap_releases, 1011 struct ceph_msg, list_head); 1012 list_del_init(&msg->list_head); 1013 ceph_msg_put(msg); 1014 } 1015 while (!list_empty(&session->s_cap_releases_done)) { 1016 msg = list_first_entry(&session->s_cap_releases_done, 1017 struct ceph_msg, list_head); 1018 list_del_init(&msg->list_head); 1019 ceph_msg_put(msg); 1020 } 1021 spin_unlock(&session->s_cap_lock); 1022 } 1023 1024 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1025 struct ceph_mds_session *session) 1026 { 1027 struct ceph_mds_request *req; 1028 struct rb_node *p; 1029 1030 dout("cleanup_session_requests mds%d\n", session->s_mds); 1031 mutex_lock(&mdsc->mutex); 1032 while (!list_empty(&session->s_unsafe)) { 1033 req = list_first_entry(&session->s_unsafe, 1034 struct ceph_mds_request, r_unsafe_item); 1035 list_del_init(&req->r_unsafe_item); 1036 pr_info(" dropping unsafe request %llu\n", req->r_tid); 1037 __unregister_request(mdsc, req); 1038 } 1039 /* zero r_attempts, so kick_requests() will re-send requests */ 1040 p = rb_first(&mdsc->request_tree); 1041 while (p) { 1042 req = rb_entry(p, struct ceph_mds_request, r_node); 1043 p = rb_next(p); 1044 if (req->r_session && 1045 req->r_session->s_mds == session->s_mds) 1046 req->r_attempts = 0; 1047 } 1048 mutex_unlock(&mdsc->mutex); 1049 } 1050 1051 /* 1052 * Helper to safely iterate over all caps associated with a session, with 1053 * special care taken to handle a racing __ceph_remove_cap(). 1054 * 1055 * Caller must hold session s_mutex. 1056 */ 1057 static int iterate_session_caps(struct ceph_mds_session *session, 1058 int (*cb)(struct inode *, struct ceph_cap *, 1059 void *), void *arg) 1060 { 1061 struct list_head *p; 1062 struct ceph_cap *cap; 1063 struct inode *inode, *last_inode = NULL; 1064 struct ceph_cap *old_cap = NULL; 1065 int ret; 1066 1067 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 1068 spin_lock(&session->s_cap_lock); 1069 p = session->s_caps.next; 1070 while (p != &session->s_caps) { 1071 cap = list_entry(p, struct ceph_cap, session_caps); 1072 inode = igrab(&cap->ci->vfs_inode); 1073 if (!inode) { 1074 p = p->next; 1075 continue; 1076 } 1077 session->s_cap_iterator = cap; 1078 spin_unlock(&session->s_cap_lock); 1079 1080 if (last_inode) { 1081 iput(last_inode); 1082 last_inode = NULL; 1083 } 1084 if (old_cap) { 1085 ceph_put_cap(session->s_mdsc, old_cap); 1086 old_cap = NULL; 1087 } 1088 1089 ret = cb(inode, cap, arg); 1090 last_inode = inode; 1091 1092 spin_lock(&session->s_cap_lock); 1093 p = p->next; 1094 if (cap->ci == NULL) { 1095 dout("iterate_session_caps finishing cap %p removal\n", 1096 cap); 1097 BUG_ON(cap->session != session); 1098 list_del_init(&cap->session_caps); 1099 session->s_nr_caps--; 1100 cap->session = NULL; 1101 old_cap = cap; /* put_cap it w/o locks held */ 1102 } 1103 if (ret < 0) 1104 goto out; 1105 } 1106 ret = 0; 1107 out: 1108 session->s_cap_iterator = NULL; 1109 spin_unlock(&session->s_cap_lock); 1110 1111 iput(last_inode); 1112 if (old_cap) 1113 ceph_put_cap(session->s_mdsc, old_cap); 1114 1115 return ret; 1116 } 1117 1118 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 1119 void *arg) 1120 { 1121 struct ceph_inode_info *ci = ceph_inode(inode); 1122 int drop = 0; 1123 1124 dout("removing cap %p, ci is %p, inode is %p\n", 1125 cap, ci, &ci->vfs_inode); 1126 spin_lock(&ci->i_ceph_lock); 1127 __ceph_remove_cap(cap, false); 1128 if (!ci->i_auth_cap) { 1129 struct ceph_mds_client *mdsc = 1130 ceph_sb_to_client(inode->i_sb)->mdsc; 1131 1132 spin_lock(&mdsc->cap_dirty_lock); 1133 if (!list_empty(&ci->i_dirty_item)) { 1134 pr_info(" dropping dirty %s state for %p %lld\n", 1135 ceph_cap_string(ci->i_dirty_caps), 1136 inode, ceph_ino(inode)); 1137 ci->i_dirty_caps = 0; 1138 list_del_init(&ci->i_dirty_item); 1139 drop = 1; 1140 } 1141 if (!list_empty(&ci->i_flushing_item)) { 1142 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 1143 ceph_cap_string(ci->i_flushing_caps), 1144 inode, ceph_ino(inode)); 1145 ci->i_flushing_caps = 0; 1146 list_del_init(&ci->i_flushing_item); 1147 mdsc->num_cap_flushing--; 1148 drop = 1; 1149 } 1150 spin_unlock(&mdsc->cap_dirty_lock); 1151 } 1152 spin_unlock(&ci->i_ceph_lock); 1153 while (drop--) 1154 iput(inode); 1155 return 0; 1156 } 1157 1158 /* 1159 * caller must hold session s_mutex 1160 */ 1161 static void remove_session_caps(struct ceph_mds_session *session) 1162 { 1163 dout("remove_session_caps on %p\n", session); 1164 iterate_session_caps(session, remove_session_caps_cb, NULL); 1165 1166 spin_lock(&session->s_cap_lock); 1167 if (session->s_nr_caps > 0) { 1168 struct super_block *sb = session->s_mdsc->fsc->sb; 1169 struct inode *inode; 1170 struct ceph_cap *cap, *prev = NULL; 1171 struct ceph_vino vino; 1172 /* 1173 * iterate_session_caps() skips inodes that are being 1174 * deleted, we need to wait until deletions are complete. 1175 * __wait_on_freeing_inode() is designed for the job, 1176 * but it is not exported, so use lookup inode function 1177 * to access it. 1178 */ 1179 while (!list_empty(&session->s_caps)) { 1180 cap = list_entry(session->s_caps.next, 1181 struct ceph_cap, session_caps); 1182 if (cap == prev) 1183 break; 1184 prev = cap; 1185 vino = cap->ci->i_vino; 1186 spin_unlock(&session->s_cap_lock); 1187 1188 inode = ceph_find_inode(sb, vino); 1189 iput(inode); 1190 1191 spin_lock(&session->s_cap_lock); 1192 } 1193 } 1194 spin_unlock(&session->s_cap_lock); 1195 1196 BUG_ON(session->s_nr_caps > 0); 1197 BUG_ON(!list_empty(&session->s_cap_flushing)); 1198 cleanup_cap_releases(session); 1199 } 1200 1201 /* 1202 * wake up any threads waiting on this session's caps. if the cap is 1203 * old (didn't get renewed on the client reconnect), remove it now. 1204 * 1205 * caller must hold s_mutex. 1206 */ 1207 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1208 void *arg) 1209 { 1210 struct ceph_inode_info *ci = ceph_inode(inode); 1211 1212 wake_up_all(&ci->i_cap_wq); 1213 if (arg) { 1214 spin_lock(&ci->i_ceph_lock); 1215 ci->i_wanted_max_size = 0; 1216 ci->i_requested_max_size = 0; 1217 spin_unlock(&ci->i_ceph_lock); 1218 } 1219 return 0; 1220 } 1221 1222 static void wake_up_session_caps(struct ceph_mds_session *session, 1223 int reconnect) 1224 { 1225 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1226 iterate_session_caps(session, wake_up_session_cb, 1227 (void *)(unsigned long)reconnect); 1228 } 1229 1230 /* 1231 * Send periodic message to MDS renewing all currently held caps. The 1232 * ack will reset the expiration for all caps from this session. 1233 * 1234 * caller holds s_mutex 1235 */ 1236 static int send_renew_caps(struct ceph_mds_client *mdsc, 1237 struct ceph_mds_session *session) 1238 { 1239 struct ceph_msg *msg; 1240 int state; 1241 1242 if (time_after_eq(jiffies, session->s_cap_ttl) && 1243 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1244 pr_info("mds%d caps stale\n", session->s_mds); 1245 session->s_renew_requested = jiffies; 1246 1247 /* do not try to renew caps until a recovering mds has reconnected 1248 * with its clients. */ 1249 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1250 if (state < CEPH_MDS_STATE_RECONNECT) { 1251 dout("send_renew_caps ignoring mds%d (%s)\n", 1252 session->s_mds, ceph_mds_state_name(state)); 1253 return 0; 1254 } 1255 1256 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1257 ceph_mds_state_name(state)); 1258 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1259 ++session->s_renew_seq); 1260 if (!msg) 1261 return -ENOMEM; 1262 ceph_con_send(&session->s_con, msg); 1263 return 0; 1264 } 1265 1266 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 1267 struct ceph_mds_session *session, u64 seq) 1268 { 1269 struct ceph_msg *msg; 1270 1271 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 1272 session->s_mds, ceph_session_state_name(session->s_state), seq); 1273 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 1274 if (!msg) 1275 return -ENOMEM; 1276 ceph_con_send(&session->s_con, msg); 1277 return 0; 1278 } 1279 1280 1281 /* 1282 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1283 * 1284 * Called under session->s_mutex 1285 */ 1286 static void renewed_caps(struct ceph_mds_client *mdsc, 1287 struct ceph_mds_session *session, int is_renew) 1288 { 1289 int was_stale; 1290 int wake = 0; 1291 1292 spin_lock(&session->s_cap_lock); 1293 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1294 1295 session->s_cap_ttl = session->s_renew_requested + 1296 mdsc->mdsmap->m_session_timeout*HZ; 1297 1298 if (was_stale) { 1299 if (time_before(jiffies, session->s_cap_ttl)) { 1300 pr_info("mds%d caps renewed\n", session->s_mds); 1301 wake = 1; 1302 } else { 1303 pr_info("mds%d caps still stale\n", session->s_mds); 1304 } 1305 } 1306 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1307 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1308 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1309 spin_unlock(&session->s_cap_lock); 1310 1311 if (wake) 1312 wake_up_session_caps(session, 0); 1313 } 1314 1315 /* 1316 * send a session close request 1317 */ 1318 static int request_close_session(struct ceph_mds_client *mdsc, 1319 struct ceph_mds_session *session) 1320 { 1321 struct ceph_msg *msg; 1322 1323 dout("request_close_session mds%d state %s seq %lld\n", 1324 session->s_mds, ceph_session_state_name(session->s_state), 1325 session->s_seq); 1326 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1327 if (!msg) 1328 return -ENOMEM; 1329 ceph_con_send(&session->s_con, msg); 1330 return 0; 1331 } 1332 1333 /* 1334 * Called with s_mutex held. 1335 */ 1336 static int __close_session(struct ceph_mds_client *mdsc, 1337 struct ceph_mds_session *session) 1338 { 1339 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1340 return 0; 1341 session->s_state = CEPH_MDS_SESSION_CLOSING; 1342 return request_close_session(mdsc, session); 1343 } 1344 1345 /* 1346 * Trim old(er) caps. 1347 * 1348 * Because we can't cache an inode without one or more caps, we do 1349 * this indirectly: if a cap is unused, we prune its aliases, at which 1350 * point the inode will hopefully get dropped to. 1351 * 1352 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1353 * memory pressure from the MDS, though, so it needn't be perfect. 1354 */ 1355 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1356 { 1357 struct ceph_mds_session *session = arg; 1358 struct ceph_inode_info *ci = ceph_inode(inode); 1359 int used, wanted, oissued, mine; 1360 1361 if (session->s_trim_caps <= 0) 1362 return -1; 1363 1364 spin_lock(&ci->i_ceph_lock); 1365 mine = cap->issued | cap->implemented; 1366 used = __ceph_caps_used(ci); 1367 wanted = __ceph_caps_file_wanted(ci); 1368 oissued = __ceph_caps_issued_other(ci, cap); 1369 1370 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 1371 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1372 ceph_cap_string(used), ceph_cap_string(wanted)); 1373 if (cap == ci->i_auth_cap) { 1374 if (ci->i_dirty_caps | ci->i_flushing_caps) 1375 goto out; 1376 if ((used | wanted) & CEPH_CAP_ANY_WR) 1377 goto out; 1378 } 1379 if ((used | wanted) & ~oissued & mine) 1380 goto out; /* we need these caps */ 1381 1382 session->s_trim_caps--; 1383 if (oissued) { 1384 /* we aren't the only cap.. just remove us */ 1385 __ceph_remove_cap(cap, true); 1386 } else { 1387 /* try to drop referring dentries */ 1388 spin_unlock(&ci->i_ceph_lock); 1389 d_prune_aliases(inode); 1390 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1391 inode, cap, atomic_read(&inode->i_count)); 1392 return 0; 1393 } 1394 1395 out: 1396 spin_unlock(&ci->i_ceph_lock); 1397 return 0; 1398 } 1399 1400 /* 1401 * Trim session cap count down to some max number. 1402 */ 1403 static int trim_caps(struct ceph_mds_client *mdsc, 1404 struct ceph_mds_session *session, 1405 int max_caps) 1406 { 1407 int trim_caps = session->s_nr_caps - max_caps; 1408 1409 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1410 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1411 if (trim_caps > 0) { 1412 session->s_trim_caps = trim_caps; 1413 iterate_session_caps(session, trim_caps_cb, session); 1414 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1415 session->s_mds, session->s_nr_caps, max_caps, 1416 trim_caps - session->s_trim_caps); 1417 session->s_trim_caps = 0; 1418 } 1419 1420 ceph_add_cap_releases(mdsc, session); 1421 ceph_send_cap_releases(mdsc, session); 1422 return 0; 1423 } 1424 1425 /* 1426 * Allocate cap_release messages. If there is a partially full message 1427 * in the queue, try to allocate enough to cover it's remainder, so that 1428 * we can send it immediately. 1429 * 1430 * Called under s_mutex. 1431 */ 1432 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1433 struct ceph_mds_session *session) 1434 { 1435 struct ceph_msg *msg, *partial = NULL; 1436 struct ceph_mds_cap_release *head; 1437 int err = -ENOMEM; 1438 int extra = mdsc->fsc->mount_options->cap_release_safety; 1439 int num; 1440 1441 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1442 extra); 1443 1444 spin_lock(&session->s_cap_lock); 1445 1446 if (!list_empty(&session->s_cap_releases)) { 1447 msg = list_first_entry(&session->s_cap_releases, 1448 struct ceph_msg, 1449 list_head); 1450 head = msg->front.iov_base; 1451 num = le32_to_cpu(head->num); 1452 if (num) { 1453 dout(" partial %p with (%d/%d)\n", msg, num, 1454 (int)CEPH_CAPS_PER_RELEASE); 1455 extra += CEPH_CAPS_PER_RELEASE - num; 1456 partial = msg; 1457 } 1458 } 1459 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1460 spin_unlock(&session->s_cap_lock); 1461 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1462 GFP_NOFS, false); 1463 if (!msg) 1464 goto out_unlocked; 1465 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1466 (int)msg->front.iov_len); 1467 head = msg->front.iov_base; 1468 head->num = cpu_to_le32(0); 1469 msg->front.iov_len = sizeof(*head); 1470 spin_lock(&session->s_cap_lock); 1471 list_add(&msg->list_head, &session->s_cap_releases); 1472 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1473 } 1474 1475 if (partial) { 1476 head = partial->front.iov_base; 1477 num = le32_to_cpu(head->num); 1478 dout(" queueing partial %p with %d/%d\n", partial, num, 1479 (int)CEPH_CAPS_PER_RELEASE); 1480 list_move_tail(&partial->list_head, 1481 &session->s_cap_releases_done); 1482 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1483 } 1484 err = 0; 1485 spin_unlock(&session->s_cap_lock); 1486 out_unlocked: 1487 return err; 1488 } 1489 1490 static int check_cap_flush(struct inode *inode, u64 want_flush_seq) 1491 { 1492 struct ceph_inode_info *ci = ceph_inode(inode); 1493 int ret; 1494 spin_lock(&ci->i_ceph_lock); 1495 if (ci->i_flushing_caps) 1496 ret = ci->i_cap_flush_seq >= want_flush_seq; 1497 else 1498 ret = 1; 1499 spin_unlock(&ci->i_ceph_lock); 1500 return ret; 1501 } 1502 1503 /* 1504 * flush all dirty inode data to disk. 1505 * 1506 * returns true if we've flushed through want_flush_seq 1507 */ 1508 static void wait_caps_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1509 { 1510 int mds; 1511 1512 dout("check_cap_flush want %lld\n", want_flush_seq); 1513 mutex_lock(&mdsc->mutex); 1514 for (mds = 0; mds < mdsc->max_sessions; mds++) { 1515 struct ceph_mds_session *session = mdsc->sessions[mds]; 1516 struct inode *inode = NULL; 1517 1518 if (!session) 1519 continue; 1520 get_session(session); 1521 mutex_unlock(&mdsc->mutex); 1522 1523 mutex_lock(&session->s_mutex); 1524 if (!list_empty(&session->s_cap_flushing)) { 1525 struct ceph_inode_info *ci = 1526 list_entry(session->s_cap_flushing.next, 1527 struct ceph_inode_info, 1528 i_flushing_item); 1529 1530 if (!check_cap_flush(&ci->vfs_inode, want_flush_seq)) { 1531 dout("check_cap_flush still flushing %p " 1532 "seq %lld <= %lld to mds%d\n", 1533 &ci->vfs_inode, ci->i_cap_flush_seq, 1534 want_flush_seq, session->s_mds); 1535 inode = igrab(&ci->vfs_inode); 1536 } 1537 } 1538 mutex_unlock(&session->s_mutex); 1539 ceph_put_mds_session(session); 1540 1541 if (inode) { 1542 wait_event(mdsc->cap_flushing_wq, 1543 check_cap_flush(inode, want_flush_seq)); 1544 iput(inode); 1545 } 1546 1547 mutex_lock(&mdsc->mutex); 1548 } 1549 1550 mutex_unlock(&mdsc->mutex); 1551 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1552 } 1553 1554 /* 1555 * called under s_mutex 1556 */ 1557 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1558 struct ceph_mds_session *session) 1559 { 1560 struct ceph_msg *msg; 1561 1562 dout("send_cap_releases mds%d\n", session->s_mds); 1563 spin_lock(&session->s_cap_lock); 1564 while (!list_empty(&session->s_cap_releases_done)) { 1565 msg = list_first_entry(&session->s_cap_releases_done, 1566 struct ceph_msg, list_head); 1567 list_del_init(&msg->list_head); 1568 spin_unlock(&session->s_cap_lock); 1569 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1570 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1571 ceph_con_send(&session->s_con, msg); 1572 spin_lock(&session->s_cap_lock); 1573 } 1574 spin_unlock(&session->s_cap_lock); 1575 } 1576 1577 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1578 struct ceph_mds_session *session) 1579 { 1580 struct ceph_msg *msg; 1581 struct ceph_mds_cap_release *head; 1582 unsigned num; 1583 1584 dout("discard_cap_releases mds%d\n", session->s_mds); 1585 1586 if (!list_empty(&session->s_cap_releases)) { 1587 /* zero out the in-progress message */ 1588 msg = list_first_entry(&session->s_cap_releases, 1589 struct ceph_msg, list_head); 1590 head = msg->front.iov_base; 1591 num = le32_to_cpu(head->num); 1592 dout("discard_cap_releases mds%d %p %u\n", 1593 session->s_mds, msg, num); 1594 head->num = cpu_to_le32(0); 1595 msg->front.iov_len = sizeof(*head); 1596 session->s_num_cap_releases += num; 1597 } 1598 1599 /* requeue completed messages */ 1600 while (!list_empty(&session->s_cap_releases_done)) { 1601 msg = list_first_entry(&session->s_cap_releases_done, 1602 struct ceph_msg, list_head); 1603 list_del_init(&msg->list_head); 1604 1605 head = msg->front.iov_base; 1606 num = le32_to_cpu(head->num); 1607 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1608 num); 1609 session->s_num_cap_releases += num; 1610 head->num = cpu_to_le32(0); 1611 msg->front.iov_len = sizeof(*head); 1612 list_add(&msg->list_head, &session->s_cap_releases); 1613 } 1614 } 1615 1616 /* 1617 * requests 1618 */ 1619 1620 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 1621 struct inode *dir) 1622 { 1623 struct ceph_inode_info *ci = ceph_inode(dir); 1624 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 1625 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 1626 size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) + 1627 sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease); 1628 int order, num_entries; 1629 1630 spin_lock(&ci->i_ceph_lock); 1631 num_entries = ci->i_files + ci->i_subdirs; 1632 spin_unlock(&ci->i_ceph_lock); 1633 num_entries = max(num_entries, 1); 1634 num_entries = min(num_entries, opt->max_readdir); 1635 1636 order = get_order(size * num_entries); 1637 while (order >= 0) { 1638 rinfo->dir_in = (void*)__get_free_pages(GFP_NOFS | __GFP_NOWARN, 1639 order); 1640 if (rinfo->dir_in) 1641 break; 1642 order--; 1643 } 1644 if (!rinfo->dir_in) 1645 return -ENOMEM; 1646 1647 num_entries = (PAGE_SIZE << order) / size; 1648 num_entries = min(num_entries, opt->max_readdir); 1649 1650 rinfo->dir_buf_size = PAGE_SIZE << order; 1651 req->r_num_caps = num_entries + 1; 1652 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 1653 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 1654 return 0; 1655 } 1656 1657 /* 1658 * Create an mds request. 1659 */ 1660 struct ceph_mds_request * 1661 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1662 { 1663 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1664 1665 if (!req) 1666 return ERR_PTR(-ENOMEM); 1667 1668 mutex_init(&req->r_fill_mutex); 1669 req->r_mdsc = mdsc; 1670 req->r_started = jiffies; 1671 req->r_resend_mds = -1; 1672 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1673 req->r_fmode = -1; 1674 kref_init(&req->r_kref); 1675 INIT_LIST_HEAD(&req->r_wait); 1676 init_completion(&req->r_completion); 1677 init_completion(&req->r_safe_completion); 1678 INIT_LIST_HEAD(&req->r_unsafe_item); 1679 1680 req->r_stamp = CURRENT_TIME; 1681 1682 req->r_op = op; 1683 req->r_direct_mode = mode; 1684 return req; 1685 } 1686 1687 /* 1688 * return oldest (lowest) request, tid in request tree, 0 if none. 1689 * 1690 * called under mdsc->mutex. 1691 */ 1692 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1693 { 1694 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1695 return NULL; 1696 return rb_entry(rb_first(&mdsc->request_tree), 1697 struct ceph_mds_request, r_node); 1698 } 1699 1700 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1701 { 1702 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1703 1704 if (req) 1705 return req->r_tid; 1706 return 0; 1707 } 1708 1709 /* 1710 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1711 * on build_path_from_dentry in fs/cifs/dir.c. 1712 * 1713 * If @stop_on_nosnap, generate path relative to the first non-snapped 1714 * inode. 1715 * 1716 * Encode hidden .snap dirs as a double /, i.e. 1717 * foo/.snap/bar -> foo//bar 1718 */ 1719 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1720 int stop_on_nosnap) 1721 { 1722 struct dentry *temp; 1723 char *path; 1724 int len, pos; 1725 unsigned seq; 1726 1727 if (dentry == NULL) 1728 return ERR_PTR(-EINVAL); 1729 1730 retry: 1731 len = 0; 1732 seq = read_seqbegin(&rename_lock); 1733 rcu_read_lock(); 1734 for (temp = dentry; !IS_ROOT(temp);) { 1735 struct inode *inode = d_inode(temp); 1736 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1737 len++; /* slash only */ 1738 else if (stop_on_nosnap && inode && 1739 ceph_snap(inode) == CEPH_NOSNAP) 1740 break; 1741 else 1742 len += 1 + temp->d_name.len; 1743 temp = temp->d_parent; 1744 } 1745 rcu_read_unlock(); 1746 if (len) 1747 len--; /* no leading '/' */ 1748 1749 path = kmalloc(len+1, GFP_NOFS); 1750 if (path == NULL) 1751 return ERR_PTR(-ENOMEM); 1752 pos = len; 1753 path[pos] = 0; /* trailing null */ 1754 rcu_read_lock(); 1755 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1756 struct inode *inode; 1757 1758 spin_lock(&temp->d_lock); 1759 inode = d_inode(temp); 1760 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1761 dout("build_path path+%d: %p SNAPDIR\n", 1762 pos, temp); 1763 } else if (stop_on_nosnap && inode && 1764 ceph_snap(inode) == CEPH_NOSNAP) { 1765 spin_unlock(&temp->d_lock); 1766 break; 1767 } else { 1768 pos -= temp->d_name.len; 1769 if (pos < 0) { 1770 spin_unlock(&temp->d_lock); 1771 break; 1772 } 1773 strncpy(path + pos, temp->d_name.name, 1774 temp->d_name.len); 1775 } 1776 spin_unlock(&temp->d_lock); 1777 if (pos) 1778 path[--pos] = '/'; 1779 temp = temp->d_parent; 1780 } 1781 rcu_read_unlock(); 1782 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1783 pr_err("build_path did not end path lookup where " 1784 "expected, namelen is %d, pos is %d\n", len, pos); 1785 /* presumably this is only possible if racing with a 1786 rename of one of the parent directories (we can not 1787 lock the dentries above us to prevent this, but 1788 retrying should be harmless) */ 1789 kfree(path); 1790 goto retry; 1791 } 1792 1793 *base = ceph_ino(d_inode(temp)); 1794 *plen = len; 1795 dout("build_path on %p %d built %llx '%.*s'\n", 1796 dentry, d_count(dentry), *base, len, path); 1797 return path; 1798 } 1799 1800 static int build_dentry_path(struct dentry *dentry, 1801 const char **ppath, int *ppathlen, u64 *pino, 1802 int *pfreepath) 1803 { 1804 char *path; 1805 1806 if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) { 1807 *pino = ceph_ino(d_inode(dentry->d_parent)); 1808 *ppath = dentry->d_name.name; 1809 *ppathlen = dentry->d_name.len; 1810 return 0; 1811 } 1812 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1813 if (IS_ERR(path)) 1814 return PTR_ERR(path); 1815 *ppath = path; 1816 *pfreepath = 1; 1817 return 0; 1818 } 1819 1820 static int build_inode_path(struct inode *inode, 1821 const char **ppath, int *ppathlen, u64 *pino, 1822 int *pfreepath) 1823 { 1824 struct dentry *dentry; 1825 char *path; 1826 1827 if (ceph_snap(inode) == CEPH_NOSNAP) { 1828 *pino = ceph_ino(inode); 1829 *ppathlen = 0; 1830 return 0; 1831 } 1832 dentry = d_find_alias(inode); 1833 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1834 dput(dentry); 1835 if (IS_ERR(path)) 1836 return PTR_ERR(path); 1837 *ppath = path; 1838 *pfreepath = 1; 1839 return 0; 1840 } 1841 1842 /* 1843 * request arguments may be specified via an inode *, a dentry *, or 1844 * an explicit ino+path. 1845 */ 1846 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1847 const char *rpath, u64 rino, 1848 const char **ppath, int *pathlen, 1849 u64 *ino, int *freepath) 1850 { 1851 int r = 0; 1852 1853 if (rinode) { 1854 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1855 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1856 ceph_snap(rinode)); 1857 } else if (rdentry) { 1858 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1859 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1860 *ppath); 1861 } else if (rpath || rino) { 1862 *ino = rino; 1863 *ppath = rpath; 1864 *pathlen = rpath ? strlen(rpath) : 0; 1865 dout(" path %.*s\n", *pathlen, rpath); 1866 } 1867 1868 return r; 1869 } 1870 1871 /* 1872 * called under mdsc->mutex 1873 */ 1874 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1875 struct ceph_mds_request *req, 1876 int mds, bool drop_cap_releases) 1877 { 1878 struct ceph_msg *msg; 1879 struct ceph_mds_request_head *head; 1880 const char *path1 = NULL; 1881 const char *path2 = NULL; 1882 u64 ino1 = 0, ino2 = 0; 1883 int pathlen1 = 0, pathlen2 = 0; 1884 int freepath1 = 0, freepath2 = 0; 1885 int len; 1886 u16 releases; 1887 void *p, *end; 1888 int ret; 1889 1890 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1891 req->r_path1, req->r_ino1.ino, 1892 &path1, &pathlen1, &ino1, &freepath1); 1893 if (ret < 0) { 1894 msg = ERR_PTR(ret); 1895 goto out; 1896 } 1897 1898 ret = set_request_path_attr(NULL, req->r_old_dentry, 1899 req->r_path2, req->r_ino2.ino, 1900 &path2, &pathlen2, &ino2, &freepath2); 1901 if (ret < 0) { 1902 msg = ERR_PTR(ret); 1903 goto out_free1; 1904 } 1905 1906 len = sizeof(*head) + 1907 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) + 1908 sizeof(struct timespec); 1909 1910 /* calculate (max) length for cap releases */ 1911 len += sizeof(struct ceph_mds_request_release) * 1912 (!!req->r_inode_drop + !!req->r_dentry_drop + 1913 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1914 if (req->r_dentry_drop) 1915 len += req->r_dentry->d_name.len; 1916 if (req->r_old_dentry_drop) 1917 len += req->r_old_dentry->d_name.len; 1918 1919 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1920 if (!msg) { 1921 msg = ERR_PTR(-ENOMEM); 1922 goto out_free2; 1923 } 1924 1925 msg->hdr.version = cpu_to_le16(2); 1926 msg->hdr.tid = cpu_to_le64(req->r_tid); 1927 1928 head = msg->front.iov_base; 1929 p = msg->front.iov_base + sizeof(*head); 1930 end = msg->front.iov_base + msg->front.iov_len; 1931 1932 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1933 head->op = cpu_to_le32(req->r_op); 1934 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); 1935 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); 1936 head->args = req->r_args; 1937 1938 ceph_encode_filepath(&p, end, ino1, path1); 1939 ceph_encode_filepath(&p, end, ino2, path2); 1940 1941 /* make note of release offset, in case we need to replay */ 1942 req->r_request_release_offset = p - msg->front.iov_base; 1943 1944 /* cap releases */ 1945 releases = 0; 1946 if (req->r_inode_drop) 1947 releases += ceph_encode_inode_release(&p, 1948 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 1949 mds, req->r_inode_drop, req->r_inode_unless, 0); 1950 if (req->r_dentry_drop) 1951 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1952 mds, req->r_dentry_drop, req->r_dentry_unless); 1953 if (req->r_old_dentry_drop) 1954 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1955 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1956 if (req->r_old_inode_drop) 1957 releases += ceph_encode_inode_release(&p, 1958 d_inode(req->r_old_dentry), 1959 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1960 1961 if (drop_cap_releases) { 1962 releases = 0; 1963 p = msg->front.iov_base + req->r_request_release_offset; 1964 } 1965 1966 head->num_releases = cpu_to_le16(releases); 1967 1968 /* time stamp */ 1969 { 1970 struct ceph_timespec ts; 1971 ceph_encode_timespec(&ts, &req->r_stamp); 1972 ceph_encode_copy(&p, &ts, sizeof(ts)); 1973 } 1974 1975 BUG_ON(p > end); 1976 msg->front.iov_len = p - msg->front.iov_base; 1977 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1978 1979 if (req->r_pagelist) { 1980 struct ceph_pagelist *pagelist = req->r_pagelist; 1981 atomic_inc(&pagelist->refcnt); 1982 ceph_msg_data_add_pagelist(msg, pagelist); 1983 msg->hdr.data_len = cpu_to_le32(pagelist->length); 1984 } else { 1985 msg->hdr.data_len = 0; 1986 } 1987 1988 msg->hdr.data_off = cpu_to_le16(0); 1989 1990 out_free2: 1991 if (freepath2) 1992 kfree((char *)path2); 1993 out_free1: 1994 if (freepath1) 1995 kfree((char *)path1); 1996 out: 1997 return msg; 1998 } 1999 2000 /* 2001 * called under mdsc->mutex if error, under no mutex if 2002 * success. 2003 */ 2004 static void complete_request(struct ceph_mds_client *mdsc, 2005 struct ceph_mds_request *req) 2006 { 2007 if (req->r_callback) 2008 req->r_callback(mdsc, req); 2009 else 2010 complete_all(&req->r_completion); 2011 } 2012 2013 /* 2014 * called under mdsc->mutex 2015 */ 2016 static int __prepare_send_request(struct ceph_mds_client *mdsc, 2017 struct ceph_mds_request *req, 2018 int mds, bool drop_cap_releases) 2019 { 2020 struct ceph_mds_request_head *rhead; 2021 struct ceph_msg *msg; 2022 int flags = 0; 2023 2024 req->r_attempts++; 2025 if (req->r_inode) { 2026 struct ceph_cap *cap = 2027 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 2028 2029 if (cap) 2030 req->r_sent_on_mseq = cap->mseq; 2031 else 2032 req->r_sent_on_mseq = -1; 2033 } 2034 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 2035 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 2036 2037 if (req->r_got_unsafe) { 2038 void *p; 2039 /* 2040 * Replay. Do not regenerate message (and rebuild 2041 * paths, etc.); just use the original message. 2042 * Rebuilding paths will break for renames because 2043 * d_move mangles the src name. 2044 */ 2045 msg = req->r_request; 2046 rhead = msg->front.iov_base; 2047 2048 flags = le32_to_cpu(rhead->flags); 2049 flags |= CEPH_MDS_FLAG_REPLAY; 2050 rhead->flags = cpu_to_le32(flags); 2051 2052 if (req->r_target_inode) 2053 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 2054 2055 rhead->num_retry = req->r_attempts - 1; 2056 2057 /* remove cap/dentry releases from message */ 2058 rhead->num_releases = 0; 2059 2060 /* time stamp */ 2061 p = msg->front.iov_base + req->r_request_release_offset; 2062 { 2063 struct ceph_timespec ts; 2064 ceph_encode_timespec(&ts, &req->r_stamp); 2065 ceph_encode_copy(&p, &ts, sizeof(ts)); 2066 } 2067 2068 msg->front.iov_len = p - msg->front.iov_base; 2069 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2070 return 0; 2071 } 2072 2073 if (req->r_request) { 2074 ceph_msg_put(req->r_request); 2075 req->r_request = NULL; 2076 } 2077 msg = create_request_message(mdsc, req, mds, drop_cap_releases); 2078 if (IS_ERR(msg)) { 2079 req->r_err = PTR_ERR(msg); 2080 complete_request(mdsc, req); 2081 return PTR_ERR(msg); 2082 } 2083 req->r_request = msg; 2084 2085 rhead = msg->front.iov_base; 2086 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 2087 if (req->r_got_unsafe) 2088 flags |= CEPH_MDS_FLAG_REPLAY; 2089 if (req->r_locked_dir) 2090 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 2091 rhead->flags = cpu_to_le32(flags); 2092 rhead->num_fwd = req->r_num_fwd; 2093 rhead->num_retry = req->r_attempts - 1; 2094 rhead->ino = 0; 2095 2096 dout(" r_locked_dir = %p\n", req->r_locked_dir); 2097 return 0; 2098 } 2099 2100 /* 2101 * send request, or put it on the appropriate wait list. 2102 */ 2103 static int __do_request(struct ceph_mds_client *mdsc, 2104 struct ceph_mds_request *req) 2105 { 2106 struct ceph_mds_session *session = NULL; 2107 int mds = -1; 2108 int err = -EAGAIN; 2109 2110 if (req->r_err || req->r_got_result) { 2111 if (req->r_aborted) 2112 __unregister_request(mdsc, req); 2113 goto out; 2114 } 2115 2116 if (req->r_timeout && 2117 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 2118 dout("do_request timed out\n"); 2119 err = -EIO; 2120 goto finish; 2121 } 2122 2123 put_request_session(req); 2124 2125 mds = __choose_mds(mdsc, req); 2126 if (mds < 0 || 2127 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 2128 dout("do_request no mds or not active, waiting for map\n"); 2129 list_add(&req->r_wait, &mdsc->waiting_for_map); 2130 goto out; 2131 } 2132 2133 /* get, open session */ 2134 session = __ceph_lookup_mds_session(mdsc, mds); 2135 if (!session) { 2136 session = register_session(mdsc, mds); 2137 if (IS_ERR(session)) { 2138 err = PTR_ERR(session); 2139 goto finish; 2140 } 2141 } 2142 req->r_session = get_session(session); 2143 2144 dout("do_request mds%d session %p state %s\n", mds, session, 2145 ceph_session_state_name(session->s_state)); 2146 if (session->s_state != CEPH_MDS_SESSION_OPEN && 2147 session->s_state != CEPH_MDS_SESSION_HUNG) { 2148 if (session->s_state == CEPH_MDS_SESSION_NEW || 2149 session->s_state == CEPH_MDS_SESSION_CLOSING) 2150 __open_session(mdsc, session); 2151 list_add(&req->r_wait, &session->s_waiting); 2152 goto out_session; 2153 } 2154 2155 /* send request */ 2156 req->r_resend_mds = -1; /* forget any previous mds hint */ 2157 2158 if (req->r_request_started == 0) /* note request start time */ 2159 req->r_request_started = jiffies; 2160 2161 err = __prepare_send_request(mdsc, req, mds, false); 2162 if (!err) { 2163 ceph_msg_get(req->r_request); 2164 ceph_con_send(&session->s_con, req->r_request); 2165 } 2166 2167 out_session: 2168 ceph_put_mds_session(session); 2169 out: 2170 return err; 2171 2172 finish: 2173 req->r_err = err; 2174 complete_request(mdsc, req); 2175 goto out; 2176 } 2177 2178 /* 2179 * called under mdsc->mutex 2180 */ 2181 static void __wake_requests(struct ceph_mds_client *mdsc, 2182 struct list_head *head) 2183 { 2184 struct ceph_mds_request *req; 2185 LIST_HEAD(tmp_list); 2186 2187 list_splice_init(head, &tmp_list); 2188 2189 while (!list_empty(&tmp_list)) { 2190 req = list_entry(tmp_list.next, 2191 struct ceph_mds_request, r_wait); 2192 list_del_init(&req->r_wait); 2193 dout(" wake request %p tid %llu\n", req, req->r_tid); 2194 __do_request(mdsc, req); 2195 } 2196 } 2197 2198 /* 2199 * Wake up threads with requests pending for @mds, so that they can 2200 * resubmit their requests to a possibly different mds. 2201 */ 2202 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 2203 { 2204 struct ceph_mds_request *req; 2205 struct rb_node *p = rb_first(&mdsc->request_tree); 2206 2207 dout("kick_requests mds%d\n", mds); 2208 while (p) { 2209 req = rb_entry(p, struct ceph_mds_request, r_node); 2210 p = rb_next(p); 2211 if (req->r_got_unsafe) 2212 continue; 2213 if (req->r_attempts > 0) 2214 continue; /* only new requests */ 2215 if (req->r_session && 2216 req->r_session->s_mds == mds) { 2217 dout(" kicking tid %llu\n", req->r_tid); 2218 list_del_init(&req->r_wait); 2219 __do_request(mdsc, req); 2220 } 2221 } 2222 } 2223 2224 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 2225 struct ceph_mds_request *req) 2226 { 2227 dout("submit_request on %p\n", req); 2228 mutex_lock(&mdsc->mutex); 2229 __register_request(mdsc, req, NULL); 2230 __do_request(mdsc, req); 2231 mutex_unlock(&mdsc->mutex); 2232 } 2233 2234 /* 2235 * Synchrously perform an mds request. Take care of all of the 2236 * session setup, forwarding, retry details. 2237 */ 2238 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 2239 struct inode *dir, 2240 struct ceph_mds_request *req) 2241 { 2242 int err; 2243 2244 dout("do_request on %p\n", req); 2245 2246 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 2247 if (req->r_inode) 2248 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 2249 if (req->r_locked_dir) 2250 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 2251 if (req->r_old_dentry_dir) 2252 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 2253 CEPH_CAP_PIN); 2254 2255 /* issue */ 2256 mutex_lock(&mdsc->mutex); 2257 __register_request(mdsc, req, dir); 2258 __do_request(mdsc, req); 2259 2260 if (req->r_err) { 2261 err = req->r_err; 2262 __unregister_request(mdsc, req); 2263 dout("do_request early error %d\n", err); 2264 goto out; 2265 } 2266 2267 /* wait */ 2268 mutex_unlock(&mdsc->mutex); 2269 dout("do_request waiting\n"); 2270 if (req->r_timeout) { 2271 err = (long)wait_for_completion_killable_timeout( 2272 &req->r_completion, req->r_timeout); 2273 if (err == 0) 2274 err = -EIO; 2275 } else if (req->r_wait_for_completion) { 2276 err = req->r_wait_for_completion(mdsc, req); 2277 } else { 2278 err = wait_for_completion_killable(&req->r_completion); 2279 } 2280 dout("do_request waited, got %d\n", err); 2281 mutex_lock(&mdsc->mutex); 2282 2283 /* only abort if we didn't race with a real reply */ 2284 if (req->r_got_result) { 2285 err = le32_to_cpu(req->r_reply_info.head->result); 2286 } else if (err < 0) { 2287 dout("aborted request %lld with %d\n", req->r_tid, err); 2288 2289 /* 2290 * ensure we aren't running concurrently with 2291 * ceph_fill_trace or ceph_readdir_prepopulate, which 2292 * rely on locks (dir mutex) held by our caller. 2293 */ 2294 mutex_lock(&req->r_fill_mutex); 2295 req->r_err = err; 2296 req->r_aborted = true; 2297 mutex_unlock(&req->r_fill_mutex); 2298 2299 if (req->r_locked_dir && 2300 (req->r_op & CEPH_MDS_OP_WRITE)) 2301 ceph_invalidate_dir_request(req); 2302 } else { 2303 err = req->r_err; 2304 } 2305 2306 out: 2307 mutex_unlock(&mdsc->mutex); 2308 dout("do_request %p done, result %d\n", req, err); 2309 return err; 2310 } 2311 2312 /* 2313 * Invalidate dir's completeness, dentry lease state on an aborted MDS 2314 * namespace request. 2315 */ 2316 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2317 { 2318 struct inode *inode = req->r_locked_dir; 2319 2320 dout("invalidate_dir_request %p (complete, lease(s))\n", inode); 2321 2322 ceph_dir_clear_complete(inode); 2323 if (req->r_dentry) 2324 ceph_invalidate_dentry_lease(req->r_dentry); 2325 if (req->r_old_dentry) 2326 ceph_invalidate_dentry_lease(req->r_old_dentry); 2327 } 2328 2329 /* 2330 * Handle mds reply. 2331 * 2332 * We take the session mutex and parse and process the reply immediately. 2333 * This preserves the logical ordering of replies, capabilities, etc., sent 2334 * by the MDS as they are applied to our local cache. 2335 */ 2336 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2337 { 2338 struct ceph_mds_client *mdsc = session->s_mdsc; 2339 struct ceph_mds_request *req; 2340 struct ceph_mds_reply_head *head = msg->front.iov_base; 2341 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2342 struct ceph_snap_realm *realm; 2343 u64 tid; 2344 int err, result; 2345 int mds = session->s_mds; 2346 2347 if (msg->front.iov_len < sizeof(*head)) { 2348 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2349 ceph_msg_dump(msg); 2350 return; 2351 } 2352 2353 /* get request, session */ 2354 tid = le64_to_cpu(msg->hdr.tid); 2355 mutex_lock(&mdsc->mutex); 2356 req = __lookup_request(mdsc, tid); 2357 if (!req) { 2358 dout("handle_reply on unknown tid %llu\n", tid); 2359 mutex_unlock(&mdsc->mutex); 2360 return; 2361 } 2362 dout("handle_reply %p\n", req); 2363 2364 /* correct session? */ 2365 if (req->r_session != session) { 2366 pr_err("mdsc_handle_reply got %llu on session mds%d" 2367 " not mds%d\n", tid, session->s_mds, 2368 req->r_session ? req->r_session->s_mds : -1); 2369 mutex_unlock(&mdsc->mutex); 2370 goto out; 2371 } 2372 2373 /* dup? */ 2374 if ((req->r_got_unsafe && !head->safe) || 2375 (req->r_got_safe && head->safe)) { 2376 pr_warn("got a dup %s reply on %llu from mds%d\n", 2377 head->safe ? "safe" : "unsafe", tid, mds); 2378 mutex_unlock(&mdsc->mutex); 2379 goto out; 2380 } 2381 if (req->r_got_safe && !head->safe) { 2382 pr_warn("got unsafe after safe on %llu from mds%d\n", 2383 tid, mds); 2384 mutex_unlock(&mdsc->mutex); 2385 goto out; 2386 } 2387 2388 result = le32_to_cpu(head->result); 2389 2390 /* 2391 * Handle an ESTALE 2392 * if we're not talking to the authority, send to them 2393 * if the authority has changed while we weren't looking, 2394 * send to new authority 2395 * Otherwise we just have to return an ESTALE 2396 */ 2397 if (result == -ESTALE) { 2398 dout("got ESTALE on request %llu", req->r_tid); 2399 req->r_resend_mds = -1; 2400 if (req->r_direct_mode != USE_AUTH_MDS) { 2401 dout("not using auth, setting for that now"); 2402 req->r_direct_mode = USE_AUTH_MDS; 2403 __do_request(mdsc, req); 2404 mutex_unlock(&mdsc->mutex); 2405 goto out; 2406 } else { 2407 int mds = __choose_mds(mdsc, req); 2408 if (mds >= 0 && mds != req->r_session->s_mds) { 2409 dout("but auth changed, so resending"); 2410 __do_request(mdsc, req); 2411 mutex_unlock(&mdsc->mutex); 2412 goto out; 2413 } 2414 } 2415 dout("have to return ESTALE on request %llu", req->r_tid); 2416 } 2417 2418 2419 if (head->safe) { 2420 req->r_got_safe = true; 2421 __unregister_request(mdsc, req); 2422 2423 if (req->r_got_unsafe) { 2424 /* 2425 * We already handled the unsafe response, now do the 2426 * cleanup. No need to examine the response; the MDS 2427 * doesn't include any result info in the safe 2428 * response. And even if it did, there is nothing 2429 * useful we could do with a revised return value. 2430 */ 2431 dout("got safe reply %llu, mds%d\n", tid, mds); 2432 list_del_init(&req->r_unsafe_item); 2433 2434 /* last unsafe request during umount? */ 2435 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2436 complete_all(&mdsc->safe_umount_waiters); 2437 mutex_unlock(&mdsc->mutex); 2438 goto out; 2439 } 2440 } else { 2441 req->r_got_unsafe = true; 2442 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2443 } 2444 2445 dout("handle_reply tid %lld result %d\n", tid, result); 2446 rinfo = &req->r_reply_info; 2447 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2448 mutex_unlock(&mdsc->mutex); 2449 2450 mutex_lock(&session->s_mutex); 2451 if (err < 0) { 2452 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2453 ceph_msg_dump(msg); 2454 goto out_err; 2455 } 2456 2457 /* snap trace */ 2458 realm = NULL; 2459 if (rinfo->snapblob_len) { 2460 down_write(&mdsc->snap_rwsem); 2461 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2462 rinfo->snapblob + rinfo->snapblob_len, 2463 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 2464 &realm); 2465 downgrade_write(&mdsc->snap_rwsem); 2466 } else { 2467 down_read(&mdsc->snap_rwsem); 2468 } 2469 2470 /* insert trace into our cache */ 2471 mutex_lock(&req->r_fill_mutex); 2472 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2473 if (err == 0) { 2474 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 2475 req->r_op == CEPH_MDS_OP_LSSNAP)) 2476 ceph_readdir_prepopulate(req, req->r_session); 2477 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2478 } 2479 mutex_unlock(&req->r_fill_mutex); 2480 2481 up_read(&mdsc->snap_rwsem); 2482 if (realm) 2483 ceph_put_snap_realm(mdsc, realm); 2484 out_err: 2485 mutex_lock(&mdsc->mutex); 2486 if (!req->r_aborted) { 2487 if (err) { 2488 req->r_err = err; 2489 } else { 2490 req->r_reply = msg; 2491 ceph_msg_get(msg); 2492 req->r_got_result = true; 2493 } 2494 } else { 2495 dout("reply arrived after request %lld was aborted\n", tid); 2496 } 2497 mutex_unlock(&mdsc->mutex); 2498 2499 ceph_add_cap_releases(mdsc, req->r_session); 2500 mutex_unlock(&session->s_mutex); 2501 2502 /* kick calling process */ 2503 complete_request(mdsc, req); 2504 out: 2505 ceph_mdsc_put_request(req); 2506 return; 2507 } 2508 2509 2510 2511 /* 2512 * handle mds notification that our request has been forwarded. 2513 */ 2514 static void handle_forward(struct ceph_mds_client *mdsc, 2515 struct ceph_mds_session *session, 2516 struct ceph_msg *msg) 2517 { 2518 struct ceph_mds_request *req; 2519 u64 tid = le64_to_cpu(msg->hdr.tid); 2520 u32 next_mds; 2521 u32 fwd_seq; 2522 int err = -EINVAL; 2523 void *p = msg->front.iov_base; 2524 void *end = p + msg->front.iov_len; 2525 2526 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2527 next_mds = ceph_decode_32(&p); 2528 fwd_seq = ceph_decode_32(&p); 2529 2530 mutex_lock(&mdsc->mutex); 2531 req = __lookup_request(mdsc, tid); 2532 if (!req) { 2533 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2534 goto out; /* dup reply? */ 2535 } 2536 2537 if (req->r_aborted) { 2538 dout("forward tid %llu aborted, unregistering\n", tid); 2539 __unregister_request(mdsc, req); 2540 } else if (fwd_seq <= req->r_num_fwd) { 2541 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2542 tid, next_mds, req->r_num_fwd, fwd_seq); 2543 } else { 2544 /* resend. forward race not possible; mds would drop */ 2545 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2546 BUG_ON(req->r_err); 2547 BUG_ON(req->r_got_result); 2548 req->r_attempts = 0; 2549 req->r_num_fwd = fwd_seq; 2550 req->r_resend_mds = next_mds; 2551 put_request_session(req); 2552 __do_request(mdsc, req); 2553 } 2554 ceph_mdsc_put_request(req); 2555 out: 2556 mutex_unlock(&mdsc->mutex); 2557 return; 2558 2559 bad: 2560 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2561 } 2562 2563 /* 2564 * handle a mds session control message 2565 */ 2566 static void handle_session(struct ceph_mds_session *session, 2567 struct ceph_msg *msg) 2568 { 2569 struct ceph_mds_client *mdsc = session->s_mdsc; 2570 u32 op; 2571 u64 seq; 2572 int mds = session->s_mds; 2573 struct ceph_mds_session_head *h = msg->front.iov_base; 2574 int wake = 0; 2575 2576 /* decode */ 2577 if (msg->front.iov_len != sizeof(*h)) 2578 goto bad; 2579 op = le32_to_cpu(h->op); 2580 seq = le64_to_cpu(h->seq); 2581 2582 mutex_lock(&mdsc->mutex); 2583 if (op == CEPH_SESSION_CLOSE) 2584 __unregister_session(mdsc, session); 2585 /* FIXME: this ttl calculation is generous */ 2586 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2587 mutex_unlock(&mdsc->mutex); 2588 2589 mutex_lock(&session->s_mutex); 2590 2591 dout("handle_session mds%d %s %p state %s seq %llu\n", 2592 mds, ceph_session_op_name(op), session, 2593 ceph_session_state_name(session->s_state), seq); 2594 2595 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2596 session->s_state = CEPH_MDS_SESSION_OPEN; 2597 pr_info("mds%d came back\n", session->s_mds); 2598 } 2599 2600 switch (op) { 2601 case CEPH_SESSION_OPEN: 2602 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2603 pr_info("mds%d reconnect success\n", session->s_mds); 2604 session->s_state = CEPH_MDS_SESSION_OPEN; 2605 renewed_caps(mdsc, session, 0); 2606 wake = 1; 2607 if (mdsc->stopping) 2608 __close_session(mdsc, session); 2609 break; 2610 2611 case CEPH_SESSION_RENEWCAPS: 2612 if (session->s_renew_seq == seq) 2613 renewed_caps(mdsc, session, 1); 2614 break; 2615 2616 case CEPH_SESSION_CLOSE: 2617 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2618 pr_info("mds%d reconnect denied\n", session->s_mds); 2619 cleanup_session_requests(mdsc, session); 2620 remove_session_caps(session); 2621 wake = 2; /* for good measure */ 2622 wake_up_all(&mdsc->session_close_wq); 2623 break; 2624 2625 case CEPH_SESSION_STALE: 2626 pr_info("mds%d caps went stale, renewing\n", 2627 session->s_mds); 2628 spin_lock(&session->s_gen_ttl_lock); 2629 session->s_cap_gen++; 2630 session->s_cap_ttl = jiffies - 1; 2631 spin_unlock(&session->s_gen_ttl_lock); 2632 send_renew_caps(mdsc, session); 2633 break; 2634 2635 case CEPH_SESSION_RECALL_STATE: 2636 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2637 break; 2638 2639 case CEPH_SESSION_FLUSHMSG: 2640 send_flushmsg_ack(mdsc, session, seq); 2641 break; 2642 2643 case CEPH_SESSION_FORCE_RO: 2644 dout("force_session_readonly %p\n", session); 2645 spin_lock(&session->s_cap_lock); 2646 session->s_readonly = true; 2647 spin_unlock(&session->s_cap_lock); 2648 wake_up_session_caps(session, 0); 2649 break; 2650 2651 default: 2652 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2653 WARN_ON(1); 2654 } 2655 2656 mutex_unlock(&session->s_mutex); 2657 if (wake) { 2658 mutex_lock(&mdsc->mutex); 2659 __wake_requests(mdsc, &session->s_waiting); 2660 if (wake == 2) 2661 kick_requests(mdsc, mds); 2662 mutex_unlock(&mdsc->mutex); 2663 } 2664 return; 2665 2666 bad: 2667 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2668 (int)msg->front.iov_len); 2669 ceph_msg_dump(msg); 2670 return; 2671 } 2672 2673 2674 /* 2675 * called under session->mutex. 2676 */ 2677 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2678 struct ceph_mds_session *session) 2679 { 2680 struct ceph_mds_request *req, *nreq; 2681 struct rb_node *p; 2682 int err; 2683 2684 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2685 2686 mutex_lock(&mdsc->mutex); 2687 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2688 err = __prepare_send_request(mdsc, req, session->s_mds, true); 2689 if (!err) { 2690 ceph_msg_get(req->r_request); 2691 ceph_con_send(&session->s_con, req->r_request); 2692 } 2693 } 2694 2695 /* 2696 * also re-send old requests when MDS enters reconnect stage. So that MDS 2697 * can process completed request in clientreplay stage. 2698 */ 2699 p = rb_first(&mdsc->request_tree); 2700 while (p) { 2701 req = rb_entry(p, struct ceph_mds_request, r_node); 2702 p = rb_next(p); 2703 if (req->r_got_unsafe) 2704 continue; 2705 if (req->r_attempts == 0) 2706 continue; /* only old requests */ 2707 if (req->r_session && 2708 req->r_session->s_mds == session->s_mds) { 2709 err = __prepare_send_request(mdsc, req, 2710 session->s_mds, true); 2711 if (!err) { 2712 ceph_msg_get(req->r_request); 2713 ceph_con_send(&session->s_con, req->r_request); 2714 } 2715 } 2716 } 2717 mutex_unlock(&mdsc->mutex); 2718 } 2719 2720 /* 2721 * Encode information about a cap for a reconnect with the MDS. 2722 */ 2723 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2724 void *arg) 2725 { 2726 union { 2727 struct ceph_mds_cap_reconnect v2; 2728 struct ceph_mds_cap_reconnect_v1 v1; 2729 } rec; 2730 size_t reclen; 2731 struct ceph_inode_info *ci; 2732 struct ceph_reconnect_state *recon_state = arg; 2733 struct ceph_pagelist *pagelist = recon_state->pagelist; 2734 char *path; 2735 int pathlen, err; 2736 u64 pathbase; 2737 struct dentry *dentry; 2738 2739 ci = cap->ci; 2740 2741 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2742 inode, ceph_vinop(inode), cap, cap->cap_id, 2743 ceph_cap_string(cap->issued)); 2744 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2745 if (err) 2746 return err; 2747 2748 dentry = d_find_alias(inode); 2749 if (dentry) { 2750 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2751 if (IS_ERR(path)) { 2752 err = PTR_ERR(path); 2753 goto out_dput; 2754 } 2755 } else { 2756 path = NULL; 2757 pathlen = 0; 2758 } 2759 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2760 if (err) 2761 goto out_free; 2762 2763 spin_lock(&ci->i_ceph_lock); 2764 cap->seq = 0; /* reset cap seq */ 2765 cap->issue_seq = 0; /* and issue_seq */ 2766 cap->mseq = 0; /* and migrate_seq */ 2767 cap->cap_gen = cap->session->s_cap_gen; 2768 2769 if (recon_state->flock) { 2770 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2771 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2772 rec.v2.issued = cpu_to_le32(cap->issued); 2773 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2774 rec.v2.pathbase = cpu_to_le64(pathbase); 2775 rec.v2.flock_len = 0; 2776 reclen = sizeof(rec.v2); 2777 } else { 2778 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2779 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2780 rec.v1.issued = cpu_to_le32(cap->issued); 2781 rec.v1.size = cpu_to_le64(inode->i_size); 2782 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2783 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2784 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2785 rec.v1.pathbase = cpu_to_le64(pathbase); 2786 reclen = sizeof(rec.v1); 2787 } 2788 spin_unlock(&ci->i_ceph_lock); 2789 2790 if (recon_state->flock) { 2791 int num_fcntl_locks, num_flock_locks; 2792 struct ceph_filelock *flocks; 2793 2794 encode_again: 2795 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 2796 flocks = kmalloc((num_fcntl_locks+num_flock_locks) * 2797 sizeof(struct ceph_filelock), GFP_NOFS); 2798 if (!flocks) { 2799 err = -ENOMEM; 2800 goto out_free; 2801 } 2802 err = ceph_encode_locks_to_buffer(inode, flocks, 2803 num_fcntl_locks, 2804 num_flock_locks); 2805 if (err) { 2806 kfree(flocks); 2807 if (err == -ENOSPC) 2808 goto encode_again; 2809 goto out_free; 2810 } 2811 /* 2812 * number of encoded locks is stable, so copy to pagelist 2813 */ 2814 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) + 2815 (num_fcntl_locks+num_flock_locks) * 2816 sizeof(struct ceph_filelock)); 2817 err = ceph_pagelist_append(pagelist, &rec, reclen); 2818 if (!err) 2819 err = ceph_locks_to_pagelist(flocks, pagelist, 2820 num_fcntl_locks, 2821 num_flock_locks); 2822 kfree(flocks); 2823 } else { 2824 err = ceph_pagelist_append(pagelist, &rec, reclen); 2825 } 2826 2827 recon_state->nr_caps++; 2828 out_free: 2829 kfree(path); 2830 out_dput: 2831 dput(dentry); 2832 return err; 2833 } 2834 2835 2836 /* 2837 * If an MDS fails and recovers, clients need to reconnect in order to 2838 * reestablish shared state. This includes all caps issued through 2839 * this session _and_ the snap_realm hierarchy. Because it's not 2840 * clear which snap realms the mds cares about, we send everything we 2841 * know about.. that ensures we'll then get any new info the 2842 * recovering MDS might have. 2843 * 2844 * This is a relatively heavyweight operation, but it's rare. 2845 * 2846 * called with mdsc->mutex held. 2847 */ 2848 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2849 struct ceph_mds_session *session) 2850 { 2851 struct ceph_msg *reply; 2852 struct rb_node *p; 2853 int mds = session->s_mds; 2854 int err = -ENOMEM; 2855 int s_nr_caps; 2856 struct ceph_pagelist *pagelist; 2857 struct ceph_reconnect_state recon_state; 2858 2859 pr_info("mds%d reconnect start\n", mds); 2860 2861 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2862 if (!pagelist) 2863 goto fail_nopagelist; 2864 ceph_pagelist_init(pagelist); 2865 2866 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2867 if (!reply) 2868 goto fail_nomsg; 2869 2870 mutex_lock(&session->s_mutex); 2871 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2872 session->s_seq = 0; 2873 2874 dout("session %p state %s\n", session, 2875 ceph_session_state_name(session->s_state)); 2876 2877 spin_lock(&session->s_gen_ttl_lock); 2878 session->s_cap_gen++; 2879 spin_unlock(&session->s_gen_ttl_lock); 2880 2881 spin_lock(&session->s_cap_lock); 2882 /* don't know if session is readonly */ 2883 session->s_readonly = 0; 2884 /* 2885 * notify __ceph_remove_cap() that we are composing cap reconnect. 2886 * If a cap get released before being added to the cap reconnect, 2887 * __ceph_remove_cap() should skip queuing cap release. 2888 */ 2889 session->s_cap_reconnect = 1; 2890 /* drop old cap expires; we're about to reestablish that state */ 2891 discard_cap_releases(mdsc, session); 2892 spin_unlock(&session->s_cap_lock); 2893 2894 /* trim unused caps to reduce MDS's cache rejoin time */ 2895 if (mdsc->fsc->sb->s_root) 2896 shrink_dcache_parent(mdsc->fsc->sb->s_root); 2897 2898 ceph_con_close(&session->s_con); 2899 ceph_con_open(&session->s_con, 2900 CEPH_ENTITY_TYPE_MDS, mds, 2901 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2902 2903 /* replay unsafe requests */ 2904 replay_unsafe_requests(mdsc, session); 2905 2906 down_read(&mdsc->snap_rwsem); 2907 2908 /* traverse this session's caps */ 2909 s_nr_caps = session->s_nr_caps; 2910 err = ceph_pagelist_encode_32(pagelist, s_nr_caps); 2911 if (err) 2912 goto fail; 2913 2914 recon_state.nr_caps = 0; 2915 recon_state.pagelist = pagelist; 2916 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2917 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2918 if (err < 0) 2919 goto fail; 2920 2921 spin_lock(&session->s_cap_lock); 2922 session->s_cap_reconnect = 0; 2923 spin_unlock(&session->s_cap_lock); 2924 2925 /* 2926 * snaprealms. we provide mds with the ino, seq (version), and 2927 * parent for all of our realms. If the mds has any newer info, 2928 * it will tell us. 2929 */ 2930 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2931 struct ceph_snap_realm *realm = 2932 rb_entry(p, struct ceph_snap_realm, node); 2933 struct ceph_mds_snaprealm_reconnect sr_rec; 2934 2935 dout(" adding snap realm %llx seq %lld parent %llx\n", 2936 realm->ino, realm->seq, realm->parent_ino); 2937 sr_rec.ino = cpu_to_le64(realm->ino); 2938 sr_rec.seq = cpu_to_le64(realm->seq); 2939 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2940 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2941 if (err) 2942 goto fail; 2943 } 2944 2945 if (recon_state.flock) 2946 reply->hdr.version = cpu_to_le16(2); 2947 2948 /* raced with cap release? */ 2949 if (s_nr_caps != recon_state.nr_caps) { 2950 struct page *page = list_first_entry(&pagelist->head, 2951 struct page, lru); 2952 __le32 *addr = kmap_atomic(page); 2953 *addr = cpu_to_le32(recon_state.nr_caps); 2954 kunmap_atomic(addr); 2955 } 2956 2957 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2958 ceph_msg_data_add_pagelist(reply, pagelist); 2959 ceph_con_send(&session->s_con, reply); 2960 2961 mutex_unlock(&session->s_mutex); 2962 2963 mutex_lock(&mdsc->mutex); 2964 __wake_requests(mdsc, &session->s_waiting); 2965 mutex_unlock(&mdsc->mutex); 2966 2967 up_read(&mdsc->snap_rwsem); 2968 return; 2969 2970 fail: 2971 ceph_msg_put(reply); 2972 up_read(&mdsc->snap_rwsem); 2973 mutex_unlock(&session->s_mutex); 2974 fail_nomsg: 2975 ceph_pagelist_release(pagelist); 2976 fail_nopagelist: 2977 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2978 return; 2979 } 2980 2981 2982 /* 2983 * compare old and new mdsmaps, kicking requests 2984 * and closing out old connections as necessary 2985 * 2986 * called under mdsc->mutex. 2987 */ 2988 static void check_new_map(struct ceph_mds_client *mdsc, 2989 struct ceph_mdsmap *newmap, 2990 struct ceph_mdsmap *oldmap) 2991 { 2992 int i; 2993 int oldstate, newstate; 2994 struct ceph_mds_session *s; 2995 2996 dout("check_new_map new %u old %u\n", 2997 newmap->m_epoch, oldmap->m_epoch); 2998 2999 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 3000 if (mdsc->sessions[i] == NULL) 3001 continue; 3002 s = mdsc->sessions[i]; 3003 oldstate = ceph_mdsmap_get_state(oldmap, i); 3004 newstate = ceph_mdsmap_get_state(newmap, i); 3005 3006 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 3007 i, ceph_mds_state_name(oldstate), 3008 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 3009 ceph_mds_state_name(newstate), 3010 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 3011 ceph_session_state_name(s->s_state)); 3012 3013 if (i >= newmap->m_max_mds || 3014 memcmp(ceph_mdsmap_get_addr(oldmap, i), 3015 ceph_mdsmap_get_addr(newmap, i), 3016 sizeof(struct ceph_entity_addr))) { 3017 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 3018 /* the session never opened, just close it 3019 * out now */ 3020 __wake_requests(mdsc, &s->s_waiting); 3021 __unregister_session(mdsc, s); 3022 } else { 3023 /* just close it */ 3024 mutex_unlock(&mdsc->mutex); 3025 mutex_lock(&s->s_mutex); 3026 mutex_lock(&mdsc->mutex); 3027 ceph_con_close(&s->s_con); 3028 mutex_unlock(&s->s_mutex); 3029 s->s_state = CEPH_MDS_SESSION_RESTARTING; 3030 } 3031 } else if (oldstate == newstate) { 3032 continue; /* nothing new with this mds */ 3033 } 3034 3035 /* 3036 * send reconnect? 3037 */ 3038 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 3039 newstate >= CEPH_MDS_STATE_RECONNECT) { 3040 mutex_unlock(&mdsc->mutex); 3041 send_mds_reconnect(mdsc, s); 3042 mutex_lock(&mdsc->mutex); 3043 } 3044 3045 /* 3046 * kick request on any mds that has gone active. 3047 */ 3048 if (oldstate < CEPH_MDS_STATE_ACTIVE && 3049 newstate >= CEPH_MDS_STATE_ACTIVE) { 3050 if (oldstate != CEPH_MDS_STATE_CREATING && 3051 oldstate != CEPH_MDS_STATE_STARTING) 3052 pr_info("mds%d recovery completed\n", s->s_mds); 3053 kick_requests(mdsc, i); 3054 ceph_kick_flushing_caps(mdsc, s); 3055 wake_up_session_caps(s, 1); 3056 } 3057 } 3058 3059 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 3060 s = mdsc->sessions[i]; 3061 if (!s) 3062 continue; 3063 if (!ceph_mdsmap_is_laggy(newmap, i)) 3064 continue; 3065 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3066 s->s_state == CEPH_MDS_SESSION_HUNG || 3067 s->s_state == CEPH_MDS_SESSION_CLOSING) { 3068 dout(" connecting to export targets of laggy mds%d\n", 3069 i); 3070 __open_export_target_sessions(mdsc, s); 3071 } 3072 } 3073 } 3074 3075 3076 3077 /* 3078 * leases 3079 */ 3080 3081 /* 3082 * caller must hold session s_mutex, dentry->d_lock 3083 */ 3084 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 3085 { 3086 struct ceph_dentry_info *di = ceph_dentry(dentry); 3087 3088 ceph_put_mds_session(di->lease_session); 3089 di->lease_session = NULL; 3090 } 3091 3092 static void handle_lease(struct ceph_mds_client *mdsc, 3093 struct ceph_mds_session *session, 3094 struct ceph_msg *msg) 3095 { 3096 struct super_block *sb = mdsc->fsc->sb; 3097 struct inode *inode; 3098 struct dentry *parent, *dentry; 3099 struct ceph_dentry_info *di; 3100 int mds = session->s_mds; 3101 struct ceph_mds_lease *h = msg->front.iov_base; 3102 u32 seq; 3103 struct ceph_vino vino; 3104 struct qstr dname; 3105 int release = 0; 3106 3107 dout("handle_lease from mds%d\n", mds); 3108 3109 /* decode */ 3110 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 3111 goto bad; 3112 vino.ino = le64_to_cpu(h->ino); 3113 vino.snap = CEPH_NOSNAP; 3114 seq = le32_to_cpu(h->seq); 3115 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 3116 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 3117 if (dname.len != get_unaligned_le32(h+1)) 3118 goto bad; 3119 3120 /* lookup inode */ 3121 inode = ceph_find_inode(sb, vino); 3122 dout("handle_lease %s, ino %llx %p %.*s\n", 3123 ceph_lease_op_name(h->action), vino.ino, inode, 3124 dname.len, dname.name); 3125 3126 mutex_lock(&session->s_mutex); 3127 session->s_seq++; 3128 3129 if (inode == NULL) { 3130 dout("handle_lease no inode %llx\n", vino.ino); 3131 goto release; 3132 } 3133 3134 /* dentry */ 3135 parent = d_find_alias(inode); 3136 if (!parent) { 3137 dout("no parent dentry on inode %p\n", inode); 3138 WARN_ON(1); 3139 goto release; /* hrm... */ 3140 } 3141 dname.hash = full_name_hash(dname.name, dname.len); 3142 dentry = d_lookup(parent, &dname); 3143 dput(parent); 3144 if (!dentry) 3145 goto release; 3146 3147 spin_lock(&dentry->d_lock); 3148 di = ceph_dentry(dentry); 3149 switch (h->action) { 3150 case CEPH_MDS_LEASE_REVOKE: 3151 if (di->lease_session == session) { 3152 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 3153 h->seq = cpu_to_le32(di->lease_seq); 3154 __ceph_mdsc_drop_dentry_lease(dentry); 3155 } 3156 release = 1; 3157 break; 3158 3159 case CEPH_MDS_LEASE_RENEW: 3160 if (di->lease_session == session && 3161 di->lease_gen == session->s_cap_gen && 3162 di->lease_renew_from && 3163 di->lease_renew_after == 0) { 3164 unsigned long duration = 3165 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 3166 3167 di->lease_seq = seq; 3168 dentry->d_time = di->lease_renew_from + duration; 3169 di->lease_renew_after = di->lease_renew_from + 3170 (duration >> 1); 3171 di->lease_renew_from = 0; 3172 } 3173 break; 3174 } 3175 spin_unlock(&dentry->d_lock); 3176 dput(dentry); 3177 3178 if (!release) 3179 goto out; 3180 3181 release: 3182 /* let's just reuse the same message */ 3183 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 3184 ceph_msg_get(msg); 3185 ceph_con_send(&session->s_con, msg); 3186 3187 out: 3188 iput(inode); 3189 mutex_unlock(&session->s_mutex); 3190 return; 3191 3192 bad: 3193 pr_err("corrupt lease message\n"); 3194 ceph_msg_dump(msg); 3195 } 3196 3197 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 3198 struct inode *inode, 3199 struct dentry *dentry, char action, 3200 u32 seq) 3201 { 3202 struct ceph_msg *msg; 3203 struct ceph_mds_lease *lease; 3204 int len = sizeof(*lease) + sizeof(u32); 3205 int dnamelen = 0; 3206 3207 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 3208 inode, dentry, ceph_lease_op_name(action), session->s_mds); 3209 dnamelen = dentry->d_name.len; 3210 len += dnamelen; 3211 3212 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 3213 if (!msg) 3214 return; 3215 lease = msg->front.iov_base; 3216 lease->action = action; 3217 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 3218 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 3219 lease->seq = cpu_to_le32(seq); 3220 put_unaligned_le32(dnamelen, lease + 1); 3221 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 3222 3223 /* 3224 * if this is a preemptive lease RELEASE, no need to 3225 * flush request stream, since the actual request will 3226 * soon follow. 3227 */ 3228 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 3229 3230 ceph_con_send(&session->s_con, msg); 3231 } 3232 3233 /* 3234 * Preemptively release a lease we expect to invalidate anyway. 3235 * Pass @inode always, @dentry is optional. 3236 */ 3237 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 3238 struct dentry *dentry) 3239 { 3240 struct ceph_dentry_info *di; 3241 struct ceph_mds_session *session; 3242 u32 seq; 3243 3244 BUG_ON(inode == NULL); 3245 BUG_ON(dentry == NULL); 3246 3247 /* is dentry lease valid? */ 3248 spin_lock(&dentry->d_lock); 3249 di = ceph_dentry(dentry); 3250 if (!di || !di->lease_session || 3251 di->lease_session->s_mds < 0 || 3252 di->lease_gen != di->lease_session->s_cap_gen || 3253 !time_before(jiffies, dentry->d_time)) { 3254 dout("lease_release inode %p dentry %p -- " 3255 "no lease\n", 3256 inode, dentry); 3257 spin_unlock(&dentry->d_lock); 3258 return; 3259 } 3260 3261 /* we do have a lease on this dentry; note mds and seq */ 3262 session = ceph_get_mds_session(di->lease_session); 3263 seq = di->lease_seq; 3264 __ceph_mdsc_drop_dentry_lease(dentry); 3265 spin_unlock(&dentry->d_lock); 3266 3267 dout("lease_release inode %p dentry %p to mds%d\n", 3268 inode, dentry, session->s_mds); 3269 ceph_mdsc_lease_send_msg(session, inode, dentry, 3270 CEPH_MDS_LEASE_RELEASE, seq); 3271 ceph_put_mds_session(session); 3272 } 3273 3274 /* 3275 * drop all leases (and dentry refs) in preparation for umount 3276 */ 3277 static void drop_leases(struct ceph_mds_client *mdsc) 3278 { 3279 int i; 3280 3281 dout("drop_leases\n"); 3282 mutex_lock(&mdsc->mutex); 3283 for (i = 0; i < mdsc->max_sessions; i++) { 3284 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3285 if (!s) 3286 continue; 3287 mutex_unlock(&mdsc->mutex); 3288 mutex_lock(&s->s_mutex); 3289 mutex_unlock(&s->s_mutex); 3290 ceph_put_mds_session(s); 3291 mutex_lock(&mdsc->mutex); 3292 } 3293 mutex_unlock(&mdsc->mutex); 3294 } 3295 3296 3297 3298 /* 3299 * delayed work -- periodically trim expired leases, renew caps with mds 3300 */ 3301 static void schedule_delayed(struct ceph_mds_client *mdsc) 3302 { 3303 int delay = 5; 3304 unsigned hz = round_jiffies_relative(HZ * delay); 3305 schedule_delayed_work(&mdsc->delayed_work, hz); 3306 } 3307 3308 static void delayed_work(struct work_struct *work) 3309 { 3310 int i; 3311 struct ceph_mds_client *mdsc = 3312 container_of(work, struct ceph_mds_client, delayed_work.work); 3313 int renew_interval; 3314 int renew_caps; 3315 3316 dout("mdsc delayed_work\n"); 3317 ceph_check_delayed_caps(mdsc); 3318 3319 mutex_lock(&mdsc->mutex); 3320 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 3321 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 3322 mdsc->last_renew_caps); 3323 if (renew_caps) 3324 mdsc->last_renew_caps = jiffies; 3325 3326 for (i = 0; i < mdsc->max_sessions; i++) { 3327 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3328 if (s == NULL) 3329 continue; 3330 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 3331 dout("resending session close request for mds%d\n", 3332 s->s_mds); 3333 request_close_session(mdsc, s); 3334 ceph_put_mds_session(s); 3335 continue; 3336 } 3337 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 3338 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 3339 s->s_state = CEPH_MDS_SESSION_HUNG; 3340 pr_info("mds%d hung\n", s->s_mds); 3341 } 3342 } 3343 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 3344 /* this mds is failed or recovering, just wait */ 3345 ceph_put_mds_session(s); 3346 continue; 3347 } 3348 mutex_unlock(&mdsc->mutex); 3349 3350 mutex_lock(&s->s_mutex); 3351 if (renew_caps) 3352 send_renew_caps(mdsc, s); 3353 else 3354 ceph_con_keepalive(&s->s_con); 3355 ceph_add_cap_releases(mdsc, s); 3356 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3357 s->s_state == CEPH_MDS_SESSION_HUNG) 3358 ceph_send_cap_releases(mdsc, s); 3359 mutex_unlock(&s->s_mutex); 3360 ceph_put_mds_session(s); 3361 3362 mutex_lock(&mdsc->mutex); 3363 } 3364 mutex_unlock(&mdsc->mutex); 3365 3366 schedule_delayed(mdsc); 3367 } 3368 3369 int ceph_mdsc_init(struct ceph_fs_client *fsc) 3370 3371 { 3372 struct ceph_mds_client *mdsc; 3373 3374 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 3375 if (!mdsc) 3376 return -ENOMEM; 3377 mdsc->fsc = fsc; 3378 fsc->mdsc = mdsc; 3379 mutex_init(&mdsc->mutex); 3380 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3381 if (mdsc->mdsmap == NULL) { 3382 kfree(mdsc); 3383 return -ENOMEM; 3384 } 3385 3386 init_completion(&mdsc->safe_umount_waiters); 3387 init_waitqueue_head(&mdsc->session_close_wq); 3388 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3389 mdsc->sessions = NULL; 3390 atomic_set(&mdsc->num_sessions, 0); 3391 mdsc->max_sessions = 0; 3392 mdsc->stopping = 0; 3393 init_rwsem(&mdsc->snap_rwsem); 3394 mdsc->snap_realms = RB_ROOT; 3395 INIT_LIST_HEAD(&mdsc->snap_empty); 3396 spin_lock_init(&mdsc->snap_empty_lock); 3397 mdsc->last_tid = 0; 3398 mdsc->request_tree = RB_ROOT; 3399 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3400 mdsc->last_renew_caps = jiffies; 3401 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3402 spin_lock_init(&mdsc->cap_delay_lock); 3403 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3404 spin_lock_init(&mdsc->snap_flush_lock); 3405 mdsc->cap_flush_seq = 0; 3406 INIT_LIST_HEAD(&mdsc->cap_dirty); 3407 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3408 mdsc->num_cap_flushing = 0; 3409 spin_lock_init(&mdsc->cap_dirty_lock); 3410 init_waitqueue_head(&mdsc->cap_flushing_wq); 3411 spin_lock_init(&mdsc->dentry_lru_lock); 3412 INIT_LIST_HEAD(&mdsc->dentry_lru); 3413 3414 ceph_caps_init(mdsc); 3415 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3416 3417 return 0; 3418 } 3419 3420 /* 3421 * Wait for safe replies on open mds requests. If we time out, drop 3422 * all requests from the tree to avoid dangling dentry refs. 3423 */ 3424 static void wait_requests(struct ceph_mds_client *mdsc) 3425 { 3426 struct ceph_mds_request *req; 3427 struct ceph_fs_client *fsc = mdsc->fsc; 3428 3429 mutex_lock(&mdsc->mutex); 3430 if (__get_oldest_req(mdsc)) { 3431 mutex_unlock(&mdsc->mutex); 3432 3433 dout("wait_requests waiting for requests\n"); 3434 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3435 fsc->client->options->mount_timeout * HZ); 3436 3437 /* tear down remaining requests */ 3438 mutex_lock(&mdsc->mutex); 3439 while ((req = __get_oldest_req(mdsc))) { 3440 dout("wait_requests timed out on tid %llu\n", 3441 req->r_tid); 3442 __unregister_request(mdsc, req); 3443 } 3444 } 3445 mutex_unlock(&mdsc->mutex); 3446 dout("wait_requests done\n"); 3447 } 3448 3449 /* 3450 * called before mount is ro, and before dentries are torn down. 3451 * (hmm, does this still race with new lookups?) 3452 */ 3453 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3454 { 3455 dout("pre_umount\n"); 3456 mdsc->stopping = 1; 3457 3458 drop_leases(mdsc); 3459 ceph_flush_dirty_caps(mdsc); 3460 wait_requests(mdsc); 3461 3462 /* 3463 * wait for reply handlers to drop their request refs and 3464 * their inode/dcache refs 3465 */ 3466 ceph_msgr_flush(); 3467 } 3468 3469 /* 3470 * wait for all write mds requests to flush. 3471 */ 3472 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3473 { 3474 struct ceph_mds_request *req = NULL, *nextreq; 3475 struct rb_node *n; 3476 3477 mutex_lock(&mdsc->mutex); 3478 dout("wait_unsafe_requests want %lld\n", want_tid); 3479 restart: 3480 req = __get_oldest_req(mdsc); 3481 while (req && req->r_tid <= want_tid) { 3482 /* find next request */ 3483 n = rb_next(&req->r_node); 3484 if (n) 3485 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3486 else 3487 nextreq = NULL; 3488 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3489 /* write op */ 3490 ceph_mdsc_get_request(req); 3491 if (nextreq) 3492 ceph_mdsc_get_request(nextreq); 3493 mutex_unlock(&mdsc->mutex); 3494 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3495 req->r_tid, want_tid); 3496 wait_for_completion(&req->r_safe_completion); 3497 mutex_lock(&mdsc->mutex); 3498 ceph_mdsc_put_request(req); 3499 if (!nextreq) 3500 break; /* next dne before, so we're done! */ 3501 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3502 /* next request was removed from tree */ 3503 ceph_mdsc_put_request(nextreq); 3504 goto restart; 3505 } 3506 ceph_mdsc_put_request(nextreq); /* won't go away */ 3507 } 3508 req = nextreq; 3509 } 3510 mutex_unlock(&mdsc->mutex); 3511 dout("wait_unsafe_requests done\n"); 3512 } 3513 3514 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3515 { 3516 u64 want_tid, want_flush; 3517 3518 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3519 return; 3520 3521 dout("sync\n"); 3522 mutex_lock(&mdsc->mutex); 3523 want_tid = mdsc->last_tid; 3524 mutex_unlock(&mdsc->mutex); 3525 3526 ceph_flush_dirty_caps(mdsc); 3527 spin_lock(&mdsc->cap_dirty_lock); 3528 want_flush = mdsc->cap_flush_seq; 3529 spin_unlock(&mdsc->cap_dirty_lock); 3530 3531 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3532 3533 wait_unsafe_requests(mdsc, want_tid); 3534 wait_caps_flush(mdsc, want_flush); 3535 } 3536 3537 /* 3538 * true if all sessions are closed, or we force unmount 3539 */ 3540 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3541 { 3542 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3543 return true; 3544 return atomic_read(&mdsc->num_sessions) == 0; 3545 } 3546 3547 /* 3548 * called after sb is ro. 3549 */ 3550 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3551 { 3552 struct ceph_mds_session *session; 3553 int i; 3554 struct ceph_fs_client *fsc = mdsc->fsc; 3555 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3556 3557 dout("close_sessions\n"); 3558 3559 /* close sessions */ 3560 mutex_lock(&mdsc->mutex); 3561 for (i = 0; i < mdsc->max_sessions; i++) { 3562 session = __ceph_lookup_mds_session(mdsc, i); 3563 if (!session) 3564 continue; 3565 mutex_unlock(&mdsc->mutex); 3566 mutex_lock(&session->s_mutex); 3567 __close_session(mdsc, session); 3568 mutex_unlock(&session->s_mutex); 3569 ceph_put_mds_session(session); 3570 mutex_lock(&mdsc->mutex); 3571 } 3572 mutex_unlock(&mdsc->mutex); 3573 3574 dout("waiting for sessions to close\n"); 3575 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3576 timeout); 3577 3578 /* tear down remaining sessions */ 3579 mutex_lock(&mdsc->mutex); 3580 for (i = 0; i < mdsc->max_sessions; i++) { 3581 if (mdsc->sessions[i]) { 3582 session = get_session(mdsc->sessions[i]); 3583 __unregister_session(mdsc, session); 3584 mutex_unlock(&mdsc->mutex); 3585 mutex_lock(&session->s_mutex); 3586 remove_session_caps(session); 3587 mutex_unlock(&session->s_mutex); 3588 ceph_put_mds_session(session); 3589 mutex_lock(&mdsc->mutex); 3590 } 3591 } 3592 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3593 mutex_unlock(&mdsc->mutex); 3594 3595 ceph_cleanup_empty_realms(mdsc); 3596 3597 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3598 3599 dout("stopped\n"); 3600 } 3601 3602 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3603 { 3604 dout("stop\n"); 3605 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3606 if (mdsc->mdsmap) 3607 ceph_mdsmap_destroy(mdsc->mdsmap); 3608 kfree(mdsc->sessions); 3609 ceph_caps_finalize(mdsc); 3610 } 3611 3612 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3613 { 3614 struct ceph_mds_client *mdsc = fsc->mdsc; 3615 3616 dout("mdsc_destroy %p\n", mdsc); 3617 ceph_mdsc_stop(mdsc); 3618 3619 /* flush out any connection work with references to us */ 3620 ceph_msgr_flush(); 3621 3622 fsc->mdsc = NULL; 3623 kfree(mdsc); 3624 dout("mdsc_destroy %p done\n", mdsc); 3625 } 3626 3627 3628 /* 3629 * handle mds map update. 3630 */ 3631 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3632 { 3633 u32 epoch; 3634 u32 maplen; 3635 void *p = msg->front.iov_base; 3636 void *end = p + msg->front.iov_len; 3637 struct ceph_mdsmap *newmap, *oldmap; 3638 struct ceph_fsid fsid; 3639 int err = -EINVAL; 3640 3641 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3642 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3643 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3644 return; 3645 epoch = ceph_decode_32(&p); 3646 maplen = ceph_decode_32(&p); 3647 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3648 3649 /* do we need it? */ 3650 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3651 mutex_lock(&mdsc->mutex); 3652 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3653 dout("handle_map epoch %u <= our %u\n", 3654 epoch, mdsc->mdsmap->m_epoch); 3655 mutex_unlock(&mdsc->mutex); 3656 return; 3657 } 3658 3659 newmap = ceph_mdsmap_decode(&p, end); 3660 if (IS_ERR(newmap)) { 3661 err = PTR_ERR(newmap); 3662 goto bad_unlock; 3663 } 3664 3665 /* swap into place */ 3666 if (mdsc->mdsmap) { 3667 oldmap = mdsc->mdsmap; 3668 mdsc->mdsmap = newmap; 3669 check_new_map(mdsc, newmap, oldmap); 3670 ceph_mdsmap_destroy(oldmap); 3671 } else { 3672 mdsc->mdsmap = newmap; /* first mds map */ 3673 } 3674 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3675 3676 __wake_requests(mdsc, &mdsc->waiting_for_map); 3677 3678 mutex_unlock(&mdsc->mutex); 3679 schedule_delayed(mdsc); 3680 return; 3681 3682 bad_unlock: 3683 mutex_unlock(&mdsc->mutex); 3684 bad: 3685 pr_err("error decoding mdsmap %d\n", err); 3686 return; 3687 } 3688 3689 static struct ceph_connection *con_get(struct ceph_connection *con) 3690 { 3691 struct ceph_mds_session *s = con->private; 3692 3693 if (get_session(s)) { 3694 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3695 return con; 3696 } 3697 dout("mdsc con_get %p FAIL\n", s); 3698 return NULL; 3699 } 3700 3701 static void con_put(struct ceph_connection *con) 3702 { 3703 struct ceph_mds_session *s = con->private; 3704 3705 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3706 ceph_put_mds_session(s); 3707 } 3708 3709 /* 3710 * if the client is unresponsive for long enough, the mds will kill 3711 * the session entirely. 3712 */ 3713 static void peer_reset(struct ceph_connection *con) 3714 { 3715 struct ceph_mds_session *s = con->private; 3716 struct ceph_mds_client *mdsc = s->s_mdsc; 3717 3718 pr_warn("mds%d closed our session\n", s->s_mds); 3719 send_mds_reconnect(mdsc, s); 3720 } 3721 3722 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3723 { 3724 struct ceph_mds_session *s = con->private; 3725 struct ceph_mds_client *mdsc = s->s_mdsc; 3726 int type = le16_to_cpu(msg->hdr.type); 3727 3728 mutex_lock(&mdsc->mutex); 3729 if (__verify_registered_session(mdsc, s) < 0) { 3730 mutex_unlock(&mdsc->mutex); 3731 goto out; 3732 } 3733 mutex_unlock(&mdsc->mutex); 3734 3735 switch (type) { 3736 case CEPH_MSG_MDS_MAP: 3737 ceph_mdsc_handle_map(mdsc, msg); 3738 break; 3739 case CEPH_MSG_CLIENT_SESSION: 3740 handle_session(s, msg); 3741 break; 3742 case CEPH_MSG_CLIENT_REPLY: 3743 handle_reply(s, msg); 3744 break; 3745 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3746 handle_forward(mdsc, s, msg); 3747 break; 3748 case CEPH_MSG_CLIENT_CAPS: 3749 ceph_handle_caps(s, msg); 3750 break; 3751 case CEPH_MSG_CLIENT_SNAP: 3752 ceph_handle_snap(mdsc, s, msg); 3753 break; 3754 case CEPH_MSG_CLIENT_LEASE: 3755 handle_lease(mdsc, s, msg); 3756 break; 3757 3758 default: 3759 pr_err("received unknown message type %d %s\n", type, 3760 ceph_msg_type_name(type)); 3761 } 3762 out: 3763 ceph_msg_put(msg); 3764 } 3765 3766 /* 3767 * authentication 3768 */ 3769 3770 /* 3771 * Note: returned pointer is the address of a structure that's 3772 * managed separately. Caller must *not* attempt to free it. 3773 */ 3774 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 3775 int *proto, int force_new) 3776 { 3777 struct ceph_mds_session *s = con->private; 3778 struct ceph_mds_client *mdsc = s->s_mdsc; 3779 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3780 struct ceph_auth_handshake *auth = &s->s_auth; 3781 3782 if (force_new && auth->authorizer) { 3783 ceph_auth_destroy_authorizer(ac, auth->authorizer); 3784 auth->authorizer = NULL; 3785 } 3786 if (!auth->authorizer) { 3787 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3788 auth); 3789 if (ret) 3790 return ERR_PTR(ret); 3791 } else { 3792 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3793 auth); 3794 if (ret) 3795 return ERR_PTR(ret); 3796 } 3797 *proto = ac->protocol; 3798 3799 return auth; 3800 } 3801 3802 3803 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3804 { 3805 struct ceph_mds_session *s = con->private; 3806 struct ceph_mds_client *mdsc = s->s_mdsc; 3807 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3808 3809 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len); 3810 } 3811 3812 static int invalidate_authorizer(struct ceph_connection *con) 3813 { 3814 struct ceph_mds_session *s = con->private; 3815 struct ceph_mds_client *mdsc = s->s_mdsc; 3816 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3817 3818 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3819 3820 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3821 } 3822 3823 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 3824 struct ceph_msg_header *hdr, int *skip) 3825 { 3826 struct ceph_msg *msg; 3827 int type = (int) le16_to_cpu(hdr->type); 3828 int front_len = (int) le32_to_cpu(hdr->front_len); 3829 3830 if (con->in_msg) 3831 return con->in_msg; 3832 3833 *skip = 0; 3834 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 3835 if (!msg) { 3836 pr_err("unable to allocate msg type %d len %d\n", 3837 type, front_len); 3838 return NULL; 3839 } 3840 3841 return msg; 3842 } 3843 3844 static int sign_message(struct ceph_connection *con, struct ceph_msg *msg) 3845 { 3846 struct ceph_mds_session *s = con->private; 3847 struct ceph_auth_handshake *auth = &s->s_auth; 3848 return ceph_auth_sign_message(auth, msg); 3849 } 3850 3851 static int check_message_signature(struct ceph_connection *con, struct ceph_msg *msg) 3852 { 3853 struct ceph_mds_session *s = con->private; 3854 struct ceph_auth_handshake *auth = &s->s_auth; 3855 return ceph_auth_check_message_signature(auth, msg); 3856 } 3857 3858 static const struct ceph_connection_operations mds_con_ops = { 3859 .get = con_get, 3860 .put = con_put, 3861 .dispatch = dispatch, 3862 .get_authorizer = get_authorizer, 3863 .verify_authorizer_reply = verify_authorizer_reply, 3864 .invalidate_authorizer = invalidate_authorizer, 3865 .peer_reset = peer_reset, 3866 .alloc_msg = mds_alloc_msg, 3867 .sign_message = sign_message, 3868 .check_message_signature = check_message_signature, 3869 }; 3870 3871 /* eof */ 3872