xref: /openbmc/linux/fs/ceph/mds_client.c (revision cd5d5810)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9 
10 #include "super.h"
11 #include "mds_client.h"
12 
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
19 
20 /*
21  * A cluster of MDS (metadata server) daemons is responsible for
22  * managing the file system namespace (the directory hierarchy and
23  * inodes) and for coordinating shared access to storage.  Metadata is
24  * partitioning hierarchically across a number of servers, and that
25  * partition varies over time as the cluster adjusts the distribution
26  * in order to balance load.
27  *
28  * The MDS client is primarily responsible to managing synchronous
29  * metadata requests for operations like open, unlink, and so forth.
30  * If there is a MDS failure, we find out about it when we (possibly
31  * request and) receive a new MDS map, and can resubmit affected
32  * requests.
33  *
34  * For the most part, though, we take advantage of a lossless
35  * communications channel to the MDS, and do not need to worry about
36  * timing out or resubmitting requests.
37  *
38  * We maintain a stateful "session" with each MDS we interact with.
39  * Within each session, we sent periodic heartbeat messages to ensure
40  * any capabilities or leases we have been issues remain valid.  If
41  * the session times out and goes stale, our leases and capabilities
42  * are no longer valid.
43  */
44 
45 struct ceph_reconnect_state {
46 	struct ceph_pagelist *pagelist;
47 	bool flock;
48 };
49 
50 static void __wake_requests(struct ceph_mds_client *mdsc,
51 			    struct list_head *head);
52 
53 static const struct ceph_connection_operations mds_con_ops;
54 
55 
56 /*
57  * mds reply parsing
58  */
59 
60 /*
61  * parse individual inode info
62  */
63 static int parse_reply_info_in(void **p, void *end,
64 			       struct ceph_mds_reply_info_in *info,
65 			       int features)
66 {
67 	int err = -EIO;
68 
69 	info->in = *p;
70 	*p += sizeof(struct ceph_mds_reply_inode) +
71 		sizeof(*info->in->fragtree.splits) *
72 		le32_to_cpu(info->in->fragtree.nsplits);
73 
74 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
75 	ceph_decode_need(p, end, info->symlink_len, bad);
76 	info->symlink = *p;
77 	*p += info->symlink_len;
78 
79 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
80 		ceph_decode_copy_safe(p, end, &info->dir_layout,
81 				      sizeof(info->dir_layout), bad);
82 	else
83 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
84 
85 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
86 	ceph_decode_need(p, end, info->xattr_len, bad);
87 	info->xattr_data = *p;
88 	*p += info->xattr_len;
89 	return 0;
90 bad:
91 	return err;
92 }
93 
94 /*
95  * parse a normal reply, which may contain a (dir+)dentry and/or a
96  * target inode.
97  */
98 static int parse_reply_info_trace(void **p, void *end,
99 				  struct ceph_mds_reply_info_parsed *info,
100 				  int features)
101 {
102 	int err;
103 
104 	if (info->head->is_dentry) {
105 		err = parse_reply_info_in(p, end, &info->diri, features);
106 		if (err < 0)
107 			goto out_bad;
108 
109 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
110 			goto bad;
111 		info->dirfrag = *p;
112 		*p += sizeof(*info->dirfrag) +
113 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
114 		if (unlikely(*p > end))
115 			goto bad;
116 
117 		ceph_decode_32_safe(p, end, info->dname_len, bad);
118 		ceph_decode_need(p, end, info->dname_len, bad);
119 		info->dname = *p;
120 		*p += info->dname_len;
121 		info->dlease = *p;
122 		*p += sizeof(*info->dlease);
123 	}
124 
125 	if (info->head->is_target) {
126 		err = parse_reply_info_in(p, end, &info->targeti, features);
127 		if (err < 0)
128 			goto out_bad;
129 	}
130 
131 	if (unlikely(*p != end))
132 		goto bad;
133 	return 0;
134 
135 bad:
136 	err = -EIO;
137 out_bad:
138 	pr_err("problem parsing mds trace %d\n", err);
139 	return err;
140 }
141 
142 /*
143  * parse readdir results
144  */
145 static int parse_reply_info_dir(void **p, void *end,
146 				struct ceph_mds_reply_info_parsed *info,
147 				int features)
148 {
149 	u32 num, i = 0;
150 	int err;
151 
152 	info->dir_dir = *p;
153 	if (*p + sizeof(*info->dir_dir) > end)
154 		goto bad;
155 	*p += sizeof(*info->dir_dir) +
156 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
157 	if (*p > end)
158 		goto bad;
159 
160 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
161 	num = ceph_decode_32(p);
162 	info->dir_end = ceph_decode_8(p);
163 	info->dir_complete = ceph_decode_8(p);
164 	if (num == 0)
165 		goto done;
166 
167 	/* alloc large array */
168 	info->dir_nr = num;
169 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
170 			       sizeof(*info->dir_dname) +
171 			       sizeof(*info->dir_dname_len) +
172 			       sizeof(*info->dir_dlease),
173 			       GFP_NOFS);
174 	if (info->dir_in == NULL) {
175 		err = -ENOMEM;
176 		goto out_bad;
177 	}
178 	info->dir_dname = (void *)(info->dir_in + num);
179 	info->dir_dname_len = (void *)(info->dir_dname + num);
180 	info->dir_dlease = (void *)(info->dir_dname_len + num);
181 
182 	while (num) {
183 		/* dentry */
184 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
185 		info->dir_dname_len[i] = ceph_decode_32(p);
186 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
187 		info->dir_dname[i] = *p;
188 		*p += info->dir_dname_len[i];
189 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
190 		     info->dir_dname[i]);
191 		info->dir_dlease[i] = *p;
192 		*p += sizeof(struct ceph_mds_reply_lease);
193 
194 		/* inode */
195 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
196 		if (err < 0)
197 			goto out_bad;
198 		i++;
199 		num--;
200 	}
201 
202 done:
203 	if (*p != end)
204 		goto bad;
205 	return 0;
206 
207 bad:
208 	err = -EIO;
209 out_bad:
210 	pr_err("problem parsing dir contents %d\n", err);
211 	return err;
212 }
213 
214 /*
215  * parse fcntl F_GETLK results
216  */
217 static int parse_reply_info_filelock(void **p, void *end,
218 				     struct ceph_mds_reply_info_parsed *info,
219 				     int features)
220 {
221 	if (*p + sizeof(*info->filelock_reply) > end)
222 		goto bad;
223 
224 	info->filelock_reply = *p;
225 	*p += sizeof(*info->filelock_reply);
226 
227 	if (unlikely(*p != end))
228 		goto bad;
229 	return 0;
230 
231 bad:
232 	return -EIO;
233 }
234 
235 /*
236  * parse create results
237  */
238 static int parse_reply_info_create(void **p, void *end,
239 				  struct ceph_mds_reply_info_parsed *info,
240 				  int features)
241 {
242 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
243 		if (*p == end) {
244 			info->has_create_ino = false;
245 		} else {
246 			info->has_create_ino = true;
247 			info->ino = ceph_decode_64(p);
248 		}
249 	}
250 
251 	if (unlikely(*p != end))
252 		goto bad;
253 	return 0;
254 
255 bad:
256 	return -EIO;
257 }
258 
259 /*
260  * parse extra results
261  */
262 static int parse_reply_info_extra(void **p, void *end,
263 				  struct ceph_mds_reply_info_parsed *info,
264 				  int features)
265 {
266 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
267 		return parse_reply_info_filelock(p, end, info, features);
268 	else if (info->head->op == CEPH_MDS_OP_READDIR ||
269 		 info->head->op == CEPH_MDS_OP_LSSNAP)
270 		return parse_reply_info_dir(p, end, info, features);
271 	else if (info->head->op == CEPH_MDS_OP_CREATE)
272 		return parse_reply_info_create(p, end, info, features);
273 	else
274 		return -EIO;
275 }
276 
277 /*
278  * parse entire mds reply
279  */
280 static int parse_reply_info(struct ceph_msg *msg,
281 			    struct ceph_mds_reply_info_parsed *info,
282 			    int features)
283 {
284 	void *p, *end;
285 	u32 len;
286 	int err;
287 
288 	info->head = msg->front.iov_base;
289 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
290 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
291 
292 	/* trace */
293 	ceph_decode_32_safe(&p, end, len, bad);
294 	if (len > 0) {
295 		ceph_decode_need(&p, end, len, bad);
296 		err = parse_reply_info_trace(&p, p+len, info, features);
297 		if (err < 0)
298 			goto out_bad;
299 	}
300 
301 	/* extra */
302 	ceph_decode_32_safe(&p, end, len, bad);
303 	if (len > 0) {
304 		ceph_decode_need(&p, end, len, bad);
305 		err = parse_reply_info_extra(&p, p+len, info, features);
306 		if (err < 0)
307 			goto out_bad;
308 	}
309 
310 	/* snap blob */
311 	ceph_decode_32_safe(&p, end, len, bad);
312 	info->snapblob_len = len;
313 	info->snapblob = p;
314 	p += len;
315 
316 	if (p != end)
317 		goto bad;
318 	return 0;
319 
320 bad:
321 	err = -EIO;
322 out_bad:
323 	pr_err("mds parse_reply err %d\n", err);
324 	return err;
325 }
326 
327 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
328 {
329 	kfree(info->dir_in);
330 }
331 
332 
333 /*
334  * sessions
335  */
336 static const char *session_state_name(int s)
337 {
338 	switch (s) {
339 	case CEPH_MDS_SESSION_NEW: return "new";
340 	case CEPH_MDS_SESSION_OPENING: return "opening";
341 	case CEPH_MDS_SESSION_OPEN: return "open";
342 	case CEPH_MDS_SESSION_HUNG: return "hung";
343 	case CEPH_MDS_SESSION_CLOSING: return "closing";
344 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
345 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
346 	default: return "???";
347 	}
348 }
349 
350 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
351 {
352 	if (atomic_inc_not_zero(&s->s_ref)) {
353 		dout("mdsc get_session %p %d -> %d\n", s,
354 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
355 		return s;
356 	} else {
357 		dout("mdsc get_session %p 0 -- FAIL", s);
358 		return NULL;
359 	}
360 }
361 
362 void ceph_put_mds_session(struct ceph_mds_session *s)
363 {
364 	dout("mdsc put_session %p %d -> %d\n", s,
365 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
366 	if (atomic_dec_and_test(&s->s_ref)) {
367 		if (s->s_auth.authorizer)
368 			ceph_auth_destroy_authorizer(
369 				s->s_mdsc->fsc->client->monc.auth,
370 				s->s_auth.authorizer);
371 		kfree(s);
372 	}
373 }
374 
375 /*
376  * called under mdsc->mutex
377  */
378 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
379 						   int mds)
380 {
381 	struct ceph_mds_session *session;
382 
383 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
384 		return NULL;
385 	session = mdsc->sessions[mds];
386 	dout("lookup_mds_session %p %d\n", session,
387 	     atomic_read(&session->s_ref));
388 	get_session(session);
389 	return session;
390 }
391 
392 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
393 {
394 	if (mds >= mdsc->max_sessions)
395 		return false;
396 	return mdsc->sessions[mds];
397 }
398 
399 static int __verify_registered_session(struct ceph_mds_client *mdsc,
400 				       struct ceph_mds_session *s)
401 {
402 	if (s->s_mds >= mdsc->max_sessions ||
403 	    mdsc->sessions[s->s_mds] != s)
404 		return -ENOENT;
405 	return 0;
406 }
407 
408 /*
409  * create+register a new session for given mds.
410  * called under mdsc->mutex.
411  */
412 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
413 						 int mds)
414 {
415 	struct ceph_mds_session *s;
416 
417 	if (mds >= mdsc->mdsmap->m_max_mds)
418 		return ERR_PTR(-EINVAL);
419 
420 	s = kzalloc(sizeof(*s), GFP_NOFS);
421 	if (!s)
422 		return ERR_PTR(-ENOMEM);
423 	s->s_mdsc = mdsc;
424 	s->s_mds = mds;
425 	s->s_state = CEPH_MDS_SESSION_NEW;
426 	s->s_ttl = 0;
427 	s->s_seq = 0;
428 	mutex_init(&s->s_mutex);
429 
430 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
431 
432 	spin_lock_init(&s->s_gen_ttl_lock);
433 	s->s_cap_gen = 0;
434 	s->s_cap_ttl = jiffies - 1;
435 
436 	spin_lock_init(&s->s_cap_lock);
437 	s->s_renew_requested = 0;
438 	s->s_renew_seq = 0;
439 	INIT_LIST_HEAD(&s->s_caps);
440 	s->s_nr_caps = 0;
441 	s->s_trim_caps = 0;
442 	atomic_set(&s->s_ref, 1);
443 	INIT_LIST_HEAD(&s->s_waiting);
444 	INIT_LIST_HEAD(&s->s_unsafe);
445 	s->s_num_cap_releases = 0;
446 	s->s_cap_iterator = NULL;
447 	INIT_LIST_HEAD(&s->s_cap_releases);
448 	INIT_LIST_HEAD(&s->s_cap_releases_done);
449 	INIT_LIST_HEAD(&s->s_cap_flushing);
450 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
451 
452 	dout("register_session mds%d\n", mds);
453 	if (mds >= mdsc->max_sessions) {
454 		int newmax = 1 << get_count_order(mds+1);
455 		struct ceph_mds_session **sa;
456 
457 		dout("register_session realloc to %d\n", newmax);
458 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
459 		if (sa == NULL)
460 			goto fail_realloc;
461 		if (mdsc->sessions) {
462 			memcpy(sa, mdsc->sessions,
463 			       mdsc->max_sessions * sizeof(void *));
464 			kfree(mdsc->sessions);
465 		}
466 		mdsc->sessions = sa;
467 		mdsc->max_sessions = newmax;
468 	}
469 	mdsc->sessions[mds] = s;
470 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
471 
472 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
473 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
474 
475 	return s;
476 
477 fail_realloc:
478 	kfree(s);
479 	return ERR_PTR(-ENOMEM);
480 }
481 
482 /*
483  * called under mdsc->mutex
484  */
485 static void __unregister_session(struct ceph_mds_client *mdsc,
486 			       struct ceph_mds_session *s)
487 {
488 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
489 	BUG_ON(mdsc->sessions[s->s_mds] != s);
490 	mdsc->sessions[s->s_mds] = NULL;
491 	ceph_con_close(&s->s_con);
492 	ceph_put_mds_session(s);
493 }
494 
495 /*
496  * drop session refs in request.
497  *
498  * should be last request ref, or hold mdsc->mutex
499  */
500 static void put_request_session(struct ceph_mds_request *req)
501 {
502 	if (req->r_session) {
503 		ceph_put_mds_session(req->r_session);
504 		req->r_session = NULL;
505 	}
506 }
507 
508 void ceph_mdsc_release_request(struct kref *kref)
509 {
510 	struct ceph_mds_request *req = container_of(kref,
511 						    struct ceph_mds_request,
512 						    r_kref);
513 	if (req->r_request)
514 		ceph_msg_put(req->r_request);
515 	if (req->r_reply) {
516 		ceph_msg_put(req->r_reply);
517 		destroy_reply_info(&req->r_reply_info);
518 	}
519 	if (req->r_inode) {
520 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
521 		iput(req->r_inode);
522 	}
523 	if (req->r_locked_dir)
524 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
525 	if (req->r_target_inode)
526 		iput(req->r_target_inode);
527 	if (req->r_dentry)
528 		dput(req->r_dentry);
529 	if (req->r_old_dentry) {
530 		/*
531 		 * track (and drop pins for) r_old_dentry_dir
532 		 * separately, since r_old_dentry's d_parent may have
533 		 * changed between the dir mutex being dropped and
534 		 * this request being freed.
535 		 */
536 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
537 				  CEPH_CAP_PIN);
538 		dput(req->r_old_dentry);
539 		iput(req->r_old_dentry_dir);
540 	}
541 	kfree(req->r_path1);
542 	kfree(req->r_path2);
543 	put_request_session(req);
544 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
545 	kfree(req);
546 }
547 
548 /*
549  * lookup session, bump ref if found.
550  *
551  * called under mdsc->mutex.
552  */
553 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
554 					     u64 tid)
555 {
556 	struct ceph_mds_request *req;
557 	struct rb_node *n = mdsc->request_tree.rb_node;
558 
559 	while (n) {
560 		req = rb_entry(n, struct ceph_mds_request, r_node);
561 		if (tid < req->r_tid)
562 			n = n->rb_left;
563 		else if (tid > req->r_tid)
564 			n = n->rb_right;
565 		else {
566 			ceph_mdsc_get_request(req);
567 			return req;
568 		}
569 	}
570 	return NULL;
571 }
572 
573 static void __insert_request(struct ceph_mds_client *mdsc,
574 			     struct ceph_mds_request *new)
575 {
576 	struct rb_node **p = &mdsc->request_tree.rb_node;
577 	struct rb_node *parent = NULL;
578 	struct ceph_mds_request *req = NULL;
579 
580 	while (*p) {
581 		parent = *p;
582 		req = rb_entry(parent, struct ceph_mds_request, r_node);
583 		if (new->r_tid < req->r_tid)
584 			p = &(*p)->rb_left;
585 		else if (new->r_tid > req->r_tid)
586 			p = &(*p)->rb_right;
587 		else
588 			BUG();
589 	}
590 
591 	rb_link_node(&new->r_node, parent, p);
592 	rb_insert_color(&new->r_node, &mdsc->request_tree);
593 }
594 
595 /*
596  * Register an in-flight request, and assign a tid.  Link to directory
597  * are modifying (if any).
598  *
599  * Called under mdsc->mutex.
600  */
601 static void __register_request(struct ceph_mds_client *mdsc,
602 			       struct ceph_mds_request *req,
603 			       struct inode *dir)
604 {
605 	req->r_tid = ++mdsc->last_tid;
606 	if (req->r_num_caps)
607 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
608 				  req->r_num_caps);
609 	dout("__register_request %p tid %lld\n", req, req->r_tid);
610 	ceph_mdsc_get_request(req);
611 	__insert_request(mdsc, req);
612 
613 	req->r_uid = current_fsuid();
614 	req->r_gid = current_fsgid();
615 
616 	if (dir) {
617 		struct ceph_inode_info *ci = ceph_inode(dir);
618 
619 		ihold(dir);
620 		spin_lock(&ci->i_unsafe_lock);
621 		req->r_unsafe_dir = dir;
622 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
623 		spin_unlock(&ci->i_unsafe_lock);
624 	}
625 }
626 
627 static void __unregister_request(struct ceph_mds_client *mdsc,
628 				 struct ceph_mds_request *req)
629 {
630 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
631 	rb_erase(&req->r_node, &mdsc->request_tree);
632 	RB_CLEAR_NODE(&req->r_node);
633 
634 	if (req->r_unsafe_dir) {
635 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
636 
637 		spin_lock(&ci->i_unsafe_lock);
638 		list_del_init(&req->r_unsafe_dir_item);
639 		spin_unlock(&ci->i_unsafe_lock);
640 
641 		iput(req->r_unsafe_dir);
642 		req->r_unsafe_dir = NULL;
643 	}
644 
645 	ceph_mdsc_put_request(req);
646 }
647 
648 /*
649  * Choose mds to send request to next.  If there is a hint set in the
650  * request (e.g., due to a prior forward hint from the mds), use that.
651  * Otherwise, consult frag tree and/or caps to identify the
652  * appropriate mds.  If all else fails, choose randomly.
653  *
654  * Called under mdsc->mutex.
655  */
656 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
657 {
658 	/*
659 	 * we don't need to worry about protecting the d_parent access
660 	 * here because we never renaming inside the snapped namespace
661 	 * except to resplice to another snapdir, and either the old or new
662 	 * result is a valid result.
663 	 */
664 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
665 		dentry = dentry->d_parent;
666 	return dentry;
667 }
668 
669 static int __choose_mds(struct ceph_mds_client *mdsc,
670 			struct ceph_mds_request *req)
671 {
672 	struct inode *inode;
673 	struct ceph_inode_info *ci;
674 	struct ceph_cap *cap;
675 	int mode = req->r_direct_mode;
676 	int mds = -1;
677 	u32 hash = req->r_direct_hash;
678 	bool is_hash = req->r_direct_is_hash;
679 
680 	/*
681 	 * is there a specific mds we should try?  ignore hint if we have
682 	 * no session and the mds is not up (active or recovering).
683 	 */
684 	if (req->r_resend_mds >= 0 &&
685 	    (__have_session(mdsc, req->r_resend_mds) ||
686 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
687 		dout("choose_mds using resend_mds mds%d\n",
688 		     req->r_resend_mds);
689 		return req->r_resend_mds;
690 	}
691 
692 	if (mode == USE_RANDOM_MDS)
693 		goto random;
694 
695 	inode = NULL;
696 	if (req->r_inode) {
697 		inode = req->r_inode;
698 	} else if (req->r_dentry) {
699 		/* ignore race with rename; old or new d_parent is okay */
700 		struct dentry *parent = req->r_dentry->d_parent;
701 		struct inode *dir = parent->d_inode;
702 
703 		if (dir->i_sb != mdsc->fsc->sb) {
704 			/* not this fs! */
705 			inode = req->r_dentry->d_inode;
706 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
707 			/* direct snapped/virtual snapdir requests
708 			 * based on parent dir inode */
709 			struct dentry *dn = get_nonsnap_parent(parent);
710 			inode = dn->d_inode;
711 			dout("__choose_mds using nonsnap parent %p\n", inode);
712 		} else if (req->r_dentry->d_inode) {
713 			/* dentry target */
714 			inode = req->r_dentry->d_inode;
715 		} else {
716 			/* dir + name */
717 			inode = dir;
718 			hash = ceph_dentry_hash(dir, req->r_dentry);
719 			is_hash = true;
720 		}
721 	}
722 
723 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
724 	     (int)hash, mode);
725 	if (!inode)
726 		goto random;
727 	ci = ceph_inode(inode);
728 
729 	if (is_hash && S_ISDIR(inode->i_mode)) {
730 		struct ceph_inode_frag frag;
731 		int found;
732 
733 		ceph_choose_frag(ci, hash, &frag, &found);
734 		if (found) {
735 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
736 				u8 r;
737 
738 				/* choose a random replica */
739 				get_random_bytes(&r, 1);
740 				r %= frag.ndist;
741 				mds = frag.dist[r];
742 				dout("choose_mds %p %llx.%llx "
743 				     "frag %u mds%d (%d/%d)\n",
744 				     inode, ceph_vinop(inode),
745 				     frag.frag, mds,
746 				     (int)r, frag.ndist);
747 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
748 				    CEPH_MDS_STATE_ACTIVE)
749 					return mds;
750 			}
751 
752 			/* since this file/dir wasn't known to be
753 			 * replicated, then we want to look for the
754 			 * authoritative mds. */
755 			mode = USE_AUTH_MDS;
756 			if (frag.mds >= 0) {
757 				/* choose auth mds */
758 				mds = frag.mds;
759 				dout("choose_mds %p %llx.%llx "
760 				     "frag %u mds%d (auth)\n",
761 				     inode, ceph_vinop(inode), frag.frag, mds);
762 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
763 				    CEPH_MDS_STATE_ACTIVE)
764 					return mds;
765 			}
766 		}
767 	}
768 
769 	spin_lock(&ci->i_ceph_lock);
770 	cap = NULL;
771 	if (mode == USE_AUTH_MDS)
772 		cap = ci->i_auth_cap;
773 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
774 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
775 	if (!cap) {
776 		spin_unlock(&ci->i_ceph_lock);
777 		goto random;
778 	}
779 	mds = cap->session->s_mds;
780 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
781 	     inode, ceph_vinop(inode), mds,
782 	     cap == ci->i_auth_cap ? "auth " : "", cap);
783 	spin_unlock(&ci->i_ceph_lock);
784 	return mds;
785 
786 random:
787 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
788 	dout("choose_mds chose random mds%d\n", mds);
789 	return mds;
790 }
791 
792 
793 /*
794  * session messages
795  */
796 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
797 {
798 	struct ceph_msg *msg;
799 	struct ceph_mds_session_head *h;
800 
801 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
802 			   false);
803 	if (!msg) {
804 		pr_err("create_session_msg ENOMEM creating msg\n");
805 		return NULL;
806 	}
807 	h = msg->front.iov_base;
808 	h->op = cpu_to_le32(op);
809 	h->seq = cpu_to_le64(seq);
810 	return msg;
811 }
812 
813 /*
814  * send session open request.
815  *
816  * called under mdsc->mutex
817  */
818 static int __open_session(struct ceph_mds_client *mdsc,
819 			  struct ceph_mds_session *session)
820 {
821 	struct ceph_msg *msg;
822 	int mstate;
823 	int mds = session->s_mds;
824 
825 	/* wait for mds to go active? */
826 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
827 	dout("open_session to mds%d (%s)\n", mds,
828 	     ceph_mds_state_name(mstate));
829 	session->s_state = CEPH_MDS_SESSION_OPENING;
830 	session->s_renew_requested = jiffies;
831 
832 	/* send connect message */
833 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
834 	if (!msg)
835 		return -ENOMEM;
836 	ceph_con_send(&session->s_con, msg);
837 	return 0;
838 }
839 
840 /*
841  * open sessions for any export targets for the given mds
842  *
843  * called under mdsc->mutex
844  */
845 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
846 					  struct ceph_mds_session *session)
847 {
848 	struct ceph_mds_info *mi;
849 	struct ceph_mds_session *ts;
850 	int i, mds = session->s_mds;
851 	int target;
852 
853 	if (mds >= mdsc->mdsmap->m_max_mds)
854 		return;
855 	mi = &mdsc->mdsmap->m_info[mds];
856 	dout("open_export_target_sessions for mds%d (%d targets)\n",
857 	     session->s_mds, mi->num_export_targets);
858 
859 	for (i = 0; i < mi->num_export_targets; i++) {
860 		target = mi->export_targets[i];
861 		ts = __ceph_lookup_mds_session(mdsc, target);
862 		if (!ts) {
863 			ts = register_session(mdsc, target);
864 			if (IS_ERR(ts))
865 				return;
866 		}
867 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
868 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
869 			__open_session(mdsc, session);
870 		else
871 			dout(" mds%d target mds%d %p is %s\n", session->s_mds,
872 			     i, ts, session_state_name(ts->s_state));
873 		ceph_put_mds_session(ts);
874 	}
875 }
876 
877 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
878 					   struct ceph_mds_session *session)
879 {
880 	mutex_lock(&mdsc->mutex);
881 	__open_export_target_sessions(mdsc, session);
882 	mutex_unlock(&mdsc->mutex);
883 }
884 
885 /*
886  * session caps
887  */
888 
889 /*
890  * Free preallocated cap messages assigned to this session
891  */
892 static void cleanup_cap_releases(struct ceph_mds_session *session)
893 {
894 	struct ceph_msg *msg;
895 
896 	spin_lock(&session->s_cap_lock);
897 	while (!list_empty(&session->s_cap_releases)) {
898 		msg = list_first_entry(&session->s_cap_releases,
899 				       struct ceph_msg, list_head);
900 		list_del_init(&msg->list_head);
901 		ceph_msg_put(msg);
902 	}
903 	while (!list_empty(&session->s_cap_releases_done)) {
904 		msg = list_first_entry(&session->s_cap_releases_done,
905 				       struct ceph_msg, list_head);
906 		list_del_init(&msg->list_head);
907 		ceph_msg_put(msg);
908 	}
909 	spin_unlock(&session->s_cap_lock);
910 }
911 
912 /*
913  * Helper to safely iterate over all caps associated with a session, with
914  * special care taken to handle a racing __ceph_remove_cap().
915  *
916  * Caller must hold session s_mutex.
917  */
918 static int iterate_session_caps(struct ceph_mds_session *session,
919 				 int (*cb)(struct inode *, struct ceph_cap *,
920 					    void *), void *arg)
921 {
922 	struct list_head *p;
923 	struct ceph_cap *cap;
924 	struct inode *inode, *last_inode = NULL;
925 	struct ceph_cap *old_cap = NULL;
926 	int ret;
927 
928 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
929 	spin_lock(&session->s_cap_lock);
930 	p = session->s_caps.next;
931 	while (p != &session->s_caps) {
932 		cap = list_entry(p, struct ceph_cap, session_caps);
933 		inode = igrab(&cap->ci->vfs_inode);
934 		if (!inode) {
935 			p = p->next;
936 			continue;
937 		}
938 		session->s_cap_iterator = cap;
939 		spin_unlock(&session->s_cap_lock);
940 
941 		if (last_inode) {
942 			iput(last_inode);
943 			last_inode = NULL;
944 		}
945 		if (old_cap) {
946 			ceph_put_cap(session->s_mdsc, old_cap);
947 			old_cap = NULL;
948 		}
949 
950 		ret = cb(inode, cap, arg);
951 		last_inode = inode;
952 
953 		spin_lock(&session->s_cap_lock);
954 		p = p->next;
955 		if (cap->ci == NULL) {
956 			dout("iterate_session_caps  finishing cap %p removal\n",
957 			     cap);
958 			BUG_ON(cap->session != session);
959 			list_del_init(&cap->session_caps);
960 			session->s_nr_caps--;
961 			cap->session = NULL;
962 			old_cap = cap;  /* put_cap it w/o locks held */
963 		}
964 		if (ret < 0)
965 			goto out;
966 	}
967 	ret = 0;
968 out:
969 	session->s_cap_iterator = NULL;
970 	spin_unlock(&session->s_cap_lock);
971 
972 	if (last_inode)
973 		iput(last_inode);
974 	if (old_cap)
975 		ceph_put_cap(session->s_mdsc, old_cap);
976 
977 	return ret;
978 }
979 
980 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
981 				  void *arg)
982 {
983 	struct ceph_inode_info *ci = ceph_inode(inode);
984 	int drop = 0;
985 
986 	dout("removing cap %p, ci is %p, inode is %p\n",
987 	     cap, ci, &ci->vfs_inode);
988 	spin_lock(&ci->i_ceph_lock);
989 	__ceph_remove_cap(cap);
990 	if (!__ceph_is_any_real_caps(ci)) {
991 		struct ceph_mds_client *mdsc =
992 			ceph_sb_to_client(inode->i_sb)->mdsc;
993 
994 		spin_lock(&mdsc->cap_dirty_lock);
995 		if (!list_empty(&ci->i_dirty_item)) {
996 			pr_info(" dropping dirty %s state for %p %lld\n",
997 				ceph_cap_string(ci->i_dirty_caps),
998 				inode, ceph_ino(inode));
999 			ci->i_dirty_caps = 0;
1000 			list_del_init(&ci->i_dirty_item);
1001 			drop = 1;
1002 		}
1003 		if (!list_empty(&ci->i_flushing_item)) {
1004 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1005 				ceph_cap_string(ci->i_flushing_caps),
1006 				inode, ceph_ino(inode));
1007 			ci->i_flushing_caps = 0;
1008 			list_del_init(&ci->i_flushing_item);
1009 			mdsc->num_cap_flushing--;
1010 			drop = 1;
1011 		}
1012 		if (drop && ci->i_wrbuffer_ref) {
1013 			pr_info(" dropping dirty data for %p %lld\n",
1014 				inode, ceph_ino(inode));
1015 			ci->i_wrbuffer_ref = 0;
1016 			ci->i_wrbuffer_ref_head = 0;
1017 			drop++;
1018 		}
1019 		spin_unlock(&mdsc->cap_dirty_lock);
1020 	}
1021 	spin_unlock(&ci->i_ceph_lock);
1022 	while (drop--)
1023 		iput(inode);
1024 	return 0;
1025 }
1026 
1027 /*
1028  * caller must hold session s_mutex
1029  */
1030 static void remove_session_caps(struct ceph_mds_session *session)
1031 {
1032 	dout("remove_session_caps on %p\n", session);
1033 	iterate_session_caps(session, remove_session_caps_cb, NULL);
1034 
1035 	spin_lock(&session->s_cap_lock);
1036 	if (session->s_nr_caps > 0) {
1037 		struct super_block *sb = session->s_mdsc->fsc->sb;
1038 		struct inode *inode;
1039 		struct ceph_cap *cap, *prev = NULL;
1040 		struct ceph_vino vino;
1041 		/*
1042 		 * iterate_session_caps() skips inodes that are being
1043 		 * deleted, we need to wait until deletions are complete.
1044 		 * __wait_on_freeing_inode() is designed for the job,
1045 		 * but it is not exported, so use lookup inode function
1046 		 * to access it.
1047 		 */
1048 		while (!list_empty(&session->s_caps)) {
1049 			cap = list_entry(session->s_caps.next,
1050 					 struct ceph_cap, session_caps);
1051 			if (cap == prev)
1052 				break;
1053 			prev = cap;
1054 			vino = cap->ci->i_vino;
1055 			spin_unlock(&session->s_cap_lock);
1056 
1057 			inode = ceph_find_inode(sb, vino);
1058 			iput(inode);
1059 
1060 			spin_lock(&session->s_cap_lock);
1061 		}
1062 	}
1063 	spin_unlock(&session->s_cap_lock);
1064 
1065 	BUG_ON(session->s_nr_caps > 0);
1066 	BUG_ON(!list_empty(&session->s_cap_flushing));
1067 	cleanup_cap_releases(session);
1068 }
1069 
1070 /*
1071  * wake up any threads waiting on this session's caps.  if the cap is
1072  * old (didn't get renewed on the client reconnect), remove it now.
1073  *
1074  * caller must hold s_mutex.
1075  */
1076 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1077 			      void *arg)
1078 {
1079 	struct ceph_inode_info *ci = ceph_inode(inode);
1080 
1081 	wake_up_all(&ci->i_cap_wq);
1082 	if (arg) {
1083 		spin_lock(&ci->i_ceph_lock);
1084 		ci->i_wanted_max_size = 0;
1085 		ci->i_requested_max_size = 0;
1086 		spin_unlock(&ci->i_ceph_lock);
1087 	}
1088 	return 0;
1089 }
1090 
1091 static void wake_up_session_caps(struct ceph_mds_session *session,
1092 				 int reconnect)
1093 {
1094 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1095 	iterate_session_caps(session, wake_up_session_cb,
1096 			     (void *)(unsigned long)reconnect);
1097 }
1098 
1099 /*
1100  * Send periodic message to MDS renewing all currently held caps.  The
1101  * ack will reset the expiration for all caps from this session.
1102  *
1103  * caller holds s_mutex
1104  */
1105 static int send_renew_caps(struct ceph_mds_client *mdsc,
1106 			   struct ceph_mds_session *session)
1107 {
1108 	struct ceph_msg *msg;
1109 	int state;
1110 
1111 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1112 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1113 		pr_info("mds%d caps stale\n", session->s_mds);
1114 	session->s_renew_requested = jiffies;
1115 
1116 	/* do not try to renew caps until a recovering mds has reconnected
1117 	 * with its clients. */
1118 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1119 	if (state < CEPH_MDS_STATE_RECONNECT) {
1120 		dout("send_renew_caps ignoring mds%d (%s)\n",
1121 		     session->s_mds, ceph_mds_state_name(state));
1122 		return 0;
1123 	}
1124 
1125 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1126 		ceph_mds_state_name(state));
1127 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1128 				 ++session->s_renew_seq);
1129 	if (!msg)
1130 		return -ENOMEM;
1131 	ceph_con_send(&session->s_con, msg);
1132 	return 0;
1133 }
1134 
1135 /*
1136  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1137  *
1138  * Called under session->s_mutex
1139  */
1140 static void renewed_caps(struct ceph_mds_client *mdsc,
1141 			 struct ceph_mds_session *session, int is_renew)
1142 {
1143 	int was_stale;
1144 	int wake = 0;
1145 
1146 	spin_lock(&session->s_cap_lock);
1147 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1148 
1149 	session->s_cap_ttl = session->s_renew_requested +
1150 		mdsc->mdsmap->m_session_timeout*HZ;
1151 
1152 	if (was_stale) {
1153 		if (time_before(jiffies, session->s_cap_ttl)) {
1154 			pr_info("mds%d caps renewed\n", session->s_mds);
1155 			wake = 1;
1156 		} else {
1157 			pr_info("mds%d caps still stale\n", session->s_mds);
1158 		}
1159 	}
1160 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1161 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1162 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1163 	spin_unlock(&session->s_cap_lock);
1164 
1165 	if (wake)
1166 		wake_up_session_caps(session, 0);
1167 }
1168 
1169 /*
1170  * send a session close request
1171  */
1172 static int request_close_session(struct ceph_mds_client *mdsc,
1173 				 struct ceph_mds_session *session)
1174 {
1175 	struct ceph_msg *msg;
1176 
1177 	dout("request_close_session mds%d state %s seq %lld\n",
1178 	     session->s_mds, session_state_name(session->s_state),
1179 	     session->s_seq);
1180 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1181 	if (!msg)
1182 		return -ENOMEM;
1183 	ceph_con_send(&session->s_con, msg);
1184 	return 0;
1185 }
1186 
1187 /*
1188  * Called with s_mutex held.
1189  */
1190 static int __close_session(struct ceph_mds_client *mdsc,
1191 			 struct ceph_mds_session *session)
1192 {
1193 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1194 		return 0;
1195 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1196 	return request_close_session(mdsc, session);
1197 }
1198 
1199 /*
1200  * Trim old(er) caps.
1201  *
1202  * Because we can't cache an inode without one or more caps, we do
1203  * this indirectly: if a cap is unused, we prune its aliases, at which
1204  * point the inode will hopefully get dropped to.
1205  *
1206  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1207  * memory pressure from the MDS, though, so it needn't be perfect.
1208  */
1209 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1210 {
1211 	struct ceph_mds_session *session = arg;
1212 	struct ceph_inode_info *ci = ceph_inode(inode);
1213 	int used, oissued, mine;
1214 
1215 	if (session->s_trim_caps <= 0)
1216 		return -1;
1217 
1218 	spin_lock(&ci->i_ceph_lock);
1219 	mine = cap->issued | cap->implemented;
1220 	used = __ceph_caps_used(ci);
1221 	oissued = __ceph_caps_issued_other(ci, cap);
1222 
1223 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1224 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1225 	     ceph_cap_string(used));
1226 	if (ci->i_dirty_caps)
1227 		goto out;   /* dirty caps */
1228 	if ((used & ~oissued) & mine)
1229 		goto out;   /* we need these caps */
1230 
1231 	session->s_trim_caps--;
1232 	if (oissued) {
1233 		/* we aren't the only cap.. just remove us */
1234 		__queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1235 				    cap->mseq, cap->issue_seq);
1236 		__ceph_remove_cap(cap);
1237 	} else {
1238 		/* try to drop referring dentries */
1239 		spin_unlock(&ci->i_ceph_lock);
1240 		d_prune_aliases(inode);
1241 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1242 		     inode, cap, atomic_read(&inode->i_count));
1243 		return 0;
1244 	}
1245 
1246 out:
1247 	spin_unlock(&ci->i_ceph_lock);
1248 	return 0;
1249 }
1250 
1251 /*
1252  * Trim session cap count down to some max number.
1253  */
1254 static int trim_caps(struct ceph_mds_client *mdsc,
1255 		     struct ceph_mds_session *session,
1256 		     int max_caps)
1257 {
1258 	int trim_caps = session->s_nr_caps - max_caps;
1259 
1260 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1261 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1262 	if (trim_caps > 0) {
1263 		session->s_trim_caps = trim_caps;
1264 		iterate_session_caps(session, trim_caps_cb, session);
1265 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1266 		     session->s_mds, session->s_nr_caps, max_caps,
1267 			trim_caps - session->s_trim_caps);
1268 		session->s_trim_caps = 0;
1269 	}
1270 	return 0;
1271 }
1272 
1273 /*
1274  * Allocate cap_release messages.  If there is a partially full message
1275  * in the queue, try to allocate enough to cover it's remainder, so that
1276  * we can send it immediately.
1277  *
1278  * Called under s_mutex.
1279  */
1280 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1281 			  struct ceph_mds_session *session)
1282 {
1283 	struct ceph_msg *msg, *partial = NULL;
1284 	struct ceph_mds_cap_release *head;
1285 	int err = -ENOMEM;
1286 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1287 	int num;
1288 
1289 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1290 	     extra);
1291 
1292 	spin_lock(&session->s_cap_lock);
1293 
1294 	if (!list_empty(&session->s_cap_releases)) {
1295 		msg = list_first_entry(&session->s_cap_releases,
1296 				       struct ceph_msg,
1297 				 list_head);
1298 		head = msg->front.iov_base;
1299 		num = le32_to_cpu(head->num);
1300 		if (num) {
1301 			dout(" partial %p with (%d/%d)\n", msg, num,
1302 			     (int)CEPH_CAPS_PER_RELEASE);
1303 			extra += CEPH_CAPS_PER_RELEASE - num;
1304 			partial = msg;
1305 		}
1306 	}
1307 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1308 		spin_unlock(&session->s_cap_lock);
1309 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1310 				   GFP_NOFS, false);
1311 		if (!msg)
1312 			goto out_unlocked;
1313 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1314 		     (int)msg->front.iov_len);
1315 		head = msg->front.iov_base;
1316 		head->num = cpu_to_le32(0);
1317 		msg->front.iov_len = sizeof(*head);
1318 		spin_lock(&session->s_cap_lock);
1319 		list_add(&msg->list_head, &session->s_cap_releases);
1320 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1321 	}
1322 
1323 	if (partial) {
1324 		head = partial->front.iov_base;
1325 		num = le32_to_cpu(head->num);
1326 		dout(" queueing partial %p with %d/%d\n", partial, num,
1327 		     (int)CEPH_CAPS_PER_RELEASE);
1328 		list_move_tail(&partial->list_head,
1329 			       &session->s_cap_releases_done);
1330 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1331 	}
1332 	err = 0;
1333 	spin_unlock(&session->s_cap_lock);
1334 out_unlocked:
1335 	return err;
1336 }
1337 
1338 /*
1339  * flush all dirty inode data to disk.
1340  *
1341  * returns true if we've flushed through want_flush_seq
1342  */
1343 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1344 {
1345 	int mds, ret = 1;
1346 
1347 	dout("check_cap_flush want %lld\n", want_flush_seq);
1348 	mutex_lock(&mdsc->mutex);
1349 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1350 		struct ceph_mds_session *session = mdsc->sessions[mds];
1351 
1352 		if (!session)
1353 			continue;
1354 		get_session(session);
1355 		mutex_unlock(&mdsc->mutex);
1356 
1357 		mutex_lock(&session->s_mutex);
1358 		if (!list_empty(&session->s_cap_flushing)) {
1359 			struct ceph_inode_info *ci =
1360 				list_entry(session->s_cap_flushing.next,
1361 					   struct ceph_inode_info,
1362 					   i_flushing_item);
1363 			struct inode *inode = &ci->vfs_inode;
1364 
1365 			spin_lock(&ci->i_ceph_lock);
1366 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1367 				dout("check_cap_flush still flushing %p "
1368 				     "seq %lld <= %lld to mds%d\n", inode,
1369 				     ci->i_cap_flush_seq, want_flush_seq,
1370 				     session->s_mds);
1371 				ret = 0;
1372 			}
1373 			spin_unlock(&ci->i_ceph_lock);
1374 		}
1375 		mutex_unlock(&session->s_mutex);
1376 		ceph_put_mds_session(session);
1377 
1378 		if (!ret)
1379 			return ret;
1380 		mutex_lock(&mdsc->mutex);
1381 	}
1382 
1383 	mutex_unlock(&mdsc->mutex);
1384 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1385 	return ret;
1386 }
1387 
1388 /*
1389  * called under s_mutex
1390  */
1391 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1392 			    struct ceph_mds_session *session)
1393 {
1394 	struct ceph_msg *msg;
1395 
1396 	dout("send_cap_releases mds%d\n", session->s_mds);
1397 	spin_lock(&session->s_cap_lock);
1398 	while (!list_empty(&session->s_cap_releases_done)) {
1399 		msg = list_first_entry(&session->s_cap_releases_done,
1400 				 struct ceph_msg, list_head);
1401 		list_del_init(&msg->list_head);
1402 		spin_unlock(&session->s_cap_lock);
1403 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1404 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1405 		ceph_con_send(&session->s_con, msg);
1406 		spin_lock(&session->s_cap_lock);
1407 	}
1408 	spin_unlock(&session->s_cap_lock);
1409 }
1410 
1411 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1412 				 struct ceph_mds_session *session)
1413 {
1414 	struct ceph_msg *msg;
1415 	struct ceph_mds_cap_release *head;
1416 	unsigned num;
1417 
1418 	dout("discard_cap_releases mds%d\n", session->s_mds);
1419 	spin_lock(&session->s_cap_lock);
1420 
1421 	/* zero out the in-progress message */
1422 	msg = list_first_entry(&session->s_cap_releases,
1423 			       struct ceph_msg, list_head);
1424 	head = msg->front.iov_base;
1425 	num = le32_to_cpu(head->num);
1426 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1427 	head->num = cpu_to_le32(0);
1428 	msg->front.iov_len = sizeof(*head);
1429 	session->s_num_cap_releases += num;
1430 
1431 	/* requeue completed messages */
1432 	while (!list_empty(&session->s_cap_releases_done)) {
1433 		msg = list_first_entry(&session->s_cap_releases_done,
1434 				 struct ceph_msg, list_head);
1435 		list_del_init(&msg->list_head);
1436 
1437 		head = msg->front.iov_base;
1438 		num = le32_to_cpu(head->num);
1439 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1440 		     num);
1441 		session->s_num_cap_releases += num;
1442 		head->num = cpu_to_le32(0);
1443 		msg->front.iov_len = sizeof(*head);
1444 		list_add(&msg->list_head, &session->s_cap_releases);
1445 	}
1446 
1447 	spin_unlock(&session->s_cap_lock);
1448 }
1449 
1450 /*
1451  * requests
1452  */
1453 
1454 /*
1455  * Create an mds request.
1456  */
1457 struct ceph_mds_request *
1458 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1459 {
1460 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1461 
1462 	if (!req)
1463 		return ERR_PTR(-ENOMEM);
1464 
1465 	mutex_init(&req->r_fill_mutex);
1466 	req->r_mdsc = mdsc;
1467 	req->r_started = jiffies;
1468 	req->r_resend_mds = -1;
1469 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1470 	req->r_fmode = -1;
1471 	kref_init(&req->r_kref);
1472 	INIT_LIST_HEAD(&req->r_wait);
1473 	init_completion(&req->r_completion);
1474 	init_completion(&req->r_safe_completion);
1475 	INIT_LIST_HEAD(&req->r_unsafe_item);
1476 
1477 	req->r_op = op;
1478 	req->r_direct_mode = mode;
1479 	return req;
1480 }
1481 
1482 /*
1483  * return oldest (lowest) request, tid in request tree, 0 if none.
1484  *
1485  * called under mdsc->mutex.
1486  */
1487 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1488 {
1489 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1490 		return NULL;
1491 	return rb_entry(rb_first(&mdsc->request_tree),
1492 			struct ceph_mds_request, r_node);
1493 }
1494 
1495 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1496 {
1497 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1498 
1499 	if (req)
1500 		return req->r_tid;
1501 	return 0;
1502 }
1503 
1504 /*
1505  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1506  * on build_path_from_dentry in fs/cifs/dir.c.
1507  *
1508  * If @stop_on_nosnap, generate path relative to the first non-snapped
1509  * inode.
1510  *
1511  * Encode hidden .snap dirs as a double /, i.e.
1512  *   foo/.snap/bar -> foo//bar
1513  */
1514 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1515 			   int stop_on_nosnap)
1516 {
1517 	struct dentry *temp;
1518 	char *path;
1519 	int len, pos;
1520 	unsigned seq;
1521 
1522 	if (dentry == NULL)
1523 		return ERR_PTR(-EINVAL);
1524 
1525 retry:
1526 	len = 0;
1527 	seq = read_seqbegin(&rename_lock);
1528 	rcu_read_lock();
1529 	for (temp = dentry; !IS_ROOT(temp);) {
1530 		struct inode *inode = temp->d_inode;
1531 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1532 			len++;  /* slash only */
1533 		else if (stop_on_nosnap && inode &&
1534 			 ceph_snap(inode) == CEPH_NOSNAP)
1535 			break;
1536 		else
1537 			len += 1 + temp->d_name.len;
1538 		temp = temp->d_parent;
1539 	}
1540 	rcu_read_unlock();
1541 	if (len)
1542 		len--;  /* no leading '/' */
1543 
1544 	path = kmalloc(len+1, GFP_NOFS);
1545 	if (path == NULL)
1546 		return ERR_PTR(-ENOMEM);
1547 	pos = len;
1548 	path[pos] = 0;	/* trailing null */
1549 	rcu_read_lock();
1550 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1551 		struct inode *inode;
1552 
1553 		spin_lock(&temp->d_lock);
1554 		inode = temp->d_inode;
1555 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1556 			dout("build_path path+%d: %p SNAPDIR\n",
1557 			     pos, temp);
1558 		} else if (stop_on_nosnap && inode &&
1559 			   ceph_snap(inode) == CEPH_NOSNAP) {
1560 			spin_unlock(&temp->d_lock);
1561 			break;
1562 		} else {
1563 			pos -= temp->d_name.len;
1564 			if (pos < 0) {
1565 				spin_unlock(&temp->d_lock);
1566 				break;
1567 			}
1568 			strncpy(path + pos, temp->d_name.name,
1569 				temp->d_name.len);
1570 		}
1571 		spin_unlock(&temp->d_lock);
1572 		if (pos)
1573 			path[--pos] = '/';
1574 		temp = temp->d_parent;
1575 	}
1576 	rcu_read_unlock();
1577 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1578 		pr_err("build_path did not end path lookup where "
1579 		       "expected, namelen is %d, pos is %d\n", len, pos);
1580 		/* presumably this is only possible if racing with a
1581 		   rename of one of the parent directories (we can not
1582 		   lock the dentries above us to prevent this, but
1583 		   retrying should be harmless) */
1584 		kfree(path);
1585 		goto retry;
1586 	}
1587 
1588 	*base = ceph_ino(temp->d_inode);
1589 	*plen = len;
1590 	dout("build_path on %p %d built %llx '%.*s'\n",
1591 	     dentry, d_count(dentry), *base, len, path);
1592 	return path;
1593 }
1594 
1595 static int build_dentry_path(struct dentry *dentry,
1596 			     const char **ppath, int *ppathlen, u64 *pino,
1597 			     int *pfreepath)
1598 {
1599 	char *path;
1600 
1601 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1602 		*pino = ceph_ino(dentry->d_parent->d_inode);
1603 		*ppath = dentry->d_name.name;
1604 		*ppathlen = dentry->d_name.len;
1605 		return 0;
1606 	}
1607 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1608 	if (IS_ERR(path))
1609 		return PTR_ERR(path);
1610 	*ppath = path;
1611 	*pfreepath = 1;
1612 	return 0;
1613 }
1614 
1615 static int build_inode_path(struct inode *inode,
1616 			    const char **ppath, int *ppathlen, u64 *pino,
1617 			    int *pfreepath)
1618 {
1619 	struct dentry *dentry;
1620 	char *path;
1621 
1622 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1623 		*pino = ceph_ino(inode);
1624 		*ppathlen = 0;
1625 		return 0;
1626 	}
1627 	dentry = d_find_alias(inode);
1628 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1629 	dput(dentry);
1630 	if (IS_ERR(path))
1631 		return PTR_ERR(path);
1632 	*ppath = path;
1633 	*pfreepath = 1;
1634 	return 0;
1635 }
1636 
1637 /*
1638  * request arguments may be specified via an inode *, a dentry *, or
1639  * an explicit ino+path.
1640  */
1641 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1642 				  const char *rpath, u64 rino,
1643 				  const char **ppath, int *pathlen,
1644 				  u64 *ino, int *freepath)
1645 {
1646 	int r = 0;
1647 
1648 	if (rinode) {
1649 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1650 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1651 		     ceph_snap(rinode));
1652 	} else if (rdentry) {
1653 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1654 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1655 		     *ppath);
1656 	} else if (rpath || rino) {
1657 		*ino = rino;
1658 		*ppath = rpath;
1659 		*pathlen = rpath ? strlen(rpath) : 0;
1660 		dout(" path %.*s\n", *pathlen, rpath);
1661 	}
1662 
1663 	return r;
1664 }
1665 
1666 /*
1667  * called under mdsc->mutex
1668  */
1669 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1670 					       struct ceph_mds_request *req,
1671 					       int mds)
1672 {
1673 	struct ceph_msg *msg;
1674 	struct ceph_mds_request_head *head;
1675 	const char *path1 = NULL;
1676 	const char *path2 = NULL;
1677 	u64 ino1 = 0, ino2 = 0;
1678 	int pathlen1 = 0, pathlen2 = 0;
1679 	int freepath1 = 0, freepath2 = 0;
1680 	int len;
1681 	u16 releases;
1682 	void *p, *end;
1683 	int ret;
1684 
1685 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1686 			      req->r_path1, req->r_ino1.ino,
1687 			      &path1, &pathlen1, &ino1, &freepath1);
1688 	if (ret < 0) {
1689 		msg = ERR_PTR(ret);
1690 		goto out;
1691 	}
1692 
1693 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1694 			      req->r_path2, req->r_ino2.ino,
1695 			      &path2, &pathlen2, &ino2, &freepath2);
1696 	if (ret < 0) {
1697 		msg = ERR_PTR(ret);
1698 		goto out_free1;
1699 	}
1700 
1701 	len = sizeof(*head) +
1702 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1703 
1704 	/* calculate (max) length for cap releases */
1705 	len += sizeof(struct ceph_mds_request_release) *
1706 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1707 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1708 	if (req->r_dentry_drop)
1709 		len += req->r_dentry->d_name.len;
1710 	if (req->r_old_dentry_drop)
1711 		len += req->r_old_dentry->d_name.len;
1712 
1713 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1714 	if (!msg) {
1715 		msg = ERR_PTR(-ENOMEM);
1716 		goto out_free2;
1717 	}
1718 
1719 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1720 
1721 	head = msg->front.iov_base;
1722 	p = msg->front.iov_base + sizeof(*head);
1723 	end = msg->front.iov_base + msg->front.iov_len;
1724 
1725 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1726 	head->op = cpu_to_le32(req->r_op);
1727 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1728 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1729 	head->args = req->r_args;
1730 
1731 	ceph_encode_filepath(&p, end, ino1, path1);
1732 	ceph_encode_filepath(&p, end, ino2, path2);
1733 
1734 	/* make note of release offset, in case we need to replay */
1735 	req->r_request_release_offset = p - msg->front.iov_base;
1736 
1737 	/* cap releases */
1738 	releases = 0;
1739 	if (req->r_inode_drop)
1740 		releases += ceph_encode_inode_release(&p,
1741 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1742 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1743 	if (req->r_dentry_drop)
1744 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1745 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1746 	if (req->r_old_dentry_drop)
1747 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1748 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1749 	if (req->r_old_inode_drop)
1750 		releases += ceph_encode_inode_release(&p,
1751 		      req->r_old_dentry->d_inode,
1752 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1753 	head->num_releases = cpu_to_le16(releases);
1754 
1755 	BUG_ON(p > end);
1756 	msg->front.iov_len = p - msg->front.iov_base;
1757 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1758 
1759 	if (req->r_data_len) {
1760 		/* outbound data set only by ceph_sync_setxattr() */
1761 		BUG_ON(!req->r_pages);
1762 		ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
1763 	}
1764 
1765 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1766 	msg->hdr.data_off = cpu_to_le16(0);
1767 
1768 out_free2:
1769 	if (freepath2)
1770 		kfree((char *)path2);
1771 out_free1:
1772 	if (freepath1)
1773 		kfree((char *)path1);
1774 out:
1775 	return msg;
1776 }
1777 
1778 /*
1779  * called under mdsc->mutex if error, under no mutex if
1780  * success.
1781  */
1782 static void complete_request(struct ceph_mds_client *mdsc,
1783 			     struct ceph_mds_request *req)
1784 {
1785 	if (req->r_callback)
1786 		req->r_callback(mdsc, req);
1787 	else
1788 		complete_all(&req->r_completion);
1789 }
1790 
1791 /*
1792  * called under mdsc->mutex
1793  */
1794 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1795 				  struct ceph_mds_request *req,
1796 				  int mds)
1797 {
1798 	struct ceph_mds_request_head *rhead;
1799 	struct ceph_msg *msg;
1800 	int flags = 0;
1801 
1802 	req->r_attempts++;
1803 	if (req->r_inode) {
1804 		struct ceph_cap *cap =
1805 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1806 
1807 		if (cap)
1808 			req->r_sent_on_mseq = cap->mseq;
1809 		else
1810 			req->r_sent_on_mseq = -1;
1811 	}
1812 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1813 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1814 
1815 	if (req->r_got_unsafe) {
1816 		/*
1817 		 * Replay.  Do not regenerate message (and rebuild
1818 		 * paths, etc.); just use the original message.
1819 		 * Rebuilding paths will break for renames because
1820 		 * d_move mangles the src name.
1821 		 */
1822 		msg = req->r_request;
1823 		rhead = msg->front.iov_base;
1824 
1825 		flags = le32_to_cpu(rhead->flags);
1826 		flags |= CEPH_MDS_FLAG_REPLAY;
1827 		rhead->flags = cpu_to_le32(flags);
1828 
1829 		if (req->r_target_inode)
1830 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1831 
1832 		rhead->num_retry = req->r_attempts - 1;
1833 
1834 		/* remove cap/dentry releases from message */
1835 		rhead->num_releases = 0;
1836 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1837 		msg->front.iov_len = req->r_request_release_offset;
1838 		return 0;
1839 	}
1840 
1841 	if (req->r_request) {
1842 		ceph_msg_put(req->r_request);
1843 		req->r_request = NULL;
1844 	}
1845 	msg = create_request_message(mdsc, req, mds);
1846 	if (IS_ERR(msg)) {
1847 		req->r_err = PTR_ERR(msg);
1848 		complete_request(mdsc, req);
1849 		return PTR_ERR(msg);
1850 	}
1851 	req->r_request = msg;
1852 
1853 	rhead = msg->front.iov_base;
1854 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1855 	if (req->r_got_unsafe)
1856 		flags |= CEPH_MDS_FLAG_REPLAY;
1857 	if (req->r_locked_dir)
1858 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1859 	rhead->flags = cpu_to_le32(flags);
1860 	rhead->num_fwd = req->r_num_fwd;
1861 	rhead->num_retry = req->r_attempts - 1;
1862 	rhead->ino = 0;
1863 
1864 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1865 	return 0;
1866 }
1867 
1868 /*
1869  * send request, or put it on the appropriate wait list.
1870  */
1871 static int __do_request(struct ceph_mds_client *mdsc,
1872 			struct ceph_mds_request *req)
1873 {
1874 	struct ceph_mds_session *session = NULL;
1875 	int mds = -1;
1876 	int err = -EAGAIN;
1877 
1878 	if (req->r_err || req->r_got_result)
1879 		goto out;
1880 
1881 	if (req->r_timeout &&
1882 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1883 		dout("do_request timed out\n");
1884 		err = -EIO;
1885 		goto finish;
1886 	}
1887 
1888 	put_request_session(req);
1889 
1890 	mds = __choose_mds(mdsc, req);
1891 	if (mds < 0 ||
1892 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1893 		dout("do_request no mds or not active, waiting for map\n");
1894 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1895 		goto out;
1896 	}
1897 
1898 	/* get, open session */
1899 	session = __ceph_lookup_mds_session(mdsc, mds);
1900 	if (!session) {
1901 		session = register_session(mdsc, mds);
1902 		if (IS_ERR(session)) {
1903 			err = PTR_ERR(session);
1904 			goto finish;
1905 		}
1906 	}
1907 	req->r_session = get_session(session);
1908 
1909 	dout("do_request mds%d session %p state %s\n", mds, session,
1910 	     session_state_name(session->s_state));
1911 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1912 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1913 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1914 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1915 			__open_session(mdsc, session);
1916 		list_add(&req->r_wait, &session->s_waiting);
1917 		goto out_session;
1918 	}
1919 
1920 	/* send request */
1921 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1922 
1923 	if (req->r_request_started == 0)   /* note request start time */
1924 		req->r_request_started = jiffies;
1925 
1926 	err = __prepare_send_request(mdsc, req, mds);
1927 	if (!err) {
1928 		ceph_msg_get(req->r_request);
1929 		ceph_con_send(&session->s_con, req->r_request);
1930 	}
1931 
1932 out_session:
1933 	ceph_put_mds_session(session);
1934 out:
1935 	return err;
1936 
1937 finish:
1938 	req->r_err = err;
1939 	complete_request(mdsc, req);
1940 	goto out;
1941 }
1942 
1943 /*
1944  * called under mdsc->mutex
1945  */
1946 static void __wake_requests(struct ceph_mds_client *mdsc,
1947 			    struct list_head *head)
1948 {
1949 	struct ceph_mds_request *req;
1950 	LIST_HEAD(tmp_list);
1951 
1952 	list_splice_init(head, &tmp_list);
1953 
1954 	while (!list_empty(&tmp_list)) {
1955 		req = list_entry(tmp_list.next,
1956 				 struct ceph_mds_request, r_wait);
1957 		list_del_init(&req->r_wait);
1958 		dout(" wake request %p tid %llu\n", req, req->r_tid);
1959 		__do_request(mdsc, req);
1960 	}
1961 }
1962 
1963 /*
1964  * Wake up threads with requests pending for @mds, so that they can
1965  * resubmit their requests to a possibly different mds.
1966  */
1967 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1968 {
1969 	struct ceph_mds_request *req;
1970 	struct rb_node *p;
1971 
1972 	dout("kick_requests mds%d\n", mds);
1973 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1974 		req = rb_entry(p, struct ceph_mds_request, r_node);
1975 		if (req->r_got_unsafe)
1976 			continue;
1977 		if (req->r_session &&
1978 		    req->r_session->s_mds == mds) {
1979 			dout(" kicking tid %llu\n", req->r_tid);
1980 			__do_request(mdsc, req);
1981 		}
1982 	}
1983 }
1984 
1985 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1986 			      struct ceph_mds_request *req)
1987 {
1988 	dout("submit_request on %p\n", req);
1989 	mutex_lock(&mdsc->mutex);
1990 	__register_request(mdsc, req, NULL);
1991 	__do_request(mdsc, req);
1992 	mutex_unlock(&mdsc->mutex);
1993 }
1994 
1995 /*
1996  * Synchrously perform an mds request.  Take care of all of the
1997  * session setup, forwarding, retry details.
1998  */
1999 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2000 			 struct inode *dir,
2001 			 struct ceph_mds_request *req)
2002 {
2003 	int err;
2004 
2005 	dout("do_request on %p\n", req);
2006 
2007 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2008 	if (req->r_inode)
2009 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2010 	if (req->r_locked_dir)
2011 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2012 	if (req->r_old_dentry)
2013 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2014 				  CEPH_CAP_PIN);
2015 
2016 	/* issue */
2017 	mutex_lock(&mdsc->mutex);
2018 	__register_request(mdsc, req, dir);
2019 	__do_request(mdsc, req);
2020 
2021 	if (req->r_err) {
2022 		err = req->r_err;
2023 		__unregister_request(mdsc, req);
2024 		dout("do_request early error %d\n", err);
2025 		goto out;
2026 	}
2027 
2028 	/* wait */
2029 	mutex_unlock(&mdsc->mutex);
2030 	dout("do_request waiting\n");
2031 	if (req->r_timeout) {
2032 		err = (long)wait_for_completion_killable_timeout(
2033 			&req->r_completion, req->r_timeout);
2034 		if (err == 0)
2035 			err = -EIO;
2036 	} else {
2037 		err = wait_for_completion_killable(&req->r_completion);
2038 	}
2039 	dout("do_request waited, got %d\n", err);
2040 	mutex_lock(&mdsc->mutex);
2041 
2042 	/* only abort if we didn't race with a real reply */
2043 	if (req->r_got_result) {
2044 		err = le32_to_cpu(req->r_reply_info.head->result);
2045 	} else if (err < 0) {
2046 		dout("aborted request %lld with %d\n", req->r_tid, err);
2047 
2048 		/*
2049 		 * ensure we aren't running concurrently with
2050 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2051 		 * rely on locks (dir mutex) held by our caller.
2052 		 */
2053 		mutex_lock(&req->r_fill_mutex);
2054 		req->r_err = err;
2055 		req->r_aborted = true;
2056 		mutex_unlock(&req->r_fill_mutex);
2057 
2058 		if (req->r_locked_dir &&
2059 		    (req->r_op & CEPH_MDS_OP_WRITE))
2060 			ceph_invalidate_dir_request(req);
2061 	} else {
2062 		err = req->r_err;
2063 	}
2064 
2065 out:
2066 	mutex_unlock(&mdsc->mutex);
2067 	dout("do_request %p done, result %d\n", req, err);
2068 	return err;
2069 }
2070 
2071 /*
2072  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2073  * namespace request.
2074  */
2075 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2076 {
2077 	struct inode *inode = req->r_locked_dir;
2078 
2079 	dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2080 
2081 	ceph_dir_clear_complete(inode);
2082 	if (req->r_dentry)
2083 		ceph_invalidate_dentry_lease(req->r_dentry);
2084 	if (req->r_old_dentry)
2085 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2086 }
2087 
2088 /*
2089  * Handle mds reply.
2090  *
2091  * We take the session mutex and parse and process the reply immediately.
2092  * This preserves the logical ordering of replies, capabilities, etc., sent
2093  * by the MDS as they are applied to our local cache.
2094  */
2095 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2096 {
2097 	struct ceph_mds_client *mdsc = session->s_mdsc;
2098 	struct ceph_mds_request *req;
2099 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2100 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2101 	u64 tid;
2102 	int err, result;
2103 	int mds = session->s_mds;
2104 
2105 	if (msg->front.iov_len < sizeof(*head)) {
2106 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2107 		ceph_msg_dump(msg);
2108 		return;
2109 	}
2110 
2111 	/* get request, session */
2112 	tid = le64_to_cpu(msg->hdr.tid);
2113 	mutex_lock(&mdsc->mutex);
2114 	req = __lookup_request(mdsc, tid);
2115 	if (!req) {
2116 		dout("handle_reply on unknown tid %llu\n", tid);
2117 		mutex_unlock(&mdsc->mutex);
2118 		return;
2119 	}
2120 	dout("handle_reply %p\n", req);
2121 
2122 	/* correct session? */
2123 	if (req->r_session != session) {
2124 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2125 		       " not mds%d\n", tid, session->s_mds,
2126 		       req->r_session ? req->r_session->s_mds : -1);
2127 		mutex_unlock(&mdsc->mutex);
2128 		goto out;
2129 	}
2130 
2131 	/* dup? */
2132 	if ((req->r_got_unsafe && !head->safe) ||
2133 	    (req->r_got_safe && head->safe)) {
2134 		pr_warning("got a dup %s reply on %llu from mds%d\n",
2135 			   head->safe ? "safe" : "unsafe", tid, mds);
2136 		mutex_unlock(&mdsc->mutex);
2137 		goto out;
2138 	}
2139 	if (req->r_got_safe && !head->safe) {
2140 		pr_warning("got unsafe after safe on %llu from mds%d\n",
2141 			   tid, mds);
2142 		mutex_unlock(&mdsc->mutex);
2143 		goto out;
2144 	}
2145 
2146 	result = le32_to_cpu(head->result);
2147 
2148 	/*
2149 	 * Handle an ESTALE
2150 	 * if we're not talking to the authority, send to them
2151 	 * if the authority has changed while we weren't looking,
2152 	 * send to new authority
2153 	 * Otherwise we just have to return an ESTALE
2154 	 */
2155 	if (result == -ESTALE) {
2156 		dout("got ESTALE on request %llu", req->r_tid);
2157 		if (!req->r_inode) {
2158 			/* do nothing; not an authority problem */
2159 		} else if (req->r_direct_mode != USE_AUTH_MDS) {
2160 			dout("not using auth, setting for that now");
2161 			req->r_direct_mode = USE_AUTH_MDS;
2162 			__do_request(mdsc, req);
2163 			mutex_unlock(&mdsc->mutex);
2164 			goto out;
2165 		} else  {
2166 			struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2167 			struct ceph_cap *cap = NULL;
2168 
2169 			if (req->r_session)
2170 				cap = ceph_get_cap_for_mds(ci,
2171 						   req->r_session->s_mds);
2172 
2173 			dout("already using auth");
2174 			if ((!cap || cap != ci->i_auth_cap) ||
2175 			    (cap->mseq != req->r_sent_on_mseq)) {
2176 				dout("but cap changed, so resending");
2177 				__do_request(mdsc, req);
2178 				mutex_unlock(&mdsc->mutex);
2179 				goto out;
2180 			}
2181 		}
2182 		dout("have to return ESTALE on request %llu", req->r_tid);
2183 	}
2184 
2185 
2186 	if (head->safe) {
2187 		req->r_got_safe = true;
2188 		__unregister_request(mdsc, req);
2189 		complete_all(&req->r_safe_completion);
2190 
2191 		if (req->r_got_unsafe) {
2192 			/*
2193 			 * We already handled the unsafe response, now do the
2194 			 * cleanup.  No need to examine the response; the MDS
2195 			 * doesn't include any result info in the safe
2196 			 * response.  And even if it did, there is nothing
2197 			 * useful we could do with a revised return value.
2198 			 */
2199 			dout("got safe reply %llu, mds%d\n", tid, mds);
2200 			list_del_init(&req->r_unsafe_item);
2201 
2202 			/* last unsafe request during umount? */
2203 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2204 				complete_all(&mdsc->safe_umount_waiters);
2205 			mutex_unlock(&mdsc->mutex);
2206 			goto out;
2207 		}
2208 	} else {
2209 		req->r_got_unsafe = true;
2210 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2211 	}
2212 
2213 	dout("handle_reply tid %lld result %d\n", tid, result);
2214 	rinfo = &req->r_reply_info;
2215 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2216 	mutex_unlock(&mdsc->mutex);
2217 
2218 	mutex_lock(&session->s_mutex);
2219 	if (err < 0) {
2220 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2221 		ceph_msg_dump(msg);
2222 		goto out_err;
2223 	}
2224 
2225 	/* snap trace */
2226 	if (rinfo->snapblob_len) {
2227 		down_write(&mdsc->snap_rwsem);
2228 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2229 			       rinfo->snapblob + rinfo->snapblob_len,
2230 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2231 		downgrade_write(&mdsc->snap_rwsem);
2232 	} else {
2233 		down_read(&mdsc->snap_rwsem);
2234 	}
2235 
2236 	/* insert trace into our cache */
2237 	mutex_lock(&req->r_fill_mutex);
2238 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2239 	if (err == 0) {
2240 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2241 				    req->r_op == CEPH_MDS_OP_LSSNAP) &&
2242 		    rinfo->dir_nr)
2243 			ceph_readdir_prepopulate(req, req->r_session);
2244 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2245 	}
2246 	mutex_unlock(&req->r_fill_mutex);
2247 
2248 	up_read(&mdsc->snap_rwsem);
2249 out_err:
2250 	mutex_lock(&mdsc->mutex);
2251 	if (!req->r_aborted) {
2252 		if (err) {
2253 			req->r_err = err;
2254 		} else {
2255 			req->r_reply = msg;
2256 			ceph_msg_get(msg);
2257 			req->r_got_result = true;
2258 		}
2259 	} else {
2260 		dout("reply arrived after request %lld was aborted\n", tid);
2261 	}
2262 	mutex_unlock(&mdsc->mutex);
2263 
2264 	ceph_add_cap_releases(mdsc, req->r_session);
2265 	mutex_unlock(&session->s_mutex);
2266 
2267 	/* kick calling process */
2268 	complete_request(mdsc, req);
2269 out:
2270 	ceph_mdsc_put_request(req);
2271 	return;
2272 }
2273 
2274 
2275 
2276 /*
2277  * handle mds notification that our request has been forwarded.
2278  */
2279 static void handle_forward(struct ceph_mds_client *mdsc,
2280 			   struct ceph_mds_session *session,
2281 			   struct ceph_msg *msg)
2282 {
2283 	struct ceph_mds_request *req;
2284 	u64 tid = le64_to_cpu(msg->hdr.tid);
2285 	u32 next_mds;
2286 	u32 fwd_seq;
2287 	int err = -EINVAL;
2288 	void *p = msg->front.iov_base;
2289 	void *end = p + msg->front.iov_len;
2290 
2291 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2292 	next_mds = ceph_decode_32(&p);
2293 	fwd_seq = ceph_decode_32(&p);
2294 
2295 	mutex_lock(&mdsc->mutex);
2296 	req = __lookup_request(mdsc, tid);
2297 	if (!req) {
2298 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2299 		goto out;  /* dup reply? */
2300 	}
2301 
2302 	if (req->r_aborted) {
2303 		dout("forward tid %llu aborted, unregistering\n", tid);
2304 		__unregister_request(mdsc, req);
2305 	} else if (fwd_seq <= req->r_num_fwd) {
2306 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2307 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2308 	} else {
2309 		/* resend. forward race not possible; mds would drop */
2310 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2311 		BUG_ON(req->r_err);
2312 		BUG_ON(req->r_got_result);
2313 		req->r_num_fwd = fwd_seq;
2314 		req->r_resend_mds = next_mds;
2315 		put_request_session(req);
2316 		__do_request(mdsc, req);
2317 	}
2318 	ceph_mdsc_put_request(req);
2319 out:
2320 	mutex_unlock(&mdsc->mutex);
2321 	return;
2322 
2323 bad:
2324 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2325 }
2326 
2327 /*
2328  * handle a mds session control message
2329  */
2330 static void handle_session(struct ceph_mds_session *session,
2331 			   struct ceph_msg *msg)
2332 {
2333 	struct ceph_mds_client *mdsc = session->s_mdsc;
2334 	u32 op;
2335 	u64 seq;
2336 	int mds = session->s_mds;
2337 	struct ceph_mds_session_head *h = msg->front.iov_base;
2338 	int wake = 0;
2339 
2340 	/* decode */
2341 	if (msg->front.iov_len != sizeof(*h))
2342 		goto bad;
2343 	op = le32_to_cpu(h->op);
2344 	seq = le64_to_cpu(h->seq);
2345 
2346 	mutex_lock(&mdsc->mutex);
2347 	if (op == CEPH_SESSION_CLOSE)
2348 		__unregister_session(mdsc, session);
2349 	/* FIXME: this ttl calculation is generous */
2350 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2351 	mutex_unlock(&mdsc->mutex);
2352 
2353 	mutex_lock(&session->s_mutex);
2354 
2355 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2356 	     mds, ceph_session_op_name(op), session,
2357 	     session_state_name(session->s_state), seq);
2358 
2359 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2360 		session->s_state = CEPH_MDS_SESSION_OPEN;
2361 		pr_info("mds%d came back\n", session->s_mds);
2362 	}
2363 
2364 	switch (op) {
2365 	case CEPH_SESSION_OPEN:
2366 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2367 			pr_info("mds%d reconnect success\n", session->s_mds);
2368 		session->s_state = CEPH_MDS_SESSION_OPEN;
2369 		renewed_caps(mdsc, session, 0);
2370 		wake = 1;
2371 		if (mdsc->stopping)
2372 			__close_session(mdsc, session);
2373 		break;
2374 
2375 	case CEPH_SESSION_RENEWCAPS:
2376 		if (session->s_renew_seq == seq)
2377 			renewed_caps(mdsc, session, 1);
2378 		break;
2379 
2380 	case CEPH_SESSION_CLOSE:
2381 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2382 			pr_info("mds%d reconnect denied\n", session->s_mds);
2383 		remove_session_caps(session);
2384 		wake = 1; /* for good measure */
2385 		wake_up_all(&mdsc->session_close_wq);
2386 		kick_requests(mdsc, mds);
2387 		break;
2388 
2389 	case CEPH_SESSION_STALE:
2390 		pr_info("mds%d caps went stale, renewing\n",
2391 			session->s_mds);
2392 		spin_lock(&session->s_gen_ttl_lock);
2393 		session->s_cap_gen++;
2394 		session->s_cap_ttl = jiffies - 1;
2395 		spin_unlock(&session->s_gen_ttl_lock);
2396 		send_renew_caps(mdsc, session);
2397 		break;
2398 
2399 	case CEPH_SESSION_RECALL_STATE:
2400 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2401 		break;
2402 
2403 	default:
2404 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2405 		WARN_ON(1);
2406 	}
2407 
2408 	mutex_unlock(&session->s_mutex);
2409 	if (wake) {
2410 		mutex_lock(&mdsc->mutex);
2411 		__wake_requests(mdsc, &session->s_waiting);
2412 		mutex_unlock(&mdsc->mutex);
2413 	}
2414 	return;
2415 
2416 bad:
2417 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2418 	       (int)msg->front.iov_len);
2419 	ceph_msg_dump(msg);
2420 	return;
2421 }
2422 
2423 
2424 /*
2425  * called under session->mutex.
2426  */
2427 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2428 				   struct ceph_mds_session *session)
2429 {
2430 	struct ceph_mds_request *req, *nreq;
2431 	int err;
2432 
2433 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2434 
2435 	mutex_lock(&mdsc->mutex);
2436 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2437 		err = __prepare_send_request(mdsc, req, session->s_mds);
2438 		if (!err) {
2439 			ceph_msg_get(req->r_request);
2440 			ceph_con_send(&session->s_con, req->r_request);
2441 		}
2442 	}
2443 	mutex_unlock(&mdsc->mutex);
2444 }
2445 
2446 /*
2447  * Encode information about a cap for a reconnect with the MDS.
2448  */
2449 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2450 			  void *arg)
2451 {
2452 	union {
2453 		struct ceph_mds_cap_reconnect v2;
2454 		struct ceph_mds_cap_reconnect_v1 v1;
2455 	} rec;
2456 	size_t reclen;
2457 	struct ceph_inode_info *ci;
2458 	struct ceph_reconnect_state *recon_state = arg;
2459 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2460 	char *path;
2461 	int pathlen, err;
2462 	u64 pathbase;
2463 	struct dentry *dentry;
2464 
2465 	ci = cap->ci;
2466 
2467 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2468 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2469 	     ceph_cap_string(cap->issued));
2470 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2471 	if (err)
2472 		return err;
2473 
2474 	dentry = d_find_alias(inode);
2475 	if (dentry) {
2476 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2477 		if (IS_ERR(path)) {
2478 			err = PTR_ERR(path);
2479 			goto out_dput;
2480 		}
2481 	} else {
2482 		path = NULL;
2483 		pathlen = 0;
2484 	}
2485 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2486 	if (err)
2487 		goto out_free;
2488 
2489 	spin_lock(&ci->i_ceph_lock);
2490 	cap->seq = 0;        /* reset cap seq */
2491 	cap->issue_seq = 0;  /* and issue_seq */
2492 	cap->mseq = 0;       /* and migrate_seq */
2493 
2494 	if (recon_state->flock) {
2495 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2496 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2497 		rec.v2.issued = cpu_to_le32(cap->issued);
2498 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2499 		rec.v2.pathbase = cpu_to_le64(pathbase);
2500 		rec.v2.flock_len = 0;
2501 		reclen = sizeof(rec.v2);
2502 	} else {
2503 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2504 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2505 		rec.v1.issued = cpu_to_le32(cap->issued);
2506 		rec.v1.size = cpu_to_le64(inode->i_size);
2507 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2508 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2509 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2510 		rec.v1.pathbase = cpu_to_le64(pathbase);
2511 		reclen = sizeof(rec.v1);
2512 	}
2513 	spin_unlock(&ci->i_ceph_lock);
2514 
2515 	if (recon_state->flock) {
2516 		int num_fcntl_locks, num_flock_locks;
2517 		struct ceph_filelock *flocks;
2518 
2519 encode_again:
2520 		spin_lock(&inode->i_lock);
2521 		ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2522 		spin_unlock(&inode->i_lock);
2523 		flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2524 				 sizeof(struct ceph_filelock), GFP_NOFS);
2525 		if (!flocks) {
2526 			err = -ENOMEM;
2527 			goto out_free;
2528 		}
2529 		spin_lock(&inode->i_lock);
2530 		err = ceph_encode_locks_to_buffer(inode, flocks,
2531 						  num_fcntl_locks,
2532 						  num_flock_locks);
2533 		spin_unlock(&inode->i_lock);
2534 		if (err) {
2535 			kfree(flocks);
2536 			if (err == -ENOSPC)
2537 				goto encode_again;
2538 			goto out_free;
2539 		}
2540 		/*
2541 		 * number of encoded locks is stable, so copy to pagelist
2542 		 */
2543 		rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2544 				    (num_fcntl_locks+num_flock_locks) *
2545 				    sizeof(struct ceph_filelock));
2546 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2547 		if (!err)
2548 			err = ceph_locks_to_pagelist(flocks, pagelist,
2549 						     num_fcntl_locks,
2550 						     num_flock_locks);
2551 		kfree(flocks);
2552 	} else {
2553 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2554 	}
2555 out_free:
2556 	kfree(path);
2557 out_dput:
2558 	dput(dentry);
2559 	return err;
2560 }
2561 
2562 
2563 /*
2564  * If an MDS fails and recovers, clients need to reconnect in order to
2565  * reestablish shared state.  This includes all caps issued through
2566  * this session _and_ the snap_realm hierarchy.  Because it's not
2567  * clear which snap realms the mds cares about, we send everything we
2568  * know about.. that ensures we'll then get any new info the
2569  * recovering MDS might have.
2570  *
2571  * This is a relatively heavyweight operation, but it's rare.
2572  *
2573  * called with mdsc->mutex held.
2574  */
2575 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2576 			       struct ceph_mds_session *session)
2577 {
2578 	struct ceph_msg *reply;
2579 	struct rb_node *p;
2580 	int mds = session->s_mds;
2581 	int err = -ENOMEM;
2582 	struct ceph_pagelist *pagelist;
2583 	struct ceph_reconnect_state recon_state;
2584 
2585 	pr_info("mds%d reconnect start\n", mds);
2586 
2587 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2588 	if (!pagelist)
2589 		goto fail_nopagelist;
2590 	ceph_pagelist_init(pagelist);
2591 
2592 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2593 	if (!reply)
2594 		goto fail_nomsg;
2595 
2596 	mutex_lock(&session->s_mutex);
2597 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2598 	session->s_seq = 0;
2599 
2600 	ceph_con_close(&session->s_con);
2601 	ceph_con_open(&session->s_con,
2602 		      CEPH_ENTITY_TYPE_MDS, mds,
2603 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2604 
2605 	/* replay unsafe requests */
2606 	replay_unsafe_requests(mdsc, session);
2607 
2608 	down_read(&mdsc->snap_rwsem);
2609 
2610 	dout("session %p state %s\n", session,
2611 	     session_state_name(session->s_state));
2612 
2613 	/* drop old cap expires; we're about to reestablish that state */
2614 	discard_cap_releases(mdsc, session);
2615 
2616 	/* traverse this session's caps */
2617 	err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2618 	if (err)
2619 		goto fail;
2620 
2621 	recon_state.pagelist = pagelist;
2622 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2623 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2624 	if (err < 0)
2625 		goto fail;
2626 
2627 	/*
2628 	 * snaprealms.  we provide mds with the ino, seq (version), and
2629 	 * parent for all of our realms.  If the mds has any newer info,
2630 	 * it will tell us.
2631 	 */
2632 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2633 		struct ceph_snap_realm *realm =
2634 			rb_entry(p, struct ceph_snap_realm, node);
2635 		struct ceph_mds_snaprealm_reconnect sr_rec;
2636 
2637 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2638 		     realm->ino, realm->seq, realm->parent_ino);
2639 		sr_rec.ino = cpu_to_le64(realm->ino);
2640 		sr_rec.seq = cpu_to_le64(realm->seq);
2641 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2642 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2643 		if (err)
2644 			goto fail;
2645 	}
2646 
2647 	if (recon_state.flock)
2648 		reply->hdr.version = cpu_to_le16(2);
2649 	if (pagelist->length) {
2650 		/* set up outbound data if we have any */
2651 		reply->hdr.data_len = cpu_to_le32(pagelist->length);
2652 		ceph_msg_data_add_pagelist(reply, pagelist);
2653 	}
2654 	ceph_con_send(&session->s_con, reply);
2655 
2656 	mutex_unlock(&session->s_mutex);
2657 
2658 	mutex_lock(&mdsc->mutex);
2659 	__wake_requests(mdsc, &session->s_waiting);
2660 	mutex_unlock(&mdsc->mutex);
2661 
2662 	up_read(&mdsc->snap_rwsem);
2663 	return;
2664 
2665 fail:
2666 	ceph_msg_put(reply);
2667 	up_read(&mdsc->snap_rwsem);
2668 	mutex_unlock(&session->s_mutex);
2669 fail_nomsg:
2670 	ceph_pagelist_release(pagelist);
2671 	kfree(pagelist);
2672 fail_nopagelist:
2673 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2674 	return;
2675 }
2676 
2677 
2678 /*
2679  * compare old and new mdsmaps, kicking requests
2680  * and closing out old connections as necessary
2681  *
2682  * called under mdsc->mutex.
2683  */
2684 static void check_new_map(struct ceph_mds_client *mdsc,
2685 			  struct ceph_mdsmap *newmap,
2686 			  struct ceph_mdsmap *oldmap)
2687 {
2688 	int i;
2689 	int oldstate, newstate;
2690 	struct ceph_mds_session *s;
2691 
2692 	dout("check_new_map new %u old %u\n",
2693 	     newmap->m_epoch, oldmap->m_epoch);
2694 
2695 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2696 		if (mdsc->sessions[i] == NULL)
2697 			continue;
2698 		s = mdsc->sessions[i];
2699 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2700 		newstate = ceph_mdsmap_get_state(newmap, i);
2701 
2702 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2703 		     i, ceph_mds_state_name(oldstate),
2704 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2705 		     ceph_mds_state_name(newstate),
2706 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2707 		     session_state_name(s->s_state));
2708 
2709 		if (i >= newmap->m_max_mds ||
2710 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
2711 			   ceph_mdsmap_get_addr(newmap, i),
2712 			   sizeof(struct ceph_entity_addr))) {
2713 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2714 				/* the session never opened, just close it
2715 				 * out now */
2716 				__wake_requests(mdsc, &s->s_waiting);
2717 				__unregister_session(mdsc, s);
2718 			} else {
2719 				/* just close it */
2720 				mutex_unlock(&mdsc->mutex);
2721 				mutex_lock(&s->s_mutex);
2722 				mutex_lock(&mdsc->mutex);
2723 				ceph_con_close(&s->s_con);
2724 				mutex_unlock(&s->s_mutex);
2725 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2726 			}
2727 
2728 			/* kick any requests waiting on the recovering mds */
2729 			kick_requests(mdsc, i);
2730 		} else if (oldstate == newstate) {
2731 			continue;  /* nothing new with this mds */
2732 		}
2733 
2734 		/*
2735 		 * send reconnect?
2736 		 */
2737 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2738 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2739 			mutex_unlock(&mdsc->mutex);
2740 			send_mds_reconnect(mdsc, s);
2741 			mutex_lock(&mdsc->mutex);
2742 		}
2743 
2744 		/*
2745 		 * kick request on any mds that has gone active.
2746 		 */
2747 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2748 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2749 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2750 			    oldstate != CEPH_MDS_STATE_STARTING)
2751 				pr_info("mds%d recovery completed\n", s->s_mds);
2752 			kick_requests(mdsc, i);
2753 			ceph_kick_flushing_caps(mdsc, s);
2754 			wake_up_session_caps(s, 1);
2755 		}
2756 	}
2757 
2758 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2759 		s = mdsc->sessions[i];
2760 		if (!s)
2761 			continue;
2762 		if (!ceph_mdsmap_is_laggy(newmap, i))
2763 			continue;
2764 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2765 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2766 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2767 			dout(" connecting to export targets of laggy mds%d\n",
2768 			     i);
2769 			__open_export_target_sessions(mdsc, s);
2770 		}
2771 	}
2772 }
2773 
2774 
2775 
2776 /*
2777  * leases
2778  */
2779 
2780 /*
2781  * caller must hold session s_mutex, dentry->d_lock
2782  */
2783 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2784 {
2785 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2786 
2787 	ceph_put_mds_session(di->lease_session);
2788 	di->lease_session = NULL;
2789 }
2790 
2791 static void handle_lease(struct ceph_mds_client *mdsc,
2792 			 struct ceph_mds_session *session,
2793 			 struct ceph_msg *msg)
2794 {
2795 	struct super_block *sb = mdsc->fsc->sb;
2796 	struct inode *inode;
2797 	struct dentry *parent, *dentry;
2798 	struct ceph_dentry_info *di;
2799 	int mds = session->s_mds;
2800 	struct ceph_mds_lease *h = msg->front.iov_base;
2801 	u32 seq;
2802 	struct ceph_vino vino;
2803 	struct qstr dname;
2804 	int release = 0;
2805 
2806 	dout("handle_lease from mds%d\n", mds);
2807 
2808 	/* decode */
2809 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2810 		goto bad;
2811 	vino.ino = le64_to_cpu(h->ino);
2812 	vino.snap = CEPH_NOSNAP;
2813 	seq = le32_to_cpu(h->seq);
2814 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2815 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2816 	if (dname.len != get_unaligned_le32(h+1))
2817 		goto bad;
2818 
2819 	mutex_lock(&session->s_mutex);
2820 	session->s_seq++;
2821 
2822 	/* lookup inode */
2823 	inode = ceph_find_inode(sb, vino);
2824 	dout("handle_lease %s, ino %llx %p %.*s\n",
2825 	     ceph_lease_op_name(h->action), vino.ino, inode,
2826 	     dname.len, dname.name);
2827 	if (inode == NULL) {
2828 		dout("handle_lease no inode %llx\n", vino.ino);
2829 		goto release;
2830 	}
2831 
2832 	/* dentry */
2833 	parent = d_find_alias(inode);
2834 	if (!parent) {
2835 		dout("no parent dentry on inode %p\n", inode);
2836 		WARN_ON(1);
2837 		goto release;  /* hrm... */
2838 	}
2839 	dname.hash = full_name_hash(dname.name, dname.len);
2840 	dentry = d_lookup(parent, &dname);
2841 	dput(parent);
2842 	if (!dentry)
2843 		goto release;
2844 
2845 	spin_lock(&dentry->d_lock);
2846 	di = ceph_dentry(dentry);
2847 	switch (h->action) {
2848 	case CEPH_MDS_LEASE_REVOKE:
2849 		if (di->lease_session == session) {
2850 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2851 				h->seq = cpu_to_le32(di->lease_seq);
2852 			__ceph_mdsc_drop_dentry_lease(dentry);
2853 		}
2854 		release = 1;
2855 		break;
2856 
2857 	case CEPH_MDS_LEASE_RENEW:
2858 		if (di->lease_session == session &&
2859 		    di->lease_gen == session->s_cap_gen &&
2860 		    di->lease_renew_from &&
2861 		    di->lease_renew_after == 0) {
2862 			unsigned long duration =
2863 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2864 
2865 			di->lease_seq = seq;
2866 			dentry->d_time = di->lease_renew_from + duration;
2867 			di->lease_renew_after = di->lease_renew_from +
2868 				(duration >> 1);
2869 			di->lease_renew_from = 0;
2870 		}
2871 		break;
2872 	}
2873 	spin_unlock(&dentry->d_lock);
2874 	dput(dentry);
2875 
2876 	if (!release)
2877 		goto out;
2878 
2879 release:
2880 	/* let's just reuse the same message */
2881 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2882 	ceph_msg_get(msg);
2883 	ceph_con_send(&session->s_con, msg);
2884 
2885 out:
2886 	iput(inode);
2887 	mutex_unlock(&session->s_mutex);
2888 	return;
2889 
2890 bad:
2891 	pr_err("corrupt lease message\n");
2892 	ceph_msg_dump(msg);
2893 }
2894 
2895 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2896 			      struct inode *inode,
2897 			      struct dentry *dentry, char action,
2898 			      u32 seq)
2899 {
2900 	struct ceph_msg *msg;
2901 	struct ceph_mds_lease *lease;
2902 	int len = sizeof(*lease) + sizeof(u32);
2903 	int dnamelen = 0;
2904 
2905 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2906 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2907 	dnamelen = dentry->d_name.len;
2908 	len += dnamelen;
2909 
2910 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2911 	if (!msg)
2912 		return;
2913 	lease = msg->front.iov_base;
2914 	lease->action = action;
2915 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2916 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2917 	lease->seq = cpu_to_le32(seq);
2918 	put_unaligned_le32(dnamelen, lease + 1);
2919 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2920 
2921 	/*
2922 	 * if this is a preemptive lease RELEASE, no need to
2923 	 * flush request stream, since the actual request will
2924 	 * soon follow.
2925 	 */
2926 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2927 
2928 	ceph_con_send(&session->s_con, msg);
2929 }
2930 
2931 /*
2932  * Preemptively release a lease we expect to invalidate anyway.
2933  * Pass @inode always, @dentry is optional.
2934  */
2935 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2936 			     struct dentry *dentry)
2937 {
2938 	struct ceph_dentry_info *di;
2939 	struct ceph_mds_session *session;
2940 	u32 seq;
2941 
2942 	BUG_ON(inode == NULL);
2943 	BUG_ON(dentry == NULL);
2944 
2945 	/* is dentry lease valid? */
2946 	spin_lock(&dentry->d_lock);
2947 	di = ceph_dentry(dentry);
2948 	if (!di || !di->lease_session ||
2949 	    di->lease_session->s_mds < 0 ||
2950 	    di->lease_gen != di->lease_session->s_cap_gen ||
2951 	    !time_before(jiffies, dentry->d_time)) {
2952 		dout("lease_release inode %p dentry %p -- "
2953 		     "no lease\n",
2954 		     inode, dentry);
2955 		spin_unlock(&dentry->d_lock);
2956 		return;
2957 	}
2958 
2959 	/* we do have a lease on this dentry; note mds and seq */
2960 	session = ceph_get_mds_session(di->lease_session);
2961 	seq = di->lease_seq;
2962 	__ceph_mdsc_drop_dentry_lease(dentry);
2963 	spin_unlock(&dentry->d_lock);
2964 
2965 	dout("lease_release inode %p dentry %p to mds%d\n",
2966 	     inode, dentry, session->s_mds);
2967 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2968 				 CEPH_MDS_LEASE_RELEASE, seq);
2969 	ceph_put_mds_session(session);
2970 }
2971 
2972 /*
2973  * drop all leases (and dentry refs) in preparation for umount
2974  */
2975 static void drop_leases(struct ceph_mds_client *mdsc)
2976 {
2977 	int i;
2978 
2979 	dout("drop_leases\n");
2980 	mutex_lock(&mdsc->mutex);
2981 	for (i = 0; i < mdsc->max_sessions; i++) {
2982 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2983 		if (!s)
2984 			continue;
2985 		mutex_unlock(&mdsc->mutex);
2986 		mutex_lock(&s->s_mutex);
2987 		mutex_unlock(&s->s_mutex);
2988 		ceph_put_mds_session(s);
2989 		mutex_lock(&mdsc->mutex);
2990 	}
2991 	mutex_unlock(&mdsc->mutex);
2992 }
2993 
2994 
2995 
2996 /*
2997  * delayed work -- periodically trim expired leases, renew caps with mds
2998  */
2999 static void schedule_delayed(struct ceph_mds_client *mdsc)
3000 {
3001 	int delay = 5;
3002 	unsigned hz = round_jiffies_relative(HZ * delay);
3003 	schedule_delayed_work(&mdsc->delayed_work, hz);
3004 }
3005 
3006 static void delayed_work(struct work_struct *work)
3007 {
3008 	int i;
3009 	struct ceph_mds_client *mdsc =
3010 		container_of(work, struct ceph_mds_client, delayed_work.work);
3011 	int renew_interval;
3012 	int renew_caps;
3013 
3014 	dout("mdsc delayed_work\n");
3015 	ceph_check_delayed_caps(mdsc);
3016 
3017 	mutex_lock(&mdsc->mutex);
3018 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3019 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3020 				   mdsc->last_renew_caps);
3021 	if (renew_caps)
3022 		mdsc->last_renew_caps = jiffies;
3023 
3024 	for (i = 0; i < mdsc->max_sessions; i++) {
3025 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3026 		if (s == NULL)
3027 			continue;
3028 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3029 			dout("resending session close request for mds%d\n",
3030 			     s->s_mds);
3031 			request_close_session(mdsc, s);
3032 			ceph_put_mds_session(s);
3033 			continue;
3034 		}
3035 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3036 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3037 				s->s_state = CEPH_MDS_SESSION_HUNG;
3038 				pr_info("mds%d hung\n", s->s_mds);
3039 			}
3040 		}
3041 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3042 			/* this mds is failed or recovering, just wait */
3043 			ceph_put_mds_session(s);
3044 			continue;
3045 		}
3046 		mutex_unlock(&mdsc->mutex);
3047 
3048 		mutex_lock(&s->s_mutex);
3049 		if (renew_caps)
3050 			send_renew_caps(mdsc, s);
3051 		else
3052 			ceph_con_keepalive(&s->s_con);
3053 		ceph_add_cap_releases(mdsc, s);
3054 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3055 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3056 			ceph_send_cap_releases(mdsc, s);
3057 		mutex_unlock(&s->s_mutex);
3058 		ceph_put_mds_session(s);
3059 
3060 		mutex_lock(&mdsc->mutex);
3061 	}
3062 	mutex_unlock(&mdsc->mutex);
3063 
3064 	schedule_delayed(mdsc);
3065 }
3066 
3067 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3068 
3069 {
3070 	struct ceph_mds_client *mdsc;
3071 
3072 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3073 	if (!mdsc)
3074 		return -ENOMEM;
3075 	mdsc->fsc = fsc;
3076 	fsc->mdsc = mdsc;
3077 	mutex_init(&mdsc->mutex);
3078 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3079 	if (mdsc->mdsmap == NULL) {
3080 		kfree(mdsc);
3081 		return -ENOMEM;
3082 	}
3083 
3084 	init_completion(&mdsc->safe_umount_waiters);
3085 	init_waitqueue_head(&mdsc->session_close_wq);
3086 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3087 	mdsc->sessions = NULL;
3088 	mdsc->max_sessions = 0;
3089 	mdsc->stopping = 0;
3090 	init_rwsem(&mdsc->snap_rwsem);
3091 	mdsc->snap_realms = RB_ROOT;
3092 	INIT_LIST_HEAD(&mdsc->snap_empty);
3093 	spin_lock_init(&mdsc->snap_empty_lock);
3094 	mdsc->last_tid = 0;
3095 	mdsc->request_tree = RB_ROOT;
3096 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3097 	mdsc->last_renew_caps = jiffies;
3098 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3099 	spin_lock_init(&mdsc->cap_delay_lock);
3100 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3101 	spin_lock_init(&mdsc->snap_flush_lock);
3102 	mdsc->cap_flush_seq = 0;
3103 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3104 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3105 	mdsc->num_cap_flushing = 0;
3106 	spin_lock_init(&mdsc->cap_dirty_lock);
3107 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3108 	spin_lock_init(&mdsc->dentry_lru_lock);
3109 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3110 
3111 	ceph_caps_init(mdsc);
3112 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3113 
3114 	return 0;
3115 }
3116 
3117 /*
3118  * Wait for safe replies on open mds requests.  If we time out, drop
3119  * all requests from the tree to avoid dangling dentry refs.
3120  */
3121 static void wait_requests(struct ceph_mds_client *mdsc)
3122 {
3123 	struct ceph_mds_request *req;
3124 	struct ceph_fs_client *fsc = mdsc->fsc;
3125 
3126 	mutex_lock(&mdsc->mutex);
3127 	if (__get_oldest_req(mdsc)) {
3128 		mutex_unlock(&mdsc->mutex);
3129 
3130 		dout("wait_requests waiting for requests\n");
3131 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3132 				    fsc->client->options->mount_timeout * HZ);
3133 
3134 		/* tear down remaining requests */
3135 		mutex_lock(&mdsc->mutex);
3136 		while ((req = __get_oldest_req(mdsc))) {
3137 			dout("wait_requests timed out on tid %llu\n",
3138 			     req->r_tid);
3139 			__unregister_request(mdsc, req);
3140 		}
3141 	}
3142 	mutex_unlock(&mdsc->mutex);
3143 	dout("wait_requests done\n");
3144 }
3145 
3146 /*
3147  * called before mount is ro, and before dentries are torn down.
3148  * (hmm, does this still race with new lookups?)
3149  */
3150 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3151 {
3152 	dout("pre_umount\n");
3153 	mdsc->stopping = 1;
3154 
3155 	drop_leases(mdsc);
3156 	ceph_flush_dirty_caps(mdsc);
3157 	wait_requests(mdsc);
3158 
3159 	/*
3160 	 * wait for reply handlers to drop their request refs and
3161 	 * their inode/dcache refs
3162 	 */
3163 	ceph_msgr_flush();
3164 }
3165 
3166 /*
3167  * wait for all write mds requests to flush.
3168  */
3169 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3170 {
3171 	struct ceph_mds_request *req = NULL, *nextreq;
3172 	struct rb_node *n;
3173 
3174 	mutex_lock(&mdsc->mutex);
3175 	dout("wait_unsafe_requests want %lld\n", want_tid);
3176 restart:
3177 	req = __get_oldest_req(mdsc);
3178 	while (req && req->r_tid <= want_tid) {
3179 		/* find next request */
3180 		n = rb_next(&req->r_node);
3181 		if (n)
3182 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3183 		else
3184 			nextreq = NULL;
3185 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3186 			/* write op */
3187 			ceph_mdsc_get_request(req);
3188 			if (nextreq)
3189 				ceph_mdsc_get_request(nextreq);
3190 			mutex_unlock(&mdsc->mutex);
3191 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3192 			     req->r_tid, want_tid);
3193 			wait_for_completion(&req->r_safe_completion);
3194 			mutex_lock(&mdsc->mutex);
3195 			ceph_mdsc_put_request(req);
3196 			if (!nextreq)
3197 				break;  /* next dne before, so we're done! */
3198 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3199 				/* next request was removed from tree */
3200 				ceph_mdsc_put_request(nextreq);
3201 				goto restart;
3202 			}
3203 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3204 		}
3205 		req = nextreq;
3206 	}
3207 	mutex_unlock(&mdsc->mutex);
3208 	dout("wait_unsafe_requests done\n");
3209 }
3210 
3211 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3212 {
3213 	u64 want_tid, want_flush;
3214 
3215 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3216 		return;
3217 
3218 	dout("sync\n");
3219 	mutex_lock(&mdsc->mutex);
3220 	want_tid = mdsc->last_tid;
3221 	want_flush = mdsc->cap_flush_seq;
3222 	mutex_unlock(&mdsc->mutex);
3223 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3224 
3225 	ceph_flush_dirty_caps(mdsc);
3226 
3227 	wait_unsafe_requests(mdsc, want_tid);
3228 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3229 }
3230 
3231 /*
3232  * true if all sessions are closed, or we force unmount
3233  */
3234 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3235 {
3236 	int i, n = 0;
3237 
3238 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3239 		return true;
3240 
3241 	mutex_lock(&mdsc->mutex);
3242 	for (i = 0; i < mdsc->max_sessions; i++)
3243 		if (mdsc->sessions[i])
3244 			n++;
3245 	mutex_unlock(&mdsc->mutex);
3246 	return n == 0;
3247 }
3248 
3249 /*
3250  * called after sb is ro.
3251  */
3252 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3253 {
3254 	struct ceph_mds_session *session;
3255 	int i;
3256 	struct ceph_fs_client *fsc = mdsc->fsc;
3257 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3258 
3259 	dout("close_sessions\n");
3260 
3261 	/* close sessions */
3262 	mutex_lock(&mdsc->mutex);
3263 	for (i = 0; i < mdsc->max_sessions; i++) {
3264 		session = __ceph_lookup_mds_session(mdsc, i);
3265 		if (!session)
3266 			continue;
3267 		mutex_unlock(&mdsc->mutex);
3268 		mutex_lock(&session->s_mutex);
3269 		__close_session(mdsc, session);
3270 		mutex_unlock(&session->s_mutex);
3271 		ceph_put_mds_session(session);
3272 		mutex_lock(&mdsc->mutex);
3273 	}
3274 	mutex_unlock(&mdsc->mutex);
3275 
3276 	dout("waiting for sessions to close\n");
3277 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3278 			   timeout);
3279 
3280 	/* tear down remaining sessions */
3281 	mutex_lock(&mdsc->mutex);
3282 	for (i = 0; i < mdsc->max_sessions; i++) {
3283 		if (mdsc->sessions[i]) {
3284 			session = get_session(mdsc->sessions[i]);
3285 			__unregister_session(mdsc, session);
3286 			mutex_unlock(&mdsc->mutex);
3287 			mutex_lock(&session->s_mutex);
3288 			remove_session_caps(session);
3289 			mutex_unlock(&session->s_mutex);
3290 			ceph_put_mds_session(session);
3291 			mutex_lock(&mdsc->mutex);
3292 		}
3293 	}
3294 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3295 	mutex_unlock(&mdsc->mutex);
3296 
3297 	ceph_cleanup_empty_realms(mdsc);
3298 
3299 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3300 
3301 	dout("stopped\n");
3302 }
3303 
3304 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3305 {
3306 	dout("stop\n");
3307 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3308 	if (mdsc->mdsmap)
3309 		ceph_mdsmap_destroy(mdsc->mdsmap);
3310 	kfree(mdsc->sessions);
3311 	ceph_caps_finalize(mdsc);
3312 }
3313 
3314 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3315 {
3316 	struct ceph_mds_client *mdsc = fsc->mdsc;
3317 
3318 	dout("mdsc_destroy %p\n", mdsc);
3319 	ceph_mdsc_stop(mdsc);
3320 
3321 	/* flush out any connection work with references to us */
3322 	ceph_msgr_flush();
3323 
3324 	fsc->mdsc = NULL;
3325 	kfree(mdsc);
3326 	dout("mdsc_destroy %p done\n", mdsc);
3327 }
3328 
3329 
3330 /*
3331  * handle mds map update.
3332  */
3333 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3334 {
3335 	u32 epoch;
3336 	u32 maplen;
3337 	void *p = msg->front.iov_base;
3338 	void *end = p + msg->front.iov_len;
3339 	struct ceph_mdsmap *newmap, *oldmap;
3340 	struct ceph_fsid fsid;
3341 	int err = -EINVAL;
3342 
3343 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3344 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3345 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3346 		return;
3347 	epoch = ceph_decode_32(&p);
3348 	maplen = ceph_decode_32(&p);
3349 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3350 
3351 	/* do we need it? */
3352 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3353 	mutex_lock(&mdsc->mutex);
3354 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3355 		dout("handle_map epoch %u <= our %u\n",
3356 		     epoch, mdsc->mdsmap->m_epoch);
3357 		mutex_unlock(&mdsc->mutex);
3358 		return;
3359 	}
3360 
3361 	newmap = ceph_mdsmap_decode(&p, end);
3362 	if (IS_ERR(newmap)) {
3363 		err = PTR_ERR(newmap);
3364 		goto bad_unlock;
3365 	}
3366 
3367 	/* swap into place */
3368 	if (mdsc->mdsmap) {
3369 		oldmap = mdsc->mdsmap;
3370 		mdsc->mdsmap = newmap;
3371 		check_new_map(mdsc, newmap, oldmap);
3372 		ceph_mdsmap_destroy(oldmap);
3373 	} else {
3374 		mdsc->mdsmap = newmap;  /* first mds map */
3375 	}
3376 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3377 
3378 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3379 
3380 	mutex_unlock(&mdsc->mutex);
3381 	schedule_delayed(mdsc);
3382 	return;
3383 
3384 bad_unlock:
3385 	mutex_unlock(&mdsc->mutex);
3386 bad:
3387 	pr_err("error decoding mdsmap %d\n", err);
3388 	return;
3389 }
3390 
3391 static struct ceph_connection *con_get(struct ceph_connection *con)
3392 {
3393 	struct ceph_mds_session *s = con->private;
3394 
3395 	if (get_session(s)) {
3396 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3397 		return con;
3398 	}
3399 	dout("mdsc con_get %p FAIL\n", s);
3400 	return NULL;
3401 }
3402 
3403 static void con_put(struct ceph_connection *con)
3404 {
3405 	struct ceph_mds_session *s = con->private;
3406 
3407 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3408 	ceph_put_mds_session(s);
3409 }
3410 
3411 /*
3412  * if the client is unresponsive for long enough, the mds will kill
3413  * the session entirely.
3414  */
3415 static void peer_reset(struct ceph_connection *con)
3416 {
3417 	struct ceph_mds_session *s = con->private;
3418 	struct ceph_mds_client *mdsc = s->s_mdsc;
3419 
3420 	pr_warning("mds%d closed our session\n", s->s_mds);
3421 	send_mds_reconnect(mdsc, s);
3422 }
3423 
3424 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3425 {
3426 	struct ceph_mds_session *s = con->private;
3427 	struct ceph_mds_client *mdsc = s->s_mdsc;
3428 	int type = le16_to_cpu(msg->hdr.type);
3429 
3430 	mutex_lock(&mdsc->mutex);
3431 	if (__verify_registered_session(mdsc, s) < 0) {
3432 		mutex_unlock(&mdsc->mutex);
3433 		goto out;
3434 	}
3435 	mutex_unlock(&mdsc->mutex);
3436 
3437 	switch (type) {
3438 	case CEPH_MSG_MDS_MAP:
3439 		ceph_mdsc_handle_map(mdsc, msg);
3440 		break;
3441 	case CEPH_MSG_CLIENT_SESSION:
3442 		handle_session(s, msg);
3443 		break;
3444 	case CEPH_MSG_CLIENT_REPLY:
3445 		handle_reply(s, msg);
3446 		break;
3447 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3448 		handle_forward(mdsc, s, msg);
3449 		break;
3450 	case CEPH_MSG_CLIENT_CAPS:
3451 		ceph_handle_caps(s, msg);
3452 		break;
3453 	case CEPH_MSG_CLIENT_SNAP:
3454 		ceph_handle_snap(mdsc, s, msg);
3455 		break;
3456 	case CEPH_MSG_CLIENT_LEASE:
3457 		handle_lease(mdsc, s, msg);
3458 		break;
3459 
3460 	default:
3461 		pr_err("received unknown message type %d %s\n", type,
3462 		       ceph_msg_type_name(type));
3463 	}
3464 out:
3465 	ceph_msg_put(msg);
3466 }
3467 
3468 /*
3469  * authentication
3470  */
3471 
3472 /*
3473  * Note: returned pointer is the address of a structure that's
3474  * managed separately.  Caller must *not* attempt to free it.
3475  */
3476 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3477 					int *proto, int force_new)
3478 {
3479 	struct ceph_mds_session *s = con->private;
3480 	struct ceph_mds_client *mdsc = s->s_mdsc;
3481 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3482 	struct ceph_auth_handshake *auth = &s->s_auth;
3483 
3484 	if (force_new && auth->authorizer) {
3485 		ceph_auth_destroy_authorizer(ac, auth->authorizer);
3486 		auth->authorizer = NULL;
3487 	}
3488 	if (!auth->authorizer) {
3489 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3490 						      auth);
3491 		if (ret)
3492 			return ERR_PTR(ret);
3493 	} else {
3494 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3495 						      auth);
3496 		if (ret)
3497 			return ERR_PTR(ret);
3498 	}
3499 	*proto = ac->protocol;
3500 
3501 	return auth;
3502 }
3503 
3504 
3505 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3506 {
3507 	struct ceph_mds_session *s = con->private;
3508 	struct ceph_mds_client *mdsc = s->s_mdsc;
3509 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3510 
3511 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3512 }
3513 
3514 static int invalidate_authorizer(struct ceph_connection *con)
3515 {
3516 	struct ceph_mds_session *s = con->private;
3517 	struct ceph_mds_client *mdsc = s->s_mdsc;
3518 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3519 
3520 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3521 
3522 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3523 }
3524 
3525 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3526 				struct ceph_msg_header *hdr, int *skip)
3527 {
3528 	struct ceph_msg *msg;
3529 	int type = (int) le16_to_cpu(hdr->type);
3530 	int front_len = (int) le32_to_cpu(hdr->front_len);
3531 
3532 	if (con->in_msg)
3533 		return con->in_msg;
3534 
3535 	*skip = 0;
3536 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3537 	if (!msg) {
3538 		pr_err("unable to allocate msg type %d len %d\n",
3539 		       type, front_len);
3540 		return NULL;
3541 	}
3542 
3543 	return msg;
3544 }
3545 
3546 static const struct ceph_connection_operations mds_con_ops = {
3547 	.get = con_get,
3548 	.put = con_put,
3549 	.dispatch = dispatch,
3550 	.get_authorizer = get_authorizer,
3551 	.verify_authorizer_reply = verify_authorizer_reply,
3552 	.invalidate_authorizer = invalidate_authorizer,
3553 	.peer_reset = peer_reset,
3554 	.alloc_msg = mds_alloc_msg,
3555 };
3556 
3557 /* eof */
3558