xref: /openbmc/linux/fs/ceph/mds_client.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/gfp.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 #include <linux/ratelimit.h>
12 
13 #include "super.h"
14 #include "mds_client.h"
15 
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
22 
23 /*
24  * A cluster of MDS (metadata server) daemons is responsible for
25  * managing the file system namespace (the directory hierarchy and
26  * inodes) and for coordinating shared access to storage.  Metadata is
27  * partitioning hierarchically across a number of servers, and that
28  * partition varies over time as the cluster adjusts the distribution
29  * in order to balance load.
30  *
31  * The MDS client is primarily responsible to managing synchronous
32  * metadata requests for operations like open, unlink, and so forth.
33  * If there is a MDS failure, we find out about it when we (possibly
34  * request and) receive a new MDS map, and can resubmit affected
35  * requests.
36  *
37  * For the most part, though, we take advantage of a lossless
38  * communications channel to the MDS, and do not need to worry about
39  * timing out or resubmitting requests.
40  *
41  * We maintain a stateful "session" with each MDS we interact with.
42  * Within each session, we sent periodic heartbeat messages to ensure
43  * any capabilities or leases we have been issues remain valid.  If
44  * the session times out and goes stale, our leases and capabilities
45  * are no longer valid.
46  */
47 
48 struct ceph_reconnect_state {
49 	int nr_caps;
50 	struct ceph_pagelist *pagelist;
51 	bool flock;
52 };
53 
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 			    struct list_head *head);
56 
57 static const struct ceph_connection_operations mds_con_ops;
58 
59 
60 /*
61  * mds reply parsing
62  */
63 
64 /*
65  * parse individual inode info
66  */
67 static int parse_reply_info_in(void **p, void *end,
68 			       struct ceph_mds_reply_info_in *info,
69 			       u64 features)
70 {
71 	int err = -EIO;
72 
73 	info->in = *p;
74 	*p += sizeof(struct ceph_mds_reply_inode) +
75 		sizeof(*info->in->fragtree.splits) *
76 		le32_to_cpu(info->in->fragtree.nsplits);
77 
78 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 	ceph_decode_need(p, end, info->symlink_len, bad);
80 	info->symlink = *p;
81 	*p += info->symlink_len;
82 
83 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
84 		ceph_decode_copy_safe(p, end, &info->dir_layout,
85 				      sizeof(info->dir_layout), bad);
86 	else
87 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
88 
89 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
90 	ceph_decode_need(p, end, info->xattr_len, bad);
91 	info->xattr_data = *p;
92 	*p += info->xattr_len;
93 
94 	if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
95 		ceph_decode_64_safe(p, end, info->inline_version, bad);
96 		ceph_decode_32_safe(p, end, info->inline_len, bad);
97 		ceph_decode_need(p, end, info->inline_len, bad);
98 		info->inline_data = *p;
99 		*p += info->inline_len;
100 	} else
101 		info->inline_version = CEPH_INLINE_NONE;
102 
103 	return 0;
104 bad:
105 	return err;
106 }
107 
108 /*
109  * parse a normal reply, which may contain a (dir+)dentry and/or a
110  * target inode.
111  */
112 static int parse_reply_info_trace(void **p, void *end,
113 				  struct ceph_mds_reply_info_parsed *info,
114 				  u64 features)
115 {
116 	int err;
117 
118 	if (info->head->is_dentry) {
119 		err = parse_reply_info_in(p, end, &info->diri, features);
120 		if (err < 0)
121 			goto out_bad;
122 
123 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
124 			goto bad;
125 		info->dirfrag = *p;
126 		*p += sizeof(*info->dirfrag) +
127 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
128 		if (unlikely(*p > end))
129 			goto bad;
130 
131 		ceph_decode_32_safe(p, end, info->dname_len, bad);
132 		ceph_decode_need(p, end, info->dname_len, bad);
133 		info->dname = *p;
134 		*p += info->dname_len;
135 		info->dlease = *p;
136 		*p += sizeof(*info->dlease);
137 	}
138 
139 	if (info->head->is_target) {
140 		err = parse_reply_info_in(p, end, &info->targeti, features);
141 		if (err < 0)
142 			goto out_bad;
143 	}
144 
145 	if (unlikely(*p != end))
146 		goto bad;
147 	return 0;
148 
149 bad:
150 	err = -EIO;
151 out_bad:
152 	pr_err("problem parsing mds trace %d\n", err);
153 	return err;
154 }
155 
156 /*
157  * parse readdir results
158  */
159 static int parse_reply_info_dir(void **p, void *end,
160 				struct ceph_mds_reply_info_parsed *info,
161 				u64 features)
162 {
163 	u32 num, i = 0;
164 	int err;
165 
166 	info->dir_dir = *p;
167 	if (*p + sizeof(*info->dir_dir) > end)
168 		goto bad;
169 	*p += sizeof(*info->dir_dir) +
170 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
171 	if (*p > end)
172 		goto bad;
173 
174 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
175 	num = ceph_decode_32(p);
176 	info->dir_end = ceph_decode_8(p);
177 	info->dir_complete = ceph_decode_8(p);
178 	if (num == 0)
179 		goto done;
180 
181 	BUG_ON(!info->dir_in);
182 	info->dir_dname = (void *)(info->dir_in + num);
183 	info->dir_dname_len = (void *)(info->dir_dname + num);
184 	info->dir_dlease = (void *)(info->dir_dname_len + num);
185 	if ((unsigned long)(info->dir_dlease + num) >
186 	    (unsigned long)info->dir_in + info->dir_buf_size) {
187 		pr_err("dir contents are larger than expected\n");
188 		WARN_ON(1);
189 		goto bad;
190 	}
191 
192 	info->dir_nr = num;
193 	while (num) {
194 		/* dentry */
195 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
196 		info->dir_dname_len[i] = ceph_decode_32(p);
197 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
198 		info->dir_dname[i] = *p;
199 		*p += info->dir_dname_len[i];
200 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
201 		     info->dir_dname[i]);
202 		info->dir_dlease[i] = *p;
203 		*p += sizeof(struct ceph_mds_reply_lease);
204 
205 		/* inode */
206 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
207 		if (err < 0)
208 			goto out_bad;
209 		i++;
210 		num--;
211 	}
212 
213 done:
214 	if (*p != end)
215 		goto bad;
216 	return 0;
217 
218 bad:
219 	err = -EIO;
220 out_bad:
221 	pr_err("problem parsing dir contents %d\n", err);
222 	return err;
223 }
224 
225 /*
226  * parse fcntl F_GETLK results
227  */
228 static int parse_reply_info_filelock(void **p, void *end,
229 				     struct ceph_mds_reply_info_parsed *info,
230 				     u64 features)
231 {
232 	if (*p + sizeof(*info->filelock_reply) > end)
233 		goto bad;
234 
235 	info->filelock_reply = *p;
236 	*p += sizeof(*info->filelock_reply);
237 
238 	if (unlikely(*p != end))
239 		goto bad;
240 	return 0;
241 
242 bad:
243 	return -EIO;
244 }
245 
246 /*
247  * parse create results
248  */
249 static int parse_reply_info_create(void **p, void *end,
250 				  struct ceph_mds_reply_info_parsed *info,
251 				  u64 features)
252 {
253 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
254 		if (*p == end) {
255 			info->has_create_ino = false;
256 		} else {
257 			info->has_create_ino = true;
258 			info->ino = ceph_decode_64(p);
259 		}
260 	}
261 
262 	if (unlikely(*p != end))
263 		goto bad;
264 	return 0;
265 
266 bad:
267 	return -EIO;
268 }
269 
270 /*
271  * parse extra results
272  */
273 static int parse_reply_info_extra(void **p, void *end,
274 				  struct ceph_mds_reply_info_parsed *info,
275 				  u64 features)
276 {
277 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
278 		return parse_reply_info_filelock(p, end, info, features);
279 	else if (info->head->op == CEPH_MDS_OP_READDIR ||
280 		 info->head->op == CEPH_MDS_OP_LSSNAP)
281 		return parse_reply_info_dir(p, end, info, features);
282 	else if (info->head->op == CEPH_MDS_OP_CREATE)
283 		return parse_reply_info_create(p, end, info, features);
284 	else
285 		return -EIO;
286 }
287 
288 /*
289  * parse entire mds reply
290  */
291 static int parse_reply_info(struct ceph_msg *msg,
292 			    struct ceph_mds_reply_info_parsed *info,
293 			    u64 features)
294 {
295 	void *p, *end;
296 	u32 len;
297 	int err;
298 
299 	info->head = msg->front.iov_base;
300 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
301 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
302 
303 	/* trace */
304 	ceph_decode_32_safe(&p, end, len, bad);
305 	if (len > 0) {
306 		ceph_decode_need(&p, end, len, bad);
307 		err = parse_reply_info_trace(&p, p+len, info, features);
308 		if (err < 0)
309 			goto out_bad;
310 	}
311 
312 	/* extra */
313 	ceph_decode_32_safe(&p, end, len, bad);
314 	if (len > 0) {
315 		ceph_decode_need(&p, end, len, bad);
316 		err = parse_reply_info_extra(&p, p+len, info, features);
317 		if (err < 0)
318 			goto out_bad;
319 	}
320 
321 	/* snap blob */
322 	ceph_decode_32_safe(&p, end, len, bad);
323 	info->snapblob_len = len;
324 	info->snapblob = p;
325 	p += len;
326 
327 	if (p != end)
328 		goto bad;
329 	return 0;
330 
331 bad:
332 	err = -EIO;
333 out_bad:
334 	pr_err("mds parse_reply err %d\n", err);
335 	return err;
336 }
337 
338 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
339 {
340 	if (!info->dir_in)
341 		return;
342 	free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size));
343 }
344 
345 
346 /*
347  * sessions
348  */
349 const char *ceph_session_state_name(int s)
350 {
351 	switch (s) {
352 	case CEPH_MDS_SESSION_NEW: return "new";
353 	case CEPH_MDS_SESSION_OPENING: return "opening";
354 	case CEPH_MDS_SESSION_OPEN: return "open";
355 	case CEPH_MDS_SESSION_HUNG: return "hung";
356 	case CEPH_MDS_SESSION_CLOSING: return "closing";
357 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
358 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
359 	default: return "???";
360 	}
361 }
362 
363 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
364 {
365 	if (atomic_inc_not_zero(&s->s_ref)) {
366 		dout("mdsc get_session %p %d -> %d\n", s,
367 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
368 		return s;
369 	} else {
370 		dout("mdsc get_session %p 0 -- FAIL", s);
371 		return NULL;
372 	}
373 }
374 
375 void ceph_put_mds_session(struct ceph_mds_session *s)
376 {
377 	dout("mdsc put_session %p %d -> %d\n", s,
378 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
379 	if (atomic_dec_and_test(&s->s_ref)) {
380 		if (s->s_auth.authorizer)
381 			ceph_auth_destroy_authorizer(
382 				s->s_mdsc->fsc->client->monc.auth,
383 				s->s_auth.authorizer);
384 		kfree(s);
385 	}
386 }
387 
388 /*
389  * called under mdsc->mutex
390  */
391 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
392 						   int mds)
393 {
394 	struct ceph_mds_session *session;
395 
396 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
397 		return NULL;
398 	session = mdsc->sessions[mds];
399 	dout("lookup_mds_session %p %d\n", session,
400 	     atomic_read(&session->s_ref));
401 	get_session(session);
402 	return session;
403 }
404 
405 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
406 {
407 	if (mds >= mdsc->max_sessions)
408 		return false;
409 	return mdsc->sessions[mds];
410 }
411 
412 static int __verify_registered_session(struct ceph_mds_client *mdsc,
413 				       struct ceph_mds_session *s)
414 {
415 	if (s->s_mds >= mdsc->max_sessions ||
416 	    mdsc->sessions[s->s_mds] != s)
417 		return -ENOENT;
418 	return 0;
419 }
420 
421 /*
422  * create+register a new session for given mds.
423  * called under mdsc->mutex.
424  */
425 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
426 						 int mds)
427 {
428 	struct ceph_mds_session *s;
429 
430 	if (mds >= mdsc->mdsmap->m_max_mds)
431 		return ERR_PTR(-EINVAL);
432 
433 	s = kzalloc(sizeof(*s), GFP_NOFS);
434 	if (!s)
435 		return ERR_PTR(-ENOMEM);
436 	s->s_mdsc = mdsc;
437 	s->s_mds = mds;
438 	s->s_state = CEPH_MDS_SESSION_NEW;
439 	s->s_ttl = 0;
440 	s->s_seq = 0;
441 	mutex_init(&s->s_mutex);
442 
443 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
444 
445 	spin_lock_init(&s->s_gen_ttl_lock);
446 	s->s_cap_gen = 0;
447 	s->s_cap_ttl = jiffies - 1;
448 
449 	spin_lock_init(&s->s_cap_lock);
450 	s->s_renew_requested = 0;
451 	s->s_renew_seq = 0;
452 	INIT_LIST_HEAD(&s->s_caps);
453 	s->s_nr_caps = 0;
454 	s->s_trim_caps = 0;
455 	atomic_set(&s->s_ref, 1);
456 	INIT_LIST_HEAD(&s->s_waiting);
457 	INIT_LIST_HEAD(&s->s_unsafe);
458 	s->s_num_cap_releases = 0;
459 	s->s_cap_reconnect = 0;
460 	s->s_cap_iterator = NULL;
461 	INIT_LIST_HEAD(&s->s_cap_releases);
462 	INIT_LIST_HEAD(&s->s_cap_flushing);
463 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
464 
465 	dout("register_session mds%d\n", mds);
466 	if (mds >= mdsc->max_sessions) {
467 		int newmax = 1 << get_count_order(mds+1);
468 		struct ceph_mds_session **sa;
469 
470 		dout("register_session realloc to %d\n", newmax);
471 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
472 		if (sa == NULL)
473 			goto fail_realloc;
474 		if (mdsc->sessions) {
475 			memcpy(sa, mdsc->sessions,
476 			       mdsc->max_sessions * sizeof(void *));
477 			kfree(mdsc->sessions);
478 		}
479 		mdsc->sessions = sa;
480 		mdsc->max_sessions = newmax;
481 	}
482 	mdsc->sessions[mds] = s;
483 	atomic_inc(&mdsc->num_sessions);
484 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
485 
486 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
487 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
488 
489 	return s;
490 
491 fail_realloc:
492 	kfree(s);
493 	return ERR_PTR(-ENOMEM);
494 }
495 
496 /*
497  * called under mdsc->mutex
498  */
499 static void __unregister_session(struct ceph_mds_client *mdsc,
500 			       struct ceph_mds_session *s)
501 {
502 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
503 	BUG_ON(mdsc->sessions[s->s_mds] != s);
504 	mdsc->sessions[s->s_mds] = NULL;
505 	ceph_con_close(&s->s_con);
506 	ceph_put_mds_session(s);
507 	atomic_dec(&mdsc->num_sessions);
508 }
509 
510 /*
511  * drop session refs in request.
512  *
513  * should be last request ref, or hold mdsc->mutex
514  */
515 static void put_request_session(struct ceph_mds_request *req)
516 {
517 	if (req->r_session) {
518 		ceph_put_mds_session(req->r_session);
519 		req->r_session = NULL;
520 	}
521 }
522 
523 void ceph_mdsc_release_request(struct kref *kref)
524 {
525 	struct ceph_mds_request *req = container_of(kref,
526 						    struct ceph_mds_request,
527 						    r_kref);
528 	destroy_reply_info(&req->r_reply_info);
529 	if (req->r_request)
530 		ceph_msg_put(req->r_request);
531 	if (req->r_reply)
532 		ceph_msg_put(req->r_reply);
533 	if (req->r_inode) {
534 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
535 		iput(req->r_inode);
536 	}
537 	if (req->r_locked_dir)
538 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
539 	iput(req->r_target_inode);
540 	if (req->r_dentry)
541 		dput(req->r_dentry);
542 	if (req->r_old_dentry)
543 		dput(req->r_old_dentry);
544 	if (req->r_old_dentry_dir) {
545 		/*
546 		 * track (and drop pins for) r_old_dentry_dir
547 		 * separately, since r_old_dentry's d_parent may have
548 		 * changed between the dir mutex being dropped and
549 		 * this request being freed.
550 		 */
551 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
552 				  CEPH_CAP_PIN);
553 		iput(req->r_old_dentry_dir);
554 	}
555 	kfree(req->r_path1);
556 	kfree(req->r_path2);
557 	if (req->r_pagelist)
558 		ceph_pagelist_release(req->r_pagelist);
559 	put_request_session(req);
560 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
561 	kfree(req);
562 }
563 
564 /*
565  * lookup session, bump ref if found.
566  *
567  * called under mdsc->mutex.
568  */
569 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
570 					     u64 tid)
571 {
572 	struct ceph_mds_request *req;
573 	struct rb_node *n = mdsc->request_tree.rb_node;
574 
575 	while (n) {
576 		req = rb_entry(n, struct ceph_mds_request, r_node);
577 		if (tid < req->r_tid)
578 			n = n->rb_left;
579 		else if (tid > req->r_tid)
580 			n = n->rb_right;
581 		else {
582 			ceph_mdsc_get_request(req);
583 			return req;
584 		}
585 	}
586 	return NULL;
587 }
588 
589 static void __insert_request(struct ceph_mds_client *mdsc,
590 			     struct ceph_mds_request *new)
591 {
592 	struct rb_node **p = &mdsc->request_tree.rb_node;
593 	struct rb_node *parent = NULL;
594 	struct ceph_mds_request *req = NULL;
595 
596 	while (*p) {
597 		parent = *p;
598 		req = rb_entry(parent, struct ceph_mds_request, r_node);
599 		if (new->r_tid < req->r_tid)
600 			p = &(*p)->rb_left;
601 		else if (new->r_tid > req->r_tid)
602 			p = &(*p)->rb_right;
603 		else
604 			BUG();
605 	}
606 
607 	rb_link_node(&new->r_node, parent, p);
608 	rb_insert_color(&new->r_node, &mdsc->request_tree);
609 }
610 
611 /*
612  * Register an in-flight request, and assign a tid.  Link to directory
613  * are modifying (if any).
614  *
615  * Called under mdsc->mutex.
616  */
617 static void __register_request(struct ceph_mds_client *mdsc,
618 			       struct ceph_mds_request *req,
619 			       struct inode *dir)
620 {
621 	req->r_tid = ++mdsc->last_tid;
622 	if (req->r_num_caps)
623 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
624 				  req->r_num_caps);
625 	dout("__register_request %p tid %lld\n", req, req->r_tid);
626 	ceph_mdsc_get_request(req);
627 	__insert_request(mdsc, req);
628 
629 	req->r_uid = current_fsuid();
630 	req->r_gid = current_fsgid();
631 
632 	if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
633 		mdsc->oldest_tid = req->r_tid;
634 
635 	if (dir) {
636 		struct ceph_inode_info *ci = ceph_inode(dir);
637 
638 		ihold(dir);
639 		spin_lock(&ci->i_unsafe_lock);
640 		req->r_unsafe_dir = dir;
641 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
642 		spin_unlock(&ci->i_unsafe_lock);
643 	}
644 }
645 
646 static void __unregister_request(struct ceph_mds_client *mdsc,
647 				 struct ceph_mds_request *req)
648 {
649 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
650 
651 	if (req->r_tid == mdsc->oldest_tid) {
652 		struct rb_node *p = rb_next(&req->r_node);
653 		mdsc->oldest_tid = 0;
654 		while (p) {
655 			struct ceph_mds_request *next_req =
656 				rb_entry(p, struct ceph_mds_request, r_node);
657 			if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
658 				mdsc->oldest_tid = next_req->r_tid;
659 				break;
660 			}
661 			p = rb_next(p);
662 		}
663 	}
664 
665 	rb_erase(&req->r_node, &mdsc->request_tree);
666 	RB_CLEAR_NODE(&req->r_node);
667 
668 	if (req->r_unsafe_dir) {
669 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
670 
671 		spin_lock(&ci->i_unsafe_lock);
672 		list_del_init(&req->r_unsafe_dir_item);
673 		spin_unlock(&ci->i_unsafe_lock);
674 
675 		iput(req->r_unsafe_dir);
676 		req->r_unsafe_dir = NULL;
677 	}
678 
679 	complete_all(&req->r_safe_completion);
680 
681 	ceph_mdsc_put_request(req);
682 }
683 
684 /*
685  * Choose mds to send request to next.  If there is a hint set in the
686  * request (e.g., due to a prior forward hint from the mds), use that.
687  * Otherwise, consult frag tree and/or caps to identify the
688  * appropriate mds.  If all else fails, choose randomly.
689  *
690  * Called under mdsc->mutex.
691  */
692 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
693 {
694 	/*
695 	 * we don't need to worry about protecting the d_parent access
696 	 * here because we never renaming inside the snapped namespace
697 	 * except to resplice to another snapdir, and either the old or new
698 	 * result is a valid result.
699 	 */
700 	while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP)
701 		dentry = dentry->d_parent;
702 	return dentry;
703 }
704 
705 static int __choose_mds(struct ceph_mds_client *mdsc,
706 			struct ceph_mds_request *req)
707 {
708 	struct inode *inode;
709 	struct ceph_inode_info *ci;
710 	struct ceph_cap *cap;
711 	int mode = req->r_direct_mode;
712 	int mds = -1;
713 	u32 hash = req->r_direct_hash;
714 	bool is_hash = req->r_direct_is_hash;
715 
716 	/*
717 	 * is there a specific mds we should try?  ignore hint if we have
718 	 * no session and the mds is not up (active or recovering).
719 	 */
720 	if (req->r_resend_mds >= 0 &&
721 	    (__have_session(mdsc, req->r_resend_mds) ||
722 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
723 		dout("choose_mds using resend_mds mds%d\n",
724 		     req->r_resend_mds);
725 		return req->r_resend_mds;
726 	}
727 
728 	if (mode == USE_RANDOM_MDS)
729 		goto random;
730 
731 	inode = NULL;
732 	if (req->r_inode) {
733 		inode = req->r_inode;
734 	} else if (req->r_dentry) {
735 		/* ignore race with rename; old or new d_parent is okay */
736 		struct dentry *parent = req->r_dentry->d_parent;
737 		struct inode *dir = d_inode(parent);
738 
739 		if (dir->i_sb != mdsc->fsc->sb) {
740 			/* not this fs! */
741 			inode = d_inode(req->r_dentry);
742 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
743 			/* direct snapped/virtual snapdir requests
744 			 * based on parent dir inode */
745 			struct dentry *dn = get_nonsnap_parent(parent);
746 			inode = d_inode(dn);
747 			dout("__choose_mds using nonsnap parent %p\n", inode);
748 		} else {
749 			/* dentry target */
750 			inode = d_inode(req->r_dentry);
751 			if (!inode || mode == USE_AUTH_MDS) {
752 				/* dir + name */
753 				inode = dir;
754 				hash = ceph_dentry_hash(dir, req->r_dentry);
755 				is_hash = true;
756 			}
757 		}
758 	}
759 
760 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
761 	     (int)hash, mode);
762 	if (!inode)
763 		goto random;
764 	ci = ceph_inode(inode);
765 
766 	if (is_hash && S_ISDIR(inode->i_mode)) {
767 		struct ceph_inode_frag frag;
768 		int found;
769 
770 		ceph_choose_frag(ci, hash, &frag, &found);
771 		if (found) {
772 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
773 				u8 r;
774 
775 				/* choose a random replica */
776 				get_random_bytes(&r, 1);
777 				r %= frag.ndist;
778 				mds = frag.dist[r];
779 				dout("choose_mds %p %llx.%llx "
780 				     "frag %u mds%d (%d/%d)\n",
781 				     inode, ceph_vinop(inode),
782 				     frag.frag, mds,
783 				     (int)r, frag.ndist);
784 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
785 				    CEPH_MDS_STATE_ACTIVE)
786 					return mds;
787 			}
788 
789 			/* since this file/dir wasn't known to be
790 			 * replicated, then we want to look for the
791 			 * authoritative mds. */
792 			mode = USE_AUTH_MDS;
793 			if (frag.mds >= 0) {
794 				/* choose auth mds */
795 				mds = frag.mds;
796 				dout("choose_mds %p %llx.%llx "
797 				     "frag %u mds%d (auth)\n",
798 				     inode, ceph_vinop(inode), frag.frag, mds);
799 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
800 				    CEPH_MDS_STATE_ACTIVE)
801 					return mds;
802 			}
803 		}
804 	}
805 
806 	spin_lock(&ci->i_ceph_lock);
807 	cap = NULL;
808 	if (mode == USE_AUTH_MDS)
809 		cap = ci->i_auth_cap;
810 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
811 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
812 	if (!cap) {
813 		spin_unlock(&ci->i_ceph_lock);
814 		goto random;
815 	}
816 	mds = cap->session->s_mds;
817 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
818 	     inode, ceph_vinop(inode), mds,
819 	     cap == ci->i_auth_cap ? "auth " : "", cap);
820 	spin_unlock(&ci->i_ceph_lock);
821 	return mds;
822 
823 random:
824 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
825 	dout("choose_mds chose random mds%d\n", mds);
826 	return mds;
827 }
828 
829 
830 /*
831  * session messages
832  */
833 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
834 {
835 	struct ceph_msg *msg;
836 	struct ceph_mds_session_head *h;
837 
838 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
839 			   false);
840 	if (!msg) {
841 		pr_err("create_session_msg ENOMEM creating msg\n");
842 		return NULL;
843 	}
844 	h = msg->front.iov_base;
845 	h->op = cpu_to_le32(op);
846 	h->seq = cpu_to_le64(seq);
847 
848 	return msg;
849 }
850 
851 /*
852  * session message, specialization for CEPH_SESSION_REQUEST_OPEN
853  * to include additional client metadata fields.
854  */
855 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
856 {
857 	struct ceph_msg *msg;
858 	struct ceph_mds_session_head *h;
859 	int i = -1;
860 	int metadata_bytes = 0;
861 	int metadata_key_count = 0;
862 	struct ceph_options *opt = mdsc->fsc->client->options;
863 	void *p;
864 
865 	const char* metadata[][2] = {
866 		{"hostname", utsname()->nodename},
867 		{"kernel_version", utsname()->release},
868 		{"entity_id", opt->name ? opt->name : ""},
869 		{NULL, NULL}
870 	};
871 
872 	/* Calculate serialized length of metadata */
873 	metadata_bytes = 4;  /* map length */
874 	for (i = 0; metadata[i][0] != NULL; ++i) {
875 		metadata_bytes += 8 + strlen(metadata[i][0]) +
876 			strlen(metadata[i][1]);
877 		metadata_key_count++;
878 	}
879 
880 	/* Allocate the message */
881 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
882 			   GFP_NOFS, false);
883 	if (!msg) {
884 		pr_err("create_session_msg ENOMEM creating msg\n");
885 		return NULL;
886 	}
887 	h = msg->front.iov_base;
888 	h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
889 	h->seq = cpu_to_le64(seq);
890 
891 	/*
892 	 * Serialize client metadata into waiting buffer space, using
893 	 * the format that userspace expects for map<string, string>
894 	 *
895 	 * ClientSession messages with metadata are v2
896 	 */
897 	msg->hdr.version = cpu_to_le16(2);
898 	msg->hdr.compat_version = cpu_to_le16(1);
899 
900 	/* The write pointer, following the session_head structure */
901 	p = msg->front.iov_base + sizeof(*h);
902 
903 	/* Number of entries in the map */
904 	ceph_encode_32(&p, metadata_key_count);
905 
906 	/* Two length-prefixed strings for each entry in the map */
907 	for (i = 0; metadata[i][0] != NULL; ++i) {
908 		size_t const key_len = strlen(metadata[i][0]);
909 		size_t const val_len = strlen(metadata[i][1]);
910 
911 		ceph_encode_32(&p, key_len);
912 		memcpy(p, metadata[i][0], key_len);
913 		p += key_len;
914 		ceph_encode_32(&p, val_len);
915 		memcpy(p, metadata[i][1], val_len);
916 		p += val_len;
917 	}
918 
919 	return msg;
920 }
921 
922 /*
923  * send session open request.
924  *
925  * called under mdsc->mutex
926  */
927 static int __open_session(struct ceph_mds_client *mdsc,
928 			  struct ceph_mds_session *session)
929 {
930 	struct ceph_msg *msg;
931 	int mstate;
932 	int mds = session->s_mds;
933 
934 	/* wait for mds to go active? */
935 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
936 	dout("open_session to mds%d (%s)\n", mds,
937 	     ceph_mds_state_name(mstate));
938 	session->s_state = CEPH_MDS_SESSION_OPENING;
939 	session->s_renew_requested = jiffies;
940 
941 	/* send connect message */
942 	msg = create_session_open_msg(mdsc, session->s_seq);
943 	if (!msg)
944 		return -ENOMEM;
945 	ceph_con_send(&session->s_con, msg);
946 	return 0;
947 }
948 
949 /*
950  * open sessions for any export targets for the given mds
951  *
952  * called under mdsc->mutex
953  */
954 static struct ceph_mds_session *
955 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
956 {
957 	struct ceph_mds_session *session;
958 
959 	session = __ceph_lookup_mds_session(mdsc, target);
960 	if (!session) {
961 		session = register_session(mdsc, target);
962 		if (IS_ERR(session))
963 			return session;
964 	}
965 	if (session->s_state == CEPH_MDS_SESSION_NEW ||
966 	    session->s_state == CEPH_MDS_SESSION_CLOSING)
967 		__open_session(mdsc, session);
968 
969 	return session;
970 }
971 
972 struct ceph_mds_session *
973 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
974 {
975 	struct ceph_mds_session *session;
976 
977 	dout("open_export_target_session to mds%d\n", target);
978 
979 	mutex_lock(&mdsc->mutex);
980 	session = __open_export_target_session(mdsc, target);
981 	mutex_unlock(&mdsc->mutex);
982 
983 	return session;
984 }
985 
986 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
987 					  struct ceph_mds_session *session)
988 {
989 	struct ceph_mds_info *mi;
990 	struct ceph_mds_session *ts;
991 	int i, mds = session->s_mds;
992 
993 	if (mds >= mdsc->mdsmap->m_max_mds)
994 		return;
995 
996 	mi = &mdsc->mdsmap->m_info[mds];
997 	dout("open_export_target_sessions for mds%d (%d targets)\n",
998 	     session->s_mds, mi->num_export_targets);
999 
1000 	for (i = 0; i < mi->num_export_targets; i++) {
1001 		ts = __open_export_target_session(mdsc, mi->export_targets[i]);
1002 		if (!IS_ERR(ts))
1003 			ceph_put_mds_session(ts);
1004 	}
1005 }
1006 
1007 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
1008 					   struct ceph_mds_session *session)
1009 {
1010 	mutex_lock(&mdsc->mutex);
1011 	__open_export_target_sessions(mdsc, session);
1012 	mutex_unlock(&mdsc->mutex);
1013 }
1014 
1015 /*
1016  * session caps
1017  */
1018 
1019 /* caller holds s_cap_lock, we drop it */
1020 static void cleanup_cap_releases(struct ceph_mds_client *mdsc,
1021 				 struct ceph_mds_session *session)
1022 	__releases(session->s_cap_lock)
1023 {
1024 	LIST_HEAD(tmp_list);
1025 	list_splice_init(&session->s_cap_releases, &tmp_list);
1026 	session->s_num_cap_releases = 0;
1027 	spin_unlock(&session->s_cap_lock);
1028 
1029 	dout("cleanup_cap_releases mds%d\n", session->s_mds);
1030 	while (!list_empty(&tmp_list)) {
1031 		struct ceph_cap *cap;
1032 		/* zero out the in-progress message */
1033 		cap = list_first_entry(&tmp_list,
1034 					struct ceph_cap, session_caps);
1035 		list_del(&cap->session_caps);
1036 		ceph_put_cap(mdsc, cap);
1037 	}
1038 }
1039 
1040 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1041 				     struct ceph_mds_session *session)
1042 {
1043 	struct ceph_mds_request *req;
1044 	struct rb_node *p;
1045 
1046 	dout("cleanup_session_requests mds%d\n", session->s_mds);
1047 	mutex_lock(&mdsc->mutex);
1048 	while (!list_empty(&session->s_unsafe)) {
1049 		req = list_first_entry(&session->s_unsafe,
1050 				       struct ceph_mds_request, r_unsafe_item);
1051 		list_del_init(&req->r_unsafe_item);
1052 		pr_warn_ratelimited(" dropping unsafe request %llu\n",
1053 				    req->r_tid);
1054 		__unregister_request(mdsc, req);
1055 	}
1056 	/* zero r_attempts, so kick_requests() will re-send requests */
1057 	p = rb_first(&mdsc->request_tree);
1058 	while (p) {
1059 		req = rb_entry(p, struct ceph_mds_request, r_node);
1060 		p = rb_next(p);
1061 		if (req->r_session &&
1062 		    req->r_session->s_mds == session->s_mds)
1063 			req->r_attempts = 0;
1064 	}
1065 	mutex_unlock(&mdsc->mutex);
1066 }
1067 
1068 /*
1069  * Helper to safely iterate over all caps associated with a session, with
1070  * special care taken to handle a racing __ceph_remove_cap().
1071  *
1072  * Caller must hold session s_mutex.
1073  */
1074 static int iterate_session_caps(struct ceph_mds_session *session,
1075 				 int (*cb)(struct inode *, struct ceph_cap *,
1076 					    void *), void *arg)
1077 {
1078 	struct list_head *p;
1079 	struct ceph_cap *cap;
1080 	struct inode *inode, *last_inode = NULL;
1081 	struct ceph_cap *old_cap = NULL;
1082 	int ret;
1083 
1084 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1085 	spin_lock(&session->s_cap_lock);
1086 	p = session->s_caps.next;
1087 	while (p != &session->s_caps) {
1088 		cap = list_entry(p, struct ceph_cap, session_caps);
1089 		inode = igrab(&cap->ci->vfs_inode);
1090 		if (!inode) {
1091 			p = p->next;
1092 			continue;
1093 		}
1094 		session->s_cap_iterator = cap;
1095 		spin_unlock(&session->s_cap_lock);
1096 
1097 		if (last_inode) {
1098 			iput(last_inode);
1099 			last_inode = NULL;
1100 		}
1101 		if (old_cap) {
1102 			ceph_put_cap(session->s_mdsc, old_cap);
1103 			old_cap = NULL;
1104 		}
1105 
1106 		ret = cb(inode, cap, arg);
1107 		last_inode = inode;
1108 
1109 		spin_lock(&session->s_cap_lock);
1110 		p = p->next;
1111 		if (cap->ci == NULL) {
1112 			dout("iterate_session_caps  finishing cap %p removal\n",
1113 			     cap);
1114 			BUG_ON(cap->session != session);
1115 			cap->session = NULL;
1116 			list_del_init(&cap->session_caps);
1117 			session->s_nr_caps--;
1118 			if (cap->queue_release) {
1119 				list_add_tail(&cap->session_caps,
1120 					      &session->s_cap_releases);
1121 				session->s_num_cap_releases++;
1122 			} else {
1123 				old_cap = cap;  /* put_cap it w/o locks held */
1124 			}
1125 		}
1126 		if (ret < 0)
1127 			goto out;
1128 	}
1129 	ret = 0;
1130 out:
1131 	session->s_cap_iterator = NULL;
1132 	spin_unlock(&session->s_cap_lock);
1133 
1134 	iput(last_inode);
1135 	if (old_cap)
1136 		ceph_put_cap(session->s_mdsc, old_cap);
1137 
1138 	return ret;
1139 }
1140 
1141 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1142 				  void *arg)
1143 {
1144 	struct ceph_inode_info *ci = ceph_inode(inode);
1145 	LIST_HEAD(to_remove);
1146 	int drop = 0;
1147 
1148 	dout("removing cap %p, ci is %p, inode is %p\n",
1149 	     cap, ci, &ci->vfs_inode);
1150 	spin_lock(&ci->i_ceph_lock);
1151 	__ceph_remove_cap(cap, false);
1152 	if (!ci->i_auth_cap) {
1153 		struct ceph_cap_flush *cf;
1154 		struct ceph_mds_client *mdsc =
1155 			ceph_sb_to_client(inode->i_sb)->mdsc;
1156 
1157 		while (true) {
1158 			struct rb_node *n = rb_first(&ci->i_cap_flush_tree);
1159 			if (!n)
1160 				break;
1161 			cf = rb_entry(n, struct ceph_cap_flush, i_node);
1162 			rb_erase(&cf->i_node, &ci->i_cap_flush_tree);
1163 			list_add(&cf->list, &to_remove);
1164 		}
1165 
1166 		spin_lock(&mdsc->cap_dirty_lock);
1167 
1168 		list_for_each_entry(cf, &to_remove, list)
1169 			rb_erase(&cf->g_node, &mdsc->cap_flush_tree);
1170 
1171 		if (!list_empty(&ci->i_dirty_item)) {
1172 			pr_warn_ratelimited(
1173 				" dropping dirty %s state for %p %lld\n",
1174 				ceph_cap_string(ci->i_dirty_caps),
1175 				inode, ceph_ino(inode));
1176 			ci->i_dirty_caps = 0;
1177 			list_del_init(&ci->i_dirty_item);
1178 			drop = 1;
1179 		}
1180 		if (!list_empty(&ci->i_flushing_item)) {
1181 			pr_warn_ratelimited(
1182 				" dropping dirty+flushing %s state for %p %lld\n",
1183 				ceph_cap_string(ci->i_flushing_caps),
1184 				inode, ceph_ino(inode));
1185 			ci->i_flushing_caps = 0;
1186 			list_del_init(&ci->i_flushing_item);
1187 			mdsc->num_cap_flushing--;
1188 			drop = 1;
1189 		}
1190 		spin_unlock(&mdsc->cap_dirty_lock);
1191 
1192 		if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1193 			list_add(&ci->i_prealloc_cap_flush->list, &to_remove);
1194 			ci->i_prealloc_cap_flush = NULL;
1195 		}
1196 	}
1197 	spin_unlock(&ci->i_ceph_lock);
1198 	while (!list_empty(&to_remove)) {
1199 		struct ceph_cap_flush *cf;
1200 		cf = list_first_entry(&to_remove,
1201 				      struct ceph_cap_flush, list);
1202 		list_del(&cf->list);
1203 		ceph_free_cap_flush(cf);
1204 	}
1205 	while (drop--)
1206 		iput(inode);
1207 	return 0;
1208 }
1209 
1210 /*
1211  * caller must hold session s_mutex
1212  */
1213 static void remove_session_caps(struct ceph_mds_session *session)
1214 {
1215 	dout("remove_session_caps on %p\n", session);
1216 	iterate_session_caps(session, remove_session_caps_cb, NULL);
1217 
1218 	spin_lock(&session->s_cap_lock);
1219 	if (session->s_nr_caps > 0) {
1220 		struct super_block *sb = session->s_mdsc->fsc->sb;
1221 		struct inode *inode;
1222 		struct ceph_cap *cap, *prev = NULL;
1223 		struct ceph_vino vino;
1224 		/*
1225 		 * iterate_session_caps() skips inodes that are being
1226 		 * deleted, we need to wait until deletions are complete.
1227 		 * __wait_on_freeing_inode() is designed for the job,
1228 		 * but it is not exported, so use lookup inode function
1229 		 * to access it.
1230 		 */
1231 		while (!list_empty(&session->s_caps)) {
1232 			cap = list_entry(session->s_caps.next,
1233 					 struct ceph_cap, session_caps);
1234 			if (cap == prev)
1235 				break;
1236 			prev = cap;
1237 			vino = cap->ci->i_vino;
1238 			spin_unlock(&session->s_cap_lock);
1239 
1240 			inode = ceph_find_inode(sb, vino);
1241 			iput(inode);
1242 
1243 			spin_lock(&session->s_cap_lock);
1244 		}
1245 	}
1246 
1247 	// drop cap expires and unlock s_cap_lock
1248 	cleanup_cap_releases(session->s_mdsc, session);
1249 
1250 	BUG_ON(session->s_nr_caps > 0);
1251 	BUG_ON(!list_empty(&session->s_cap_flushing));
1252 }
1253 
1254 /*
1255  * wake up any threads waiting on this session's caps.  if the cap is
1256  * old (didn't get renewed on the client reconnect), remove it now.
1257  *
1258  * caller must hold s_mutex.
1259  */
1260 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1261 			      void *arg)
1262 {
1263 	struct ceph_inode_info *ci = ceph_inode(inode);
1264 
1265 	wake_up_all(&ci->i_cap_wq);
1266 	if (arg) {
1267 		spin_lock(&ci->i_ceph_lock);
1268 		ci->i_wanted_max_size = 0;
1269 		ci->i_requested_max_size = 0;
1270 		spin_unlock(&ci->i_ceph_lock);
1271 	}
1272 	return 0;
1273 }
1274 
1275 static void wake_up_session_caps(struct ceph_mds_session *session,
1276 				 int reconnect)
1277 {
1278 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1279 	iterate_session_caps(session, wake_up_session_cb,
1280 			     (void *)(unsigned long)reconnect);
1281 }
1282 
1283 /*
1284  * Send periodic message to MDS renewing all currently held caps.  The
1285  * ack will reset the expiration for all caps from this session.
1286  *
1287  * caller holds s_mutex
1288  */
1289 static int send_renew_caps(struct ceph_mds_client *mdsc,
1290 			   struct ceph_mds_session *session)
1291 {
1292 	struct ceph_msg *msg;
1293 	int state;
1294 
1295 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1296 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1297 		pr_info("mds%d caps stale\n", session->s_mds);
1298 	session->s_renew_requested = jiffies;
1299 
1300 	/* do not try to renew caps until a recovering mds has reconnected
1301 	 * with its clients. */
1302 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1303 	if (state < CEPH_MDS_STATE_RECONNECT) {
1304 		dout("send_renew_caps ignoring mds%d (%s)\n",
1305 		     session->s_mds, ceph_mds_state_name(state));
1306 		return 0;
1307 	}
1308 
1309 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1310 		ceph_mds_state_name(state));
1311 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1312 				 ++session->s_renew_seq);
1313 	if (!msg)
1314 		return -ENOMEM;
1315 	ceph_con_send(&session->s_con, msg);
1316 	return 0;
1317 }
1318 
1319 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1320 			     struct ceph_mds_session *session, u64 seq)
1321 {
1322 	struct ceph_msg *msg;
1323 
1324 	dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1325 	     session->s_mds, ceph_session_state_name(session->s_state), seq);
1326 	msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1327 	if (!msg)
1328 		return -ENOMEM;
1329 	ceph_con_send(&session->s_con, msg);
1330 	return 0;
1331 }
1332 
1333 
1334 /*
1335  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1336  *
1337  * Called under session->s_mutex
1338  */
1339 static void renewed_caps(struct ceph_mds_client *mdsc,
1340 			 struct ceph_mds_session *session, int is_renew)
1341 {
1342 	int was_stale;
1343 	int wake = 0;
1344 
1345 	spin_lock(&session->s_cap_lock);
1346 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1347 
1348 	session->s_cap_ttl = session->s_renew_requested +
1349 		mdsc->mdsmap->m_session_timeout*HZ;
1350 
1351 	if (was_stale) {
1352 		if (time_before(jiffies, session->s_cap_ttl)) {
1353 			pr_info("mds%d caps renewed\n", session->s_mds);
1354 			wake = 1;
1355 		} else {
1356 			pr_info("mds%d caps still stale\n", session->s_mds);
1357 		}
1358 	}
1359 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1360 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1361 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1362 	spin_unlock(&session->s_cap_lock);
1363 
1364 	if (wake)
1365 		wake_up_session_caps(session, 0);
1366 }
1367 
1368 /*
1369  * send a session close request
1370  */
1371 static int request_close_session(struct ceph_mds_client *mdsc,
1372 				 struct ceph_mds_session *session)
1373 {
1374 	struct ceph_msg *msg;
1375 
1376 	dout("request_close_session mds%d state %s seq %lld\n",
1377 	     session->s_mds, ceph_session_state_name(session->s_state),
1378 	     session->s_seq);
1379 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1380 	if (!msg)
1381 		return -ENOMEM;
1382 	ceph_con_send(&session->s_con, msg);
1383 	return 0;
1384 }
1385 
1386 /*
1387  * Called with s_mutex held.
1388  */
1389 static int __close_session(struct ceph_mds_client *mdsc,
1390 			 struct ceph_mds_session *session)
1391 {
1392 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1393 		return 0;
1394 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1395 	return request_close_session(mdsc, session);
1396 }
1397 
1398 /*
1399  * Trim old(er) caps.
1400  *
1401  * Because we can't cache an inode without one or more caps, we do
1402  * this indirectly: if a cap is unused, we prune its aliases, at which
1403  * point the inode will hopefully get dropped to.
1404  *
1405  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1406  * memory pressure from the MDS, though, so it needn't be perfect.
1407  */
1408 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1409 {
1410 	struct ceph_mds_session *session = arg;
1411 	struct ceph_inode_info *ci = ceph_inode(inode);
1412 	int used, wanted, oissued, mine;
1413 
1414 	if (session->s_trim_caps <= 0)
1415 		return -1;
1416 
1417 	spin_lock(&ci->i_ceph_lock);
1418 	mine = cap->issued | cap->implemented;
1419 	used = __ceph_caps_used(ci);
1420 	wanted = __ceph_caps_file_wanted(ci);
1421 	oissued = __ceph_caps_issued_other(ci, cap);
1422 
1423 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1424 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1425 	     ceph_cap_string(used), ceph_cap_string(wanted));
1426 	if (cap == ci->i_auth_cap) {
1427 		if (ci->i_dirty_caps || ci->i_flushing_caps ||
1428 		    !list_empty(&ci->i_cap_snaps))
1429 			goto out;
1430 		if ((used | wanted) & CEPH_CAP_ANY_WR)
1431 			goto out;
1432 	}
1433 	if ((used | wanted) & ~oissued & mine)
1434 		goto out;   /* we need these caps */
1435 
1436 	session->s_trim_caps--;
1437 	if (oissued) {
1438 		/* we aren't the only cap.. just remove us */
1439 		__ceph_remove_cap(cap, true);
1440 	} else {
1441 		/* try to drop referring dentries */
1442 		spin_unlock(&ci->i_ceph_lock);
1443 		d_prune_aliases(inode);
1444 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1445 		     inode, cap, atomic_read(&inode->i_count));
1446 		return 0;
1447 	}
1448 
1449 out:
1450 	spin_unlock(&ci->i_ceph_lock);
1451 	return 0;
1452 }
1453 
1454 /*
1455  * Trim session cap count down to some max number.
1456  */
1457 static int trim_caps(struct ceph_mds_client *mdsc,
1458 		     struct ceph_mds_session *session,
1459 		     int max_caps)
1460 {
1461 	int trim_caps = session->s_nr_caps - max_caps;
1462 
1463 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1464 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1465 	if (trim_caps > 0) {
1466 		session->s_trim_caps = trim_caps;
1467 		iterate_session_caps(session, trim_caps_cb, session);
1468 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1469 		     session->s_mds, session->s_nr_caps, max_caps,
1470 			trim_caps - session->s_trim_caps);
1471 		session->s_trim_caps = 0;
1472 	}
1473 
1474 	ceph_send_cap_releases(mdsc, session);
1475 	return 0;
1476 }
1477 
1478 static int check_capsnap_flush(struct ceph_inode_info *ci,
1479 			       u64 want_snap_seq)
1480 {
1481 	int ret = 1;
1482 	spin_lock(&ci->i_ceph_lock);
1483 	if (want_snap_seq > 0 && !list_empty(&ci->i_cap_snaps)) {
1484 		struct ceph_cap_snap *capsnap =
1485 			list_first_entry(&ci->i_cap_snaps,
1486 					 struct ceph_cap_snap, ci_item);
1487 		ret = capsnap->follows >= want_snap_seq;
1488 	}
1489 	spin_unlock(&ci->i_ceph_lock);
1490 	return ret;
1491 }
1492 
1493 static int check_caps_flush(struct ceph_mds_client *mdsc,
1494 			    u64 want_flush_tid)
1495 {
1496 	struct rb_node *n;
1497 	struct ceph_cap_flush *cf;
1498 	int ret = 1;
1499 
1500 	spin_lock(&mdsc->cap_dirty_lock);
1501 	n = rb_first(&mdsc->cap_flush_tree);
1502 	cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL;
1503 	if (cf && cf->tid <= want_flush_tid) {
1504 		dout("check_caps_flush still flushing tid %llu <= %llu\n",
1505 		     cf->tid, want_flush_tid);
1506 		ret = 0;
1507 	}
1508 	spin_unlock(&mdsc->cap_dirty_lock);
1509 	return ret;
1510 }
1511 
1512 /*
1513  * flush all dirty inode data to disk.
1514  *
1515  * returns true if we've flushed through want_flush_tid
1516  */
1517 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1518 			    u64 want_flush_tid, u64 want_snap_seq)
1519 {
1520 	int mds;
1521 
1522 	dout("check_caps_flush want %llu snap want %llu\n",
1523 	     want_flush_tid, want_snap_seq);
1524 	mutex_lock(&mdsc->mutex);
1525 	for (mds = 0; mds < mdsc->max_sessions; ) {
1526 		struct ceph_mds_session *session = mdsc->sessions[mds];
1527 		struct inode *inode = NULL;
1528 
1529 		if (!session) {
1530 			mds++;
1531 			continue;
1532 		}
1533 		get_session(session);
1534 		mutex_unlock(&mdsc->mutex);
1535 
1536 		mutex_lock(&session->s_mutex);
1537 		if (!list_empty(&session->s_cap_snaps_flushing)) {
1538 			struct ceph_cap_snap *capsnap =
1539 				list_first_entry(&session->s_cap_snaps_flushing,
1540 						 struct ceph_cap_snap,
1541 						 flushing_item);
1542 			struct ceph_inode_info *ci = capsnap->ci;
1543 			if (!check_capsnap_flush(ci, want_snap_seq)) {
1544 				dout("check_cap_flush still flushing snap %p "
1545 				     "follows %lld <= %lld to mds%d\n",
1546 				     &ci->vfs_inode, capsnap->follows,
1547 				     want_snap_seq, mds);
1548 				inode = igrab(&ci->vfs_inode);
1549 			}
1550 		}
1551 		mutex_unlock(&session->s_mutex);
1552 		ceph_put_mds_session(session);
1553 
1554 		if (inode) {
1555 			wait_event(mdsc->cap_flushing_wq,
1556 				   check_capsnap_flush(ceph_inode(inode),
1557 						       want_snap_seq));
1558 			iput(inode);
1559 		} else {
1560 			mds++;
1561 		}
1562 
1563 		mutex_lock(&mdsc->mutex);
1564 	}
1565 	mutex_unlock(&mdsc->mutex);
1566 
1567 	wait_event(mdsc->cap_flushing_wq,
1568 		   check_caps_flush(mdsc, want_flush_tid));
1569 
1570 	dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1571 }
1572 
1573 /*
1574  * called under s_mutex
1575  */
1576 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1577 			    struct ceph_mds_session *session)
1578 {
1579 	struct ceph_msg *msg = NULL;
1580 	struct ceph_mds_cap_release *head;
1581 	struct ceph_mds_cap_item *item;
1582 	struct ceph_cap *cap;
1583 	LIST_HEAD(tmp_list);
1584 	int num_cap_releases;
1585 
1586 	spin_lock(&session->s_cap_lock);
1587 again:
1588 	list_splice_init(&session->s_cap_releases, &tmp_list);
1589 	num_cap_releases = session->s_num_cap_releases;
1590 	session->s_num_cap_releases = 0;
1591 	spin_unlock(&session->s_cap_lock);
1592 
1593 	while (!list_empty(&tmp_list)) {
1594 		if (!msg) {
1595 			msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1596 					PAGE_CACHE_SIZE, GFP_NOFS, false);
1597 			if (!msg)
1598 				goto out_err;
1599 			head = msg->front.iov_base;
1600 			head->num = cpu_to_le32(0);
1601 			msg->front.iov_len = sizeof(*head);
1602 		}
1603 		cap = list_first_entry(&tmp_list, struct ceph_cap,
1604 					session_caps);
1605 		list_del(&cap->session_caps);
1606 		num_cap_releases--;
1607 
1608 		head = msg->front.iov_base;
1609 		le32_add_cpu(&head->num, 1);
1610 		item = msg->front.iov_base + msg->front.iov_len;
1611 		item->ino = cpu_to_le64(cap->cap_ino);
1612 		item->cap_id = cpu_to_le64(cap->cap_id);
1613 		item->migrate_seq = cpu_to_le32(cap->mseq);
1614 		item->seq = cpu_to_le32(cap->issue_seq);
1615 		msg->front.iov_len += sizeof(*item);
1616 
1617 		ceph_put_cap(mdsc, cap);
1618 
1619 		if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1620 			msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1621 			dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1622 			ceph_con_send(&session->s_con, msg);
1623 			msg = NULL;
1624 		}
1625 	}
1626 
1627 	BUG_ON(num_cap_releases != 0);
1628 
1629 	spin_lock(&session->s_cap_lock);
1630 	if (!list_empty(&session->s_cap_releases))
1631 		goto again;
1632 	spin_unlock(&session->s_cap_lock);
1633 
1634 	if (msg) {
1635 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1636 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1637 		ceph_con_send(&session->s_con, msg);
1638 	}
1639 	return;
1640 out_err:
1641 	pr_err("send_cap_releases mds%d, failed to allocate message\n",
1642 		session->s_mds);
1643 	spin_lock(&session->s_cap_lock);
1644 	list_splice(&tmp_list, &session->s_cap_releases);
1645 	session->s_num_cap_releases += num_cap_releases;
1646 	spin_unlock(&session->s_cap_lock);
1647 }
1648 
1649 /*
1650  * requests
1651  */
1652 
1653 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1654 				    struct inode *dir)
1655 {
1656 	struct ceph_inode_info *ci = ceph_inode(dir);
1657 	struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1658 	struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1659 	size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) +
1660 		      sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease);
1661 	int order, num_entries;
1662 
1663 	spin_lock(&ci->i_ceph_lock);
1664 	num_entries = ci->i_files + ci->i_subdirs;
1665 	spin_unlock(&ci->i_ceph_lock);
1666 	num_entries = max(num_entries, 1);
1667 	num_entries = min(num_entries, opt->max_readdir);
1668 
1669 	order = get_order(size * num_entries);
1670 	while (order >= 0) {
1671 		rinfo->dir_in = (void*)__get_free_pages(GFP_KERNEL |
1672 							__GFP_NOWARN,
1673 							order);
1674 		if (rinfo->dir_in)
1675 			break;
1676 		order--;
1677 	}
1678 	if (!rinfo->dir_in)
1679 		return -ENOMEM;
1680 
1681 	num_entries = (PAGE_SIZE << order) / size;
1682 	num_entries = min(num_entries, opt->max_readdir);
1683 
1684 	rinfo->dir_buf_size = PAGE_SIZE << order;
1685 	req->r_num_caps = num_entries + 1;
1686 	req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1687 	req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1688 	return 0;
1689 }
1690 
1691 /*
1692  * Create an mds request.
1693  */
1694 struct ceph_mds_request *
1695 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1696 {
1697 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1698 
1699 	if (!req)
1700 		return ERR_PTR(-ENOMEM);
1701 
1702 	mutex_init(&req->r_fill_mutex);
1703 	req->r_mdsc = mdsc;
1704 	req->r_started = jiffies;
1705 	req->r_resend_mds = -1;
1706 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1707 	req->r_fmode = -1;
1708 	kref_init(&req->r_kref);
1709 	INIT_LIST_HEAD(&req->r_wait);
1710 	init_completion(&req->r_completion);
1711 	init_completion(&req->r_safe_completion);
1712 	INIT_LIST_HEAD(&req->r_unsafe_item);
1713 
1714 	req->r_stamp = CURRENT_TIME;
1715 
1716 	req->r_op = op;
1717 	req->r_direct_mode = mode;
1718 	return req;
1719 }
1720 
1721 /*
1722  * return oldest (lowest) request, tid in request tree, 0 if none.
1723  *
1724  * called under mdsc->mutex.
1725  */
1726 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1727 {
1728 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1729 		return NULL;
1730 	return rb_entry(rb_first(&mdsc->request_tree),
1731 			struct ceph_mds_request, r_node);
1732 }
1733 
1734 static inline  u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1735 {
1736 	return mdsc->oldest_tid;
1737 }
1738 
1739 /*
1740  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1741  * on build_path_from_dentry in fs/cifs/dir.c.
1742  *
1743  * If @stop_on_nosnap, generate path relative to the first non-snapped
1744  * inode.
1745  *
1746  * Encode hidden .snap dirs as a double /, i.e.
1747  *   foo/.snap/bar -> foo//bar
1748  */
1749 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1750 			   int stop_on_nosnap)
1751 {
1752 	struct dentry *temp;
1753 	char *path;
1754 	int len, pos;
1755 	unsigned seq;
1756 
1757 	if (dentry == NULL)
1758 		return ERR_PTR(-EINVAL);
1759 
1760 retry:
1761 	len = 0;
1762 	seq = read_seqbegin(&rename_lock);
1763 	rcu_read_lock();
1764 	for (temp = dentry; !IS_ROOT(temp);) {
1765 		struct inode *inode = d_inode(temp);
1766 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1767 			len++;  /* slash only */
1768 		else if (stop_on_nosnap && inode &&
1769 			 ceph_snap(inode) == CEPH_NOSNAP)
1770 			break;
1771 		else
1772 			len += 1 + temp->d_name.len;
1773 		temp = temp->d_parent;
1774 	}
1775 	rcu_read_unlock();
1776 	if (len)
1777 		len--;  /* no leading '/' */
1778 
1779 	path = kmalloc(len+1, GFP_NOFS);
1780 	if (path == NULL)
1781 		return ERR_PTR(-ENOMEM);
1782 	pos = len;
1783 	path[pos] = 0;	/* trailing null */
1784 	rcu_read_lock();
1785 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1786 		struct inode *inode;
1787 
1788 		spin_lock(&temp->d_lock);
1789 		inode = d_inode(temp);
1790 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1791 			dout("build_path path+%d: %p SNAPDIR\n",
1792 			     pos, temp);
1793 		} else if (stop_on_nosnap && inode &&
1794 			   ceph_snap(inode) == CEPH_NOSNAP) {
1795 			spin_unlock(&temp->d_lock);
1796 			break;
1797 		} else {
1798 			pos -= temp->d_name.len;
1799 			if (pos < 0) {
1800 				spin_unlock(&temp->d_lock);
1801 				break;
1802 			}
1803 			strncpy(path + pos, temp->d_name.name,
1804 				temp->d_name.len);
1805 		}
1806 		spin_unlock(&temp->d_lock);
1807 		if (pos)
1808 			path[--pos] = '/';
1809 		temp = temp->d_parent;
1810 	}
1811 	rcu_read_unlock();
1812 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1813 		pr_err("build_path did not end path lookup where "
1814 		       "expected, namelen is %d, pos is %d\n", len, pos);
1815 		/* presumably this is only possible if racing with a
1816 		   rename of one of the parent directories (we can not
1817 		   lock the dentries above us to prevent this, but
1818 		   retrying should be harmless) */
1819 		kfree(path);
1820 		goto retry;
1821 	}
1822 
1823 	*base = ceph_ino(d_inode(temp));
1824 	*plen = len;
1825 	dout("build_path on %p %d built %llx '%.*s'\n",
1826 	     dentry, d_count(dentry), *base, len, path);
1827 	return path;
1828 }
1829 
1830 static int build_dentry_path(struct dentry *dentry,
1831 			     const char **ppath, int *ppathlen, u64 *pino,
1832 			     int *pfreepath)
1833 {
1834 	char *path;
1835 
1836 	if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) {
1837 		*pino = ceph_ino(d_inode(dentry->d_parent));
1838 		*ppath = dentry->d_name.name;
1839 		*ppathlen = dentry->d_name.len;
1840 		return 0;
1841 	}
1842 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1843 	if (IS_ERR(path))
1844 		return PTR_ERR(path);
1845 	*ppath = path;
1846 	*pfreepath = 1;
1847 	return 0;
1848 }
1849 
1850 static int build_inode_path(struct inode *inode,
1851 			    const char **ppath, int *ppathlen, u64 *pino,
1852 			    int *pfreepath)
1853 {
1854 	struct dentry *dentry;
1855 	char *path;
1856 
1857 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1858 		*pino = ceph_ino(inode);
1859 		*ppathlen = 0;
1860 		return 0;
1861 	}
1862 	dentry = d_find_alias(inode);
1863 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1864 	dput(dentry);
1865 	if (IS_ERR(path))
1866 		return PTR_ERR(path);
1867 	*ppath = path;
1868 	*pfreepath = 1;
1869 	return 0;
1870 }
1871 
1872 /*
1873  * request arguments may be specified via an inode *, a dentry *, or
1874  * an explicit ino+path.
1875  */
1876 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1877 				  const char *rpath, u64 rino,
1878 				  const char **ppath, int *pathlen,
1879 				  u64 *ino, int *freepath)
1880 {
1881 	int r = 0;
1882 
1883 	if (rinode) {
1884 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1885 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1886 		     ceph_snap(rinode));
1887 	} else if (rdentry) {
1888 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1889 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1890 		     *ppath);
1891 	} else if (rpath || rino) {
1892 		*ino = rino;
1893 		*ppath = rpath;
1894 		*pathlen = rpath ? strlen(rpath) : 0;
1895 		dout(" path %.*s\n", *pathlen, rpath);
1896 	}
1897 
1898 	return r;
1899 }
1900 
1901 /*
1902  * called under mdsc->mutex
1903  */
1904 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1905 					       struct ceph_mds_request *req,
1906 					       int mds, bool drop_cap_releases)
1907 {
1908 	struct ceph_msg *msg;
1909 	struct ceph_mds_request_head *head;
1910 	const char *path1 = NULL;
1911 	const char *path2 = NULL;
1912 	u64 ino1 = 0, ino2 = 0;
1913 	int pathlen1 = 0, pathlen2 = 0;
1914 	int freepath1 = 0, freepath2 = 0;
1915 	int len;
1916 	u16 releases;
1917 	void *p, *end;
1918 	int ret;
1919 
1920 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1921 			      req->r_path1, req->r_ino1.ino,
1922 			      &path1, &pathlen1, &ino1, &freepath1);
1923 	if (ret < 0) {
1924 		msg = ERR_PTR(ret);
1925 		goto out;
1926 	}
1927 
1928 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1929 			      req->r_path2, req->r_ino2.ino,
1930 			      &path2, &pathlen2, &ino2, &freepath2);
1931 	if (ret < 0) {
1932 		msg = ERR_PTR(ret);
1933 		goto out_free1;
1934 	}
1935 
1936 	len = sizeof(*head) +
1937 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1938 		sizeof(struct timespec);
1939 
1940 	/* calculate (max) length for cap releases */
1941 	len += sizeof(struct ceph_mds_request_release) *
1942 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1943 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1944 	if (req->r_dentry_drop)
1945 		len += req->r_dentry->d_name.len;
1946 	if (req->r_old_dentry_drop)
1947 		len += req->r_old_dentry->d_name.len;
1948 
1949 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1950 	if (!msg) {
1951 		msg = ERR_PTR(-ENOMEM);
1952 		goto out_free2;
1953 	}
1954 
1955 	msg->hdr.version = cpu_to_le16(2);
1956 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1957 
1958 	head = msg->front.iov_base;
1959 	p = msg->front.iov_base + sizeof(*head);
1960 	end = msg->front.iov_base + msg->front.iov_len;
1961 
1962 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1963 	head->op = cpu_to_le32(req->r_op);
1964 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1965 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1966 	head->args = req->r_args;
1967 
1968 	ceph_encode_filepath(&p, end, ino1, path1);
1969 	ceph_encode_filepath(&p, end, ino2, path2);
1970 
1971 	/* make note of release offset, in case we need to replay */
1972 	req->r_request_release_offset = p - msg->front.iov_base;
1973 
1974 	/* cap releases */
1975 	releases = 0;
1976 	if (req->r_inode_drop)
1977 		releases += ceph_encode_inode_release(&p,
1978 		      req->r_inode ? req->r_inode : d_inode(req->r_dentry),
1979 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1980 	if (req->r_dentry_drop)
1981 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1982 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1983 	if (req->r_old_dentry_drop)
1984 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1985 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1986 	if (req->r_old_inode_drop)
1987 		releases += ceph_encode_inode_release(&p,
1988 		      d_inode(req->r_old_dentry),
1989 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1990 
1991 	if (drop_cap_releases) {
1992 		releases = 0;
1993 		p = msg->front.iov_base + req->r_request_release_offset;
1994 	}
1995 
1996 	head->num_releases = cpu_to_le16(releases);
1997 
1998 	/* time stamp */
1999 	{
2000 		struct ceph_timespec ts;
2001 		ceph_encode_timespec(&ts, &req->r_stamp);
2002 		ceph_encode_copy(&p, &ts, sizeof(ts));
2003 	}
2004 
2005 	BUG_ON(p > end);
2006 	msg->front.iov_len = p - msg->front.iov_base;
2007 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2008 
2009 	if (req->r_pagelist) {
2010 		struct ceph_pagelist *pagelist = req->r_pagelist;
2011 		atomic_inc(&pagelist->refcnt);
2012 		ceph_msg_data_add_pagelist(msg, pagelist);
2013 		msg->hdr.data_len = cpu_to_le32(pagelist->length);
2014 	} else {
2015 		msg->hdr.data_len = 0;
2016 	}
2017 
2018 	msg->hdr.data_off = cpu_to_le16(0);
2019 
2020 out_free2:
2021 	if (freepath2)
2022 		kfree((char *)path2);
2023 out_free1:
2024 	if (freepath1)
2025 		kfree((char *)path1);
2026 out:
2027 	return msg;
2028 }
2029 
2030 /*
2031  * called under mdsc->mutex if error, under no mutex if
2032  * success.
2033  */
2034 static void complete_request(struct ceph_mds_client *mdsc,
2035 			     struct ceph_mds_request *req)
2036 {
2037 	if (req->r_callback)
2038 		req->r_callback(mdsc, req);
2039 	else
2040 		complete_all(&req->r_completion);
2041 }
2042 
2043 /*
2044  * called under mdsc->mutex
2045  */
2046 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2047 				  struct ceph_mds_request *req,
2048 				  int mds, bool drop_cap_releases)
2049 {
2050 	struct ceph_mds_request_head *rhead;
2051 	struct ceph_msg *msg;
2052 	int flags = 0;
2053 
2054 	req->r_attempts++;
2055 	if (req->r_inode) {
2056 		struct ceph_cap *cap =
2057 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2058 
2059 		if (cap)
2060 			req->r_sent_on_mseq = cap->mseq;
2061 		else
2062 			req->r_sent_on_mseq = -1;
2063 	}
2064 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2065 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2066 
2067 	if (req->r_got_unsafe) {
2068 		void *p;
2069 		/*
2070 		 * Replay.  Do not regenerate message (and rebuild
2071 		 * paths, etc.); just use the original message.
2072 		 * Rebuilding paths will break for renames because
2073 		 * d_move mangles the src name.
2074 		 */
2075 		msg = req->r_request;
2076 		rhead = msg->front.iov_base;
2077 
2078 		flags = le32_to_cpu(rhead->flags);
2079 		flags |= CEPH_MDS_FLAG_REPLAY;
2080 		rhead->flags = cpu_to_le32(flags);
2081 
2082 		if (req->r_target_inode)
2083 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2084 
2085 		rhead->num_retry = req->r_attempts - 1;
2086 
2087 		/* remove cap/dentry releases from message */
2088 		rhead->num_releases = 0;
2089 
2090 		/* time stamp */
2091 		p = msg->front.iov_base + req->r_request_release_offset;
2092 		{
2093 			struct ceph_timespec ts;
2094 			ceph_encode_timespec(&ts, &req->r_stamp);
2095 			ceph_encode_copy(&p, &ts, sizeof(ts));
2096 		}
2097 
2098 		msg->front.iov_len = p - msg->front.iov_base;
2099 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2100 		return 0;
2101 	}
2102 
2103 	if (req->r_request) {
2104 		ceph_msg_put(req->r_request);
2105 		req->r_request = NULL;
2106 	}
2107 	msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2108 	if (IS_ERR(msg)) {
2109 		req->r_err = PTR_ERR(msg);
2110 		return PTR_ERR(msg);
2111 	}
2112 	req->r_request = msg;
2113 
2114 	rhead = msg->front.iov_base;
2115 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2116 	if (req->r_got_unsafe)
2117 		flags |= CEPH_MDS_FLAG_REPLAY;
2118 	if (req->r_locked_dir)
2119 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2120 	rhead->flags = cpu_to_le32(flags);
2121 	rhead->num_fwd = req->r_num_fwd;
2122 	rhead->num_retry = req->r_attempts - 1;
2123 	rhead->ino = 0;
2124 
2125 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
2126 	return 0;
2127 }
2128 
2129 /*
2130  * send request, or put it on the appropriate wait list.
2131  */
2132 static int __do_request(struct ceph_mds_client *mdsc,
2133 			struct ceph_mds_request *req)
2134 {
2135 	struct ceph_mds_session *session = NULL;
2136 	int mds = -1;
2137 	int err = 0;
2138 
2139 	if (req->r_err || req->r_got_result) {
2140 		if (req->r_aborted)
2141 			__unregister_request(mdsc, req);
2142 		goto out;
2143 	}
2144 
2145 	if (req->r_timeout &&
2146 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2147 		dout("do_request timed out\n");
2148 		err = -EIO;
2149 		goto finish;
2150 	}
2151 	if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2152 		dout("do_request forced umount\n");
2153 		err = -EIO;
2154 		goto finish;
2155 	}
2156 
2157 	put_request_session(req);
2158 
2159 	mds = __choose_mds(mdsc, req);
2160 	if (mds < 0 ||
2161 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2162 		dout("do_request no mds or not active, waiting for map\n");
2163 		list_add(&req->r_wait, &mdsc->waiting_for_map);
2164 		goto out;
2165 	}
2166 
2167 	/* get, open session */
2168 	session = __ceph_lookup_mds_session(mdsc, mds);
2169 	if (!session) {
2170 		session = register_session(mdsc, mds);
2171 		if (IS_ERR(session)) {
2172 			err = PTR_ERR(session);
2173 			goto finish;
2174 		}
2175 	}
2176 	req->r_session = get_session(session);
2177 
2178 	dout("do_request mds%d session %p state %s\n", mds, session,
2179 	     ceph_session_state_name(session->s_state));
2180 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2181 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
2182 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
2183 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
2184 			__open_session(mdsc, session);
2185 		list_add(&req->r_wait, &session->s_waiting);
2186 		goto out_session;
2187 	}
2188 
2189 	/* send request */
2190 	req->r_resend_mds = -1;   /* forget any previous mds hint */
2191 
2192 	if (req->r_request_started == 0)   /* note request start time */
2193 		req->r_request_started = jiffies;
2194 
2195 	err = __prepare_send_request(mdsc, req, mds, false);
2196 	if (!err) {
2197 		ceph_msg_get(req->r_request);
2198 		ceph_con_send(&session->s_con, req->r_request);
2199 	}
2200 
2201 out_session:
2202 	ceph_put_mds_session(session);
2203 finish:
2204 	if (err) {
2205 		dout("__do_request early error %d\n", err);
2206 		req->r_err = err;
2207 		complete_request(mdsc, req);
2208 		__unregister_request(mdsc, req);
2209 	}
2210 out:
2211 	return err;
2212 }
2213 
2214 /*
2215  * called under mdsc->mutex
2216  */
2217 static void __wake_requests(struct ceph_mds_client *mdsc,
2218 			    struct list_head *head)
2219 {
2220 	struct ceph_mds_request *req;
2221 	LIST_HEAD(tmp_list);
2222 
2223 	list_splice_init(head, &tmp_list);
2224 
2225 	while (!list_empty(&tmp_list)) {
2226 		req = list_entry(tmp_list.next,
2227 				 struct ceph_mds_request, r_wait);
2228 		list_del_init(&req->r_wait);
2229 		dout(" wake request %p tid %llu\n", req, req->r_tid);
2230 		__do_request(mdsc, req);
2231 	}
2232 }
2233 
2234 /*
2235  * Wake up threads with requests pending for @mds, so that they can
2236  * resubmit their requests to a possibly different mds.
2237  */
2238 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2239 {
2240 	struct ceph_mds_request *req;
2241 	struct rb_node *p = rb_first(&mdsc->request_tree);
2242 
2243 	dout("kick_requests mds%d\n", mds);
2244 	while (p) {
2245 		req = rb_entry(p, struct ceph_mds_request, r_node);
2246 		p = rb_next(p);
2247 		if (req->r_got_unsafe)
2248 			continue;
2249 		if (req->r_attempts > 0)
2250 			continue; /* only new requests */
2251 		if (req->r_session &&
2252 		    req->r_session->s_mds == mds) {
2253 			dout(" kicking tid %llu\n", req->r_tid);
2254 			list_del_init(&req->r_wait);
2255 			__do_request(mdsc, req);
2256 		}
2257 	}
2258 }
2259 
2260 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2261 			      struct ceph_mds_request *req)
2262 {
2263 	dout("submit_request on %p\n", req);
2264 	mutex_lock(&mdsc->mutex);
2265 	__register_request(mdsc, req, NULL);
2266 	__do_request(mdsc, req);
2267 	mutex_unlock(&mdsc->mutex);
2268 }
2269 
2270 /*
2271  * Synchrously perform an mds request.  Take care of all of the
2272  * session setup, forwarding, retry details.
2273  */
2274 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2275 			 struct inode *dir,
2276 			 struct ceph_mds_request *req)
2277 {
2278 	int err;
2279 
2280 	dout("do_request on %p\n", req);
2281 
2282 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2283 	if (req->r_inode)
2284 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2285 	if (req->r_locked_dir)
2286 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2287 	if (req->r_old_dentry_dir)
2288 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2289 				  CEPH_CAP_PIN);
2290 
2291 	/* issue */
2292 	mutex_lock(&mdsc->mutex);
2293 	__register_request(mdsc, req, dir);
2294 	__do_request(mdsc, req);
2295 
2296 	if (req->r_err) {
2297 		err = req->r_err;
2298 		goto out;
2299 	}
2300 
2301 	/* wait */
2302 	mutex_unlock(&mdsc->mutex);
2303 	dout("do_request waiting\n");
2304 	if (!req->r_timeout && req->r_wait_for_completion) {
2305 		err = req->r_wait_for_completion(mdsc, req);
2306 	} else {
2307 		long timeleft = wait_for_completion_killable_timeout(
2308 					&req->r_completion,
2309 					ceph_timeout_jiffies(req->r_timeout));
2310 		if (timeleft > 0)
2311 			err = 0;
2312 		else if (!timeleft)
2313 			err = -EIO;  /* timed out */
2314 		else
2315 			err = timeleft;  /* killed */
2316 	}
2317 	dout("do_request waited, got %d\n", err);
2318 	mutex_lock(&mdsc->mutex);
2319 
2320 	/* only abort if we didn't race with a real reply */
2321 	if (req->r_got_result) {
2322 		err = le32_to_cpu(req->r_reply_info.head->result);
2323 	} else if (err < 0) {
2324 		dout("aborted request %lld with %d\n", req->r_tid, err);
2325 
2326 		/*
2327 		 * ensure we aren't running concurrently with
2328 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2329 		 * rely on locks (dir mutex) held by our caller.
2330 		 */
2331 		mutex_lock(&req->r_fill_mutex);
2332 		req->r_err = err;
2333 		req->r_aborted = true;
2334 		mutex_unlock(&req->r_fill_mutex);
2335 
2336 		if (req->r_locked_dir &&
2337 		    (req->r_op & CEPH_MDS_OP_WRITE))
2338 			ceph_invalidate_dir_request(req);
2339 	} else {
2340 		err = req->r_err;
2341 	}
2342 
2343 out:
2344 	mutex_unlock(&mdsc->mutex);
2345 	dout("do_request %p done, result %d\n", req, err);
2346 	return err;
2347 }
2348 
2349 /*
2350  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2351  * namespace request.
2352  */
2353 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2354 {
2355 	struct inode *inode = req->r_locked_dir;
2356 
2357 	dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2358 
2359 	ceph_dir_clear_complete(inode);
2360 	if (req->r_dentry)
2361 		ceph_invalidate_dentry_lease(req->r_dentry);
2362 	if (req->r_old_dentry)
2363 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2364 }
2365 
2366 /*
2367  * Handle mds reply.
2368  *
2369  * We take the session mutex and parse and process the reply immediately.
2370  * This preserves the logical ordering of replies, capabilities, etc., sent
2371  * by the MDS as they are applied to our local cache.
2372  */
2373 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2374 {
2375 	struct ceph_mds_client *mdsc = session->s_mdsc;
2376 	struct ceph_mds_request *req;
2377 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2378 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2379 	struct ceph_snap_realm *realm;
2380 	u64 tid;
2381 	int err, result;
2382 	int mds = session->s_mds;
2383 
2384 	if (msg->front.iov_len < sizeof(*head)) {
2385 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2386 		ceph_msg_dump(msg);
2387 		return;
2388 	}
2389 
2390 	/* get request, session */
2391 	tid = le64_to_cpu(msg->hdr.tid);
2392 	mutex_lock(&mdsc->mutex);
2393 	req = __lookup_request(mdsc, tid);
2394 	if (!req) {
2395 		dout("handle_reply on unknown tid %llu\n", tid);
2396 		mutex_unlock(&mdsc->mutex);
2397 		return;
2398 	}
2399 	dout("handle_reply %p\n", req);
2400 
2401 	/* correct session? */
2402 	if (req->r_session != session) {
2403 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2404 		       " not mds%d\n", tid, session->s_mds,
2405 		       req->r_session ? req->r_session->s_mds : -1);
2406 		mutex_unlock(&mdsc->mutex);
2407 		goto out;
2408 	}
2409 
2410 	/* dup? */
2411 	if ((req->r_got_unsafe && !head->safe) ||
2412 	    (req->r_got_safe && head->safe)) {
2413 		pr_warn("got a dup %s reply on %llu from mds%d\n",
2414 			   head->safe ? "safe" : "unsafe", tid, mds);
2415 		mutex_unlock(&mdsc->mutex);
2416 		goto out;
2417 	}
2418 	if (req->r_got_safe) {
2419 		pr_warn("got unsafe after safe on %llu from mds%d\n",
2420 			   tid, mds);
2421 		mutex_unlock(&mdsc->mutex);
2422 		goto out;
2423 	}
2424 
2425 	result = le32_to_cpu(head->result);
2426 
2427 	/*
2428 	 * Handle an ESTALE
2429 	 * if we're not talking to the authority, send to them
2430 	 * if the authority has changed while we weren't looking,
2431 	 * send to new authority
2432 	 * Otherwise we just have to return an ESTALE
2433 	 */
2434 	if (result == -ESTALE) {
2435 		dout("got ESTALE on request %llu", req->r_tid);
2436 		req->r_resend_mds = -1;
2437 		if (req->r_direct_mode != USE_AUTH_MDS) {
2438 			dout("not using auth, setting for that now");
2439 			req->r_direct_mode = USE_AUTH_MDS;
2440 			__do_request(mdsc, req);
2441 			mutex_unlock(&mdsc->mutex);
2442 			goto out;
2443 		} else  {
2444 			int mds = __choose_mds(mdsc, req);
2445 			if (mds >= 0 && mds != req->r_session->s_mds) {
2446 				dout("but auth changed, so resending");
2447 				__do_request(mdsc, req);
2448 				mutex_unlock(&mdsc->mutex);
2449 				goto out;
2450 			}
2451 		}
2452 		dout("have to return ESTALE on request %llu", req->r_tid);
2453 	}
2454 
2455 
2456 	if (head->safe) {
2457 		req->r_got_safe = true;
2458 		__unregister_request(mdsc, req);
2459 
2460 		if (req->r_got_unsafe) {
2461 			/*
2462 			 * We already handled the unsafe response, now do the
2463 			 * cleanup.  No need to examine the response; the MDS
2464 			 * doesn't include any result info in the safe
2465 			 * response.  And even if it did, there is nothing
2466 			 * useful we could do with a revised return value.
2467 			 */
2468 			dout("got safe reply %llu, mds%d\n", tid, mds);
2469 			list_del_init(&req->r_unsafe_item);
2470 
2471 			/* last unsafe request during umount? */
2472 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2473 				complete_all(&mdsc->safe_umount_waiters);
2474 			mutex_unlock(&mdsc->mutex);
2475 			goto out;
2476 		}
2477 	} else {
2478 		req->r_got_unsafe = true;
2479 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2480 	}
2481 
2482 	dout("handle_reply tid %lld result %d\n", tid, result);
2483 	rinfo = &req->r_reply_info;
2484 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2485 	mutex_unlock(&mdsc->mutex);
2486 
2487 	mutex_lock(&session->s_mutex);
2488 	if (err < 0) {
2489 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2490 		ceph_msg_dump(msg);
2491 		goto out_err;
2492 	}
2493 
2494 	/* snap trace */
2495 	realm = NULL;
2496 	if (rinfo->snapblob_len) {
2497 		down_write(&mdsc->snap_rwsem);
2498 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2499 				rinfo->snapblob + rinfo->snapblob_len,
2500 				le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2501 				&realm);
2502 		downgrade_write(&mdsc->snap_rwsem);
2503 	} else {
2504 		down_read(&mdsc->snap_rwsem);
2505 	}
2506 
2507 	/* insert trace into our cache */
2508 	mutex_lock(&req->r_fill_mutex);
2509 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2510 	if (err == 0) {
2511 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2512 				    req->r_op == CEPH_MDS_OP_LSSNAP))
2513 			ceph_readdir_prepopulate(req, req->r_session);
2514 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2515 	}
2516 	mutex_unlock(&req->r_fill_mutex);
2517 
2518 	up_read(&mdsc->snap_rwsem);
2519 	if (realm)
2520 		ceph_put_snap_realm(mdsc, realm);
2521 out_err:
2522 	mutex_lock(&mdsc->mutex);
2523 	if (!req->r_aborted) {
2524 		if (err) {
2525 			req->r_err = err;
2526 		} else {
2527 			req->r_reply =  ceph_msg_get(msg);
2528 			req->r_got_result = true;
2529 		}
2530 	} else {
2531 		dout("reply arrived after request %lld was aborted\n", tid);
2532 	}
2533 	mutex_unlock(&mdsc->mutex);
2534 
2535 	mutex_unlock(&session->s_mutex);
2536 
2537 	/* kick calling process */
2538 	complete_request(mdsc, req);
2539 out:
2540 	ceph_mdsc_put_request(req);
2541 	return;
2542 }
2543 
2544 
2545 
2546 /*
2547  * handle mds notification that our request has been forwarded.
2548  */
2549 static void handle_forward(struct ceph_mds_client *mdsc,
2550 			   struct ceph_mds_session *session,
2551 			   struct ceph_msg *msg)
2552 {
2553 	struct ceph_mds_request *req;
2554 	u64 tid = le64_to_cpu(msg->hdr.tid);
2555 	u32 next_mds;
2556 	u32 fwd_seq;
2557 	int err = -EINVAL;
2558 	void *p = msg->front.iov_base;
2559 	void *end = p + msg->front.iov_len;
2560 
2561 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2562 	next_mds = ceph_decode_32(&p);
2563 	fwd_seq = ceph_decode_32(&p);
2564 
2565 	mutex_lock(&mdsc->mutex);
2566 	req = __lookup_request(mdsc, tid);
2567 	if (!req) {
2568 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2569 		goto out;  /* dup reply? */
2570 	}
2571 
2572 	if (req->r_aborted) {
2573 		dout("forward tid %llu aborted, unregistering\n", tid);
2574 		__unregister_request(mdsc, req);
2575 	} else if (fwd_seq <= req->r_num_fwd) {
2576 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2577 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2578 	} else {
2579 		/* resend. forward race not possible; mds would drop */
2580 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2581 		BUG_ON(req->r_err);
2582 		BUG_ON(req->r_got_result);
2583 		req->r_attempts = 0;
2584 		req->r_num_fwd = fwd_seq;
2585 		req->r_resend_mds = next_mds;
2586 		put_request_session(req);
2587 		__do_request(mdsc, req);
2588 	}
2589 	ceph_mdsc_put_request(req);
2590 out:
2591 	mutex_unlock(&mdsc->mutex);
2592 	return;
2593 
2594 bad:
2595 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2596 }
2597 
2598 /*
2599  * handle a mds session control message
2600  */
2601 static void handle_session(struct ceph_mds_session *session,
2602 			   struct ceph_msg *msg)
2603 {
2604 	struct ceph_mds_client *mdsc = session->s_mdsc;
2605 	u32 op;
2606 	u64 seq;
2607 	int mds = session->s_mds;
2608 	struct ceph_mds_session_head *h = msg->front.iov_base;
2609 	int wake = 0;
2610 
2611 	/* decode */
2612 	if (msg->front.iov_len != sizeof(*h))
2613 		goto bad;
2614 	op = le32_to_cpu(h->op);
2615 	seq = le64_to_cpu(h->seq);
2616 
2617 	mutex_lock(&mdsc->mutex);
2618 	if (op == CEPH_SESSION_CLOSE)
2619 		__unregister_session(mdsc, session);
2620 	/* FIXME: this ttl calculation is generous */
2621 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2622 	mutex_unlock(&mdsc->mutex);
2623 
2624 	mutex_lock(&session->s_mutex);
2625 
2626 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2627 	     mds, ceph_session_op_name(op), session,
2628 	     ceph_session_state_name(session->s_state), seq);
2629 
2630 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2631 		session->s_state = CEPH_MDS_SESSION_OPEN;
2632 		pr_info("mds%d came back\n", session->s_mds);
2633 	}
2634 
2635 	switch (op) {
2636 	case CEPH_SESSION_OPEN:
2637 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2638 			pr_info("mds%d reconnect success\n", session->s_mds);
2639 		session->s_state = CEPH_MDS_SESSION_OPEN;
2640 		renewed_caps(mdsc, session, 0);
2641 		wake = 1;
2642 		if (mdsc->stopping)
2643 			__close_session(mdsc, session);
2644 		break;
2645 
2646 	case CEPH_SESSION_RENEWCAPS:
2647 		if (session->s_renew_seq == seq)
2648 			renewed_caps(mdsc, session, 1);
2649 		break;
2650 
2651 	case CEPH_SESSION_CLOSE:
2652 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2653 			pr_info("mds%d reconnect denied\n", session->s_mds);
2654 		cleanup_session_requests(mdsc, session);
2655 		remove_session_caps(session);
2656 		wake = 2; /* for good measure */
2657 		wake_up_all(&mdsc->session_close_wq);
2658 		break;
2659 
2660 	case CEPH_SESSION_STALE:
2661 		pr_info("mds%d caps went stale, renewing\n",
2662 			session->s_mds);
2663 		spin_lock(&session->s_gen_ttl_lock);
2664 		session->s_cap_gen++;
2665 		session->s_cap_ttl = jiffies - 1;
2666 		spin_unlock(&session->s_gen_ttl_lock);
2667 		send_renew_caps(mdsc, session);
2668 		break;
2669 
2670 	case CEPH_SESSION_RECALL_STATE:
2671 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2672 		break;
2673 
2674 	case CEPH_SESSION_FLUSHMSG:
2675 		send_flushmsg_ack(mdsc, session, seq);
2676 		break;
2677 
2678 	case CEPH_SESSION_FORCE_RO:
2679 		dout("force_session_readonly %p\n", session);
2680 		spin_lock(&session->s_cap_lock);
2681 		session->s_readonly = true;
2682 		spin_unlock(&session->s_cap_lock);
2683 		wake_up_session_caps(session, 0);
2684 		break;
2685 
2686 	default:
2687 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2688 		WARN_ON(1);
2689 	}
2690 
2691 	mutex_unlock(&session->s_mutex);
2692 	if (wake) {
2693 		mutex_lock(&mdsc->mutex);
2694 		__wake_requests(mdsc, &session->s_waiting);
2695 		if (wake == 2)
2696 			kick_requests(mdsc, mds);
2697 		mutex_unlock(&mdsc->mutex);
2698 	}
2699 	return;
2700 
2701 bad:
2702 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2703 	       (int)msg->front.iov_len);
2704 	ceph_msg_dump(msg);
2705 	return;
2706 }
2707 
2708 
2709 /*
2710  * called under session->mutex.
2711  */
2712 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2713 				   struct ceph_mds_session *session)
2714 {
2715 	struct ceph_mds_request *req, *nreq;
2716 	struct rb_node *p;
2717 	int err;
2718 
2719 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2720 
2721 	mutex_lock(&mdsc->mutex);
2722 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2723 		err = __prepare_send_request(mdsc, req, session->s_mds, true);
2724 		if (!err) {
2725 			ceph_msg_get(req->r_request);
2726 			ceph_con_send(&session->s_con, req->r_request);
2727 		}
2728 	}
2729 
2730 	/*
2731 	 * also re-send old requests when MDS enters reconnect stage. So that MDS
2732 	 * can process completed request in clientreplay stage.
2733 	 */
2734 	p = rb_first(&mdsc->request_tree);
2735 	while (p) {
2736 		req = rb_entry(p, struct ceph_mds_request, r_node);
2737 		p = rb_next(p);
2738 		if (req->r_got_unsafe)
2739 			continue;
2740 		if (req->r_attempts == 0)
2741 			continue; /* only old requests */
2742 		if (req->r_session &&
2743 		    req->r_session->s_mds == session->s_mds) {
2744 			err = __prepare_send_request(mdsc, req,
2745 						     session->s_mds, true);
2746 			if (!err) {
2747 				ceph_msg_get(req->r_request);
2748 				ceph_con_send(&session->s_con, req->r_request);
2749 			}
2750 		}
2751 	}
2752 	mutex_unlock(&mdsc->mutex);
2753 }
2754 
2755 /*
2756  * Encode information about a cap for a reconnect with the MDS.
2757  */
2758 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2759 			  void *arg)
2760 {
2761 	union {
2762 		struct ceph_mds_cap_reconnect v2;
2763 		struct ceph_mds_cap_reconnect_v1 v1;
2764 	} rec;
2765 	size_t reclen;
2766 	struct ceph_inode_info *ci;
2767 	struct ceph_reconnect_state *recon_state = arg;
2768 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2769 	char *path;
2770 	int pathlen, err;
2771 	u64 pathbase;
2772 	struct dentry *dentry;
2773 
2774 	ci = cap->ci;
2775 
2776 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2777 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2778 	     ceph_cap_string(cap->issued));
2779 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2780 	if (err)
2781 		return err;
2782 
2783 	dentry = d_find_alias(inode);
2784 	if (dentry) {
2785 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2786 		if (IS_ERR(path)) {
2787 			err = PTR_ERR(path);
2788 			goto out_dput;
2789 		}
2790 	} else {
2791 		path = NULL;
2792 		pathlen = 0;
2793 	}
2794 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2795 	if (err)
2796 		goto out_free;
2797 
2798 	spin_lock(&ci->i_ceph_lock);
2799 	cap->seq = 0;        /* reset cap seq */
2800 	cap->issue_seq = 0;  /* and issue_seq */
2801 	cap->mseq = 0;       /* and migrate_seq */
2802 	cap->cap_gen = cap->session->s_cap_gen;
2803 
2804 	if (recon_state->flock) {
2805 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2806 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2807 		rec.v2.issued = cpu_to_le32(cap->issued);
2808 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2809 		rec.v2.pathbase = cpu_to_le64(pathbase);
2810 		rec.v2.flock_len = 0;
2811 		reclen = sizeof(rec.v2);
2812 	} else {
2813 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2814 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2815 		rec.v1.issued = cpu_to_le32(cap->issued);
2816 		rec.v1.size = cpu_to_le64(inode->i_size);
2817 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2818 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2819 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2820 		rec.v1.pathbase = cpu_to_le64(pathbase);
2821 		reclen = sizeof(rec.v1);
2822 	}
2823 	spin_unlock(&ci->i_ceph_lock);
2824 
2825 	if (recon_state->flock) {
2826 		int num_fcntl_locks, num_flock_locks;
2827 		struct ceph_filelock *flocks;
2828 
2829 encode_again:
2830 		ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2831 		flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2832 				 sizeof(struct ceph_filelock), GFP_NOFS);
2833 		if (!flocks) {
2834 			err = -ENOMEM;
2835 			goto out_free;
2836 		}
2837 		err = ceph_encode_locks_to_buffer(inode, flocks,
2838 						  num_fcntl_locks,
2839 						  num_flock_locks);
2840 		if (err) {
2841 			kfree(flocks);
2842 			if (err == -ENOSPC)
2843 				goto encode_again;
2844 			goto out_free;
2845 		}
2846 		/*
2847 		 * number of encoded locks is stable, so copy to pagelist
2848 		 */
2849 		rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2850 				    (num_fcntl_locks+num_flock_locks) *
2851 				    sizeof(struct ceph_filelock));
2852 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2853 		if (!err)
2854 			err = ceph_locks_to_pagelist(flocks, pagelist,
2855 						     num_fcntl_locks,
2856 						     num_flock_locks);
2857 		kfree(flocks);
2858 	} else {
2859 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2860 	}
2861 
2862 	recon_state->nr_caps++;
2863 out_free:
2864 	kfree(path);
2865 out_dput:
2866 	dput(dentry);
2867 	return err;
2868 }
2869 
2870 
2871 /*
2872  * If an MDS fails and recovers, clients need to reconnect in order to
2873  * reestablish shared state.  This includes all caps issued through
2874  * this session _and_ the snap_realm hierarchy.  Because it's not
2875  * clear which snap realms the mds cares about, we send everything we
2876  * know about.. that ensures we'll then get any new info the
2877  * recovering MDS might have.
2878  *
2879  * This is a relatively heavyweight operation, but it's rare.
2880  *
2881  * called with mdsc->mutex held.
2882  */
2883 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2884 			       struct ceph_mds_session *session)
2885 {
2886 	struct ceph_msg *reply;
2887 	struct rb_node *p;
2888 	int mds = session->s_mds;
2889 	int err = -ENOMEM;
2890 	int s_nr_caps;
2891 	struct ceph_pagelist *pagelist;
2892 	struct ceph_reconnect_state recon_state;
2893 
2894 	pr_info("mds%d reconnect start\n", mds);
2895 
2896 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2897 	if (!pagelist)
2898 		goto fail_nopagelist;
2899 	ceph_pagelist_init(pagelist);
2900 
2901 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2902 	if (!reply)
2903 		goto fail_nomsg;
2904 
2905 	mutex_lock(&session->s_mutex);
2906 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2907 	session->s_seq = 0;
2908 
2909 	dout("session %p state %s\n", session,
2910 	     ceph_session_state_name(session->s_state));
2911 
2912 	spin_lock(&session->s_gen_ttl_lock);
2913 	session->s_cap_gen++;
2914 	spin_unlock(&session->s_gen_ttl_lock);
2915 
2916 	spin_lock(&session->s_cap_lock);
2917 	/* don't know if session is readonly */
2918 	session->s_readonly = 0;
2919 	/*
2920 	 * notify __ceph_remove_cap() that we are composing cap reconnect.
2921 	 * If a cap get released before being added to the cap reconnect,
2922 	 * __ceph_remove_cap() should skip queuing cap release.
2923 	 */
2924 	session->s_cap_reconnect = 1;
2925 	/* drop old cap expires; we're about to reestablish that state */
2926 	cleanup_cap_releases(mdsc, session);
2927 
2928 	/* trim unused caps to reduce MDS's cache rejoin time */
2929 	if (mdsc->fsc->sb->s_root)
2930 		shrink_dcache_parent(mdsc->fsc->sb->s_root);
2931 
2932 	ceph_con_close(&session->s_con);
2933 	ceph_con_open(&session->s_con,
2934 		      CEPH_ENTITY_TYPE_MDS, mds,
2935 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2936 
2937 	/* replay unsafe requests */
2938 	replay_unsafe_requests(mdsc, session);
2939 
2940 	down_read(&mdsc->snap_rwsem);
2941 
2942 	/* traverse this session's caps */
2943 	s_nr_caps = session->s_nr_caps;
2944 	err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2945 	if (err)
2946 		goto fail;
2947 
2948 	recon_state.nr_caps = 0;
2949 	recon_state.pagelist = pagelist;
2950 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2951 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2952 	if (err < 0)
2953 		goto fail;
2954 
2955 	spin_lock(&session->s_cap_lock);
2956 	session->s_cap_reconnect = 0;
2957 	spin_unlock(&session->s_cap_lock);
2958 
2959 	/*
2960 	 * snaprealms.  we provide mds with the ino, seq (version), and
2961 	 * parent for all of our realms.  If the mds has any newer info,
2962 	 * it will tell us.
2963 	 */
2964 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2965 		struct ceph_snap_realm *realm =
2966 			rb_entry(p, struct ceph_snap_realm, node);
2967 		struct ceph_mds_snaprealm_reconnect sr_rec;
2968 
2969 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2970 		     realm->ino, realm->seq, realm->parent_ino);
2971 		sr_rec.ino = cpu_to_le64(realm->ino);
2972 		sr_rec.seq = cpu_to_le64(realm->seq);
2973 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2974 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2975 		if (err)
2976 			goto fail;
2977 	}
2978 
2979 	if (recon_state.flock)
2980 		reply->hdr.version = cpu_to_le16(2);
2981 
2982 	/* raced with cap release? */
2983 	if (s_nr_caps != recon_state.nr_caps) {
2984 		struct page *page = list_first_entry(&pagelist->head,
2985 						     struct page, lru);
2986 		__le32 *addr = kmap_atomic(page);
2987 		*addr = cpu_to_le32(recon_state.nr_caps);
2988 		kunmap_atomic(addr);
2989 	}
2990 
2991 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2992 	ceph_msg_data_add_pagelist(reply, pagelist);
2993 
2994 	ceph_early_kick_flushing_caps(mdsc, session);
2995 
2996 	ceph_con_send(&session->s_con, reply);
2997 
2998 	mutex_unlock(&session->s_mutex);
2999 
3000 	mutex_lock(&mdsc->mutex);
3001 	__wake_requests(mdsc, &session->s_waiting);
3002 	mutex_unlock(&mdsc->mutex);
3003 
3004 	up_read(&mdsc->snap_rwsem);
3005 	return;
3006 
3007 fail:
3008 	ceph_msg_put(reply);
3009 	up_read(&mdsc->snap_rwsem);
3010 	mutex_unlock(&session->s_mutex);
3011 fail_nomsg:
3012 	ceph_pagelist_release(pagelist);
3013 fail_nopagelist:
3014 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3015 	return;
3016 }
3017 
3018 
3019 /*
3020  * compare old and new mdsmaps, kicking requests
3021  * and closing out old connections as necessary
3022  *
3023  * called under mdsc->mutex.
3024  */
3025 static void check_new_map(struct ceph_mds_client *mdsc,
3026 			  struct ceph_mdsmap *newmap,
3027 			  struct ceph_mdsmap *oldmap)
3028 {
3029 	int i;
3030 	int oldstate, newstate;
3031 	struct ceph_mds_session *s;
3032 
3033 	dout("check_new_map new %u old %u\n",
3034 	     newmap->m_epoch, oldmap->m_epoch);
3035 
3036 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
3037 		if (mdsc->sessions[i] == NULL)
3038 			continue;
3039 		s = mdsc->sessions[i];
3040 		oldstate = ceph_mdsmap_get_state(oldmap, i);
3041 		newstate = ceph_mdsmap_get_state(newmap, i);
3042 
3043 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3044 		     i, ceph_mds_state_name(oldstate),
3045 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3046 		     ceph_mds_state_name(newstate),
3047 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3048 		     ceph_session_state_name(s->s_state));
3049 
3050 		if (i >= newmap->m_max_mds ||
3051 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
3052 			   ceph_mdsmap_get_addr(newmap, i),
3053 			   sizeof(struct ceph_entity_addr))) {
3054 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3055 				/* the session never opened, just close it
3056 				 * out now */
3057 				__wake_requests(mdsc, &s->s_waiting);
3058 				__unregister_session(mdsc, s);
3059 			} else {
3060 				/* just close it */
3061 				mutex_unlock(&mdsc->mutex);
3062 				mutex_lock(&s->s_mutex);
3063 				mutex_lock(&mdsc->mutex);
3064 				ceph_con_close(&s->s_con);
3065 				mutex_unlock(&s->s_mutex);
3066 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
3067 			}
3068 		} else if (oldstate == newstate) {
3069 			continue;  /* nothing new with this mds */
3070 		}
3071 
3072 		/*
3073 		 * send reconnect?
3074 		 */
3075 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3076 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
3077 			mutex_unlock(&mdsc->mutex);
3078 			send_mds_reconnect(mdsc, s);
3079 			mutex_lock(&mdsc->mutex);
3080 		}
3081 
3082 		/*
3083 		 * kick request on any mds that has gone active.
3084 		 */
3085 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3086 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
3087 			if (oldstate != CEPH_MDS_STATE_CREATING &&
3088 			    oldstate != CEPH_MDS_STATE_STARTING)
3089 				pr_info("mds%d recovery completed\n", s->s_mds);
3090 			kick_requests(mdsc, i);
3091 			ceph_kick_flushing_caps(mdsc, s);
3092 			wake_up_session_caps(s, 1);
3093 		}
3094 	}
3095 
3096 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
3097 		s = mdsc->sessions[i];
3098 		if (!s)
3099 			continue;
3100 		if (!ceph_mdsmap_is_laggy(newmap, i))
3101 			continue;
3102 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3103 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
3104 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
3105 			dout(" connecting to export targets of laggy mds%d\n",
3106 			     i);
3107 			__open_export_target_sessions(mdsc, s);
3108 		}
3109 	}
3110 }
3111 
3112 
3113 
3114 /*
3115  * leases
3116  */
3117 
3118 /*
3119  * caller must hold session s_mutex, dentry->d_lock
3120  */
3121 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3122 {
3123 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3124 
3125 	ceph_put_mds_session(di->lease_session);
3126 	di->lease_session = NULL;
3127 }
3128 
3129 static void handle_lease(struct ceph_mds_client *mdsc,
3130 			 struct ceph_mds_session *session,
3131 			 struct ceph_msg *msg)
3132 {
3133 	struct super_block *sb = mdsc->fsc->sb;
3134 	struct inode *inode;
3135 	struct dentry *parent, *dentry;
3136 	struct ceph_dentry_info *di;
3137 	int mds = session->s_mds;
3138 	struct ceph_mds_lease *h = msg->front.iov_base;
3139 	u32 seq;
3140 	struct ceph_vino vino;
3141 	struct qstr dname;
3142 	int release = 0;
3143 
3144 	dout("handle_lease from mds%d\n", mds);
3145 
3146 	/* decode */
3147 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3148 		goto bad;
3149 	vino.ino = le64_to_cpu(h->ino);
3150 	vino.snap = CEPH_NOSNAP;
3151 	seq = le32_to_cpu(h->seq);
3152 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3153 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3154 	if (dname.len != get_unaligned_le32(h+1))
3155 		goto bad;
3156 
3157 	/* lookup inode */
3158 	inode = ceph_find_inode(sb, vino);
3159 	dout("handle_lease %s, ino %llx %p %.*s\n",
3160 	     ceph_lease_op_name(h->action), vino.ino, inode,
3161 	     dname.len, dname.name);
3162 
3163 	mutex_lock(&session->s_mutex);
3164 	session->s_seq++;
3165 
3166 	if (inode == NULL) {
3167 		dout("handle_lease no inode %llx\n", vino.ino);
3168 		goto release;
3169 	}
3170 
3171 	/* dentry */
3172 	parent = d_find_alias(inode);
3173 	if (!parent) {
3174 		dout("no parent dentry on inode %p\n", inode);
3175 		WARN_ON(1);
3176 		goto release;  /* hrm... */
3177 	}
3178 	dname.hash = full_name_hash(dname.name, dname.len);
3179 	dentry = d_lookup(parent, &dname);
3180 	dput(parent);
3181 	if (!dentry)
3182 		goto release;
3183 
3184 	spin_lock(&dentry->d_lock);
3185 	di = ceph_dentry(dentry);
3186 	switch (h->action) {
3187 	case CEPH_MDS_LEASE_REVOKE:
3188 		if (di->lease_session == session) {
3189 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3190 				h->seq = cpu_to_le32(di->lease_seq);
3191 			__ceph_mdsc_drop_dentry_lease(dentry);
3192 		}
3193 		release = 1;
3194 		break;
3195 
3196 	case CEPH_MDS_LEASE_RENEW:
3197 		if (di->lease_session == session &&
3198 		    di->lease_gen == session->s_cap_gen &&
3199 		    di->lease_renew_from &&
3200 		    di->lease_renew_after == 0) {
3201 			unsigned long duration =
3202 				msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3203 
3204 			di->lease_seq = seq;
3205 			dentry->d_time = di->lease_renew_from + duration;
3206 			di->lease_renew_after = di->lease_renew_from +
3207 				(duration >> 1);
3208 			di->lease_renew_from = 0;
3209 		}
3210 		break;
3211 	}
3212 	spin_unlock(&dentry->d_lock);
3213 	dput(dentry);
3214 
3215 	if (!release)
3216 		goto out;
3217 
3218 release:
3219 	/* let's just reuse the same message */
3220 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3221 	ceph_msg_get(msg);
3222 	ceph_con_send(&session->s_con, msg);
3223 
3224 out:
3225 	iput(inode);
3226 	mutex_unlock(&session->s_mutex);
3227 	return;
3228 
3229 bad:
3230 	pr_err("corrupt lease message\n");
3231 	ceph_msg_dump(msg);
3232 }
3233 
3234 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3235 			      struct inode *inode,
3236 			      struct dentry *dentry, char action,
3237 			      u32 seq)
3238 {
3239 	struct ceph_msg *msg;
3240 	struct ceph_mds_lease *lease;
3241 	int len = sizeof(*lease) + sizeof(u32);
3242 	int dnamelen = 0;
3243 
3244 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3245 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
3246 	dnamelen = dentry->d_name.len;
3247 	len += dnamelen;
3248 
3249 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3250 	if (!msg)
3251 		return;
3252 	lease = msg->front.iov_base;
3253 	lease->action = action;
3254 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3255 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3256 	lease->seq = cpu_to_le32(seq);
3257 	put_unaligned_le32(dnamelen, lease + 1);
3258 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3259 
3260 	/*
3261 	 * if this is a preemptive lease RELEASE, no need to
3262 	 * flush request stream, since the actual request will
3263 	 * soon follow.
3264 	 */
3265 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3266 
3267 	ceph_con_send(&session->s_con, msg);
3268 }
3269 
3270 /*
3271  * Preemptively release a lease we expect to invalidate anyway.
3272  * Pass @inode always, @dentry is optional.
3273  */
3274 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
3275 			     struct dentry *dentry)
3276 {
3277 	struct ceph_dentry_info *di;
3278 	struct ceph_mds_session *session;
3279 	u32 seq;
3280 
3281 	BUG_ON(inode == NULL);
3282 	BUG_ON(dentry == NULL);
3283 
3284 	/* is dentry lease valid? */
3285 	spin_lock(&dentry->d_lock);
3286 	di = ceph_dentry(dentry);
3287 	if (!di || !di->lease_session ||
3288 	    di->lease_session->s_mds < 0 ||
3289 	    di->lease_gen != di->lease_session->s_cap_gen ||
3290 	    !time_before(jiffies, dentry->d_time)) {
3291 		dout("lease_release inode %p dentry %p -- "
3292 		     "no lease\n",
3293 		     inode, dentry);
3294 		spin_unlock(&dentry->d_lock);
3295 		return;
3296 	}
3297 
3298 	/* we do have a lease on this dentry; note mds and seq */
3299 	session = ceph_get_mds_session(di->lease_session);
3300 	seq = di->lease_seq;
3301 	__ceph_mdsc_drop_dentry_lease(dentry);
3302 	spin_unlock(&dentry->d_lock);
3303 
3304 	dout("lease_release inode %p dentry %p to mds%d\n",
3305 	     inode, dentry, session->s_mds);
3306 	ceph_mdsc_lease_send_msg(session, inode, dentry,
3307 				 CEPH_MDS_LEASE_RELEASE, seq);
3308 	ceph_put_mds_session(session);
3309 }
3310 
3311 /*
3312  * drop all leases (and dentry refs) in preparation for umount
3313  */
3314 static void drop_leases(struct ceph_mds_client *mdsc)
3315 {
3316 	int i;
3317 
3318 	dout("drop_leases\n");
3319 	mutex_lock(&mdsc->mutex);
3320 	for (i = 0; i < mdsc->max_sessions; i++) {
3321 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3322 		if (!s)
3323 			continue;
3324 		mutex_unlock(&mdsc->mutex);
3325 		mutex_lock(&s->s_mutex);
3326 		mutex_unlock(&s->s_mutex);
3327 		ceph_put_mds_session(s);
3328 		mutex_lock(&mdsc->mutex);
3329 	}
3330 	mutex_unlock(&mdsc->mutex);
3331 }
3332 
3333 
3334 
3335 /*
3336  * delayed work -- periodically trim expired leases, renew caps with mds
3337  */
3338 static void schedule_delayed(struct ceph_mds_client *mdsc)
3339 {
3340 	int delay = 5;
3341 	unsigned hz = round_jiffies_relative(HZ * delay);
3342 	schedule_delayed_work(&mdsc->delayed_work, hz);
3343 }
3344 
3345 static void delayed_work(struct work_struct *work)
3346 {
3347 	int i;
3348 	struct ceph_mds_client *mdsc =
3349 		container_of(work, struct ceph_mds_client, delayed_work.work);
3350 	int renew_interval;
3351 	int renew_caps;
3352 
3353 	dout("mdsc delayed_work\n");
3354 	ceph_check_delayed_caps(mdsc);
3355 
3356 	mutex_lock(&mdsc->mutex);
3357 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3358 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3359 				   mdsc->last_renew_caps);
3360 	if (renew_caps)
3361 		mdsc->last_renew_caps = jiffies;
3362 
3363 	for (i = 0; i < mdsc->max_sessions; i++) {
3364 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3365 		if (s == NULL)
3366 			continue;
3367 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3368 			dout("resending session close request for mds%d\n",
3369 			     s->s_mds);
3370 			request_close_session(mdsc, s);
3371 			ceph_put_mds_session(s);
3372 			continue;
3373 		}
3374 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3375 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3376 				s->s_state = CEPH_MDS_SESSION_HUNG;
3377 				pr_info("mds%d hung\n", s->s_mds);
3378 			}
3379 		}
3380 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3381 			/* this mds is failed or recovering, just wait */
3382 			ceph_put_mds_session(s);
3383 			continue;
3384 		}
3385 		mutex_unlock(&mdsc->mutex);
3386 
3387 		mutex_lock(&s->s_mutex);
3388 		if (renew_caps)
3389 			send_renew_caps(mdsc, s);
3390 		else
3391 			ceph_con_keepalive(&s->s_con);
3392 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3393 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3394 			ceph_send_cap_releases(mdsc, s);
3395 		mutex_unlock(&s->s_mutex);
3396 		ceph_put_mds_session(s);
3397 
3398 		mutex_lock(&mdsc->mutex);
3399 	}
3400 	mutex_unlock(&mdsc->mutex);
3401 
3402 	schedule_delayed(mdsc);
3403 }
3404 
3405 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3406 
3407 {
3408 	struct ceph_mds_client *mdsc;
3409 
3410 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3411 	if (!mdsc)
3412 		return -ENOMEM;
3413 	mdsc->fsc = fsc;
3414 	fsc->mdsc = mdsc;
3415 	mutex_init(&mdsc->mutex);
3416 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3417 	if (mdsc->mdsmap == NULL) {
3418 		kfree(mdsc);
3419 		return -ENOMEM;
3420 	}
3421 
3422 	init_completion(&mdsc->safe_umount_waiters);
3423 	init_waitqueue_head(&mdsc->session_close_wq);
3424 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3425 	mdsc->sessions = NULL;
3426 	atomic_set(&mdsc->num_sessions, 0);
3427 	mdsc->max_sessions = 0;
3428 	mdsc->stopping = 0;
3429 	mdsc->last_snap_seq = 0;
3430 	init_rwsem(&mdsc->snap_rwsem);
3431 	mdsc->snap_realms = RB_ROOT;
3432 	INIT_LIST_HEAD(&mdsc->snap_empty);
3433 	spin_lock_init(&mdsc->snap_empty_lock);
3434 	mdsc->last_tid = 0;
3435 	mdsc->oldest_tid = 0;
3436 	mdsc->request_tree = RB_ROOT;
3437 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3438 	mdsc->last_renew_caps = jiffies;
3439 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3440 	spin_lock_init(&mdsc->cap_delay_lock);
3441 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3442 	spin_lock_init(&mdsc->snap_flush_lock);
3443 	mdsc->last_cap_flush_tid = 1;
3444 	mdsc->cap_flush_tree = RB_ROOT;
3445 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3446 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3447 	mdsc->num_cap_flushing = 0;
3448 	spin_lock_init(&mdsc->cap_dirty_lock);
3449 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3450 	spin_lock_init(&mdsc->dentry_lru_lock);
3451 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3452 
3453 	ceph_caps_init(mdsc);
3454 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3455 
3456 	init_rwsem(&mdsc->pool_perm_rwsem);
3457 	mdsc->pool_perm_tree = RB_ROOT;
3458 
3459 	return 0;
3460 }
3461 
3462 /*
3463  * Wait for safe replies on open mds requests.  If we time out, drop
3464  * all requests from the tree to avoid dangling dentry refs.
3465  */
3466 static void wait_requests(struct ceph_mds_client *mdsc)
3467 {
3468 	struct ceph_options *opts = mdsc->fsc->client->options;
3469 	struct ceph_mds_request *req;
3470 
3471 	mutex_lock(&mdsc->mutex);
3472 	if (__get_oldest_req(mdsc)) {
3473 		mutex_unlock(&mdsc->mutex);
3474 
3475 		dout("wait_requests waiting for requests\n");
3476 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3477 				    ceph_timeout_jiffies(opts->mount_timeout));
3478 
3479 		/* tear down remaining requests */
3480 		mutex_lock(&mdsc->mutex);
3481 		while ((req = __get_oldest_req(mdsc))) {
3482 			dout("wait_requests timed out on tid %llu\n",
3483 			     req->r_tid);
3484 			__unregister_request(mdsc, req);
3485 		}
3486 	}
3487 	mutex_unlock(&mdsc->mutex);
3488 	dout("wait_requests done\n");
3489 }
3490 
3491 /*
3492  * called before mount is ro, and before dentries are torn down.
3493  * (hmm, does this still race with new lookups?)
3494  */
3495 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3496 {
3497 	dout("pre_umount\n");
3498 	mdsc->stopping = 1;
3499 
3500 	drop_leases(mdsc);
3501 	ceph_flush_dirty_caps(mdsc);
3502 	wait_requests(mdsc);
3503 
3504 	/*
3505 	 * wait for reply handlers to drop their request refs and
3506 	 * their inode/dcache refs
3507 	 */
3508 	ceph_msgr_flush();
3509 }
3510 
3511 /*
3512  * wait for all write mds requests to flush.
3513  */
3514 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3515 {
3516 	struct ceph_mds_request *req = NULL, *nextreq;
3517 	struct rb_node *n;
3518 
3519 	mutex_lock(&mdsc->mutex);
3520 	dout("wait_unsafe_requests want %lld\n", want_tid);
3521 restart:
3522 	req = __get_oldest_req(mdsc);
3523 	while (req && req->r_tid <= want_tid) {
3524 		/* find next request */
3525 		n = rb_next(&req->r_node);
3526 		if (n)
3527 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3528 		else
3529 			nextreq = NULL;
3530 		if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3531 		    (req->r_op & CEPH_MDS_OP_WRITE)) {
3532 			/* write op */
3533 			ceph_mdsc_get_request(req);
3534 			if (nextreq)
3535 				ceph_mdsc_get_request(nextreq);
3536 			mutex_unlock(&mdsc->mutex);
3537 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3538 			     req->r_tid, want_tid);
3539 			wait_for_completion(&req->r_safe_completion);
3540 			mutex_lock(&mdsc->mutex);
3541 			ceph_mdsc_put_request(req);
3542 			if (!nextreq)
3543 				break;  /* next dne before, so we're done! */
3544 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3545 				/* next request was removed from tree */
3546 				ceph_mdsc_put_request(nextreq);
3547 				goto restart;
3548 			}
3549 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3550 		}
3551 		req = nextreq;
3552 	}
3553 	mutex_unlock(&mdsc->mutex);
3554 	dout("wait_unsafe_requests done\n");
3555 }
3556 
3557 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3558 {
3559 	u64 want_tid, want_flush, want_snap;
3560 
3561 	if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3562 		return;
3563 
3564 	dout("sync\n");
3565 	mutex_lock(&mdsc->mutex);
3566 	want_tid = mdsc->last_tid;
3567 	mutex_unlock(&mdsc->mutex);
3568 
3569 	ceph_flush_dirty_caps(mdsc);
3570 	spin_lock(&mdsc->cap_dirty_lock);
3571 	want_flush = mdsc->last_cap_flush_tid;
3572 	spin_unlock(&mdsc->cap_dirty_lock);
3573 
3574 	down_read(&mdsc->snap_rwsem);
3575 	want_snap = mdsc->last_snap_seq;
3576 	up_read(&mdsc->snap_rwsem);
3577 
3578 	dout("sync want tid %lld flush_seq %lld snap_seq %lld\n",
3579 	     want_tid, want_flush, want_snap);
3580 
3581 	wait_unsafe_requests(mdsc, want_tid);
3582 	wait_caps_flush(mdsc, want_flush, want_snap);
3583 }
3584 
3585 /*
3586  * true if all sessions are closed, or we force unmount
3587  */
3588 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3589 {
3590 	if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3591 		return true;
3592 	return atomic_read(&mdsc->num_sessions) == 0;
3593 }
3594 
3595 /*
3596  * called after sb is ro.
3597  */
3598 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3599 {
3600 	struct ceph_options *opts = mdsc->fsc->client->options;
3601 	struct ceph_mds_session *session;
3602 	int i;
3603 
3604 	dout("close_sessions\n");
3605 
3606 	/* close sessions */
3607 	mutex_lock(&mdsc->mutex);
3608 	for (i = 0; i < mdsc->max_sessions; i++) {
3609 		session = __ceph_lookup_mds_session(mdsc, i);
3610 		if (!session)
3611 			continue;
3612 		mutex_unlock(&mdsc->mutex);
3613 		mutex_lock(&session->s_mutex);
3614 		__close_session(mdsc, session);
3615 		mutex_unlock(&session->s_mutex);
3616 		ceph_put_mds_session(session);
3617 		mutex_lock(&mdsc->mutex);
3618 	}
3619 	mutex_unlock(&mdsc->mutex);
3620 
3621 	dout("waiting for sessions to close\n");
3622 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3623 			   ceph_timeout_jiffies(opts->mount_timeout));
3624 
3625 	/* tear down remaining sessions */
3626 	mutex_lock(&mdsc->mutex);
3627 	for (i = 0; i < mdsc->max_sessions; i++) {
3628 		if (mdsc->sessions[i]) {
3629 			session = get_session(mdsc->sessions[i]);
3630 			__unregister_session(mdsc, session);
3631 			mutex_unlock(&mdsc->mutex);
3632 			mutex_lock(&session->s_mutex);
3633 			remove_session_caps(session);
3634 			mutex_unlock(&session->s_mutex);
3635 			ceph_put_mds_session(session);
3636 			mutex_lock(&mdsc->mutex);
3637 		}
3638 	}
3639 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3640 	mutex_unlock(&mdsc->mutex);
3641 
3642 	ceph_cleanup_empty_realms(mdsc);
3643 
3644 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3645 
3646 	dout("stopped\n");
3647 }
3648 
3649 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3650 {
3651 	struct ceph_mds_session *session;
3652 	int mds;
3653 
3654 	dout("force umount\n");
3655 
3656 	mutex_lock(&mdsc->mutex);
3657 	for (mds = 0; mds < mdsc->max_sessions; mds++) {
3658 		session = __ceph_lookup_mds_session(mdsc, mds);
3659 		if (!session)
3660 			continue;
3661 		mutex_unlock(&mdsc->mutex);
3662 		mutex_lock(&session->s_mutex);
3663 		__close_session(mdsc, session);
3664 		if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3665 			cleanup_session_requests(mdsc, session);
3666 			remove_session_caps(session);
3667 		}
3668 		mutex_unlock(&session->s_mutex);
3669 		ceph_put_mds_session(session);
3670 		mutex_lock(&mdsc->mutex);
3671 		kick_requests(mdsc, mds);
3672 	}
3673 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3674 	mutex_unlock(&mdsc->mutex);
3675 }
3676 
3677 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3678 {
3679 	dout("stop\n");
3680 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3681 	if (mdsc->mdsmap)
3682 		ceph_mdsmap_destroy(mdsc->mdsmap);
3683 	kfree(mdsc->sessions);
3684 	ceph_caps_finalize(mdsc);
3685 	ceph_pool_perm_destroy(mdsc);
3686 }
3687 
3688 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3689 {
3690 	struct ceph_mds_client *mdsc = fsc->mdsc;
3691 
3692 	dout("mdsc_destroy %p\n", mdsc);
3693 	ceph_mdsc_stop(mdsc);
3694 
3695 	/* flush out any connection work with references to us */
3696 	ceph_msgr_flush();
3697 
3698 	fsc->mdsc = NULL;
3699 	kfree(mdsc);
3700 	dout("mdsc_destroy %p done\n", mdsc);
3701 }
3702 
3703 
3704 /*
3705  * handle mds map update.
3706  */
3707 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3708 {
3709 	u32 epoch;
3710 	u32 maplen;
3711 	void *p = msg->front.iov_base;
3712 	void *end = p + msg->front.iov_len;
3713 	struct ceph_mdsmap *newmap, *oldmap;
3714 	struct ceph_fsid fsid;
3715 	int err = -EINVAL;
3716 
3717 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3718 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3719 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3720 		return;
3721 	epoch = ceph_decode_32(&p);
3722 	maplen = ceph_decode_32(&p);
3723 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3724 
3725 	/* do we need it? */
3726 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3727 	mutex_lock(&mdsc->mutex);
3728 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3729 		dout("handle_map epoch %u <= our %u\n",
3730 		     epoch, mdsc->mdsmap->m_epoch);
3731 		mutex_unlock(&mdsc->mutex);
3732 		return;
3733 	}
3734 
3735 	newmap = ceph_mdsmap_decode(&p, end);
3736 	if (IS_ERR(newmap)) {
3737 		err = PTR_ERR(newmap);
3738 		goto bad_unlock;
3739 	}
3740 
3741 	/* swap into place */
3742 	if (mdsc->mdsmap) {
3743 		oldmap = mdsc->mdsmap;
3744 		mdsc->mdsmap = newmap;
3745 		check_new_map(mdsc, newmap, oldmap);
3746 		ceph_mdsmap_destroy(oldmap);
3747 	} else {
3748 		mdsc->mdsmap = newmap;  /* first mds map */
3749 	}
3750 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3751 
3752 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3753 
3754 	mutex_unlock(&mdsc->mutex);
3755 	schedule_delayed(mdsc);
3756 	return;
3757 
3758 bad_unlock:
3759 	mutex_unlock(&mdsc->mutex);
3760 bad:
3761 	pr_err("error decoding mdsmap %d\n", err);
3762 	return;
3763 }
3764 
3765 static struct ceph_connection *con_get(struct ceph_connection *con)
3766 {
3767 	struct ceph_mds_session *s = con->private;
3768 
3769 	if (get_session(s)) {
3770 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3771 		return con;
3772 	}
3773 	dout("mdsc con_get %p FAIL\n", s);
3774 	return NULL;
3775 }
3776 
3777 static void con_put(struct ceph_connection *con)
3778 {
3779 	struct ceph_mds_session *s = con->private;
3780 
3781 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3782 	ceph_put_mds_session(s);
3783 }
3784 
3785 /*
3786  * if the client is unresponsive for long enough, the mds will kill
3787  * the session entirely.
3788  */
3789 static void peer_reset(struct ceph_connection *con)
3790 {
3791 	struct ceph_mds_session *s = con->private;
3792 	struct ceph_mds_client *mdsc = s->s_mdsc;
3793 
3794 	pr_warn("mds%d closed our session\n", s->s_mds);
3795 	send_mds_reconnect(mdsc, s);
3796 }
3797 
3798 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3799 {
3800 	struct ceph_mds_session *s = con->private;
3801 	struct ceph_mds_client *mdsc = s->s_mdsc;
3802 	int type = le16_to_cpu(msg->hdr.type);
3803 
3804 	mutex_lock(&mdsc->mutex);
3805 	if (__verify_registered_session(mdsc, s) < 0) {
3806 		mutex_unlock(&mdsc->mutex);
3807 		goto out;
3808 	}
3809 	mutex_unlock(&mdsc->mutex);
3810 
3811 	switch (type) {
3812 	case CEPH_MSG_MDS_MAP:
3813 		ceph_mdsc_handle_map(mdsc, msg);
3814 		break;
3815 	case CEPH_MSG_CLIENT_SESSION:
3816 		handle_session(s, msg);
3817 		break;
3818 	case CEPH_MSG_CLIENT_REPLY:
3819 		handle_reply(s, msg);
3820 		break;
3821 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3822 		handle_forward(mdsc, s, msg);
3823 		break;
3824 	case CEPH_MSG_CLIENT_CAPS:
3825 		ceph_handle_caps(s, msg);
3826 		break;
3827 	case CEPH_MSG_CLIENT_SNAP:
3828 		ceph_handle_snap(mdsc, s, msg);
3829 		break;
3830 	case CEPH_MSG_CLIENT_LEASE:
3831 		handle_lease(mdsc, s, msg);
3832 		break;
3833 
3834 	default:
3835 		pr_err("received unknown message type %d %s\n", type,
3836 		       ceph_msg_type_name(type));
3837 	}
3838 out:
3839 	ceph_msg_put(msg);
3840 }
3841 
3842 /*
3843  * authentication
3844  */
3845 
3846 /*
3847  * Note: returned pointer is the address of a structure that's
3848  * managed separately.  Caller must *not* attempt to free it.
3849  */
3850 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3851 					int *proto, int force_new)
3852 {
3853 	struct ceph_mds_session *s = con->private;
3854 	struct ceph_mds_client *mdsc = s->s_mdsc;
3855 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3856 	struct ceph_auth_handshake *auth = &s->s_auth;
3857 
3858 	if (force_new && auth->authorizer) {
3859 		ceph_auth_destroy_authorizer(ac, auth->authorizer);
3860 		auth->authorizer = NULL;
3861 	}
3862 	if (!auth->authorizer) {
3863 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3864 						      auth);
3865 		if (ret)
3866 			return ERR_PTR(ret);
3867 	} else {
3868 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3869 						      auth);
3870 		if (ret)
3871 			return ERR_PTR(ret);
3872 	}
3873 	*proto = ac->protocol;
3874 
3875 	return auth;
3876 }
3877 
3878 
3879 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3880 {
3881 	struct ceph_mds_session *s = con->private;
3882 	struct ceph_mds_client *mdsc = s->s_mdsc;
3883 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3884 
3885 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3886 }
3887 
3888 static int invalidate_authorizer(struct ceph_connection *con)
3889 {
3890 	struct ceph_mds_session *s = con->private;
3891 	struct ceph_mds_client *mdsc = s->s_mdsc;
3892 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3893 
3894 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3895 
3896 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3897 }
3898 
3899 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3900 				struct ceph_msg_header *hdr, int *skip)
3901 {
3902 	struct ceph_msg *msg;
3903 	int type = (int) le16_to_cpu(hdr->type);
3904 	int front_len = (int) le32_to_cpu(hdr->front_len);
3905 
3906 	if (con->in_msg)
3907 		return con->in_msg;
3908 
3909 	*skip = 0;
3910 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3911 	if (!msg) {
3912 		pr_err("unable to allocate msg type %d len %d\n",
3913 		       type, front_len);
3914 		return NULL;
3915 	}
3916 
3917 	return msg;
3918 }
3919 
3920 static int sign_message(struct ceph_connection *con, struct ceph_msg *msg)
3921 {
3922        struct ceph_mds_session *s = con->private;
3923        struct ceph_auth_handshake *auth = &s->s_auth;
3924        return ceph_auth_sign_message(auth, msg);
3925 }
3926 
3927 static int check_message_signature(struct ceph_connection *con, struct ceph_msg *msg)
3928 {
3929        struct ceph_mds_session *s = con->private;
3930        struct ceph_auth_handshake *auth = &s->s_auth;
3931        return ceph_auth_check_message_signature(auth, msg);
3932 }
3933 
3934 static const struct ceph_connection_operations mds_con_ops = {
3935 	.get = con_get,
3936 	.put = con_put,
3937 	.dispatch = dispatch,
3938 	.get_authorizer = get_authorizer,
3939 	.verify_authorizer_reply = verify_authorizer_reply,
3940 	.invalidate_authorizer = invalidate_authorizer,
3941 	.peer_reset = peer_reset,
3942 	.alloc_msg = mds_alloc_msg,
3943 	.sign_message = sign_message,
3944 	.check_message_signature = check_message_signature,
3945 };
3946 
3947 /* eof */
3948