xref: /openbmc/linux/fs/ceph/mds_client.c (revision d236d361)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/gfp.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 #include <linux/ratelimit.h>
12 
13 #include "super.h"
14 #include "mds_client.h"
15 
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
22 
23 /*
24  * A cluster of MDS (metadata server) daemons is responsible for
25  * managing the file system namespace (the directory hierarchy and
26  * inodes) and for coordinating shared access to storage.  Metadata is
27  * partitioning hierarchically across a number of servers, and that
28  * partition varies over time as the cluster adjusts the distribution
29  * in order to balance load.
30  *
31  * The MDS client is primarily responsible to managing synchronous
32  * metadata requests for operations like open, unlink, and so forth.
33  * If there is a MDS failure, we find out about it when we (possibly
34  * request and) receive a new MDS map, and can resubmit affected
35  * requests.
36  *
37  * For the most part, though, we take advantage of a lossless
38  * communications channel to the MDS, and do not need to worry about
39  * timing out or resubmitting requests.
40  *
41  * We maintain a stateful "session" with each MDS we interact with.
42  * Within each session, we sent periodic heartbeat messages to ensure
43  * any capabilities or leases we have been issues remain valid.  If
44  * the session times out and goes stale, our leases and capabilities
45  * are no longer valid.
46  */
47 
48 struct ceph_reconnect_state {
49 	int nr_caps;
50 	struct ceph_pagelist *pagelist;
51 	unsigned msg_version;
52 };
53 
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 			    struct list_head *head);
56 
57 static const struct ceph_connection_operations mds_con_ops;
58 
59 
60 /*
61  * mds reply parsing
62  */
63 
64 /*
65  * parse individual inode info
66  */
67 static int parse_reply_info_in(void **p, void *end,
68 			       struct ceph_mds_reply_info_in *info,
69 			       u64 features)
70 {
71 	int err = -EIO;
72 
73 	info->in = *p;
74 	*p += sizeof(struct ceph_mds_reply_inode) +
75 		sizeof(*info->in->fragtree.splits) *
76 		le32_to_cpu(info->in->fragtree.nsplits);
77 
78 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 	ceph_decode_need(p, end, info->symlink_len, bad);
80 	info->symlink = *p;
81 	*p += info->symlink_len;
82 
83 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
84 		ceph_decode_copy_safe(p, end, &info->dir_layout,
85 				      sizeof(info->dir_layout), bad);
86 	else
87 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
88 
89 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
90 	ceph_decode_need(p, end, info->xattr_len, bad);
91 	info->xattr_data = *p;
92 	*p += info->xattr_len;
93 
94 	if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
95 		ceph_decode_64_safe(p, end, info->inline_version, bad);
96 		ceph_decode_32_safe(p, end, info->inline_len, bad);
97 		ceph_decode_need(p, end, info->inline_len, bad);
98 		info->inline_data = *p;
99 		*p += info->inline_len;
100 	} else
101 		info->inline_version = CEPH_INLINE_NONE;
102 
103 	info->pool_ns_len = 0;
104 	info->pool_ns_data = NULL;
105 	if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
106 		ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
107 		if (info->pool_ns_len > 0) {
108 			ceph_decode_need(p, end, info->pool_ns_len, bad);
109 			info->pool_ns_data = *p;
110 			*p += info->pool_ns_len;
111 		}
112 	}
113 
114 	return 0;
115 bad:
116 	return err;
117 }
118 
119 /*
120  * parse a normal reply, which may contain a (dir+)dentry and/or a
121  * target inode.
122  */
123 static int parse_reply_info_trace(void **p, void *end,
124 				  struct ceph_mds_reply_info_parsed *info,
125 				  u64 features)
126 {
127 	int err;
128 
129 	if (info->head->is_dentry) {
130 		err = parse_reply_info_in(p, end, &info->diri, features);
131 		if (err < 0)
132 			goto out_bad;
133 
134 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
135 			goto bad;
136 		info->dirfrag = *p;
137 		*p += sizeof(*info->dirfrag) +
138 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
139 		if (unlikely(*p > end))
140 			goto bad;
141 
142 		ceph_decode_32_safe(p, end, info->dname_len, bad);
143 		ceph_decode_need(p, end, info->dname_len, bad);
144 		info->dname = *p;
145 		*p += info->dname_len;
146 		info->dlease = *p;
147 		*p += sizeof(*info->dlease);
148 	}
149 
150 	if (info->head->is_target) {
151 		err = parse_reply_info_in(p, end, &info->targeti, features);
152 		if (err < 0)
153 			goto out_bad;
154 	}
155 
156 	if (unlikely(*p != end))
157 		goto bad;
158 	return 0;
159 
160 bad:
161 	err = -EIO;
162 out_bad:
163 	pr_err("problem parsing mds trace %d\n", err);
164 	return err;
165 }
166 
167 /*
168  * parse readdir results
169  */
170 static int parse_reply_info_dir(void **p, void *end,
171 				struct ceph_mds_reply_info_parsed *info,
172 				u64 features)
173 {
174 	u32 num, i = 0;
175 	int err;
176 
177 	info->dir_dir = *p;
178 	if (*p + sizeof(*info->dir_dir) > end)
179 		goto bad;
180 	*p += sizeof(*info->dir_dir) +
181 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
182 	if (*p > end)
183 		goto bad;
184 
185 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
186 	num = ceph_decode_32(p);
187 	{
188 		u16 flags = ceph_decode_16(p);
189 		info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
190 		info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
191 		info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
192 		info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH);
193 	}
194 	if (num == 0)
195 		goto done;
196 
197 	BUG_ON(!info->dir_entries);
198 	if ((unsigned long)(info->dir_entries + num) >
199 	    (unsigned long)info->dir_entries + info->dir_buf_size) {
200 		pr_err("dir contents are larger than expected\n");
201 		WARN_ON(1);
202 		goto bad;
203 	}
204 
205 	info->dir_nr = num;
206 	while (num) {
207 		struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
208 		/* dentry */
209 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
210 		rde->name_len = ceph_decode_32(p);
211 		ceph_decode_need(p, end, rde->name_len, bad);
212 		rde->name = *p;
213 		*p += rde->name_len;
214 		dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name);
215 		rde->lease = *p;
216 		*p += sizeof(struct ceph_mds_reply_lease);
217 
218 		/* inode */
219 		err = parse_reply_info_in(p, end, &rde->inode, features);
220 		if (err < 0)
221 			goto out_bad;
222 		/* ceph_readdir_prepopulate() will update it */
223 		rde->offset = 0;
224 		i++;
225 		num--;
226 	}
227 
228 done:
229 	if (*p != end)
230 		goto bad;
231 	return 0;
232 
233 bad:
234 	err = -EIO;
235 out_bad:
236 	pr_err("problem parsing dir contents %d\n", err);
237 	return err;
238 }
239 
240 /*
241  * parse fcntl F_GETLK results
242  */
243 static int parse_reply_info_filelock(void **p, void *end,
244 				     struct ceph_mds_reply_info_parsed *info,
245 				     u64 features)
246 {
247 	if (*p + sizeof(*info->filelock_reply) > end)
248 		goto bad;
249 
250 	info->filelock_reply = *p;
251 	*p += sizeof(*info->filelock_reply);
252 
253 	if (unlikely(*p != end))
254 		goto bad;
255 	return 0;
256 
257 bad:
258 	return -EIO;
259 }
260 
261 /*
262  * parse create results
263  */
264 static int parse_reply_info_create(void **p, void *end,
265 				  struct ceph_mds_reply_info_parsed *info,
266 				  u64 features)
267 {
268 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
269 		if (*p == end) {
270 			info->has_create_ino = false;
271 		} else {
272 			info->has_create_ino = true;
273 			info->ino = ceph_decode_64(p);
274 		}
275 	}
276 
277 	if (unlikely(*p != end))
278 		goto bad;
279 	return 0;
280 
281 bad:
282 	return -EIO;
283 }
284 
285 /*
286  * parse extra results
287  */
288 static int parse_reply_info_extra(void **p, void *end,
289 				  struct ceph_mds_reply_info_parsed *info,
290 				  u64 features)
291 {
292 	u32 op = le32_to_cpu(info->head->op);
293 
294 	if (op == CEPH_MDS_OP_GETFILELOCK)
295 		return parse_reply_info_filelock(p, end, info, features);
296 	else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP)
297 		return parse_reply_info_dir(p, end, info, features);
298 	else if (op == CEPH_MDS_OP_CREATE)
299 		return parse_reply_info_create(p, end, info, features);
300 	else
301 		return -EIO;
302 }
303 
304 /*
305  * parse entire mds reply
306  */
307 static int parse_reply_info(struct ceph_msg *msg,
308 			    struct ceph_mds_reply_info_parsed *info,
309 			    u64 features)
310 {
311 	void *p, *end;
312 	u32 len;
313 	int err;
314 
315 	info->head = msg->front.iov_base;
316 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
317 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
318 
319 	/* trace */
320 	ceph_decode_32_safe(&p, end, len, bad);
321 	if (len > 0) {
322 		ceph_decode_need(&p, end, len, bad);
323 		err = parse_reply_info_trace(&p, p+len, info, features);
324 		if (err < 0)
325 			goto out_bad;
326 	}
327 
328 	/* extra */
329 	ceph_decode_32_safe(&p, end, len, bad);
330 	if (len > 0) {
331 		ceph_decode_need(&p, end, len, bad);
332 		err = parse_reply_info_extra(&p, p+len, info, features);
333 		if (err < 0)
334 			goto out_bad;
335 	}
336 
337 	/* snap blob */
338 	ceph_decode_32_safe(&p, end, len, bad);
339 	info->snapblob_len = len;
340 	info->snapblob = p;
341 	p += len;
342 
343 	if (p != end)
344 		goto bad;
345 	return 0;
346 
347 bad:
348 	err = -EIO;
349 out_bad:
350 	pr_err("mds parse_reply err %d\n", err);
351 	return err;
352 }
353 
354 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
355 {
356 	if (!info->dir_entries)
357 		return;
358 	free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
359 }
360 
361 
362 /*
363  * sessions
364  */
365 const char *ceph_session_state_name(int s)
366 {
367 	switch (s) {
368 	case CEPH_MDS_SESSION_NEW: return "new";
369 	case CEPH_MDS_SESSION_OPENING: return "opening";
370 	case CEPH_MDS_SESSION_OPEN: return "open";
371 	case CEPH_MDS_SESSION_HUNG: return "hung";
372 	case CEPH_MDS_SESSION_CLOSING: return "closing";
373 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
374 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
375 	case CEPH_MDS_SESSION_REJECTED: return "rejected";
376 	default: return "???";
377 	}
378 }
379 
380 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
381 {
382 	if (refcount_inc_not_zero(&s->s_ref)) {
383 		dout("mdsc get_session %p %d -> %d\n", s,
384 		     refcount_read(&s->s_ref)-1, refcount_read(&s->s_ref));
385 		return s;
386 	} else {
387 		dout("mdsc get_session %p 0 -- FAIL", s);
388 		return NULL;
389 	}
390 }
391 
392 void ceph_put_mds_session(struct ceph_mds_session *s)
393 {
394 	dout("mdsc put_session %p %d -> %d\n", s,
395 	     refcount_read(&s->s_ref), refcount_read(&s->s_ref)-1);
396 	if (refcount_dec_and_test(&s->s_ref)) {
397 		if (s->s_auth.authorizer)
398 			ceph_auth_destroy_authorizer(s->s_auth.authorizer);
399 		kfree(s);
400 	}
401 }
402 
403 /*
404  * called under mdsc->mutex
405  */
406 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
407 						   int mds)
408 {
409 	struct ceph_mds_session *session;
410 
411 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
412 		return NULL;
413 	session = mdsc->sessions[mds];
414 	dout("lookup_mds_session %p %d\n", session,
415 	     refcount_read(&session->s_ref));
416 	get_session(session);
417 	return session;
418 }
419 
420 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
421 {
422 	if (mds >= mdsc->max_sessions)
423 		return false;
424 	return mdsc->sessions[mds];
425 }
426 
427 static int __verify_registered_session(struct ceph_mds_client *mdsc,
428 				       struct ceph_mds_session *s)
429 {
430 	if (s->s_mds >= mdsc->max_sessions ||
431 	    mdsc->sessions[s->s_mds] != s)
432 		return -ENOENT;
433 	return 0;
434 }
435 
436 /*
437  * create+register a new session for given mds.
438  * called under mdsc->mutex.
439  */
440 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
441 						 int mds)
442 {
443 	struct ceph_mds_session *s;
444 
445 	if (mds >= mdsc->mdsmap->m_num_mds)
446 		return ERR_PTR(-EINVAL);
447 
448 	s = kzalloc(sizeof(*s), GFP_NOFS);
449 	if (!s)
450 		return ERR_PTR(-ENOMEM);
451 	s->s_mdsc = mdsc;
452 	s->s_mds = mds;
453 	s->s_state = CEPH_MDS_SESSION_NEW;
454 	s->s_ttl = 0;
455 	s->s_seq = 0;
456 	mutex_init(&s->s_mutex);
457 
458 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
459 
460 	spin_lock_init(&s->s_gen_ttl_lock);
461 	s->s_cap_gen = 0;
462 	s->s_cap_ttl = jiffies - 1;
463 
464 	spin_lock_init(&s->s_cap_lock);
465 	s->s_renew_requested = 0;
466 	s->s_renew_seq = 0;
467 	INIT_LIST_HEAD(&s->s_caps);
468 	s->s_nr_caps = 0;
469 	s->s_trim_caps = 0;
470 	refcount_set(&s->s_ref, 1);
471 	INIT_LIST_HEAD(&s->s_waiting);
472 	INIT_LIST_HEAD(&s->s_unsafe);
473 	s->s_num_cap_releases = 0;
474 	s->s_cap_reconnect = 0;
475 	s->s_cap_iterator = NULL;
476 	INIT_LIST_HEAD(&s->s_cap_releases);
477 	INIT_LIST_HEAD(&s->s_cap_flushing);
478 
479 	dout("register_session mds%d\n", mds);
480 	if (mds >= mdsc->max_sessions) {
481 		int newmax = 1 << get_count_order(mds+1);
482 		struct ceph_mds_session **sa;
483 
484 		dout("register_session realloc to %d\n", newmax);
485 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
486 		if (sa == NULL)
487 			goto fail_realloc;
488 		if (mdsc->sessions) {
489 			memcpy(sa, mdsc->sessions,
490 			       mdsc->max_sessions * sizeof(void *));
491 			kfree(mdsc->sessions);
492 		}
493 		mdsc->sessions = sa;
494 		mdsc->max_sessions = newmax;
495 	}
496 	mdsc->sessions[mds] = s;
497 	atomic_inc(&mdsc->num_sessions);
498 	refcount_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
499 
500 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
501 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
502 
503 	return s;
504 
505 fail_realloc:
506 	kfree(s);
507 	return ERR_PTR(-ENOMEM);
508 }
509 
510 /*
511  * called under mdsc->mutex
512  */
513 static void __unregister_session(struct ceph_mds_client *mdsc,
514 			       struct ceph_mds_session *s)
515 {
516 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
517 	BUG_ON(mdsc->sessions[s->s_mds] != s);
518 	mdsc->sessions[s->s_mds] = NULL;
519 	ceph_con_close(&s->s_con);
520 	ceph_put_mds_session(s);
521 	atomic_dec(&mdsc->num_sessions);
522 }
523 
524 /*
525  * drop session refs in request.
526  *
527  * should be last request ref, or hold mdsc->mutex
528  */
529 static void put_request_session(struct ceph_mds_request *req)
530 {
531 	if (req->r_session) {
532 		ceph_put_mds_session(req->r_session);
533 		req->r_session = NULL;
534 	}
535 }
536 
537 void ceph_mdsc_release_request(struct kref *kref)
538 {
539 	struct ceph_mds_request *req = container_of(kref,
540 						    struct ceph_mds_request,
541 						    r_kref);
542 	destroy_reply_info(&req->r_reply_info);
543 	if (req->r_request)
544 		ceph_msg_put(req->r_request);
545 	if (req->r_reply)
546 		ceph_msg_put(req->r_reply);
547 	if (req->r_inode) {
548 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
549 		iput(req->r_inode);
550 	}
551 	if (req->r_parent)
552 		ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
553 	iput(req->r_target_inode);
554 	if (req->r_dentry)
555 		dput(req->r_dentry);
556 	if (req->r_old_dentry)
557 		dput(req->r_old_dentry);
558 	if (req->r_old_dentry_dir) {
559 		/*
560 		 * track (and drop pins for) r_old_dentry_dir
561 		 * separately, since r_old_dentry's d_parent may have
562 		 * changed between the dir mutex being dropped and
563 		 * this request being freed.
564 		 */
565 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
566 				  CEPH_CAP_PIN);
567 		iput(req->r_old_dentry_dir);
568 	}
569 	kfree(req->r_path1);
570 	kfree(req->r_path2);
571 	if (req->r_pagelist)
572 		ceph_pagelist_release(req->r_pagelist);
573 	put_request_session(req);
574 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
575 	kfree(req);
576 }
577 
578 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
579 
580 /*
581  * lookup session, bump ref if found.
582  *
583  * called under mdsc->mutex.
584  */
585 static struct ceph_mds_request *
586 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
587 {
588 	struct ceph_mds_request *req;
589 
590 	req = lookup_request(&mdsc->request_tree, tid);
591 	if (req)
592 		ceph_mdsc_get_request(req);
593 
594 	return req;
595 }
596 
597 /*
598  * Register an in-flight request, and assign a tid.  Link to directory
599  * are modifying (if any).
600  *
601  * Called under mdsc->mutex.
602  */
603 static void __register_request(struct ceph_mds_client *mdsc,
604 			       struct ceph_mds_request *req,
605 			       struct inode *dir)
606 {
607 	req->r_tid = ++mdsc->last_tid;
608 	if (req->r_num_caps)
609 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
610 				  req->r_num_caps);
611 	dout("__register_request %p tid %lld\n", req, req->r_tid);
612 	ceph_mdsc_get_request(req);
613 	insert_request(&mdsc->request_tree, req);
614 
615 	req->r_uid = current_fsuid();
616 	req->r_gid = current_fsgid();
617 
618 	if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
619 		mdsc->oldest_tid = req->r_tid;
620 
621 	if (dir) {
622 		ihold(dir);
623 		req->r_unsafe_dir = dir;
624 	}
625 }
626 
627 static void __unregister_request(struct ceph_mds_client *mdsc,
628 				 struct ceph_mds_request *req)
629 {
630 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
631 
632 	/* Never leave an unregistered request on an unsafe list! */
633 	list_del_init(&req->r_unsafe_item);
634 
635 	if (req->r_tid == mdsc->oldest_tid) {
636 		struct rb_node *p = rb_next(&req->r_node);
637 		mdsc->oldest_tid = 0;
638 		while (p) {
639 			struct ceph_mds_request *next_req =
640 				rb_entry(p, struct ceph_mds_request, r_node);
641 			if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
642 				mdsc->oldest_tid = next_req->r_tid;
643 				break;
644 			}
645 			p = rb_next(p);
646 		}
647 	}
648 
649 	erase_request(&mdsc->request_tree, req);
650 
651 	if (req->r_unsafe_dir  &&
652 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
653 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
654 		spin_lock(&ci->i_unsafe_lock);
655 		list_del_init(&req->r_unsafe_dir_item);
656 		spin_unlock(&ci->i_unsafe_lock);
657 	}
658 	if (req->r_target_inode &&
659 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
660 		struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
661 		spin_lock(&ci->i_unsafe_lock);
662 		list_del_init(&req->r_unsafe_target_item);
663 		spin_unlock(&ci->i_unsafe_lock);
664 	}
665 
666 	if (req->r_unsafe_dir) {
667 		iput(req->r_unsafe_dir);
668 		req->r_unsafe_dir = NULL;
669 	}
670 
671 	complete_all(&req->r_safe_completion);
672 
673 	ceph_mdsc_put_request(req);
674 }
675 
676 /*
677  * Walk back up the dentry tree until we hit a dentry representing a
678  * non-snapshot inode. We do this using the rcu_read_lock (which must be held
679  * when calling this) to ensure that the objects won't disappear while we're
680  * working with them. Once we hit a candidate dentry, we attempt to take a
681  * reference to it, and return that as the result.
682  */
683 static struct inode *get_nonsnap_parent(struct dentry *dentry)
684 {
685 	struct inode *inode = NULL;
686 
687 	while (dentry && !IS_ROOT(dentry)) {
688 		inode = d_inode_rcu(dentry);
689 		if (!inode || ceph_snap(inode) == CEPH_NOSNAP)
690 			break;
691 		dentry = dentry->d_parent;
692 	}
693 	if (inode)
694 		inode = igrab(inode);
695 	return inode;
696 }
697 
698 /*
699  * Choose mds to send request to next.  If there is a hint set in the
700  * request (e.g., due to a prior forward hint from the mds), use that.
701  * Otherwise, consult frag tree and/or caps to identify the
702  * appropriate mds.  If all else fails, choose randomly.
703  *
704  * Called under mdsc->mutex.
705  */
706 static int __choose_mds(struct ceph_mds_client *mdsc,
707 			struct ceph_mds_request *req)
708 {
709 	struct inode *inode;
710 	struct ceph_inode_info *ci;
711 	struct ceph_cap *cap;
712 	int mode = req->r_direct_mode;
713 	int mds = -1;
714 	u32 hash = req->r_direct_hash;
715 	bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags);
716 
717 	/*
718 	 * is there a specific mds we should try?  ignore hint if we have
719 	 * no session and the mds is not up (active or recovering).
720 	 */
721 	if (req->r_resend_mds >= 0 &&
722 	    (__have_session(mdsc, req->r_resend_mds) ||
723 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
724 		dout("choose_mds using resend_mds mds%d\n",
725 		     req->r_resend_mds);
726 		return req->r_resend_mds;
727 	}
728 
729 	if (mode == USE_RANDOM_MDS)
730 		goto random;
731 
732 	inode = NULL;
733 	if (req->r_inode) {
734 		inode = req->r_inode;
735 		ihold(inode);
736 	} else if (req->r_dentry) {
737 		/* ignore race with rename; old or new d_parent is okay */
738 		struct dentry *parent;
739 		struct inode *dir;
740 
741 		rcu_read_lock();
742 		parent = req->r_dentry->d_parent;
743 		dir = req->r_parent ? : d_inode_rcu(parent);
744 
745 		if (!dir || dir->i_sb != mdsc->fsc->sb) {
746 			/*  not this fs or parent went negative */
747 			inode = d_inode(req->r_dentry);
748 			if (inode)
749 				ihold(inode);
750 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
751 			/* direct snapped/virtual snapdir requests
752 			 * based on parent dir inode */
753 			inode = get_nonsnap_parent(parent);
754 			dout("__choose_mds using nonsnap parent %p\n", inode);
755 		} else {
756 			/* dentry target */
757 			inode = d_inode(req->r_dentry);
758 			if (!inode || mode == USE_AUTH_MDS) {
759 				/* dir + name */
760 				inode = igrab(dir);
761 				hash = ceph_dentry_hash(dir, req->r_dentry);
762 				is_hash = true;
763 			} else {
764 				ihold(inode);
765 			}
766 		}
767 		rcu_read_unlock();
768 	}
769 
770 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
771 	     (int)hash, mode);
772 	if (!inode)
773 		goto random;
774 	ci = ceph_inode(inode);
775 
776 	if (is_hash && S_ISDIR(inode->i_mode)) {
777 		struct ceph_inode_frag frag;
778 		int found;
779 
780 		ceph_choose_frag(ci, hash, &frag, &found);
781 		if (found) {
782 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
783 				u8 r;
784 
785 				/* choose a random replica */
786 				get_random_bytes(&r, 1);
787 				r %= frag.ndist;
788 				mds = frag.dist[r];
789 				dout("choose_mds %p %llx.%llx "
790 				     "frag %u mds%d (%d/%d)\n",
791 				     inode, ceph_vinop(inode),
792 				     frag.frag, mds,
793 				     (int)r, frag.ndist);
794 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
795 				    CEPH_MDS_STATE_ACTIVE)
796 					goto out;
797 			}
798 
799 			/* since this file/dir wasn't known to be
800 			 * replicated, then we want to look for the
801 			 * authoritative mds. */
802 			mode = USE_AUTH_MDS;
803 			if (frag.mds >= 0) {
804 				/* choose auth mds */
805 				mds = frag.mds;
806 				dout("choose_mds %p %llx.%llx "
807 				     "frag %u mds%d (auth)\n",
808 				     inode, ceph_vinop(inode), frag.frag, mds);
809 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
810 				    CEPH_MDS_STATE_ACTIVE)
811 					goto out;
812 			}
813 		}
814 	}
815 
816 	spin_lock(&ci->i_ceph_lock);
817 	cap = NULL;
818 	if (mode == USE_AUTH_MDS)
819 		cap = ci->i_auth_cap;
820 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
821 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
822 	if (!cap) {
823 		spin_unlock(&ci->i_ceph_lock);
824 		iput(inode);
825 		goto random;
826 	}
827 	mds = cap->session->s_mds;
828 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
829 	     inode, ceph_vinop(inode), mds,
830 	     cap == ci->i_auth_cap ? "auth " : "", cap);
831 	spin_unlock(&ci->i_ceph_lock);
832 out:
833 	iput(inode);
834 	return mds;
835 
836 random:
837 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
838 	dout("choose_mds chose random mds%d\n", mds);
839 	return mds;
840 }
841 
842 
843 /*
844  * session messages
845  */
846 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
847 {
848 	struct ceph_msg *msg;
849 	struct ceph_mds_session_head *h;
850 
851 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
852 			   false);
853 	if (!msg) {
854 		pr_err("create_session_msg ENOMEM creating msg\n");
855 		return NULL;
856 	}
857 	h = msg->front.iov_base;
858 	h->op = cpu_to_le32(op);
859 	h->seq = cpu_to_le64(seq);
860 
861 	return msg;
862 }
863 
864 /*
865  * session message, specialization for CEPH_SESSION_REQUEST_OPEN
866  * to include additional client metadata fields.
867  */
868 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
869 {
870 	struct ceph_msg *msg;
871 	struct ceph_mds_session_head *h;
872 	int i = -1;
873 	int metadata_bytes = 0;
874 	int metadata_key_count = 0;
875 	struct ceph_options *opt = mdsc->fsc->client->options;
876 	struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
877 	void *p;
878 
879 	const char* metadata[][2] = {
880 		{"hostname", utsname()->nodename},
881 		{"kernel_version", utsname()->release},
882 		{"entity_id", opt->name ? : ""},
883 		{"root", fsopt->server_path ? : "/"},
884 		{NULL, NULL}
885 	};
886 
887 	/* Calculate serialized length of metadata */
888 	metadata_bytes = 4;  /* map length */
889 	for (i = 0; metadata[i][0] != NULL; ++i) {
890 		metadata_bytes += 8 + strlen(metadata[i][0]) +
891 			strlen(metadata[i][1]);
892 		metadata_key_count++;
893 	}
894 
895 	/* Allocate the message */
896 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
897 			   GFP_NOFS, false);
898 	if (!msg) {
899 		pr_err("create_session_msg ENOMEM creating msg\n");
900 		return NULL;
901 	}
902 	h = msg->front.iov_base;
903 	h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
904 	h->seq = cpu_to_le64(seq);
905 
906 	/*
907 	 * Serialize client metadata into waiting buffer space, using
908 	 * the format that userspace expects for map<string, string>
909 	 *
910 	 * ClientSession messages with metadata are v2
911 	 */
912 	msg->hdr.version = cpu_to_le16(2);
913 	msg->hdr.compat_version = cpu_to_le16(1);
914 
915 	/* The write pointer, following the session_head structure */
916 	p = msg->front.iov_base + sizeof(*h);
917 
918 	/* Number of entries in the map */
919 	ceph_encode_32(&p, metadata_key_count);
920 
921 	/* Two length-prefixed strings for each entry in the map */
922 	for (i = 0; metadata[i][0] != NULL; ++i) {
923 		size_t const key_len = strlen(metadata[i][0]);
924 		size_t const val_len = strlen(metadata[i][1]);
925 
926 		ceph_encode_32(&p, key_len);
927 		memcpy(p, metadata[i][0], key_len);
928 		p += key_len;
929 		ceph_encode_32(&p, val_len);
930 		memcpy(p, metadata[i][1], val_len);
931 		p += val_len;
932 	}
933 
934 	return msg;
935 }
936 
937 /*
938  * send session open request.
939  *
940  * called under mdsc->mutex
941  */
942 static int __open_session(struct ceph_mds_client *mdsc,
943 			  struct ceph_mds_session *session)
944 {
945 	struct ceph_msg *msg;
946 	int mstate;
947 	int mds = session->s_mds;
948 
949 	/* wait for mds to go active? */
950 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
951 	dout("open_session to mds%d (%s)\n", mds,
952 	     ceph_mds_state_name(mstate));
953 	session->s_state = CEPH_MDS_SESSION_OPENING;
954 	session->s_renew_requested = jiffies;
955 
956 	/* send connect message */
957 	msg = create_session_open_msg(mdsc, session->s_seq);
958 	if (!msg)
959 		return -ENOMEM;
960 	ceph_con_send(&session->s_con, msg);
961 	return 0;
962 }
963 
964 /*
965  * open sessions for any export targets for the given mds
966  *
967  * called under mdsc->mutex
968  */
969 static struct ceph_mds_session *
970 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
971 {
972 	struct ceph_mds_session *session;
973 
974 	session = __ceph_lookup_mds_session(mdsc, target);
975 	if (!session) {
976 		session = register_session(mdsc, target);
977 		if (IS_ERR(session))
978 			return session;
979 	}
980 	if (session->s_state == CEPH_MDS_SESSION_NEW ||
981 	    session->s_state == CEPH_MDS_SESSION_CLOSING)
982 		__open_session(mdsc, session);
983 
984 	return session;
985 }
986 
987 struct ceph_mds_session *
988 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
989 {
990 	struct ceph_mds_session *session;
991 
992 	dout("open_export_target_session to mds%d\n", target);
993 
994 	mutex_lock(&mdsc->mutex);
995 	session = __open_export_target_session(mdsc, target);
996 	mutex_unlock(&mdsc->mutex);
997 
998 	return session;
999 }
1000 
1001 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
1002 					  struct ceph_mds_session *session)
1003 {
1004 	struct ceph_mds_info *mi;
1005 	struct ceph_mds_session *ts;
1006 	int i, mds = session->s_mds;
1007 
1008 	if (mds >= mdsc->mdsmap->m_num_mds)
1009 		return;
1010 
1011 	mi = &mdsc->mdsmap->m_info[mds];
1012 	dout("open_export_target_sessions for mds%d (%d targets)\n",
1013 	     session->s_mds, mi->num_export_targets);
1014 
1015 	for (i = 0; i < mi->num_export_targets; i++) {
1016 		ts = __open_export_target_session(mdsc, mi->export_targets[i]);
1017 		if (!IS_ERR(ts))
1018 			ceph_put_mds_session(ts);
1019 	}
1020 }
1021 
1022 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
1023 					   struct ceph_mds_session *session)
1024 {
1025 	mutex_lock(&mdsc->mutex);
1026 	__open_export_target_sessions(mdsc, session);
1027 	mutex_unlock(&mdsc->mutex);
1028 }
1029 
1030 /*
1031  * session caps
1032  */
1033 
1034 /* caller holds s_cap_lock, we drop it */
1035 static void cleanup_cap_releases(struct ceph_mds_client *mdsc,
1036 				 struct ceph_mds_session *session)
1037 	__releases(session->s_cap_lock)
1038 {
1039 	LIST_HEAD(tmp_list);
1040 	list_splice_init(&session->s_cap_releases, &tmp_list);
1041 	session->s_num_cap_releases = 0;
1042 	spin_unlock(&session->s_cap_lock);
1043 
1044 	dout("cleanup_cap_releases mds%d\n", session->s_mds);
1045 	while (!list_empty(&tmp_list)) {
1046 		struct ceph_cap *cap;
1047 		/* zero out the in-progress message */
1048 		cap = list_first_entry(&tmp_list,
1049 					struct ceph_cap, session_caps);
1050 		list_del(&cap->session_caps);
1051 		ceph_put_cap(mdsc, cap);
1052 	}
1053 }
1054 
1055 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1056 				     struct ceph_mds_session *session)
1057 {
1058 	struct ceph_mds_request *req;
1059 	struct rb_node *p;
1060 
1061 	dout("cleanup_session_requests mds%d\n", session->s_mds);
1062 	mutex_lock(&mdsc->mutex);
1063 	while (!list_empty(&session->s_unsafe)) {
1064 		req = list_first_entry(&session->s_unsafe,
1065 				       struct ceph_mds_request, r_unsafe_item);
1066 		pr_warn_ratelimited(" dropping unsafe request %llu\n",
1067 				    req->r_tid);
1068 		__unregister_request(mdsc, req);
1069 	}
1070 	/* zero r_attempts, so kick_requests() will re-send requests */
1071 	p = rb_first(&mdsc->request_tree);
1072 	while (p) {
1073 		req = rb_entry(p, struct ceph_mds_request, r_node);
1074 		p = rb_next(p);
1075 		if (req->r_session &&
1076 		    req->r_session->s_mds == session->s_mds)
1077 			req->r_attempts = 0;
1078 	}
1079 	mutex_unlock(&mdsc->mutex);
1080 }
1081 
1082 /*
1083  * Helper to safely iterate over all caps associated with a session, with
1084  * special care taken to handle a racing __ceph_remove_cap().
1085  *
1086  * Caller must hold session s_mutex.
1087  */
1088 static int iterate_session_caps(struct ceph_mds_session *session,
1089 				 int (*cb)(struct inode *, struct ceph_cap *,
1090 					    void *), void *arg)
1091 {
1092 	struct list_head *p;
1093 	struct ceph_cap *cap;
1094 	struct inode *inode, *last_inode = NULL;
1095 	struct ceph_cap *old_cap = NULL;
1096 	int ret;
1097 
1098 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1099 	spin_lock(&session->s_cap_lock);
1100 	p = session->s_caps.next;
1101 	while (p != &session->s_caps) {
1102 		cap = list_entry(p, struct ceph_cap, session_caps);
1103 		inode = igrab(&cap->ci->vfs_inode);
1104 		if (!inode) {
1105 			p = p->next;
1106 			continue;
1107 		}
1108 		session->s_cap_iterator = cap;
1109 		spin_unlock(&session->s_cap_lock);
1110 
1111 		if (last_inode) {
1112 			iput(last_inode);
1113 			last_inode = NULL;
1114 		}
1115 		if (old_cap) {
1116 			ceph_put_cap(session->s_mdsc, old_cap);
1117 			old_cap = NULL;
1118 		}
1119 
1120 		ret = cb(inode, cap, arg);
1121 		last_inode = inode;
1122 
1123 		spin_lock(&session->s_cap_lock);
1124 		p = p->next;
1125 		if (cap->ci == NULL) {
1126 			dout("iterate_session_caps  finishing cap %p removal\n",
1127 			     cap);
1128 			BUG_ON(cap->session != session);
1129 			cap->session = NULL;
1130 			list_del_init(&cap->session_caps);
1131 			session->s_nr_caps--;
1132 			if (cap->queue_release) {
1133 				list_add_tail(&cap->session_caps,
1134 					      &session->s_cap_releases);
1135 				session->s_num_cap_releases++;
1136 			} else {
1137 				old_cap = cap;  /* put_cap it w/o locks held */
1138 			}
1139 		}
1140 		if (ret < 0)
1141 			goto out;
1142 	}
1143 	ret = 0;
1144 out:
1145 	session->s_cap_iterator = NULL;
1146 	spin_unlock(&session->s_cap_lock);
1147 
1148 	iput(last_inode);
1149 	if (old_cap)
1150 		ceph_put_cap(session->s_mdsc, old_cap);
1151 
1152 	return ret;
1153 }
1154 
1155 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1156 				  void *arg)
1157 {
1158 	struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg;
1159 	struct ceph_inode_info *ci = ceph_inode(inode);
1160 	LIST_HEAD(to_remove);
1161 	bool drop = false;
1162 	bool invalidate = false;
1163 
1164 	dout("removing cap %p, ci is %p, inode is %p\n",
1165 	     cap, ci, &ci->vfs_inode);
1166 	spin_lock(&ci->i_ceph_lock);
1167 	__ceph_remove_cap(cap, false);
1168 	if (!ci->i_auth_cap) {
1169 		struct ceph_cap_flush *cf;
1170 		struct ceph_mds_client *mdsc = fsc->mdsc;
1171 
1172 		ci->i_ceph_flags |= CEPH_I_CAP_DROPPED;
1173 
1174 		if (ci->i_wrbuffer_ref > 0 &&
1175 		    READ_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
1176 			invalidate = true;
1177 
1178 		while (!list_empty(&ci->i_cap_flush_list)) {
1179 			cf = list_first_entry(&ci->i_cap_flush_list,
1180 					      struct ceph_cap_flush, i_list);
1181 			list_move(&cf->i_list, &to_remove);
1182 		}
1183 
1184 		spin_lock(&mdsc->cap_dirty_lock);
1185 
1186 		list_for_each_entry(cf, &to_remove, i_list)
1187 			list_del(&cf->g_list);
1188 
1189 		if (!list_empty(&ci->i_dirty_item)) {
1190 			pr_warn_ratelimited(
1191 				" dropping dirty %s state for %p %lld\n",
1192 				ceph_cap_string(ci->i_dirty_caps),
1193 				inode, ceph_ino(inode));
1194 			ci->i_dirty_caps = 0;
1195 			list_del_init(&ci->i_dirty_item);
1196 			drop = true;
1197 		}
1198 		if (!list_empty(&ci->i_flushing_item)) {
1199 			pr_warn_ratelimited(
1200 				" dropping dirty+flushing %s state for %p %lld\n",
1201 				ceph_cap_string(ci->i_flushing_caps),
1202 				inode, ceph_ino(inode));
1203 			ci->i_flushing_caps = 0;
1204 			list_del_init(&ci->i_flushing_item);
1205 			mdsc->num_cap_flushing--;
1206 			drop = true;
1207 		}
1208 		spin_unlock(&mdsc->cap_dirty_lock);
1209 
1210 		if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1211 			list_add(&ci->i_prealloc_cap_flush->i_list, &to_remove);
1212 			ci->i_prealloc_cap_flush = NULL;
1213 		}
1214 	}
1215 	spin_unlock(&ci->i_ceph_lock);
1216 	while (!list_empty(&to_remove)) {
1217 		struct ceph_cap_flush *cf;
1218 		cf = list_first_entry(&to_remove,
1219 				      struct ceph_cap_flush, i_list);
1220 		list_del(&cf->i_list);
1221 		ceph_free_cap_flush(cf);
1222 	}
1223 
1224 	wake_up_all(&ci->i_cap_wq);
1225 	if (invalidate)
1226 		ceph_queue_invalidate(inode);
1227 	if (drop)
1228 		iput(inode);
1229 	return 0;
1230 }
1231 
1232 /*
1233  * caller must hold session s_mutex
1234  */
1235 static void remove_session_caps(struct ceph_mds_session *session)
1236 {
1237 	struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1238 	struct super_block *sb = fsc->sb;
1239 	dout("remove_session_caps on %p\n", session);
1240 	iterate_session_caps(session, remove_session_caps_cb, fsc);
1241 
1242 	wake_up_all(&fsc->mdsc->cap_flushing_wq);
1243 
1244 	spin_lock(&session->s_cap_lock);
1245 	if (session->s_nr_caps > 0) {
1246 		struct inode *inode;
1247 		struct ceph_cap *cap, *prev = NULL;
1248 		struct ceph_vino vino;
1249 		/*
1250 		 * iterate_session_caps() skips inodes that are being
1251 		 * deleted, we need to wait until deletions are complete.
1252 		 * __wait_on_freeing_inode() is designed for the job,
1253 		 * but it is not exported, so use lookup inode function
1254 		 * to access it.
1255 		 */
1256 		while (!list_empty(&session->s_caps)) {
1257 			cap = list_entry(session->s_caps.next,
1258 					 struct ceph_cap, session_caps);
1259 			if (cap == prev)
1260 				break;
1261 			prev = cap;
1262 			vino = cap->ci->i_vino;
1263 			spin_unlock(&session->s_cap_lock);
1264 
1265 			inode = ceph_find_inode(sb, vino);
1266 			iput(inode);
1267 
1268 			spin_lock(&session->s_cap_lock);
1269 		}
1270 	}
1271 
1272 	// drop cap expires and unlock s_cap_lock
1273 	cleanup_cap_releases(session->s_mdsc, session);
1274 
1275 	BUG_ON(session->s_nr_caps > 0);
1276 	BUG_ON(!list_empty(&session->s_cap_flushing));
1277 }
1278 
1279 /*
1280  * wake up any threads waiting on this session's caps.  if the cap is
1281  * old (didn't get renewed on the client reconnect), remove it now.
1282  *
1283  * caller must hold s_mutex.
1284  */
1285 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1286 			      void *arg)
1287 {
1288 	struct ceph_inode_info *ci = ceph_inode(inode);
1289 
1290 	if (arg) {
1291 		spin_lock(&ci->i_ceph_lock);
1292 		ci->i_wanted_max_size = 0;
1293 		ci->i_requested_max_size = 0;
1294 		spin_unlock(&ci->i_ceph_lock);
1295 	}
1296 	wake_up_all(&ci->i_cap_wq);
1297 	return 0;
1298 }
1299 
1300 static void wake_up_session_caps(struct ceph_mds_session *session,
1301 				 int reconnect)
1302 {
1303 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1304 	iterate_session_caps(session, wake_up_session_cb,
1305 			     (void *)(unsigned long)reconnect);
1306 }
1307 
1308 /*
1309  * Send periodic message to MDS renewing all currently held caps.  The
1310  * ack will reset the expiration for all caps from this session.
1311  *
1312  * caller holds s_mutex
1313  */
1314 static int send_renew_caps(struct ceph_mds_client *mdsc,
1315 			   struct ceph_mds_session *session)
1316 {
1317 	struct ceph_msg *msg;
1318 	int state;
1319 
1320 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1321 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1322 		pr_info("mds%d caps stale\n", session->s_mds);
1323 	session->s_renew_requested = jiffies;
1324 
1325 	/* do not try to renew caps until a recovering mds has reconnected
1326 	 * with its clients. */
1327 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1328 	if (state < CEPH_MDS_STATE_RECONNECT) {
1329 		dout("send_renew_caps ignoring mds%d (%s)\n",
1330 		     session->s_mds, ceph_mds_state_name(state));
1331 		return 0;
1332 	}
1333 
1334 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1335 		ceph_mds_state_name(state));
1336 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1337 				 ++session->s_renew_seq);
1338 	if (!msg)
1339 		return -ENOMEM;
1340 	ceph_con_send(&session->s_con, msg);
1341 	return 0;
1342 }
1343 
1344 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1345 			     struct ceph_mds_session *session, u64 seq)
1346 {
1347 	struct ceph_msg *msg;
1348 
1349 	dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1350 	     session->s_mds, ceph_session_state_name(session->s_state), seq);
1351 	msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1352 	if (!msg)
1353 		return -ENOMEM;
1354 	ceph_con_send(&session->s_con, msg);
1355 	return 0;
1356 }
1357 
1358 
1359 /*
1360  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1361  *
1362  * Called under session->s_mutex
1363  */
1364 static void renewed_caps(struct ceph_mds_client *mdsc,
1365 			 struct ceph_mds_session *session, int is_renew)
1366 {
1367 	int was_stale;
1368 	int wake = 0;
1369 
1370 	spin_lock(&session->s_cap_lock);
1371 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1372 
1373 	session->s_cap_ttl = session->s_renew_requested +
1374 		mdsc->mdsmap->m_session_timeout*HZ;
1375 
1376 	if (was_stale) {
1377 		if (time_before(jiffies, session->s_cap_ttl)) {
1378 			pr_info("mds%d caps renewed\n", session->s_mds);
1379 			wake = 1;
1380 		} else {
1381 			pr_info("mds%d caps still stale\n", session->s_mds);
1382 		}
1383 	}
1384 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1385 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1386 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1387 	spin_unlock(&session->s_cap_lock);
1388 
1389 	if (wake)
1390 		wake_up_session_caps(session, 0);
1391 }
1392 
1393 /*
1394  * send a session close request
1395  */
1396 static int request_close_session(struct ceph_mds_client *mdsc,
1397 				 struct ceph_mds_session *session)
1398 {
1399 	struct ceph_msg *msg;
1400 
1401 	dout("request_close_session mds%d state %s seq %lld\n",
1402 	     session->s_mds, ceph_session_state_name(session->s_state),
1403 	     session->s_seq);
1404 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1405 	if (!msg)
1406 		return -ENOMEM;
1407 	ceph_con_send(&session->s_con, msg);
1408 	return 1;
1409 }
1410 
1411 /*
1412  * Called with s_mutex held.
1413  */
1414 static int __close_session(struct ceph_mds_client *mdsc,
1415 			 struct ceph_mds_session *session)
1416 {
1417 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1418 		return 0;
1419 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1420 	return request_close_session(mdsc, session);
1421 }
1422 
1423 /*
1424  * Trim old(er) caps.
1425  *
1426  * Because we can't cache an inode without one or more caps, we do
1427  * this indirectly: if a cap is unused, we prune its aliases, at which
1428  * point the inode will hopefully get dropped to.
1429  *
1430  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1431  * memory pressure from the MDS, though, so it needn't be perfect.
1432  */
1433 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1434 {
1435 	struct ceph_mds_session *session = arg;
1436 	struct ceph_inode_info *ci = ceph_inode(inode);
1437 	int used, wanted, oissued, mine;
1438 
1439 	if (session->s_trim_caps <= 0)
1440 		return -1;
1441 
1442 	spin_lock(&ci->i_ceph_lock);
1443 	mine = cap->issued | cap->implemented;
1444 	used = __ceph_caps_used(ci);
1445 	wanted = __ceph_caps_file_wanted(ci);
1446 	oissued = __ceph_caps_issued_other(ci, cap);
1447 
1448 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1449 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1450 	     ceph_cap_string(used), ceph_cap_string(wanted));
1451 	if (cap == ci->i_auth_cap) {
1452 		if (ci->i_dirty_caps || ci->i_flushing_caps ||
1453 		    !list_empty(&ci->i_cap_snaps))
1454 			goto out;
1455 		if ((used | wanted) & CEPH_CAP_ANY_WR)
1456 			goto out;
1457 	}
1458 	/* The inode has cached pages, but it's no longer used.
1459 	 * we can safely drop it */
1460 	if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1461 	    !(oissued & CEPH_CAP_FILE_CACHE)) {
1462 	  used = 0;
1463 	  oissued = 0;
1464 	}
1465 	if ((used | wanted) & ~oissued & mine)
1466 		goto out;   /* we need these caps */
1467 
1468 	session->s_trim_caps--;
1469 	if (oissued) {
1470 		/* we aren't the only cap.. just remove us */
1471 		__ceph_remove_cap(cap, true);
1472 	} else {
1473 		/* try dropping referring dentries */
1474 		spin_unlock(&ci->i_ceph_lock);
1475 		d_prune_aliases(inode);
1476 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1477 		     inode, cap, atomic_read(&inode->i_count));
1478 		return 0;
1479 	}
1480 
1481 out:
1482 	spin_unlock(&ci->i_ceph_lock);
1483 	return 0;
1484 }
1485 
1486 /*
1487  * Trim session cap count down to some max number.
1488  */
1489 static int trim_caps(struct ceph_mds_client *mdsc,
1490 		     struct ceph_mds_session *session,
1491 		     int max_caps)
1492 {
1493 	int trim_caps = session->s_nr_caps - max_caps;
1494 
1495 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1496 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1497 	if (trim_caps > 0) {
1498 		session->s_trim_caps = trim_caps;
1499 		iterate_session_caps(session, trim_caps_cb, session);
1500 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1501 		     session->s_mds, session->s_nr_caps, max_caps,
1502 			trim_caps - session->s_trim_caps);
1503 		session->s_trim_caps = 0;
1504 	}
1505 
1506 	ceph_send_cap_releases(mdsc, session);
1507 	return 0;
1508 }
1509 
1510 static int check_caps_flush(struct ceph_mds_client *mdsc,
1511 			    u64 want_flush_tid)
1512 {
1513 	int ret = 1;
1514 
1515 	spin_lock(&mdsc->cap_dirty_lock);
1516 	if (!list_empty(&mdsc->cap_flush_list)) {
1517 		struct ceph_cap_flush *cf =
1518 			list_first_entry(&mdsc->cap_flush_list,
1519 					 struct ceph_cap_flush, g_list);
1520 		if (cf->tid <= want_flush_tid) {
1521 			dout("check_caps_flush still flushing tid "
1522 			     "%llu <= %llu\n", cf->tid, want_flush_tid);
1523 			ret = 0;
1524 		}
1525 	}
1526 	spin_unlock(&mdsc->cap_dirty_lock);
1527 	return ret;
1528 }
1529 
1530 /*
1531  * flush all dirty inode data to disk.
1532  *
1533  * returns true if we've flushed through want_flush_tid
1534  */
1535 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1536 			    u64 want_flush_tid)
1537 {
1538 	dout("check_caps_flush want %llu\n", want_flush_tid);
1539 
1540 	wait_event(mdsc->cap_flushing_wq,
1541 		   check_caps_flush(mdsc, want_flush_tid));
1542 
1543 	dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1544 }
1545 
1546 /*
1547  * called under s_mutex
1548  */
1549 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1550 			    struct ceph_mds_session *session)
1551 {
1552 	struct ceph_msg *msg = NULL;
1553 	struct ceph_mds_cap_release *head;
1554 	struct ceph_mds_cap_item *item;
1555 	struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc;
1556 	struct ceph_cap *cap;
1557 	LIST_HEAD(tmp_list);
1558 	int num_cap_releases;
1559 	__le32	barrier, *cap_barrier;
1560 
1561 	down_read(&osdc->lock);
1562 	barrier = cpu_to_le32(osdc->epoch_barrier);
1563 	up_read(&osdc->lock);
1564 
1565 	spin_lock(&session->s_cap_lock);
1566 again:
1567 	list_splice_init(&session->s_cap_releases, &tmp_list);
1568 	num_cap_releases = session->s_num_cap_releases;
1569 	session->s_num_cap_releases = 0;
1570 	spin_unlock(&session->s_cap_lock);
1571 
1572 	while (!list_empty(&tmp_list)) {
1573 		if (!msg) {
1574 			msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1575 					PAGE_SIZE, GFP_NOFS, false);
1576 			if (!msg)
1577 				goto out_err;
1578 			head = msg->front.iov_base;
1579 			head->num = cpu_to_le32(0);
1580 			msg->front.iov_len = sizeof(*head);
1581 
1582 			msg->hdr.version = cpu_to_le16(2);
1583 			msg->hdr.compat_version = cpu_to_le16(1);
1584 		}
1585 
1586 		cap = list_first_entry(&tmp_list, struct ceph_cap,
1587 					session_caps);
1588 		list_del(&cap->session_caps);
1589 		num_cap_releases--;
1590 
1591 		head = msg->front.iov_base;
1592 		le32_add_cpu(&head->num, 1);
1593 		item = msg->front.iov_base + msg->front.iov_len;
1594 		item->ino = cpu_to_le64(cap->cap_ino);
1595 		item->cap_id = cpu_to_le64(cap->cap_id);
1596 		item->migrate_seq = cpu_to_le32(cap->mseq);
1597 		item->seq = cpu_to_le32(cap->issue_seq);
1598 		msg->front.iov_len += sizeof(*item);
1599 
1600 		ceph_put_cap(mdsc, cap);
1601 
1602 		if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1603 			// Append cap_barrier field
1604 			cap_barrier = msg->front.iov_base + msg->front.iov_len;
1605 			*cap_barrier = barrier;
1606 			msg->front.iov_len += sizeof(*cap_barrier);
1607 
1608 			msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1609 			dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1610 			ceph_con_send(&session->s_con, msg);
1611 			msg = NULL;
1612 		}
1613 	}
1614 
1615 	BUG_ON(num_cap_releases != 0);
1616 
1617 	spin_lock(&session->s_cap_lock);
1618 	if (!list_empty(&session->s_cap_releases))
1619 		goto again;
1620 	spin_unlock(&session->s_cap_lock);
1621 
1622 	if (msg) {
1623 		// Append cap_barrier field
1624 		cap_barrier = msg->front.iov_base + msg->front.iov_len;
1625 		*cap_barrier = barrier;
1626 		msg->front.iov_len += sizeof(*cap_barrier);
1627 
1628 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1629 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1630 		ceph_con_send(&session->s_con, msg);
1631 	}
1632 	return;
1633 out_err:
1634 	pr_err("send_cap_releases mds%d, failed to allocate message\n",
1635 		session->s_mds);
1636 	spin_lock(&session->s_cap_lock);
1637 	list_splice(&tmp_list, &session->s_cap_releases);
1638 	session->s_num_cap_releases += num_cap_releases;
1639 	spin_unlock(&session->s_cap_lock);
1640 }
1641 
1642 /*
1643  * requests
1644  */
1645 
1646 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1647 				    struct inode *dir)
1648 {
1649 	struct ceph_inode_info *ci = ceph_inode(dir);
1650 	struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1651 	struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1652 	size_t size = sizeof(struct ceph_mds_reply_dir_entry);
1653 	int order, num_entries;
1654 
1655 	spin_lock(&ci->i_ceph_lock);
1656 	num_entries = ci->i_files + ci->i_subdirs;
1657 	spin_unlock(&ci->i_ceph_lock);
1658 	num_entries = max(num_entries, 1);
1659 	num_entries = min(num_entries, opt->max_readdir);
1660 
1661 	order = get_order(size * num_entries);
1662 	while (order >= 0) {
1663 		rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
1664 							     __GFP_NOWARN,
1665 							     order);
1666 		if (rinfo->dir_entries)
1667 			break;
1668 		order--;
1669 	}
1670 	if (!rinfo->dir_entries)
1671 		return -ENOMEM;
1672 
1673 	num_entries = (PAGE_SIZE << order) / size;
1674 	num_entries = min(num_entries, opt->max_readdir);
1675 
1676 	rinfo->dir_buf_size = PAGE_SIZE << order;
1677 	req->r_num_caps = num_entries + 1;
1678 	req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1679 	req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1680 	return 0;
1681 }
1682 
1683 /*
1684  * Create an mds request.
1685  */
1686 struct ceph_mds_request *
1687 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1688 {
1689 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1690 	struct timespec ts;
1691 
1692 	if (!req)
1693 		return ERR_PTR(-ENOMEM);
1694 
1695 	mutex_init(&req->r_fill_mutex);
1696 	req->r_mdsc = mdsc;
1697 	req->r_started = jiffies;
1698 	req->r_resend_mds = -1;
1699 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1700 	INIT_LIST_HEAD(&req->r_unsafe_target_item);
1701 	req->r_fmode = -1;
1702 	kref_init(&req->r_kref);
1703 	RB_CLEAR_NODE(&req->r_node);
1704 	INIT_LIST_HEAD(&req->r_wait);
1705 	init_completion(&req->r_completion);
1706 	init_completion(&req->r_safe_completion);
1707 	INIT_LIST_HEAD(&req->r_unsafe_item);
1708 
1709 	ktime_get_real_ts(&ts);
1710 	req->r_stamp = timespec_trunc(ts, mdsc->fsc->sb->s_time_gran);
1711 
1712 	req->r_op = op;
1713 	req->r_direct_mode = mode;
1714 	return req;
1715 }
1716 
1717 /*
1718  * return oldest (lowest) request, tid in request tree, 0 if none.
1719  *
1720  * called under mdsc->mutex.
1721  */
1722 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1723 {
1724 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1725 		return NULL;
1726 	return rb_entry(rb_first(&mdsc->request_tree),
1727 			struct ceph_mds_request, r_node);
1728 }
1729 
1730 static inline  u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1731 {
1732 	return mdsc->oldest_tid;
1733 }
1734 
1735 /*
1736  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1737  * on build_path_from_dentry in fs/cifs/dir.c.
1738  *
1739  * If @stop_on_nosnap, generate path relative to the first non-snapped
1740  * inode.
1741  *
1742  * Encode hidden .snap dirs as a double /, i.e.
1743  *   foo/.snap/bar -> foo//bar
1744  */
1745 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1746 			   int stop_on_nosnap)
1747 {
1748 	struct dentry *temp;
1749 	char *path;
1750 	int len, pos;
1751 	unsigned seq;
1752 
1753 	if (dentry == NULL)
1754 		return ERR_PTR(-EINVAL);
1755 
1756 retry:
1757 	len = 0;
1758 	seq = read_seqbegin(&rename_lock);
1759 	rcu_read_lock();
1760 	for (temp = dentry; !IS_ROOT(temp);) {
1761 		struct inode *inode = d_inode(temp);
1762 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1763 			len++;  /* slash only */
1764 		else if (stop_on_nosnap && inode &&
1765 			 ceph_snap(inode) == CEPH_NOSNAP)
1766 			break;
1767 		else
1768 			len += 1 + temp->d_name.len;
1769 		temp = temp->d_parent;
1770 	}
1771 	rcu_read_unlock();
1772 	if (len)
1773 		len--;  /* no leading '/' */
1774 
1775 	path = kmalloc(len+1, GFP_NOFS);
1776 	if (path == NULL)
1777 		return ERR_PTR(-ENOMEM);
1778 	pos = len;
1779 	path[pos] = 0;	/* trailing null */
1780 	rcu_read_lock();
1781 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1782 		struct inode *inode;
1783 
1784 		spin_lock(&temp->d_lock);
1785 		inode = d_inode(temp);
1786 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1787 			dout("build_path path+%d: %p SNAPDIR\n",
1788 			     pos, temp);
1789 		} else if (stop_on_nosnap && inode &&
1790 			   ceph_snap(inode) == CEPH_NOSNAP) {
1791 			spin_unlock(&temp->d_lock);
1792 			break;
1793 		} else {
1794 			pos -= temp->d_name.len;
1795 			if (pos < 0) {
1796 				spin_unlock(&temp->d_lock);
1797 				break;
1798 			}
1799 			strncpy(path + pos, temp->d_name.name,
1800 				temp->d_name.len);
1801 		}
1802 		spin_unlock(&temp->d_lock);
1803 		if (pos)
1804 			path[--pos] = '/';
1805 		temp = temp->d_parent;
1806 	}
1807 	rcu_read_unlock();
1808 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1809 		pr_err("build_path did not end path lookup where "
1810 		       "expected, namelen is %d, pos is %d\n", len, pos);
1811 		/* presumably this is only possible if racing with a
1812 		   rename of one of the parent directories (we can not
1813 		   lock the dentries above us to prevent this, but
1814 		   retrying should be harmless) */
1815 		kfree(path);
1816 		goto retry;
1817 	}
1818 
1819 	*base = ceph_ino(d_inode(temp));
1820 	*plen = len;
1821 	dout("build_path on %p %d built %llx '%.*s'\n",
1822 	     dentry, d_count(dentry), *base, len, path);
1823 	return path;
1824 }
1825 
1826 static int build_dentry_path(struct dentry *dentry, struct inode *dir,
1827 			     const char **ppath, int *ppathlen, u64 *pino,
1828 			     int *pfreepath)
1829 {
1830 	char *path;
1831 
1832 	rcu_read_lock();
1833 	if (!dir)
1834 		dir = d_inode_rcu(dentry->d_parent);
1835 	if (dir && ceph_snap(dir) == CEPH_NOSNAP) {
1836 		*pino = ceph_ino(dir);
1837 		rcu_read_unlock();
1838 		*ppath = dentry->d_name.name;
1839 		*ppathlen = dentry->d_name.len;
1840 		return 0;
1841 	}
1842 	rcu_read_unlock();
1843 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1844 	if (IS_ERR(path))
1845 		return PTR_ERR(path);
1846 	*ppath = path;
1847 	*pfreepath = 1;
1848 	return 0;
1849 }
1850 
1851 static int build_inode_path(struct inode *inode,
1852 			    const char **ppath, int *ppathlen, u64 *pino,
1853 			    int *pfreepath)
1854 {
1855 	struct dentry *dentry;
1856 	char *path;
1857 
1858 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1859 		*pino = ceph_ino(inode);
1860 		*ppathlen = 0;
1861 		return 0;
1862 	}
1863 	dentry = d_find_alias(inode);
1864 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1865 	dput(dentry);
1866 	if (IS_ERR(path))
1867 		return PTR_ERR(path);
1868 	*ppath = path;
1869 	*pfreepath = 1;
1870 	return 0;
1871 }
1872 
1873 /*
1874  * request arguments may be specified via an inode *, a dentry *, or
1875  * an explicit ino+path.
1876  */
1877 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1878 				  struct inode *rdiri, const char *rpath,
1879 				  u64 rino, const char **ppath, int *pathlen,
1880 				  u64 *ino, int *freepath)
1881 {
1882 	int r = 0;
1883 
1884 	if (rinode) {
1885 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1886 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1887 		     ceph_snap(rinode));
1888 	} else if (rdentry) {
1889 		r = build_dentry_path(rdentry, rdiri, ppath, pathlen, ino,
1890 					freepath);
1891 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1892 		     *ppath);
1893 	} else if (rpath || rino) {
1894 		*ino = rino;
1895 		*ppath = rpath;
1896 		*pathlen = rpath ? strlen(rpath) : 0;
1897 		dout(" path %.*s\n", *pathlen, rpath);
1898 	}
1899 
1900 	return r;
1901 }
1902 
1903 /*
1904  * called under mdsc->mutex
1905  */
1906 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1907 					       struct ceph_mds_request *req,
1908 					       int mds, bool drop_cap_releases)
1909 {
1910 	struct ceph_msg *msg;
1911 	struct ceph_mds_request_head *head;
1912 	const char *path1 = NULL;
1913 	const char *path2 = NULL;
1914 	u64 ino1 = 0, ino2 = 0;
1915 	int pathlen1 = 0, pathlen2 = 0;
1916 	int freepath1 = 0, freepath2 = 0;
1917 	int len;
1918 	u16 releases;
1919 	void *p, *end;
1920 	int ret;
1921 
1922 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1923 			      req->r_parent, req->r_path1, req->r_ino1.ino,
1924 			      &path1, &pathlen1, &ino1, &freepath1);
1925 	if (ret < 0) {
1926 		msg = ERR_PTR(ret);
1927 		goto out;
1928 	}
1929 
1930 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1931 			      req->r_old_dentry_dir,
1932 			      req->r_path2, req->r_ino2.ino,
1933 			      &path2, &pathlen2, &ino2, &freepath2);
1934 	if (ret < 0) {
1935 		msg = ERR_PTR(ret);
1936 		goto out_free1;
1937 	}
1938 
1939 	len = sizeof(*head) +
1940 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1941 		sizeof(struct ceph_timespec);
1942 
1943 	/* calculate (max) length for cap releases */
1944 	len += sizeof(struct ceph_mds_request_release) *
1945 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1946 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1947 	if (req->r_dentry_drop)
1948 		len += req->r_dentry->d_name.len;
1949 	if (req->r_old_dentry_drop)
1950 		len += req->r_old_dentry->d_name.len;
1951 
1952 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1953 	if (!msg) {
1954 		msg = ERR_PTR(-ENOMEM);
1955 		goto out_free2;
1956 	}
1957 
1958 	msg->hdr.version = cpu_to_le16(2);
1959 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1960 
1961 	head = msg->front.iov_base;
1962 	p = msg->front.iov_base + sizeof(*head);
1963 	end = msg->front.iov_base + msg->front.iov_len;
1964 
1965 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1966 	head->op = cpu_to_le32(req->r_op);
1967 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1968 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1969 	head->args = req->r_args;
1970 
1971 	ceph_encode_filepath(&p, end, ino1, path1);
1972 	ceph_encode_filepath(&p, end, ino2, path2);
1973 
1974 	/* make note of release offset, in case we need to replay */
1975 	req->r_request_release_offset = p - msg->front.iov_base;
1976 
1977 	/* cap releases */
1978 	releases = 0;
1979 	if (req->r_inode_drop)
1980 		releases += ceph_encode_inode_release(&p,
1981 		      req->r_inode ? req->r_inode : d_inode(req->r_dentry),
1982 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1983 	if (req->r_dentry_drop)
1984 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1985 				req->r_parent, mds, req->r_dentry_drop,
1986 				req->r_dentry_unless);
1987 	if (req->r_old_dentry_drop)
1988 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1989 				req->r_old_dentry_dir, mds,
1990 				req->r_old_dentry_drop,
1991 				req->r_old_dentry_unless);
1992 	if (req->r_old_inode_drop)
1993 		releases += ceph_encode_inode_release(&p,
1994 		      d_inode(req->r_old_dentry),
1995 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1996 
1997 	if (drop_cap_releases) {
1998 		releases = 0;
1999 		p = msg->front.iov_base + req->r_request_release_offset;
2000 	}
2001 
2002 	head->num_releases = cpu_to_le16(releases);
2003 
2004 	/* time stamp */
2005 	{
2006 		struct ceph_timespec ts;
2007 		ceph_encode_timespec(&ts, &req->r_stamp);
2008 		ceph_encode_copy(&p, &ts, sizeof(ts));
2009 	}
2010 
2011 	BUG_ON(p > end);
2012 	msg->front.iov_len = p - msg->front.iov_base;
2013 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2014 
2015 	if (req->r_pagelist) {
2016 		struct ceph_pagelist *pagelist = req->r_pagelist;
2017 		refcount_inc(&pagelist->refcnt);
2018 		ceph_msg_data_add_pagelist(msg, pagelist);
2019 		msg->hdr.data_len = cpu_to_le32(pagelist->length);
2020 	} else {
2021 		msg->hdr.data_len = 0;
2022 	}
2023 
2024 	msg->hdr.data_off = cpu_to_le16(0);
2025 
2026 out_free2:
2027 	if (freepath2)
2028 		kfree((char *)path2);
2029 out_free1:
2030 	if (freepath1)
2031 		kfree((char *)path1);
2032 out:
2033 	return msg;
2034 }
2035 
2036 /*
2037  * called under mdsc->mutex if error, under no mutex if
2038  * success.
2039  */
2040 static void complete_request(struct ceph_mds_client *mdsc,
2041 			     struct ceph_mds_request *req)
2042 {
2043 	if (req->r_callback)
2044 		req->r_callback(mdsc, req);
2045 	else
2046 		complete_all(&req->r_completion);
2047 }
2048 
2049 /*
2050  * called under mdsc->mutex
2051  */
2052 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2053 				  struct ceph_mds_request *req,
2054 				  int mds, bool drop_cap_releases)
2055 {
2056 	struct ceph_mds_request_head *rhead;
2057 	struct ceph_msg *msg;
2058 	int flags = 0;
2059 
2060 	req->r_attempts++;
2061 	if (req->r_inode) {
2062 		struct ceph_cap *cap =
2063 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2064 
2065 		if (cap)
2066 			req->r_sent_on_mseq = cap->mseq;
2067 		else
2068 			req->r_sent_on_mseq = -1;
2069 	}
2070 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2071 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2072 
2073 	if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2074 		void *p;
2075 		/*
2076 		 * Replay.  Do not regenerate message (and rebuild
2077 		 * paths, etc.); just use the original message.
2078 		 * Rebuilding paths will break for renames because
2079 		 * d_move mangles the src name.
2080 		 */
2081 		msg = req->r_request;
2082 		rhead = msg->front.iov_base;
2083 
2084 		flags = le32_to_cpu(rhead->flags);
2085 		flags |= CEPH_MDS_FLAG_REPLAY;
2086 		rhead->flags = cpu_to_le32(flags);
2087 
2088 		if (req->r_target_inode)
2089 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2090 
2091 		rhead->num_retry = req->r_attempts - 1;
2092 
2093 		/* remove cap/dentry releases from message */
2094 		rhead->num_releases = 0;
2095 
2096 		/* time stamp */
2097 		p = msg->front.iov_base + req->r_request_release_offset;
2098 		{
2099 			struct ceph_timespec ts;
2100 			ceph_encode_timespec(&ts, &req->r_stamp);
2101 			ceph_encode_copy(&p, &ts, sizeof(ts));
2102 		}
2103 
2104 		msg->front.iov_len = p - msg->front.iov_base;
2105 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2106 		return 0;
2107 	}
2108 
2109 	if (req->r_request) {
2110 		ceph_msg_put(req->r_request);
2111 		req->r_request = NULL;
2112 	}
2113 	msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2114 	if (IS_ERR(msg)) {
2115 		req->r_err = PTR_ERR(msg);
2116 		return PTR_ERR(msg);
2117 	}
2118 	req->r_request = msg;
2119 
2120 	rhead = msg->front.iov_base;
2121 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2122 	if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2123 		flags |= CEPH_MDS_FLAG_REPLAY;
2124 	if (req->r_parent)
2125 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2126 	rhead->flags = cpu_to_le32(flags);
2127 	rhead->num_fwd = req->r_num_fwd;
2128 	rhead->num_retry = req->r_attempts - 1;
2129 	rhead->ino = 0;
2130 
2131 	dout(" r_parent = %p\n", req->r_parent);
2132 	return 0;
2133 }
2134 
2135 /*
2136  * send request, or put it on the appropriate wait list.
2137  */
2138 static int __do_request(struct ceph_mds_client *mdsc,
2139 			struct ceph_mds_request *req)
2140 {
2141 	struct ceph_mds_session *session = NULL;
2142 	int mds = -1;
2143 	int err = 0;
2144 
2145 	if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
2146 		if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags))
2147 			__unregister_request(mdsc, req);
2148 		goto out;
2149 	}
2150 
2151 	if (req->r_timeout &&
2152 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2153 		dout("do_request timed out\n");
2154 		err = -EIO;
2155 		goto finish;
2156 	}
2157 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2158 		dout("do_request forced umount\n");
2159 		err = -EIO;
2160 		goto finish;
2161 	}
2162 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) {
2163 		if (mdsc->mdsmap_err) {
2164 			err = mdsc->mdsmap_err;
2165 			dout("do_request mdsmap err %d\n", err);
2166 			goto finish;
2167 		}
2168 		if (mdsc->mdsmap->m_epoch == 0) {
2169 			dout("do_request no mdsmap, waiting for map\n");
2170 			list_add(&req->r_wait, &mdsc->waiting_for_map);
2171 			goto finish;
2172 		}
2173 		if (!(mdsc->fsc->mount_options->flags &
2174 		      CEPH_MOUNT_OPT_MOUNTWAIT) &&
2175 		    !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) {
2176 			err = -ENOENT;
2177 			pr_info("probably no mds server is up\n");
2178 			goto finish;
2179 		}
2180 	}
2181 
2182 	put_request_session(req);
2183 
2184 	mds = __choose_mds(mdsc, req);
2185 	if (mds < 0 ||
2186 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2187 		dout("do_request no mds or not active, waiting for map\n");
2188 		list_add(&req->r_wait, &mdsc->waiting_for_map);
2189 		goto out;
2190 	}
2191 
2192 	/* get, open session */
2193 	session = __ceph_lookup_mds_session(mdsc, mds);
2194 	if (!session) {
2195 		session = register_session(mdsc, mds);
2196 		if (IS_ERR(session)) {
2197 			err = PTR_ERR(session);
2198 			goto finish;
2199 		}
2200 	}
2201 	req->r_session = get_session(session);
2202 
2203 	dout("do_request mds%d session %p state %s\n", mds, session,
2204 	     ceph_session_state_name(session->s_state));
2205 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2206 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
2207 		if (session->s_state == CEPH_MDS_SESSION_REJECTED) {
2208 			err = -EACCES;
2209 			goto out_session;
2210 		}
2211 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
2212 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
2213 			__open_session(mdsc, session);
2214 		list_add(&req->r_wait, &session->s_waiting);
2215 		goto out_session;
2216 	}
2217 
2218 	/* send request */
2219 	req->r_resend_mds = -1;   /* forget any previous mds hint */
2220 
2221 	if (req->r_request_started == 0)   /* note request start time */
2222 		req->r_request_started = jiffies;
2223 
2224 	err = __prepare_send_request(mdsc, req, mds, false);
2225 	if (!err) {
2226 		ceph_msg_get(req->r_request);
2227 		ceph_con_send(&session->s_con, req->r_request);
2228 	}
2229 
2230 out_session:
2231 	ceph_put_mds_session(session);
2232 finish:
2233 	if (err) {
2234 		dout("__do_request early error %d\n", err);
2235 		req->r_err = err;
2236 		complete_request(mdsc, req);
2237 		__unregister_request(mdsc, req);
2238 	}
2239 out:
2240 	return err;
2241 }
2242 
2243 /*
2244  * called under mdsc->mutex
2245  */
2246 static void __wake_requests(struct ceph_mds_client *mdsc,
2247 			    struct list_head *head)
2248 {
2249 	struct ceph_mds_request *req;
2250 	LIST_HEAD(tmp_list);
2251 
2252 	list_splice_init(head, &tmp_list);
2253 
2254 	while (!list_empty(&tmp_list)) {
2255 		req = list_entry(tmp_list.next,
2256 				 struct ceph_mds_request, r_wait);
2257 		list_del_init(&req->r_wait);
2258 		dout(" wake request %p tid %llu\n", req, req->r_tid);
2259 		__do_request(mdsc, req);
2260 	}
2261 }
2262 
2263 /*
2264  * Wake up threads with requests pending for @mds, so that they can
2265  * resubmit their requests to a possibly different mds.
2266  */
2267 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2268 {
2269 	struct ceph_mds_request *req;
2270 	struct rb_node *p = rb_first(&mdsc->request_tree);
2271 
2272 	dout("kick_requests mds%d\n", mds);
2273 	while (p) {
2274 		req = rb_entry(p, struct ceph_mds_request, r_node);
2275 		p = rb_next(p);
2276 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2277 			continue;
2278 		if (req->r_attempts > 0)
2279 			continue; /* only new requests */
2280 		if (req->r_session &&
2281 		    req->r_session->s_mds == mds) {
2282 			dout(" kicking tid %llu\n", req->r_tid);
2283 			list_del_init(&req->r_wait);
2284 			__do_request(mdsc, req);
2285 		}
2286 	}
2287 }
2288 
2289 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2290 			      struct ceph_mds_request *req)
2291 {
2292 	dout("submit_request on %p\n", req);
2293 	mutex_lock(&mdsc->mutex);
2294 	__register_request(mdsc, req, NULL);
2295 	__do_request(mdsc, req);
2296 	mutex_unlock(&mdsc->mutex);
2297 }
2298 
2299 /*
2300  * Synchrously perform an mds request.  Take care of all of the
2301  * session setup, forwarding, retry details.
2302  */
2303 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2304 			 struct inode *dir,
2305 			 struct ceph_mds_request *req)
2306 {
2307 	int err;
2308 
2309 	dout("do_request on %p\n", req);
2310 
2311 	/* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */
2312 	if (req->r_inode)
2313 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2314 	if (req->r_parent)
2315 		ceph_get_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
2316 	if (req->r_old_dentry_dir)
2317 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2318 				  CEPH_CAP_PIN);
2319 
2320 	/* issue */
2321 	mutex_lock(&mdsc->mutex);
2322 	__register_request(mdsc, req, dir);
2323 	__do_request(mdsc, req);
2324 
2325 	if (req->r_err) {
2326 		err = req->r_err;
2327 		goto out;
2328 	}
2329 
2330 	/* wait */
2331 	mutex_unlock(&mdsc->mutex);
2332 	dout("do_request waiting\n");
2333 	if (!req->r_timeout && req->r_wait_for_completion) {
2334 		err = req->r_wait_for_completion(mdsc, req);
2335 	} else {
2336 		long timeleft = wait_for_completion_killable_timeout(
2337 					&req->r_completion,
2338 					ceph_timeout_jiffies(req->r_timeout));
2339 		if (timeleft > 0)
2340 			err = 0;
2341 		else if (!timeleft)
2342 			err = -EIO;  /* timed out */
2343 		else
2344 			err = timeleft;  /* killed */
2345 	}
2346 	dout("do_request waited, got %d\n", err);
2347 	mutex_lock(&mdsc->mutex);
2348 
2349 	/* only abort if we didn't race with a real reply */
2350 	if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
2351 		err = le32_to_cpu(req->r_reply_info.head->result);
2352 	} else if (err < 0) {
2353 		dout("aborted request %lld with %d\n", req->r_tid, err);
2354 
2355 		/*
2356 		 * ensure we aren't running concurrently with
2357 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2358 		 * rely on locks (dir mutex) held by our caller.
2359 		 */
2360 		mutex_lock(&req->r_fill_mutex);
2361 		req->r_err = err;
2362 		set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
2363 		mutex_unlock(&req->r_fill_mutex);
2364 
2365 		if (req->r_parent &&
2366 		    (req->r_op & CEPH_MDS_OP_WRITE))
2367 			ceph_invalidate_dir_request(req);
2368 	} else {
2369 		err = req->r_err;
2370 	}
2371 
2372 out:
2373 	mutex_unlock(&mdsc->mutex);
2374 	dout("do_request %p done, result %d\n", req, err);
2375 	return err;
2376 }
2377 
2378 /*
2379  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2380  * namespace request.
2381  */
2382 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2383 {
2384 	struct inode *inode = req->r_parent;
2385 
2386 	dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2387 
2388 	ceph_dir_clear_complete(inode);
2389 	if (req->r_dentry)
2390 		ceph_invalidate_dentry_lease(req->r_dentry);
2391 	if (req->r_old_dentry)
2392 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2393 }
2394 
2395 /*
2396  * Handle mds reply.
2397  *
2398  * We take the session mutex and parse and process the reply immediately.
2399  * This preserves the logical ordering of replies, capabilities, etc., sent
2400  * by the MDS as they are applied to our local cache.
2401  */
2402 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2403 {
2404 	struct ceph_mds_client *mdsc = session->s_mdsc;
2405 	struct ceph_mds_request *req;
2406 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2407 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2408 	struct ceph_snap_realm *realm;
2409 	u64 tid;
2410 	int err, result;
2411 	int mds = session->s_mds;
2412 
2413 	if (msg->front.iov_len < sizeof(*head)) {
2414 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2415 		ceph_msg_dump(msg);
2416 		return;
2417 	}
2418 
2419 	/* get request, session */
2420 	tid = le64_to_cpu(msg->hdr.tid);
2421 	mutex_lock(&mdsc->mutex);
2422 	req = lookup_get_request(mdsc, tid);
2423 	if (!req) {
2424 		dout("handle_reply on unknown tid %llu\n", tid);
2425 		mutex_unlock(&mdsc->mutex);
2426 		return;
2427 	}
2428 	dout("handle_reply %p\n", req);
2429 
2430 	/* correct session? */
2431 	if (req->r_session != session) {
2432 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2433 		       " not mds%d\n", tid, session->s_mds,
2434 		       req->r_session ? req->r_session->s_mds : -1);
2435 		mutex_unlock(&mdsc->mutex);
2436 		goto out;
2437 	}
2438 
2439 	/* dup? */
2440 	if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) ||
2441 	    (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) {
2442 		pr_warn("got a dup %s reply on %llu from mds%d\n",
2443 			   head->safe ? "safe" : "unsafe", tid, mds);
2444 		mutex_unlock(&mdsc->mutex);
2445 		goto out;
2446 	}
2447 	if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) {
2448 		pr_warn("got unsafe after safe on %llu from mds%d\n",
2449 			   tid, mds);
2450 		mutex_unlock(&mdsc->mutex);
2451 		goto out;
2452 	}
2453 
2454 	result = le32_to_cpu(head->result);
2455 
2456 	/*
2457 	 * Handle an ESTALE
2458 	 * if we're not talking to the authority, send to them
2459 	 * if the authority has changed while we weren't looking,
2460 	 * send to new authority
2461 	 * Otherwise we just have to return an ESTALE
2462 	 */
2463 	if (result == -ESTALE) {
2464 		dout("got ESTALE on request %llu", req->r_tid);
2465 		req->r_resend_mds = -1;
2466 		if (req->r_direct_mode != USE_AUTH_MDS) {
2467 			dout("not using auth, setting for that now");
2468 			req->r_direct_mode = USE_AUTH_MDS;
2469 			__do_request(mdsc, req);
2470 			mutex_unlock(&mdsc->mutex);
2471 			goto out;
2472 		} else  {
2473 			int mds = __choose_mds(mdsc, req);
2474 			if (mds >= 0 && mds != req->r_session->s_mds) {
2475 				dout("but auth changed, so resending");
2476 				__do_request(mdsc, req);
2477 				mutex_unlock(&mdsc->mutex);
2478 				goto out;
2479 			}
2480 		}
2481 		dout("have to return ESTALE on request %llu", req->r_tid);
2482 	}
2483 
2484 
2485 	if (head->safe) {
2486 		set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags);
2487 		__unregister_request(mdsc, req);
2488 
2489 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2490 			/*
2491 			 * We already handled the unsafe response, now do the
2492 			 * cleanup.  No need to examine the response; the MDS
2493 			 * doesn't include any result info in the safe
2494 			 * response.  And even if it did, there is nothing
2495 			 * useful we could do with a revised return value.
2496 			 */
2497 			dout("got safe reply %llu, mds%d\n", tid, mds);
2498 
2499 			/* last unsafe request during umount? */
2500 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2501 				complete_all(&mdsc->safe_umount_waiters);
2502 			mutex_unlock(&mdsc->mutex);
2503 			goto out;
2504 		}
2505 	} else {
2506 		set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags);
2507 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2508 		if (req->r_unsafe_dir) {
2509 			struct ceph_inode_info *ci =
2510 					ceph_inode(req->r_unsafe_dir);
2511 			spin_lock(&ci->i_unsafe_lock);
2512 			list_add_tail(&req->r_unsafe_dir_item,
2513 				      &ci->i_unsafe_dirops);
2514 			spin_unlock(&ci->i_unsafe_lock);
2515 		}
2516 	}
2517 
2518 	dout("handle_reply tid %lld result %d\n", tid, result);
2519 	rinfo = &req->r_reply_info;
2520 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2521 	mutex_unlock(&mdsc->mutex);
2522 
2523 	mutex_lock(&session->s_mutex);
2524 	if (err < 0) {
2525 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2526 		ceph_msg_dump(msg);
2527 		goto out_err;
2528 	}
2529 
2530 	/* snap trace */
2531 	realm = NULL;
2532 	if (rinfo->snapblob_len) {
2533 		down_write(&mdsc->snap_rwsem);
2534 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2535 				rinfo->snapblob + rinfo->snapblob_len,
2536 				le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2537 				&realm);
2538 		downgrade_write(&mdsc->snap_rwsem);
2539 	} else {
2540 		down_read(&mdsc->snap_rwsem);
2541 	}
2542 
2543 	/* insert trace into our cache */
2544 	mutex_lock(&req->r_fill_mutex);
2545 	current->journal_info = req;
2546 	err = ceph_fill_trace(mdsc->fsc->sb, req);
2547 	if (err == 0) {
2548 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2549 				    req->r_op == CEPH_MDS_OP_LSSNAP))
2550 			ceph_readdir_prepopulate(req, req->r_session);
2551 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2552 	}
2553 	current->journal_info = NULL;
2554 	mutex_unlock(&req->r_fill_mutex);
2555 
2556 	up_read(&mdsc->snap_rwsem);
2557 	if (realm)
2558 		ceph_put_snap_realm(mdsc, realm);
2559 
2560 	if (err == 0 && req->r_target_inode &&
2561 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2562 		struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2563 		spin_lock(&ci->i_unsafe_lock);
2564 		list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2565 		spin_unlock(&ci->i_unsafe_lock);
2566 	}
2567 out_err:
2568 	mutex_lock(&mdsc->mutex);
2569 	if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
2570 		if (err) {
2571 			req->r_err = err;
2572 		} else {
2573 			req->r_reply =  ceph_msg_get(msg);
2574 			set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags);
2575 		}
2576 	} else {
2577 		dout("reply arrived after request %lld was aborted\n", tid);
2578 	}
2579 	mutex_unlock(&mdsc->mutex);
2580 
2581 	mutex_unlock(&session->s_mutex);
2582 
2583 	/* kick calling process */
2584 	complete_request(mdsc, req);
2585 out:
2586 	ceph_mdsc_put_request(req);
2587 	return;
2588 }
2589 
2590 
2591 
2592 /*
2593  * handle mds notification that our request has been forwarded.
2594  */
2595 static void handle_forward(struct ceph_mds_client *mdsc,
2596 			   struct ceph_mds_session *session,
2597 			   struct ceph_msg *msg)
2598 {
2599 	struct ceph_mds_request *req;
2600 	u64 tid = le64_to_cpu(msg->hdr.tid);
2601 	u32 next_mds;
2602 	u32 fwd_seq;
2603 	int err = -EINVAL;
2604 	void *p = msg->front.iov_base;
2605 	void *end = p + msg->front.iov_len;
2606 
2607 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2608 	next_mds = ceph_decode_32(&p);
2609 	fwd_seq = ceph_decode_32(&p);
2610 
2611 	mutex_lock(&mdsc->mutex);
2612 	req = lookup_get_request(mdsc, tid);
2613 	if (!req) {
2614 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2615 		goto out;  /* dup reply? */
2616 	}
2617 
2618 	if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
2619 		dout("forward tid %llu aborted, unregistering\n", tid);
2620 		__unregister_request(mdsc, req);
2621 	} else if (fwd_seq <= req->r_num_fwd) {
2622 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2623 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2624 	} else {
2625 		/* resend. forward race not possible; mds would drop */
2626 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2627 		BUG_ON(req->r_err);
2628 		BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags));
2629 		req->r_attempts = 0;
2630 		req->r_num_fwd = fwd_seq;
2631 		req->r_resend_mds = next_mds;
2632 		put_request_session(req);
2633 		__do_request(mdsc, req);
2634 	}
2635 	ceph_mdsc_put_request(req);
2636 out:
2637 	mutex_unlock(&mdsc->mutex);
2638 	return;
2639 
2640 bad:
2641 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2642 }
2643 
2644 /*
2645  * handle a mds session control message
2646  */
2647 static void handle_session(struct ceph_mds_session *session,
2648 			   struct ceph_msg *msg)
2649 {
2650 	struct ceph_mds_client *mdsc = session->s_mdsc;
2651 	u32 op;
2652 	u64 seq;
2653 	int mds = session->s_mds;
2654 	struct ceph_mds_session_head *h = msg->front.iov_base;
2655 	int wake = 0;
2656 
2657 	/* decode */
2658 	if (msg->front.iov_len != sizeof(*h))
2659 		goto bad;
2660 	op = le32_to_cpu(h->op);
2661 	seq = le64_to_cpu(h->seq);
2662 
2663 	mutex_lock(&mdsc->mutex);
2664 	if (op == CEPH_SESSION_CLOSE) {
2665 		get_session(session);
2666 		__unregister_session(mdsc, session);
2667 	}
2668 	/* FIXME: this ttl calculation is generous */
2669 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2670 	mutex_unlock(&mdsc->mutex);
2671 
2672 	mutex_lock(&session->s_mutex);
2673 
2674 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2675 	     mds, ceph_session_op_name(op), session,
2676 	     ceph_session_state_name(session->s_state), seq);
2677 
2678 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2679 		session->s_state = CEPH_MDS_SESSION_OPEN;
2680 		pr_info("mds%d came back\n", session->s_mds);
2681 	}
2682 
2683 	switch (op) {
2684 	case CEPH_SESSION_OPEN:
2685 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2686 			pr_info("mds%d reconnect success\n", session->s_mds);
2687 		session->s_state = CEPH_MDS_SESSION_OPEN;
2688 		renewed_caps(mdsc, session, 0);
2689 		wake = 1;
2690 		if (mdsc->stopping)
2691 			__close_session(mdsc, session);
2692 		break;
2693 
2694 	case CEPH_SESSION_RENEWCAPS:
2695 		if (session->s_renew_seq == seq)
2696 			renewed_caps(mdsc, session, 1);
2697 		break;
2698 
2699 	case CEPH_SESSION_CLOSE:
2700 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2701 			pr_info("mds%d reconnect denied\n", session->s_mds);
2702 		cleanup_session_requests(mdsc, session);
2703 		remove_session_caps(session);
2704 		wake = 2; /* for good measure */
2705 		wake_up_all(&mdsc->session_close_wq);
2706 		break;
2707 
2708 	case CEPH_SESSION_STALE:
2709 		pr_info("mds%d caps went stale, renewing\n",
2710 			session->s_mds);
2711 		spin_lock(&session->s_gen_ttl_lock);
2712 		session->s_cap_gen++;
2713 		session->s_cap_ttl = jiffies - 1;
2714 		spin_unlock(&session->s_gen_ttl_lock);
2715 		send_renew_caps(mdsc, session);
2716 		break;
2717 
2718 	case CEPH_SESSION_RECALL_STATE:
2719 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2720 		break;
2721 
2722 	case CEPH_SESSION_FLUSHMSG:
2723 		send_flushmsg_ack(mdsc, session, seq);
2724 		break;
2725 
2726 	case CEPH_SESSION_FORCE_RO:
2727 		dout("force_session_readonly %p\n", session);
2728 		spin_lock(&session->s_cap_lock);
2729 		session->s_readonly = true;
2730 		spin_unlock(&session->s_cap_lock);
2731 		wake_up_session_caps(session, 0);
2732 		break;
2733 
2734 	case CEPH_SESSION_REJECT:
2735 		WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING);
2736 		pr_info("mds%d rejected session\n", session->s_mds);
2737 		session->s_state = CEPH_MDS_SESSION_REJECTED;
2738 		cleanup_session_requests(mdsc, session);
2739 		remove_session_caps(session);
2740 		wake = 2; /* for good measure */
2741 		break;
2742 
2743 	default:
2744 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2745 		WARN_ON(1);
2746 	}
2747 
2748 	mutex_unlock(&session->s_mutex);
2749 	if (wake) {
2750 		mutex_lock(&mdsc->mutex);
2751 		__wake_requests(mdsc, &session->s_waiting);
2752 		if (wake == 2)
2753 			kick_requests(mdsc, mds);
2754 		mutex_unlock(&mdsc->mutex);
2755 	}
2756 	if (op == CEPH_SESSION_CLOSE)
2757 		ceph_put_mds_session(session);
2758 	return;
2759 
2760 bad:
2761 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2762 	       (int)msg->front.iov_len);
2763 	ceph_msg_dump(msg);
2764 	return;
2765 }
2766 
2767 
2768 /*
2769  * called under session->mutex.
2770  */
2771 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2772 				   struct ceph_mds_session *session)
2773 {
2774 	struct ceph_mds_request *req, *nreq;
2775 	struct rb_node *p;
2776 	int err;
2777 
2778 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2779 
2780 	mutex_lock(&mdsc->mutex);
2781 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2782 		err = __prepare_send_request(mdsc, req, session->s_mds, true);
2783 		if (!err) {
2784 			ceph_msg_get(req->r_request);
2785 			ceph_con_send(&session->s_con, req->r_request);
2786 		}
2787 	}
2788 
2789 	/*
2790 	 * also re-send old requests when MDS enters reconnect stage. So that MDS
2791 	 * can process completed request in clientreplay stage.
2792 	 */
2793 	p = rb_first(&mdsc->request_tree);
2794 	while (p) {
2795 		req = rb_entry(p, struct ceph_mds_request, r_node);
2796 		p = rb_next(p);
2797 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2798 			continue;
2799 		if (req->r_attempts == 0)
2800 			continue; /* only old requests */
2801 		if (req->r_session &&
2802 		    req->r_session->s_mds == session->s_mds) {
2803 			err = __prepare_send_request(mdsc, req,
2804 						     session->s_mds, true);
2805 			if (!err) {
2806 				ceph_msg_get(req->r_request);
2807 				ceph_con_send(&session->s_con, req->r_request);
2808 			}
2809 		}
2810 	}
2811 	mutex_unlock(&mdsc->mutex);
2812 }
2813 
2814 /*
2815  * Encode information about a cap for a reconnect with the MDS.
2816  */
2817 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2818 			  void *arg)
2819 {
2820 	union {
2821 		struct ceph_mds_cap_reconnect v2;
2822 		struct ceph_mds_cap_reconnect_v1 v1;
2823 	} rec;
2824 	struct ceph_inode_info *ci;
2825 	struct ceph_reconnect_state *recon_state = arg;
2826 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2827 	char *path;
2828 	int pathlen, err;
2829 	u64 pathbase;
2830 	u64 snap_follows;
2831 	struct dentry *dentry;
2832 
2833 	ci = cap->ci;
2834 
2835 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2836 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2837 	     ceph_cap_string(cap->issued));
2838 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2839 	if (err)
2840 		return err;
2841 
2842 	dentry = d_find_alias(inode);
2843 	if (dentry) {
2844 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2845 		if (IS_ERR(path)) {
2846 			err = PTR_ERR(path);
2847 			goto out_dput;
2848 		}
2849 	} else {
2850 		path = NULL;
2851 		pathlen = 0;
2852 		pathbase = 0;
2853 	}
2854 
2855 	spin_lock(&ci->i_ceph_lock);
2856 	cap->seq = 0;        /* reset cap seq */
2857 	cap->issue_seq = 0;  /* and issue_seq */
2858 	cap->mseq = 0;       /* and migrate_seq */
2859 	cap->cap_gen = cap->session->s_cap_gen;
2860 
2861 	if (recon_state->msg_version >= 2) {
2862 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2863 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2864 		rec.v2.issued = cpu_to_le32(cap->issued);
2865 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2866 		rec.v2.pathbase = cpu_to_le64(pathbase);
2867 		rec.v2.flock_len = 0;
2868 	} else {
2869 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2870 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2871 		rec.v1.issued = cpu_to_le32(cap->issued);
2872 		rec.v1.size = cpu_to_le64(inode->i_size);
2873 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2874 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2875 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2876 		rec.v1.pathbase = cpu_to_le64(pathbase);
2877 	}
2878 
2879 	if (list_empty(&ci->i_cap_snaps)) {
2880 		snap_follows = 0;
2881 	} else {
2882 		struct ceph_cap_snap *capsnap =
2883 			list_first_entry(&ci->i_cap_snaps,
2884 					 struct ceph_cap_snap, ci_item);
2885 		snap_follows = capsnap->follows;
2886 	}
2887 	spin_unlock(&ci->i_ceph_lock);
2888 
2889 	if (recon_state->msg_version >= 2) {
2890 		int num_fcntl_locks, num_flock_locks;
2891 		struct ceph_filelock *flocks;
2892 		size_t struct_len, total_len = 0;
2893 		u8 struct_v = 0;
2894 
2895 encode_again:
2896 		ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2897 		flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2898 				 sizeof(struct ceph_filelock), GFP_NOFS);
2899 		if (!flocks) {
2900 			err = -ENOMEM;
2901 			goto out_free;
2902 		}
2903 		err = ceph_encode_locks_to_buffer(inode, flocks,
2904 						  num_fcntl_locks,
2905 						  num_flock_locks);
2906 		if (err) {
2907 			kfree(flocks);
2908 			if (err == -ENOSPC)
2909 				goto encode_again;
2910 			goto out_free;
2911 		}
2912 
2913 		if (recon_state->msg_version >= 3) {
2914 			/* version, compat_version and struct_len */
2915 			total_len = 2 * sizeof(u8) + sizeof(u32);
2916 			struct_v = 2;
2917 		}
2918 		/*
2919 		 * number of encoded locks is stable, so copy to pagelist
2920 		 */
2921 		struct_len = 2 * sizeof(u32) +
2922 			    (num_fcntl_locks + num_flock_locks) *
2923 			    sizeof(struct ceph_filelock);
2924 		rec.v2.flock_len = cpu_to_le32(struct_len);
2925 
2926 		struct_len += sizeof(rec.v2);
2927 		struct_len += sizeof(u32) + pathlen;
2928 
2929 		if (struct_v >= 2)
2930 			struct_len += sizeof(u64); /* snap_follows */
2931 
2932 		total_len += struct_len;
2933 		err = ceph_pagelist_reserve(pagelist, total_len);
2934 
2935 		if (!err) {
2936 			if (recon_state->msg_version >= 3) {
2937 				ceph_pagelist_encode_8(pagelist, struct_v);
2938 				ceph_pagelist_encode_8(pagelist, 1);
2939 				ceph_pagelist_encode_32(pagelist, struct_len);
2940 			}
2941 			ceph_pagelist_encode_string(pagelist, path, pathlen);
2942 			ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2));
2943 			ceph_locks_to_pagelist(flocks, pagelist,
2944 					       num_fcntl_locks,
2945 					       num_flock_locks);
2946 			if (struct_v >= 2)
2947 				ceph_pagelist_encode_64(pagelist, snap_follows);
2948 		}
2949 		kfree(flocks);
2950 	} else {
2951 		size_t size = sizeof(u32) + pathlen + sizeof(rec.v1);
2952 		err = ceph_pagelist_reserve(pagelist, size);
2953 		if (!err) {
2954 			ceph_pagelist_encode_string(pagelist, path, pathlen);
2955 			ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1));
2956 		}
2957 	}
2958 
2959 	recon_state->nr_caps++;
2960 out_free:
2961 	kfree(path);
2962 out_dput:
2963 	dput(dentry);
2964 	return err;
2965 }
2966 
2967 
2968 /*
2969  * If an MDS fails and recovers, clients need to reconnect in order to
2970  * reestablish shared state.  This includes all caps issued through
2971  * this session _and_ the snap_realm hierarchy.  Because it's not
2972  * clear which snap realms the mds cares about, we send everything we
2973  * know about.. that ensures we'll then get any new info the
2974  * recovering MDS might have.
2975  *
2976  * This is a relatively heavyweight operation, but it's rare.
2977  *
2978  * called with mdsc->mutex held.
2979  */
2980 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2981 			       struct ceph_mds_session *session)
2982 {
2983 	struct ceph_msg *reply;
2984 	struct rb_node *p;
2985 	int mds = session->s_mds;
2986 	int err = -ENOMEM;
2987 	int s_nr_caps;
2988 	struct ceph_pagelist *pagelist;
2989 	struct ceph_reconnect_state recon_state;
2990 
2991 	pr_info("mds%d reconnect start\n", mds);
2992 
2993 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2994 	if (!pagelist)
2995 		goto fail_nopagelist;
2996 	ceph_pagelist_init(pagelist);
2997 
2998 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2999 	if (!reply)
3000 		goto fail_nomsg;
3001 
3002 	mutex_lock(&session->s_mutex);
3003 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
3004 	session->s_seq = 0;
3005 
3006 	dout("session %p state %s\n", session,
3007 	     ceph_session_state_name(session->s_state));
3008 
3009 	spin_lock(&session->s_gen_ttl_lock);
3010 	session->s_cap_gen++;
3011 	spin_unlock(&session->s_gen_ttl_lock);
3012 
3013 	spin_lock(&session->s_cap_lock);
3014 	/* don't know if session is readonly */
3015 	session->s_readonly = 0;
3016 	/*
3017 	 * notify __ceph_remove_cap() that we are composing cap reconnect.
3018 	 * If a cap get released before being added to the cap reconnect,
3019 	 * __ceph_remove_cap() should skip queuing cap release.
3020 	 */
3021 	session->s_cap_reconnect = 1;
3022 	/* drop old cap expires; we're about to reestablish that state */
3023 	cleanup_cap_releases(mdsc, session);
3024 
3025 	/* trim unused caps to reduce MDS's cache rejoin time */
3026 	if (mdsc->fsc->sb->s_root)
3027 		shrink_dcache_parent(mdsc->fsc->sb->s_root);
3028 
3029 	ceph_con_close(&session->s_con);
3030 	ceph_con_open(&session->s_con,
3031 		      CEPH_ENTITY_TYPE_MDS, mds,
3032 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
3033 
3034 	/* replay unsafe requests */
3035 	replay_unsafe_requests(mdsc, session);
3036 
3037 	down_read(&mdsc->snap_rwsem);
3038 
3039 	/* traverse this session's caps */
3040 	s_nr_caps = session->s_nr_caps;
3041 	err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
3042 	if (err)
3043 		goto fail;
3044 
3045 	recon_state.nr_caps = 0;
3046 	recon_state.pagelist = pagelist;
3047 	if (session->s_con.peer_features & CEPH_FEATURE_MDSENC)
3048 		recon_state.msg_version = 3;
3049 	else if (session->s_con.peer_features & CEPH_FEATURE_FLOCK)
3050 		recon_state.msg_version = 2;
3051 	else
3052 		recon_state.msg_version = 1;
3053 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
3054 	if (err < 0)
3055 		goto fail;
3056 
3057 	spin_lock(&session->s_cap_lock);
3058 	session->s_cap_reconnect = 0;
3059 	spin_unlock(&session->s_cap_lock);
3060 
3061 	/*
3062 	 * snaprealms.  we provide mds with the ino, seq (version), and
3063 	 * parent for all of our realms.  If the mds has any newer info,
3064 	 * it will tell us.
3065 	 */
3066 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
3067 		struct ceph_snap_realm *realm =
3068 			rb_entry(p, struct ceph_snap_realm, node);
3069 		struct ceph_mds_snaprealm_reconnect sr_rec;
3070 
3071 		dout(" adding snap realm %llx seq %lld parent %llx\n",
3072 		     realm->ino, realm->seq, realm->parent_ino);
3073 		sr_rec.ino = cpu_to_le64(realm->ino);
3074 		sr_rec.seq = cpu_to_le64(realm->seq);
3075 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
3076 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
3077 		if (err)
3078 			goto fail;
3079 	}
3080 
3081 	reply->hdr.version = cpu_to_le16(recon_state.msg_version);
3082 
3083 	/* raced with cap release? */
3084 	if (s_nr_caps != recon_state.nr_caps) {
3085 		struct page *page = list_first_entry(&pagelist->head,
3086 						     struct page, lru);
3087 		__le32 *addr = kmap_atomic(page);
3088 		*addr = cpu_to_le32(recon_state.nr_caps);
3089 		kunmap_atomic(addr);
3090 	}
3091 
3092 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
3093 	ceph_msg_data_add_pagelist(reply, pagelist);
3094 
3095 	ceph_early_kick_flushing_caps(mdsc, session);
3096 
3097 	ceph_con_send(&session->s_con, reply);
3098 
3099 	mutex_unlock(&session->s_mutex);
3100 
3101 	mutex_lock(&mdsc->mutex);
3102 	__wake_requests(mdsc, &session->s_waiting);
3103 	mutex_unlock(&mdsc->mutex);
3104 
3105 	up_read(&mdsc->snap_rwsem);
3106 	return;
3107 
3108 fail:
3109 	ceph_msg_put(reply);
3110 	up_read(&mdsc->snap_rwsem);
3111 	mutex_unlock(&session->s_mutex);
3112 fail_nomsg:
3113 	ceph_pagelist_release(pagelist);
3114 fail_nopagelist:
3115 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3116 	return;
3117 }
3118 
3119 
3120 /*
3121  * compare old and new mdsmaps, kicking requests
3122  * and closing out old connections as necessary
3123  *
3124  * called under mdsc->mutex.
3125  */
3126 static void check_new_map(struct ceph_mds_client *mdsc,
3127 			  struct ceph_mdsmap *newmap,
3128 			  struct ceph_mdsmap *oldmap)
3129 {
3130 	int i;
3131 	int oldstate, newstate;
3132 	struct ceph_mds_session *s;
3133 
3134 	dout("check_new_map new %u old %u\n",
3135 	     newmap->m_epoch, oldmap->m_epoch);
3136 
3137 	for (i = 0; i < oldmap->m_num_mds && i < mdsc->max_sessions; i++) {
3138 		if (mdsc->sessions[i] == NULL)
3139 			continue;
3140 		s = mdsc->sessions[i];
3141 		oldstate = ceph_mdsmap_get_state(oldmap, i);
3142 		newstate = ceph_mdsmap_get_state(newmap, i);
3143 
3144 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3145 		     i, ceph_mds_state_name(oldstate),
3146 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3147 		     ceph_mds_state_name(newstate),
3148 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3149 		     ceph_session_state_name(s->s_state));
3150 
3151 		if (i >= newmap->m_num_mds ||
3152 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
3153 			   ceph_mdsmap_get_addr(newmap, i),
3154 			   sizeof(struct ceph_entity_addr))) {
3155 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3156 				/* the session never opened, just close it
3157 				 * out now */
3158 				get_session(s);
3159 				__unregister_session(mdsc, s);
3160 				__wake_requests(mdsc, &s->s_waiting);
3161 				ceph_put_mds_session(s);
3162 			} else if (i >= newmap->m_num_mds) {
3163 				/* force close session for stopped mds */
3164 				get_session(s);
3165 				__unregister_session(mdsc, s);
3166 				__wake_requests(mdsc, &s->s_waiting);
3167 				kick_requests(mdsc, i);
3168 				mutex_unlock(&mdsc->mutex);
3169 
3170 				mutex_lock(&s->s_mutex);
3171 				cleanup_session_requests(mdsc, s);
3172 				remove_session_caps(s);
3173 				mutex_unlock(&s->s_mutex);
3174 
3175 				ceph_put_mds_session(s);
3176 
3177 				mutex_lock(&mdsc->mutex);
3178 			} else {
3179 				/* just close it */
3180 				mutex_unlock(&mdsc->mutex);
3181 				mutex_lock(&s->s_mutex);
3182 				mutex_lock(&mdsc->mutex);
3183 				ceph_con_close(&s->s_con);
3184 				mutex_unlock(&s->s_mutex);
3185 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
3186 			}
3187 		} else if (oldstate == newstate) {
3188 			continue;  /* nothing new with this mds */
3189 		}
3190 
3191 		/*
3192 		 * send reconnect?
3193 		 */
3194 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3195 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
3196 			mutex_unlock(&mdsc->mutex);
3197 			send_mds_reconnect(mdsc, s);
3198 			mutex_lock(&mdsc->mutex);
3199 		}
3200 
3201 		/*
3202 		 * kick request on any mds that has gone active.
3203 		 */
3204 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3205 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
3206 			if (oldstate != CEPH_MDS_STATE_CREATING &&
3207 			    oldstate != CEPH_MDS_STATE_STARTING)
3208 				pr_info("mds%d recovery completed\n", s->s_mds);
3209 			kick_requests(mdsc, i);
3210 			ceph_kick_flushing_caps(mdsc, s);
3211 			wake_up_session_caps(s, 1);
3212 		}
3213 	}
3214 
3215 	for (i = 0; i < newmap->m_num_mds && i < mdsc->max_sessions; i++) {
3216 		s = mdsc->sessions[i];
3217 		if (!s)
3218 			continue;
3219 		if (!ceph_mdsmap_is_laggy(newmap, i))
3220 			continue;
3221 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3222 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
3223 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
3224 			dout(" connecting to export targets of laggy mds%d\n",
3225 			     i);
3226 			__open_export_target_sessions(mdsc, s);
3227 		}
3228 	}
3229 }
3230 
3231 
3232 
3233 /*
3234  * leases
3235  */
3236 
3237 /*
3238  * caller must hold session s_mutex, dentry->d_lock
3239  */
3240 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3241 {
3242 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3243 
3244 	ceph_put_mds_session(di->lease_session);
3245 	di->lease_session = NULL;
3246 }
3247 
3248 static void handle_lease(struct ceph_mds_client *mdsc,
3249 			 struct ceph_mds_session *session,
3250 			 struct ceph_msg *msg)
3251 {
3252 	struct super_block *sb = mdsc->fsc->sb;
3253 	struct inode *inode;
3254 	struct dentry *parent, *dentry;
3255 	struct ceph_dentry_info *di;
3256 	int mds = session->s_mds;
3257 	struct ceph_mds_lease *h = msg->front.iov_base;
3258 	u32 seq;
3259 	struct ceph_vino vino;
3260 	struct qstr dname;
3261 	int release = 0;
3262 
3263 	dout("handle_lease from mds%d\n", mds);
3264 
3265 	/* decode */
3266 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3267 		goto bad;
3268 	vino.ino = le64_to_cpu(h->ino);
3269 	vino.snap = CEPH_NOSNAP;
3270 	seq = le32_to_cpu(h->seq);
3271 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3272 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3273 	if (dname.len != get_unaligned_le32(h+1))
3274 		goto bad;
3275 
3276 	/* lookup inode */
3277 	inode = ceph_find_inode(sb, vino);
3278 	dout("handle_lease %s, ino %llx %p %.*s\n",
3279 	     ceph_lease_op_name(h->action), vino.ino, inode,
3280 	     dname.len, dname.name);
3281 
3282 	mutex_lock(&session->s_mutex);
3283 	session->s_seq++;
3284 
3285 	if (inode == NULL) {
3286 		dout("handle_lease no inode %llx\n", vino.ino);
3287 		goto release;
3288 	}
3289 
3290 	/* dentry */
3291 	parent = d_find_alias(inode);
3292 	if (!parent) {
3293 		dout("no parent dentry on inode %p\n", inode);
3294 		WARN_ON(1);
3295 		goto release;  /* hrm... */
3296 	}
3297 	dname.hash = full_name_hash(parent, dname.name, dname.len);
3298 	dentry = d_lookup(parent, &dname);
3299 	dput(parent);
3300 	if (!dentry)
3301 		goto release;
3302 
3303 	spin_lock(&dentry->d_lock);
3304 	di = ceph_dentry(dentry);
3305 	switch (h->action) {
3306 	case CEPH_MDS_LEASE_REVOKE:
3307 		if (di->lease_session == session) {
3308 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3309 				h->seq = cpu_to_le32(di->lease_seq);
3310 			__ceph_mdsc_drop_dentry_lease(dentry);
3311 		}
3312 		release = 1;
3313 		break;
3314 
3315 	case CEPH_MDS_LEASE_RENEW:
3316 		if (di->lease_session == session &&
3317 		    di->lease_gen == session->s_cap_gen &&
3318 		    di->lease_renew_from &&
3319 		    di->lease_renew_after == 0) {
3320 			unsigned long duration =
3321 				msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3322 
3323 			di->lease_seq = seq;
3324 			di->time = di->lease_renew_from + duration;
3325 			di->lease_renew_after = di->lease_renew_from +
3326 				(duration >> 1);
3327 			di->lease_renew_from = 0;
3328 		}
3329 		break;
3330 	}
3331 	spin_unlock(&dentry->d_lock);
3332 	dput(dentry);
3333 
3334 	if (!release)
3335 		goto out;
3336 
3337 release:
3338 	/* let's just reuse the same message */
3339 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3340 	ceph_msg_get(msg);
3341 	ceph_con_send(&session->s_con, msg);
3342 
3343 out:
3344 	iput(inode);
3345 	mutex_unlock(&session->s_mutex);
3346 	return;
3347 
3348 bad:
3349 	pr_err("corrupt lease message\n");
3350 	ceph_msg_dump(msg);
3351 }
3352 
3353 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3354 			      struct inode *inode,
3355 			      struct dentry *dentry, char action,
3356 			      u32 seq)
3357 {
3358 	struct ceph_msg *msg;
3359 	struct ceph_mds_lease *lease;
3360 	int len = sizeof(*lease) + sizeof(u32);
3361 	int dnamelen = 0;
3362 
3363 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3364 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
3365 	dnamelen = dentry->d_name.len;
3366 	len += dnamelen;
3367 
3368 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3369 	if (!msg)
3370 		return;
3371 	lease = msg->front.iov_base;
3372 	lease->action = action;
3373 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3374 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3375 	lease->seq = cpu_to_le32(seq);
3376 	put_unaligned_le32(dnamelen, lease + 1);
3377 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3378 
3379 	/*
3380 	 * if this is a preemptive lease RELEASE, no need to
3381 	 * flush request stream, since the actual request will
3382 	 * soon follow.
3383 	 */
3384 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3385 
3386 	ceph_con_send(&session->s_con, msg);
3387 }
3388 
3389 /*
3390  * drop all leases (and dentry refs) in preparation for umount
3391  */
3392 static void drop_leases(struct ceph_mds_client *mdsc)
3393 {
3394 	int i;
3395 
3396 	dout("drop_leases\n");
3397 	mutex_lock(&mdsc->mutex);
3398 	for (i = 0; i < mdsc->max_sessions; i++) {
3399 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3400 		if (!s)
3401 			continue;
3402 		mutex_unlock(&mdsc->mutex);
3403 		mutex_lock(&s->s_mutex);
3404 		mutex_unlock(&s->s_mutex);
3405 		ceph_put_mds_session(s);
3406 		mutex_lock(&mdsc->mutex);
3407 	}
3408 	mutex_unlock(&mdsc->mutex);
3409 }
3410 
3411 
3412 
3413 /*
3414  * delayed work -- periodically trim expired leases, renew caps with mds
3415  */
3416 static void schedule_delayed(struct ceph_mds_client *mdsc)
3417 {
3418 	int delay = 5;
3419 	unsigned hz = round_jiffies_relative(HZ * delay);
3420 	schedule_delayed_work(&mdsc->delayed_work, hz);
3421 }
3422 
3423 static void delayed_work(struct work_struct *work)
3424 {
3425 	int i;
3426 	struct ceph_mds_client *mdsc =
3427 		container_of(work, struct ceph_mds_client, delayed_work.work);
3428 	int renew_interval;
3429 	int renew_caps;
3430 
3431 	dout("mdsc delayed_work\n");
3432 	ceph_check_delayed_caps(mdsc);
3433 
3434 	mutex_lock(&mdsc->mutex);
3435 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3436 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3437 				   mdsc->last_renew_caps);
3438 	if (renew_caps)
3439 		mdsc->last_renew_caps = jiffies;
3440 
3441 	for (i = 0; i < mdsc->max_sessions; i++) {
3442 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3443 		if (s == NULL)
3444 			continue;
3445 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3446 			dout("resending session close request for mds%d\n",
3447 			     s->s_mds);
3448 			request_close_session(mdsc, s);
3449 			ceph_put_mds_session(s);
3450 			continue;
3451 		}
3452 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3453 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3454 				s->s_state = CEPH_MDS_SESSION_HUNG;
3455 				pr_info("mds%d hung\n", s->s_mds);
3456 			}
3457 		}
3458 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3459 			/* this mds is failed or recovering, just wait */
3460 			ceph_put_mds_session(s);
3461 			continue;
3462 		}
3463 		mutex_unlock(&mdsc->mutex);
3464 
3465 		mutex_lock(&s->s_mutex);
3466 		if (renew_caps)
3467 			send_renew_caps(mdsc, s);
3468 		else
3469 			ceph_con_keepalive(&s->s_con);
3470 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3471 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3472 			ceph_send_cap_releases(mdsc, s);
3473 		mutex_unlock(&s->s_mutex);
3474 		ceph_put_mds_session(s);
3475 
3476 		mutex_lock(&mdsc->mutex);
3477 	}
3478 	mutex_unlock(&mdsc->mutex);
3479 
3480 	schedule_delayed(mdsc);
3481 }
3482 
3483 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3484 
3485 {
3486 	struct ceph_mds_client *mdsc;
3487 
3488 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3489 	if (!mdsc)
3490 		return -ENOMEM;
3491 	mdsc->fsc = fsc;
3492 	fsc->mdsc = mdsc;
3493 	mutex_init(&mdsc->mutex);
3494 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3495 	if (mdsc->mdsmap == NULL) {
3496 		kfree(mdsc);
3497 		return -ENOMEM;
3498 	}
3499 
3500 	init_completion(&mdsc->safe_umount_waiters);
3501 	init_waitqueue_head(&mdsc->session_close_wq);
3502 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3503 	mdsc->sessions = NULL;
3504 	atomic_set(&mdsc->num_sessions, 0);
3505 	mdsc->max_sessions = 0;
3506 	mdsc->stopping = 0;
3507 	mdsc->last_snap_seq = 0;
3508 	init_rwsem(&mdsc->snap_rwsem);
3509 	mdsc->snap_realms = RB_ROOT;
3510 	INIT_LIST_HEAD(&mdsc->snap_empty);
3511 	spin_lock_init(&mdsc->snap_empty_lock);
3512 	mdsc->last_tid = 0;
3513 	mdsc->oldest_tid = 0;
3514 	mdsc->request_tree = RB_ROOT;
3515 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3516 	mdsc->last_renew_caps = jiffies;
3517 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3518 	spin_lock_init(&mdsc->cap_delay_lock);
3519 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3520 	spin_lock_init(&mdsc->snap_flush_lock);
3521 	mdsc->last_cap_flush_tid = 1;
3522 	INIT_LIST_HEAD(&mdsc->cap_flush_list);
3523 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3524 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3525 	mdsc->num_cap_flushing = 0;
3526 	spin_lock_init(&mdsc->cap_dirty_lock);
3527 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3528 	spin_lock_init(&mdsc->dentry_lru_lock);
3529 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3530 
3531 	ceph_caps_init(mdsc);
3532 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3533 
3534 	init_rwsem(&mdsc->pool_perm_rwsem);
3535 	mdsc->pool_perm_tree = RB_ROOT;
3536 
3537 	return 0;
3538 }
3539 
3540 /*
3541  * Wait for safe replies on open mds requests.  If we time out, drop
3542  * all requests from the tree to avoid dangling dentry refs.
3543  */
3544 static void wait_requests(struct ceph_mds_client *mdsc)
3545 {
3546 	struct ceph_options *opts = mdsc->fsc->client->options;
3547 	struct ceph_mds_request *req;
3548 
3549 	mutex_lock(&mdsc->mutex);
3550 	if (__get_oldest_req(mdsc)) {
3551 		mutex_unlock(&mdsc->mutex);
3552 
3553 		dout("wait_requests waiting for requests\n");
3554 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3555 				    ceph_timeout_jiffies(opts->mount_timeout));
3556 
3557 		/* tear down remaining requests */
3558 		mutex_lock(&mdsc->mutex);
3559 		while ((req = __get_oldest_req(mdsc))) {
3560 			dout("wait_requests timed out on tid %llu\n",
3561 			     req->r_tid);
3562 			__unregister_request(mdsc, req);
3563 		}
3564 	}
3565 	mutex_unlock(&mdsc->mutex);
3566 	dout("wait_requests done\n");
3567 }
3568 
3569 /*
3570  * called before mount is ro, and before dentries are torn down.
3571  * (hmm, does this still race with new lookups?)
3572  */
3573 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3574 {
3575 	dout("pre_umount\n");
3576 	mdsc->stopping = 1;
3577 
3578 	drop_leases(mdsc);
3579 	ceph_flush_dirty_caps(mdsc);
3580 	wait_requests(mdsc);
3581 
3582 	/*
3583 	 * wait for reply handlers to drop their request refs and
3584 	 * their inode/dcache refs
3585 	 */
3586 	ceph_msgr_flush();
3587 }
3588 
3589 /*
3590  * wait for all write mds requests to flush.
3591  */
3592 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3593 {
3594 	struct ceph_mds_request *req = NULL, *nextreq;
3595 	struct rb_node *n;
3596 
3597 	mutex_lock(&mdsc->mutex);
3598 	dout("wait_unsafe_requests want %lld\n", want_tid);
3599 restart:
3600 	req = __get_oldest_req(mdsc);
3601 	while (req && req->r_tid <= want_tid) {
3602 		/* find next request */
3603 		n = rb_next(&req->r_node);
3604 		if (n)
3605 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3606 		else
3607 			nextreq = NULL;
3608 		if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3609 		    (req->r_op & CEPH_MDS_OP_WRITE)) {
3610 			/* write op */
3611 			ceph_mdsc_get_request(req);
3612 			if (nextreq)
3613 				ceph_mdsc_get_request(nextreq);
3614 			mutex_unlock(&mdsc->mutex);
3615 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3616 			     req->r_tid, want_tid);
3617 			wait_for_completion(&req->r_safe_completion);
3618 			mutex_lock(&mdsc->mutex);
3619 			ceph_mdsc_put_request(req);
3620 			if (!nextreq)
3621 				break;  /* next dne before, so we're done! */
3622 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3623 				/* next request was removed from tree */
3624 				ceph_mdsc_put_request(nextreq);
3625 				goto restart;
3626 			}
3627 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3628 		}
3629 		req = nextreq;
3630 	}
3631 	mutex_unlock(&mdsc->mutex);
3632 	dout("wait_unsafe_requests done\n");
3633 }
3634 
3635 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3636 {
3637 	u64 want_tid, want_flush;
3638 
3639 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3640 		return;
3641 
3642 	dout("sync\n");
3643 	mutex_lock(&mdsc->mutex);
3644 	want_tid = mdsc->last_tid;
3645 	mutex_unlock(&mdsc->mutex);
3646 
3647 	ceph_flush_dirty_caps(mdsc);
3648 	spin_lock(&mdsc->cap_dirty_lock);
3649 	want_flush = mdsc->last_cap_flush_tid;
3650 	if (!list_empty(&mdsc->cap_flush_list)) {
3651 		struct ceph_cap_flush *cf =
3652 			list_last_entry(&mdsc->cap_flush_list,
3653 					struct ceph_cap_flush, g_list);
3654 		cf->wake = true;
3655 	}
3656 	spin_unlock(&mdsc->cap_dirty_lock);
3657 
3658 	dout("sync want tid %lld flush_seq %lld\n",
3659 	     want_tid, want_flush);
3660 
3661 	wait_unsafe_requests(mdsc, want_tid);
3662 	wait_caps_flush(mdsc, want_flush);
3663 }
3664 
3665 /*
3666  * true if all sessions are closed, or we force unmount
3667  */
3668 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped)
3669 {
3670 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3671 		return true;
3672 	return atomic_read(&mdsc->num_sessions) <= skipped;
3673 }
3674 
3675 /*
3676  * called after sb is ro.
3677  */
3678 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3679 {
3680 	struct ceph_options *opts = mdsc->fsc->client->options;
3681 	struct ceph_mds_session *session;
3682 	int i;
3683 	int skipped = 0;
3684 
3685 	dout("close_sessions\n");
3686 
3687 	/* close sessions */
3688 	mutex_lock(&mdsc->mutex);
3689 	for (i = 0; i < mdsc->max_sessions; i++) {
3690 		session = __ceph_lookup_mds_session(mdsc, i);
3691 		if (!session)
3692 			continue;
3693 		mutex_unlock(&mdsc->mutex);
3694 		mutex_lock(&session->s_mutex);
3695 		if (__close_session(mdsc, session) <= 0)
3696 			skipped++;
3697 		mutex_unlock(&session->s_mutex);
3698 		ceph_put_mds_session(session);
3699 		mutex_lock(&mdsc->mutex);
3700 	}
3701 	mutex_unlock(&mdsc->mutex);
3702 
3703 	dout("waiting for sessions to close\n");
3704 	wait_event_timeout(mdsc->session_close_wq,
3705 			   done_closing_sessions(mdsc, skipped),
3706 			   ceph_timeout_jiffies(opts->mount_timeout));
3707 
3708 	/* tear down remaining sessions */
3709 	mutex_lock(&mdsc->mutex);
3710 	for (i = 0; i < mdsc->max_sessions; i++) {
3711 		if (mdsc->sessions[i]) {
3712 			session = get_session(mdsc->sessions[i]);
3713 			__unregister_session(mdsc, session);
3714 			mutex_unlock(&mdsc->mutex);
3715 			mutex_lock(&session->s_mutex);
3716 			remove_session_caps(session);
3717 			mutex_unlock(&session->s_mutex);
3718 			ceph_put_mds_session(session);
3719 			mutex_lock(&mdsc->mutex);
3720 		}
3721 	}
3722 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3723 	mutex_unlock(&mdsc->mutex);
3724 
3725 	ceph_cleanup_empty_realms(mdsc);
3726 
3727 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3728 
3729 	dout("stopped\n");
3730 }
3731 
3732 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3733 {
3734 	struct ceph_mds_session *session;
3735 	int mds;
3736 
3737 	dout("force umount\n");
3738 
3739 	mutex_lock(&mdsc->mutex);
3740 	for (mds = 0; mds < mdsc->max_sessions; mds++) {
3741 		session = __ceph_lookup_mds_session(mdsc, mds);
3742 		if (!session)
3743 			continue;
3744 		mutex_unlock(&mdsc->mutex);
3745 		mutex_lock(&session->s_mutex);
3746 		__close_session(mdsc, session);
3747 		if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3748 			cleanup_session_requests(mdsc, session);
3749 			remove_session_caps(session);
3750 		}
3751 		mutex_unlock(&session->s_mutex);
3752 		ceph_put_mds_session(session);
3753 		mutex_lock(&mdsc->mutex);
3754 		kick_requests(mdsc, mds);
3755 	}
3756 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3757 	mutex_unlock(&mdsc->mutex);
3758 }
3759 
3760 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3761 {
3762 	dout("stop\n");
3763 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3764 	if (mdsc->mdsmap)
3765 		ceph_mdsmap_destroy(mdsc->mdsmap);
3766 	kfree(mdsc->sessions);
3767 	ceph_caps_finalize(mdsc);
3768 	ceph_pool_perm_destroy(mdsc);
3769 }
3770 
3771 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3772 {
3773 	struct ceph_mds_client *mdsc = fsc->mdsc;
3774 
3775 	dout("mdsc_destroy %p\n", mdsc);
3776 	ceph_mdsc_stop(mdsc);
3777 
3778 	/* flush out any connection work with references to us */
3779 	ceph_msgr_flush();
3780 
3781 	fsc->mdsc = NULL;
3782 	kfree(mdsc);
3783 	dout("mdsc_destroy %p done\n", mdsc);
3784 }
3785 
3786 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3787 {
3788 	struct ceph_fs_client *fsc = mdsc->fsc;
3789 	const char *mds_namespace = fsc->mount_options->mds_namespace;
3790 	void *p = msg->front.iov_base;
3791 	void *end = p + msg->front.iov_len;
3792 	u32 epoch;
3793 	u32 map_len;
3794 	u32 num_fs;
3795 	u32 mount_fscid = (u32)-1;
3796 	u8 struct_v, struct_cv;
3797 	int err = -EINVAL;
3798 
3799 	ceph_decode_need(&p, end, sizeof(u32), bad);
3800 	epoch = ceph_decode_32(&p);
3801 
3802 	dout("handle_fsmap epoch %u\n", epoch);
3803 
3804 	ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3805 	struct_v = ceph_decode_8(&p);
3806 	struct_cv = ceph_decode_8(&p);
3807 	map_len = ceph_decode_32(&p);
3808 
3809 	ceph_decode_need(&p, end, sizeof(u32) * 3, bad);
3810 	p += sizeof(u32) * 2; /* skip epoch and legacy_client_fscid */
3811 
3812 	num_fs = ceph_decode_32(&p);
3813 	while (num_fs-- > 0) {
3814 		void *info_p, *info_end;
3815 		u32 info_len;
3816 		u8 info_v, info_cv;
3817 		u32 fscid, namelen;
3818 
3819 		ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3820 		info_v = ceph_decode_8(&p);
3821 		info_cv = ceph_decode_8(&p);
3822 		info_len = ceph_decode_32(&p);
3823 		ceph_decode_need(&p, end, info_len, bad);
3824 		info_p = p;
3825 		info_end = p + info_len;
3826 		p = info_end;
3827 
3828 		ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad);
3829 		fscid = ceph_decode_32(&info_p);
3830 		namelen = ceph_decode_32(&info_p);
3831 		ceph_decode_need(&info_p, info_end, namelen, bad);
3832 
3833 		if (mds_namespace &&
3834 		    strlen(mds_namespace) == namelen &&
3835 		    !strncmp(mds_namespace, (char *)info_p, namelen)) {
3836 			mount_fscid = fscid;
3837 			break;
3838 		}
3839 	}
3840 
3841 	ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch);
3842 	if (mount_fscid != (u32)-1) {
3843 		fsc->client->monc.fs_cluster_id = mount_fscid;
3844 		ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP,
3845 				   0, true);
3846 		ceph_monc_renew_subs(&fsc->client->monc);
3847 	} else {
3848 		err = -ENOENT;
3849 		goto err_out;
3850 	}
3851 	return;
3852 bad:
3853 	pr_err("error decoding fsmap\n");
3854 err_out:
3855 	mutex_lock(&mdsc->mutex);
3856 	mdsc->mdsmap_err = -ENOENT;
3857 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3858 	mutex_unlock(&mdsc->mutex);
3859 	return;
3860 }
3861 
3862 /*
3863  * handle mds map update.
3864  */
3865 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3866 {
3867 	u32 epoch;
3868 	u32 maplen;
3869 	void *p = msg->front.iov_base;
3870 	void *end = p + msg->front.iov_len;
3871 	struct ceph_mdsmap *newmap, *oldmap;
3872 	struct ceph_fsid fsid;
3873 	int err = -EINVAL;
3874 
3875 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3876 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3877 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3878 		return;
3879 	epoch = ceph_decode_32(&p);
3880 	maplen = ceph_decode_32(&p);
3881 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3882 
3883 	/* do we need it? */
3884 	mutex_lock(&mdsc->mutex);
3885 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3886 		dout("handle_map epoch %u <= our %u\n",
3887 		     epoch, mdsc->mdsmap->m_epoch);
3888 		mutex_unlock(&mdsc->mutex);
3889 		return;
3890 	}
3891 
3892 	newmap = ceph_mdsmap_decode(&p, end);
3893 	if (IS_ERR(newmap)) {
3894 		err = PTR_ERR(newmap);
3895 		goto bad_unlock;
3896 	}
3897 
3898 	/* swap into place */
3899 	if (mdsc->mdsmap) {
3900 		oldmap = mdsc->mdsmap;
3901 		mdsc->mdsmap = newmap;
3902 		check_new_map(mdsc, newmap, oldmap);
3903 		ceph_mdsmap_destroy(oldmap);
3904 	} else {
3905 		mdsc->mdsmap = newmap;  /* first mds map */
3906 	}
3907 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3908 
3909 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3910 	ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
3911 			  mdsc->mdsmap->m_epoch);
3912 
3913 	mutex_unlock(&mdsc->mutex);
3914 	schedule_delayed(mdsc);
3915 	return;
3916 
3917 bad_unlock:
3918 	mutex_unlock(&mdsc->mutex);
3919 bad:
3920 	pr_err("error decoding mdsmap %d\n", err);
3921 	return;
3922 }
3923 
3924 static struct ceph_connection *con_get(struct ceph_connection *con)
3925 {
3926 	struct ceph_mds_session *s = con->private;
3927 
3928 	if (get_session(s)) {
3929 		dout("mdsc con_get %p ok (%d)\n", s, refcount_read(&s->s_ref));
3930 		return con;
3931 	}
3932 	dout("mdsc con_get %p FAIL\n", s);
3933 	return NULL;
3934 }
3935 
3936 static void con_put(struct ceph_connection *con)
3937 {
3938 	struct ceph_mds_session *s = con->private;
3939 
3940 	dout("mdsc con_put %p (%d)\n", s, refcount_read(&s->s_ref) - 1);
3941 	ceph_put_mds_session(s);
3942 }
3943 
3944 /*
3945  * if the client is unresponsive for long enough, the mds will kill
3946  * the session entirely.
3947  */
3948 static void peer_reset(struct ceph_connection *con)
3949 {
3950 	struct ceph_mds_session *s = con->private;
3951 	struct ceph_mds_client *mdsc = s->s_mdsc;
3952 
3953 	pr_warn("mds%d closed our session\n", s->s_mds);
3954 	send_mds_reconnect(mdsc, s);
3955 }
3956 
3957 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3958 {
3959 	struct ceph_mds_session *s = con->private;
3960 	struct ceph_mds_client *mdsc = s->s_mdsc;
3961 	int type = le16_to_cpu(msg->hdr.type);
3962 
3963 	mutex_lock(&mdsc->mutex);
3964 	if (__verify_registered_session(mdsc, s) < 0) {
3965 		mutex_unlock(&mdsc->mutex);
3966 		goto out;
3967 	}
3968 	mutex_unlock(&mdsc->mutex);
3969 
3970 	switch (type) {
3971 	case CEPH_MSG_MDS_MAP:
3972 		ceph_mdsc_handle_mdsmap(mdsc, msg);
3973 		break;
3974 	case CEPH_MSG_FS_MAP_USER:
3975 		ceph_mdsc_handle_fsmap(mdsc, msg);
3976 		break;
3977 	case CEPH_MSG_CLIENT_SESSION:
3978 		handle_session(s, msg);
3979 		break;
3980 	case CEPH_MSG_CLIENT_REPLY:
3981 		handle_reply(s, msg);
3982 		break;
3983 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3984 		handle_forward(mdsc, s, msg);
3985 		break;
3986 	case CEPH_MSG_CLIENT_CAPS:
3987 		ceph_handle_caps(s, msg);
3988 		break;
3989 	case CEPH_MSG_CLIENT_SNAP:
3990 		ceph_handle_snap(mdsc, s, msg);
3991 		break;
3992 	case CEPH_MSG_CLIENT_LEASE:
3993 		handle_lease(mdsc, s, msg);
3994 		break;
3995 
3996 	default:
3997 		pr_err("received unknown message type %d %s\n", type,
3998 		       ceph_msg_type_name(type));
3999 	}
4000 out:
4001 	ceph_msg_put(msg);
4002 }
4003 
4004 /*
4005  * authentication
4006  */
4007 
4008 /*
4009  * Note: returned pointer is the address of a structure that's
4010  * managed separately.  Caller must *not* attempt to free it.
4011  */
4012 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
4013 					int *proto, int force_new)
4014 {
4015 	struct ceph_mds_session *s = con->private;
4016 	struct ceph_mds_client *mdsc = s->s_mdsc;
4017 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4018 	struct ceph_auth_handshake *auth = &s->s_auth;
4019 
4020 	if (force_new && auth->authorizer) {
4021 		ceph_auth_destroy_authorizer(auth->authorizer);
4022 		auth->authorizer = NULL;
4023 	}
4024 	if (!auth->authorizer) {
4025 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
4026 						      auth);
4027 		if (ret)
4028 			return ERR_PTR(ret);
4029 	} else {
4030 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
4031 						      auth);
4032 		if (ret)
4033 			return ERR_PTR(ret);
4034 	}
4035 	*proto = ac->protocol;
4036 
4037 	return auth;
4038 }
4039 
4040 
4041 static int verify_authorizer_reply(struct ceph_connection *con)
4042 {
4043 	struct ceph_mds_session *s = con->private;
4044 	struct ceph_mds_client *mdsc = s->s_mdsc;
4045 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4046 
4047 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer);
4048 }
4049 
4050 static int invalidate_authorizer(struct ceph_connection *con)
4051 {
4052 	struct ceph_mds_session *s = con->private;
4053 	struct ceph_mds_client *mdsc = s->s_mdsc;
4054 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4055 
4056 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
4057 
4058 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
4059 }
4060 
4061 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
4062 				struct ceph_msg_header *hdr, int *skip)
4063 {
4064 	struct ceph_msg *msg;
4065 	int type = (int) le16_to_cpu(hdr->type);
4066 	int front_len = (int) le32_to_cpu(hdr->front_len);
4067 
4068 	if (con->in_msg)
4069 		return con->in_msg;
4070 
4071 	*skip = 0;
4072 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
4073 	if (!msg) {
4074 		pr_err("unable to allocate msg type %d len %d\n",
4075 		       type, front_len);
4076 		return NULL;
4077 	}
4078 
4079 	return msg;
4080 }
4081 
4082 static int mds_sign_message(struct ceph_msg *msg)
4083 {
4084        struct ceph_mds_session *s = msg->con->private;
4085        struct ceph_auth_handshake *auth = &s->s_auth;
4086 
4087        return ceph_auth_sign_message(auth, msg);
4088 }
4089 
4090 static int mds_check_message_signature(struct ceph_msg *msg)
4091 {
4092        struct ceph_mds_session *s = msg->con->private;
4093        struct ceph_auth_handshake *auth = &s->s_auth;
4094 
4095        return ceph_auth_check_message_signature(auth, msg);
4096 }
4097 
4098 static const struct ceph_connection_operations mds_con_ops = {
4099 	.get = con_get,
4100 	.put = con_put,
4101 	.dispatch = dispatch,
4102 	.get_authorizer = get_authorizer,
4103 	.verify_authorizer_reply = verify_authorizer_reply,
4104 	.invalidate_authorizer = invalidate_authorizer,
4105 	.peer_reset = peer_reset,
4106 	.alloc_msg = mds_alloc_msg,
4107 	.sign_message = mds_sign_message,
4108 	.check_message_signature = mds_check_message_signature,
4109 };
4110 
4111 /* eof */
4112