xref: /openbmc/linux/fs/ceph/mds_client.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/fs.h>
5 #include <linux/wait.h>
6 #include <linux/slab.h>
7 #include <linux/gfp.h>
8 #include <linux/sched.h>
9 #include <linux/debugfs.h>
10 #include <linux/seq_file.h>
11 #include <linux/ratelimit.h>
12 
13 #include "super.h"
14 #include "mds_client.h"
15 
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
22 
23 /*
24  * A cluster of MDS (metadata server) daemons is responsible for
25  * managing the file system namespace (the directory hierarchy and
26  * inodes) and for coordinating shared access to storage.  Metadata is
27  * partitioning hierarchically across a number of servers, and that
28  * partition varies over time as the cluster adjusts the distribution
29  * in order to balance load.
30  *
31  * The MDS client is primarily responsible to managing synchronous
32  * metadata requests for operations like open, unlink, and so forth.
33  * If there is a MDS failure, we find out about it when we (possibly
34  * request and) receive a new MDS map, and can resubmit affected
35  * requests.
36  *
37  * For the most part, though, we take advantage of a lossless
38  * communications channel to the MDS, and do not need to worry about
39  * timing out or resubmitting requests.
40  *
41  * We maintain a stateful "session" with each MDS we interact with.
42  * Within each session, we sent periodic heartbeat messages to ensure
43  * any capabilities or leases we have been issues remain valid.  If
44  * the session times out and goes stale, our leases and capabilities
45  * are no longer valid.
46  */
47 
48 struct ceph_reconnect_state {
49 	int nr_caps;
50 	struct ceph_pagelist *pagelist;
51 	unsigned msg_version;
52 };
53 
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 			    struct list_head *head);
56 
57 static const struct ceph_connection_operations mds_con_ops;
58 
59 
60 /*
61  * mds reply parsing
62  */
63 
64 /*
65  * parse individual inode info
66  */
67 static int parse_reply_info_in(void **p, void *end,
68 			       struct ceph_mds_reply_info_in *info,
69 			       u64 features)
70 {
71 	int err = -EIO;
72 
73 	info->in = *p;
74 	*p += sizeof(struct ceph_mds_reply_inode) +
75 		sizeof(*info->in->fragtree.splits) *
76 		le32_to_cpu(info->in->fragtree.nsplits);
77 
78 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 	ceph_decode_need(p, end, info->symlink_len, bad);
80 	info->symlink = *p;
81 	*p += info->symlink_len;
82 
83 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
84 		ceph_decode_copy_safe(p, end, &info->dir_layout,
85 				      sizeof(info->dir_layout), bad);
86 	else
87 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
88 
89 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
90 	ceph_decode_need(p, end, info->xattr_len, bad);
91 	info->xattr_data = *p;
92 	*p += info->xattr_len;
93 
94 	if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
95 		ceph_decode_64_safe(p, end, info->inline_version, bad);
96 		ceph_decode_32_safe(p, end, info->inline_len, bad);
97 		ceph_decode_need(p, end, info->inline_len, bad);
98 		info->inline_data = *p;
99 		*p += info->inline_len;
100 	} else
101 		info->inline_version = CEPH_INLINE_NONE;
102 
103 	if (features & CEPH_FEATURE_MDS_QUOTA) {
104 		u8 struct_v, struct_compat;
105 		u32 struct_len;
106 
107 		/*
108 		 * both struct_v and struct_compat are expected to be >= 1
109 		 */
110 		ceph_decode_8_safe(p, end, struct_v, bad);
111 		ceph_decode_8_safe(p, end, struct_compat, bad);
112 		if (!struct_v || !struct_compat)
113 			goto bad;
114 		ceph_decode_32_safe(p, end, struct_len, bad);
115 		ceph_decode_need(p, end, struct_len, bad);
116 		ceph_decode_64_safe(p, end, info->max_bytes, bad);
117 		ceph_decode_64_safe(p, end, info->max_files, bad);
118 	} else {
119 		info->max_bytes = 0;
120 		info->max_files = 0;
121 	}
122 
123 	info->pool_ns_len = 0;
124 	info->pool_ns_data = NULL;
125 	if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
126 		ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
127 		if (info->pool_ns_len > 0) {
128 			ceph_decode_need(p, end, info->pool_ns_len, bad);
129 			info->pool_ns_data = *p;
130 			*p += info->pool_ns_len;
131 		}
132 	}
133 
134 	return 0;
135 bad:
136 	return err;
137 }
138 
139 /*
140  * parse a normal reply, which may contain a (dir+)dentry and/or a
141  * target inode.
142  */
143 static int parse_reply_info_trace(void **p, void *end,
144 				  struct ceph_mds_reply_info_parsed *info,
145 				  u64 features)
146 {
147 	int err;
148 
149 	if (info->head->is_dentry) {
150 		err = parse_reply_info_in(p, end, &info->diri, features);
151 		if (err < 0)
152 			goto out_bad;
153 
154 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
155 			goto bad;
156 		info->dirfrag = *p;
157 		*p += sizeof(*info->dirfrag) +
158 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
159 		if (unlikely(*p > end))
160 			goto bad;
161 
162 		ceph_decode_32_safe(p, end, info->dname_len, bad);
163 		ceph_decode_need(p, end, info->dname_len, bad);
164 		info->dname = *p;
165 		*p += info->dname_len;
166 		info->dlease = *p;
167 		*p += sizeof(*info->dlease);
168 	}
169 
170 	if (info->head->is_target) {
171 		err = parse_reply_info_in(p, end, &info->targeti, features);
172 		if (err < 0)
173 			goto out_bad;
174 	}
175 
176 	if (unlikely(*p != end))
177 		goto bad;
178 	return 0;
179 
180 bad:
181 	err = -EIO;
182 out_bad:
183 	pr_err("problem parsing mds trace %d\n", err);
184 	return err;
185 }
186 
187 /*
188  * parse readdir results
189  */
190 static int parse_reply_info_dir(void **p, void *end,
191 				struct ceph_mds_reply_info_parsed *info,
192 				u64 features)
193 {
194 	u32 num, i = 0;
195 	int err;
196 
197 	info->dir_dir = *p;
198 	if (*p + sizeof(*info->dir_dir) > end)
199 		goto bad;
200 	*p += sizeof(*info->dir_dir) +
201 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
202 	if (*p > end)
203 		goto bad;
204 
205 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
206 	num = ceph_decode_32(p);
207 	{
208 		u16 flags = ceph_decode_16(p);
209 		info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
210 		info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
211 		info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
212 		info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH);
213 	}
214 	if (num == 0)
215 		goto done;
216 
217 	BUG_ON(!info->dir_entries);
218 	if ((unsigned long)(info->dir_entries + num) >
219 	    (unsigned long)info->dir_entries + info->dir_buf_size) {
220 		pr_err("dir contents are larger than expected\n");
221 		WARN_ON(1);
222 		goto bad;
223 	}
224 
225 	info->dir_nr = num;
226 	while (num) {
227 		struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
228 		/* dentry */
229 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
230 		rde->name_len = ceph_decode_32(p);
231 		ceph_decode_need(p, end, rde->name_len, bad);
232 		rde->name = *p;
233 		*p += rde->name_len;
234 		dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name);
235 		rde->lease = *p;
236 		*p += sizeof(struct ceph_mds_reply_lease);
237 
238 		/* inode */
239 		err = parse_reply_info_in(p, end, &rde->inode, features);
240 		if (err < 0)
241 			goto out_bad;
242 		/* ceph_readdir_prepopulate() will update it */
243 		rde->offset = 0;
244 		i++;
245 		num--;
246 	}
247 
248 done:
249 	if (*p != end)
250 		goto bad;
251 	return 0;
252 
253 bad:
254 	err = -EIO;
255 out_bad:
256 	pr_err("problem parsing dir contents %d\n", err);
257 	return err;
258 }
259 
260 /*
261  * parse fcntl F_GETLK results
262  */
263 static int parse_reply_info_filelock(void **p, void *end,
264 				     struct ceph_mds_reply_info_parsed *info,
265 				     u64 features)
266 {
267 	if (*p + sizeof(*info->filelock_reply) > end)
268 		goto bad;
269 
270 	info->filelock_reply = *p;
271 	*p += sizeof(*info->filelock_reply);
272 
273 	if (unlikely(*p != end))
274 		goto bad;
275 	return 0;
276 
277 bad:
278 	return -EIO;
279 }
280 
281 /*
282  * parse create results
283  */
284 static int parse_reply_info_create(void **p, void *end,
285 				  struct ceph_mds_reply_info_parsed *info,
286 				  u64 features)
287 {
288 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
289 		if (*p == end) {
290 			info->has_create_ino = false;
291 		} else {
292 			info->has_create_ino = true;
293 			info->ino = ceph_decode_64(p);
294 		}
295 	}
296 
297 	if (unlikely(*p != end))
298 		goto bad;
299 	return 0;
300 
301 bad:
302 	return -EIO;
303 }
304 
305 /*
306  * parse extra results
307  */
308 static int parse_reply_info_extra(void **p, void *end,
309 				  struct ceph_mds_reply_info_parsed *info,
310 				  u64 features)
311 {
312 	u32 op = le32_to_cpu(info->head->op);
313 
314 	if (op == CEPH_MDS_OP_GETFILELOCK)
315 		return parse_reply_info_filelock(p, end, info, features);
316 	else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP)
317 		return parse_reply_info_dir(p, end, info, features);
318 	else if (op == CEPH_MDS_OP_CREATE)
319 		return parse_reply_info_create(p, end, info, features);
320 	else
321 		return -EIO;
322 }
323 
324 /*
325  * parse entire mds reply
326  */
327 static int parse_reply_info(struct ceph_msg *msg,
328 			    struct ceph_mds_reply_info_parsed *info,
329 			    u64 features)
330 {
331 	void *p, *end;
332 	u32 len;
333 	int err;
334 
335 	info->head = msg->front.iov_base;
336 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
337 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
338 
339 	/* trace */
340 	ceph_decode_32_safe(&p, end, len, bad);
341 	if (len > 0) {
342 		ceph_decode_need(&p, end, len, bad);
343 		err = parse_reply_info_trace(&p, p+len, info, features);
344 		if (err < 0)
345 			goto out_bad;
346 	}
347 
348 	/* extra */
349 	ceph_decode_32_safe(&p, end, len, bad);
350 	if (len > 0) {
351 		ceph_decode_need(&p, end, len, bad);
352 		err = parse_reply_info_extra(&p, p+len, info, features);
353 		if (err < 0)
354 			goto out_bad;
355 	}
356 
357 	/* snap blob */
358 	ceph_decode_32_safe(&p, end, len, bad);
359 	info->snapblob_len = len;
360 	info->snapblob = p;
361 	p += len;
362 
363 	if (p != end)
364 		goto bad;
365 	return 0;
366 
367 bad:
368 	err = -EIO;
369 out_bad:
370 	pr_err("mds parse_reply err %d\n", err);
371 	return err;
372 }
373 
374 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
375 {
376 	if (!info->dir_entries)
377 		return;
378 	free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
379 }
380 
381 
382 /*
383  * sessions
384  */
385 const char *ceph_session_state_name(int s)
386 {
387 	switch (s) {
388 	case CEPH_MDS_SESSION_NEW: return "new";
389 	case CEPH_MDS_SESSION_OPENING: return "opening";
390 	case CEPH_MDS_SESSION_OPEN: return "open";
391 	case CEPH_MDS_SESSION_HUNG: return "hung";
392 	case CEPH_MDS_SESSION_CLOSING: return "closing";
393 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
394 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
395 	case CEPH_MDS_SESSION_REJECTED: return "rejected";
396 	default: return "???";
397 	}
398 }
399 
400 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
401 {
402 	if (refcount_inc_not_zero(&s->s_ref)) {
403 		dout("mdsc get_session %p %d -> %d\n", s,
404 		     refcount_read(&s->s_ref)-1, refcount_read(&s->s_ref));
405 		return s;
406 	} else {
407 		dout("mdsc get_session %p 0 -- FAIL\n", s);
408 		return NULL;
409 	}
410 }
411 
412 void ceph_put_mds_session(struct ceph_mds_session *s)
413 {
414 	dout("mdsc put_session %p %d -> %d\n", s,
415 	     refcount_read(&s->s_ref), refcount_read(&s->s_ref)-1);
416 	if (refcount_dec_and_test(&s->s_ref)) {
417 		if (s->s_auth.authorizer)
418 			ceph_auth_destroy_authorizer(s->s_auth.authorizer);
419 		kfree(s);
420 	}
421 }
422 
423 /*
424  * called under mdsc->mutex
425  */
426 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
427 						   int mds)
428 {
429 	struct ceph_mds_session *session;
430 
431 	if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
432 		return NULL;
433 	session = mdsc->sessions[mds];
434 	dout("lookup_mds_session %p %d\n", session,
435 	     refcount_read(&session->s_ref));
436 	get_session(session);
437 	return session;
438 }
439 
440 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
441 {
442 	if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
443 		return false;
444 	else
445 		return true;
446 }
447 
448 static int __verify_registered_session(struct ceph_mds_client *mdsc,
449 				       struct ceph_mds_session *s)
450 {
451 	if (s->s_mds >= mdsc->max_sessions ||
452 	    mdsc->sessions[s->s_mds] != s)
453 		return -ENOENT;
454 	return 0;
455 }
456 
457 /*
458  * create+register a new session for given mds.
459  * called under mdsc->mutex.
460  */
461 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
462 						 int mds)
463 {
464 	struct ceph_mds_session *s;
465 
466 	if (mds >= mdsc->mdsmap->m_num_mds)
467 		return ERR_PTR(-EINVAL);
468 
469 	s = kzalloc(sizeof(*s), GFP_NOFS);
470 	if (!s)
471 		return ERR_PTR(-ENOMEM);
472 
473 	if (mds >= mdsc->max_sessions) {
474 		int newmax = 1 << get_count_order(mds + 1);
475 		struct ceph_mds_session **sa;
476 
477 		dout("%s: realloc to %d\n", __func__, newmax);
478 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
479 		if (!sa)
480 			goto fail_realloc;
481 		if (mdsc->sessions) {
482 			memcpy(sa, mdsc->sessions,
483 			       mdsc->max_sessions * sizeof(void *));
484 			kfree(mdsc->sessions);
485 		}
486 		mdsc->sessions = sa;
487 		mdsc->max_sessions = newmax;
488 	}
489 
490 	dout("%s: mds%d\n", __func__, mds);
491 	s->s_mdsc = mdsc;
492 	s->s_mds = mds;
493 	s->s_state = CEPH_MDS_SESSION_NEW;
494 	s->s_ttl = 0;
495 	s->s_seq = 0;
496 	mutex_init(&s->s_mutex);
497 
498 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
499 
500 	spin_lock_init(&s->s_gen_ttl_lock);
501 	s->s_cap_gen = 0;
502 	s->s_cap_ttl = jiffies - 1;
503 
504 	spin_lock_init(&s->s_cap_lock);
505 	s->s_renew_requested = 0;
506 	s->s_renew_seq = 0;
507 	INIT_LIST_HEAD(&s->s_caps);
508 	s->s_nr_caps = 0;
509 	s->s_trim_caps = 0;
510 	refcount_set(&s->s_ref, 1);
511 	INIT_LIST_HEAD(&s->s_waiting);
512 	INIT_LIST_HEAD(&s->s_unsafe);
513 	s->s_num_cap_releases = 0;
514 	s->s_cap_reconnect = 0;
515 	s->s_cap_iterator = NULL;
516 	INIT_LIST_HEAD(&s->s_cap_releases);
517 	INIT_LIST_HEAD(&s->s_cap_flushing);
518 
519 	mdsc->sessions[mds] = s;
520 	atomic_inc(&mdsc->num_sessions);
521 	refcount_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
522 
523 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
524 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
525 
526 	return s;
527 
528 fail_realloc:
529 	kfree(s);
530 	return ERR_PTR(-ENOMEM);
531 }
532 
533 /*
534  * called under mdsc->mutex
535  */
536 static void __unregister_session(struct ceph_mds_client *mdsc,
537 			       struct ceph_mds_session *s)
538 {
539 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
540 	BUG_ON(mdsc->sessions[s->s_mds] != s);
541 	mdsc->sessions[s->s_mds] = NULL;
542 	ceph_con_close(&s->s_con);
543 	ceph_put_mds_session(s);
544 	atomic_dec(&mdsc->num_sessions);
545 }
546 
547 /*
548  * drop session refs in request.
549  *
550  * should be last request ref, or hold mdsc->mutex
551  */
552 static void put_request_session(struct ceph_mds_request *req)
553 {
554 	if (req->r_session) {
555 		ceph_put_mds_session(req->r_session);
556 		req->r_session = NULL;
557 	}
558 }
559 
560 void ceph_mdsc_release_request(struct kref *kref)
561 {
562 	struct ceph_mds_request *req = container_of(kref,
563 						    struct ceph_mds_request,
564 						    r_kref);
565 	destroy_reply_info(&req->r_reply_info);
566 	if (req->r_request)
567 		ceph_msg_put(req->r_request);
568 	if (req->r_reply)
569 		ceph_msg_put(req->r_reply);
570 	if (req->r_inode) {
571 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
572 		iput(req->r_inode);
573 	}
574 	if (req->r_parent)
575 		ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
576 	iput(req->r_target_inode);
577 	if (req->r_dentry)
578 		dput(req->r_dentry);
579 	if (req->r_old_dentry)
580 		dput(req->r_old_dentry);
581 	if (req->r_old_dentry_dir) {
582 		/*
583 		 * track (and drop pins for) r_old_dentry_dir
584 		 * separately, since r_old_dentry's d_parent may have
585 		 * changed between the dir mutex being dropped and
586 		 * this request being freed.
587 		 */
588 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
589 				  CEPH_CAP_PIN);
590 		iput(req->r_old_dentry_dir);
591 	}
592 	kfree(req->r_path1);
593 	kfree(req->r_path2);
594 	if (req->r_pagelist)
595 		ceph_pagelist_release(req->r_pagelist);
596 	put_request_session(req);
597 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
598 	kfree(req);
599 }
600 
601 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
602 
603 /*
604  * lookup session, bump ref if found.
605  *
606  * called under mdsc->mutex.
607  */
608 static struct ceph_mds_request *
609 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
610 {
611 	struct ceph_mds_request *req;
612 
613 	req = lookup_request(&mdsc->request_tree, tid);
614 	if (req)
615 		ceph_mdsc_get_request(req);
616 
617 	return req;
618 }
619 
620 /*
621  * Register an in-flight request, and assign a tid.  Link to directory
622  * are modifying (if any).
623  *
624  * Called under mdsc->mutex.
625  */
626 static void __register_request(struct ceph_mds_client *mdsc,
627 			       struct ceph_mds_request *req,
628 			       struct inode *dir)
629 {
630 	int ret = 0;
631 
632 	req->r_tid = ++mdsc->last_tid;
633 	if (req->r_num_caps) {
634 		ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation,
635 					req->r_num_caps);
636 		if (ret < 0) {
637 			pr_err("__register_request %p "
638 			       "failed to reserve caps: %d\n", req, ret);
639 			/* set req->r_err to fail early from __do_request */
640 			req->r_err = ret;
641 			return;
642 		}
643 	}
644 	dout("__register_request %p tid %lld\n", req, req->r_tid);
645 	ceph_mdsc_get_request(req);
646 	insert_request(&mdsc->request_tree, req);
647 
648 	req->r_uid = current_fsuid();
649 	req->r_gid = current_fsgid();
650 
651 	if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
652 		mdsc->oldest_tid = req->r_tid;
653 
654 	if (dir) {
655 		ihold(dir);
656 		req->r_unsafe_dir = dir;
657 	}
658 }
659 
660 static void __unregister_request(struct ceph_mds_client *mdsc,
661 				 struct ceph_mds_request *req)
662 {
663 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
664 
665 	/* Never leave an unregistered request on an unsafe list! */
666 	list_del_init(&req->r_unsafe_item);
667 
668 	if (req->r_tid == mdsc->oldest_tid) {
669 		struct rb_node *p = rb_next(&req->r_node);
670 		mdsc->oldest_tid = 0;
671 		while (p) {
672 			struct ceph_mds_request *next_req =
673 				rb_entry(p, struct ceph_mds_request, r_node);
674 			if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
675 				mdsc->oldest_tid = next_req->r_tid;
676 				break;
677 			}
678 			p = rb_next(p);
679 		}
680 	}
681 
682 	erase_request(&mdsc->request_tree, req);
683 
684 	if (req->r_unsafe_dir  &&
685 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
686 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
687 		spin_lock(&ci->i_unsafe_lock);
688 		list_del_init(&req->r_unsafe_dir_item);
689 		spin_unlock(&ci->i_unsafe_lock);
690 	}
691 	if (req->r_target_inode &&
692 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
693 		struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
694 		spin_lock(&ci->i_unsafe_lock);
695 		list_del_init(&req->r_unsafe_target_item);
696 		spin_unlock(&ci->i_unsafe_lock);
697 	}
698 
699 	if (req->r_unsafe_dir) {
700 		iput(req->r_unsafe_dir);
701 		req->r_unsafe_dir = NULL;
702 	}
703 
704 	complete_all(&req->r_safe_completion);
705 
706 	ceph_mdsc_put_request(req);
707 }
708 
709 /*
710  * Walk back up the dentry tree until we hit a dentry representing a
711  * non-snapshot inode. We do this using the rcu_read_lock (which must be held
712  * when calling this) to ensure that the objects won't disappear while we're
713  * working with them. Once we hit a candidate dentry, we attempt to take a
714  * reference to it, and return that as the result.
715  */
716 static struct inode *get_nonsnap_parent(struct dentry *dentry)
717 {
718 	struct inode *inode = NULL;
719 
720 	while (dentry && !IS_ROOT(dentry)) {
721 		inode = d_inode_rcu(dentry);
722 		if (!inode || ceph_snap(inode) == CEPH_NOSNAP)
723 			break;
724 		dentry = dentry->d_parent;
725 	}
726 	if (inode)
727 		inode = igrab(inode);
728 	return inode;
729 }
730 
731 /*
732  * Choose mds to send request to next.  If there is a hint set in the
733  * request (e.g., due to a prior forward hint from the mds), use that.
734  * Otherwise, consult frag tree and/or caps to identify the
735  * appropriate mds.  If all else fails, choose randomly.
736  *
737  * Called under mdsc->mutex.
738  */
739 static int __choose_mds(struct ceph_mds_client *mdsc,
740 			struct ceph_mds_request *req)
741 {
742 	struct inode *inode;
743 	struct ceph_inode_info *ci;
744 	struct ceph_cap *cap;
745 	int mode = req->r_direct_mode;
746 	int mds = -1;
747 	u32 hash = req->r_direct_hash;
748 	bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags);
749 
750 	/*
751 	 * is there a specific mds we should try?  ignore hint if we have
752 	 * no session and the mds is not up (active or recovering).
753 	 */
754 	if (req->r_resend_mds >= 0 &&
755 	    (__have_session(mdsc, req->r_resend_mds) ||
756 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
757 		dout("choose_mds using resend_mds mds%d\n",
758 		     req->r_resend_mds);
759 		return req->r_resend_mds;
760 	}
761 
762 	if (mode == USE_RANDOM_MDS)
763 		goto random;
764 
765 	inode = NULL;
766 	if (req->r_inode) {
767 		if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) {
768 			inode = req->r_inode;
769 			ihold(inode);
770 		} else {
771 			/* req->r_dentry is non-null for LSSNAP request */
772 			rcu_read_lock();
773 			inode = get_nonsnap_parent(req->r_dentry);
774 			rcu_read_unlock();
775 			dout("__choose_mds using snapdir's parent %p\n", inode);
776 		}
777 	} else if (req->r_dentry) {
778 		/* ignore race with rename; old or new d_parent is okay */
779 		struct dentry *parent;
780 		struct inode *dir;
781 
782 		rcu_read_lock();
783 		parent = req->r_dentry->d_parent;
784 		dir = req->r_parent ? : d_inode_rcu(parent);
785 
786 		if (!dir || dir->i_sb != mdsc->fsc->sb) {
787 			/*  not this fs or parent went negative */
788 			inode = d_inode(req->r_dentry);
789 			if (inode)
790 				ihold(inode);
791 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
792 			/* direct snapped/virtual snapdir requests
793 			 * based on parent dir inode */
794 			inode = get_nonsnap_parent(parent);
795 			dout("__choose_mds using nonsnap parent %p\n", inode);
796 		} else {
797 			/* dentry target */
798 			inode = d_inode(req->r_dentry);
799 			if (!inode || mode == USE_AUTH_MDS) {
800 				/* dir + name */
801 				inode = igrab(dir);
802 				hash = ceph_dentry_hash(dir, req->r_dentry);
803 				is_hash = true;
804 			} else {
805 				ihold(inode);
806 			}
807 		}
808 		rcu_read_unlock();
809 	}
810 
811 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
812 	     (int)hash, mode);
813 	if (!inode)
814 		goto random;
815 	ci = ceph_inode(inode);
816 
817 	if (is_hash && S_ISDIR(inode->i_mode)) {
818 		struct ceph_inode_frag frag;
819 		int found;
820 
821 		ceph_choose_frag(ci, hash, &frag, &found);
822 		if (found) {
823 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
824 				u8 r;
825 
826 				/* choose a random replica */
827 				get_random_bytes(&r, 1);
828 				r %= frag.ndist;
829 				mds = frag.dist[r];
830 				dout("choose_mds %p %llx.%llx "
831 				     "frag %u mds%d (%d/%d)\n",
832 				     inode, ceph_vinop(inode),
833 				     frag.frag, mds,
834 				     (int)r, frag.ndist);
835 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
836 				    CEPH_MDS_STATE_ACTIVE)
837 					goto out;
838 			}
839 
840 			/* since this file/dir wasn't known to be
841 			 * replicated, then we want to look for the
842 			 * authoritative mds. */
843 			mode = USE_AUTH_MDS;
844 			if (frag.mds >= 0) {
845 				/* choose auth mds */
846 				mds = frag.mds;
847 				dout("choose_mds %p %llx.%llx "
848 				     "frag %u mds%d (auth)\n",
849 				     inode, ceph_vinop(inode), frag.frag, mds);
850 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
851 				    CEPH_MDS_STATE_ACTIVE)
852 					goto out;
853 			}
854 		}
855 	}
856 
857 	spin_lock(&ci->i_ceph_lock);
858 	cap = NULL;
859 	if (mode == USE_AUTH_MDS)
860 		cap = ci->i_auth_cap;
861 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
862 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
863 	if (!cap) {
864 		spin_unlock(&ci->i_ceph_lock);
865 		iput(inode);
866 		goto random;
867 	}
868 	mds = cap->session->s_mds;
869 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
870 	     inode, ceph_vinop(inode), mds,
871 	     cap == ci->i_auth_cap ? "auth " : "", cap);
872 	spin_unlock(&ci->i_ceph_lock);
873 out:
874 	iput(inode);
875 	return mds;
876 
877 random:
878 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
879 	dout("choose_mds chose random mds%d\n", mds);
880 	return mds;
881 }
882 
883 
884 /*
885  * session messages
886  */
887 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
888 {
889 	struct ceph_msg *msg;
890 	struct ceph_mds_session_head *h;
891 
892 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
893 			   false);
894 	if (!msg) {
895 		pr_err("create_session_msg ENOMEM creating msg\n");
896 		return NULL;
897 	}
898 	h = msg->front.iov_base;
899 	h->op = cpu_to_le32(op);
900 	h->seq = cpu_to_le64(seq);
901 
902 	return msg;
903 }
904 
905 /*
906  * session message, specialization for CEPH_SESSION_REQUEST_OPEN
907  * to include additional client metadata fields.
908  */
909 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
910 {
911 	struct ceph_msg *msg;
912 	struct ceph_mds_session_head *h;
913 	int i = -1;
914 	int metadata_bytes = 0;
915 	int metadata_key_count = 0;
916 	struct ceph_options *opt = mdsc->fsc->client->options;
917 	struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
918 	void *p;
919 
920 	const char* metadata[][2] = {
921 		{"hostname", mdsc->nodename},
922 		{"kernel_version", init_utsname()->release},
923 		{"entity_id", opt->name ? : ""},
924 		{"root", fsopt->server_path ? : "/"},
925 		{NULL, NULL}
926 	};
927 
928 	/* Calculate serialized length of metadata */
929 	metadata_bytes = 4;  /* map length */
930 	for (i = 0; metadata[i][0]; ++i) {
931 		metadata_bytes += 8 + strlen(metadata[i][0]) +
932 			strlen(metadata[i][1]);
933 		metadata_key_count++;
934 	}
935 
936 	/* Allocate the message */
937 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
938 			   GFP_NOFS, false);
939 	if (!msg) {
940 		pr_err("create_session_msg ENOMEM creating msg\n");
941 		return NULL;
942 	}
943 	h = msg->front.iov_base;
944 	h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
945 	h->seq = cpu_to_le64(seq);
946 
947 	/*
948 	 * Serialize client metadata into waiting buffer space, using
949 	 * the format that userspace expects for map<string, string>
950 	 *
951 	 * ClientSession messages with metadata are v2
952 	 */
953 	msg->hdr.version = cpu_to_le16(2);
954 	msg->hdr.compat_version = cpu_to_le16(1);
955 
956 	/* The write pointer, following the session_head structure */
957 	p = msg->front.iov_base + sizeof(*h);
958 
959 	/* Number of entries in the map */
960 	ceph_encode_32(&p, metadata_key_count);
961 
962 	/* Two length-prefixed strings for each entry in the map */
963 	for (i = 0; metadata[i][0]; ++i) {
964 		size_t const key_len = strlen(metadata[i][0]);
965 		size_t const val_len = strlen(metadata[i][1]);
966 
967 		ceph_encode_32(&p, key_len);
968 		memcpy(p, metadata[i][0], key_len);
969 		p += key_len;
970 		ceph_encode_32(&p, val_len);
971 		memcpy(p, metadata[i][1], val_len);
972 		p += val_len;
973 	}
974 
975 	return msg;
976 }
977 
978 /*
979  * send session open request.
980  *
981  * called under mdsc->mutex
982  */
983 static int __open_session(struct ceph_mds_client *mdsc,
984 			  struct ceph_mds_session *session)
985 {
986 	struct ceph_msg *msg;
987 	int mstate;
988 	int mds = session->s_mds;
989 
990 	/* wait for mds to go active? */
991 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
992 	dout("open_session to mds%d (%s)\n", mds,
993 	     ceph_mds_state_name(mstate));
994 	session->s_state = CEPH_MDS_SESSION_OPENING;
995 	session->s_renew_requested = jiffies;
996 
997 	/* send connect message */
998 	msg = create_session_open_msg(mdsc, session->s_seq);
999 	if (!msg)
1000 		return -ENOMEM;
1001 	ceph_con_send(&session->s_con, msg);
1002 	return 0;
1003 }
1004 
1005 /*
1006  * open sessions for any export targets for the given mds
1007  *
1008  * called under mdsc->mutex
1009  */
1010 static struct ceph_mds_session *
1011 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
1012 {
1013 	struct ceph_mds_session *session;
1014 
1015 	session = __ceph_lookup_mds_session(mdsc, target);
1016 	if (!session) {
1017 		session = register_session(mdsc, target);
1018 		if (IS_ERR(session))
1019 			return session;
1020 	}
1021 	if (session->s_state == CEPH_MDS_SESSION_NEW ||
1022 	    session->s_state == CEPH_MDS_SESSION_CLOSING)
1023 		__open_session(mdsc, session);
1024 
1025 	return session;
1026 }
1027 
1028 struct ceph_mds_session *
1029 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
1030 {
1031 	struct ceph_mds_session *session;
1032 
1033 	dout("open_export_target_session to mds%d\n", target);
1034 
1035 	mutex_lock(&mdsc->mutex);
1036 	session = __open_export_target_session(mdsc, target);
1037 	mutex_unlock(&mdsc->mutex);
1038 
1039 	return session;
1040 }
1041 
1042 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
1043 					  struct ceph_mds_session *session)
1044 {
1045 	struct ceph_mds_info *mi;
1046 	struct ceph_mds_session *ts;
1047 	int i, mds = session->s_mds;
1048 
1049 	if (mds >= mdsc->mdsmap->m_num_mds)
1050 		return;
1051 
1052 	mi = &mdsc->mdsmap->m_info[mds];
1053 	dout("open_export_target_sessions for mds%d (%d targets)\n",
1054 	     session->s_mds, mi->num_export_targets);
1055 
1056 	for (i = 0; i < mi->num_export_targets; i++) {
1057 		ts = __open_export_target_session(mdsc, mi->export_targets[i]);
1058 		if (!IS_ERR(ts))
1059 			ceph_put_mds_session(ts);
1060 	}
1061 }
1062 
1063 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
1064 					   struct ceph_mds_session *session)
1065 {
1066 	mutex_lock(&mdsc->mutex);
1067 	__open_export_target_sessions(mdsc, session);
1068 	mutex_unlock(&mdsc->mutex);
1069 }
1070 
1071 /*
1072  * session caps
1073  */
1074 
1075 static void detach_cap_releases(struct ceph_mds_session *session,
1076 				struct list_head *target)
1077 {
1078 	lockdep_assert_held(&session->s_cap_lock);
1079 
1080 	list_splice_init(&session->s_cap_releases, target);
1081 	session->s_num_cap_releases = 0;
1082 	dout("dispose_cap_releases mds%d\n", session->s_mds);
1083 }
1084 
1085 static void dispose_cap_releases(struct ceph_mds_client *mdsc,
1086 				 struct list_head *dispose)
1087 {
1088 	while (!list_empty(dispose)) {
1089 		struct ceph_cap *cap;
1090 		/* zero out the in-progress message */
1091 		cap = list_first_entry(dispose, struct ceph_cap, session_caps);
1092 		list_del(&cap->session_caps);
1093 		ceph_put_cap(mdsc, cap);
1094 	}
1095 }
1096 
1097 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1098 				     struct ceph_mds_session *session)
1099 {
1100 	struct ceph_mds_request *req;
1101 	struct rb_node *p;
1102 
1103 	dout("cleanup_session_requests mds%d\n", session->s_mds);
1104 	mutex_lock(&mdsc->mutex);
1105 	while (!list_empty(&session->s_unsafe)) {
1106 		req = list_first_entry(&session->s_unsafe,
1107 				       struct ceph_mds_request, r_unsafe_item);
1108 		pr_warn_ratelimited(" dropping unsafe request %llu\n",
1109 				    req->r_tid);
1110 		__unregister_request(mdsc, req);
1111 	}
1112 	/* zero r_attempts, so kick_requests() will re-send requests */
1113 	p = rb_first(&mdsc->request_tree);
1114 	while (p) {
1115 		req = rb_entry(p, struct ceph_mds_request, r_node);
1116 		p = rb_next(p);
1117 		if (req->r_session &&
1118 		    req->r_session->s_mds == session->s_mds)
1119 			req->r_attempts = 0;
1120 	}
1121 	mutex_unlock(&mdsc->mutex);
1122 }
1123 
1124 /*
1125  * Helper to safely iterate over all caps associated with a session, with
1126  * special care taken to handle a racing __ceph_remove_cap().
1127  *
1128  * Caller must hold session s_mutex.
1129  */
1130 static int iterate_session_caps(struct ceph_mds_session *session,
1131 				 int (*cb)(struct inode *, struct ceph_cap *,
1132 					    void *), void *arg)
1133 {
1134 	struct list_head *p;
1135 	struct ceph_cap *cap;
1136 	struct inode *inode, *last_inode = NULL;
1137 	struct ceph_cap *old_cap = NULL;
1138 	int ret;
1139 
1140 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1141 	spin_lock(&session->s_cap_lock);
1142 	p = session->s_caps.next;
1143 	while (p != &session->s_caps) {
1144 		cap = list_entry(p, struct ceph_cap, session_caps);
1145 		inode = igrab(&cap->ci->vfs_inode);
1146 		if (!inode) {
1147 			p = p->next;
1148 			continue;
1149 		}
1150 		session->s_cap_iterator = cap;
1151 		spin_unlock(&session->s_cap_lock);
1152 
1153 		if (last_inode) {
1154 			iput(last_inode);
1155 			last_inode = NULL;
1156 		}
1157 		if (old_cap) {
1158 			ceph_put_cap(session->s_mdsc, old_cap);
1159 			old_cap = NULL;
1160 		}
1161 
1162 		ret = cb(inode, cap, arg);
1163 		last_inode = inode;
1164 
1165 		spin_lock(&session->s_cap_lock);
1166 		p = p->next;
1167 		if (!cap->ci) {
1168 			dout("iterate_session_caps  finishing cap %p removal\n",
1169 			     cap);
1170 			BUG_ON(cap->session != session);
1171 			cap->session = NULL;
1172 			list_del_init(&cap->session_caps);
1173 			session->s_nr_caps--;
1174 			if (cap->queue_release) {
1175 				list_add_tail(&cap->session_caps,
1176 					      &session->s_cap_releases);
1177 				session->s_num_cap_releases++;
1178 			} else {
1179 				old_cap = cap;  /* put_cap it w/o locks held */
1180 			}
1181 		}
1182 		if (ret < 0)
1183 			goto out;
1184 	}
1185 	ret = 0;
1186 out:
1187 	session->s_cap_iterator = NULL;
1188 	spin_unlock(&session->s_cap_lock);
1189 
1190 	iput(last_inode);
1191 	if (old_cap)
1192 		ceph_put_cap(session->s_mdsc, old_cap);
1193 
1194 	return ret;
1195 }
1196 
1197 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1198 				  void *arg)
1199 {
1200 	struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg;
1201 	struct ceph_inode_info *ci = ceph_inode(inode);
1202 	LIST_HEAD(to_remove);
1203 	bool drop = false;
1204 	bool invalidate = false;
1205 
1206 	dout("removing cap %p, ci is %p, inode is %p\n",
1207 	     cap, ci, &ci->vfs_inode);
1208 	spin_lock(&ci->i_ceph_lock);
1209 	__ceph_remove_cap(cap, false);
1210 	if (!ci->i_auth_cap) {
1211 		struct ceph_cap_flush *cf;
1212 		struct ceph_mds_client *mdsc = fsc->mdsc;
1213 
1214 		ci->i_ceph_flags |= CEPH_I_CAP_DROPPED;
1215 
1216 		if (ci->i_wrbuffer_ref > 0 &&
1217 		    READ_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
1218 			invalidate = true;
1219 
1220 		while (!list_empty(&ci->i_cap_flush_list)) {
1221 			cf = list_first_entry(&ci->i_cap_flush_list,
1222 					      struct ceph_cap_flush, i_list);
1223 			list_move(&cf->i_list, &to_remove);
1224 		}
1225 
1226 		spin_lock(&mdsc->cap_dirty_lock);
1227 
1228 		list_for_each_entry(cf, &to_remove, i_list)
1229 			list_del(&cf->g_list);
1230 
1231 		if (!list_empty(&ci->i_dirty_item)) {
1232 			pr_warn_ratelimited(
1233 				" dropping dirty %s state for %p %lld\n",
1234 				ceph_cap_string(ci->i_dirty_caps),
1235 				inode, ceph_ino(inode));
1236 			ci->i_dirty_caps = 0;
1237 			list_del_init(&ci->i_dirty_item);
1238 			drop = true;
1239 		}
1240 		if (!list_empty(&ci->i_flushing_item)) {
1241 			pr_warn_ratelimited(
1242 				" dropping dirty+flushing %s state for %p %lld\n",
1243 				ceph_cap_string(ci->i_flushing_caps),
1244 				inode, ceph_ino(inode));
1245 			ci->i_flushing_caps = 0;
1246 			list_del_init(&ci->i_flushing_item);
1247 			mdsc->num_cap_flushing--;
1248 			drop = true;
1249 		}
1250 		spin_unlock(&mdsc->cap_dirty_lock);
1251 
1252 		if (atomic_read(&ci->i_filelock_ref) > 0) {
1253 			/* make further file lock syscall return -EIO */
1254 			ci->i_ceph_flags |= CEPH_I_ERROR_FILELOCK;
1255 			pr_warn_ratelimited(" dropping file locks for %p %lld\n",
1256 					    inode, ceph_ino(inode));
1257 		}
1258 
1259 		if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1260 			list_add(&ci->i_prealloc_cap_flush->i_list, &to_remove);
1261 			ci->i_prealloc_cap_flush = NULL;
1262 		}
1263 	}
1264 	spin_unlock(&ci->i_ceph_lock);
1265 	while (!list_empty(&to_remove)) {
1266 		struct ceph_cap_flush *cf;
1267 		cf = list_first_entry(&to_remove,
1268 				      struct ceph_cap_flush, i_list);
1269 		list_del(&cf->i_list);
1270 		ceph_free_cap_flush(cf);
1271 	}
1272 
1273 	wake_up_all(&ci->i_cap_wq);
1274 	if (invalidate)
1275 		ceph_queue_invalidate(inode);
1276 	if (drop)
1277 		iput(inode);
1278 	return 0;
1279 }
1280 
1281 /*
1282  * caller must hold session s_mutex
1283  */
1284 static void remove_session_caps(struct ceph_mds_session *session)
1285 {
1286 	struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1287 	struct super_block *sb = fsc->sb;
1288 	LIST_HEAD(dispose);
1289 
1290 	dout("remove_session_caps on %p\n", session);
1291 	iterate_session_caps(session, remove_session_caps_cb, fsc);
1292 
1293 	wake_up_all(&fsc->mdsc->cap_flushing_wq);
1294 
1295 	spin_lock(&session->s_cap_lock);
1296 	if (session->s_nr_caps > 0) {
1297 		struct inode *inode;
1298 		struct ceph_cap *cap, *prev = NULL;
1299 		struct ceph_vino vino;
1300 		/*
1301 		 * iterate_session_caps() skips inodes that are being
1302 		 * deleted, we need to wait until deletions are complete.
1303 		 * __wait_on_freeing_inode() is designed for the job,
1304 		 * but it is not exported, so use lookup inode function
1305 		 * to access it.
1306 		 */
1307 		while (!list_empty(&session->s_caps)) {
1308 			cap = list_entry(session->s_caps.next,
1309 					 struct ceph_cap, session_caps);
1310 			if (cap == prev)
1311 				break;
1312 			prev = cap;
1313 			vino = cap->ci->i_vino;
1314 			spin_unlock(&session->s_cap_lock);
1315 
1316 			inode = ceph_find_inode(sb, vino);
1317 			iput(inode);
1318 
1319 			spin_lock(&session->s_cap_lock);
1320 		}
1321 	}
1322 
1323 	// drop cap expires and unlock s_cap_lock
1324 	detach_cap_releases(session, &dispose);
1325 
1326 	BUG_ON(session->s_nr_caps > 0);
1327 	BUG_ON(!list_empty(&session->s_cap_flushing));
1328 	spin_unlock(&session->s_cap_lock);
1329 	dispose_cap_releases(session->s_mdsc, &dispose);
1330 }
1331 
1332 /*
1333  * wake up any threads waiting on this session's caps.  if the cap is
1334  * old (didn't get renewed on the client reconnect), remove it now.
1335  *
1336  * caller must hold s_mutex.
1337  */
1338 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1339 			      void *arg)
1340 {
1341 	struct ceph_inode_info *ci = ceph_inode(inode);
1342 
1343 	if (arg) {
1344 		spin_lock(&ci->i_ceph_lock);
1345 		ci->i_wanted_max_size = 0;
1346 		ci->i_requested_max_size = 0;
1347 		spin_unlock(&ci->i_ceph_lock);
1348 	}
1349 	wake_up_all(&ci->i_cap_wq);
1350 	return 0;
1351 }
1352 
1353 static void wake_up_session_caps(struct ceph_mds_session *session,
1354 				 int reconnect)
1355 {
1356 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1357 	iterate_session_caps(session, wake_up_session_cb,
1358 			     (void *)(unsigned long)reconnect);
1359 }
1360 
1361 /*
1362  * Send periodic message to MDS renewing all currently held caps.  The
1363  * ack will reset the expiration for all caps from this session.
1364  *
1365  * caller holds s_mutex
1366  */
1367 static int send_renew_caps(struct ceph_mds_client *mdsc,
1368 			   struct ceph_mds_session *session)
1369 {
1370 	struct ceph_msg *msg;
1371 	int state;
1372 
1373 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1374 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1375 		pr_info("mds%d caps stale\n", session->s_mds);
1376 	session->s_renew_requested = jiffies;
1377 
1378 	/* do not try to renew caps until a recovering mds has reconnected
1379 	 * with its clients. */
1380 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1381 	if (state < CEPH_MDS_STATE_RECONNECT) {
1382 		dout("send_renew_caps ignoring mds%d (%s)\n",
1383 		     session->s_mds, ceph_mds_state_name(state));
1384 		return 0;
1385 	}
1386 
1387 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1388 		ceph_mds_state_name(state));
1389 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1390 				 ++session->s_renew_seq);
1391 	if (!msg)
1392 		return -ENOMEM;
1393 	ceph_con_send(&session->s_con, msg);
1394 	return 0;
1395 }
1396 
1397 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1398 			     struct ceph_mds_session *session, u64 seq)
1399 {
1400 	struct ceph_msg *msg;
1401 
1402 	dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1403 	     session->s_mds, ceph_session_state_name(session->s_state), seq);
1404 	msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1405 	if (!msg)
1406 		return -ENOMEM;
1407 	ceph_con_send(&session->s_con, msg);
1408 	return 0;
1409 }
1410 
1411 
1412 /*
1413  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1414  *
1415  * Called under session->s_mutex
1416  */
1417 static void renewed_caps(struct ceph_mds_client *mdsc,
1418 			 struct ceph_mds_session *session, int is_renew)
1419 {
1420 	int was_stale;
1421 	int wake = 0;
1422 
1423 	spin_lock(&session->s_cap_lock);
1424 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1425 
1426 	session->s_cap_ttl = session->s_renew_requested +
1427 		mdsc->mdsmap->m_session_timeout*HZ;
1428 
1429 	if (was_stale) {
1430 		if (time_before(jiffies, session->s_cap_ttl)) {
1431 			pr_info("mds%d caps renewed\n", session->s_mds);
1432 			wake = 1;
1433 		} else {
1434 			pr_info("mds%d caps still stale\n", session->s_mds);
1435 		}
1436 	}
1437 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1438 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1439 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1440 	spin_unlock(&session->s_cap_lock);
1441 
1442 	if (wake)
1443 		wake_up_session_caps(session, 0);
1444 }
1445 
1446 /*
1447  * send a session close request
1448  */
1449 static int request_close_session(struct ceph_mds_client *mdsc,
1450 				 struct ceph_mds_session *session)
1451 {
1452 	struct ceph_msg *msg;
1453 
1454 	dout("request_close_session mds%d state %s seq %lld\n",
1455 	     session->s_mds, ceph_session_state_name(session->s_state),
1456 	     session->s_seq);
1457 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1458 	if (!msg)
1459 		return -ENOMEM;
1460 	ceph_con_send(&session->s_con, msg);
1461 	return 1;
1462 }
1463 
1464 /*
1465  * Called with s_mutex held.
1466  */
1467 static int __close_session(struct ceph_mds_client *mdsc,
1468 			 struct ceph_mds_session *session)
1469 {
1470 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1471 		return 0;
1472 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1473 	return request_close_session(mdsc, session);
1474 }
1475 
1476 static bool drop_negative_children(struct dentry *dentry)
1477 {
1478 	struct dentry *child;
1479 	bool all_negative = true;
1480 
1481 	if (!d_is_dir(dentry))
1482 		goto out;
1483 
1484 	spin_lock(&dentry->d_lock);
1485 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
1486 		if (d_really_is_positive(child)) {
1487 			all_negative = false;
1488 			break;
1489 		}
1490 	}
1491 	spin_unlock(&dentry->d_lock);
1492 
1493 	if (all_negative)
1494 		shrink_dcache_parent(dentry);
1495 out:
1496 	return all_negative;
1497 }
1498 
1499 /*
1500  * Trim old(er) caps.
1501  *
1502  * Because we can't cache an inode without one or more caps, we do
1503  * this indirectly: if a cap is unused, we prune its aliases, at which
1504  * point the inode will hopefully get dropped to.
1505  *
1506  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1507  * memory pressure from the MDS, though, so it needn't be perfect.
1508  */
1509 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1510 {
1511 	struct ceph_mds_session *session = arg;
1512 	struct ceph_inode_info *ci = ceph_inode(inode);
1513 	int used, wanted, oissued, mine;
1514 
1515 	if (session->s_trim_caps <= 0)
1516 		return -1;
1517 
1518 	spin_lock(&ci->i_ceph_lock);
1519 	mine = cap->issued | cap->implemented;
1520 	used = __ceph_caps_used(ci);
1521 	wanted = __ceph_caps_file_wanted(ci);
1522 	oissued = __ceph_caps_issued_other(ci, cap);
1523 
1524 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1525 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1526 	     ceph_cap_string(used), ceph_cap_string(wanted));
1527 	if (cap == ci->i_auth_cap) {
1528 		if (ci->i_dirty_caps || ci->i_flushing_caps ||
1529 		    !list_empty(&ci->i_cap_snaps))
1530 			goto out;
1531 		if ((used | wanted) & CEPH_CAP_ANY_WR)
1532 			goto out;
1533 		/* Note: it's possible that i_filelock_ref becomes non-zero
1534 		 * after dropping auth caps. It doesn't hurt because reply
1535 		 * of lock mds request will re-add auth caps. */
1536 		if (atomic_read(&ci->i_filelock_ref) > 0)
1537 			goto out;
1538 	}
1539 	/* The inode has cached pages, but it's no longer used.
1540 	 * we can safely drop it */
1541 	if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1542 	    !(oissued & CEPH_CAP_FILE_CACHE)) {
1543 	  used = 0;
1544 	  oissued = 0;
1545 	}
1546 	if ((used | wanted) & ~oissued & mine)
1547 		goto out;   /* we need these caps */
1548 
1549 	if (oissued) {
1550 		/* we aren't the only cap.. just remove us */
1551 		__ceph_remove_cap(cap, true);
1552 		session->s_trim_caps--;
1553 	} else {
1554 		struct dentry *dentry;
1555 		/* try dropping referring dentries */
1556 		spin_unlock(&ci->i_ceph_lock);
1557 		dentry = d_find_any_alias(inode);
1558 		if (dentry && drop_negative_children(dentry)) {
1559 			int count;
1560 			dput(dentry);
1561 			d_prune_aliases(inode);
1562 			count = atomic_read(&inode->i_count);
1563 			if (count == 1)
1564 				session->s_trim_caps--;
1565 			dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1566 			     inode, cap, count);
1567 		} else {
1568 			dput(dentry);
1569 		}
1570 		return 0;
1571 	}
1572 
1573 out:
1574 	spin_unlock(&ci->i_ceph_lock);
1575 	return 0;
1576 }
1577 
1578 /*
1579  * Trim session cap count down to some max number.
1580  */
1581 int ceph_trim_caps(struct ceph_mds_client *mdsc,
1582 		   struct ceph_mds_session *session,
1583 		   int max_caps)
1584 {
1585 	int trim_caps = session->s_nr_caps - max_caps;
1586 
1587 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1588 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1589 	if (trim_caps > 0) {
1590 		session->s_trim_caps = trim_caps;
1591 		iterate_session_caps(session, trim_caps_cb, session);
1592 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1593 		     session->s_mds, session->s_nr_caps, max_caps,
1594 			trim_caps - session->s_trim_caps);
1595 		session->s_trim_caps = 0;
1596 	}
1597 
1598 	ceph_send_cap_releases(mdsc, session);
1599 	return 0;
1600 }
1601 
1602 static int check_caps_flush(struct ceph_mds_client *mdsc,
1603 			    u64 want_flush_tid)
1604 {
1605 	int ret = 1;
1606 
1607 	spin_lock(&mdsc->cap_dirty_lock);
1608 	if (!list_empty(&mdsc->cap_flush_list)) {
1609 		struct ceph_cap_flush *cf =
1610 			list_first_entry(&mdsc->cap_flush_list,
1611 					 struct ceph_cap_flush, g_list);
1612 		if (cf->tid <= want_flush_tid) {
1613 			dout("check_caps_flush still flushing tid "
1614 			     "%llu <= %llu\n", cf->tid, want_flush_tid);
1615 			ret = 0;
1616 		}
1617 	}
1618 	spin_unlock(&mdsc->cap_dirty_lock);
1619 	return ret;
1620 }
1621 
1622 /*
1623  * flush all dirty inode data to disk.
1624  *
1625  * returns true if we've flushed through want_flush_tid
1626  */
1627 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1628 			    u64 want_flush_tid)
1629 {
1630 	dout("check_caps_flush want %llu\n", want_flush_tid);
1631 
1632 	wait_event(mdsc->cap_flushing_wq,
1633 		   check_caps_flush(mdsc, want_flush_tid));
1634 
1635 	dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1636 }
1637 
1638 /*
1639  * called under s_mutex
1640  */
1641 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1642 			    struct ceph_mds_session *session)
1643 {
1644 	struct ceph_msg *msg = NULL;
1645 	struct ceph_mds_cap_release *head;
1646 	struct ceph_mds_cap_item *item;
1647 	struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc;
1648 	struct ceph_cap *cap;
1649 	LIST_HEAD(tmp_list);
1650 	int num_cap_releases;
1651 	__le32	barrier, *cap_barrier;
1652 
1653 	down_read(&osdc->lock);
1654 	barrier = cpu_to_le32(osdc->epoch_barrier);
1655 	up_read(&osdc->lock);
1656 
1657 	spin_lock(&session->s_cap_lock);
1658 again:
1659 	list_splice_init(&session->s_cap_releases, &tmp_list);
1660 	num_cap_releases = session->s_num_cap_releases;
1661 	session->s_num_cap_releases = 0;
1662 	spin_unlock(&session->s_cap_lock);
1663 
1664 	while (!list_empty(&tmp_list)) {
1665 		if (!msg) {
1666 			msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1667 					PAGE_SIZE, GFP_NOFS, false);
1668 			if (!msg)
1669 				goto out_err;
1670 			head = msg->front.iov_base;
1671 			head->num = cpu_to_le32(0);
1672 			msg->front.iov_len = sizeof(*head);
1673 
1674 			msg->hdr.version = cpu_to_le16(2);
1675 			msg->hdr.compat_version = cpu_to_le16(1);
1676 		}
1677 
1678 		cap = list_first_entry(&tmp_list, struct ceph_cap,
1679 					session_caps);
1680 		list_del(&cap->session_caps);
1681 		num_cap_releases--;
1682 
1683 		head = msg->front.iov_base;
1684 		le32_add_cpu(&head->num, 1);
1685 		item = msg->front.iov_base + msg->front.iov_len;
1686 		item->ino = cpu_to_le64(cap->cap_ino);
1687 		item->cap_id = cpu_to_le64(cap->cap_id);
1688 		item->migrate_seq = cpu_to_le32(cap->mseq);
1689 		item->seq = cpu_to_le32(cap->issue_seq);
1690 		msg->front.iov_len += sizeof(*item);
1691 
1692 		ceph_put_cap(mdsc, cap);
1693 
1694 		if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1695 			// Append cap_barrier field
1696 			cap_barrier = msg->front.iov_base + msg->front.iov_len;
1697 			*cap_barrier = barrier;
1698 			msg->front.iov_len += sizeof(*cap_barrier);
1699 
1700 			msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1701 			dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1702 			ceph_con_send(&session->s_con, msg);
1703 			msg = NULL;
1704 		}
1705 	}
1706 
1707 	BUG_ON(num_cap_releases != 0);
1708 
1709 	spin_lock(&session->s_cap_lock);
1710 	if (!list_empty(&session->s_cap_releases))
1711 		goto again;
1712 	spin_unlock(&session->s_cap_lock);
1713 
1714 	if (msg) {
1715 		// Append cap_barrier field
1716 		cap_barrier = msg->front.iov_base + msg->front.iov_len;
1717 		*cap_barrier = barrier;
1718 		msg->front.iov_len += sizeof(*cap_barrier);
1719 
1720 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1721 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1722 		ceph_con_send(&session->s_con, msg);
1723 	}
1724 	return;
1725 out_err:
1726 	pr_err("send_cap_releases mds%d, failed to allocate message\n",
1727 		session->s_mds);
1728 	spin_lock(&session->s_cap_lock);
1729 	list_splice(&tmp_list, &session->s_cap_releases);
1730 	session->s_num_cap_releases += num_cap_releases;
1731 	spin_unlock(&session->s_cap_lock);
1732 }
1733 
1734 /*
1735  * requests
1736  */
1737 
1738 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1739 				    struct inode *dir)
1740 {
1741 	struct ceph_inode_info *ci = ceph_inode(dir);
1742 	struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1743 	struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1744 	size_t size = sizeof(struct ceph_mds_reply_dir_entry);
1745 	int order, num_entries;
1746 
1747 	spin_lock(&ci->i_ceph_lock);
1748 	num_entries = ci->i_files + ci->i_subdirs;
1749 	spin_unlock(&ci->i_ceph_lock);
1750 	num_entries = max(num_entries, 1);
1751 	num_entries = min(num_entries, opt->max_readdir);
1752 
1753 	order = get_order(size * num_entries);
1754 	while (order >= 0) {
1755 		rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
1756 							     __GFP_NOWARN,
1757 							     order);
1758 		if (rinfo->dir_entries)
1759 			break;
1760 		order--;
1761 	}
1762 	if (!rinfo->dir_entries)
1763 		return -ENOMEM;
1764 
1765 	num_entries = (PAGE_SIZE << order) / size;
1766 	num_entries = min(num_entries, opt->max_readdir);
1767 
1768 	rinfo->dir_buf_size = PAGE_SIZE << order;
1769 	req->r_num_caps = num_entries + 1;
1770 	req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1771 	req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1772 	return 0;
1773 }
1774 
1775 /*
1776  * Create an mds request.
1777  */
1778 struct ceph_mds_request *
1779 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1780 {
1781 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1782 
1783 	if (!req)
1784 		return ERR_PTR(-ENOMEM);
1785 
1786 	mutex_init(&req->r_fill_mutex);
1787 	req->r_mdsc = mdsc;
1788 	req->r_started = jiffies;
1789 	req->r_resend_mds = -1;
1790 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1791 	INIT_LIST_HEAD(&req->r_unsafe_target_item);
1792 	req->r_fmode = -1;
1793 	kref_init(&req->r_kref);
1794 	RB_CLEAR_NODE(&req->r_node);
1795 	INIT_LIST_HEAD(&req->r_wait);
1796 	init_completion(&req->r_completion);
1797 	init_completion(&req->r_safe_completion);
1798 	INIT_LIST_HEAD(&req->r_unsafe_item);
1799 
1800 	req->r_stamp = timespec_trunc(current_kernel_time(), mdsc->fsc->sb->s_time_gran);
1801 
1802 	req->r_op = op;
1803 	req->r_direct_mode = mode;
1804 	return req;
1805 }
1806 
1807 /*
1808  * return oldest (lowest) request, tid in request tree, 0 if none.
1809  *
1810  * called under mdsc->mutex.
1811  */
1812 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1813 {
1814 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1815 		return NULL;
1816 	return rb_entry(rb_first(&mdsc->request_tree),
1817 			struct ceph_mds_request, r_node);
1818 }
1819 
1820 static inline  u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1821 {
1822 	return mdsc->oldest_tid;
1823 }
1824 
1825 /*
1826  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1827  * on build_path_from_dentry in fs/cifs/dir.c.
1828  *
1829  * If @stop_on_nosnap, generate path relative to the first non-snapped
1830  * inode.
1831  *
1832  * Encode hidden .snap dirs as a double /, i.e.
1833  *   foo/.snap/bar -> foo//bar
1834  */
1835 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1836 			   int stop_on_nosnap)
1837 {
1838 	struct dentry *temp;
1839 	char *path;
1840 	int len, pos;
1841 	unsigned seq;
1842 
1843 	if (!dentry)
1844 		return ERR_PTR(-EINVAL);
1845 
1846 retry:
1847 	len = 0;
1848 	seq = read_seqbegin(&rename_lock);
1849 	rcu_read_lock();
1850 	for (temp = dentry; !IS_ROOT(temp);) {
1851 		struct inode *inode = d_inode(temp);
1852 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1853 			len++;  /* slash only */
1854 		else if (stop_on_nosnap && inode &&
1855 			 ceph_snap(inode) == CEPH_NOSNAP)
1856 			break;
1857 		else
1858 			len += 1 + temp->d_name.len;
1859 		temp = temp->d_parent;
1860 	}
1861 	rcu_read_unlock();
1862 	if (len)
1863 		len--;  /* no leading '/' */
1864 
1865 	path = kmalloc(len+1, GFP_NOFS);
1866 	if (!path)
1867 		return ERR_PTR(-ENOMEM);
1868 	pos = len;
1869 	path[pos] = 0;	/* trailing null */
1870 	rcu_read_lock();
1871 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1872 		struct inode *inode;
1873 
1874 		spin_lock(&temp->d_lock);
1875 		inode = d_inode(temp);
1876 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1877 			dout("build_path path+%d: %p SNAPDIR\n",
1878 			     pos, temp);
1879 		} else if (stop_on_nosnap && inode &&
1880 			   ceph_snap(inode) == CEPH_NOSNAP) {
1881 			spin_unlock(&temp->d_lock);
1882 			break;
1883 		} else {
1884 			pos -= temp->d_name.len;
1885 			if (pos < 0) {
1886 				spin_unlock(&temp->d_lock);
1887 				break;
1888 			}
1889 			strncpy(path + pos, temp->d_name.name,
1890 				temp->d_name.len);
1891 		}
1892 		spin_unlock(&temp->d_lock);
1893 		if (pos)
1894 			path[--pos] = '/';
1895 		temp = temp->d_parent;
1896 	}
1897 	rcu_read_unlock();
1898 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1899 		pr_err("build_path did not end path lookup where "
1900 		       "expected, namelen is %d, pos is %d\n", len, pos);
1901 		/* presumably this is only possible if racing with a
1902 		   rename of one of the parent directories (we can not
1903 		   lock the dentries above us to prevent this, but
1904 		   retrying should be harmless) */
1905 		kfree(path);
1906 		goto retry;
1907 	}
1908 
1909 	*base = ceph_ino(d_inode(temp));
1910 	*plen = len;
1911 	dout("build_path on %p %d built %llx '%.*s'\n",
1912 	     dentry, d_count(dentry), *base, len, path);
1913 	return path;
1914 }
1915 
1916 static int build_dentry_path(struct dentry *dentry, struct inode *dir,
1917 			     const char **ppath, int *ppathlen, u64 *pino,
1918 			     int *pfreepath)
1919 {
1920 	char *path;
1921 
1922 	rcu_read_lock();
1923 	if (!dir)
1924 		dir = d_inode_rcu(dentry->d_parent);
1925 	if (dir && ceph_snap(dir) == CEPH_NOSNAP) {
1926 		*pino = ceph_ino(dir);
1927 		rcu_read_unlock();
1928 		*ppath = dentry->d_name.name;
1929 		*ppathlen = dentry->d_name.len;
1930 		return 0;
1931 	}
1932 	rcu_read_unlock();
1933 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1934 	if (IS_ERR(path))
1935 		return PTR_ERR(path);
1936 	*ppath = path;
1937 	*pfreepath = 1;
1938 	return 0;
1939 }
1940 
1941 static int build_inode_path(struct inode *inode,
1942 			    const char **ppath, int *ppathlen, u64 *pino,
1943 			    int *pfreepath)
1944 {
1945 	struct dentry *dentry;
1946 	char *path;
1947 
1948 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1949 		*pino = ceph_ino(inode);
1950 		*ppathlen = 0;
1951 		return 0;
1952 	}
1953 	dentry = d_find_alias(inode);
1954 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1955 	dput(dentry);
1956 	if (IS_ERR(path))
1957 		return PTR_ERR(path);
1958 	*ppath = path;
1959 	*pfreepath = 1;
1960 	return 0;
1961 }
1962 
1963 /*
1964  * request arguments may be specified via an inode *, a dentry *, or
1965  * an explicit ino+path.
1966  */
1967 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1968 				  struct inode *rdiri, const char *rpath,
1969 				  u64 rino, const char **ppath, int *pathlen,
1970 				  u64 *ino, int *freepath)
1971 {
1972 	int r = 0;
1973 
1974 	if (rinode) {
1975 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1976 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1977 		     ceph_snap(rinode));
1978 	} else if (rdentry) {
1979 		r = build_dentry_path(rdentry, rdiri, ppath, pathlen, ino,
1980 					freepath);
1981 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1982 		     *ppath);
1983 	} else if (rpath || rino) {
1984 		*ino = rino;
1985 		*ppath = rpath;
1986 		*pathlen = rpath ? strlen(rpath) : 0;
1987 		dout(" path %.*s\n", *pathlen, rpath);
1988 	}
1989 
1990 	return r;
1991 }
1992 
1993 /*
1994  * called under mdsc->mutex
1995  */
1996 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1997 					       struct ceph_mds_request *req,
1998 					       int mds, bool drop_cap_releases)
1999 {
2000 	struct ceph_msg *msg;
2001 	struct ceph_mds_request_head *head;
2002 	const char *path1 = NULL;
2003 	const char *path2 = NULL;
2004 	u64 ino1 = 0, ino2 = 0;
2005 	int pathlen1 = 0, pathlen2 = 0;
2006 	int freepath1 = 0, freepath2 = 0;
2007 	int len;
2008 	u16 releases;
2009 	void *p, *end;
2010 	int ret;
2011 
2012 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
2013 			      req->r_parent, req->r_path1, req->r_ino1.ino,
2014 			      &path1, &pathlen1, &ino1, &freepath1);
2015 	if (ret < 0) {
2016 		msg = ERR_PTR(ret);
2017 		goto out;
2018 	}
2019 
2020 	ret = set_request_path_attr(NULL, req->r_old_dentry,
2021 			      req->r_old_dentry_dir,
2022 			      req->r_path2, req->r_ino2.ino,
2023 			      &path2, &pathlen2, &ino2, &freepath2);
2024 	if (ret < 0) {
2025 		msg = ERR_PTR(ret);
2026 		goto out_free1;
2027 	}
2028 
2029 	len = sizeof(*head) +
2030 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
2031 		sizeof(struct ceph_timespec);
2032 
2033 	/* calculate (max) length for cap releases */
2034 	len += sizeof(struct ceph_mds_request_release) *
2035 		(!!req->r_inode_drop + !!req->r_dentry_drop +
2036 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
2037 	if (req->r_dentry_drop)
2038 		len += req->r_dentry->d_name.len;
2039 	if (req->r_old_dentry_drop)
2040 		len += req->r_old_dentry->d_name.len;
2041 
2042 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
2043 	if (!msg) {
2044 		msg = ERR_PTR(-ENOMEM);
2045 		goto out_free2;
2046 	}
2047 
2048 	msg->hdr.version = cpu_to_le16(2);
2049 	msg->hdr.tid = cpu_to_le64(req->r_tid);
2050 
2051 	head = msg->front.iov_base;
2052 	p = msg->front.iov_base + sizeof(*head);
2053 	end = msg->front.iov_base + msg->front.iov_len;
2054 
2055 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
2056 	head->op = cpu_to_le32(req->r_op);
2057 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
2058 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
2059 	head->args = req->r_args;
2060 
2061 	ceph_encode_filepath(&p, end, ino1, path1);
2062 	ceph_encode_filepath(&p, end, ino2, path2);
2063 
2064 	/* make note of release offset, in case we need to replay */
2065 	req->r_request_release_offset = p - msg->front.iov_base;
2066 
2067 	/* cap releases */
2068 	releases = 0;
2069 	if (req->r_inode_drop)
2070 		releases += ceph_encode_inode_release(&p,
2071 		      req->r_inode ? req->r_inode : d_inode(req->r_dentry),
2072 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
2073 	if (req->r_dentry_drop)
2074 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
2075 				req->r_parent, mds, req->r_dentry_drop,
2076 				req->r_dentry_unless);
2077 	if (req->r_old_dentry_drop)
2078 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
2079 				req->r_old_dentry_dir, mds,
2080 				req->r_old_dentry_drop,
2081 				req->r_old_dentry_unless);
2082 	if (req->r_old_inode_drop)
2083 		releases += ceph_encode_inode_release(&p,
2084 		      d_inode(req->r_old_dentry),
2085 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
2086 
2087 	if (drop_cap_releases) {
2088 		releases = 0;
2089 		p = msg->front.iov_base + req->r_request_release_offset;
2090 	}
2091 
2092 	head->num_releases = cpu_to_le16(releases);
2093 
2094 	/* time stamp */
2095 	{
2096 		struct ceph_timespec ts;
2097 		ceph_encode_timespec(&ts, &req->r_stamp);
2098 		ceph_encode_copy(&p, &ts, sizeof(ts));
2099 	}
2100 
2101 	BUG_ON(p > end);
2102 	msg->front.iov_len = p - msg->front.iov_base;
2103 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2104 
2105 	if (req->r_pagelist) {
2106 		struct ceph_pagelist *pagelist = req->r_pagelist;
2107 		refcount_inc(&pagelist->refcnt);
2108 		ceph_msg_data_add_pagelist(msg, pagelist);
2109 		msg->hdr.data_len = cpu_to_le32(pagelist->length);
2110 	} else {
2111 		msg->hdr.data_len = 0;
2112 	}
2113 
2114 	msg->hdr.data_off = cpu_to_le16(0);
2115 
2116 out_free2:
2117 	if (freepath2)
2118 		kfree((char *)path2);
2119 out_free1:
2120 	if (freepath1)
2121 		kfree((char *)path1);
2122 out:
2123 	return msg;
2124 }
2125 
2126 /*
2127  * called under mdsc->mutex if error, under no mutex if
2128  * success.
2129  */
2130 static void complete_request(struct ceph_mds_client *mdsc,
2131 			     struct ceph_mds_request *req)
2132 {
2133 	if (req->r_callback)
2134 		req->r_callback(mdsc, req);
2135 	else
2136 		complete_all(&req->r_completion);
2137 }
2138 
2139 /*
2140  * called under mdsc->mutex
2141  */
2142 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2143 				  struct ceph_mds_request *req,
2144 				  int mds, bool drop_cap_releases)
2145 {
2146 	struct ceph_mds_request_head *rhead;
2147 	struct ceph_msg *msg;
2148 	int flags = 0;
2149 
2150 	req->r_attempts++;
2151 	if (req->r_inode) {
2152 		struct ceph_cap *cap =
2153 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2154 
2155 		if (cap)
2156 			req->r_sent_on_mseq = cap->mseq;
2157 		else
2158 			req->r_sent_on_mseq = -1;
2159 	}
2160 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2161 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2162 
2163 	if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2164 		void *p;
2165 		/*
2166 		 * Replay.  Do not regenerate message (and rebuild
2167 		 * paths, etc.); just use the original message.
2168 		 * Rebuilding paths will break for renames because
2169 		 * d_move mangles the src name.
2170 		 */
2171 		msg = req->r_request;
2172 		rhead = msg->front.iov_base;
2173 
2174 		flags = le32_to_cpu(rhead->flags);
2175 		flags |= CEPH_MDS_FLAG_REPLAY;
2176 		rhead->flags = cpu_to_le32(flags);
2177 
2178 		if (req->r_target_inode)
2179 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2180 
2181 		rhead->num_retry = req->r_attempts - 1;
2182 
2183 		/* remove cap/dentry releases from message */
2184 		rhead->num_releases = 0;
2185 
2186 		/* time stamp */
2187 		p = msg->front.iov_base + req->r_request_release_offset;
2188 		{
2189 			struct ceph_timespec ts;
2190 			ceph_encode_timespec(&ts, &req->r_stamp);
2191 			ceph_encode_copy(&p, &ts, sizeof(ts));
2192 		}
2193 
2194 		msg->front.iov_len = p - msg->front.iov_base;
2195 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2196 		return 0;
2197 	}
2198 
2199 	if (req->r_request) {
2200 		ceph_msg_put(req->r_request);
2201 		req->r_request = NULL;
2202 	}
2203 	msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2204 	if (IS_ERR(msg)) {
2205 		req->r_err = PTR_ERR(msg);
2206 		return PTR_ERR(msg);
2207 	}
2208 	req->r_request = msg;
2209 
2210 	rhead = msg->front.iov_base;
2211 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2212 	if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2213 		flags |= CEPH_MDS_FLAG_REPLAY;
2214 	if (req->r_parent)
2215 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2216 	rhead->flags = cpu_to_le32(flags);
2217 	rhead->num_fwd = req->r_num_fwd;
2218 	rhead->num_retry = req->r_attempts - 1;
2219 	rhead->ino = 0;
2220 
2221 	dout(" r_parent = %p\n", req->r_parent);
2222 	return 0;
2223 }
2224 
2225 /*
2226  * send request, or put it on the appropriate wait list.
2227  */
2228 static int __do_request(struct ceph_mds_client *mdsc,
2229 			struct ceph_mds_request *req)
2230 {
2231 	struct ceph_mds_session *session = NULL;
2232 	int mds = -1;
2233 	int err = 0;
2234 
2235 	if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
2236 		if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags))
2237 			__unregister_request(mdsc, req);
2238 		goto out;
2239 	}
2240 
2241 	if (req->r_timeout &&
2242 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2243 		dout("do_request timed out\n");
2244 		err = -EIO;
2245 		goto finish;
2246 	}
2247 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2248 		dout("do_request forced umount\n");
2249 		err = -EIO;
2250 		goto finish;
2251 	}
2252 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) {
2253 		if (mdsc->mdsmap_err) {
2254 			err = mdsc->mdsmap_err;
2255 			dout("do_request mdsmap err %d\n", err);
2256 			goto finish;
2257 		}
2258 		if (mdsc->mdsmap->m_epoch == 0) {
2259 			dout("do_request no mdsmap, waiting for map\n");
2260 			list_add(&req->r_wait, &mdsc->waiting_for_map);
2261 			goto finish;
2262 		}
2263 		if (!(mdsc->fsc->mount_options->flags &
2264 		      CEPH_MOUNT_OPT_MOUNTWAIT) &&
2265 		    !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) {
2266 			err = -ENOENT;
2267 			pr_info("probably no mds server is up\n");
2268 			goto finish;
2269 		}
2270 	}
2271 
2272 	put_request_session(req);
2273 
2274 	mds = __choose_mds(mdsc, req);
2275 	if (mds < 0 ||
2276 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2277 		dout("do_request no mds or not active, waiting for map\n");
2278 		list_add(&req->r_wait, &mdsc->waiting_for_map);
2279 		goto out;
2280 	}
2281 
2282 	/* get, open session */
2283 	session = __ceph_lookup_mds_session(mdsc, mds);
2284 	if (!session) {
2285 		session = register_session(mdsc, mds);
2286 		if (IS_ERR(session)) {
2287 			err = PTR_ERR(session);
2288 			goto finish;
2289 		}
2290 	}
2291 	req->r_session = get_session(session);
2292 
2293 	dout("do_request mds%d session %p state %s\n", mds, session,
2294 	     ceph_session_state_name(session->s_state));
2295 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2296 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
2297 		if (session->s_state == CEPH_MDS_SESSION_REJECTED) {
2298 			err = -EACCES;
2299 			goto out_session;
2300 		}
2301 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
2302 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
2303 			__open_session(mdsc, session);
2304 		list_add(&req->r_wait, &session->s_waiting);
2305 		goto out_session;
2306 	}
2307 
2308 	/* send request */
2309 	req->r_resend_mds = -1;   /* forget any previous mds hint */
2310 
2311 	if (req->r_request_started == 0)   /* note request start time */
2312 		req->r_request_started = jiffies;
2313 
2314 	err = __prepare_send_request(mdsc, req, mds, false);
2315 	if (!err) {
2316 		ceph_msg_get(req->r_request);
2317 		ceph_con_send(&session->s_con, req->r_request);
2318 	}
2319 
2320 out_session:
2321 	ceph_put_mds_session(session);
2322 finish:
2323 	if (err) {
2324 		dout("__do_request early error %d\n", err);
2325 		req->r_err = err;
2326 		complete_request(mdsc, req);
2327 		__unregister_request(mdsc, req);
2328 	}
2329 out:
2330 	return err;
2331 }
2332 
2333 /*
2334  * called under mdsc->mutex
2335  */
2336 static void __wake_requests(struct ceph_mds_client *mdsc,
2337 			    struct list_head *head)
2338 {
2339 	struct ceph_mds_request *req;
2340 	LIST_HEAD(tmp_list);
2341 
2342 	list_splice_init(head, &tmp_list);
2343 
2344 	while (!list_empty(&tmp_list)) {
2345 		req = list_entry(tmp_list.next,
2346 				 struct ceph_mds_request, r_wait);
2347 		list_del_init(&req->r_wait);
2348 		dout(" wake request %p tid %llu\n", req, req->r_tid);
2349 		__do_request(mdsc, req);
2350 	}
2351 }
2352 
2353 /*
2354  * Wake up threads with requests pending for @mds, so that they can
2355  * resubmit their requests to a possibly different mds.
2356  */
2357 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2358 {
2359 	struct ceph_mds_request *req;
2360 	struct rb_node *p = rb_first(&mdsc->request_tree);
2361 
2362 	dout("kick_requests mds%d\n", mds);
2363 	while (p) {
2364 		req = rb_entry(p, struct ceph_mds_request, r_node);
2365 		p = rb_next(p);
2366 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2367 			continue;
2368 		if (req->r_attempts > 0)
2369 			continue; /* only new requests */
2370 		if (req->r_session &&
2371 		    req->r_session->s_mds == mds) {
2372 			dout(" kicking tid %llu\n", req->r_tid);
2373 			list_del_init(&req->r_wait);
2374 			__do_request(mdsc, req);
2375 		}
2376 	}
2377 }
2378 
2379 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2380 			      struct ceph_mds_request *req)
2381 {
2382 	dout("submit_request on %p\n", req);
2383 	mutex_lock(&mdsc->mutex);
2384 	__register_request(mdsc, req, NULL);
2385 	__do_request(mdsc, req);
2386 	mutex_unlock(&mdsc->mutex);
2387 }
2388 
2389 /*
2390  * Synchrously perform an mds request.  Take care of all of the
2391  * session setup, forwarding, retry details.
2392  */
2393 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2394 			 struct inode *dir,
2395 			 struct ceph_mds_request *req)
2396 {
2397 	int err;
2398 
2399 	dout("do_request on %p\n", req);
2400 
2401 	/* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */
2402 	if (req->r_inode)
2403 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2404 	if (req->r_parent)
2405 		ceph_get_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
2406 	if (req->r_old_dentry_dir)
2407 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2408 				  CEPH_CAP_PIN);
2409 
2410 	/* issue */
2411 	mutex_lock(&mdsc->mutex);
2412 	__register_request(mdsc, req, dir);
2413 	__do_request(mdsc, req);
2414 
2415 	if (req->r_err) {
2416 		err = req->r_err;
2417 		goto out;
2418 	}
2419 
2420 	/* wait */
2421 	mutex_unlock(&mdsc->mutex);
2422 	dout("do_request waiting\n");
2423 	if (!req->r_timeout && req->r_wait_for_completion) {
2424 		err = req->r_wait_for_completion(mdsc, req);
2425 	} else {
2426 		long timeleft = wait_for_completion_killable_timeout(
2427 					&req->r_completion,
2428 					ceph_timeout_jiffies(req->r_timeout));
2429 		if (timeleft > 0)
2430 			err = 0;
2431 		else if (!timeleft)
2432 			err = -EIO;  /* timed out */
2433 		else
2434 			err = timeleft;  /* killed */
2435 	}
2436 	dout("do_request waited, got %d\n", err);
2437 	mutex_lock(&mdsc->mutex);
2438 
2439 	/* only abort if we didn't race with a real reply */
2440 	if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
2441 		err = le32_to_cpu(req->r_reply_info.head->result);
2442 	} else if (err < 0) {
2443 		dout("aborted request %lld with %d\n", req->r_tid, err);
2444 
2445 		/*
2446 		 * ensure we aren't running concurrently with
2447 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2448 		 * rely on locks (dir mutex) held by our caller.
2449 		 */
2450 		mutex_lock(&req->r_fill_mutex);
2451 		req->r_err = err;
2452 		set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
2453 		mutex_unlock(&req->r_fill_mutex);
2454 
2455 		if (req->r_parent &&
2456 		    (req->r_op & CEPH_MDS_OP_WRITE))
2457 			ceph_invalidate_dir_request(req);
2458 	} else {
2459 		err = req->r_err;
2460 	}
2461 
2462 out:
2463 	mutex_unlock(&mdsc->mutex);
2464 	dout("do_request %p done, result %d\n", req, err);
2465 	return err;
2466 }
2467 
2468 /*
2469  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2470  * namespace request.
2471  */
2472 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2473 {
2474 	struct inode *dir = req->r_parent;
2475 	struct inode *old_dir = req->r_old_dentry_dir;
2476 
2477 	dout("invalidate_dir_request %p %p (complete, lease(s))\n", dir, old_dir);
2478 
2479 	ceph_dir_clear_complete(dir);
2480 	if (old_dir)
2481 		ceph_dir_clear_complete(old_dir);
2482 	if (req->r_dentry)
2483 		ceph_invalidate_dentry_lease(req->r_dentry);
2484 	if (req->r_old_dentry)
2485 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2486 }
2487 
2488 /*
2489  * Handle mds reply.
2490  *
2491  * We take the session mutex and parse and process the reply immediately.
2492  * This preserves the logical ordering of replies, capabilities, etc., sent
2493  * by the MDS as they are applied to our local cache.
2494  */
2495 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2496 {
2497 	struct ceph_mds_client *mdsc = session->s_mdsc;
2498 	struct ceph_mds_request *req;
2499 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2500 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2501 	struct ceph_snap_realm *realm;
2502 	u64 tid;
2503 	int err, result;
2504 	int mds = session->s_mds;
2505 
2506 	if (msg->front.iov_len < sizeof(*head)) {
2507 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2508 		ceph_msg_dump(msg);
2509 		return;
2510 	}
2511 
2512 	/* get request, session */
2513 	tid = le64_to_cpu(msg->hdr.tid);
2514 	mutex_lock(&mdsc->mutex);
2515 	req = lookup_get_request(mdsc, tid);
2516 	if (!req) {
2517 		dout("handle_reply on unknown tid %llu\n", tid);
2518 		mutex_unlock(&mdsc->mutex);
2519 		return;
2520 	}
2521 	dout("handle_reply %p\n", req);
2522 
2523 	/* correct session? */
2524 	if (req->r_session != session) {
2525 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2526 		       " not mds%d\n", tid, session->s_mds,
2527 		       req->r_session ? req->r_session->s_mds : -1);
2528 		mutex_unlock(&mdsc->mutex);
2529 		goto out;
2530 	}
2531 
2532 	/* dup? */
2533 	if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) ||
2534 	    (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) {
2535 		pr_warn("got a dup %s reply on %llu from mds%d\n",
2536 			   head->safe ? "safe" : "unsafe", tid, mds);
2537 		mutex_unlock(&mdsc->mutex);
2538 		goto out;
2539 	}
2540 	if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) {
2541 		pr_warn("got unsafe after safe on %llu from mds%d\n",
2542 			   tid, mds);
2543 		mutex_unlock(&mdsc->mutex);
2544 		goto out;
2545 	}
2546 
2547 	result = le32_to_cpu(head->result);
2548 
2549 	/*
2550 	 * Handle an ESTALE
2551 	 * if we're not talking to the authority, send to them
2552 	 * if the authority has changed while we weren't looking,
2553 	 * send to new authority
2554 	 * Otherwise we just have to return an ESTALE
2555 	 */
2556 	if (result == -ESTALE) {
2557 		dout("got ESTALE on request %llu\n", req->r_tid);
2558 		req->r_resend_mds = -1;
2559 		if (req->r_direct_mode != USE_AUTH_MDS) {
2560 			dout("not using auth, setting for that now\n");
2561 			req->r_direct_mode = USE_AUTH_MDS;
2562 			__do_request(mdsc, req);
2563 			mutex_unlock(&mdsc->mutex);
2564 			goto out;
2565 		} else  {
2566 			int mds = __choose_mds(mdsc, req);
2567 			if (mds >= 0 && mds != req->r_session->s_mds) {
2568 				dout("but auth changed, so resending\n");
2569 				__do_request(mdsc, req);
2570 				mutex_unlock(&mdsc->mutex);
2571 				goto out;
2572 			}
2573 		}
2574 		dout("have to return ESTALE on request %llu\n", req->r_tid);
2575 	}
2576 
2577 
2578 	if (head->safe) {
2579 		set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags);
2580 		__unregister_request(mdsc, req);
2581 
2582 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2583 			/*
2584 			 * We already handled the unsafe response, now do the
2585 			 * cleanup.  No need to examine the response; the MDS
2586 			 * doesn't include any result info in the safe
2587 			 * response.  And even if it did, there is nothing
2588 			 * useful we could do with a revised return value.
2589 			 */
2590 			dout("got safe reply %llu, mds%d\n", tid, mds);
2591 
2592 			/* last unsafe request during umount? */
2593 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2594 				complete_all(&mdsc->safe_umount_waiters);
2595 			mutex_unlock(&mdsc->mutex);
2596 			goto out;
2597 		}
2598 	} else {
2599 		set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags);
2600 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2601 		if (req->r_unsafe_dir) {
2602 			struct ceph_inode_info *ci =
2603 					ceph_inode(req->r_unsafe_dir);
2604 			spin_lock(&ci->i_unsafe_lock);
2605 			list_add_tail(&req->r_unsafe_dir_item,
2606 				      &ci->i_unsafe_dirops);
2607 			spin_unlock(&ci->i_unsafe_lock);
2608 		}
2609 	}
2610 
2611 	dout("handle_reply tid %lld result %d\n", tid, result);
2612 	rinfo = &req->r_reply_info;
2613 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2614 	mutex_unlock(&mdsc->mutex);
2615 
2616 	mutex_lock(&session->s_mutex);
2617 	if (err < 0) {
2618 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2619 		ceph_msg_dump(msg);
2620 		goto out_err;
2621 	}
2622 
2623 	/* snap trace */
2624 	realm = NULL;
2625 	if (rinfo->snapblob_len) {
2626 		down_write(&mdsc->snap_rwsem);
2627 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2628 				rinfo->snapblob + rinfo->snapblob_len,
2629 				le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2630 				&realm);
2631 		downgrade_write(&mdsc->snap_rwsem);
2632 	} else {
2633 		down_read(&mdsc->snap_rwsem);
2634 	}
2635 
2636 	/* insert trace into our cache */
2637 	mutex_lock(&req->r_fill_mutex);
2638 	current->journal_info = req;
2639 	err = ceph_fill_trace(mdsc->fsc->sb, req);
2640 	if (err == 0) {
2641 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2642 				    req->r_op == CEPH_MDS_OP_LSSNAP))
2643 			ceph_readdir_prepopulate(req, req->r_session);
2644 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2645 	}
2646 	current->journal_info = NULL;
2647 	mutex_unlock(&req->r_fill_mutex);
2648 
2649 	up_read(&mdsc->snap_rwsem);
2650 	if (realm)
2651 		ceph_put_snap_realm(mdsc, realm);
2652 
2653 	if (err == 0 && req->r_target_inode &&
2654 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2655 		struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2656 		spin_lock(&ci->i_unsafe_lock);
2657 		list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2658 		spin_unlock(&ci->i_unsafe_lock);
2659 	}
2660 out_err:
2661 	mutex_lock(&mdsc->mutex);
2662 	if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
2663 		if (err) {
2664 			req->r_err = err;
2665 		} else {
2666 			req->r_reply =  ceph_msg_get(msg);
2667 			set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags);
2668 		}
2669 	} else {
2670 		dout("reply arrived after request %lld was aborted\n", tid);
2671 	}
2672 	mutex_unlock(&mdsc->mutex);
2673 
2674 	mutex_unlock(&session->s_mutex);
2675 
2676 	/* kick calling process */
2677 	complete_request(mdsc, req);
2678 out:
2679 	ceph_mdsc_put_request(req);
2680 	return;
2681 }
2682 
2683 
2684 
2685 /*
2686  * handle mds notification that our request has been forwarded.
2687  */
2688 static void handle_forward(struct ceph_mds_client *mdsc,
2689 			   struct ceph_mds_session *session,
2690 			   struct ceph_msg *msg)
2691 {
2692 	struct ceph_mds_request *req;
2693 	u64 tid = le64_to_cpu(msg->hdr.tid);
2694 	u32 next_mds;
2695 	u32 fwd_seq;
2696 	int err = -EINVAL;
2697 	void *p = msg->front.iov_base;
2698 	void *end = p + msg->front.iov_len;
2699 
2700 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2701 	next_mds = ceph_decode_32(&p);
2702 	fwd_seq = ceph_decode_32(&p);
2703 
2704 	mutex_lock(&mdsc->mutex);
2705 	req = lookup_get_request(mdsc, tid);
2706 	if (!req) {
2707 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2708 		goto out;  /* dup reply? */
2709 	}
2710 
2711 	if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
2712 		dout("forward tid %llu aborted, unregistering\n", tid);
2713 		__unregister_request(mdsc, req);
2714 	} else if (fwd_seq <= req->r_num_fwd) {
2715 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2716 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2717 	} else {
2718 		/* resend. forward race not possible; mds would drop */
2719 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2720 		BUG_ON(req->r_err);
2721 		BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags));
2722 		req->r_attempts = 0;
2723 		req->r_num_fwd = fwd_seq;
2724 		req->r_resend_mds = next_mds;
2725 		put_request_session(req);
2726 		__do_request(mdsc, req);
2727 	}
2728 	ceph_mdsc_put_request(req);
2729 out:
2730 	mutex_unlock(&mdsc->mutex);
2731 	return;
2732 
2733 bad:
2734 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2735 }
2736 
2737 /*
2738  * handle a mds session control message
2739  */
2740 static void handle_session(struct ceph_mds_session *session,
2741 			   struct ceph_msg *msg)
2742 {
2743 	struct ceph_mds_client *mdsc = session->s_mdsc;
2744 	u32 op;
2745 	u64 seq;
2746 	int mds = session->s_mds;
2747 	struct ceph_mds_session_head *h = msg->front.iov_base;
2748 	int wake = 0;
2749 
2750 	/* decode */
2751 	if (msg->front.iov_len != sizeof(*h))
2752 		goto bad;
2753 	op = le32_to_cpu(h->op);
2754 	seq = le64_to_cpu(h->seq);
2755 
2756 	mutex_lock(&mdsc->mutex);
2757 	if (op == CEPH_SESSION_CLOSE) {
2758 		get_session(session);
2759 		__unregister_session(mdsc, session);
2760 	}
2761 	/* FIXME: this ttl calculation is generous */
2762 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2763 	mutex_unlock(&mdsc->mutex);
2764 
2765 	mutex_lock(&session->s_mutex);
2766 
2767 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2768 	     mds, ceph_session_op_name(op), session,
2769 	     ceph_session_state_name(session->s_state), seq);
2770 
2771 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2772 		session->s_state = CEPH_MDS_SESSION_OPEN;
2773 		pr_info("mds%d came back\n", session->s_mds);
2774 	}
2775 
2776 	switch (op) {
2777 	case CEPH_SESSION_OPEN:
2778 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2779 			pr_info("mds%d reconnect success\n", session->s_mds);
2780 		session->s_state = CEPH_MDS_SESSION_OPEN;
2781 		renewed_caps(mdsc, session, 0);
2782 		wake = 1;
2783 		if (mdsc->stopping)
2784 			__close_session(mdsc, session);
2785 		break;
2786 
2787 	case CEPH_SESSION_RENEWCAPS:
2788 		if (session->s_renew_seq == seq)
2789 			renewed_caps(mdsc, session, 1);
2790 		break;
2791 
2792 	case CEPH_SESSION_CLOSE:
2793 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2794 			pr_info("mds%d reconnect denied\n", session->s_mds);
2795 		cleanup_session_requests(mdsc, session);
2796 		remove_session_caps(session);
2797 		wake = 2; /* for good measure */
2798 		wake_up_all(&mdsc->session_close_wq);
2799 		break;
2800 
2801 	case CEPH_SESSION_STALE:
2802 		pr_info("mds%d caps went stale, renewing\n",
2803 			session->s_mds);
2804 		spin_lock(&session->s_gen_ttl_lock);
2805 		session->s_cap_gen++;
2806 		session->s_cap_ttl = jiffies - 1;
2807 		spin_unlock(&session->s_gen_ttl_lock);
2808 		send_renew_caps(mdsc, session);
2809 		break;
2810 
2811 	case CEPH_SESSION_RECALL_STATE:
2812 		ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2813 		break;
2814 
2815 	case CEPH_SESSION_FLUSHMSG:
2816 		send_flushmsg_ack(mdsc, session, seq);
2817 		break;
2818 
2819 	case CEPH_SESSION_FORCE_RO:
2820 		dout("force_session_readonly %p\n", session);
2821 		spin_lock(&session->s_cap_lock);
2822 		session->s_readonly = true;
2823 		spin_unlock(&session->s_cap_lock);
2824 		wake_up_session_caps(session, 0);
2825 		break;
2826 
2827 	case CEPH_SESSION_REJECT:
2828 		WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING);
2829 		pr_info("mds%d rejected session\n", session->s_mds);
2830 		session->s_state = CEPH_MDS_SESSION_REJECTED;
2831 		cleanup_session_requests(mdsc, session);
2832 		remove_session_caps(session);
2833 		wake = 2; /* for good measure */
2834 		break;
2835 
2836 	default:
2837 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2838 		WARN_ON(1);
2839 	}
2840 
2841 	mutex_unlock(&session->s_mutex);
2842 	if (wake) {
2843 		mutex_lock(&mdsc->mutex);
2844 		__wake_requests(mdsc, &session->s_waiting);
2845 		if (wake == 2)
2846 			kick_requests(mdsc, mds);
2847 		mutex_unlock(&mdsc->mutex);
2848 	}
2849 	if (op == CEPH_SESSION_CLOSE)
2850 		ceph_put_mds_session(session);
2851 	return;
2852 
2853 bad:
2854 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2855 	       (int)msg->front.iov_len);
2856 	ceph_msg_dump(msg);
2857 	return;
2858 }
2859 
2860 
2861 /*
2862  * called under session->mutex.
2863  */
2864 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2865 				   struct ceph_mds_session *session)
2866 {
2867 	struct ceph_mds_request *req, *nreq;
2868 	struct rb_node *p;
2869 	int err;
2870 
2871 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2872 
2873 	mutex_lock(&mdsc->mutex);
2874 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2875 		err = __prepare_send_request(mdsc, req, session->s_mds, true);
2876 		if (!err) {
2877 			ceph_msg_get(req->r_request);
2878 			ceph_con_send(&session->s_con, req->r_request);
2879 		}
2880 	}
2881 
2882 	/*
2883 	 * also re-send old requests when MDS enters reconnect stage. So that MDS
2884 	 * can process completed request in clientreplay stage.
2885 	 */
2886 	p = rb_first(&mdsc->request_tree);
2887 	while (p) {
2888 		req = rb_entry(p, struct ceph_mds_request, r_node);
2889 		p = rb_next(p);
2890 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2891 			continue;
2892 		if (req->r_attempts == 0)
2893 			continue; /* only old requests */
2894 		if (req->r_session &&
2895 		    req->r_session->s_mds == session->s_mds) {
2896 			err = __prepare_send_request(mdsc, req,
2897 						     session->s_mds, true);
2898 			if (!err) {
2899 				ceph_msg_get(req->r_request);
2900 				ceph_con_send(&session->s_con, req->r_request);
2901 			}
2902 		}
2903 	}
2904 	mutex_unlock(&mdsc->mutex);
2905 }
2906 
2907 /*
2908  * Encode information about a cap for a reconnect with the MDS.
2909  */
2910 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2911 			  void *arg)
2912 {
2913 	union {
2914 		struct ceph_mds_cap_reconnect v2;
2915 		struct ceph_mds_cap_reconnect_v1 v1;
2916 	} rec;
2917 	struct ceph_inode_info *ci = cap->ci;
2918 	struct ceph_reconnect_state *recon_state = arg;
2919 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2920 	char *path;
2921 	int pathlen, err;
2922 	u64 pathbase;
2923 	u64 snap_follows;
2924 	struct dentry *dentry;
2925 
2926 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2927 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2928 	     ceph_cap_string(cap->issued));
2929 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2930 	if (err)
2931 		return err;
2932 
2933 	dentry = d_find_alias(inode);
2934 	if (dentry) {
2935 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2936 		if (IS_ERR(path)) {
2937 			err = PTR_ERR(path);
2938 			goto out_dput;
2939 		}
2940 	} else {
2941 		path = NULL;
2942 		pathlen = 0;
2943 		pathbase = 0;
2944 	}
2945 
2946 	spin_lock(&ci->i_ceph_lock);
2947 	cap->seq = 0;        /* reset cap seq */
2948 	cap->issue_seq = 0;  /* and issue_seq */
2949 	cap->mseq = 0;       /* and migrate_seq */
2950 	cap->cap_gen = cap->session->s_cap_gen;
2951 
2952 	if (recon_state->msg_version >= 2) {
2953 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2954 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2955 		rec.v2.issued = cpu_to_le32(cap->issued);
2956 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2957 		rec.v2.pathbase = cpu_to_le64(pathbase);
2958 		rec.v2.flock_len = (__force __le32)
2959 			((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1);
2960 	} else {
2961 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2962 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2963 		rec.v1.issued = cpu_to_le32(cap->issued);
2964 		rec.v1.size = cpu_to_le64(inode->i_size);
2965 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2966 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2967 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2968 		rec.v1.pathbase = cpu_to_le64(pathbase);
2969 	}
2970 
2971 	if (list_empty(&ci->i_cap_snaps)) {
2972 		snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0;
2973 	} else {
2974 		struct ceph_cap_snap *capsnap =
2975 			list_first_entry(&ci->i_cap_snaps,
2976 					 struct ceph_cap_snap, ci_item);
2977 		snap_follows = capsnap->follows;
2978 	}
2979 	spin_unlock(&ci->i_ceph_lock);
2980 
2981 	if (recon_state->msg_version >= 2) {
2982 		int num_fcntl_locks, num_flock_locks;
2983 		struct ceph_filelock *flocks = NULL;
2984 		size_t struct_len, total_len = 0;
2985 		u8 struct_v = 0;
2986 
2987 encode_again:
2988 		if (rec.v2.flock_len) {
2989 			ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2990 		} else {
2991 			num_fcntl_locks = 0;
2992 			num_flock_locks = 0;
2993 		}
2994 		if (num_fcntl_locks + num_flock_locks > 0) {
2995 			flocks = kmalloc((num_fcntl_locks + num_flock_locks) *
2996 					 sizeof(struct ceph_filelock), GFP_NOFS);
2997 			if (!flocks) {
2998 				err = -ENOMEM;
2999 				goto out_free;
3000 			}
3001 			err = ceph_encode_locks_to_buffer(inode, flocks,
3002 							  num_fcntl_locks,
3003 							  num_flock_locks);
3004 			if (err) {
3005 				kfree(flocks);
3006 				flocks = NULL;
3007 				if (err == -ENOSPC)
3008 					goto encode_again;
3009 				goto out_free;
3010 			}
3011 		} else {
3012 			kfree(flocks);
3013 			flocks = NULL;
3014 		}
3015 
3016 		if (recon_state->msg_version >= 3) {
3017 			/* version, compat_version and struct_len */
3018 			total_len = 2 * sizeof(u8) + sizeof(u32);
3019 			struct_v = 2;
3020 		}
3021 		/*
3022 		 * number of encoded locks is stable, so copy to pagelist
3023 		 */
3024 		struct_len = 2 * sizeof(u32) +
3025 			    (num_fcntl_locks + num_flock_locks) *
3026 			    sizeof(struct ceph_filelock);
3027 		rec.v2.flock_len = cpu_to_le32(struct_len);
3028 
3029 		struct_len += sizeof(rec.v2);
3030 		struct_len += sizeof(u32) + pathlen;
3031 
3032 		if (struct_v >= 2)
3033 			struct_len += sizeof(u64); /* snap_follows */
3034 
3035 		total_len += struct_len;
3036 		err = ceph_pagelist_reserve(pagelist, total_len);
3037 
3038 		if (!err) {
3039 			if (recon_state->msg_version >= 3) {
3040 				ceph_pagelist_encode_8(pagelist, struct_v);
3041 				ceph_pagelist_encode_8(pagelist, 1);
3042 				ceph_pagelist_encode_32(pagelist, struct_len);
3043 			}
3044 			ceph_pagelist_encode_string(pagelist, path, pathlen);
3045 			ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2));
3046 			ceph_locks_to_pagelist(flocks, pagelist,
3047 					       num_fcntl_locks,
3048 					       num_flock_locks);
3049 			if (struct_v >= 2)
3050 				ceph_pagelist_encode_64(pagelist, snap_follows);
3051 		}
3052 		kfree(flocks);
3053 	} else {
3054 		size_t size = sizeof(u32) + pathlen + sizeof(rec.v1);
3055 		err = ceph_pagelist_reserve(pagelist, size);
3056 		if (!err) {
3057 			ceph_pagelist_encode_string(pagelist, path, pathlen);
3058 			ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1));
3059 		}
3060 	}
3061 
3062 	recon_state->nr_caps++;
3063 out_free:
3064 	kfree(path);
3065 out_dput:
3066 	dput(dentry);
3067 	return err;
3068 }
3069 
3070 
3071 /*
3072  * If an MDS fails and recovers, clients need to reconnect in order to
3073  * reestablish shared state.  This includes all caps issued through
3074  * this session _and_ the snap_realm hierarchy.  Because it's not
3075  * clear which snap realms the mds cares about, we send everything we
3076  * know about.. that ensures we'll then get any new info the
3077  * recovering MDS might have.
3078  *
3079  * This is a relatively heavyweight operation, but it's rare.
3080  *
3081  * called with mdsc->mutex held.
3082  */
3083 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
3084 			       struct ceph_mds_session *session)
3085 {
3086 	struct ceph_msg *reply;
3087 	struct rb_node *p;
3088 	int mds = session->s_mds;
3089 	int err = -ENOMEM;
3090 	int s_nr_caps;
3091 	struct ceph_pagelist *pagelist;
3092 	struct ceph_reconnect_state recon_state;
3093 	LIST_HEAD(dispose);
3094 
3095 	pr_info("mds%d reconnect start\n", mds);
3096 
3097 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
3098 	if (!pagelist)
3099 		goto fail_nopagelist;
3100 	ceph_pagelist_init(pagelist);
3101 
3102 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
3103 	if (!reply)
3104 		goto fail_nomsg;
3105 
3106 	mutex_lock(&session->s_mutex);
3107 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
3108 	session->s_seq = 0;
3109 
3110 	dout("session %p state %s\n", session,
3111 	     ceph_session_state_name(session->s_state));
3112 
3113 	spin_lock(&session->s_gen_ttl_lock);
3114 	session->s_cap_gen++;
3115 	spin_unlock(&session->s_gen_ttl_lock);
3116 
3117 	spin_lock(&session->s_cap_lock);
3118 	/* don't know if session is readonly */
3119 	session->s_readonly = 0;
3120 	/*
3121 	 * notify __ceph_remove_cap() that we are composing cap reconnect.
3122 	 * If a cap get released before being added to the cap reconnect,
3123 	 * __ceph_remove_cap() should skip queuing cap release.
3124 	 */
3125 	session->s_cap_reconnect = 1;
3126 	/* drop old cap expires; we're about to reestablish that state */
3127 	detach_cap_releases(session, &dispose);
3128 	spin_unlock(&session->s_cap_lock);
3129 	dispose_cap_releases(mdsc, &dispose);
3130 
3131 	/* trim unused caps to reduce MDS's cache rejoin time */
3132 	if (mdsc->fsc->sb->s_root)
3133 		shrink_dcache_parent(mdsc->fsc->sb->s_root);
3134 
3135 	ceph_con_close(&session->s_con);
3136 	ceph_con_open(&session->s_con,
3137 		      CEPH_ENTITY_TYPE_MDS, mds,
3138 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
3139 
3140 	/* replay unsafe requests */
3141 	replay_unsafe_requests(mdsc, session);
3142 
3143 	down_read(&mdsc->snap_rwsem);
3144 
3145 	/* traverse this session's caps */
3146 	s_nr_caps = session->s_nr_caps;
3147 	err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
3148 	if (err)
3149 		goto fail;
3150 
3151 	recon_state.nr_caps = 0;
3152 	recon_state.pagelist = pagelist;
3153 	if (session->s_con.peer_features & CEPH_FEATURE_MDSENC)
3154 		recon_state.msg_version = 3;
3155 	else if (session->s_con.peer_features & CEPH_FEATURE_FLOCK)
3156 		recon_state.msg_version = 2;
3157 	else
3158 		recon_state.msg_version = 1;
3159 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
3160 	if (err < 0)
3161 		goto fail;
3162 
3163 	spin_lock(&session->s_cap_lock);
3164 	session->s_cap_reconnect = 0;
3165 	spin_unlock(&session->s_cap_lock);
3166 
3167 	/*
3168 	 * snaprealms.  we provide mds with the ino, seq (version), and
3169 	 * parent for all of our realms.  If the mds has any newer info,
3170 	 * it will tell us.
3171 	 */
3172 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
3173 		struct ceph_snap_realm *realm =
3174 			rb_entry(p, struct ceph_snap_realm, node);
3175 		struct ceph_mds_snaprealm_reconnect sr_rec;
3176 
3177 		dout(" adding snap realm %llx seq %lld parent %llx\n",
3178 		     realm->ino, realm->seq, realm->parent_ino);
3179 		sr_rec.ino = cpu_to_le64(realm->ino);
3180 		sr_rec.seq = cpu_to_le64(realm->seq);
3181 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
3182 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
3183 		if (err)
3184 			goto fail;
3185 	}
3186 
3187 	reply->hdr.version = cpu_to_le16(recon_state.msg_version);
3188 
3189 	/* raced with cap release? */
3190 	if (s_nr_caps != recon_state.nr_caps) {
3191 		struct page *page = list_first_entry(&pagelist->head,
3192 						     struct page, lru);
3193 		__le32 *addr = kmap_atomic(page);
3194 		*addr = cpu_to_le32(recon_state.nr_caps);
3195 		kunmap_atomic(addr);
3196 	}
3197 
3198 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
3199 	ceph_msg_data_add_pagelist(reply, pagelist);
3200 
3201 	ceph_early_kick_flushing_caps(mdsc, session);
3202 
3203 	ceph_con_send(&session->s_con, reply);
3204 
3205 	mutex_unlock(&session->s_mutex);
3206 
3207 	mutex_lock(&mdsc->mutex);
3208 	__wake_requests(mdsc, &session->s_waiting);
3209 	mutex_unlock(&mdsc->mutex);
3210 
3211 	up_read(&mdsc->snap_rwsem);
3212 	return;
3213 
3214 fail:
3215 	ceph_msg_put(reply);
3216 	up_read(&mdsc->snap_rwsem);
3217 	mutex_unlock(&session->s_mutex);
3218 fail_nomsg:
3219 	ceph_pagelist_release(pagelist);
3220 fail_nopagelist:
3221 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3222 	return;
3223 }
3224 
3225 
3226 /*
3227  * compare old and new mdsmaps, kicking requests
3228  * and closing out old connections as necessary
3229  *
3230  * called under mdsc->mutex.
3231  */
3232 static void check_new_map(struct ceph_mds_client *mdsc,
3233 			  struct ceph_mdsmap *newmap,
3234 			  struct ceph_mdsmap *oldmap)
3235 {
3236 	int i;
3237 	int oldstate, newstate;
3238 	struct ceph_mds_session *s;
3239 
3240 	dout("check_new_map new %u old %u\n",
3241 	     newmap->m_epoch, oldmap->m_epoch);
3242 
3243 	for (i = 0; i < oldmap->m_num_mds && i < mdsc->max_sessions; i++) {
3244 		if (!mdsc->sessions[i])
3245 			continue;
3246 		s = mdsc->sessions[i];
3247 		oldstate = ceph_mdsmap_get_state(oldmap, i);
3248 		newstate = ceph_mdsmap_get_state(newmap, i);
3249 
3250 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3251 		     i, ceph_mds_state_name(oldstate),
3252 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3253 		     ceph_mds_state_name(newstate),
3254 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3255 		     ceph_session_state_name(s->s_state));
3256 
3257 		if (i >= newmap->m_num_mds ||
3258 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
3259 			   ceph_mdsmap_get_addr(newmap, i),
3260 			   sizeof(struct ceph_entity_addr))) {
3261 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3262 				/* the session never opened, just close it
3263 				 * out now */
3264 				get_session(s);
3265 				__unregister_session(mdsc, s);
3266 				__wake_requests(mdsc, &s->s_waiting);
3267 				ceph_put_mds_session(s);
3268 			} else if (i >= newmap->m_num_mds) {
3269 				/* force close session for stopped mds */
3270 				get_session(s);
3271 				__unregister_session(mdsc, s);
3272 				__wake_requests(mdsc, &s->s_waiting);
3273 				kick_requests(mdsc, i);
3274 				mutex_unlock(&mdsc->mutex);
3275 
3276 				mutex_lock(&s->s_mutex);
3277 				cleanup_session_requests(mdsc, s);
3278 				remove_session_caps(s);
3279 				mutex_unlock(&s->s_mutex);
3280 
3281 				ceph_put_mds_session(s);
3282 
3283 				mutex_lock(&mdsc->mutex);
3284 			} else {
3285 				/* just close it */
3286 				mutex_unlock(&mdsc->mutex);
3287 				mutex_lock(&s->s_mutex);
3288 				mutex_lock(&mdsc->mutex);
3289 				ceph_con_close(&s->s_con);
3290 				mutex_unlock(&s->s_mutex);
3291 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
3292 			}
3293 		} else if (oldstate == newstate) {
3294 			continue;  /* nothing new with this mds */
3295 		}
3296 
3297 		/*
3298 		 * send reconnect?
3299 		 */
3300 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3301 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
3302 			mutex_unlock(&mdsc->mutex);
3303 			send_mds_reconnect(mdsc, s);
3304 			mutex_lock(&mdsc->mutex);
3305 		}
3306 
3307 		/*
3308 		 * kick request on any mds that has gone active.
3309 		 */
3310 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3311 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
3312 			if (oldstate != CEPH_MDS_STATE_CREATING &&
3313 			    oldstate != CEPH_MDS_STATE_STARTING)
3314 				pr_info("mds%d recovery completed\n", s->s_mds);
3315 			kick_requests(mdsc, i);
3316 			ceph_kick_flushing_caps(mdsc, s);
3317 			wake_up_session_caps(s, 1);
3318 		}
3319 	}
3320 
3321 	for (i = 0; i < newmap->m_num_mds && i < mdsc->max_sessions; i++) {
3322 		s = mdsc->sessions[i];
3323 		if (!s)
3324 			continue;
3325 		if (!ceph_mdsmap_is_laggy(newmap, i))
3326 			continue;
3327 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3328 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
3329 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
3330 			dout(" connecting to export targets of laggy mds%d\n",
3331 			     i);
3332 			__open_export_target_sessions(mdsc, s);
3333 		}
3334 	}
3335 }
3336 
3337 
3338 
3339 /*
3340  * leases
3341  */
3342 
3343 /*
3344  * caller must hold session s_mutex, dentry->d_lock
3345  */
3346 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3347 {
3348 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3349 
3350 	ceph_put_mds_session(di->lease_session);
3351 	di->lease_session = NULL;
3352 }
3353 
3354 static void handle_lease(struct ceph_mds_client *mdsc,
3355 			 struct ceph_mds_session *session,
3356 			 struct ceph_msg *msg)
3357 {
3358 	struct super_block *sb = mdsc->fsc->sb;
3359 	struct inode *inode;
3360 	struct dentry *parent, *dentry;
3361 	struct ceph_dentry_info *di;
3362 	int mds = session->s_mds;
3363 	struct ceph_mds_lease *h = msg->front.iov_base;
3364 	u32 seq;
3365 	struct ceph_vino vino;
3366 	struct qstr dname;
3367 	int release = 0;
3368 
3369 	dout("handle_lease from mds%d\n", mds);
3370 
3371 	/* decode */
3372 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3373 		goto bad;
3374 	vino.ino = le64_to_cpu(h->ino);
3375 	vino.snap = CEPH_NOSNAP;
3376 	seq = le32_to_cpu(h->seq);
3377 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3378 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3379 	if (dname.len != get_unaligned_le32(h+1))
3380 		goto bad;
3381 
3382 	/* lookup inode */
3383 	inode = ceph_find_inode(sb, vino);
3384 	dout("handle_lease %s, ino %llx %p %.*s\n",
3385 	     ceph_lease_op_name(h->action), vino.ino, inode,
3386 	     dname.len, dname.name);
3387 
3388 	mutex_lock(&session->s_mutex);
3389 	session->s_seq++;
3390 
3391 	if (!inode) {
3392 		dout("handle_lease no inode %llx\n", vino.ino);
3393 		goto release;
3394 	}
3395 
3396 	/* dentry */
3397 	parent = d_find_alias(inode);
3398 	if (!parent) {
3399 		dout("no parent dentry on inode %p\n", inode);
3400 		WARN_ON(1);
3401 		goto release;  /* hrm... */
3402 	}
3403 	dname.hash = full_name_hash(parent, dname.name, dname.len);
3404 	dentry = d_lookup(parent, &dname);
3405 	dput(parent);
3406 	if (!dentry)
3407 		goto release;
3408 
3409 	spin_lock(&dentry->d_lock);
3410 	di = ceph_dentry(dentry);
3411 	switch (h->action) {
3412 	case CEPH_MDS_LEASE_REVOKE:
3413 		if (di->lease_session == session) {
3414 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3415 				h->seq = cpu_to_le32(di->lease_seq);
3416 			__ceph_mdsc_drop_dentry_lease(dentry);
3417 		}
3418 		release = 1;
3419 		break;
3420 
3421 	case CEPH_MDS_LEASE_RENEW:
3422 		if (di->lease_session == session &&
3423 		    di->lease_gen == session->s_cap_gen &&
3424 		    di->lease_renew_from &&
3425 		    di->lease_renew_after == 0) {
3426 			unsigned long duration =
3427 				msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3428 
3429 			di->lease_seq = seq;
3430 			di->time = di->lease_renew_from + duration;
3431 			di->lease_renew_after = di->lease_renew_from +
3432 				(duration >> 1);
3433 			di->lease_renew_from = 0;
3434 		}
3435 		break;
3436 	}
3437 	spin_unlock(&dentry->d_lock);
3438 	dput(dentry);
3439 
3440 	if (!release)
3441 		goto out;
3442 
3443 release:
3444 	/* let's just reuse the same message */
3445 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3446 	ceph_msg_get(msg);
3447 	ceph_con_send(&session->s_con, msg);
3448 
3449 out:
3450 	iput(inode);
3451 	mutex_unlock(&session->s_mutex);
3452 	return;
3453 
3454 bad:
3455 	pr_err("corrupt lease message\n");
3456 	ceph_msg_dump(msg);
3457 }
3458 
3459 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3460 			      struct inode *inode,
3461 			      struct dentry *dentry, char action,
3462 			      u32 seq)
3463 {
3464 	struct ceph_msg *msg;
3465 	struct ceph_mds_lease *lease;
3466 	int len = sizeof(*lease) + sizeof(u32);
3467 	int dnamelen = 0;
3468 
3469 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3470 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
3471 	dnamelen = dentry->d_name.len;
3472 	len += dnamelen;
3473 
3474 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3475 	if (!msg)
3476 		return;
3477 	lease = msg->front.iov_base;
3478 	lease->action = action;
3479 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3480 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3481 	lease->seq = cpu_to_le32(seq);
3482 	put_unaligned_le32(dnamelen, lease + 1);
3483 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3484 
3485 	/*
3486 	 * if this is a preemptive lease RELEASE, no need to
3487 	 * flush request stream, since the actual request will
3488 	 * soon follow.
3489 	 */
3490 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3491 
3492 	ceph_con_send(&session->s_con, msg);
3493 }
3494 
3495 /*
3496  * lock unlock sessions, to wait ongoing session activities
3497  */
3498 static void lock_unlock_sessions(struct ceph_mds_client *mdsc)
3499 {
3500 	int i;
3501 
3502 	mutex_lock(&mdsc->mutex);
3503 	for (i = 0; i < mdsc->max_sessions; i++) {
3504 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3505 		if (!s)
3506 			continue;
3507 		mutex_unlock(&mdsc->mutex);
3508 		mutex_lock(&s->s_mutex);
3509 		mutex_unlock(&s->s_mutex);
3510 		ceph_put_mds_session(s);
3511 		mutex_lock(&mdsc->mutex);
3512 	}
3513 	mutex_unlock(&mdsc->mutex);
3514 }
3515 
3516 
3517 
3518 /*
3519  * delayed work -- periodically trim expired leases, renew caps with mds
3520  */
3521 static void schedule_delayed(struct ceph_mds_client *mdsc)
3522 {
3523 	int delay = 5;
3524 	unsigned hz = round_jiffies_relative(HZ * delay);
3525 	schedule_delayed_work(&mdsc->delayed_work, hz);
3526 }
3527 
3528 static void delayed_work(struct work_struct *work)
3529 {
3530 	int i;
3531 	struct ceph_mds_client *mdsc =
3532 		container_of(work, struct ceph_mds_client, delayed_work.work);
3533 	int renew_interval;
3534 	int renew_caps;
3535 
3536 	dout("mdsc delayed_work\n");
3537 	ceph_check_delayed_caps(mdsc);
3538 
3539 	mutex_lock(&mdsc->mutex);
3540 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3541 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3542 				   mdsc->last_renew_caps);
3543 	if (renew_caps)
3544 		mdsc->last_renew_caps = jiffies;
3545 
3546 	for (i = 0; i < mdsc->max_sessions; i++) {
3547 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3548 		if (!s)
3549 			continue;
3550 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3551 			dout("resending session close request for mds%d\n",
3552 			     s->s_mds);
3553 			request_close_session(mdsc, s);
3554 			ceph_put_mds_session(s);
3555 			continue;
3556 		}
3557 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3558 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3559 				s->s_state = CEPH_MDS_SESSION_HUNG;
3560 				pr_info("mds%d hung\n", s->s_mds);
3561 			}
3562 		}
3563 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3564 			/* this mds is failed or recovering, just wait */
3565 			ceph_put_mds_session(s);
3566 			continue;
3567 		}
3568 		mutex_unlock(&mdsc->mutex);
3569 
3570 		mutex_lock(&s->s_mutex);
3571 		if (renew_caps)
3572 			send_renew_caps(mdsc, s);
3573 		else
3574 			ceph_con_keepalive(&s->s_con);
3575 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3576 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3577 			ceph_send_cap_releases(mdsc, s);
3578 		mutex_unlock(&s->s_mutex);
3579 		ceph_put_mds_session(s);
3580 
3581 		mutex_lock(&mdsc->mutex);
3582 	}
3583 	mutex_unlock(&mdsc->mutex);
3584 
3585 	schedule_delayed(mdsc);
3586 }
3587 
3588 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3589 
3590 {
3591 	struct ceph_mds_client *mdsc;
3592 
3593 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3594 	if (!mdsc)
3595 		return -ENOMEM;
3596 	mdsc->fsc = fsc;
3597 	mutex_init(&mdsc->mutex);
3598 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3599 	if (!mdsc->mdsmap) {
3600 		kfree(mdsc);
3601 		return -ENOMEM;
3602 	}
3603 
3604 	fsc->mdsc = mdsc;
3605 	init_completion(&mdsc->safe_umount_waiters);
3606 	init_waitqueue_head(&mdsc->session_close_wq);
3607 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3608 	mdsc->sessions = NULL;
3609 	atomic_set(&mdsc->num_sessions, 0);
3610 	mdsc->max_sessions = 0;
3611 	mdsc->stopping = 0;
3612 	atomic64_set(&mdsc->quotarealms_count, 0);
3613 	mdsc->last_snap_seq = 0;
3614 	init_rwsem(&mdsc->snap_rwsem);
3615 	mdsc->snap_realms = RB_ROOT;
3616 	INIT_LIST_HEAD(&mdsc->snap_empty);
3617 	spin_lock_init(&mdsc->snap_empty_lock);
3618 	mdsc->last_tid = 0;
3619 	mdsc->oldest_tid = 0;
3620 	mdsc->request_tree = RB_ROOT;
3621 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3622 	mdsc->last_renew_caps = jiffies;
3623 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3624 	spin_lock_init(&mdsc->cap_delay_lock);
3625 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3626 	spin_lock_init(&mdsc->snap_flush_lock);
3627 	mdsc->last_cap_flush_tid = 1;
3628 	INIT_LIST_HEAD(&mdsc->cap_flush_list);
3629 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3630 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3631 	mdsc->num_cap_flushing = 0;
3632 	spin_lock_init(&mdsc->cap_dirty_lock);
3633 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3634 	spin_lock_init(&mdsc->dentry_lru_lock);
3635 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3636 
3637 	ceph_caps_init(mdsc);
3638 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3639 
3640 	init_rwsem(&mdsc->pool_perm_rwsem);
3641 	mdsc->pool_perm_tree = RB_ROOT;
3642 
3643 	strncpy(mdsc->nodename, utsname()->nodename,
3644 		sizeof(mdsc->nodename) - 1);
3645 	return 0;
3646 }
3647 
3648 /*
3649  * Wait for safe replies on open mds requests.  If we time out, drop
3650  * all requests from the tree to avoid dangling dentry refs.
3651  */
3652 static void wait_requests(struct ceph_mds_client *mdsc)
3653 {
3654 	struct ceph_options *opts = mdsc->fsc->client->options;
3655 	struct ceph_mds_request *req;
3656 
3657 	mutex_lock(&mdsc->mutex);
3658 	if (__get_oldest_req(mdsc)) {
3659 		mutex_unlock(&mdsc->mutex);
3660 
3661 		dout("wait_requests waiting for requests\n");
3662 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3663 				    ceph_timeout_jiffies(opts->mount_timeout));
3664 
3665 		/* tear down remaining requests */
3666 		mutex_lock(&mdsc->mutex);
3667 		while ((req = __get_oldest_req(mdsc))) {
3668 			dout("wait_requests timed out on tid %llu\n",
3669 			     req->r_tid);
3670 			__unregister_request(mdsc, req);
3671 		}
3672 	}
3673 	mutex_unlock(&mdsc->mutex);
3674 	dout("wait_requests done\n");
3675 }
3676 
3677 /*
3678  * called before mount is ro, and before dentries are torn down.
3679  * (hmm, does this still race with new lookups?)
3680  */
3681 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3682 {
3683 	dout("pre_umount\n");
3684 	mdsc->stopping = 1;
3685 
3686 	lock_unlock_sessions(mdsc);
3687 	ceph_flush_dirty_caps(mdsc);
3688 	wait_requests(mdsc);
3689 
3690 	/*
3691 	 * wait for reply handlers to drop their request refs and
3692 	 * their inode/dcache refs
3693 	 */
3694 	ceph_msgr_flush();
3695 }
3696 
3697 /*
3698  * wait for all write mds requests to flush.
3699  */
3700 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3701 {
3702 	struct ceph_mds_request *req = NULL, *nextreq;
3703 	struct rb_node *n;
3704 
3705 	mutex_lock(&mdsc->mutex);
3706 	dout("wait_unsafe_requests want %lld\n", want_tid);
3707 restart:
3708 	req = __get_oldest_req(mdsc);
3709 	while (req && req->r_tid <= want_tid) {
3710 		/* find next request */
3711 		n = rb_next(&req->r_node);
3712 		if (n)
3713 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3714 		else
3715 			nextreq = NULL;
3716 		if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3717 		    (req->r_op & CEPH_MDS_OP_WRITE)) {
3718 			/* write op */
3719 			ceph_mdsc_get_request(req);
3720 			if (nextreq)
3721 				ceph_mdsc_get_request(nextreq);
3722 			mutex_unlock(&mdsc->mutex);
3723 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3724 			     req->r_tid, want_tid);
3725 			wait_for_completion(&req->r_safe_completion);
3726 			mutex_lock(&mdsc->mutex);
3727 			ceph_mdsc_put_request(req);
3728 			if (!nextreq)
3729 				break;  /* next dne before, so we're done! */
3730 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3731 				/* next request was removed from tree */
3732 				ceph_mdsc_put_request(nextreq);
3733 				goto restart;
3734 			}
3735 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3736 		}
3737 		req = nextreq;
3738 	}
3739 	mutex_unlock(&mdsc->mutex);
3740 	dout("wait_unsafe_requests done\n");
3741 }
3742 
3743 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3744 {
3745 	u64 want_tid, want_flush;
3746 
3747 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3748 		return;
3749 
3750 	dout("sync\n");
3751 	mutex_lock(&mdsc->mutex);
3752 	want_tid = mdsc->last_tid;
3753 	mutex_unlock(&mdsc->mutex);
3754 
3755 	ceph_flush_dirty_caps(mdsc);
3756 	spin_lock(&mdsc->cap_dirty_lock);
3757 	want_flush = mdsc->last_cap_flush_tid;
3758 	if (!list_empty(&mdsc->cap_flush_list)) {
3759 		struct ceph_cap_flush *cf =
3760 			list_last_entry(&mdsc->cap_flush_list,
3761 					struct ceph_cap_flush, g_list);
3762 		cf->wake = true;
3763 	}
3764 	spin_unlock(&mdsc->cap_dirty_lock);
3765 
3766 	dout("sync want tid %lld flush_seq %lld\n",
3767 	     want_tid, want_flush);
3768 
3769 	wait_unsafe_requests(mdsc, want_tid);
3770 	wait_caps_flush(mdsc, want_flush);
3771 }
3772 
3773 /*
3774  * true if all sessions are closed, or we force unmount
3775  */
3776 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped)
3777 {
3778 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3779 		return true;
3780 	return atomic_read(&mdsc->num_sessions) <= skipped;
3781 }
3782 
3783 /*
3784  * called after sb is ro.
3785  */
3786 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3787 {
3788 	struct ceph_options *opts = mdsc->fsc->client->options;
3789 	struct ceph_mds_session *session;
3790 	int i;
3791 	int skipped = 0;
3792 
3793 	dout("close_sessions\n");
3794 
3795 	/* close sessions */
3796 	mutex_lock(&mdsc->mutex);
3797 	for (i = 0; i < mdsc->max_sessions; i++) {
3798 		session = __ceph_lookup_mds_session(mdsc, i);
3799 		if (!session)
3800 			continue;
3801 		mutex_unlock(&mdsc->mutex);
3802 		mutex_lock(&session->s_mutex);
3803 		if (__close_session(mdsc, session) <= 0)
3804 			skipped++;
3805 		mutex_unlock(&session->s_mutex);
3806 		ceph_put_mds_session(session);
3807 		mutex_lock(&mdsc->mutex);
3808 	}
3809 	mutex_unlock(&mdsc->mutex);
3810 
3811 	dout("waiting for sessions to close\n");
3812 	wait_event_timeout(mdsc->session_close_wq,
3813 			   done_closing_sessions(mdsc, skipped),
3814 			   ceph_timeout_jiffies(opts->mount_timeout));
3815 
3816 	/* tear down remaining sessions */
3817 	mutex_lock(&mdsc->mutex);
3818 	for (i = 0; i < mdsc->max_sessions; i++) {
3819 		if (mdsc->sessions[i]) {
3820 			session = get_session(mdsc->sessions[i]);
3821 			__unregister_session(mdsc, session);
3822 			mutex_unlock(&mdsc->mutex);
3823 			mutex_lock(&session->s_mutex);
3824 			remove_session_caps(session);
3825 			mutex_unlock(&session->s_mutex);
3826 			ceph_put_mds_session(session);
3827 			mutex_lock(&mdsc->mutex);
3828 		}
3829 	}
3830 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3831 	mutex_unlock(&mdsc->mutex);
3832 
3833 	ceph_cleanup_empty_realms(mdsc);
3834 
3835 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3836 
3837 	dout("stopped\n");
3838 }
3839 
3840 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3841 {
3842 	struct ceph_mds_session *session;
3843 	int mds;
3844 
3845 	dout("force umount\n");
3846 
3847 	mutex_lock(&mdsc->mutex);
3848 	for (mds = 0; mds < mdsc->max_sessions; mds++) {
3849 		session = __ceph_lookup_mds_session(mdsc, mds);
3850 		if (!session)
3851 			continue;
3852 		mutex_unlock(&mdsc->mutex);
3853 		mutex_lock(&session->s_mutex);
3854 		__close_session(mdsc, session);
3855 		if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3856 			cleanup_session_requests(mdsc, session);
3857 			remove_session_caps(session);
3858 		}
3859 		mutex_unlock(&session->s_mutex);
3860 		ceph_put_mds_session(session);
3861 		mutex_lock(&mdsc->mutex);
3862 		kick_requests(mdsc, mds);
3863 	}
3864 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3865 	mutex_unlock(&mdsc->mutex);
3866 }
3867 
3868 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3869 {
3870 	dout("stop\n");
3871 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3872 	if (mdsc->mdsmap)
3873 		ceph_mdsmap_destroy(mdsc->mdsmap);
3874 	kfree(mdsc->sessions);
3875 	ceph_caps_finalize(mdsc);
3876 	ceph_pool_perm_destroy(mdsc);
3877 }
3878 
3879 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3880 {
3881 	struct ceph_mds_client *mdsc = fsc->mdsc;
3882 	dout("mdsc_destroy %p\n", mdsc);
3883 
3884 	if (!mdsc)
3885 		return;
3886 
3887 	/* flush out any connection work with references to us */
3888 	ceph_msgr_flush();
3889 
3890 	ceph_mdsc_stop(mdsc);
3891 
3892 	fsc->mdsc = NULL;
3893 	kfree(mdsc);
3894 	dout("mdsc_destroy %p done\n", mdsc);
3895 }
3896 
3897 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3898 {
3899 	struct ceph_fs_client *fsc = mdsc->fsc;
3900 	const char *mds_namespace = fsc->mount_options->mds_namespace;
3901 	void *p = msg->front.iov_base;
3902 	void *end = p + msg->front.iov_len;
3903 	u32 epoch;
3904 	u32 map_len;
3905 	u32 num_fs;
3906 	u32 mount_fscid = (u32)-1;
3907 	u8 struct_v, struct_cv;
3908 	int err = -EINVAL;
3909 
3910 	ceph_decode_need(&p, end, sizeof(u32), bad);
3911 	epoch = ceph_decode_32(&p);
3912 
3913 	dout("handle_fsmap epoch %u\n", epoch);
3914 
3915 	ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3916 	struct_v = ceph_decode_8(&p);
3917 	struct_cv = ceph_decode_8(&p);
3918 	map_len = ceph_decode_32(&p);
3919 
3920 	ceph_decode_need(&p, end, sizeof(u32) * 3, bad);
3921 	p += sizeof(u32) * 2; /* skip epoch and legacy_client_fscid */
3922 
3923 	num_fs = ceph_decode_32(&p);
3924 	while (num_fs-- > 0) {
3925 		void *info_p, *info_end;
3926 		u32 info_len;
3927 		u8 info_v, info_cv;
3928 		u32 fscid, namelen;
3929 
3930 		ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3931 		info_v = ceph_decode_8(&p);
3932 		info_cv = ceph_decode_8(&p);
3933 		info_len = ceph_decode_32(&p);
3934 		ceph_decode_need(&p, end, info_len, bad);
3935 		info_p = p;
3936 		info_end = p + info_len;
3937 		p = info_end;
3938 
3939 		ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad);
3940 		fscid = ceph_decode_32(&info_p);
3941 		namelen = ceph_decode_32(&info_p);
3942 		ceph_decode_need(&info_p, info_end, namelen, bad);
3943 
3944 		if (mds_namespace &&
3945 		    strlen(mds_namespace) == namelen &&
3946 		    !strncmp(mds_namespace, (char *)info_p, namelen)) {
3947 			mount_fscid = fscid;
3948 			break;
3949 		}
3950 	}
3951 
3952 	ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch);
3953 	if (mount_fscid != (u32)-1) {
3954 		fsc->client->monc.fs_cluster_id = mount_fscid;
3955 		ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP,
3956 				   0, true);
3957 		ceph_monc_renew_subs(&fsc->client->monc);
3958 	} else {
3959 		err = -ENOENT;
3960 		goto err_out;
3961 	}
3962 	return;
3963 
3964 bad:
3965 	pr_err("error decoding fsmap\n");
3966 err_out:
3967 	mutex_lock(&mdsc->mutex);
3968 	mdsc->mdsmap_err = err;
3969 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3970 	mutex_unlock(&mdsc->mutex);
3971 }
3972 
3973 /*
3974  * handle mds map update.
3975  */
3976 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3977 {
3978 	u32 epoch;
3979 	u32 maplen;
3980 	void *p = msg->front.iov_base;
3981 	void *end = p + msg->front.iov_len;
3982 	struct ceph_mdsmap *newmap, *oldmap;
3983 	struct ceph_fsid fsid;
3984 	int err = -EINVAL;
3985 
3986 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3987 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3988 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3989 		return;
3990 	epoch = ceph_decode_32(&p);
3991 	maplen = ceph_decode_32(&p);
3992 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3993 
3994 	/* do we need it? */
3995 	mutex_lock(&mdsc->mutex);
3996 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3997 		dout("handle_map epoch %u <= our %u\n",
3998 		     epoch, mdsc->mdsmap->m_epoch);
3999 		mutex_unlock(&mdsc->mutex);
4000 		return;
4001 	}
4002 
4003 	newmap = ceph_mdsmap_decode(&p, end);
4004 	if (IS_ERR(newmap)) {
4005 		err = PTR_ERR(newmap);
4006 		goto bad_unlock;
4007 	}
4008 
4009 	/* swap into place */
4010 	if (mdsc->mdsmap) {
4011 		oldmap = mdsc->mdsmap;
4012 		mdsc->mdsmap = newmap;
4013 		check_new_map(mdsc, newmap, oldmap);
4014 		ceph_mdsmap_destroy(oldmap);
4015 	} else {
4016 		mdsc->mdsmap = newmap;  /* first mds map */
4017 	}
4018 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
4019 
4020 	__wake_requests(mdsc, &mdsc->waiting_for_map);
4021 	ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
4022 			  mdsc->mdsmap->m_epoch);
4023 
4024 	mutex_unlock(&mdsc->mutex);
4025 	schedule_delayed(mdsc);
4026 	return;
4027 
4028 bad_unlock:
4029 	mutex_unlock(&mdsc->mutex);
4030 bad:
4031 	pr_err("error decoding mdsmap %d\n", err);
4032 	return;
4033 }
4034 
4035 static struct ceph_connection *con_get(struct ceph_connection *con)
4036 {
4037 	struct ceph_mds_session *s = con->private;
4038 
4039 	if (get_session(s)) {
4040 		dout("mdsc con_get %p ok (%d)\n", s, refcount_read(&s->s_ref));
4041 		return con;
4042 	}
4043 	dout("mdsc con_get %p FAIL\n", s);
4044 	return NULL;
4045 }
4046 
4047 static void con_put(struct ceph_connection *con)
4048 {
4049 	struct ceph_mds_session *s = con->private;
4050 
4051 	dout("mdsc con_put %p (%d)\n", s, refcount_read(&s->s_ref) - 1);
4052 	ceph_put_mds_session(s);
4053 }
4054 
4055 /*
4056  * if the client is unresponsive for long enough, the mds will kill
4057  * the session entirely.
4058  */
4059 static void peer_reset(struct ceph_connection *con)
4060 {
4061 	struct ceph_mds_session *s = con->private;
4062 	struct ceph_mds_client *mdsc = s->s_mdsc;
4063 
4064 	pr_warn("mds%d closed our session\n", s->s_mds);
4065 	send_mds_reconnect(mdsc, s);
4066 }
4067 
4068 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
4069 {
4070 	struct ceph_mds_session *s = con->private;
4071 	struct ceph_mds_client *mdsc = s->s_mdsc;
4072 	int type = le16_to_cpu(msg->hdr.type);
4073 
4074 	mutex_lock(&mdsc->mutex);
4075 	if (__verify_registered_session(mdsc, s) < 0) {
4076 		mutex_unlock(&mdsc->mutex);
4077 		goto out;
4078 	}
4079 	mutex_unlock(&mdsc->mutex);
4080 
4081 	switch (type) {
4082 	case CEPH_MSG_MDS_MAP:
4083 		ceph_mdsc_handle_mdsmap(mdsc, msg);
4084 		break;
4085 	case CEPH_MSG_FS_MAP_USER:
4086 		ceph_mdsc_handle_fsmap(mdsc, msg);
4087 		break;
4088 	case CEPH_MSG_CLIENT_SESSION:
4089 		handle_session(s, msg);
4090 		break;
4091 	case CEPH_MSG_CLIENT_REPLY:
4092 		handle_reply(s, msg);
4093 		break;
4094 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
4095 		handle_forward(mdsc, s, msg);
4096 		break;
4097 	case CEPH_MSG_CLIENT_CAPS:
4098 		ceph_handle_caps(s, msg);
4099 		break;
4100 	case CEPH_MSG_CLIENT_SNAP:
4101 		ceph_handle_snap(mdsc, s, msg);
4102 		break;
4103 	case CEPH_MSG_CLIENT_LEASE:
4104 		handle_lease(mdsc, s, msg);
4105 		break;
4106 	case CEPH_MSG_CLIENT_QUOTA:
4107 		ceph_handle_quota(mdsc, s, msg);
4108 		break;
4109 
4110 	default:
4111 		pr_err("received unknown message type %d %s\n", type,
4112 		       ceph_msg_type_name(type));
4113 	}
4114 out:
4115 	ceph_msg_put(msg);
4116 }
4117 
4118 /*
4119  * authentication
4120  */
4121 
4122 /*
4123  * Note: returned pointer is the address of a structure that's
4124  * managed separately.  Caller must *not* attempt to free it.
4125  */
4126 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
4127 					int *proto, int force_new)
4128 {
4129 	struct ceph_mds_session *s = con->private;
4130 	struct ceph_mds_client *mdsc = s->s_mdsc;
4131 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4132 	struct ceph_auth_handshake *auth = &s->s_auth;
4133 
4134 	if (force_new && auth->authorizer) {
4135 		ceph_auth_destroy_authorizer(auth->authorizer);
4136 		auth->authorizer = NULL;
4137 	}
4138 	if (!auth->authorizer) {
4139 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
4140 						      auth);
4141 		if (ret)
4142 			return ERR_PTR(ret);
4143 	} else {
4144 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
4145 						      auth);
4146 		if (ret)
4147 			return ERR_PTR(ret);
4148 	}
4149 	*proto = ac->protocol;
4150 
4151 	return auth;
4152 }
4153 
4154 
4155 static int verify_authorizer_reply(struct ceph_connection *con)
4156 {
4157 	struct ceph_mds_session *s = con->private;
4158 	struct ceph_mds_client *mdsc = s->s_mdsc;
4159 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4160 
4161 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer);
4162 }
4163 
4164 static int invalidate_authorizer(struct ceph_connection *con)
4165 {
4166 	struct ceph_mds_session *s = con->private;
4167 	struct ceph_mds_client *mdsc = s->s_mdsc;
4168 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4169 
4170 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
4171 
4172 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
4173 }
4174 
4175 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
4176 				struct ceph_msg_header *hdr, int *skip)
4177 {
4178 	struct ceph_msg *msg;
4179 	int type = (int) le16_to_cpu(hdr->type);
4180 	int front_len = (int) le32_to_cpu(hdr->front_len);
4181 
4182 	if (con->in_msg)
4183 		return con->in_msg;
4184 
4185 	*skip = 0;
4186 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
4187 	if (!msg) {
4188 		pr_err("unable to allocate msg type %d len %d\n",
4189 		       type, front_len);
4190 		return NULL;
4191 	}
4192 
4193 	return msg;
4194 }
4195 
4196 static int mds_sign_message(struct ceph_msg *msg)
4197 {
4198        struct ceph_mds_session *s = msg->con->private;
4199        struct ceph_auth_handshake *auth = &s->s_auth;
4200 
4201        return ceph_auth_sign_message(auth, msg);
4202 }
4203 
4204 static int mds_check_message_signature(struct ceph_msg *msg)
4205 {
4206        struct ceph_mds_session *s = msg->con->private;
4207        struct ceph_auth_handshake *auth = &s->s_auth;
4208 
4209        return ceph_auth_check_message_signature(auth, msg);
4210 }
4211 
4212 static const struct ceph_connection_operations mds_con_ops = {
4213 	.get = con_get,
4214 	.put = con_put,
4215 	.dispatch = dispatch,
4216 	.get_authorizer = get_authorizer,
4217 	.verify_authorizer_reply = verify_authorizer_reply,
4218 	.invalidate_authorizer = invalidate_authorizer,
4219 	.peer_reset = peer_reset,
4220 	.alloc_msg = mds_alloc_msg,
4221 	.sign_message = mds_sign_message,
4222 	.check_message_signature = mds_check_message_signature,
4223 };
4224 
4225 /* eof */
4226