xref: /openbmc/linux/fs/ceph/mds_client.c (revision ca79522c)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9 
10 #include "super.h"
11 #include "mds_client.h"
12 
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
19 
20 /*
21  * A cluster of MDS (metadata server) daemons is responsible for
22  * managing the file system namespace (the directory hierarchy and
23  * inodes) and for coordinating shared access to storage.  Metadata is
24  * partitioning hierarchically across a number of servers, and that
25  * partition varies over time as the cluster adjusts the distribution
26  * in order to balance load.
27  *
28  * The MDS client is primarily responsible to managing synchronous
29  * metadata requests for operations like open, unlink, and so forth.
30  * If there is a MDS failure, we find out about it when we (possibly
31  * request and) receive a new MDS map, and can resubmit affected
32  * requests.
33  *
34  * For the most part, though, we take advantage of a lossless
35  * communications channel to the MDS, and do not need to worry about
36  * timing out or resubmitting requests.
37  *
38  * We maintain a stateful "session" with each MDS we interact with.
39  * Within each session, we sent periodic heartbeat messages to ensure
40  * any capabilities or leases we have been issues remain valid.  If
41  * the session times out and goes stale, our leases and capabilities
42  * are no longer valid.
43  */
44 
45 struct ceph_reconnect_state {
46 	struct ceph_pagelist *pagelist;
47 	bool flock;
48 };
49 
50 static void __wake_requests(struct ceph_mds_client *mdsc,
51 			    struct list_head *head);
52 
53 static const struct ceph_connection_operations mds_con_ops;
54 
55 
56 /*
57  * mds reply parsing
58  */
59 
60 /*
61  * parse individual inode info
62  */
63 static int parse_reply_info_in(void **p, void *end,
64 			       struct ceph_mds_reply_info_in *info,
65 			       int features)
66 {
67 	int err = -EIO;
68 
69 	info->in = *p;
70 	*p += sizeof(struct ceph_mds_reply_inode) +
71 		sizeof(*info->in->fragtree.splits) *
72 		le32_to_cpu(info->in->fragtree.nsplits);
73 
74 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
75 	ceph_decode_need(p, end, info->symlink_len, bad);
76 	info->symlink = *p;
77 	*p += info->symlink_len;
78 
79 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
80 		ceph_decode_copy_safe(p, end, &info->dir_layout,
81 				      sizeof(info->dir_layout), bad);
82 	else
83 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
84 
85 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
86 	ceph_decode_need(p, end, info->xattr_len, bad);
87 	info->xattr_data = *p;
88 	*p += info->xattr_len;
89 	return 0;
90 bad:
91 	return err;
92 }
93 
94 /*
95  * parse a normal reply, which may contain a (dir+)dentry and/or a
96  * target inode.
97  */
98 static int parse_reply_info_trace(void **p, void *end,
99 				  struct ceph_mds_reply_info_parsed *info,
100 				  int features)
101 {
102 	int err;
103 
104 	if (info->head->is_dentry) {
105 		err = parse_reply_info_in(p, end, &info->diri, features);
106 		if (err < 0)
107 			goto out_bad;
108 
109 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
110 			goto bad;
111 		info->dirfrag = *p;
112 		*p += sizeof(*info->dirfrag) +
113 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
114 		if (unlikely(*p > end))
115 			goto bad;
116 
117 		ceph_decode_32_safe(p, end, info->dname_len, bad);
118 		ceph_decode_need(p, end, info->dname_len, bad);
119 		info->dname = *p;
120 		*p += info->dname_len;
121 		info->dlease = *p;
122 		*p += sizeof(*info->dlease);
123 	}
124 
125 	if (info->head->is_target) {
126 		err = parse_reply_info_in(p, end, &info->targeti, features);
127 		if (err < 0)
128 			goto out_bad;
129 	}
130 
131 	if (unlikely(*p != end))
132 		goto bad;
133 	return 0;
134 
135 bad:
136 	err = -EIO;
137 out_bad:
138 	pr_err("problem parsing mds trace %d\n", err);
139 	return err;
140 }
141 
142 /*
143  * parse readdir results
144  */
145 static int parse_reply_info_dir(void **p, void *end,
146 				struct ceph_mds_reply_info_parsed *info,
147 				int features)
148 {
149 	u32 num, i = 0;
150 	int err;
151 
152 	info->dir_dir = *p;
153 	if (*p + sizeof(*info->dir_dir) > end)
154 		goto bad;
155 	*p += sizeof(*info->dir_dir) +
156 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
157 	if (*p > end)
158 		goto bad;
159 
160 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
161 	num = ceph_decode_32(p);
162 	info->dir_end = ceph_decode_8(p);
163 	info->dir_complete = ceph_decode_8(p);
164 	if (num == 0)
165 		goto done;
166 
167 	/* alloc large array */
168 	info->dir_nr = num;
169 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
170 			       sizeof(*info->dir_dname) +
171 			       sizeof(*info->dir_dname_len) +
172 			       sizeof(*info->dir_dlease),
173 			       GFP_NOFS);
174 	if (info->dir_in == NULL) {
175 		err = -ENOMEM;
176 		goto out_bad;
177 	}
178 	info->dir_dname = (void *)(info->dir_in + num);
179 	info->dir_dname_len = (void *)(info->dir_dname + num);
180 	info->dir_dlease = (void *)(info->dir_dname_len + num);
181 
182 	while (num) {
183 		/* dentry */
184 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
185 		info->dir_dname_len[i] = ceph_decode_32(p);
186 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
187 		info->dir_dname[i] = *p;
188 		*p += info->dir_dname_len[i];
189 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
190 		     info->dir_dname[i]);
191 		info->dir_dlease[i] = *p;
192 		*p += sizeof(struct ceph_mds_reply_lease);
193 
194 		/* inode */
195 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
196 		if (err < 0)
197 			goto out_bad;
198 		i++;
199 		num--;
200 	}
201 
202 done:
203 	if (*p != end)
204 		goto bad;
205 	return 0;
206 
207 bad:
208 	err = -EIO;
209 out_bad:
210 	pr_err("problem parsing dir contents %d\n", err);
211 	return err;
212 }
213 
214 /*
215  * parse fcntl F_GETLK results
216  */
217 static int parse_reply_info_filelock(void **p, void *end,
218 				     struct ceph_mds_reply_info_parsed *info,
219 				     int features)
220 {
221 	if (*p + sizeof(*info->filelock_reply) > end)
222 		goto bad;
223 
224 	info->filelock_reply = *p;
225 	*p += sizeof(*info->filelock_reply);
226 
227 	if (unlikely(*p != end))
228 		goto bad;
229 	return 0;
230 
231 bad:
232 	return -EIO;
233 }
234 
235 /*
236  * parse create results
237  */
238 static int parse_reply_info_create(void **p, void *end,
239 				  struct ceph_mds_reply_info_parsed *info,
240 				  int features)
241 {
242 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
243 		if (*p == end) {
244 			info->has_create_ino = false;
245 		} else {
246 			info->has_create_ino = true;
247 			info->ino = ceph_decode_64(p);
248 		}
249 	}
250 
251 	if (unlikely(*p != end))
252 		goto bad;
253 	return 0;
254 
255 bad:
256 	return -EIO;
257 }
258 
259 /*
260  * parse extra results
261  */
262 static int parse_reply_info_extra(void **p, void *end,
263 				  struct ceph_mds_reply_info_parsed *info,
264 				  int features)
265 {
266 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
267 		return parse_reply_info_filelock(p, end, info, features);
268 	else if (info->head->op == CEPH_MDS_OP_READDIR ||
269 		 info->head->op == CEPH_MDS_OP_LSSNAP)
270 		return parse_reply_info_dir(p, end, info, features);
271 	else if (info->head->op == CEPH_MDS_OP_CREATE)
272 		return parse_reply_info_create(p, end, info, features);
273 	else
274 		return -EIO;
275 }
276 
277 /*
278  * parse entire mds reply
279  */
280 static int parse_reply_info(struct ceph_msg *msg,
281 			    struct ceph_mds_reply_info_parsed *info,
282 			    int features)
283 {
284 	void *p, *end;
285 	u32 len;
286 	int err;
287 
288 	info->head = msg->front.iov_base;
289 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
290 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
291 
292 	/* trace */
293 	ceph_decode_32_safe(&p, end, len, bad);
294 	if (len > 0) {
295 		ceph_decode_need(&p, end, len, bad);
296 		err = parse_reply_info_trace(&p, p+len, info, features);
297 		if (err < 0)
298 			goto out_bad;
299 	}
300 
301 	/* extra */
302 	ceph_decode_32_safe(&p, end, len, bad);
303 	if (len > 0) {
304 		ceph_decode_need(&p, end, len, bad);
305 		err = parse_reply_info_extra(&p, p+len, info, features);
306 		if (err < 0)
307 			goto out_bad;
308 	}
309 
310 	/* snap blob */
311 	ceph_decode_32_safe(&p, end, len, bad);
312 	info->snapblob_len = len;
313 	info->snapblob = p;
314 	p += len;
315 
316 	if (p != end)
317 		goto bad;
318 	return 0;
319 
320 bad:
321 	err = -EIO;
322 out_bad:
323 	pr_err("mds parse_reply err %d\n", err);
324 	return err;
325 }
326 
327 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
328 {
329 	kfree(info->dir_in);
330 }
331 
332 
333 /*
334  * sessions
335  */
336 static const char *session_state_name(int s)
337 {
338 	switch (s) {
339 	case CEPH_MDS_SESSION_NEW: return "new";
340 	case CEPH_MDS_SESSION_OPENING: return "opening";
341 	case CEPH_MDS_SESSION_OPEN: return "open";
342 	case CEPH_MDS_SESSION_HUNG: return "hung";
343 	case CEPH_MDS_SESSION_CLOSING: return "closing";
344 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
345 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
346 	default: return "???";
347 	}
348 }
349 
350 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
351 {
352 	if (atomic_inc_not_zero(&s->s_ref)) {
353 		dout("mdsc get_session %p %d -> %d\n", s,
354 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
355 		return s;
356 	} else {
357 		dout("mdsc get_session %p 0 -- FAIL", s);
358 		return NULL;
359 	}
360 }
361 
362 void ceph_put_mds_session(struct ceph_mds_session *s)
363 {
364 	dout("mdsc put_session %p %d -> %d\n", s,
365 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
366 	if (atomic_dec_and_test(&s->s_ref)) {
367 		if (s->s_auth.authorizer)
368 			ceph_auth_destroy_authorizer(
369 				s->s_mdsc->fsc->client->monc.auth,
370 				s->s_auth.authorizer);
371 		kfree(s);
372 	}
373 }
374 
375 /*
376  * called under mdsc->mutex
377  */
378 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
379 						   int mds)
380 {
381 	struct ceph_mds_session *session;
382 
383 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
384 		return NULL;
385 	session = mdsc->sessions[mds];
386 	dout("lookup_mds_session %p %d\n", session,
387 	     atomic_read(&session->s_ref));
388 	get_session(session);
389 	return session;
390 }
391 
392 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
393 {
394 	if (mds >= mdsc->max_sessions)
395 		return false;
396 	return mdsc->sessions[mds];
397 }
398 
399 static int __verify_registered_session(struct ceph_mds_client *mdsc,
400 				       struct ceph_mds_session *s)
401 {
402 	if (s->s_mds >= mdsc->max_sessions ||
403 	    mdsc->sessions[s->s_mds] != s)
404 		return -ENOENT;
405 	return 0;
406 }
407 
408 /*
409  * create+register a new session for given mds.
410  * called under mdsc->mutex.
411  */
412 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
413 						 int mds)
414 {
415 	struct ceph_mds_session *s;
416 
417 	s = kzalloc(sizeof(*s), GFP_NOFS);
418 	if (!s)
419 		return ERR_PTR(-ENOMEM);
420 	s->s_mdsc = mdsc;
421 	s->s_mds = mds;
422 	s->s_state = CEPH_MDS_SESSION_NEW;
423 	s->s_ttl = 0;
424 	s->s_seq = 0;
425 	mutex_init(&s->s_mutex);
426 
427 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
428 
429 	spin_lock_init(&s->s_gen_ttl_lock);
430 	s->s_cap_gen = 0;
431 	s->s_cap_ttl = jiffies - 1;
432 
433 	spin_lock_init(&s->s_cap_lock);
434 	s->s_renew_requested = 0;
435 	s->s_renew_seq = 0;
436 	INIT_LIST_HEAD(&s->s_caps);
437 	s->s_nr_caps = 0;
438 	s->s_trim_caps = 0;
439 	atomic_set(&s->s_ref, 1);
440 	INIT_LIST_HEAD(&s->s_waiting);
441 	INIT_LIST_HEAD(&s->s_unsafe);
442 	s->s_num_cap_releases = 0;
443 	s->s_cap_iterator = NULL;
444 	INIT_LIST_HEAD(&s->s_cap_releases);
445 	INIT_LIST_HEAD(&s->s_cap_releases_done);
446 	INIT_LIST_HEAD(&s->s_cap_flushing);
447 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
448 
449 	dout("register_session mds%d\n", mds);
450 	if (mds >= mdsc->max_sessions) {
451 		int newmax = 1 << get_count_order(mds+1);
452 		struct ceph_mds_session **sa;
453 
454 		dout("register_session realloc to %d\n", newmax);
455 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
456 		if (sa == NULL)
457 			goto fail_realloc;
458 		if (mdsc->sessions) {
459 			memcpy(sa, mdsc->sessions,
460 			       mdsc->max_sessions * sizeof(void *));
461 			kfree(mdsc->sessions);
462 		}
463 		mdsc->sessions = sa;
464 		mdsc->max_sessions = newmax;
465 	}
466 	mdsc->sessions[mds] = s;
467 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
468 
469 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
470 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
471 
472 	return s;
473 
474 fail_realloc:
475 	kfree(s);
476 	return ERR_PTR(-ENOMEM);
477 }
478 
479 /*
480  * called under mdsc->mutex
481  */
482 static void __unregister_session(struct ceph_mds_client *mdsc,
483 			       struct ceph_mds_session *s)
484 {
485 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
486 	BUG_ON(mdsc->sessions[s->s_mds] != s);
487 	mdsc->sessions[s->s_mds] = NULL;
488 	ceph_con_close(&s->s_con);
489 	ceph_put_mds_session(s);
490 }
491 
492 /*
493  * drop session refs in request.
494  *
495  * should be last request ref, or hold mdsc->mutex
496  */
497 static void put_request_session(struct ceph_mds_request *req)
498 {
499 	if (req->r_session) {
500 		ceph_put_mds_session(req->r_session);
501 		req->r_session = NULL;
502 	}
503 }
504 
505 void ceph_mdsc_release_request(struct kref *kref)
506 {
507 	struct ceph_mds_request *req = container_of(kref,
508 						    struct ceph_mds_request,
509 						    r_kref);
510 	if (req->r_request)
511 		ceph_msg_put(req->r_request);
512 	if (req->r_reply) {
513 		ceph_msg_put(req->r_reply);
514 		destroy_reply_info(&req->r_reply_info);
515 	}
516 	if (req->r_inode) {
517 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
518 		iput(req->r_inode);
519 	}
520 	if (req->r_locked_dir)
521 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
522 	if (req->r_target_inode)
523 		iput(req->r_target_inode);
524 	if (req->r_dentry)
525 		dput(req->r_dentry);
526 	if (req->r_old_dentry) {
527 		/*
528 		 * track (and drop pins for) r_old_dentry_dir
529 		 * separately, since r_old_dentry's d_parent may have
530 		 * changed between the dir mutex being dropped and
531 		 * this request being freed.
532 		 */
533 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
534 				  CEPH_CAP_PIN);
535 		dput(req->r_old_dentry);
536 		iput(req->r_old_dentry_dir);
537 	}
538 	kfree(req->r_path1);
539 	kfree(req->r_path2);
540 	put_request_session(req);
541 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
542 	kfree(req);
543 }
544 
545 /*
546  * lookup session, bump ref if found.
547  *
548  * called under mdsc->mutex.
549  */
550 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
551 					     u64 tid)
552 {
553 	struct ceph_mds_request *req;
554 	struct rb_node *n = mdsc->request_tree.rb_node;
555 
556 	while (n) {
557 		req = rb_entry(n, struct ceph_mds_request, r_node);
558 		if (tid < req->r_tid)
559 			n = n->rb_left;
560 		else if (tid > req->r_tid)
561 			n = n->rb_right;
562 		else {
563 			ceph_mdsc_get_request(req);
564 			return req;
565 		}
566 	}
567 	return NULL;
568 }
569 
570 static void __insert_request(struct ceph_mds_client *mdsc,
571 			     struct ceph_mds_request *new)
572 {
573 	struct rb_node **p = &mdsc->request_tree.rb_node;
574 	struct rb_node *parent = NULL;
575 	struct ceph_mds_request *req = NULL;
576 
577 	while (*p) {
578 		parent = *p;
579 		req = rb_entry(parent, struct ceph_mds_request, r_node);
580 		if (new->r_tid < req->r_tid)
581 			p = &(*p)->rb_left;
582 		else if (new->r_tid > req->r_tid)
583 			p = &(*p)->rb_right;
584 		else
585 			BUG();
586 	}
587 
588 	rb_link_node(&new->r_node, parent, p);
589 	rb_insert_color(&new->r_node, &mdsc->request_tree);
590 }
591 
592 /*
593  * Register an in-flight request, and assign a tid.  Link to directory
594  * are modifying (if any).
595  *
596  * Called under mdsc->mutex.
597  */
598 static void __register_request(struct ceph_mds_client *mdsc,
599 			       struct ceph_mds_request *req,
600 			       struct inode *dir)
601 {
602 	req->r_tid = ++mdsc->last_tid;
603 	if (req->r_num_caps)
604 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
605 				  req->r_num_caps);
606 	dout("__register_request %p tid %lld\n", req, req->r_tid);
607 	ceph_mdsc_get_request(req);
608 	__insert_request(mdsc, req);
609 
610 	req->r_uid = current_fsuid();
611 	req->r_gid = current_fsgid();
612 
613 	if (dir) {
614 		struct ceph_inode_info *ci = ceph_inode(dir);
615 
616 		ihold(dir);
617 		spin_lock(&ci->i_unsafe_lock);
618 		req->r_unsafe_dir = dir;
619 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
620 		spin_unlock(&ci->i_unsafe_lock);
621 	}
622 }
623 
624 static void __unregister_request(struct ceph_mds_client *mdsc,
625 				 struct ceph_mds_request *req)
626 {
627 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
628 	rb_erase(&req->r_node, &mdsc->request_tree);
629 	RB_CLEAR_NODE(&req->r_node);
630 
631 	if (req->r_unsafe_dir) {
632 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
633 
634 		spin_lock(&ci->i_unsafe_lock);
635 		list_del_init(&req->r_unsafe_dir_item);
636 		spin_unlock(&ci->i_unsafe_lock);
637 
638 		iput(req->r_unsafe_dir);
639 		req->r_unsafe_dir = NULL;
640 	}
641 
642 	ceph_mdsc_put_request(req);
643 }
644 
645 /*
646  * Choose mds to send request to next.  If there is a hint set in the
647  * request (e.g., due to a prior forward hint from the mds), use that.
648  * Otherwise, consult frag tree and/or caps to identify the
649  * appropriate mds.  If all else fails, choose randomly.
650  *
651  * Called under mdsc->mutex.
652  */
653 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
654 {
655 	/*
656 	 * we don't need to worry about protecting the d_parent access
657 	 * here because we never renaming inside the snapped namespace
658 	 * except to resplice to another snapdir, and either the old or new
659 	 * result is a valid result.
660 	 */
661 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
662 		dentry = dentry->d_parent;
663 	return dentry;
664 }
665 
666 static int __choose_mds(struct ceph_mds_client *mdsc,
667 			struct ceph_mds_request *req)
668 {
669 	struct inode *inode;
670 	struct ceph_inode_info *ci;
671 	struct ceph_cap *cap;
672 	int mode = req->r_direct_mode;
673 	int mds = -1;
674 	u32 hash = req->r_direct_hash;
675 	bool is_hash = req->r_direct_is_hash;
676 
677 	/*
678 	 * is there a specific mds we should try?  ignore hint if we have
679 	 * no session and the mds is not up (active or recovering).
680 	 */
681 	if (req->r_resend_mds >= 0 &&
682 	    (__have_session(mdsc, req->r_resend_mds) ||
683 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
684 		dout("choose_mds using resend_mds mds%d\n",
685 		     req->r_resend_mds);
686 		return req->r_resend_mds;
687 	}
688 
689 	if (mode == USE_RANDOM_MDS)
690 		goto random;
691 
692 	inode = NULL;
693 	if (req->r_inode) {
694 		inode = req->r_inode;
695 	} else if (req->r_dentry) {
696 		/* ignore race with rename; old or new d_parent is okay */
697 		struct dentry *parent = req->r_dentry->d_parent;
698 		struct inode *dir = parent->d_inode;
699 
700 		if (dir->i_sb != mdsc->fsc->sb) {
701 			/* not this fs! */
702 			inode = req->r_dentry->d_inode;
703 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
704 			/* direct snapped/virtual snapdir requests
705 			 * based on parent dir inode */
706 			struct dentry *dn = get_nonsnap_parent(parent);
707 			inode = dn->d_inode;
708 			dout("__choose_mds using nonsnap parent %p\n", inode);
709 		} else if (req->r_dentry->d_inode) {
710 			/* dentry target */
711 			inode = req->r_dentry->d_inode;
712 		} else {
713 			/* dir + name */
714 			inode = dir;
715 			hash = ceph_dentry_hash(dir, req->r_dentry);
716 			is_hash = true;
717 		}
718 	}
719 
720 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
721 	     (int)hash, mode);
722 	if (!inode)
723 		goto random;
724 	ci = ceph_inode(inode);
725 
726 	if (is_hash && S_ISDIR(inode->i_mode)) {
727 		struct ceph_inode_frag frag;
728 		int found;
729 
730 		ceph_choose_frag(ci, hash, &frag, &found);
731 		if (found) {
732 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
733 				u8 r;
734 
735 				/* choose a random replica */
736 				get_random_bytes(&r, 1);
737 				r %= frag.ndist;
738 				mds = frag.dist[r];
739 				dout("choose_mds %p %llx.%llx "
740 				     "frag %u mds%d (%d/%d)\n",
741 				     inode, ceph_vinop(inode),
742 				     frag.frag, mds,
743 				     (int)r, frag.ndist);
744 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
745 				    CEPH_MDS_STATE_ACTIVE)
746 					return mds;
747 			}
748 
749 			/* since this file/dir wasn't known to be
750 			 * replicated, then we want to look for the
751 			 * authoritative mds. */
752 			mode = USE_AUTH_MDS;
753 			if (frag.mds >= 0) {
754 				/* choose auth mds */
755 				mds = frag.mds;
756 				dout("choose_mds %p %llx.%llx "
757 				     "frag %u mds%d (auth)\n",
758 				     inode, ceph_vinop(inode), frag.frag, mds);
759 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
760 				    CEPH_MDS_STATE_ACTIVE)
761 					return mds;
762 			}
763 		}
764 	}
765 
766 	spin_lock(&ci->i_ceph_lock);
767 	cap = NULL;
768 	if (mode == USE_AUTH_MDS)
769 		cap = ci->i_auth_cap;
770 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
771 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
772 	if (!cap) {
773 		spin_unlock(&ci->i_ceph_lock);
774 		goto random;
775 	}
776 	mds = cap->session->s_mds;
777 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
778 	     inode, ceph_vinop(inode), mds,
779 	     cap == ci->i_auth_cap ? "auth " : "", cap);
780 	spin_unlock(&ci->i_ceph_lock);
781 	return mds;
782 
783 random:
784 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
785 	dout("choose_mds chose random mds%d\n", mds);
786 	return mds;
787 }
788 
789 
790 /*
791  * session messages
792  */
793 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
794 {
795 	struct ceph_msg *msg;
796 	struct ceph_mds_session_head *h;
797 
798 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
799 			   false);
800 	if (!msg) {
801 		pr_err("create_session_msg ENOMEM creating msg\n");
802 		return NULL;
803 	}
804 	h = msg->front.iov_base;
805 	h->op = cpu_to_le32(op);
806 	h->seq = cpu_to_le64(seq);
807 	return msg;
808 }
809 
810 /*
811  * send session open request.
812  *
813  * called under mdsc->mutex
814  */
815 static int __open_session(struct ceph_mds_client *mdsc,
816 			  struct ceph_mds_session *session)
817 {
818 	struct ceph_msg *msg;
819 	int mstate;
820 	int mds = session->s_mds;
821 
822 	/* wait for mds to go active? */
823 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
824 	dout("open_session to mds%d (%s)\n", mds,
825 	     ceph_mds_state_name(mstate));
826 	session->s_state = CEPH_MDS_SESSION_OPENING;
827 	session->s_renew_requested = jiffies;
828 
829 	/* send connect message */
830 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
831 	if (!msg)
832 		return -ENOMEM;
833 	ceph_con_send(&session->s_con, msg);
834 	return 0;
835 }
836 
837 /*
838  * open sessions for any export targets for the given mds
839  *
840  * called under mdsc->mutex
841  */
842 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
843 					  struct ceph_mds_session *session)
844 {
845 	struct ceph_mds_info *mi;
846 	struct ceph_mds_session *ts;
847 	int i, mds = session->s_mds;
848 	int target;
849 
850 	if (mds >= mdsc->mdsmap->m_max_mds)
851 		return;
852 	mi = &mdsc->mdsmap->m_info[mds];
853 	dout("open_export_target_sessions for mds%d (%d targets)\n",
854 	     session->s_mds, mi->num_export_targets);
855 
856 	for (i = 0; i < mi->num_export_targets; i++) {
857 		target = mi->export_targets[i];
858 		ts = __ceph_lookup_mds_session(mdsc, target);
859 		if (!ts) {
860 			ts = register_session(mdsc, target);
861 			if (IS_ERR(ts))
862 				return;
863 		}
864 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
865 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
866 			__open_session(mdsc, session);
867 		else
868 			dout(" mds%d target mds%d %p is %s\n", session->s_mds,
869 			     i, ts, session_state_name(ts->s_state));
870 		ceph_put_mds_session(ts);
871 	}
872 }
873 
874 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
875 					   struct ceph_mds_session *session)
876 {
877 	mutex_lock(&mdsc->mutex);
878 	__open_export_target_sessions(mdsc, session);
879 	mutex_unlock(&mdsc->mutex);
880 }
881 
882 /*
883  * session caps
884  */
885 
886 /*
887  * Free preallocated cap messages assigned to this session
888  */
889 static void cleanup_cap_releases(struct ceph_mds_session *session)
890 {
891 	struct ceph_msg *msg;
892 
893 	spin_lock(&session->s_cap_lock);
894 	while (!list_empty(&session->s_cap_releases)) {
895 		msg = list_first_entry(&session->s_cap_releases,
896 				       struct ceph_msg, list_head);
897 		list_del_init(&msg->list_head);
898 		ceph_msg_put(msg);
899 	}
900 	while (!list_empty(&session->s_cap_releases_done)) {
901 		msg = list_first_entry(&session->s_cap_releases_done,
902 				       struct ceph_msg, list_head);
903 		list_del_init(&msg->list_head);
904 		ceph_msg_put(msg);
905 	}
906 	spin_unlock(&session->s_cap_lock);
907 }
908 
909 /*
910  * Helper to safely iterate over all caps associated with a session, with
911  * special care taken to handle a racing __ceph_remove_cap().
912  *
913  * Caller must hold session s_mutex.
914  */
915 static int iterate_session_caps(struct ceph_mds_session *session,
916 				 int (*cb)(struct inode *, struct ceph_cap *,
917 					    void *), void *arg)
918 {
919 	struct list_head *p;
920 	struct ceph_cap *cap;
921 	struct inode *inode, *last_inode = NULL;
922 	struct ceph_cap *old_cap = NULL;
923 	int ret;
924 
925 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
926 	spin_lock(&session->s_cap_lock);
927 	p = session->s_caps.next;
928 	while (p != &session->s_caps) {
929 		cap = list_entry(p, struct ceph_cap, session_caps);
930 		inode = igrab(&cap->ci->vfs_inode);
931 		if (!inode) {
932 			p = p->next;
933 			continue;
934 		}
935 		session->s_cap_iterator = cap;
936 		spin_unlock(&session->s_cap_lock);
937 
938 		if (last_inode) {
939 			iput(last_inode);
940 			last_inode = NULL;
941 		}
942 		if (old_cap) {
943 			ceph_put_cap(session->s_mdsc, old_cap);
944 			old_cap = NULL;
945 		}
946 
947 		ret = cb(inode, cap, arg);
948 		last_inode = inode;
949 
950 		spin_lock(&session->s_cap_lock);
951 		p = p->next;
952 		if (cap->ci == NULL) {
953 			dout("iterate_session_caps  finishing cap %p removal\n",
954 			     cap);
955 			BUG_ON(cap->session != session);
956 			list_del_init(&cap->session_caps);
957 			session->s_nr_caps--;
958 			cap->session = NULL;
959 			old_cap = cap;  /* put_cap it w/o locks held */
960 		}
961 		if (ret < 0)
962 			goto out;
963 	}
964 	ret = 0;
965 out:
966 	session->s_cap_iterator = NULL;
967 	spin_unlock(&session->s_cap_lock);
968 
969 	if (last_inode)
970 		iput(last_inode);
971 	if (old_cap)
972 		ceph_put_cap(session->s_mdsc, old_cap);
973 
974 	return ret;
975 }
976 
977 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
978 				  void *arg)
979 {
980 	struct ceph_inode_info *ci = ceph_inode(inode);
981 	int drop = 0;
982 
983 	dout("removing cap %p, ci is %p, inode is %p\n",
984 	     cap, ci, &ci->vfs_inode);
985 	spin_lock(&ci->i_ceph_lock);
986 	__ceph_remove_cap(cap);
987 	if (!__ceph_is_any_real_caps(ci)) {
988 		struct ceph_mds_client *mdsc =
989 			ceph_sb_to_client(inode->i_sb)->mdsc;
990 
991 		spin_lock(&mdsc->cap_dirty_lock);
992 		if (!list_empty(&ci->i_dirty_item)) {
993 			pr_info(" dropping dirty %s state for %p %lld\n",
994 				ceph_cap_string(ci->i_dirty_caps),
995 				inode, ceph_ino(inode));
996 			ci->i_dirty_caps = 0;
997 			list_del_init(&ci->i_dirty_item);
998 			drop = 1;
999 		}
1000 		if (!list_empty(&ci->i_flushing_item)) {
1001 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1002 				ceph_cap_string(ci->i_flushing_caps),
1003 				inode, ceph_ino(inode));
1004 			ci->i_flushing_caps = 0;
1005 			list_del_init(&ci->i_flushing_item);
1006 			mdsc->num_cap_flushing--;
1007 			drop = 1;
1008 		}
1009 		if (drop && ci->i_wrbuffer_ref) {
1010 			pr_info(" dropping dirty data for %p %lld\n",
1011 				inode, ceph_ino(inode));
1012 			ci->i_wrbuffer_ref = 0;
1013 			ci->i_wrbuffer_ref_head = 0;
1014 			drop++;
1015 		}
1016 		spin_unlock(&mdsc->cap_dirty_lock);
1017 	}
1018 	spin_unlock(&ci->i_ceph_lock);
1019 	while (drop--)
1020 		iput(inode);
1021 	return 0;
1022 }
1023 
1024 /*
1025  * caller must hold session s_mutex
1026  */
1027 static void remove_session_caps(struct ceph_mds_session *session)
1028 {
1029 	dout("remove_session_caps on %p\n", session);
1030 	iterate_session_caps(session, remove_session_caps_cb, NULL);
1031 	BUG_ON(session->s_nr_caps > 0);
1032 	BUG_ON(!list_empty(&session->s_cap_flushing));
1033 	cleanup_cap_releases(session);
1034 }
1035 
1036 /*
1037  * wake up any threads waiting on this session's caps.  if the cap is
1038  * old (didn't get renewed on the client reconnect), remove it now.
1039  *
1040  * caller must hold s_mutex.
1041  */
1042 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1043 			      void *arg)
1044 {
1045 	struct ceph_inode_info *ci = ceph_inode(inode);
1046 
1047 	wake_up_all(&ci->i_cap_wq);
1048 	if (arg) {
1049 		spin_lock(&ci->i_ceph_lock);
1050 		ci->i_wanted_max_size = 0;
1051 		ci->i_requested_max_size = 0;
1052 		spin_unlock(&ci->i_ceph_lock);
1053 	}
1054 	return 0;
1055 }
1056 
1057 static void wake_up_session_caps(struct ceph_mds_session *session,
1058 				 int reconnect)
1059 {
1060 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1061 	iterate_session_caps(session, wake_up_session_cb,
1062 			     (void *)(unsigned long)reconnect);
1063 }
1064 
1065 /*
1066  * Send periodic message to MDS renewing all currently held caps.  The
1067  * ack will reset the expiration for all caps from this session.
1068  *
1069  * caller holds s_mutex
1070  */
1071 static int send_renew_caps(struct ceph_mds_client *mdsc,
1072 			   struct ceph_mds_session *session)
1073 {
1074 	struct ceph_msg *msg;
1075 	int state;
1076 
1077 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1078 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1079 		pr_info("mds%d caps stale\n", session->s_mds);
1080 	session->s_renew_requested = jiffies;
1081 
1082 	/* do not try to renew caps until a recovering mds has reconnected
1083 	 * with its clients. */
1084 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1085 	if (state < CEPH_MDS_STATE_RECONNECT) {
1086 		dout("send_renew_caps ignoring mds%d (%s)\n",
1087 		     session->s_mds, ceph_mds_state_name(state));
1088 		return 0;
1089 	}
1090 
1091 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1092 		ceph_mds_state_name(state));
1093 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1094 				 ++session->s_renew_seq);
1095 	if (!msg)
1096 		return -ENOMEM;
1097 	ceph_con_send(&session->s_con, msg);
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1103  *
1104  * Called under session->s_mutex
1105  */
1106 static void renewed_caps(struct ceph_mds_client *mdsc,
1107 			 struct ceph_mds_session *session, int is_renew)
1108 {
1109 	int was_stale;
1110 	int wake = 0;
1111 
1112 	spin_lock(&session->s_cap_lock);
1113 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1114 
1115 	session->s_cap_ttl = session->s_renew_requested +
1116 		mdsc->mdsmap->m_session_timeout*HZ;
1117 
1118 	if (was_stale) {
1119 		if (time_before(jiffies, session->s_cap_ttl)) {
1120 			pr_info("mds%d caps renewed\n", session->s_mds);
1121 			wake = 1;
1122 		} else {
1123 			pr_info("mds%d caps still stale\n", session->s_mds);
1124 		}
1125 	}
1126 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1127 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1128 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1129 	spin_unlock(&session->s_cap_lock);
1130 
1131 	if (wake)
1132 		wake_up_session_caps(session, 0);
1133 }
1134 
1135 /*
1136  * send a session close request
1137  */
1138 static int request_close_session(struct ceph_mds_client *mdsc,
1139 				 struct ceph_mds_session *session)
1140 {
1141 	struct ceph_msg *msg;
1142 
1143 	dout("request_close_session mds%d state %s seq %lld\n",
1144 	     session->s_mds, session_state_name(session->s_state),
1145 	     session->s_seq);
1146 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1147 	if (!msg)
1148 		return -ENOMEM;
1149 	ceph_con_send(&session->s_con, msg);
1150 	return 0;
1151 }
1152 
1153 /*
1154  * Called with s_mutex held.
1155  */
1156 static int __close_session(struct ceph_mds_client *mdsc,
1157 			 struct ceph_mds_session *session)
1158 {
1159 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1160 		return 0;
1161 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1162 	return request_close_session(mdsc, session);
1163 }
1164 
1165 /*
1166  * Trim old(er) caps.
1167  *
1168  * Because we can't cache an inode without one or more caps, we do
1169  * this indirectly: if a cap is unused, we prune its aliases, at which
1170  * point the inode will hopefully get dropped to.
1171  *
1172  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1173  * memory pressure from the MDS, though, so it needn't be perfect.
1174  */
1175 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1176 {
1177 	struct ceph_mds_session *session = arg;
1178 	struct ceph_inode_info *ci = ceph_inode(inode);
1179 	int used, oissued, mine;
1180 
1181 	if (session->s_trim_caps <= 0)
1182 		return -1;
1183 
1184 	spin_lock(&ci->i_ceph_lock);
1185 	mine = cap->issued | cap->implemented;
1186 	used = __ceph_caps_used(ci);
1187 	oissued = __ceph_caps_issued_other(ci, cap);
1188 
1189 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1190 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1191 	     ceph_cap_string(used));
1192 	if (ci->i_dirty_caps)
1193 		goto out;   /* dirty caps */
1194 	if ((used & ~oissued) & mine)
1195 		goto out;   /* we need these caps */
1196 
1197 	session->s_trim_caps--;
1198 	if (oissued) {
1199 		/* we aren't the only cap.. just remove us */
1200 		__queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1201 				    cap->mseq, cap->issue_seq);
1202 		__ceph_remove_cap(cap);
1203 	} else {
1204 		/* try to drop referring dentries */
1205 		spin_unlock(&ci->i_ceph_lock);
1206 		d_prune_aliases(inode);
1207 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1208 		     inode, cap, atomic_read(&inode->i_count));
1209 		return 0;
1210 	}
1211 
1212 out:
1213 	spin_unlock(&ci->i_ceph_lock);
1214 	return 0;
1215 }
1216 
1217 /*
1218  * Trim session cap count down to some max number.
1219  */
1220 static int trim_caps(struct ceph_mds_client *mdsc,
1221 		     struct ceph_mds_session *session,
1222 		     int max_caps)
1223 {
1224 	int trim_caps = session->s_nr_caps - max_caps;
1225 
1226 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1227 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1228 	if (trim_caps > 0) {
1229 		session->s_trim_caps = trim_caps;
1230 		iterate_session_caps(session, trim_caps_cb, session);
1231 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1232 		     session->s_mds, session->s_nr_caps, max_caps,
1233 			trim_caps - session->s_trim_caps);
1234 		session->s_trim_caps = 0;
1235 	}
1236 	return 0;
1237 }
1238 
1239 /*
1240  * Allocate cap_release messages.  If there is a partially full message
1241  * in the queue, try to allocate enough to cover it's remainder, so that
1242  * we can send it immediately.
1243  *
1244  * Called under s_mutex.
1245  */
1246 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1247 			  struct ceph_mds_session *session)
1248 {
1249 	struct ceph_msg *msg, *partial = NULL;
1250 	struct ceph_mds_cap_release *head;
1251 	int err = -ENOMEM;
1252 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1253 	int num;
1254 
1255 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1256 	     extra);
1257 
1258 	spin_lock(&session->s_cap_lock);
1259 
1260 	if (!list_empty(&session->s_cap_releases)) {
1261 		msg = list_first_entry(&session->s_cap_releases,
1262 				       struct ceph_msg,
1263 				 list_head);
1264 		head = msg->front.iov_base;
1265 		num = le32_to_cpu(head->num);
1266 		if (num) {
1267 			dout(" partial %p with (%d/%d)\n", msg, num,
1268 			     (int)CEPH_CAPS_PER_RELEASE);
1269 			extra += CEPH_CAPS_PER_RELEASE - num;
1270 			partial = msg;
1271 		}
1272 	}
1273 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1274 		spin_unlock(&session->s_cap_lock);
1275 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1276 				   GFP_NOFS, false);
1277 		if (!msg)
1278 			goto out_unlocked;
1279 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1280 		     (int)msg->front.iov_len);
1281 		head = msg->front.iov_base;
1282 		head->num = cpu_to_le32(0);
1283 		msg->front.iov_len = sizeof(*head);
1284 		spin_lock(&session->s_cap_lock);
1285 		list_add(&msg->list_head, &session->s_cap_releases);
1286 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1287 	}
1288 
1289 	if (partial) {
1290 		head = partial->front.iov_base;
1291 		num = le32_to_cpu(head->num);
1292 		dout(" queueing partial %p with %d/%d\n", partial, num,
1293 		     (int)CEPH_CAPS_PER_RELEASE);
1294 		list_move_tail(&partial->list_head,
1295 			       &session->s_cap_releases_done);
1296 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1297 	}
1298 	err = 0;
1299 	spin_unlock(&session->s_cap_lock);
1300 out_unlocked:
1301 	return err;
1302 }
1303 
1304 /*
1305  * flush all dirty inode data to disk.
1306  *
1307  * returns true if we've flushed through want_flush_seq
1308  */
1309 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1310 {
1311 	int mds, ret = 1;
1312 
1313 	dout("check_cap_flush want %lld\n", want_flush_seq);
1314 	mutex_lock(&mdsc->mutex);
1315 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1316 		struct ceph_mds_session *session = mdsc->sessions[mds];
1317 
1318 		if (!session)
1319 			continue;
1320 		get_session(session);
1321 		mutex_unlock(&mdsc->mutex);
1322 
1323 		mutex_lock(&session->s_mutex);
1324 		if (!list_empty(&session->s_cap_flushing)) {
1325 			struct ceph_inode_info *ci =
1326 				list_entry(session->s_cap_flushing.next,
1327 					   struct ceph_inode_info,
1328 					   i_flushing_item);
1329 			struct inode *inode = &ci->vfs_inode;
1330 
1331 			spin_lock(&ci->i_ceph_lock);
1332 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1333 				dout("check_cap_flush still flushing %p "
1334 				     "seq %lld <= %lld to mds%d\n", inode,
1335 				     ci->i_cap_flush_seq, want_flush_seq,
1336 				     session->s_mds);
1337 				ret = 0;
1338 			}
1339 			spin_unlock(&ci->i_ceph_lock);
1340 		}
1341 		mutex_unlock(&session->s_mutex);
1342 		ceph_put_mds_session(session);
1343 
1344 		if (!ret)
1345 			return ret;
1346 		mutex_lock(&mdsc->mutex);
1347 	}
1348 
1349 	mutex_unlock(&mdsc->mutex);
1350 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1351 	return ret;
1352 }
1353 
1354 /*
1355  * called under s_mutex
1356  */
1357 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1358 			    struct ceph_mds_session *session)
1359 {
1360 	struct ceph_msg *msg;
1361 
1362 	dout("send_cap_releases mds%d\n", session->s_mds);
1363 	spin_lock(&session->s_cap_lock);
1364 	while (!list_empty(&session->s_cap_releases_done)) {
1365 		msg = list_first_entry(&session->s_cap_releases_done,
1366 				 struct ceph_msg, list_head);
1367 		list_del_init(&msg->list_head);
1368 		spin_unlock(&session->s_cap_lock);
1369 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1370 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1371 		ceph_con_send(&session->s_con, msg);
1372 		spin_lock(&session->s_cap_lock);
1373 	}
1374 	spin_unlock(&session->s_cap_lock);
1375 }
1376 
1377 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1378 				 struct ceph_mds_session *session)
1379 {
1380 	struct ceph_msg *msg;
1381 	struct ceph_mds_cap_release *head;
1382 	unsigned num;
1383 
1384 	dout("discard_cap_releases mds%d\n", session->s_mds);
1385 	spin_lock(&session->s_cap_lock);
1386 
1387 	/* zero out the in-progress message */
1388 	msg = list_first_entry(&session->s_cap_releases,
1389 			       struct ceph_msg, list_head);
1390 	head = msg->front.iov_base;
1391 	num = le32_to_cpu(head->num);
1392 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1393 	head->num = cpu_to_le32(0);
1394 	session->s_num_cap_releases += num;
1395 
1396 	/* requeue completed messages */
1397 	while (!list_empty(&session->s_cap_releases_done)) {
1398 		msg = list_first_entry(&session->s_cap_releases_done,
1399 				 struct ceph_msg, list_head);
1400 		list_del_init(&msg->list_head);
1401 
1402 		head = msg->front.iov_base;
1403 		num = le32_to_cpu(head->num);
1404 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1405 		     num);
1406 		session->s_num_cap_releases += num;
1407 		head->num = cpu_to_le32(0);
1408 		msg->front.iov_len = sizeof(*head);
1409 		list_add(&msg->list_head, &session->s_cap_releases);
1410 	}
1411 
1412 	spin_unlock(&session->s_cap_lock);
1413 }
1414 
1415 /*
1416  * requests
1417  */
1418 
1419 /*
1420  * Create an mds request.
1421  */
1422 struct ceph_mds_request *
1423 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1424 {
1425 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1426 
1427 	if (!req)
1428 		return ERR_PTR(-ENOMEM);
1429 
1430 	mutex_init(&req->r_fill_mutex);
1431 	req->r_mdsc = mdsc;
1432 	req->r_started = jiffies;
1433 	req->r_resend_mds = -1;
1434 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1435 	req->r_fmode = -1;
1436 	kref_init(&req->r_kref);
1437 	INIT_LIST_HEAD(&req->r_wait);
1438 	init_completion(&req->r_completion);
1439 	init_completion(&req->r_safe_completion);
1440 	INIT_LIST_HEAD(&req->r_unsafe_item);
1441 
1442 	req->r_op = op;
1443 	req->r_direct_mode = mode;
1444 	return req;
1445 }
1446 
1447 /*
1448  * return oldest (lowest) request, tid in request tree, 0 if none.
1449  *
1450  * called under mdsc->mutex.
1451  */
1452 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1453 {
1454 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1455 		return NULL;
1456 	return rb_entry(rb_first(&mdsc->request_tree),
1457 			struct ceph_mds_request, r_node);
1458 }
1459 
1460 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1461 {
1462 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1463 
1464 	if (req)
1465 		return req->r_tid;
1466 	return 0;
1467 }
1468 
1469 /*
1470  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1471  * on build_path_from_dentry in fs/cifs/dir.c.
1472  *
1473  * If @stop_on_nosnap, generate path relative to the first non-snapped
1474  * inode.
1475  *
1476  * Encode hidden .snap dirs as a double /, i.e.
1477  *   foo/.snap/bar -> foo//bar
1478  */
1479 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1480 			   int stop_on_nosnap)
1481 {
1482 	struct dentry *temp;
1483 	char *path;
1484 	int len, pos;
1485 	unsigned seq;
1486 
1487 	if (dentry == NULL)
1488 		return ERR_PTR(-EINVAL);
1489 
1490 retry:
1491 	len = 0;
1492 	seq = read_seqbegin(&rename_lock);
1493 	rcu_read_lock();
1494 	for (temp = dentry; !IS_ROOT(temp);) {
1495 		struct inode *inode = temp->d_inode;
1496 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1497 			len++;  /* slash only */
1498 		else if (stop_on_nosnap && inode &&
1499 			 ceph_snap(inode) == CEPH_NOSNAP)
1500 			break;
1501 		else
1502 			len += 1 + temp->d_name.len;
1503 		temp = temp->d_parent;
1504 	}
1505 	rcu_read_unlock();
1506 	if (len)
1507 		len--;  /* no leading '/' */
1508 
1509 	path = kmalloc(len+1, GFP_NOFS);
1510 	if (path == NULL)
1511 		return ERR_PTR(-ENOMEM);
1512 	pos = len;
1513 	path[pos] = 0;	/* trailing null */
1514 	rcu_read_lock();
1515 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1516 		struct inode *inode;
1517 
1518 		spin_lock(&temp->d_lock);
1519 		inode = temp->d_inode;
1520 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1521 			dout("build_path path+%d: %p SNAPDIR\n",
1522 			     pos, temp);
1523 		} else if (stop_on_nosnap && inode &&
1524 			   ceph_snap(inode) == CEPH_NOSNAP) {
1525 			spin_unlock(&temp->d_lock);
1526 			break;
1527 		} else {
1528 			pos -= temp->d_name.len;
1529 			if (pos < 0) {
1530 				spin_unlock(&temp->d_lock);
1531 				break;
1532 			}
1533 			strncpy(path + pos, temp->d_name.name,
1534 				temp->d_name.len);
1535 		}
1536 		spin_unlock(&temp->d_lock);
1537 		if (pos)
1538 			path[--pos] = '/';
1539 		temp = temp->d_parent;
1540 	}
1541 	rcu_read_unlock();
1542 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1543 		pr_err("build_path did not end path lookup where "
1544 		       "expected, namelen is %d, pos is %d\n", len, pos);
1545 		/* presumably this is only possible if racing with a
1546 		   rename of one of the parent directories (we can not
1547 		   lock the dentries above us to prevent this, but
1548 		   retrying should be harmless) */
1549 		kfree(path);
1550 		goto retry;
1551 	}
1552 
1553 	*base = ceph_ino(temp->d_inode);
1554 	*plen = len;
1555 	dout("build_path on %p %d built %llx '%.*s'\n",
1556 	     dentry, dentry->d_count, *base, len, path);
1557 	return path;
1558 }
1559 
1560 static int build_dentry_path(struct dentry *dentry,
1561 			     const char **ppath, int *ppathlen, u64 *pino,
1562 			     int *pfreepath)
1563 {
1564 	char *path;
1565 
1566 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1567 		*pino = ceph_ino(dentry->d_parent->d_inode);
1568 		*ppath = dentry->d_name.name;
1569 		*ppathlen = dentry->d_name.len;
1570 		return 0;
1571 	}
1572 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1573 	if (IS_ERR(path))
1574 		return PTR_ERR(path);
1575 	*ppath = path;
1576 	*pfreepath = 1;
1577 	return 0;
1578 }
1579 
1580 static int build_inode_path(struct inode *inode,
1581 			    const char **ppath, int *ppathlen, u64 *pino,
1582 			    int *pfreepath)
1583 {
1584 	struct dentry *dentry;
1585 	char *path;
1586 
1587 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1588 		*pino = ceph_ino(inode);
1589 		*ppathlen = 0;
1590 		return 0;
1591 	}
1592 	dentry = d_find_alias(inode);
1593 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1594 	dput(dentry);
1595 	if (IS_ERR(path))
1596 		return PTR_ERR(path);
1597 	*ppath = path;
1598 	*pfreepath = 1;
1599 	return 0;
1600 }
1601 
1602 /*
1603  * request arguments may be specified via an inode *, a dentry *, or
1604  * an explicit ino+path.
1605  */
1606 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1607 				  const char *rpath, u64 rino,
1608 				  const char **ppath, int *pathlen,
1609 				  u64 *ino, int *freepath)
1610 {
1611 	int r = 0;
1612 
1613 	if (rinode) {
1614 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1615 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1616 		     ceph_snap(rinode));
1617 	} else if (rdentry) {
1618 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1619 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1620 		     *ppath);
1621 	} else if (rpath || rino) {
1622 		*ino = rino;
1623 		*ppath = rpath;
1624 		*pathlen = rpath ? strlen(rpath) : 0;
1625 		dout(" path %.*s\n", *pathlen, rpath);
1626 	}
1627 
1628 	return r;
1629 }
1630 
1631 /*
1632  * called under mdsc->mutex
1633  */
1634 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1635 					       struct ceph_mds_request *req,
1636 					       int mds)
1637 {
1638 	struct ceph_msg *msg;
1639 	struct ceph_mds_request_head *head;
1640 	const char *path1 = NULL;
1641 	const char *path2 = NULL;
1642 	u64 ino1 = 0, ino2 = 0;
1643 	int pathlen1 = 0, pathlen2 = 0;
1644 	int freepath1 = 0, freepath2 = 0;
1645 	int len;
1646 	u16 releases;
1647 	void *p, *end;
1648 	int ret;
1649 
1650 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1651 			      req->r_path1, req->r_ino1.ino,
1652 			      &path1, &pathlen1, &ino1, &freepath1);
1653 	if (ret < 0) {
1654 		msg = ERR_PTR(ret);
1655 		goto out;
1656 	}
1657 
1658 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1659 			      req->r_path2, req->r_ino2.ino,
1660 			      &path2, &pathlen2, &ino2, &freepath2);
1661 	if (ret < 0) {
1662 		msg = ERR_PTR(ret);
1663 		goto out_free1;
1664 	}
1665 
1666 	len = sizeof(*head) +
1667 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1668 
1669 	/* calculate (max) length for cap releases */
1670 	len += sizeof(struct ceph_mds_request_release) *
1671 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1672 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1673 	if (req->r_dentry_drop)
1674 		len += req->r_dentry->d_name.len;
1675 	if (req->r_old_dentry_drop)
1676 		len += req->r_old_dentry->d_name.len;
1677 
1678 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1679 	if (!msg) {
1680 		msg = ERR_PTR(-ENOMEM);
1681 		goto out_free2;
1682 	}
1683 
1684 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1685 
1686 	head = msg->front.iov_base;
1687 	p = msg->front.iov_base + sizeof(*head);
1688 	end = msg->front.iov_base + msg->front.iov_len;
1689 
1690 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1691 	head->op = cpu_to_le32(req->r_op);
1692 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1693 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1694 	head->args = req->r_args;
1695 
1696 	ceph_encode_filepath(&p, end, ino1, path1);
1697 	ceph_encode_filepath(&p, end, ino2, path2);
1698 
1699 	/* make note of release offset, in case we need to replay */
1700 	req->r_request_release_offset = p - msg->front.iov_base;
1701 
1702 	/* cap releases */
1703 	releases = 0;
1704 	if (req->r_inode_drop)
1705 		releases += ceph_encode_inode_release(&p,
1706 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1707 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1708 	if (req->r_dentry_drop)
1709 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1710 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1711 	if (req->r_old_dentry_drop)
1712 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1713 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1714 	if (req->r_old_inode_drop)
1715 		releases += ceph_encode_inode_release(&p,
1716 		      req->r_old_dentry->d_inode,
1717 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1718 	head->num_releases = cpu_to_le16(releases);
1719 
1720 	BUG_ON(p > end);
1721 	msg->front.iov_len = p - msg->front.iov_base;
1722 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1723 
1724 	if (req->r_data_len) {
1725 		/* outbound data set only by ceph_sync_setxattr() */
1726 		BUG_ON(!req->r_pages);
1727 		ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
1728 	}
1729 
1730 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1731 	msg->hdr.data_off = cpu_to_le16(0);
1732 
1733 out_free2:
1734 	if (freepath2)
1735 		kfree((char *)path2);
1736 out_free1:
1737 	if (freepath1)
1738 		kfree((char *)path1);
1739 out:
1740 	return msg;
1741 }
1742 
1743 /*
1744  * called under mdsc->mutex if error, under no mutex if
1745  * success.
1746  */
1747 static void complete_request(struct ceph_mds_client *mdsc,
1748 			     struct ceph_mds_request *req)
1749 {
1750 	if (req->r_callback)
1751 		req->r_callback(mdsc, req);
1752 	else
1753 		complete_all(&req->r_completion);
1754 }
1755 
1756 /*
1757  * called under mdsc->mutex
1758  */
1759 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1760 				  struct ceph_mds_request *req,
1761 				  int mds)
1762 {
1763 	struct ceph_mds_request_head *rhead;
1764 	struct ceph_msg *msg;
1765 	int flags = 0;
1766 
1767 	req->r_attempts++;
1768 	if (req->r_inode) {
1769 		struct ceph_cap *cap =
1770 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1771 
1772 		if (cap)
1773 			req->r_sent_on_mseq = cap->mseq;
1774 		else
1775 			req->r_sent_on_mseq = -1;
1776 	}
1777 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1778 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1779 
1780 	if (req->r_got_unsafe) {
1781 		/*
1782 		 * Replay.  Do not regenerate message (and rebuild
1783 		 * paths, etc.); just use the original message.
1784 		 * Rebuilding paths will break for renames because
1785 		 * d_move mangles the src name.
1786 		 */
1787 		msg = req->r_request;
1788 		rhead = msg->front.iov_base;
1789 
1790 		flags = le32_to_cpu(rhead->flags);
1791 		flags |= CEPH_MDS_FLAG_REPLAY;
1792 		rhead->flags = cpu_to_le32(flags);
1793 
1794 		if (req->r_target_inode)
1795 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1796 
1797 		rhead->num_retry = req->r_attempts - 1;
1798 
1799 		/* remove cap/dentry releases from message */
1800 		rhead->num_releases = 0;
1801 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1802 		msg->front.iov_len = req->r_request_release_offset;
1803 		return 0;
1804 	}
1805 
1806 	if (req->r_request) {
1807 		ceph_msg_put(req->r_request);
1808 		req->r_request = NULL;
1809 	}
1810 	msg = create_request_message(mdsc, req, mds);
1811 	if (IS_ERR(msg)) {
1812 		req->r_err = PTR_ERR(msg);
1813 		complete_request(mdsc, req);
1814 		return PTR_ERR(msg);
1815 	}
1816 	req->r_request = msg;
1817 
1818 	rhead = msg->front.iov_base;
1819 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1820 	if (req->r_got_unsafe)
1821 		flags |= CEPH_MDS_FLAG_REPLAY;
1822 	if (req->r_locked_dir)
1823 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1824 	rhead->flags = cpu_to_le32(flags);
1825 	rhead->num_fwd = req->r_num_fwd;
1826 	rhead->num_retry = req->r_attempts - 1;
1827 	rhead->ino = 0;
1828 
1829 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1830 	return 0;
1831 }
1832 
1833 /*
1834  * send request, or put it on the appropriate wait list.
1835  */
1836 static int __do_request(struct ceph_mds_client *mdsc,
1837 			struct ceph_mds_request *req)
1838 {
1839 	struct ceph_mds_session *session = NULL;
1840 	int mds = -1;
1841 	int err = -EAGAIN;
1842 
1843 	if (req->r_err || req->r_got_result)
1844 		goto out;
1845 
1846 	if (req->r_timeout &&
1847 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1848 		dout("do_request timed out\n");
1849 		err = -EIO;
1850 		goto finish;
1851 	}
1852 
1853 	put_request_session(req);
1854 
1855 	mds = __choose_mds(mdsc, req);
1856 	if (mds < 0 ||
1857 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1858 		dout("do_request no mds or not active, waiting for map\n");
1859 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1860 		goto out;
1861 	}
1862 
1863 	/* get, open session */
1864 	session = __ceph_lookup_mds_session(mdsc, mds);
1865 	if (!session) {
1866 		session = register_session(mdsc, mds);
1867 		if (IS_ERR(session)) {
1868 			err = PTR_ERR(session);
1869 			goto finish;
1870 		}
1871 	}
1872 	req->r_session = get_session(session);
1873 
1874 	dout("do_request mds%d session %p state %s\n", mds, session,
1875 	     session_state_name(session->s_state));
1876 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1877 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1878 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1879 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1880 			__open_session(mdsc, session);
1881 		list_add(&req->r_wait, &session->s_waiting);
1882 		goto out_session;
1883 	}
1884 
1885 	/* send request */
1886 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1887 
1888 	if (req->r_request_started == 0)   /* note request start time */
1889 		req->r_request_started = jiffies;
1890 
1891 	err = __prepare_send_request(mdsc, req, mds);
1892 	if (!err) {
1893 		ceph_msg_get(req->r_request);
1894 		ceph_con_send(&session->s_con, req->r_request);
1895 	}
1896 
1897 out_session:
1898 	ceph_put_mds_session(session);
1899 out:
1900 	return err;
1901 
1902 finish:
1903 	req->r_err = err;
1904 	complete_request(mdsc, req);
1905 	goto out;
1906 }
1907 
1908 /*
1909  * called under mdsc->mutex
1910  */
1911 static void __wake_requests(struct ceph_mds_client *mdsc,
1912 			    struct list_head *head)
1913 {
1914 	struct ceph_mds_request *req;
1915 	LIST_HEAD(tmp_list);
1916 
1917 	list_splice_init(head, &tmp_list);
1918 
1919 	while (!list_empty(&tmp_list)) {
1920 		req = list_entry(tmp_list.next,
1921 				 struct ceph_mds_request, r_wait);
1922 		list_del_init(&req->r_wait);
1923 		dout(" wake request %p tid %llu\n", req, req->r_tid);
1924 		__do_request(mdsc, req);
1925 	}
1926 }
1927 
1928 /*
1929  * Wake up threads with requests pending for @mds, so that they can
1930  * resubmit their requests to a possibly different mds.
1931  */
1932 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1933 {
1934 	struct ceph_mds_request *req;
1935 	struct rb_node *p;
1936 
1937 	dout("kick_requests mds%d\n", mds);
1938 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1939 		req = rb_entry(p, struct ceph_mds_request, r_node);
1940 		if (req->r_got_unsafe)
1941 			continue;
1942 		if (req->r_session &&
1943 		    req->r_session->s_mds == mds) {
1944 			dout(" kicking tid %llu\n", req->r_tid);
1945 			__do_request(mdsc, req);
1946 		}
1947 	}
1948 }
1949 
1950 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1951 			      struct ceph_mds_request *req)
1952 {
1953 	dout("submit_request on %p\n", req);
1954 	mutex_lock(&mdsc->mutex);
1955 	__register_request(mdsc, req, NULL);
1956 	__do_request(mdsc, req);
1957 	mutex_unlock(&mdsc->mutex);
1958 }
1959 
1960 /*
1961  * Synchrously perform an mds request.  Take care of all of the
1962  * session setup, forwarding, retry details.
1963  */
1964 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1965 			 struct inode *dir,
1966 			 struct ceph_mds_request *req)
1967 {
1968 	int err;
1969 
1970 	dout("do_request on %p\n", req);
1971 
1972 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1973 	if (req->r_inode)
1974 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1975 	if (req->r_locked_dir)
1976 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1977 	if (req->r_old_dentry)
1978 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1979 				  CEPH_CAP_PIN);
1980 
1981 	/* issue */
1982 	mutex_lock(&mdsc->mutex);
1983 	__register_request(mdsc, req, dir);
1984 	__do_request(mdsc, req);
1985 
1986 	if (req->r_err) {
1987 		err = req->r_err;
1988 		__unregister_request(mdsc, req);
1989 		dout("do_request early error %d\n", err);
1990 		goto out;
1991 	}
1992 
1993 	/* wait */
1994 	mutex_unlock(&mdsc->mutex);
1995 	dout("do_request waiting\n");
1996 	if (req->r_timeout) {
1997 		err = (long)wait_for_completion_killable_timeout(
1998 			&req->r_completion, req->r_timeout);
1999 		if (err == 0)
2000 			err = -EIO;
2001 	} else {
2002 		err = wait_for_completion_killable(&req->r_completion);
2003 	}
2004 	dout("do_request waited, got %d\n", err);
2005 	mutex_lock(&mdsc->mutex);
2006 
2007 	/* only abort if we didn't race with a real reply */
2008 	if (req->r_got_result) {
2009 		err = le32_to_cpu(req->r_reply_info.head->result);
2010 	} else if (err < 0) {
2011 		dout("aborted request %lld with %d\n", req->r_tid, err);
2012 
2013 		/*
2014 		 * ensure we aren't running concurrently with
2015 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2016 		 * rely on locks (dir mutex) held by our caller.
2017 		 */
2018 		mutex_lock(&req->r_fill_mutex);
2019 		req->r_err = err;
2020 		req->r_aborted = true;
2021 		mutex_unlock(&req->r_fill_mutex);
2022 
2023 		if (req->r_locked_dir &&
2024 		    (req->r_op & CEPH_MDS_OP_WRITE))
2025 			ceph_invalidate_dir_request(req);
2026 	} else {
2027 		err = req->r_err;
2028 	}
2029 
2030 out:
2031 	mutex_unlock(&mdsc->mutex);
2032 	dout("do_request %p done, result %d\n", req, err);
2033 	return err;
2034 }
2035 
2036 /*
2037  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2038  * namespace request.
2039  */
2040 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2041 {
2042 	struct inode *inode = req->r_locked_dir;
2043 
2044 	dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2045 
2046 	ceph_dir_clear_complete(inode);
2047 	if (req->r_dentry)
2048 		ceph_invalidate_dentry_lease(req->r_dentry);
2049 	if (req->r_old_dentry)
2050 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2051 }
2052 
2053 /*
2054  * Handle mds reply.
2055  *
2056  * We take the session mutex and parse and process the reply immediately.
2057  * This preserves the logical ordering of replies, capabilities, etc., sent
2058  * by the MDS as they are applied to our local cache.
2059  */
2060 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2061 {
2062 	struct ceph_mds_client *mdsc = session->s_mdsc;
2063 	struct ceph_mds_request *req;
2064 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2065 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2066 	u64 tid;
2067 	int err, result;
2068 	int mds = session->s_mds;
2069 
2070 	if (msg->front.iov_len < sizeof(*head)) {
2071 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2072 		ceph_msg_dump(msg);
2073 		return;
2074 	}
2075 
2076 	/* get request, session */
2077 	tid = le64_to_cpu(msg->hdr.tid);
2078 	mutex_lock(&mdsc->mutex);
2079 	req = __lookup_request(mdsc, tid);
2080 	if (!req) {
2081 		dout("handle_reply on unknown tid %llu\n", tid);
2082 		mutex_unlock(&mdsc->mutex);
2083 		return;
2084 	}
2085 	dout("handle_reply %p\n", req);
2086 
2087 	/* correct session? */
2088 	if (req->r_session != session) {
2089 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2090 		       " not mds%d\n", tid, session->s_mds,
2091 		       req->r_session ? req->r_session->s_mds : -1);
2092 		mutex_unlock(&mdsc->mutex);
2093 		goto out;
2094 	}
2095 
2096 	/* dup? */
2097 	if ((req->r_got_unsafe && !head->safe) ||
2098 	    (req->r_got_safe && head->safe)) {
2099 		pr_warning("got a dup %s reply on %llu from mds%d\n",
2100 			   head->safe ? "safe" : "unsafe", tid, mds);
2101 		mutex_unlock(&mdsc->mutex);
2102 		goto out;
2103 	}
2104 	if (req->r_got_safe && !head->safe) {
2105 		pr_warning("got unsafe after safe on %llu from mds%d\n",
2106 			   tid, mds);
2107 		mutex_unlock(&mdsc->mutex);
2108 		goto out;
2109 	}
2110 
2111 	result = le32_to_cpu(head->result);
2112 
2113 	/*
2114 	 * Handle an ESTALE
2115 	 * if we're not talking to the authority, send to them
2116 	 * if the authority has changed while we weren't looking,
2117 	 * send to new authority
2118 	 * Otherwise we just have to return an ESTALE
2119 	 */
2120 	if (result == -ESTALE) {
2121 		dout("got ESTALE on request %llu", req->r_tid);
2122 		if (!req->r_inode) {
2123 			/* do nothing; not an authority problem */
2124 		} else if (req->r_direct_mode != USE_AUTH_MDS) {
2125 			dout("not using auth, setting for that now");
2126 			req->r_direct_mode = USE_AUTH_MDS;
2127 			__do_request(mdsc, req);
2128 			mutex_unlock(&mdsc->mutex);
2129 			goto out;
2130 		} else  {
2131 			struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2132 			struct ceph_cap *cap = NULL;
2133 
2134 			if (req->r_session)
2135 				cap = ceph_get_cap_for_mds(ci,
2136 						   req->r_session->s_mds);
2137 
2138 			dout("already using auth");
2139 			if ((!cap || cap != ci->i_auth_cap) ||
2140 			    (cap->mseq != req->r_sent_on_mseq)) {
2141 				dout("but cap changed, so resending");
2142 				__do_request(mdsc, req);
2143 				mutex_unlock(&mdsc->mutex);
2144 				goto out;
2145 			}
2146 		}
2147 		dout("have to return ESTALE on request %llu", req->r_tid);
2148 	}
2149 
2150 
2151 	if (head->safe) {
2152 		req->r_got_safe = true;
2153 		__unregister_request(mdsc, req);
2154 		complete_all(&req->r_safe_completion);
2155 
2156 		if (req->r_got_unsafe) {
2157 			/*
2158 			 * We already handled the unsafe response, now do the
2159 			 * cleanup.  No need to examine the response; the MDS
2160 			 * doesn't include any result info in the safe
2161 			 * response.  And even if it did, there is nothing
2162 			 * useful we could do with a revised return value.
2163 			 */
2164 			dout("got safe reply %llu, mds%d\n", tid, mds);
2165 			list_del_init(&req->r_unsafe_item);
2166 
2167 			/* last unsafe request during umount? */
2168 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2169 				complete_all(&mdsc->safe_umount_waiters);
2170 			mutex_unlock(&mdsc->mutex);
2171 			goto out;
2172 		}
2173 	} else {
2174 		req->r_got_unsafe = true;
2175 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2176 	}
2177 
2178 	dout("handle_reply tid %lld result %d\n", tid, result);
2179 	rinfo = &req->r_reply_info;
2180 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2181 	mutex_unlock(&mdsc->mutex);
2182 
2183 	mutex_lock(&session->s_mutex);
2184 	if (err < 0) {
2185 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2186 		ceph_msg_dump(msg);
2187 		goto out_err;
2188 	}
2189 
2190 	/* snap trace */
2191 	if (rinfo->snapblob_len) {
2192 		down_write(&mdsc->snap_rwsem);
2193 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2194 			       rinfo->snapblob + rinfo->snapblob_len,
2195 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2196 		downgrade_write(&mdsc->snap_rwsem);
2197 	} else {
2198 		down_read(&mdsc->snap_rwsem);
2199 	}
2200 
2201 	/* insert trace into our cache */
2202 	mutex_lock(&req->r_fill_mutex);
2203 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2204 	if (err == 0) {
2205 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2206 				    req->r_op == CEPH_MDS_OP_LSSNAP) &&
2207 		    rinfo->dir_nr)
2208 			ceph_readdir_prepopulate(req, req->r_session);
2209 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2210 	}
2211 	mutex_unlock(&req->r_fill_mutex);
2212 
2213 	up_read(&mdsc->snap_rwsem);
2214 out_err:
2215 	mutex_lock(&mdsc->mutex);
2216 	if (!req->r_aborted) {
2217 		if (err) {
2218 			req->r_err = err;
2219 		} else {
2220 			req->r_reply = msg;
2221 			ceph_msg_get(msg);
2222 			req->r_got_result = true;
2223 		}
2224 	} else {
2225 		dout("reply arrived after request %lld was aborted\n", tid);
2226 	}
2227 	mutex_unlock(&mdsc->mutex);
2228 
2229 	ceph_add_cap_releases(mdsc, req->r_session);
2230 	mutex_unlock(&session->s_mutex);
2231 
2232 	/* kick calling process */
2233 	complete_request(mdsc, req);
2234 out:
2235 	ceph_mdsc_put_request(req);
2236 	return;
2237 }
2238 
2239 
2240 
2241 /*
2242  * handle mds notification that our request has been forwarded.
2243  */
2244 static void handle_forward(struct ceph_mds_client *mdsc,
2245 			   struct ceph_mds_session *session,
2246 			   struct ceph_msg *msg)
2247 {
2248 	struct ceph_mds_request *req;
2249 	u64 tid = le64_to_cpu(msg->hdr.tid);
2250 	u32 next_mds;
2251 	u32 fwd_seq;
2252 	int err = -EINVAL;
2253 	void *p = msg->front.iov_base;
2254 	void *end = p + msg->front.iov_len;
2255 
2256 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2257 	next_mds = ceph_decode_32(&p);
2258 	fwd_seq = ceph_decode_32(&p);
2259 
2260 	mutex_lock(&mdsc->mutex);
2261 	req = __lookup_request(mdsc, tid);
2262 	if (!req) {
2263 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2264 		goto out;  /* dup reply? */
2265 	}
2266 
2267 	if (req->r_aborted) {
2268 		dout("forward tid %llu aborted, unregistering\n", tid);
2269 		__unregister_request(mdsc, req);
2270 	} else if (fwd_seq <= req->r_num_fwd) {
2271 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2272 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2273 	} else {
2274 		/* resend. forward race not possible; mds would drop */
2275 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2276 		BUG_ON(req->r_err);
2277 		BUG_ON(req->r_got_result);
2278 		req->r_num_fwd = fwd_seq;
2279 		req->r_resend_mds = next_mds;
2280 		put_request_session(req);
2281 		__do_request(mdsc, req);
2282 	}
2283 	ceph_mdsc_put_request(req);
2284 out:
2285 	mutex_unlock(&mdsc->mutex);
2286 	return;
2287 
2288 bad:
2289 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2290 }
2291 
2292 /*
2293  * handle a mds session control message
2294  */
2295 static void handle_session(struct ceph_mds_session *session,
2296 			   struct ceph_msg *msg)
2297 {
2298 	struct ceph_mds_client *mdsc = session->s_mdsc;
2299 	u32 op;
2300 	u64 seq;
2301 	int mds = session->s_mds;
2302 	struct ceph_mds_session_head *h = msg->front.iov_base;
2303 	int wake = 0;
2304 
2305 	/* decode */
2306 	if (msg->front.iov_len != sizeof(*h))
2307 		goto bad;
2308 	op = le32_to_cpu(h->op);
2309 	seq = le64_to_cpu(h->seq);
2310 
2311 	mutex_lock(&mdsc->mutex);
2312 	if (op == CEPH_SESSION_CLOSE)
2313 		__unregister_session(mdsc, session);
2314 	/* FIXME: this ttl calculation is generous */
2315 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2316 	mutex_unlock(&mdsc->mutex);
2317 
2318 	mutex_lock(&session->s_mutex);
2319 
2320 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2321 	     mds, ceph_session_op_name(op), session,
2322 	     session_state_name(session->s_state), seq);
2323 
2324 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2325 		session->s_state = CEPH_MDS_SESSION_OPEN;
2326 		pr_info("mds%d came back\n", session->s_mds);
2327 	}
2328 
2329 	switch (op) {
2330 	case CEPH_SESSION_OPEN:
2331 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2332 			pr_info("mds%d reconnect success\n", session->s_mds);
2333 		session->s_state = CEPH_MDS_SESSION_OPEN;
2334 		renewed_caps(mdsc, session, 0);
2335 		wake = 1;
2336 		if (mdsc->stopping)
2337 			__close_session(mdsc, session);
2338 		break;
2339 
2340 	case CEPH_SESSION_RENEWCAPS:
2341 		if (session->s_renew_seq == seq)
2342 			renewed_caps(mdsc, session, 1);
2343 		break;
2344 
2345 	case CEPH_SESSION_CLOSE:
2346 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2347 			pr_info("mds%d reconnect denied\n", session->s_mds);
2348 		remove_session_caps(session);
2349 		wake = 1; /* for good measure */
2350 		wake_up_all(&mdsc->session_close_wq);
2351 		kick_requests(mdsc, mds);
2352 		break;
2353 
2354 	case CEPH_SESSION_STALE:
2355 		pr_info("mds%d caps went stale, renewing\n",
2356 			session->s_mds);
2357 		spin_lock(&session->s_gen_ttl_lock);
2358 		session->s_cap_gen++;
2359 		session->s_cap_ttl = jiffies - 1;
2360 		spin_unlock(&session->s_gen_ttl_lock);
2361 		send_renew_caps(mdsc, session);
2362 		break;
2363 
2364 	case CEPH_SESSION_RECALL_STATE:
2365 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2366 		break;
2367 
2368 	default:
2369 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2370 		WARN_ON(1);
2371 	}
2372 
2373 	mutex_unlock(&session->s_mutex);
2374 	if (wake) {
2375 		mutex_lock(&mdsc->mutex);
2376 		__wake_requests(mdsc, &session->s_waiting);
2377 		mutex_unlock(&mdsc->mutex);
2378 	}
2379 	return;
2380 
2381 bad:
2382 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2383 	       (int)msg->front.iov_len);
2384 	ceph_msg_dump(msg);
2385 	return;
2386 }
2387 
2388 
2389 /*
2390  * called under session->mutex.
2391  */
2392 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2393 				   struct ceph_mds_session *session)
2394 {
2395 	struct ceph_mds_request *req, *nreq;
2396 	int err;
2397 
2398 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2399 
2400 	mutex_lock(&mdsc->mutex);
2401 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2402 		err = __prepare_send_request(mdsc, req, session->s_mds);
2403 		if (!err) {
2404 			ceph_msg_get(req->r_request);
2405 			ceph_con_send(&session->s_con, req->r_request);
2406 		}
2407 	}
2408 	mutex_unlock(&mdsc->mutex);
2409 }
2410 
2411 /*
2412  * Encode information about a cap for a reconnect with the MDS.
2413  */
2414 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2415 			  void *arg)
2416 {
2417 	union {
2418 		struct ceph_mds_cap_reconnect v2;
2419 		struct ceph_mds_cap_reconnect_v1 v1;
2420 	} rec;
2421 	size_t reclen;
2422 	struct ceph_inode_info *ci;
2423 	struct ceph_reconnect_state *recon_state = arg;
2424 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2425 	char *path;
2426 	int pathlen, err;
2427 	u64 pathbase;
2428 	struct dentry *dentry;
2429 
2430 	ci = cap->ci;
2431 
2432 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2433 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2434 	     ceph_cap_string(cap->issued));
2435 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2436 	if (err)
2437 		return err;
2438 
2439 	dentry = d_find_alias(inode);
2440 	if (dentry) {
2441 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2442 		if (IS_ERR(path)) {
2443 			err = PTR_ERR(path);
2444 			goto out_dput;
2445 		}
2446 	} else {
2447 		path = NULL;
2448 		pathlen = 0;
2449 	}
2450 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2451 	if (err)
2452 		goto out_free;
2453 
2454 	spin_lock(&ci->i_ceph_lock);
2455 	cap->seq = 0;        /* reset cap seq */
2456 	cap->issue_seq = 0;  /* and issue_seq */
2457 
2458 	if (recon_state->flock) {
2459 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2460 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2461 		rec.v2.issued = cpu_to_le32(cap->issued);
2462 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2463 		rec.v2.pathbase = cpu_to_le64(pathbase);
2464 		rec.v2.flock_len = 0;
2465 		reclen = sizeof(rec.v2);
2466 	} else {
2467 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2468 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2469 		rec.v1.issued = cpu_to_le32(cap->issued);
2470 		rec.v1.size = cpu_to_le64(inode->i_size);
2471 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2472 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2473 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2474 		rec.v1.pathbase = cpu_to_le64(pathbase);
2475 		reclen = sizeof(rec.v1);
2476 	}
2477 	spin_unlock(&ci->i_ceph_lock);
2478 
2479 	if (recon_state->flock) {
2480 		int num_fcntl_locks, num_flock_locks;
2481 		struct ceph_pagelist_cursor trunc_point;
2482 
2483 		ceph_pagelist_set_cursor(pagelist, &trunc_point);
2484 		do {
2485 			lock_flocks();
2486 			ceph_count_locks(inode, &num_fcntl_locks,
2487 					 &num_flock_locks);
2488 			rec.v2.flock_len = (2*sizeof(u32) +
2489 					    (num_fcntl_locks+num_flock_locks) *
2490 					    sizeof(struct ceph_filelock));
2491 			unlock_flocks();
2492 
2493 			/* pre-alloc pagelist */
2494 			ceph_pagelist_truncate(pagelist, &trunc_point);
2495 			err = ceph_pagelist_append(pagelist, &rec, reclen);
2496 			if (!err)
2497 				err = ceph_pagelist_reserve(pagelist,
2498 							    rec.v2.flock_len);
2499 
2500 			/* encode locks */
2501 			if (!err) {
2502 				lock_flocks();
2503 				err = ceph_encode_locks(inode,
2504 							pagelist,
2505 							num_fcntl_locks,
2506 							num_flock_locks);
2507 				unlock_flocks();
2508 			}
2509 		} while (err == -ENOSPC);
2510 	} else {
2511 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2512 	}
2513 
2514 out_free:
2515 	kfree(path);
2516 out_dput:
2517 	dput(dentry);
2518 	return err;
2519 }
2520 
2521 
2522 /*
2523  * If an MDS fails and recovers, clients need to reconnect in order to
2524  * reestablish shared state.  This includes all caps issued through
2525  * this session _and_ the snap_realm hierarchy.  Because it's not
2526  * clear which snap realms the mds cares about, we send everything we
2527  * know about.. that ensures we'll then get any new info the
2528  * recovering MDS might have.
2529  *
2530  * This is a relatively heavyweight operation, but it's rare.
2531  *
2532  * called with mdsc->mutex held.
2533  */
2534 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2535 			       struct ceph_mds_session *session)
2536 {
2537 	struct ceph_msg *reply;
2538 	struct rb_node *p;
2539 	int mds = session->s_mds;
2540 	int err = -ENOMEM;
2541 	struct ceph_pagelist *pagelist;
2542 	struct ceph_reconnect_state recon_state;
2543 
2544 	pr_info("mds%d reconnect start\n", mds);
2545 
2546 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2547 	if (!pagelist)
2548 		goto fail_nopagelist;
2549 	ceph_pagelist_init(pagelist);
2550 
2551 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2552 	if (!reply)
2553 		goto fail_nomsg;
2554 
2555 	mutex_lock(&session->s_mutex);
2556 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2557 	session->s_seq = 0;
2558 
2559 	ceph_con_close(&session->s_con);
2560 	ceph_con_open(&session->s_con,
2561 		      CEPH_ENTITY_TYPE_MDS, mds,
2562 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2563 
2564 	/* replay unsafe requests */
2565 	replay_unsafe_requests(mdsc, session);
2566 
2567 	down_read(&mdsc->snap_rwsem);
2568 
2569 	dout("session %p state %s\n", session,
2570 	     session_state_name(session->s_state));
2571 
2572 	/* drop old cap expires; we're about to reestablish that state */
2573 	discard_cap_releases(mdsc, session);
2574 
2575 	/* traverse this session's caps */
2576 	err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2577 	if (err)
2578 		goto fail;
2579 
2580 	recon_state.pagelist = pagelist;
2581 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2582 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2583 	if (err < 0)
2584 		goto fail;
2585 
2586 	/*
2587 	 * snaprealms.  we provide mds with the ino, seq (version), and
2588 	 * parent for all of our realms.  If the mds has any newer info,
2589 	 * it will tell us.
2590 	 */
2591 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2592 		struct ceph_snap_realm *realm =
2593 			rb_entry(p, struct ceph_snap_realm, node);
2594 		struct ceph_mds_snaprealm_reconnect sr_rec;
2595 
2596 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2597 		     realm->ino, realm->seq, realm->parent_ino);
2598 		sr_rec.ino = cpu_to_le64(realm->ino);
2599 		sr_rec.seq = cpu_to_le64(realm->seq);
2600 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2601 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2602 		if (err)
2603 			goto fail;
2604 	}
2605 
2606 	if (recon_state.flock)
2607 		reply->hdr.version = cpu_to_le16(2);
2608 	if (pagelist->length) {
2609 		/* set up outbound data if we have any */
2610 		reply->hdr.data_len = cpu_to_le32(pagelist->length);
2611 		ceph_msg_data_add_pagelist(reply, pagelist);
2612 	}
2613 	ceph_con_send(&session->s_con, reply);
2614 
2615 	mutex_unlock(&session->s_mutex);
2616 
2617 	mutex_lock(&mdsc->mutex);
2618 	__wake_requests(mdsc, &session->s_waiting);
2619 	mutex_unlock(&mdsc->mutex);
2620 
2621 	up_read(&mdsc->snap_rwsem);
2622 	return;
2623 
2624 fail:
2625 	ceph_msg_put(reply);
2626 	up_read(&mdsc->snap_rwsem);
2627 	mutex_unlock(&session->s_mutex);
2628 fail_nomsg:
2629 	ceph_pagelist_release(pagelist);
2630 	kfree(pagelist);
2631 fail_nopagelist:
2632 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2633 	return;
2634 }
2635 
2636 
2637 /*
2638  * compare old and new mdsmaps, kicking requests
2639  * and closing out old connections as necessary
2640  *
2641  * called under mdsc->mutex.
2642  */
2643 static void check_new_map(struct ceph_mds_client *mdsc,
2644 			  struct ceph_mdsmap *newmap,
2645 			  struct ceph_mdsmap *oldmap)
2646 {
2647 	int i;
2648 	int oldstate, newstate;
2649 	struct ceph_mds_session *s;
2650 
2651 	dout("check_new_map new %u old %u\n",
2652 	     newmap->m_epoch, oldmap->m_epoch);
2653 
2654 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2655 		if (mdsc->sessions[i] == NULL)
2656 			continue;
2657 		s = mdsc->sessions[i];
2658 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2659 		newstate = ceph_mdsmap_get_state(newmap, i);
2660 
2661 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2662 		     i, ceph_mds_state_name(oldstate),
2663 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2664 		     ceph_mds_state_name(newstate),
2665 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2666 		     session_state_name(s->s_state));
2667 
2668 		if (i >= newmap->m_max_mds ||
2669 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
2670 			   ceph_mdsmap_get_addr(newmap, i),
2671 			   sizeof(struct ceph_entity_addr))) {
2672 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2673 				/* the session never opened, just close it
2674 				 * out now */
2675 				__wake_requests(mdsc, &s->s_waiting);
2676 				__unregister_session(mdsc, s);
2677 			} else {
2678 				/* just close it */
2679 				mutex_unlock(&mdsc->mutex);
2680 				mutex_lock(&s->s_mutex);
2681 				mutex_lock(&mdsc->mutex);
2682 				ceph_con_close(&s->s_con);
2683 				mutex_unlock(&s->s_mutex);
2684 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2685 			}
2686 
2687 			/* kick any requests waiting on the recovering mds */
2688 			kick_requests(mdsc, i);
2689 		} else if (oldstate == newstate) {
2690 			continue;  /* nothing new with this mds */
2691 		}
2692 
2693 		/*
2694 		 * send reconnect?
2695 		 */
2696 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2697 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2698 			mutex_unlock(&mdsc->mutex);
2699 			send_mds_reconnect(mdsc, s);
2700 			mutex_lock(&mdsc->mutex);
2701 		}
2702 
2703 		/*
2704 		 * kick request on any mds that has gone active.
2705 		 */
2706 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2707 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2708 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2709 			    oldstate != CEPH_MDS_STATE_STARTING)
2710 				pr_info("mds%d recovery completed\n", s->s_mds);
2711 			kick_requests(mdsc, i);
2712 			ceph_kick_flushing_caps(mdsc, s);
2713 			wake_up_session_caps(s, 1);
2714 		}
2715 	}
2716 
2717 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2718 		s = mdsc->sessions[i];
2719 		if (!s)
2720 			continue;
2721 		if (!ceph_mdsmap_is_laggy(newmap, i))
2722 			continue;
2723 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2724 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2725 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2726 			dout(" connecting to export targets of laggy mds%d\n",
2727 			     i);
2728 			__open_export_target_sessions(mdsc, s);
2729 		}
2730 	}
2731 }
2732 
2733 
2734 
2735 /*
2736  * leases
2737  */
2738 
2739 /*
2740  * caller must hold session s_mutex, dentry->d_lock
2741  */
2742 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2743 {
2744 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2745 
2746 	ceph_put_mds_session(di->lease_session);
2747 	di->lease_session = NULL;
2748 }
2749 
2750 static void handle_lease(struct ceph_mds_client *mdsc,
2751 			 struct ceph_mds_session *session,
2752 			 struct ceph_msg *msg)
2753 {
2754 	struct super_block *sb = mdsc->fsc->sb;
2755 	struct inode *inode;
2756 	struct dentry *parent, *dentry;
2757 	struct ceph_dentry_info *di;
2758 	int mds = session->s_mds;
2759 	struct ceph_mds_lease *h = msg->front.iov_base;
2760 	u32 seq;
2761 	struct ceph_vino vino;
2762 	struct qstr dname;
2763 	int release = 0;
2764 
2765 	dout("handle_lease from mds%d\n", mds);
2766 
2767 	/* decode */
2768 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2769 		goto bad;
2770 	vino.ino = le64_to_cpu(h->ino);
2771 	vino.snap = CEPH_NOSNAP;
2772 	seq = le32_to_cpu(h->seq);
2773 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2774 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2775 	if (dname.len != get_unaligned_le32(h+1))
2776 		goto bad;
2777 
2778 	mutex_lock(&session->s_mutex);
2779 	session->s_seq++;
2780 
2781 	/* lookup inode */
2782 	inode = ceph_find_inode(sb, vino);
2783 	dout("handle_lease %s, ino %llx %p %.*s\n",
2784 	     ceph_lease_op_name(h->action), vino.ino, inode,
2785 	     dname.len, dname.name);
2786 	if (inode == NULL) {
2787 		dout("handle_lease no inode %llx\n", vino.ino);
2788 		goto release;
2789 	}
2790 
2791 	/* dentry */
2792 	parent = d_find_alias(inode);
2793 	if (!parent) {
2794 		dout("no parent dentry on inode %p\n", inode);
2795 		WARN_ON(1);
2796 		goto release;  /* hrm... */
2797 	}
2798 	dname.hash = full_name_hash(dname.name, dname.len);
2799 	dentry = d_lookup(parent, &dname);
2800 	dput(parent);
2801 	if (!dentry)
2802 		goto release;
2803 
2804 	spin_lock(&dentry->d_lock);
2805 	di = ceph_dentry(dentry);
2806 	switch (h->action) {
2807 	case CEPH_MDS_LEASE_REVOKE:
2808 		if (di->lease_session == session) {
2809 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2810 				h->seq = cpu_to_le32(di->lease_seq);
2811 			__ceph_mdsc_drop_dentry_lease(dentry);
2812 		}
2813 		release = 1;
2814 		break;
2815 
2816 	case CEPH_MDS_LEASE_RENEW:
2817 		if (di->lease_session == session &&
2818 		    di->lease_gen == session->s_cap_gen &&
2819 		    di->lease_renew_from &&
2820 		    di->lease_renew_after == 0) {
2821 			unsigned long duration =
2822 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2823 
2824 			di->lease_seq = seq;
2825 			dentry->d_time = di->lease_renew_from + duration;
2826 			di->lease_renew_after = di->lease_renew_from +
2827 				(duration >> 1);
2828 			di->lease_renew_from = 0;
2829 		}
2830 		break;
2831 	}
2832 	spin_unlock(&dentry->d_lock);
2833 	dput(dentry);
2834 
2835 	if (!release)
2836 		goto out;
2837 
2838 release:
2839 	/* let's just reuse the same message */
2840 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2841 	ceph_msg_get(msg);
2842 	ceph_con_send(&session->s_con, msg);
2843 
2844 out:
2845 	iput(inode);
2846 	mutex_unlock(&session->s_mutex);
2847 	return;
2848 
2849 bad:
2850 	pr_err("corrupt lease message\n");
2851 	ceph_msg_dump(msg);
2852 }
2853 
2854 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2855 			      struct inode *inode,
2856 			      struct dentry *dentry, char action,
2857 			      u32 seq)
2858 {
2859 	struct ceph_msg *msg;
2860 	struct ceph_mds_lease *lease;
2861 	int len = sizeof(*lease) + sizeof(u32);
2862 	int dnamelen = 0;
2863 
2864 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2865 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2866 	dnamelen = dentry->d_name.len;
2867 	len += dnamelen;
2868 
2869 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2870 	if (!msg)
2871 		return;
2872 	lease = msg->front.iov_base;
2873 	lease->action = action;
2874 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2875 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2876 	lease->seq = cpu_to_le32(seq);
2877 	put_unaligned_le32(dnamelen, lease + 1);
2878 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2879 
2880 	/*
2881 	 * if this is a preemptive lease RELEASE, no need to
2882 	 * flush request stream, since the actual request will
2883 	 * soon follow.
2884 	 */
2885 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2886 
2887 	ceph_con_send(&session->s_con, msg);
2888 }
2889 
2890 /*
2891  * Preemptively release a lease we expect to invalidate anyway.
2892  * Pass @inode always, @dentry is optional.
2893  */
2894 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2895 			     struct dentry *dentry)
2896 {
2897 	struct ceph_dentry_info *di;
2898 	struct ceph_mds_session *session;
2899 	u32 seq;
2900 
2901 	BUG_ON(inode == NULL);
2902 	BUG_ON(dentry == NULL);
2903 
2904 	/* is dentry lease valid? */
2905 	spin_lock(&dentry->d_lock);
2906 	di = ceph_dentry(dentry);
2907 	if (!di || !di->lease_session ||
2908 	    di->lease_session->s_mds < 0 ||
2909 	    di->lease_gen != di->lease_session->s_cap_gen ||
2910 	    !time_before(jiffies, dentry->d_time)) {
2911 		dout("lease_release inode %p dentry %p -- "
2912 		     "no lease\n",
2913 		     inode, dentry);
2914 		spin_unlock(&dentry->d_lock);
2915 		return;
2916 	}
2917 
2918 	/* we do have a lease on this dentry; note mds and seq */
2919 	session = ceph_get_mds_session(di->lease_session);
2920 	seq = di->lease_seq;
2921 	__ceph_mdsc_drop_dentry_lease(dentry);
2922 	spin_unlock(&dentry->d_lock);
2923 
2924 	dout("lease_release inode %p dentry %p to mds%d\n",
2925 	     inode, dentry, session->s_mds);
2926 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2927 				 CEPH_MDS_LEASE_RELEASE, seq);
2928 	ceph_put_mds_session(session);
2929 }
2930 
2931 /*
2932  * drop all leases (and dentry refs) in preparation for umount
2933  */
2934 static void drop_leases(struct ceph_mds_client *mdsc)
2935 {
2936 	int i;
2937 
2938 	dout("drop_leases\n");
2939 	mutex_lock(&mdsc->mutex);
2940 	for (i = 0; i < mdsc->max_sessions; i++) {
2941 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2942 		if (!s)
2943 			continue;
2944 		mutex_unlock(&mdsc->mutex);
2945 		mutex_lock(&s->s_mutex);
2946 		mutex_unlock(&s->s_mutex);
2947 		ceph_put_mds_session(s);
2948 		mutex_lock(&mdsc->mutex);
2949 	}
2950 	mutex_unlock(&mdsc->mutex);
2951 }
2952 
2953 
2954 
2955 /*
2956  * delayed work -- periodically trim expired leases, renew caps with mds
2957  */
2958 static void schedule_delayed(struct ceph_mds_client *mdsc)
2959 {
2960 	int delay = 5;
2961 	unsigned hz = round_jiffies_relative(HZ * delay);
2962 	schedule_delayed_work(&mdsc->delayed_work, hz);
2963 }
2964 
2965 static void delayed_work(struct work_struct *work)
2966 {
2967 	int i;
2968 	struct ceph_mds_client *mdsc =
2969 		container_of(work, struct ceph_mds_client, delayed_work.work);
2970 	int renew_interval;
2971 	int renew_caps;
2972 
2973 	dout("mdsc delayed_work\n");
2974 	ceph_check_delayed_caps(mdsc);
2975 
2976 	mutex_lock(&mdsc->mutex);
2977 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2978 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2979 				   mdsc->last_renew_caps);
2980 	if (renew_caps)
2981 		mdsc->last_renew_caps = jiffies;
2982 
2983 	for (i = 0; i < mdsc->max_sessions; i++) {
2984 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2985 		if (s == NULL)
2986 			continue;
2987 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2988 			dout("resending session close request for mds%d\n",
2989 			     s->s_mds);
2990 			request_close_session(mdsc, s);
2991 			ceph_put_mds_session(s);
2992 			continue;
2993 		}
2994 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2995 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2996 				s->s_state = CEPH_MDS_SESSION_HUNG;
2997 				pr_info("mds%d hung\n", s->s_mds);
2998 			}
2999 		}
3000 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3001 			/* this mds is failed or recovering, just wait */
3002 			ceph_put_mds_session(s);
3003 			continue;
3004 		}
3005 		mutex_unlock(&mdsc->mutex);
3006 
3007 		mutex_lock(&s->s_mutex);
3008 		if (renew_caps)
3009 			send_renew_caps(mdsc, s);
3010 		else
3011 			ceph_con_keepalive(&s->s_con);
3012 		ceph_add_cap_releases(mdsc, s);
3013 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3014 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3015 			ceph_send_cap_releases(mdsc, s);
3016 		mutex_unlock(&s->s_mutex);
3017 		ceph_put_mds_session(s);
3018 
3019 		mutex_lock(&mdsc->mutex);
3020 	}
3021 	mutex_unlock(&mdsc->mutex);
3022 
3023 	schedule_delayed(mdsc);
3024 }
3025 
3026 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3027 
3028 {
3029 	struct ceph_mds_client *mdsc;
3030 
3031 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3032 	if (!mdsc)
3033 		return -ENOMEM;
3034 	mdsc->fsc = fsc;
3035 	fsc->mdsc = mdsc;
3036 	mutex_init(&mdsc->mutex);
3037 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3038 	if (mdsc->mdsmap == NULL)
3039 		return -ENOMEM;
3040 
3041 	init_completion(&mdsc->safe_umount_waiters);
3042 	init_waitqueue_head(&mdsc->session_close_wq);
3043 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3044 	mdsc->sessions = NULL;
3045 	mdsc->max_sessions = 0;
3046 	mdsc->stopping = 0;
3047 	init_rwsem(&mdsc->snap_rwsem);
3048 	mdsc->snap_realms = RB_ROOT;
3049 	INIT_LIST_HEAD(&mdsc->snap_empty);
3050 	spin_lock_init(&mdsc->snap_empty_lock);
3051 	mdsc->last_tid = 0;
3052 	mdsc->request_tree = RB_ROOT;
3053 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3054 	mdsc->last_renew_caps = jiffies;
3055 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3056 	spin_lock_init(&mdsc->cap_delay_lock);
3057 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3058 	spin_lock_init(&mdsc->snap_flush_lock);
3059 	mdsc->cap_flush_seq = 0;
3060 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3061 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3062 	mdsc->num_cap_flushing = 0;
3063 	spin_lock_init(&mdsc->cap_dirty_lock);
3064 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3065 	spin_lock_init(&mdsc->dentry_lru_lock);
3066 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3067 
3068 	ceph_caps_init(mdsc);
3069 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3070 
3071 	return 0;
3072 }
3073 
3074 /*
3075  * Wait for safe replies on open mds requests.  If we time out, drop
3076  * all requests from the tree to avoid dangling dentry refs.
3077  */
3078 static void wait_requests(struct ceph_mds_client *mdsc)
3079 {
3080 	struct ceph_mds_request *req;
3081 	struct ceph_fs_client *fsc = mdsc->fsc;
3082 
3083 	mutex_lock(&mdsc->mutex);
3084 	if (__get_oldest_req(mdsc)) {
3085 		mutex_unlock(&mdsc->mutex);
3086 
3087 		dout("wait_requests waiting for requests\n");
3088 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3089 				    fsc->client->options->mount_timeout * HZ);
3090 
3091 		/* tear down remaining requests */
3092 		mutex_lock(&mdsc->mutex);
3093 		while ((req = __get_oldest_req(mdsc))) {
3094 			dout("wait_requests timed out on tid %llu\n",
3095 			     req->r_tid);
3096 			__unregister_request(mdsc, req);
3097 		}
3098 	}
3099 	mutex_unlock(&mdsc->mutex);
3100 	dout("wait_requests done\n");
3101 }
3102 
3103 /*
3104  * called before mount is ro, and before dentries are torn down.
3105  * (hmm, does this still race with new lookups?)
3106  */
3107 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3108 {
3109 	dout("pre_umount\n");
3110 	mdsc->stopping = 1;
3111 
3112 	drop_leases(mdsc);
3113 	ceph_flush_dirty_caps(mdsc);
3114 	wait_requests(mdsc);
3115 
3116 	/*
3117 	 * wait for reply handlers to drop their request refs and
3118 	 * their inode/dcache refs
3119 	 */
3120 	ceph_msgr_flush();
3121 }
3122 
3123 /*
3124  * wait for all write mds requests to flush.
3125  */
3126 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3127 {
3128 	struct ceph_mds_request *req = NULL, *nextreq;
3129 	struct rb_node *n;
3130 
3131 	mutex_lock(&mdsc->mutex);
3132 	dout("wait_unsafe_requests want %lld\n", want_tid);
3133 restart:
3134 	req = __get_oldest_req(mdsc);
3135 	while (req && req->r_tid <= want_tid) {
3136 		/* find next request */
3137 		n = rb_next(&req->r_node);
3138 		if (n)
3139 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3140 		else
3141 			nextreq = NULL;
3142 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3143 			/* write op */
3144 			ceph_mdsc_get_request(req);
3145 			if (nextreq)
3146 				ceph_mdsc_get_request(nextreq);
3147 			mutex_unlock(&mdsc->mutex);
3148 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3149 			     req->r_tid, want_tid);
3150 			wait_for_completion(&req->r_safe_completion);
3151 			mutex_lock(&mdsc->mutex);
3152 			ceph_mdsc_put_request(req);
3153 			if (!nextreq)
3154 				break;  /* next dne before, so we're done! */
3155 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3156 				/* next request was removed from tree */
3157 				ceph_mdsc_put_request(nextreq);
3158 				goto restart;
3159 			}
3160 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3161 		}
3162 		req = nextreq;
3163 	}
3164 	mutex_unlock(&mdsc->mutex);
3165 	dout("wait_unsafe_requests done\n");
3166 }
3167 
3168 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3169 {
3170 	u64 want_tid, want_flush;
3171 
3172 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3173 		return;
3174 
3175 	dout("sync\n");
3176 	mutex_lock(&mdsc->mutex);
3177 	want_tid = mdsc->last_tid;
3178 	want_flush = mdsc->cap_flush_seq;
3179 	mutex_unlock(&mdsc->mutex);
3180 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3181 
3182 	ceph_flush_dirty_caps(mdsc);
3183 
3184 	wait_unsafe_requests(mdsc, want_tid);
3185 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3186 }
3187 
3188 /*
3189  * true if all sessions are closed, or we force unmount
3190  */
3191 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3192 {
3193 	int i, n = 0;
3194 
3195 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3196 		return true;
3197 
3198 	mutex_lock(&mdsc->mutex);
3199 	for (i = 0; i < mdsc->max_sessions; i++)
3200 		if (mdsc->sessions[i])
3201 			n++;
3202 	mutex_unlock(&mdsc->mutex);
3203 	return n == 0;
3204 }
3205 
3206 /*
3207  * called after sb is ro.
3208  */
3209 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3210 {
3211 	struct ceph_mds_session *session;
3212 	int i;
3213 	struct ceph_fs_client *fsc = mdsc->fsc;
3214 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3215 
3216 	dout("close_sessions\n");
3217 
3218 	/* close sessions */
3219 	mutex_lock(&mdsc->mutex);
3220 	for (i = 0; i < mdsc->max_sessions; i++) {
3221 		session = __ceph_lookup_mds_session(mdsc, i);
3222 		if (!session)
3223 			continue;
3224 		mutex_unlock(&mdsc->mutex);
3225 		mutex_lock(&session->s_mutex);
3226 		__close_session(mdsc, session);
3227 		mutex_unlock(&session->s_mutex);
3228 		ceph_put_mds_session(session);
3229 		mutex_lock(&mdsc->mutex);
3230 	}
3231 	mutex_unlock(&mdsc->mutex);
3232 
3233 	dout("waiting for sessions to close\n");
3234 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3235 			   timeout);
3236 
3237 	/* tear down remaining sessions */
3238 	mutex_lock(&mdsc->mutex);
3239 	for (i = 0; i < mdsc->max_sessions; i++) {
3240 		if (mdsc->sessions[i]) {
3241 			session = get_session(mdsc->sessions[i]);
3242 			__unregister_session(mdsc, session);
3243 			mutex_unlock(&mdsc->mutex);
3244 			mutex_lock(&session->s_mutex);
3245 			remove_session_caps(session);
3246 			mutex_unlock(&session->s_mutex);
3247 			ceph_put_mds_session(session);
3248 			mutex_lock(&mdsc->mutex);
3249 		}
3250 	}
3251 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3252 	mutex_unlock(&mdsc->mutex);
3253 
3254 	ceph_cleanup_empty_realms(mdsc);
3255 
3256 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3257 
3258 	dout("stopped\n");
3259 }
3260 
3261 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3262 {
3263 	dout("stop\n");
3264 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3265 	if (mdsc->mdsmap)
3266 		ceph_mdsmap_destroy(mdsc->mdsmap);
3267 	kfree(mdsc->sessions);
3268 	ceph_caps_finalize(mdsc);
3269 }
3270 
3271 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3272 {
3273 	struct ceph_mds_client *mdsc = fsc->mdsc;
3274 
3275 	dout("mdsc_destroy %p\n", mdsc);
3276 	ceph_mdsc_stop(mdsc);
3277 
3278 	/* flush out any connection work with references to us */
3279 	ceph_msgr_flush();
3280 
3281 	fsc->mdsc = NULL;
3282 	kfree(mdsc);
3283 	dout("mdsc_destroy %p done\n", mdsc);
3284 }
3285 
3286 
3287 /*
3288  * handle mds map update.
3289  */
3290 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3291 {
3292 	u32 epoch;
3293 	u32 maplen;
3294 	void *p = msg->front.iov_base;
3295 	void *end = p + msg->front.iov_len;
3296 	struct ceph_mdsmap *newmap, *oldmap;
3297 	struct ceph_fsid fsid;
3298 	int err = -EINVAL;
3299 
3300 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3301 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3302 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3303 		return;
3304 	epoch = ceph_decode_32(&p);
3305 	maplen = ceph_decode_32(&p);
3306 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3307 
3308 	/* do we need it? */
3309 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3310 	mutex_lock(&mdsc->mutex);
3311 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3312 		dout("handle_map epoch %u <= our %u\n",
3313 		     epoch, mdsc->mdsmap->m_epoch);
3314 		mutex_unlock(&mdsc->mutex);
3315 		return;
3316 	}
3317 
3318 	newmap = ceph_mdsmap_decode(&p, end);
3319 	if (IS_ERR(newmap)) {
3320 		err = PTR_ERR(newmap);
3321 		goto bad_unlock;
3322 	}
3323 
3324 	/* swap into place */
3325 	if (mdsc->mdsmap) {
3326 		oldmap = mdsc->mdsmap;
3327 		mdsc->mdsmap = newmap;
3328 		check_new_map(mdsc, newmap, oldmap);
3329 		ceph_mdsmap_destroy(oldmap);
3330 	} else {
3331 		mdsc->mdsmap = newmap;  /* first mds map */
3332 	}
3333 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3334 
3335 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3336 
3337 	mutex_unlock(&mdsc->mutex);
3338 	schedule_delayed(mdsc);
3339 	return;
3340 
3341 bad_unlock:
3342 	mutex_unlock(&mdsc->mutex);
3343 bad:
3344 	pr_err("error decoding mdsmap %d\n", err);
3345 	return;
3346 }
3347 
3348 static struct ceph_connection *con_get(struct ceph_connection *con)
3349 {
3350 	struct ceph_mds_session *s = con->private;
3351 
3352 	if (get_session(s)) {
3353 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3354 		return con;
3355 	}
3356 	dout("mdsc con_get %p FAIL\n", s);
3357 	return NULL;
3358 }
3359 
3360 static void con_put(struct ceph_connection *con)
3361 {
3362 	struct ceph_mds_session *s = con->private;
3363 
3364 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3365 	ceph_put_mds_session(s);
3366 }
3367 
3368 /*
3369  * if the client is unresponsive for long enough, the mds will kill
3370  * the session entirely.
3371  */
3372 static void peer_reset(struct ceph_connection *con)
3373 {
3374 	struct ceph_mds_session *s = con->private;
3375 	struct ceph_mds_client *mdsc = s->s_mdsc;
3376 
3377 	pr_warning("mds%d closed our session\n", s->s_mds);
3378 	send_mds_reconnect(mdsc, s);
3379 }
3380 
3381 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3382 {
3383 	struct ceph_mds_session *s = con->private;
3384 	struct ceph_mds_client *mdsc = s->s_mdsc;
3385 	int type = le16_to_cpu(msg->hdr.type);
3386 
3387 	mutex_lock(&mdsc->mutex);
3388 	if (__verify_registered_session(mdsc, s) < 0) {
3389 		mutex_unlock(&mdsc->mutex);
3390 		goto out;
3391 	}
3392 	mutex_unlock(&mdsc->mutex);
3393 
3394 	switch (type) {
3395 	case CEPH_MSG_MDS_MAP:
3396 		ceph_mdsc_handle_map(mdsc, msg);
3397 		break;
3398 	case CEPH_MSG_CLIENT_SESSION:
3399 		handle_session(s, msg);
3400 		break;
3401 	case CEPH_MSG_CLIENT_REPLY:
3402 		handle_reply(s, msg);
3403 		break;
3404 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3405 		handle_forward(mdsc, s, msg);
3406 		break;
3407 	case CEPH_MSG_CLIENT_CAPS:
3408 		ceph_handle_caps(s, msg);
3409 		break;
3410 	case CEPH_MSG_CLIENT_SNAP:
3411 		ceph_handle_snap(mdsc, s, msg);
3412 		break;
3413 	case CEPH_MSG_CLIENT_LEASE:
3414 		handle_lease(mdsc, s, msg);
3415 		break;
3416 
3417 	default:
3418 		pr_err("received unknown message type %d %s\n", type,
3419 		       ceph_msg_type_name(type));
3420 	}
3421 out:
3422 	ceph_msg_put(msg);
3423 }
3424 
3425 /*
3426  * authentication
3427  */
3428 
3429 /*
3430  * Note: returned pointer is the address of a structure that's
3431  * managed separately.  Caller must *not* attempt to free it.
3432  */
3433 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3434 					int *proto, int force_new)
3435 {
3436 	struct ceph_mds_session *s = con->private;
3437 	struct ceph_mds_client *mdsc = s->s_mdsc;
3438 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3439 	struct ceph_auth_handshake *auth = &s->s_auth;
3440 
3441 	if (force_new && auth->authorizer) {
3442 		ceph_auth_destroy_authorizer(ac, auth->authorizer);
3443 		auth->authorizer = NULL;
3444 	}
3445 	if (!auth->authorizer) {
3446 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3447 						      auth);
3448 		if (ret)
3449 			return ERR_PTR(ret);
3450 	} else {
3451 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3452 						      auth);
3453 		if (ret)
3454 			return ERR_PTR(ret);
3455 	}
3456 	*proto = ac->protocol;
3457 
3458 	return auth;
3459 }
3460 
3461 
3462 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3463 {
3464 	struct ceph_mds_session *s = con->private;
3465 	struct ceph_mds_client *mdsc = s->s_mdsc;
3466 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3467 
3468 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3469 }
3470 
3471 static int invalidate_authorizer(struct ceph_connection *con)
3472 {
3473 	struct ceph_mds_session *s = con->private;
3474 	struct ceph_mds_client *mdsc = s->s_mdsc;
3475 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3476 
3477 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3478 
3479 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3480 }
3481 
3482 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3483 				struct ceph_msg_header *hdr, int *skip)
3484 {
3485 	struct ceph_msg *msg;
3486 	int type = (int) le16_to_cpu(hdr->type);
3487 	int front_len = (int) le32_to_cpu(hdr->front_len);
3488 
3489 	if (con->in_msg)
3490 		return con->in_msg;
3491 
3492 	*skip = 0;
3493 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3494 	if (!msg) {
3495 		pr_err("unable to allocate msg type %d len %d\n",
3496 		       type, front_len);
3497 		return NULL;
3498 	}
3499 
3500 	return msg;
3501 }
3502 
3503 static const struct ceph_connection_operations mds_con_ops = {
3504 	.get = con_get,
3505 	.put = con_put,
3506 	.dispatch = dispatch,
3507 	.get_authorizer = get_authorizer,
3508 	.verify_authorizer_reply = verify_authorizer_reply,
3509 	.invalidate_authorizer = invalidate_authorizer,
3510 	.peer_reset = peer_reset,
3511 	.alloc_msg = mds_alloc_msg,
3512 };
3513 
3514 /* eof */
3515