xref: /openbmc/linux/fs/ceph/mds_client.c (revision c8ec3743)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/fs.h>
5 #include <linux/wait.h>
6 #include <linux/slab.h>
7 #include <linux/gfp.h>
8 #include <linux/sched.h>
9 #include <linux/debugfs.h>
10 #include <linux/seq_file.h>
11 #include <linux/ratelimit.h>
12 
13 #include "super.h"
14 #include "mds_client.h"
15 
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
22 
23 /*
24  * A cluster of MDS (metadata server) daemons is responsible for
25  * managing the file system namespace (the directory hierarchy and
26  * inodes) and for coordinating shared access to storage.  Metadata is
27  * partitioning hierarchically across a number of servers, and that
28  * partition varies over time as the cluster adjusts the distribution
29  * in order to balance load.
30  *
31  * The MDS client is primarily responsible to managing synchronous
32  * metadata requests for operations like open, unlink, and so forth.
33  * If there is a MDS failure, we find out about it when we (possibly
34  * request and) receive a new MDS map, and can resubmit affected
35  * requests.
36  *
37  * For the most part, though, we take advantage of a lossless
38  * communications channel to the MDS, and do not need to worry about
39  * timing out or resubmitting requests.
40  *
41  * We maintain a stateful "session" with each MDS we interact with.
42  * Within each session, we sent periodic heartbeat messages to ensure
43  * any capabilities or leases we have been issues remain valid.  If
44  * the session times out and goes stale, our leases and capabilities
45  * are no longer valid.
46  */
47 
48 struct ceph_reconnect_state {
49 	int nr_caps;
50 	struct ceph_pagelist *pagelist;
51 	unsigned msg_version;
52 };
53 
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 			    struct list_head *head);
56 
57 static const struct ceph_connection_operations mds_con_ops;
58 
59 
60 /*
61  * mds reply parsing
62  */
63 
64 /*
65  * parse individual inode info
66  */
67 static int parse_reply_info_in(void **p, void *end,
68 			       struct ceph_mds_reply_info_in *info,
69 			       u64 features)
70 {
71 	int err = -EIO;
72 
73 	info->in = *p;
74 	*p += sizeof(struct ceph_mds_reply_inode) +
75 		sizeof(*info->in->fragtree.splits) *
76 		le32_to_cpu(info->in->fragtree.nsplits);
77 
78 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 	ceph_decode_need(p, end, info->symlink_len, bad);
80 	info->symlink = *p;
81 	*p += info->symlink_len;
82 
83 	ceph_decode_copy_safe(p, end, &info->dir_layout,
84 			      sizeof(info->dir_layout), bad);
85 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
86 	ceph_decode_need(p, end, info->xattr_len, bad);
87 	info->xattr_data = *p;
88 	*p += info->xattr_len;
89 
90 	if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
91 		ceph_decode_64_safe(p, end, info->inline_version, bad);
92 		ceph_decode_32_safe(p, end, info->inline_len, bad);
93 		ceph_decode_need(p, end, info->inline_len, bad);
94 		info->inline_data = *p;
95 		*p += info->inline_len;
96 	} else
97 		info->inline_version = CEPH_INLINE_NONE;
98 
99 	if (features & CEPH_FEATURE_MDS_QUOTA) {
100 		u8 struct_v, struct_compat;
101 		u32 struct_len;
102 
103 		/*
104 		 * both struct_v and struct_compat are expected to be >= 1
105 		 */
106 		ceph_decode_8_safe(p, end, struct_v, bad);
107 		ceph_decode_8_safe(p, end, struct_compat, bad);
108 		if (!struct_v || !struct_compat)
109 			goto bad;
110 		ceph_decode_32_safe(p, end, struct_len, bad);
111 		ceph_decode_need(p, end, struct_len, bad);
112 		ceph_decode_64_safe(p, end, info->max_bytes, bad);
113 		ceph_decode_64_safe(p, end, info->max_files, bad);
114 	} else {
115 		info->max_bytes = 0;
116 		info->max_files = 0;
117 	}
118 
119 	info->pool_ns_len = 0;
120 	info->pool_ns_data = NULL;
121 	if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
122 		ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
123 		if (info->pool_ns_len > 0) {
124 			ceph_decode_need(p, end, info->pool_ns_len, bad);
125 			info->pool_ns_data = *p;
126 			*p += info->pool_ns_len;
127 		}
128 	}
129 
130 	return 0;
131 bad:
132 	return err;
133 }
134 
135 /*
136  * parse a normal reply, which may contain a (dir+)dentry and/or a
137  * target inode.
138  */
139 static int parse_reply_info_trace(void **p, void *end,
140 				  struct ceph_mds_reply_info_parsed *info,
141 				  u64 features)
142 {
143 	int err;
144 
145 	if (info->head->is_dentry) {
146 		err = parse_reply_info_in(p, end, &info->diri, features);
147 		if (err < 0)
148 			goto out_bad;
149 
150 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
151 			goto bad;
152 		info->dirfrag = *p;
153 		*p += sizeof(*info->dirfrag) +
154 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
155 		if (unlikely(*p > end))
156 			goto bad;
157 
158 		ceph_decode_32_safe(p, end, info->dname_len, bad);
159 		ceph_decode_need(p, end, info->dname_len, bad);
160 		info->dname = *p;
161 		*p += info->dname_len;
162 		info->dlease = *p;
163 		*p += sizeof(*info->dlease);
164 	}
165 
166 	if (info->head->is_target) {
167 		err = parse_reply_info_in(p, end, &info->targeti, features);
168 		if (err < 0)
169 			goto out_bad;
170 	}
171 
172 	if (unlikely(*p != end))
173 		goto bad;
174 	return 0;
175 
176 bad:
177 	err = -EIO;
178 out_bad:
179 	pr_err("problem parsing mds trace %d\n", err);
180 	return err;
181 }
182 
183 /*
184  * parse readdir results
185  */
186 static int parse_reply_info_dir(void **p, void *end,
187 				struct ceph_mds_reply_info_parsed *info,
188 				u64 features)
189 {
190 	u32 num, i = 0;
191 	int err;
192 
193 	info->dir_dir = *p;
194 	if (*p + sizeof(*info->dir_dir) > end)
195 		goto bad;
196 	*p += sizeof(*info->dir_dir) +
197 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
198 	if (*p > end)
199 		goto bad;
200 
201 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
202 	num = ceph_decode_32(p);
203 	{
204 		u16 flags = ceph_decode_16(p);
205 		info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
206 		info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
207 		info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
208 		info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH);
209 	}
210 	if (num == 0)
211 		goto done;
212 
213 	BUG_ON(!info->dir_entries);
214 	if ((unsigned long)(info->dir_entries + num) >
215 	    (unsigned long)info->dir_entries + info->dir_buf_size) {
216 		pr_err("dir contents are larger than expected\n");
217 		WARN_ON(1);
218 		goto bad;
219 	}
220 
221 	info->dir_nr = num;
222 	while (num) {
223 		struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
224 		/* dentry */
225 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
226 		rde->name_len = ceph_decode_32(p);
227 		ceph_decode_need(p, end, rde->name_len, bad);
228 		rde->name = *p;
229 		*p += rde->name_len;
230 		dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name);
231 		rde->lease = *p;
232 		*p += sizeof(struct ceph_mds_reply_lease);
233 
234 		/* inode */
235 		err = parse_reply_info_in(p, end, &rde->inode, features);
236 		if (err < 0)
237 			goto out_bad;
238 		/* ceph_readdir_prepopulate() will update it */
239 		rde->offset = 0;
240 		i++;
241 		num--;
242 	}
243 
244 done:
245 	if (*p != end)
246 		goto bad;
247 	return 0;
248 
249 bad:
250 	err = -EIO;
251 out_bad:
252 	pr_err("problem parsing dir contents %d\n", err);
253 	return err;
254 }
255 
256 /*
257  * parse fcntl F_GETLK results
258  */
259 static int parse_reply_info_filelock(void **p, void *end,
260 				     struct ceph_mds_reply_info_parsed *info,
261 				     u64 features)
262 {
263 	if (*p + sizeof(*info->filelock_reply) > end)
264 		goto bad;
265 
266 	info->filelock_reply = *p;
267 	*p += sizeof(*info->filelock_reply);
268 
269 	if (unlikely(*p != end))
270 		goto bad;
271 	return 0;
272 
273 bad:
274 	return -EIO;
275 }
276 
277 /*
278  * parse create results
279  */
280 static int parse_reply_info_create(void **p, void *end,
281 				  struct ceph_mds_reply_info_parsed *info,
282 				  u64 features)
283 {
284 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
285 		if (*p == end) {
286 			info->has_create_ino = false;
287 		} else {
288 			info->has_create_ino = true;
289 			info->ino = ceph_decode_64(p);
290 		}
291 	}
292 
293 	if (unlikely(*p != end))
294 		goto bad;
295 	return 0;
296 
297 bad:
298 	return -EIO;
299 }
300 
301 /*
302  * parse extra results
303  */
304 static int parse_reply_info_extra(void **p, void *end,
305 				  struct ceph_mds_reply_info_parsed *info,
306 				  u64 features)
307 {
308 	u32 op = le32_to_cpu(info->head->op);
309 
310 	if (op == CEPH_MDS_OP_GETFILELOCK)
311 		return parse_reply_info_filelock(p, end, info, features);
312 	else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP)
313 		return parse_reply_info_dir(p, end, info, features);
314 	else if (op == CEPH_MDS_OP_CREATE)
315 		return parse_reply_info_create(p, end, info, features);
316 	else
317 		return -EIO;
318 }
319 
320 /*
321  * parse entire mds reply
322  */
323 static int parse_reply_info(struct ceph_msg *msg,
324 			    struct ceph_mds_reply_info_parsed *info,
325 			    u64 features)
326 {
327 	void *p, *end;
328 	u32 len;
329 	int err;
330 
331 	info->head = msg->front.iov_base;
332 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
333 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
334 
335 	/* trace */
336 	ceph_decode_32_safe(&p, end, len, bad);
337 	if (len > 0) {
338 		ceph_decode_need(&p, end, len, bad);
339 		err = parse_reply_info_trace(&p, p+len, info, features);
340 		if (err < 0)
341 			goto out_bad;
342 	}
343 
344 	/* extra */
345 	ceph_decode_32_safe(&p, end, len, bad);
346 	if (len > 0) {
347 		ceph_decode_need(&p, end, len, bad);
348 		err = parse_reply_info_extra(&p, p+len, info, features);
349 		if (err < 0)
350 			goto out_bad;
351 	}
352 
353 	/* snap blob */
354 	ceph_decode_32_safe(&p, end, len, bad);
355 	info->snapblob_len = len;
356 	info->snapblob = p;
357 	p += len;
358 
359 	if (p != end)
360 		goto bad;
361 	return 0;
362 
363 bad:
364 	err = -EIO;
365 out_bad:
366 	pr_err("mds parse_reply err %d\n", err);
367 	return err;
368 }
369 
370 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
371 {
372 	if (!info->dir_entries)
373 		return;
374 	free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
375 }
376 
377 
378 /*
379  * sessions
380  */
381 const char *ceph_session_state_name(int s)
382 {
383 	switch (s) {
384 	case CEPH_MDS_SESSION_NEW: return "new";
385 	case CEPH_MDS_SESSION_OPENING: return "opening";
386 	case CEPH_MDS_SESSION_OPEN: return "open";
387 	case CEPH_MDS_SESSION_HUNG: return "hung";
388 	case CEPH_MDS_SESSION_CLOSING: return "closing";
389 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
390 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
391 	case CEPH_MDS_SESSION_REJECTED: return "rejected";
392 	default: return "???";
393 	}
394 }
395 
396 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
397 {
398 	if (refcount_inc_not_zero(&s->s_ref)) {
399 		dout("mdsc get_session %p %d -> %d\n", s,
400 		     refcount_read(&s->s_ref)-1, refcount_read(&s->s_ref));
401 		return s;
402 	} else {
403 		dout("mdsc get_session %p 0 -- FAIL\n", s);
404 		return NULL;
405 	}
406 }
407 
408 void ceph_put_mds_session(struct ceph_mds_session *s)
409 {
410 	dout("mdsc put_session %p %d -> %d\n", s,
411 	     refcount_read(&s->s_ref), refcount_read(&s->s_ref)-1);
412 	if (refcount_dec_and_test(&s->s_ref)) {
413 		if (s->s_auth.authorizer)
414 			ceph_auth_destroy_authorizer(s->s_auth.authorizer);
415 		kfree(s);
416 	}
417 }
418 
419 /*
420  * called under mdsc->mutex
421  */
422 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
423 						   int mds)
424 {
425 	struct ceph_mds_session *session;
426 
427 	if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
428 		return NULL;
429 	session = mdsc->sessions[mds];
430 	dout("lookup_mds_session %p %d\n", session,
431 	     refcount_read(&session->s_ref));
432 	get_session(session);
433 	return session;
434 }
435 
436 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
437 {
438 	if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
439 		return false;
440 	else
441 		return true;
442 }
443 
444 static int __verify_registered_session(struct ceph_mds_client *mdsc,
445 				       struct ceph_mds_session *s)
446 {
447 	if (s->s_mds >= mdsc->max_sessions ||
448 	    mdsc->sessions[s->s_mds] != s)
449 		return -ENOENT;
450 	return 0;
451 }
452 
453 /*
454  * create+register a new session for given mds.
455  * called under mdsc->mutex.
456  */
457 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
458 						 int mds)
459 {
460 	struct ceph_mds_session *s;
461 
462 	if (mds >= mdsc->mdsmap->m_num_mds)
463 		return ERR_PTR(-EINVAL);
464 
465 	s = kzalloc(sizeof(*s), GFP_NOFS);
466 	if (!s)
467 		return ERR_PTR(-ENOMEM);
468 
469 	if (mds >= mdsc->max_sessions) {
470 		int newmax = 1 << get_count_order(mds + 1);
471 		struct ceph_mds_session **sa;
472 
473 		dout("%s: realloc to %d\n", __func__, newmax);
474 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
475 		if (!sa)
476 			goto fail_realloc;
477 		if (mdsc->sessions) {
478 			memcpy(sa, mdsc->sessions,
479 			       mdsc->max_sessions * sizeof(void *));
480 			kfree(mdsc->sessions);
481 		}
482 		mdsc->sessions = sa;
483 		mdsc->max_sessions = newmax;
484 	}
485 
486 	dout("%s: mds%d\n", __func__, mds);
487 	s->s_mdsc = mdsc;
488 	s->s_mds = mds;
489 	s->s_state = CEPH_MDS_SESSION_NEW;
490 	s->s_ttl = 0;
491 	s->s_seq = 0;
492 	mutex_init(&s->s_mutex);
493 
494 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
495 
496 	spin_lock_init(&s->s_gen_ttl_lock);
497 	s->s_cap_gen = 0;
498 	s->s_cap_ttl = jiffies - 1;
499 
500 	spin_lock_init(&s->s_cap_lock);
501 	s->s_renew_requested = 0;
502 	s->s_renew_seq = 0;
503 	INIT_LIST_HEAD(&s->s_caps);
504 	s->s_nr_caps = 0;
505 	s->s_trim_caps = 0;
506 	refcount_set(&s->s_ref, 1);
507 	INIT_LIST_HEAD(&s->s_waiting);
508 	INIT_LIST_HEAD(&s->s_unsafe);
509 	s->s_num_cap_releases = 0;
510 	s->s_cap_reconnect = 0;
511 	s->s_cap_iterator = NULL;
512 	INIT_LIST_HEAD(&s->s_cap_releases);
513 	INIT_LIST_HEAD(&s->s_cap_flushing);
514 
515 	mdsc->sessions[mds] = s;
516 	atomic_inc(&mdsc->num_sessions);
517 	refcount_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
518 
519 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
520 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
521 
522 	return s;
523 
524 fail_realloc:
525 	kfree(s);
526 	return ERR_PTR(-ENOMEM);
527 }
528 
529 /*
530  * called under mdsc->mutex
531  */
532 static void __unregister_session(struct ceph_mds_client *mdsc,
533 			       struct ceph_mds_session *s)
534 {
535 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
536 	BUG_ON(mdsc->sessions[s->s_mds] != s);
537 	mdsc->sessions[s->s_mds] = NULL;
538 	ceph_con_close(&s->s_con);
539 	ceph_put_mds_session(s);
540 	atomic_dec(&mdsc->num_sessions);
541 }
542 
543 /*
544  * drop session refs in request.
545  *
546  * should be last request ref, or hold mdsc->mutex
547  */
548 static void put_request_session(struct ceph_mds_request *req)
549 {
550 	if (req->r_session) {
551 		ceph_put_mds_session(req->r_session);
552 		req->r_session = NULL;
553 	}
554 }
555 
556 void ceph_mdsc_release_request(struct kref *kref)
557 {
558 	struct ceph_mds_request *req = container_of(kref,
559 						    struct ceph_mds_request,
560 						    r_kref);
561 	destroy_reply_info(&req->r_reply_info);
562 	if (req->r_request)
563 		ceph_msg_put(req->r_request);
564 	if (req->r_reply)
565 		ceph_msg_put(req->r_reply);
566 	if (req->r_inode) {
567 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
568 		iput(req->r_inode);
569 	}
570 	if (req->r_parent)
571 		ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
572 	iput(req->r_target_inode);
573 	if (req->r_dentry)
574 		dput(req->r_dentry);
575 	if (req->r_old_dentry)
576 		dput(req->r_old_dentry);
577 	if (req->r_old_dentry_dir) {
578 		/*
579 		 * track (and drop pins for) r_old_dentry_dir
580 		 * separately, since r_old_dentry's d_parent may have
581 		 * changed between the dir mutex being dropped and
582 		 * this request being freed.
583 		 */
584 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
585 				  CEPH_CAP_PIN);
586 		iput(req->r_old_dentry_dir);
587 	}
588 	kfree(req->r_path1);
589 	kfree(req->r_path2);
590 	if (req->r_pagelist)
591 		ceph_pagelist_release(req->r_pagelist);
592 	put_request_session(req);
593 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
594 	kfree(req);
595 }
596 
597 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
598 
599 /*
600  * lookup session, bump ref if found.
601  *
602  * called under mdsc->mutex.
603  */
604 static struct ceph_mds_request *
605 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
606 {
607 	struct ceph_mds_request *req;
608 
609 	req = lookup_request(&mdsc->request_tree, tid);
610 	if (req)
611 		ceph_mdsc_get_request(req);
612 
613 	return req;
614 }
615 
616 /*
617  * Register an in-flight request, and assign a tid.  Link to directory
618  * are modifying (if any).
619  *
620  * Called under mdsc->mutex.
621  */
622 static void __register_request(struct ceph_mds_client *mdsc,
623 			       struct ceph_mds_request *req,
624 			       struct inode *dir)
625 {
626 	int ret = 0;
627 
628 	req->r_tid = ++mdsc->last_tid;
629 	if (req->r_num_caps) {
630 		ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation,
631 					req->r_num_caps);
632 		if (ret < 0) {
633 			pr_err("__register_request %p "
634 			       "failed to reserve caps: %d\n", req, ret);
635 			/* set req->r_err to fail early from __do_request */
636 			req->r_err = ret;
637 			return;
638 		}
639 	}
640 	dout("__register_request %p tid %lld\n", req, req->r_tid);
641 	ceph_mdsc_get_request(req);
642 	insert_request(&mdsc->request_tree, req);
643 
644 	req->r_uid = current_fsuid();
645 	req->r_gid = current_fsgid();
646 
647 	if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
648 		mdsc->oldest_tid = req->r_tid;
649 
650 	if (dir) {
651 		ihold(dir);
652 		req->r_unsafe_dir = dir;
653 	}
654 }
655 
656 static void __unregister_request(struct ceph_mds_client *mdsc,
657 				 struct ceph_mds_request *req)
658 {
659 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
660 
661 	/* Never leave an unregistered request on an unsafe list! */
662 	list_del_init(&req->r_unsafe_item);
663 
664 	if (req->r_tid == mdsc->oldest_tid) {
665 		struct rb_node *p = rb_next(&req->r_node);
666 		mdsc->oldest_tid = 0;
667 		while (p) {
668 			struct ceph_mds_request *next_req =
669 				rb_entry(p, struct ceph_mds_request, r_node);
670 			if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
671 				mdsc->oldest_tid = next_req->r_tid;
672 				break;
673 			}
674 			p = rb_next(p);
675 		}
676 	}
677 
678 	erase_request(&mdsc->request_tree, req);
679 
680 	if (req->r_unsafe_dir  &&
681 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
682 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
683 		spin_lock(&ci->i_unsafe_lock);
684 		list_del_init(&req->r_unsafe_dir_item);
685 		spin_unlock(&ci->i_unsafe_lock);
686 	}
687 	if (req->r_target_inode &&
688 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
689 		struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
690 		spin_lock(&ci->i_unsafe_lock);
691 		list_del_init(&req->r_unsafe_target_item);
692 		spin_unlock(&ci->i_unsafe_lock);
693 	}
694 
695 	if (req->r_unsafe_dir) {
696 		iput(req->r_unsafe_dir);
697 		req->r_unsafe_dir = NULL;
698 	}
699 
700 	complete_all(&req->r_safe_completion);
701 
702 	ceph_mdsc_put_request(req);
703 }
704 
705 /*
706  * Walk back up the dentry tree until we hit a dentry representing a
707  * non-snapshot inode. We do this using the rcu_read_lock (which must be held
708  * when calling this) to ensure that the objects won't disappear while we're
709  * working with them. Once we hit a candidate dentry, we attempt to take a
710  * reference to it, and return that as the result.
711  */
712 static struct inode *get_nonsnap_parent(struct dentry *dentry)
713 {
714 	struct inode *inode = NULL;
715 
716 	while (dentry && !IS_ROOT(dentry)) {
717 		inode = d_inode_rcu(dentry);
718 		if (!inode || ceph_snap(inode) == CEPH_NOSNAP)
719 			break;
720 		dentry = dentry->d_parent;
721 	}
722 	if (inode)
723 		inode = igrab(inode);
724 	return inode;
725 }
726 
727 /*
728  * Choose mds to send request to next.  If there is a hint set in the
729  * request (e.g., due to a prior forward hint from the mds), use that.
730  * Otherwise, consult frag tree and/or caps to identify the
731  * appropriate mds.  If all else fails, choose randomly.
732  *
733  * Called under mdsc->mutex.
734  */
735 static int __choose_mds(struct ceph_mds_client *mdsc,
736 			struct ceph_mds_request *req)
737 {
738 	struct inode *inode;
739 	struct ceph_inode_info *ci;
740 	struct ceph_cap *cap;
741 	int mode = req->r_direct_mode;
742 	int mds = -1;
743 	u32 hash = req->r_direct_hash;
744 	bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags);
745 
746 	/*
747 	 * is there a specific mds we should try?  ignore hint if we have
748 	 * no session and the mds is not up (active or recovering).
749 	 */
750 	if (req->r_resend_mds >= 0 &&
751 	    (__have_session(mdsc, req->r_resend_mds) ||
752 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
753 		dout("choose_mds using resend_mds mds%d\n",
754 		     req->r_resend_mds);
755 		return req->r_resend_mds;
756 	}
757 
758 	if (mode == USE_RANDOM_MDS)
759 		goto random;
760 
761 	inode = NULL;
762 	if (req->r_inode) {
763 		if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) {
764 			inode = req->r_inode;
765 			ihold(inode);
766 		} else {
767 			/* req->r_dentry is non-null for LSSNAP request */
768 			rcu_read_lock();
769 			inode = get_nonsnap_parent(req->r_dentry);
770 			rcu_read_unlock();
771 			dout("__choose_mds using snapdir's parent %p\n", inode);
772 		}
773 	} else if (req->r_dentry) {
774 		/* ignore race with rename; old or new d_parent is okay */
775 		struct dentry *parent;
776 		struct inode *dir;
777 
778 		rcu_read_lock();
779 		parent = req->r_dentry->d_parent;
780 		dir = req->r_parent ? : d_inode_rcu(parent);
781 
782 		if (!dir || dir->i_sb != mdsc->fsc->sb) {
783 			/*  not this fs or parent went negative */
784 			inode = d_inode(req->r_dentry);
785 			if (inode)
786 				ihold(inode);
787 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
788 			/* direct snapped/virtual snapdir requests
789 			 * based on parent dir inode */
790 			inode = get_nonsnap_parent(parent);
791 			dout("__choose_mds using nonsnap parent %p\n", inode);
792 		} else {
793 			/* dentry target */
794 			inode = d_inode(req->r_dentry);
795 			if (!inode || mode == USE_AUTH_MDS) {
796 				/* dir + name */
797 				inode = igrab(dir);
798 				hash = ceph_dentry_hash(dir, req->r_dentry);
799 				is_hash = true;
800 			} else {
801 				ihold(inode);
802 			}
803 		}
804 		rcu_read_unlock();
805 	}
806 
807 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
808 	     (int)hash, mode);
809 	if (!inode)
810 		goto random;
811 	ci = ceph_inode(inode);
812 
813 	if (is_hash && S_ISDIR(inode->i_mode)) {
814 		struct ceph_inode_frag frag;
815 		int found;
816 
817 		ceph_choose_frag(ci, hash, &frag, &found);
818 		if (found) {
819 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
820 				u8 r;
821 
822 				/* choose a random replica */
823 				get_random_bytes(&r, 1);
824 				r %= frag.ndist;
825 				mds = frag.dist[r];
826 				dout("choose_mds %p %llx.%llx "
827 				     "frag %u mds%d (%d/%d)\n",
828 				     inode, ceph_vinop(inode),
829 				     frag.frag, mds,
830 				     (int)r, frag.ndist);
831 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
832 				    CEPH_MDS_STATE_ACTIVE)
833 					goto out;
834 			}
835 
836 			/* since this file/dir wasn't known to be
837 			 * replicated, then we want to look for the
838 			 * authoritative mds. */
839 			mode = USE_AUTH_MDS;
840 			if (frag.mds >= 0) {
841 				/* choose auth mds */
842 				mds = frag.mds;
843 				dout("choose_mds %p %llx.%llx "
844 				     "frag %u mds%d (auth)\n",
845 				     inode, ceph_vinop(inode), frag.frag, mds);
846 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
847 				    CEPH_MDS_STATE_ACTIVE)
848 					goto out;
849 			}
850 		}
851 	}
852 
853 	spin_lock(&ci->i_ceph_lock);
854 	cap = NULL;
855 	if (mode == USE_AUTH_MDS)
856 		cap = ci->i_auth_cap;
857 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
858 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
859 	if (!cap) {
860 		spin_unlock(&ci->i_ceph_lock);
861 		iput(inode);
862 		goto random;
863 	}
864 	mds = cap->session->s_mds;
865 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
866 	     inode, ceph_vinop(inode), mds,
867 	     cap == ci->i_auth_cap ? "auth " : "", cap);
868 	spin_unlock(&ci->i_ceph_lock);
869 out:
870 	iput(inode);
871 	return mds;
872 
873 random:
874 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
875 	dout("choose_mds chose random mds%d\n", mds);
876 	return mds;
877 }
878 
879 
880 /*
881  * session messages
882  */
883 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
884 {
885 	struct ceph_msg *msg;
886 	struct ceph_mds_session_head *h;
887 
888 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
889 			   false);
890 	if (!msg) {
891 		pr_err("create_session_msg ENOMEM creating msg\n");
892 		return NULL;
893 	}
894 	h = msg->front.iov_base;
895 	h->op = cpu_to_le32(op);
896 	h->seq = cpu_to_le64(seq);
897 
898 	return msg;
899 }
900 
901 static void encode_supported_features(void **p, void *end)
902 {
903 	static const unsigned char bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED;
904 	static const size_t count = ARRAY_SIZE(bits);
905 
906 	if (count > 0) {
907 		size_t i;
908 		size_t size = ((size_t)bits[count - 1] + 64) / 64 * 8;
909 
910 		BUG_ON(*p + 4 + size > end);
911 		ceph_encode_32(p, size);
912 		memset(*p, 0, size);
913 		for (i = 0; i < count; i++)
914 			((unsigned char*)(*p))[i / 8] |= 1 << (bits[i] % 8);
915 		*p += size;
916 	} else {
917 		BUG_ON(*p + 4 > end);
918 		ceph_encode_32(p, 0);
919 	}
920 }
921 
922 /*
923  * session message, specialization for CEPH_SESSION_REQUEST_OPEN
924  * to include additional client metadata fields.
925  */
926 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
927 {
928 	struct ceph_msg *msg;
929 	struct ceph_mds_session_head *h;
930 	int i = -1;
931 	int extra_bytes = 0;
932 	int metadata_key_count = 0;
933 	struct ceph_options *opt = mdsc->fsc->client->options;
934 	struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
935 	void *p, *end;
936 
937 	const char* metadata[][2] = {
938 		{"hostname", mdsc->nodename},
939 		{"kernel_version", init_utsname()->release},
940 		{"entity_id", opt->name ? : ""},
941 		{"root", fsopt->server_path ? : "/"},
942 		{NULL, NULL}
943 	};
944 
945 	/* Calculate serialized length of metadata */
946 	extra_bytes = 4;  /* map length */
947 	for (i = 0; metadata[i][0]; ++i) {
948 		extra_bytes += 8 + strlen(metadata[i][0]) +
949 			strlen(metadata[i][1]);
950 		metadata_key_count++;
951 	}
952 	/* supported feature */
953 	extra_bytes += 4 + 8;
954 
955 	/* Allocate the message */
956 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes,
957 			   GFP_NOFS, false);
958 	if (!msg) {
959 		pr_err("create_session_msg ENOMEM creating msg\n");
960 		return NULL;
961 	}
962 	p = msg->front.iov_base;
963 	end = p + msg->front.iov_len;
964 
965 	h = p;
966 	h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
967 	h->seq = cpu_to_le64(seq);
968 
969 	/*
970 	 * Serialize client metadata into waiting buffer space, using
971 	 * the format that userspace expects for map<string, string>
972 	 *
973 	 * ClientSession messages with metadata are v2
974 	 */
975 	msg->hdr.version = cpu_to_le16(3);
976 	msg->hdr.compat_version = cpu_to_le16(1);
977 
978 	/* The write pointer, following the session_head structure */
979 	p += sizeof(*h);
980 
981 	/* Number of entries in the map */
982 	ceph_encode_32(&p, metadata_key_count);
983 
984 	/* Two length-prefixed strings for each entry in the map */
985 	for (i = 0; metadata[i][0]; ++i) {
986 		size_t const key_len = strlen(metadata[i][0]);
987 		size_t const val_len = strlen(metadata[i][1]);
988 
989 		ceph_encode_32(&p, key_len);
990 		memcpy(p, metadata[i][0], key_len);
991 		p += key_len;
992 		ceph_encode_32(&p, val_len);
993 		memcpy(p, metadata[i][1], val_len);
994 		p += val_len;
995 	}
996 
997 	encode_supported_features(&p, end);
998 	msg->front.iov_len = p - msg->front.iov_base;
999 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1000 
1001 	return msg;
1002 }
1003 
1004 /*
1005  * send session open request.
1006  *
1007  * called under mdsc->mutex
1008  */
1009 static int __open_session(struct ceph_mds_client *mdsc,
1010 			  struct ceph_mds_session *session)
1011 {
1012 	struct ceph_msg *msg;
1013 	int mstate;
1014 	int mds = session->s_mds;
1015 
1016 	/* wait for mds to go active? */
1017 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
1018 	dout("open_session to mds%d (%s)\n", mds,
1019 	     ceph_mds_state_name(mstate));
1020 	session->s_state = CEPH_MDS_SESSION_OPENING;
1021 	session->s_renew_requested = jiffies;
1022 
1023 	/* send connect message */
1024 	msg = create_session_open_msg(mdsc, session->s_seq);
1025 	if (!msg)
1026 		return -ENOMEM;
1027 	ceph_con_send(&session->s_con, msg);
1028 	return 0;
1029 }
1030 
1031 /*
1032  * open sessions for any export targets for the given mds
1033  *
1034  * called under mdsc->mutex
1035  */
1036 static struct ceph_mds_session *
1037 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
1038 {
1039 	struct ceph_mds_session *session;
1040 
1041 	session = __ceph_lookup_mds_session(mdsc, target);
1042 	if (!session) {
1043 		session = register_session(mdsc, target);
1044 		if (IS_ERR(session))
1045 			return session;
1046 	}
1047 	if (session->s_state == CEPH_MDS_SESSION_NEW ||
1048 	    session->s_state == CEPH_MDS_SESSION_CLOSING)
1049 		__open_session(mdsc, session);
1050 
1051 	return session;
1052 }
1053 
1054 struct ceph_mds_session *
1055 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
1056 {
1057 	struct ceph_mds_session *session;
1058 
1059 	dout("open_export_target_session to mds%d\n", target);
1060 
1061 	mutex_lock(&mdsc->mutex);
1062 	session = __open_export_target_session(mdsc, target);
1063 	mutex_unlock(&mdsc->mutex);
1064 
1065 	return session;
1066 }
1067 
1068 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
1069 					  struct ceph_mds_session *session)
1070 {
1071 	struct ceph_mds_info *mi;
1072 	struct ceph_mds_session *ts;
1073 	int i, mds = session->s_mds;
1074 
1075 	if (mds >= mdsc->mdsmap->m_num_mds)
1076 		return;
1077 
1078 	mi = &mdsc->mdsmap->m_info[mds];
1079 	dout("open_export_target_sessions for mds%d (%d targets)\n",
1080 	     session->s_mds, mi->num_export_targets);
1081 
1082 	for (i = 0; i < mi->num_export_targets; i++) {
1083 		ts = __open_export_target_session(mdsc, mi->export_targets[i]);
1084 		if (!IS_ERR(ts))
1085 			ceph_put_mds_session(ts);
1086 	}
1087 }
1088 
1089 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
1090 					   struct ceph_mds_session *session)
1091 {
1092 	mutex_lock(&mdsc->mutex);
1093 	__open_export_target_sessions(mdsc, session);
1094 	mutex_unlock(&mdsc->mutex);
1095 }
1096 
1097 /*
1098  * session caps
1099  */
1100 
1101 static void detach_cap_releases(struct ceph_mds_session *session,
1102 				struct list_head *target)
1103 {
1104 	lockdep_assert_held(&session->s_cap_lock);
1105 
1106 	list_splice_init(&session->s_cap_releases, target);
1107 	session->s_num_cap_releases = 0;
1108 	dout("dispose_cap_releases mds%d\n", session->s_mds);
1109 }
1110 
1111 static void dispose_cap_releases(struct ceph_mds_client *mdsc,
1112 				 struct list_head *dispose)
1113 {
1114 	while (!list_empty(dispose)) {
1115 		struct ceph_cap *cap;
1116 		/* zero out the in-progress message */
1117 		cap = list_first_entry(dispose, struct ceph_cap, session_caps);
1118 		list_del(&cap->session_caps);
1119 		ceph_put_cap(mdsc, cap);
1120 	}
1121 }
1122 
1123 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1124 				     struct ceph_mds_session *session)
1125 {
1126 	struct ceph_mds_request *req;
1127 	struct rb_node *p;
1128 
1129 	dout("cleanup_session_requests mds%d\n", session->s_mds);
1130 	mutex_lock(&mdsc->mutex);
1131 	while (!list_empty(&session->s_unsafe)) {
1132 		req = list_first_entry(&session->s_unsafe,
1133 				       struct ceph_mds_request, r_unsafe_item);
1134 		pr_warn_ratelimited(" dropping unsafe request %llu\n",
1135 				    req->r_tid);
1136 		__unregister_request(mdsc, req);
1137 	}
1138 	/* zero r_attempts, so kick_requests() will re-send requests */
1139 	p = rb_first(&mdsc->request_tree);
1140 	while (p) {
1141 		req = rb_entry(p, struct ceph_mds_request, r_node);
1142 		p = rb_next(p);
1143 		if (req->r_session &&
1144 		    req->r_session->s_mds == session->s_mds)
1145 			req->r_attempts = 0;
1146 	}
1147 	mutex_unlock(&mdsc->mutex);
1148 }
1149 
1150 /*
1151  * Helper to safely iterate over all caps associated with a session, with
1152  * special care taken to handle a racing __ceph_remove_cap().
1153  *
1154  * Caller must hold session s_mutex.
1155  */
1156 static int iterate_session_caps(struct ceph_mds_session *session,
1157 				 int (*cb)(struct inode *, struct ceph_cap *,
1158 					    void *), void *arg)
1159 {
1160 	struct list_head *p;
1161 	struct ceph_cap *cap;
1162 	struct inode *inode, *last_inode = NULL;
1163 	struct ceph_cap *old_cap = NULL;
1164 	int ret;
1165 
1166 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1167 	spin_lock(&session->s_cap_lock);
1168 	p = session->s_caps.next;
1169 	while (p != &session->s_caps) {
1170 		cap = list_entry(p, struct ceph_cap, session_caps);
1171 		inode = igrab(&cap->ci->vfs_inode);
1172 		if (!inode) {
1173 			p = p->next;
1174 			continue;
1175 		}
1176 		session->s_cap_iterator = cap;
1177 		spin_unlock(&session->s_cap_lock);
1178 
1179 		if (last_inode) {
1180 			iput(last_inode);
1181 			last_inode = NULL;
1182 		}
1183 		if (old_cap) {
1184 			ceph_put_cap(session->s_mdsc, old_cap);
1185 			old_cap = NULL;
1186 		}
1187 
1188 		ret = cb(inode, cap, arg);
1189 		last_inode = inode;
1190 
1191 		spin_lock(&session->s_cap_lock);
1192 		p = p->next;
1193 		if (!cap->ci) {
1194 			dout("iterate_session_caps  finishing cap %p removal\n",
1195 			     cap);
1196 			BUG_ON(cap->session != session);
1197 			cap->session = NULL;
1198 			list_del_init(&cap->session_caps);
1199 			session->s_nr_caps--;
1200 			if (cap->queue_release) {
1201 				list_add_tail(&cap->session_caps,
1202 					      &session->s_cap_releases);
1203 				session->s_num_cap_releases++;
1204 			} else {
1205 				old_cap = cap;  /* put_cap it w/o locks held */
1206 			}
1207 		}
1208 		if (ret < 0)
1209 			goto out;
1210 	}
1211 	ret = 0;
1212 out:
1213 	session->s_cap_iterator = NULL;
1214 	spin_unlock(&session->s_cap_lock);
1215 
1216 	iput(last_inode);
1217 	if (old_cap)
1218 		ceph_put_cap(session->s_mdsc, old_cap);
1219 
1220 	return ret;
1221 }
1222 
1223 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1224 				  void *arg)
1225 {
1226 	struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg;
1227 	struct ceph_inode_info *ci = ceph_inode(inode);
1228 	LIST_HEAD(to_remove);
1229 	bool drop = false;
1230 	bool invalidate = false;
1231 
1232 	dout("removing cap %p, ci is %p, inode is %p\n",
1233 	     cap, ci, &ci->vfs_inode);
1234 	spin_lock(&ci->i_ceph_lock);
1235 	if (cap->mds_wanted | cap->issued)
1236 		ci->i_ceph_flags |= CEPH_I_CAP_DROPPED;
1237 	__ceph_remove_cap(cap, false);
1238 	if (!ci->i_auth_cap) {
1239 		struct ceph_cap_flush *cf;
1240 		struct ceph_mds_client *mdsc = fsc->mdsc;
1241 
1242 		if (ci->i_wrbuffer_ref > 0 &&
1243 		    READ_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
1244 			invalidate = true;
1245 
1246 		while (!list_empty(&ci->i_cap_flush_list)) {
1247 			cf = list_first_entry(&ci->i_cap_flush_list,
1248 					      struct ceph_cap_flush, i_list);
1249 			list_move(&cf->i_list, &to_remove);
1250 		}
1251 
1252 		spin_lock(&mdsc->cap_dirty_lock);
1253 
1254 		list_for_each_entry(cf, &to_remove, i_list)
1255 			list_del(&cf->g_list);
1256 
1257 		if (!list_empty(&ci->i_dirty_item)) {
1258 			pr_warn_ratelimited(
1259 				" dropping dirty %s state for %p %lld\n",
1260 				ceph_cap_string(ci->i_dirty_caps),
1261 				inode, ceph_ino(inode));
1262 			ci->i_dirty_caps = 0;
1263 			list_del_init(&ci->i_dirty_item);
1264 			drop = true;
1265 		}
1266 		if (!list_empty(&ci->i_flushing_item)) {
1267 			pr_warn_ratelimited(
1268 				" dropping dirty+flushing %s state for %p %lld\n",
1269 				ceph_cap_string(ci->i_flushing_caps),
1270 				inode, ceph_ino(inode));
1271 			ci->i_flushing_caps = 0;
1272 			list_del_init(&ci->i_flushing_item);
1273 			mdsc->num_cap_flushing--;
1274 			drop = true;
1275 		}
1276 		spin_unlock(&mdsc->cap_dirty_lock);
1277 
1278 		if (atomic_read(&ci->i_filelock_ref) > 0) {
1279 			/* make further file lock syscall return -EIO */
1280 			ci->i_ceph_flags |= CEPH_I_ERROR_FILELOCK;
1281 			pr_warn_ratelimited(" dropping file locks for %p %lld\n",
1282 					    inode, ceph_ino(inode));
1283 		}
1284 
1285 		if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1286 			list_add(&ci->i_prealloc_cap_flush->i_list, &to_remove);
1287 			ci->i_prealloc_cap_flush = NULL;
1288 		}
1289 	}
1290 	spin_unlock(&ci->i_ceph_lock);
1291 	while (!list_empty(&to_remove)) {
1292 		struct ceph_cap_flush *cf;
1293 		cf = list_first_entry(&to_remove,
1294 				      struct ceph_cap_flush, i_list);
1295 		list_del(&cf->i_list);
1296 		ceph_free_cap_flush(cf);
1297 	}
1298 
1299 	wake_up_all(&ci->i_cap_wq);
1300 	if (invalidate)
1301 		ceph_queue_invalidate(inode);
1302 	if (drop)
1303 		iput(inode);
1304 	return 0;
1305 }
1306 
1307 /*
1308  * caller must hold session s_mutex
1309  */
1310 static void remove_session_caps(struct ceph_mds_session *session)
1311 {
1312 	struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1313 	struct super_block *sb = fsc->sb;
1314 	LIST_HEAD(dispose);
1315 
1316 	dout("remove_session_caps on %p\n", session);
1317 	iterate_session_caps(session, remove_session_caps_cb, fsc);
1318 
1319 	wake_up_all(&fsc->mdsc->cap_flushing_wq);
1320 
1321 	spin_lock(&session->s_cap_lock);
1322 	if (session->s_nr_caps > 0) {
1323 		struct inode *inode;
1324 		struct ceph_cap *cap, *prev = NULL;
1325 		struct ceph_vino vino;
1326 		/*
1327 		 * iterate_session_caps() skips inodes that are being
1328 		 * deleted, we need to wait until deletions are complete.
1329 		 * __wait_on_freeing_inode() is designed for the job,
1330 		 * but it is not exported, so use lookup inode function
1331 		 * to access it.
1332 		 */
1333 		while (!list_empty(&session->s_caps)) {
1334 			cap = list_entry(session->s_caps.next,
1335 					 struct ceph_cap, session_caps);
1336 			if (cap == prev)
1337 				break;
1338 			prev = cap;
1339 			vino = cap->ci->i_vino;
1340 			spin_unlock(&session->s_cap_lock);
1341 
1342 			inode = ceph_find_inode(sb, vino);
1343 			iput(inode);
1344 
1345 			spin_lock(&session->s_cap_lock);
1346 		}
1347 	}
1348 
1349 	// drop cap expires and unlock s_cap_lock
1350 	detach_cap_releases(session, &dispose);
1351 
1352 	BUG_ON(session->s_nr_caps > 0);
1353 	BUG_ON(!list_empty(&session->s_cap_flushing));
1354 	spin_unlock(&session->s_cap_lock);
1355 	dispose_cap_releases(session->s_mdsc, &dispose);
1356 }
1357 
1358 enum {
1359 	RECONNECT,
1360 	RENEWCAPS,
1361 	FORCE_RO,
1362 };
1363 
1364 /*
1365  * wake up any threads waiting on this session's caps.  if the cap is
1366  * old (didn't get renewed on the client reconnect), remove it now.
1367  *
1368  * caller must hold s_mutex.
1369  */
1370 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1371 			      void *arg)
1372 {
1373 	struct ceph_inode_info *ci = ceph_inode(inode);
1374 	unsigned long ev = (unsigned long)arg;
1375 
1376 	if (ev == RECONNECT) {
1377 		spin_lock(&ci->i_ceph_lock);
1378 		ci->i_wanted_max_size = 0;
1379 		ci->i_requested_max_size = 0;
1380 		spin_unlock(&ci->i_ceph_lock);
1381 	} else if (ev == RENEWCAPS) {
1382 		if (cap->cap_gen < cap->session->s_cap_gen) {
1383 			/* mds did not re-issue stale cap */
1384 			spin_lock(&ci->i_ceph_lock);
1385 			cap->issued = cap->implemented = CEPH_CAP_PIN;
1386 			/* make sure mds knows what we want */
1387 			if (__ceph_caps_file_wanted(ci) & ~cap->mds_wanted)
1388 				ci->i_ceph_flags |= CEPH_I_CAP_DROPPED;
1389 			spin_unlock(&ci->i_ceph_lock);
1390 		}
1391 	} else if (ev == FORCE_RO) {
1392 	}
1393 	wake_up_all(&ci->i_cap_wq);
1394 	return 0;
1395 }
1396 
1397 static void wake_up_session_caps(struct ceph_mds_session *session, int ev)
1398 {
1399 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1400 	iterate_session_caps(session, wake_up_session_cb,
1401 			     (void *)(unsigned long)ev);
1402 }
1403 
1404 /*
1405  * Send periodic message to MDS renewing all currently held caps.  The
1406  * ack will reset the expiration for all caps from this session.
1407  *
1408  * caller holds s_mutex
1409  */
1410 static int send_renew_caps(struct ceph_mds_client *mdsc,
1411 			   struct ceph_mds_session *session)
1412 {
1413 	struct ceph_msg *msg;
1414 	int state;
1415 
1416 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1417 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1418 		pr_info("mds%d caps stale\n", session->s_mds);
1419 	session->s_renew_requested = jiffies;
1420 
1421 	/* do not try to renew caps until a recovering mds has reconnected
1422 	 * with its clients. */
1423 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1424 	if (state < CEPH_MDS_STATE_RECONNECT) {
1425 		dout("send_renew_caps ignoring mds%d (%s)\n",
1426 		     session->s_mds, ceph_mds_state_name(state));
1427 		return 0;
1428 	}
1429 
1430 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1431 		ceph_mds_state_name(state));
1432 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1433 				 ++session->s_renew_seq);
1434 	if (!msg)
1435 		return -ENOMEM;
1436 	ceph_con_send(&session->s_con, msg);
1437 	return 0;
1438 }
1439 
1440 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1441 			     struct ceph_mds_session *session, u64 seq)
1442 {
1443 	struct ceph_msg *msg;
1444 
1445 	dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1446 	     session->s_mds, ceph_session_state_name(session->s_state), seq);
1447 	msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1448 	if (!msg)
1449 		return -ENOMEM;
1450 	ceph_con_send(&session->s_con, msg);
1451 	return 0;
1452 }
1453 
1454 
1455 /*
1456  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1457  *
1458  * Called under session->s_mutex
1459  */
1460 static void renewed_caps(struct ceph_mds_client *mdsc,
1461 			 struct ceph_mds_session *session, int is_renew)
1462 {
1463 	int was_stale;
1464 	int wake = 0;
1465 
1466 	spin_lock(&session->s_cap_lock);
1467 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1468 
1469 	session->s_cap_ttl = session->s_renew_requested +
1470 		mdsc->mdsmap->m_session_timeout*HZ;
1471 
1472 	if (was_stale) {
1473 		if (time_before(jiffies, session->s_cap_ttl)) {
1474 			pr_info("mds%d caps renewed\n", session->s_mds);
1475 			wake = 1;
1476 		} else {
1477 			pr_info("mds%d caps still stale\n", session->s_mds);
1478 		}
1479 	}
1480 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1481 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1482 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1483 	spin_unlock(&session->s_cap_lock);
1484 
1485 	if (wake)
1486 		wake_up_session_caps(session, RENEWCAPS);
1487 }
1488 
1489 /*
1490  * send a session close request
1491  */
1492 static int request_close_session(struct ceph_mds_client *mdsc,
1493 				 struct ceph_mds_session *session)
1494 {
1495 	struct ceph_msg *msg;
1496 
1497 	dout("request_close_session mds%d state %s seq %lld\n",
1498 	     session->s_mds, ceph_session_state_name(session->s_state),
1499 	     session->s_seq);
1500 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1501 	if (!msg)
1502 		return -ENOMEM;
1503 	ceph_con_send(&session->s_con, msg);
1504 	return 1;
1505 }
1506 
1507 /*
1508  * Called with s_mutex held.
1509  */
1510 static int __close_session(struct ceph_mds_client *mdsc,
1511 			 struct ceph_mds_session *session)
1512 {
1513 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1514 		return 0;
1515 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1516 	return request_close_session(mdsc, session);
1517 }
1518 
1519 static bool drop_negative_children(struct dentry *dentry)
1520 {
1521 	struct dentry *child;
1522 	bool all_negative = true;
1523 
1524 	if (!d_is_dir(dentry))
1525 		goto out;
1526 
1527 	spin_lock(&dentry->d_lock);
1528 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
1529 		if (d_really_is_positive(child)) {
1530 			all_negative = false;
1531 			break;
1532 		}
1533 	}
1534 	spin_unlock(&dentry->d_lock);
1535 
1536 	if (all_negative)
1537 		shrink_dcache_parent(dentry);
1538 out:
1539 	return all_negative;
1540 }
1541 
1542 /*
1543  * Trim old(er) caps.
1544  *
1545  * Because we can't cache an inode without one or more caps, we do
1546  * this indirectly: if a cap is unused, we prune its aliases, at which
1547  * point the inode will hopefully get dropped to.
1548  *
1549  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1550  * memory pressure from the MDS, though, so it needn't be perfect.
1551  */
1552 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1553 {
1554 	struct ceph_mds_session *session = arg;
1555 	struct ceph_inode_info *ci = ceph_inode(inode);
1556 	int used, wanted, oissued, mine;
1557 
1558 	if (session->s_trim_caps <= 0)
1559 		return -1;
1560 
1561 	spin_lock(&ci->i_ceph_lock);
1562 	mine = cap->issued | cap->implemented;
1563 	used = __ceph_caps_used(ci);
1564 	wanted = __ceph_caps_file_wanted(ci);
1565 	oissued = __ceph_caps_issued_other(ci, cap);
1566 
1567 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1568 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1569 	     ceph_cap_string(used), ceph_cap_string(wanted));
1570 	if (cap == ci->i_auth_cap) {
1571 		if (ci->i_dirty_caps || ci->i_flushing_caps ||
1572 		    !list_empty(&ci->i_cap_snaps))
1573 			goto out;
1574 		if ((used | wanted) & CEPH_CAP_ANY_WR)
1575 			goto out;
1576 		/* Note: it's possible that i_filelock_ref becomes non-zero
1577 		 * after dropping auth caps. It doesn't hurt because reply
1578 		 * of lock mds request will re-add auth caps. */
1579 		if (atomic_read(&ci->i_filelock_ref) > 0)
1580 			goto out;
1581 	}
1582 	/* The inode has cached pages, but it's no longer used.
1583 	 * we can safely drop it */
1584 	if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1585 	    !(oissued & CEPH_CAP_FILE_CACHE)) {
1586 	  used = 0;
1587 	  oissued = 0;
1588 	}
1589 	if ((used | wanted) & ~oissued & mine)
1590 		goto out;   /* we need these caps */
1591 
1592 	if (oissued) {
1593 		/* we aren't the only cap.. just remove us */
1594 		__ceph_remove_cap(cap, true);
1595 		session->s_trim_caps--;
1596 	} else {
1597 		struct dentry *dentry;
1598 		/* try dropping referring dentries */
1599 		spin_unlock(&ci->i_ceph_lock);
1600 		dentry = d_find_any_alias(inode);
1601 		if (dentry && drop_negative_children(dentry)) {
1602 			int count;
1603 			dput(dentry);
1604 			d_prune_aliases(inode);
1605 			count = atomic_read(&inode->i_count);
1606 			if (count == 1)
1607 				session->s_trim_caps--;
1608 			dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1609 			     inode, cap, count);
1610 		} else {
1611 			dput(dentry);
1612 		}
1613 		return 0;
1614 	}
1615 
1616 out:
1617 	spin_unlock(&ci->i_ceph_lock);
1618 	return 0;
1619 }
1620 
1621 /*
1622  * Trim session cap count down to some max number.
1623  */
1624 int ceph_trim_caps(struct ceph_mds_client *mdsc,
1625 		   struct ceph_mds_session *session,
1626 		   int max_caps)
1627 {
1628 	int trim_caps = session->s_nr_caps - max_caps;
1629 
1630 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1631 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1632 	if (trim_caps > 0) {
1633 		session->s_trim_caps = trim_caps;
1634 		iterate_session_caps(session, trim_caps_cb, session);
1635 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1636 		     session->s_mds, session->s_nr_caps, max_caps,
1637 			trim_caps - session->s_trim_caps);
1638 		session->s_trim_caps = 0;
1639 	}
1640 
1641 	ceph_send_cap_releases(mdsc, session);
1642 	return 0;
1643 }
1644 
1645 static int check_caps_flush(struct ceph_mds_client *mdsc,
1646 			    u64 want_flush_tid)
1647 {
1648 	int ret = 1;
1649 
1650 	spin_lock(&mdsc->cap_dirty_lock);
1651 	if (!list_empty(&mdsc->cap_flush_list)) {
1652 		struct ceph_cap_flush *cf =
1653 			list_first_entry(&mdsc->cap_flush_list,
1654 					 struct ceph_cap_flush, g_list);
1655 		if (cf->tid <= want_flush_tid) {
1656 			dout("check_caps_flush still flushing tid "
1657 			     "%llu <= %llu\n", cf->tid, want_flush_tid);
1658 			ret = 0;
1659 		}
1660 	}
1661 	spin_unlock(&mdsc->cap_dirty_lock);
1662 	return ret;
1663 }
1664 
1665 /*
1666  * flush all dirty inode data to disk.
1667  *
1668  * returns true if we've flushed through want_flush_tid
1669  */
1670 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1671 			    u64 want_flush_tid)
1672 {
1673 	dout("check_caps_flush want %llu\n", want_flush_tid);
1674 
1675 	wait_event(mdsc->cap_flushing_wq,
1676 		   check_caps_flush(mdsc, want_flush_tid));
1677 
1678 	dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1679 }
1680 
1681 /*
1682  * called under s_mutex
1683  */
1684 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1685 			    struct ceph_mds_session *session)
1686 {
1687 	struct ceph_msg *msg = NULL;
1688 	struct ceph_mds_cap_release *head;
1689 	struct ceph_mds_cap_item *item;
1690 	struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc;
1691 	struct ceph_cap *cap;
1692 	LIST_HEAD(tmp_list);
1693 	int num_cap_releases;
1694 	__le32	barrier, *cap_barrier;
1695 
1696 	down_read(&osdc->lock);
1697 	barrier = cpu_to_le32(osdc->epoch_barrier);
1698 	up_read(&osdc->lock);
1699 
1700 	spin_lock(&session->s_cap_lock);
1701 again:
1702 	list_splice_init(&session->s_cap_releases, &tmp_list);
1703 	num_cap_releases = session->s_num_cap_releases;
1704 	session->s_num_cap_releases = 0;
1705 	spin_unlock(&session->s_cap_lock);
1706 
1707 	while (!list_empty(&tmp_list)) {
1708 		if (!msg) {
1709 			msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1710 					PAGE_SIZE, GFP_NOFS, false);
1711 			if (!msg)
1712 				goto out_err;
1713 			head = msg->front.iov_base;
1714 			head->num = cpu_to_le32(0);
1715 			msg->front.iov_len = sizeof(*head);
1716 
1717 			msg->hdr.version = cpu_to_le16(2);
1718 			msg->hdr.compat_version = cpu_to_le16(1);
1719 		}
1720 
1721 		cap = list_first_entry(&tmp_list, struct ceph_cap,
1722 					session_caps);
1723 		list_del(&cap->session_caps);
1724 		num_cap_releases--;
1725 
1726 		head = msg->front.iov_base;
1727 		le32_add_cpu(&head->num, 1);
1728 		item = msg->front.iov_base + msg->front.iov_len;
1729 		item->ino = cpu_to_le64(cap->cap_ino);
1730 		item->cap_id = cpu_to_le64(cap->cap_id);
1731 		item->migrate_seq = cpu_to_le32(cap->mseq);
1732 		item->seq = cpu_to_le32(cap->issue_seq);
1733 		msg->front.iov_len += sizeof(*item);
1734 
1735 		ceph_put_cap(mdsc, cap);
1736 
1737 		if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1738 			// Append cap_barrier field
1739 			cap_barrier = msg->front.iov_base + msg->front.iov_len;
1740 			*cap_barrier = barrier;
1741 			msg->front.iov_len += sizeof(*cap_barrier);
1742 
1743 			msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1744 			dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1745 			ceph_con_send(&session->s_con, msg);
1746 			msg = NULL;
1747 		}
1748 	}
1749 
1750 	BUG_ON(num_cap_releases != 0);
1751 
1752 	spin_lock(&session->s_cap_lock);
1753 	if (!list_empty(&session->s_cap_releases))
1754 		goto again;
1755 	spin_unlock(&session->s_cap_lock);
1756 
1757 	if (msg) {
1758 		// Append cap_barrier field
1759 		cap_barrier = msg->front.iov_base + msg->front.iov_len;
1760 		*cap_barrier = barrier;
1761 		msg->front.iov_len += sizeof(*cap_barrier);
1762 
1763 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1764 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1765 		ceph_con_send(&session->s_con, msg);
1766 	}
1767 	return;
1768 out_err:
1769 	pr_err("send_cap_releases mds%d, failed to allocate message\n",
1770 		session->s_mds);
1771 	spin_lock(&session->s_cap_lock);
1772 	list_splice(&tmp_list, &session->s_cap_releases);
1773 	session->s_num_cap_releases += num_cap_releases;
1774 	spin_unlock(&session->s_cap_lock);
1775 }
1776 
1777 /*
1778  * requests
1779  */
1780 
1781 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1782 				    struct inode *dir)
1783 {
1784 	struct ceph_inode_info *ci = ceph_inode(dir);
1785 	struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1786 	struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1787 	size_t size = sizeof(struct ceph_mds_reply_dir_entry);
1788 	int order, num_entries;
1789 
1790 	spin_lock(&ci->i_ceph_lock);
1791 	num_entries = ci->i_files + ci->i_subdirs;
1792 	spin_unlock(&ci->i_ceph_lock);
1793 	num_entries = max(num_entries, 1);
1794 	num_entries = min(num_entries, opt->max_readdir);
1795 
1796 	order = get_order(size * num_entries);
1797 	while (order >= 0) {
1798 		rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
1799 							     __GFP_NOWARN,
1800 							     order);
1801 		if (rinfo->dir_entries)
1802 			break;
1803 		order--;
1804 	}
1805 	if (!rinfo->dir_entries)
1806 		return -ENOMEM;
1807 
1808 	num_entries = (PAGE_SIZE << order) / size;
1809 	num_entries = min(num_entries, opt->max_readdir);
1810 
1811 	rinfo->dir_buf_size = PAGE_SIZE << order;
1812 	req->r_num_caps = num_entries + 1;
1813 	req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1814 	req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1815 	return 0;
1816 }
1817 
1818 /*
1819  * Create an mds request.
1820  */
1821 struct ceph_mds_request *
1822 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1823 {
1824 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1825 	struct timespec64 ts;
1826 
1827 	if (!req)
1828 		return ERR_PTR(-ENOMEM);
1829 
1830 	mutex_init(&req->r_fill_mutex);
1831 	req->r_mdsc = mdsc;
1832 	req->r_started = jiffies;
1833 	req->r_resend_mds = -1;
1834 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1835 	INIT_LIST_HEAD(&req->r_unsafe_target_item);
1836 	req->r_fmode = -1;
1837 	kref_init(&req->r_kref);
1838 	RB_CLEAR_NODE(&req->r_node);
1839 	INIT_LIST_HEAD(&req->r_wait);
1840 	init_completion(&req->r_completion);
1841 	init_completion(&req->r_safe_completion);
1842 	INIT_LIST_HEAD(&req->r_unsafe_item);
1843 
1844 	ktime_get_coarse_real_ts64(&ts);
1845 	req->r_stamp = timespec64_trunc(ts, mdsc->fsc->sb->s_time_gran);
1846 
1847 	req->r_op = op;
1848 	req->r_direct_mode = mode;
1849 	return req;
1850 }
1851 
1852 /*
1853  * return oldest (lowest) request, tid in request tree, 0 if none.
1854  *
1855  * called under mdsc->mutex.
1856  */
1857 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1858 {
1859 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1860 		return NULL;
1861 	return rb_entry(rb_first(&mdsc->request_tree),
1862 			struct ceph_mds_request, r_node);
1863 }
1864 
1865 static inline  u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1866 {
1867 	return mdsc->oldest_tid;
1868 }
1869 
1870 /*
1871  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1872  * on build_path_from_dentry in fs/cifs/dir.c.
1873  *
1874  * If @stop_on_nosnap, generate path relative to the first non-snapped
1875  * inode.
1876  *
1877  * Encode hidden .snap dirs as a double /, i.e.
1878  *   foo/.snap/bar -> foo//bar
1879  */
1880 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1881 			   int stop_on_nosnap)
1882 {
1883 	struct dentry *temp;
1884 	char *path;
1885 	int len, pos;
1886 	unsigned seq;
1887 
1888 	if (!dentry)
1889 		return ERR_PTR(-EINVAL);
1890 
1891 retry:
1892 	len = 0;
1893 	seq = read_seqbegin(&rename_lock);
1894 	rcu_read_lock();
1895 	for (temp = dentry; !IS_ROOT(temp);) {
1896 		struct inode *inode = d_inode(temp);
1897 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1898 			len++;  /* slash only */
1899 		else if (stop_on_nosnap && inode &&
1900 			 ceph_snap(inode) == CEPH_NOSNAP)
1901 			break;
1902 		else
1903 			len += 1 + temp->d_name.len;
1904 		temp = temp->d_parent;
1905 	}
1906 	rcu_read_unlock();
1907 	if (len)
1908 		len--;  /* no leading '/' */
1909 
1910 	path = kmalloc(len+1, GFP_NOFS);
1911 	if (!path)
1912 		return ERR_PTR(-ENOMEM);
1913 	pos = len;
1914 	path[pos] = 0;	/* trailing null */
1915 	rcu_read_lock();
1916 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1917 		struct inode *inode;
1918 
1919 		spin_lock(&temp->d_lock);
1920 		inode = d_inode(temp);
1921 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1922 			dout("build_path path+%d: %p SNAPDIR\n",
1923 			     pos, temp);
1924 		} else if (stop_on_nosnap && inode &&
1925 			   ceph_snap(inode) == CEPH_NOSNAP) {
1926 			spin_unlock(&temp->d_lock);
1927 			break;
1928 		} else {
1929 			pos -= temp->d_name.len;
1930 			if (pos < 0) {
1931 				spin_unlock(&temp->d_lock);
1932 				break;
1933 			}
1934 			strncpy(path + pos, temp->d_name.name,
1935 				temp->d_name.len);
1936 		}
1937 		spin_unlock(&temp->d_lock);
1938 		if (pos)
1939 			path[--pos] = '/';
1940 		temp = temp->d_parent;
1941 	}
1942 	rcu_read_unlock();
1943 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1944 		pr_err("build_path did not end path lookup where "
1945 		       "expected, namelen is %d, pos is %d\n", len, pos);
1946 		/* presumably this is only possible if racing with a
1947 		   rename of one of the parent directories (we can not
1948 		   lock the dentries above us to prevent this, but
1949 		   retrying should be harmless) */
1950 		kfree(path);
1951 		goto retry;
1952 	}
1953 
1954 	*base = ceph_ino(d_inode(temp));
1955 	*plen = len;
1956 	dout("build_path on %p %d built %llx '%.*s'\n",
1957 	     dentry, d_count(dentry), *base, len, path);
1958 	return path;
1959 }
1960 
1961 static int build_dentry_path(struct dentry *dentry, struct inode *dir,
1962 			     const char **ppath, int *ppathlen, u64 *pino,
1963 			     int *pfreepath)
1964 {
1965 	char *path;
1966 
1967 	rcu_read_lock();
1968 	if (!dir)
1969 		dir = d_inode_rcu(dentry->d_parent);
1970 	if (dir && ceph_snap(dir) == CEPH_NOSNAP) {
1971 		*pino = ceph_ino(dir);
1972 		rcu_read_unlock();
1973 		*ppath = dentry->d_name.name;
1974 		*ppathlen = dentry->d_name.len;
1975 		return 0;
1976 	}
1977 	rcu_read_unlock();
1978 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1979 	if (IS_ERR(path))
1980 		return PTR_ERR(path);
1981 	*ppath = path;
1982 	*pfreepath = 1;
1983 	return 0;
1984 }
1985 
1986 static int build_inode_path(struct inode *inode,
1987 			    const char **ppath, int *ppathlen, u64 *pino,
1988 			    int *pfreepath)
1989 {
1990 	struct dentry *dentry;
1991 	char *path;
1992 
1993 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1994 		*pino = ceph_ino(inode);
1995 		*ppathlen = 0;
1996 		return 0;
1997 	}
1998 	dentry = d_find_alias(inode);
1999 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
2000 	dput(dentry);
2001 	if (IS_ERR(path))
2002 		return PTR_ERR(path);
2003 	*ppath = path;
2004 	*pfreepath = 1;
2005 	return 0;
2006 }
2007 
2008 /*
2009  * request arguments may be specified via an inode *, a dentry *, or
2010  * an explicit ino+path.
2011  */
2012 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
2013 				  struct inode *rdiri, const char *rpath,
2014 				  u64 rino, const char **ppath, int *pathlen,
2015 				  u64 *ino, int *freepath)
2016 {
2017 	int r = 0;
2018 
2019 	if (rinode) {
2020 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
2021 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
2022 		     ceph_snap(rinode));
2023 	} else if (rdentry) {
2024 		r = build_dentry_path(rdentry, rdiri, ppath, pathlen, ino,
2025 					freepath);
2026 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
2027 		     *ppath);
2028 	} else if (rpath || rino) {
2029 		*ino = rino;
2030 		*ppath = rpath;
2031 		*pathlen = rpath ? strlen(rpath) : 0;
2032 		dout(" path %.*s\n", *pathlen, rpath);
2033 	}
2034 
2035 	return r;
2036 }
2037 
2038 /*
2039  * called under mdsc->mutex
2040  */
2041 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
2042 					       struct ceph_mds_request *req,
2043 					       int mds, bool drop_cap_releases)
2044 {
2045 	struct ceph_msg *msg;
2046 	struct ceph_mds_request_head *head;
2047 	const char *path1 = NULL;
2048 	const char *path2 = NULL;
2049 	u64 ino1 = 0, ino2 = 0;
2050 	int pathlen1 = 0, pathlen2 = 0;
2051 	int freepath1 = 0, freepath2 = 0;
2052 	int len;
2053 	u16 releases;
2054 	void *p, *end;
2055 	int ret;
2056 
2057 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
2058 			      req->r_parent, req->r_path1, req->r_ino1.ino,
2059 			      &path1, &pathlen1, &ino1, &freepath1);
2060 	if (ret < 0) {
2061 		msg = ERR_PTR(ret);
2062 		goto out;
2063 	}
2064 
2065 	ret = set_request_path_attr(NULL, req->r_old_dentry,
2066 			      req->r_old_dentry_dir,
2067 			      req->r_path2, req->r_ino2.ino,
2068 			      &path2, &pathlen2, &ino2, &freepath2);
2069 	if (ret < 0) {
2070 		msg = ERR_PTR(ret);
2071 		goto out_free1;
2072 	}
2073 
2074 	len = sizeof(*head) +
2075 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
2076 		sizeof(struct ceph_timespec);
2077 
2078 	/* calculate (max) length for cap releases */
2079 	len += sizeof(struct ceph_mds_request_release) *
2080 		(!!req->r_inode_drop + !!req->r_dentry_drop +
2081 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
2082 	if (req->r_dentry_drop)
2083 		len += req->r_dentry->d_name.len;
2084 	if (req->r_old_dentry_drop)
2085 		len += req->r_old_dentry->d_name.len;
2086 
2087 	msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false);
2088 	if (!msg) {
2089 		msg = ERR_PTR(-ENOMEM);
2090 		goto out_free2;
2091 	}
2092 
2093 	msg->hdr.version = cpu_to_le16(2);
2094 	msg->hdr.tid = cpu_to_le64(req->r_tid);
2095 
2096 	head = msg->front.iov_base;
2097 	p = msg->front.iov_base + sizeof(*head);
2098 	end = msg->front.iov_base + msg->front.iov_len;
2099 
2100 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
2101 	head->op = cpu_to_le32(req->r_op);
2102 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
2103 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
2104 	head->args = req->r_args;
2105 
2106 	ceph_encode_filepath(&p, end, ino1, path1);
2107 	ceph_encode_filepath(&p, end, ino2, path2);
2108 
2109 	/* make note of release offset, in case we need to replay */
2110 	req->r_request_release_offset = p - msg->front.iov_base;
2111 
2112 	/* cap releases */
2113 	releases = 0;
2114 	if (req->r_inode_drop)
2115 		releases += ceph_encode_inode_release(&p,
2116 		      req->r_inode ? req->r_inode : d_inode(req->r_dentry),
2117 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
2118 	if (req->r_dentry_drop)
2119 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
2120 				req->r_parent, mds, req->r_dentry_drop,
2121 				req->r_dentry_unless);
2122 	if (req->r_old_dentry_drop)
2123 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
2124 				req->r_old_dentry_dir, mds,
2125 				req->r_old_dentry_drop,
2126 				req->r_old_dentry_unless);
2127 	if (req->r_old_inode_drop)
2128 		releases += ceph_encode_inode_release(&p,
2129 		      d_inode(req->r_old_dentry),
2130 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
2131 
2132 	if (drop_cap_releases) {
2133 		releases = 0;
2134 		p = msg->front.iov_base + req->r_request_release_offset;
2135 	}
2136 
2137 	head->num_releases = cpu_to_le16(releases);
2138 
2139 	/* time stamp */
2140 	{
2141 		struct ceph_timespec ts;
2142 		ceph_encode_timespec64(&ts, &req->r_stamp);
2143 		ceph_encode_copy(&p, &ts, sizeof(ts));
2144 	}
2145 
2146 	BUG_ON(p > end);
2147 	msg->front.iov_len = p - msg->front.iov_base;
2148 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2149 
2150 	if (req->r_pagelist) {
2151 		struct ceph_pagelist *pagelist = req->r_pagelist;
2152 		ceph_msg_data_add_pagelist(msg, pagelist);
2153 		msg->hdr.data_len = cpu_to_le32(pagelist->length);
2154 	} else {
2155 		msg->hdr.data_len = 0;
2156 	}
2157 
2158 	msg->hdr.data_off = cpu_to_le16(0);
2159 
2160 out_free2:
2161 	if (freepath2)
2162 		kfree((char *)path2);
2163 out_free1:
2164 	if (freepath1)
2165 		kfree((char *)path1);
2166 out:
2167 	return msg;
2168 }
2169 
2170 /*
2171  * called under mdsc->mutex if error, under no mutex if
2172  * success.
2173  */
2174 static void complete_request(struct ceph_mds_client *mdsc,
2175 			     struct ceph_mds_request *req)
2176 {
2177 	if (req->r_callback)
2178 		req->r_callback(mdsc, req);
2179 	else
2180 		complete_all(&req->r_completion);
2181 }
2182 
2183 /*
2184  * called under mdsc->mutex
2185  */
2186 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2187 				  struct ceph_mds_request *req,
2188 				  int mds, bool drop_cap_releases)
2189 {
2190 	struct ceph_mds_request_head *rhead;
2191 	struct ceph_msg *msg;
2192 	int flags = 0;
2193 
2194 	req->r_attempts++;
2195 	if (req->r_inode) {
2196 		struct ceph_cap *cap =
2197 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2198 
2199 		if (cap)
2200 			req->r_sent_on_mseq = cap->mseq;
2201 		else
2202 			req->r_sent_on_mseq = -1;
2203 	}
2204 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2205 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2206 
2207 	if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2208 		void *p;
2209 		/*
2210 		 * Replay.  Do not regenerate message (and rebuild
2211 		 * paths, etc.); just use the original message.
2212 		 * Rebuilding paths will break for renames because
2213 		 * d_move mangles the src name.
2214 		 */
2215 		msg = req->r_request;
2216 		rhead = msg->front.iov_base;
2217 
2218 		flags = le32_to_cpu(rhead->flags);
2219 		flags |= CEPH_MDS_FLAG_REPLAY;
2220 		rhead->flags = cpu_to_le32(flags);
2221 
2222 		if (req->r_target_inode)
2223 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2224 
2225 		rhead->num_retry = req->r_attempts - 1;
2226 
2227 		/* remove cap/dentry releases from message */
2228 		rhead->num_releases = 0;
2229 
2230 		/* time stamp */
2231 		p = msg->front.iov_base + req->r_request_release_offset;
2232 		{
2233 			struct ceph_timespec ts;
2234 			ceph_encode_timespec64(&ts, &req->r_stamp);
2235 			ceph_encode_copy(&p, &ts, sizeof(ts));
2236 		}
2237 
2238 		msg->front.iov_len = p - msg->front.iov_base;
2239 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2240 		return 0;
2241 	}
2242 
2243 	if (req->r_request) {
2244 		ceph_msg_put(req->r_request);
2245 		req->r_request = NULL;
2246 	}
2247 	msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2248 	if (IS_ERR(msg)) {
2249 		req->r_err = PTR_ERR(msg);
2250 		return PTR_ERR(msg);
2251 	}
2252 	req->r_request = msg;
2253 
2254 	rhead = msg->front.iov_base;
2255 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2256 	if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2257 		flags |= CEPH_MDS_FLAG_REPLAY;
2258 	if (req->r_parent)
2259 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2260 	rhead->flags = cpu_to_le32(flags);
2261 	rhead->num_fwd = req->r_num_fwd;
2262 	rhead->num_retry = req->r_attempts - 1;
2263 	rhead->ino = 0;
2264 
2265 	dout(" r_parent = %p\n", req->r_parent);
2266 	return 0;
2267 }
2268 
2269 /*
2270  * send request, or put it on the appropriate wait list.
2271  */
2272 static void __do_request(struct ceph_mds_client *mdsc,
2273 			struct ceph_mds_request *req)
2274 {
2275 	struct ceph_mds_session *session = NULL;
2276 	int mds = -1;
2277 	int err = 0;
2278 
2279 	if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
2280 		if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags))
2281 			__unregister_request(mdsc, req);
2282 		return;
2283 	}
2284 
2285 	if (req->r_timeout &&
2286 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2287 		dout("do_request timed out\n");
2288 		err = -EIO;
2289 		goto finish;
2290 	}
2291 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2292 		dout("do_request forced umount\n");
2293 		err = -EIO;
2294 		goto finish;
2295 	}
2296 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) {
2297 		if (mdsc->mdsmap_err) {
2298 			err = mdsc->mdsmap_err;
2299 			dout("do_request mdsmap err %d\n", err);
2300 			goto finish;
2301 		}
2302 		if (mdsc->mdsmap->m_epoch == 0) {
2303 			dout("do_request no mdsmap, waiting for map\n");
2304 			list_add(&req->r_wait, &mdsc->waiting_for_map);
2305 			return;
2306 		}
2307 		if (!(mdsc->fsc->mount_options->flags &
2308 		      CEPH_MOUNT_OPT_MOUNTWAIT) &&
2309 		    !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) {
2310 			err = -ENOENT;
2311 			pr_info("probably no mds server is up\n");
2312 			goto finish;
2313 		}
2314 	}
2315 
2316 	put_request_session(req);
2317 
2318 	mds = __choose_mds(mdsc, req);
2319 	if (mds < 0 ||
2320 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2321 		dout("do_request no mds or not active, waiting for map\n");
2322 		list_add(&req->r_wait, &mdsc->waiting_for_map);
2323 		return;
2324 	}
2325 
2326 	/* get, open session */
2327 	session = __ceph_lookup_mds_session(mdsc, mds);
2328 	if (!session) {
2329 		session = register_session(mdsc, mds);
2330 		if (IS_ERR(session)) {
2331 			err = PTR_ERR(session);
2332 			goto finish;
2333 		}
2334 	}
2335 	req->r_session = get_session(session);
2336 
2337 	dout("do_request mds%d session %p state %s\n", mds, session,
2338 	     ceph_session_state_name(session->s_state));
2339 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2340 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
2341 		if (session->s_state == CEPH_MDS_SESSION_REJECTED) {
2342 			err = -EACCES;
2343 			goto out_session;
2344 		}
2345 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
2346 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
2347 			__open_session(mdsc, session);
2348 		list_add(&req->r_wait, &session->s_waiting);
2349 		goto out_session;
2350 	}
2351 
2352 	/* send request */
2353 	req->r_resend_mds = -1;   /* forget any previous mds hint */
2354 
2355 	if (req->r_request_started == 0)   /* note request start time */
2356 		req->r_request_started = jiffies;
2357 
2358 	err = __prepare_send_request(mdsc, req, mds, false);
2359 	if (!err) {
2360 		ceph_msg_get(req->r_request);
2361 		ceph_con_send(&session->s_con, req->r_request);
2362 	}
2363 
2364 out_session:
2365 	ceph_put_mds_session(session);
2366 finish:
2367 	if (err) {
2368 		dout("__do_request early error %d\n", err);
2369 		req->r_err = err;
2370 		complete_request(mdsc, req);
2371 		__unregister_request(mdsc, req);
2372 	}
2373 	return;
2374 }
2375 
2376 /*
2377  * called under mdsc->mutex
2378  */
2379 static void __wake_requests(struct ceph_mds_client *mdsc,
2380 			    struct list_head *head)
2381 {
2382 	struct ceph_mds_request *req;
2383 	LIST_HEAD(tmp_list);
2384 
2385 	list_splice_init(head, &tmp_list);
2386 
2387 	while (!list_empty(&tmp_list)) {
2388 		req = list_entry(tmp_list.next,
2389 				 struct ceph_mds_request, r_wait);
2390 		list_del_init(&req->r_wait);
2391 		dout(" wake request %p tid %llu\n", req, req->r_tid);
2392 		__do_request(mdsc, req);
2393 	}
2394 }
2395 
2396 /*
2397  * Wake up threads with requests pending for @mds, so that they can
2398  * resubmit their requests to a possibly different mds.
2399  */
2400 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2401 {
2402 	struct ceph_mds_request *req;
2403 	struct rb_node *p = rb_first(&mdsc->request_tree);
2404 
2405 	dout("kick_requests mds%d\n", mds);
2406 	while (p) {
2407 		req = rb_entry(p, struct ceph_mds_request, r_node);
2408 		p = rb_next(p);
2409 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2410 			continue;
2411 		if (req->r_attempts > 0)
2412 			continue; /* only new requests */
2413 		if (req->r_session &&
2414 		    req->r_session->s_mds == mds) {
2415 			dout(" kicking tid %llu\n", req->r_tid);
2416 			list_del_init(&req->r_wait);
2417 			__do_request(mdsc, req);
2418 		}
2419 	}
2420 }
2421 
2422 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2423 			      struct ceph_mds_request *req)
2424 {
2425 	dout("submit_request on %p\n", req);
2426 	mutex_lock(&mdsc->mutex);
2427 	__register_request(mdsc, req, NULL);
2428 	__do_request(mdsc, req);
2429 	mutex_unlock(&mdsc->mutex);
2430 }
2431 
2432 /*
2433  * Synchrously perform an mds request.  Take care of all of the
2434  * session setup, forwarding, retry details.
2435  */
2436 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2437 			 struct inode *dir,
2438 			 struct ceph_mds_request *req)
2439 {
2440 	int err;
2441 
2442 	dout("do_request on %p\n", req);
2443 
2444 	/* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */
2445 	if (req->r_inode)
2446 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2447 	if (req->r_parent)
2448 		ceph_get_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
2449 	if (req->r_old_dentry_dir)
2450 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2451 				  CEPH_CAP_PIN);
2452 
2453 	/* issue */
2454 	mutex_lock(&mdsc->mutex);
2455 	__register_request(mdsc, req, dir);
2456 	__do_request(mdsc, req);
2457 
2458 	if (req->r_err) {
2459 		err = req->r_err;
2460 		goto out;
2461 	}
2462 
2463 	/* wait */
2464 	mutex_unlock(&mdsc->mutex);
2465 	dout("do_request waiting\n");
2466 	if (!req->r_timeout && req->r_wait_for_completion) {
2467 		err = req->r_wait_for_completion(mdsc, req);
2468 	} else {
2469 		long timeleft = wait_for_completion_killable_timeout(
2470 					&req->r_completion,
2471 					ceph_timeout_jiffies(req->r_timeout));
2472 		if (timeleft > 0)
2473 			err = 0;
2474 		else if (!timeleft)
2475 			err = -EIO;  /* timed out */
2476 		else
2477 			err = timeleft;  /* killed */
2478 	}
2479 	dout("do_request waited, got %d\n", err);
2480 	mutex_lock(&mdsc->mutex);
2481 
2482 	/* only abort if we didn't race with a real reply */
2483 	if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
2484 		err = le32_to_cpu(req->r_reply_info.head->result);
2485 	} else if (err < 0) {
2486 		dout("aborted request %lld with %d\n", req->r_tid, err);
2487 
2488 		/*
2489 		 * ensure we aren't running concurrently with
2490 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2491 		 * rely on locks (dir mutex) held by our caller.
2492 		 */
2493 		mutex_lock(&req->r_fill_mutex);
2494 		req->r_err = err;
2495 		set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
2496 		mutex_unlock(&req->r_fill_mutex);
2497 
2498 		if (req->r_parent &&
2499 		    (req->r_op & CEPH_MDS_OP_WRITE))
2500 			ceph_invalidate_dir_request(req);
2501 	} else {
2502 		err = req->r_err;
2503 	}
2504 
2505 out:
2506 	mutex_unlock(&mdsc->mutex);
2507 	dout("do_request %p done, result %d\n", req, err);
2508 	return err;
2509 }
2510 
2511 /*
2512  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2513  * namespace request.
2514  */
2515 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2516 {
2517 	struct inode *dir = req->r_parent;
2518 	struct inode *old_dir = req->r_old_dentry_dir;
2519 
2520 	dout("invalidate_dir_request %p %p (complete, lease(s))\n", dir, old_dir);
2521 
2522 	ceph_dir_clear_complete(dir);
2523 	if (old_dir)
2524 		ceph_dir_clear_complete(old_dir);
2525 	if (req->r_dentry)
2526 		ceph_invalidate_dentry_lease(req->r_dentry);
2527 	if (req->r_old_dentry)
2528 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2529 }
2530 
2531 /*
2532  * Handle mds reply.
2533  *
2534  * We take the session mutex and parse and process the reply immediately.
2535  * This preserves the logical ordering of replies, capabilities, etc., sent
2536  * by the MDS as they are applied to our local cache.
2537  */
2538 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2539 {
2540 	struct ceph_mds_client *mdsc = session->s_mdsc;
2541 	struct ceph_mds_request *req;
2542 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2543 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2544 	struct ceph_snap_realm *realm;
2545 	u64 tid;
2546 	int err, result;
2547 	int mds = session->s_mds;
2548 
2549 	if (msg->front.iov_len < sizeof(*head)) {
2550 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2551 		ceph_msg_dump(msg);
2552 		return;
2553 	}
2554 
2555 	/* get request, session */
2556 	tid = le64_to_cpu(msg->hdr.tid);
2557 	mutex_lock(&mdsc->mutex);
2558 	req = lookup_get_request(mdsc, tid);
2559 	if (!req) {
2560 		dout("handle_reply on unknown tid %llu\n", tid);
2561 		mutex_unlock(&mdsc->mutex);
2562 		return;
2563 	}
2564 	dout("handle_reply %p\n", req);
2565 
2566 	/* correct session? */
2567 	if (req->r_session != session) {
2568 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2569 		       " not mds%d\n", tid, session->s_mds,
2570 		       req->r_session ? req->r_session->s_mds : -1);
2571 		mutex_unlock(&mdsc->mutex);
2572 		goto out;
2573 	}
2574 
2575 	/* dup? */
2576 	if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) ||
2577 	    (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) {
2578 		pr_warn("got a dup %s reply on %llu from mds%d\n",
2579 			   head->safe ? "safe" : "unsafe", tid, mds);
2580 		mutex_unlock(&mdsc->mutex);
2581 		goto out;
2582 	}
2583 	if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) {
2584 		pr_warn("got unsafe after safe on %llu from mds%d\n",
2585 			   tid, mds);
2586 		mutex_unlock(&mdsc->mutex);
2587 		goto out;
2588 	}
2589 
2590 	result = le32_to_cpu(head->result);
2591 
2592 	/*
2593 	 * Handle an ESTALE
2594 	 * if we're not talking to the authority, send to them
2595 	 * if the authority has changed while we weren't looking,
2596 	 * send to new authority
2597 	 * Otherwise we just have to return an ESTALE
2598 	 */
2599 	if (result == -ESTALE) {
2600 		dout("got ESTALE on request %llu\n", req->r_tid);
2601 		req->r_resend_mds = -1;
2602 		if (req->r_direct_mode != USE_AUTH_MDS) {
2603 			dout("not using auth, setting for that now\n");
2604 			req->r_direct_mode = USE_AUTH_MDS;
2605 			__do_request(mdsc, req);
2606 			mutex_unlock(&mdsc->mutex);
2607 			goto out;
2608 		} else  {
2609 			int mds = __choose_mds(mdsc, req);
2610 			if (mds >= 0 && mds != req->r_session->s_mds) {
2611 				dout("but auth changed, so resending\n");
2612 				__do_request(mdsc, req);
2613 				mutex_unlock(&mdsc->mutex);
2614 				goto out;
2615 			}
2616 		}
2617 		dout("have to return ESTALE on request %llu\n", req->r_tid);
2618 	}
2619 
2620 
2621 	if (head->safe) {
2622 		set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags);
2623 		__unregister_request(mdsc, req);
2624 
2625 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2626 			/*
2627 			 * We already handled the unsafe response, now do the
2628 			 * cleanup.  No need to examine the response; the MDS
2629 			 * doesn't include any result info in the safe
2630 			 * response.  And even if it did, there is nothing
2631 			 * useful we could do with a revised return value.
2632 			 */
2633 			dout("got safe reply %llu, mds%d\n", tid, mds);
2634 
2635 			/* last unsafe request during umount? */
2636 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2637 				complete_all(&mdsc->safe_umount_waiters);
2638 			mutex_unlock(&mdsc->mutex);
2639 			goto out;
2640 		}
2641 	} else {
2642 		set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags);
2643 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2644 		if (req->r_unsafe_dir) {
2645 			struct ceph_inode_info *ci =
2646 					ceph_inode(req->r_unsafe_dir);
2647 			spin_lock(&ci->i_unsafe_lock);
2648 			list_add_tail(&req->r_unsafe_dir_item,
2649 				      &ci->i_unsafe_dirops);
2650 			spin_unlock(&ci->i_unsafe_lock);
2651 		}
2652 	}
2653 
2654 	dout("handle_reply tid %lld result %d\n", tid, result);
2655 	rinfo = &req->r_reply_info;
2656 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2657 	mutex_unlock(&mdsc->mutex);
2658 
2659 	mutex_lock(&session->s_mutex);
2660 	if (err < 0) {
2661 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2662 		ceph_msg_dump(msg);
2663 		goto out_err;
2664 	}
2665 
2666 	/* snap trace */
2667 	realm = NULL;
2668 	if (rinfo->snapblob_len) {
2669 		down_write(&mdsc->snap_rwsem);
2670 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2671 				rinfo->snapblob + rinfo->snapblob_len,
2672 				le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2673 				&realm);
2674 		downgrade_write(&mdsc->snap_rwsem);
2675 	} else {
2676 		down_read(&mdsc->snap_rwsem);
2677 	}
2678 
2679 	/* insert trace into our cache */
2680 	mutex_lock(&req->r_fill_mutex);
2681 	current->journal_info = req;
2682 	err = ceph_fill_trace(mdsc->fsc->sb, req);
2683 	if (err == 0) {
2684 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2685 				    req->r_op == CEPH_MDS_OP_LSSNAP))
2686 			ceph_readdir_prepopulate(req, req->r_session);
2687 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2688 	}
2689 	current->journal_info = NULL;
2690 	mutex_unlock(&req->r_fill_mutex);
2691 
2692 	up_read(&mdsc->snap_rwsem);
2693 	if (realm)
2694 		ceph_put_snap_realm(mdsc, realm);
2695 
2696 	if (err == 0 && req->r_target_inode &&
2697 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2698 		struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2699 		spin_lock(&ci->i_unsafe_lock);
2700 		list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2701 		spin_unlock(&ci->i_unsafe_lock);
2702 	}
2703 out_err:
2704 	mutex_lock(&mdsc->mutex);
2705 	if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
2706 		if (err) {
2707 			req->r_err = err;
2708 		} else {
2709 			req->r_reply =  ceph_msg_get(msg);
2710 			set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags);
2711 		}
2712 	} else {
2713 		dout("reply arrived after request %lld was aborted\n", tid);
2714 	}
2715 	mutex_unlock(&mdsc->mutex);
2716 
2717 	mutex_unlock(&session->s_mutex);
2718 
2719 	/* kick calling process */
2720 	complete_request(mdsc, req);
2721 out:
2722 	ceph_mdsc_put_request(req);
2723 	return;
2724 }
2725 
2726 
2727 
2728 /*
2729  * handle mds notification that our request has been forwarded.
2730  */
2731 static void handle_forward(struct ceph_mds_client *mdsc,
2732 			   struct ceph_mds_session *session,
2733 			   struct ceph_msg *msg)
2734 {
2735 	struct ceph_mds_request *req;
2736 	u64 tid = le64_to_cpu(msg->hdr.tid);
2737 	u32 next_mds;
2738 	u32 fwd_seq;
2739 	int err = -EINVAL;
2740 	void *p = msg->front.iov_base;
2741 	void *end = p + msg->front.iov_len;
2742 
2743 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2744 	next_mds = ceph_decode_32(&p);
2745 	fwd_seq = ceph_decode_32(&p);
2746 
2747 	mutex_lock(&mdsc->mutex);
2748 	req = lookup_get_request(mdsc, tid);
2749 	if (!req) {
2750 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2751 		goto out;  /* dup reply? */
2752 	}
2753 
2754 	if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
2755 		dout("forward tid %llu aborted, unregistering\n", tid);
2756 		__unregister_request(mdsc, req);
2757 	} else if (fwd_seq <= req->r_num_fwd) {
2758 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2759 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2760 	} else {
2761 		/* resend. forward race not possible; mds would drop */
2762 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2763 		BUG_ON(req->r_err);
2764 		BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags));
2765 		req->r_attempts = 0;
2766 		req->r_num_fwd = fwd_seq;
2767 		req->r_resend_mds = next_mds;
2768 		put_request_session(req);
2769 		__do_request(mdsc, req);
2770 	}
2771 	ceph_mdsc_put_request(req);
2772 out:
2773 	mutex_unlock(&mdsc->mutex);
2774 	return;
2775 
2776 bad:
2777 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2778 }
2779 
2780 /*
2781  * handle a mds session control message
2782  */
2783 static void handle_session(struct ceph_mds_session *session,
2784 			   struct ceph_msg *msg)
2785 {
2786 	struct ceph_mds_client *mdsc = session->s_mdsc;
2787 	u32 op;
2788 	u64 seq;
2789 	int mds = session->s_mds;
2790 	struct ceph_mds_session_head *h = msg->front.iov_base;
2791 	int wake = 0;
2792 
2793 	/* decode */
2794 	if (msg->front.iov_len < sizeof(*h))
2795 		goto bad;
2796 	op = le32_to_cpu(h->op);
2797 	seq = le64_to_cpu(h->seq);
2798 
2799 	mutex_lock(&mdsc->mutex);
2800 	if (op == CEPH_SESSION_CLOSE) {
2801 		get_session(session);
2802 		__unregister_session(mdsc, session);
2803 	}
2804 	/* FIXME: this ttl calculation is generous */
2805 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2806 	mutex_unlock(&mdsc->mutex);
2807 
2808 	mutex_lock(&session->s_mutex);
2809 
2810 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2811 	     mds, ceph_session_op_name(op), session,
2812 	     ceph_session_state_name(session->s_state), seq);
2813 
2814 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2815 		session->s_state = CEPH_MDS_SESSION_OPEN;
2816 		pr_info("mds%d came back\n", session->s_mds);
2817 	}
2818 
2819 	switch (op) {
2820 	case CEPH_SESSION_OPEN:
2821 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2822 			pr_info("mds%d reconnect success\n", session->s_mds);
2823 		session->s_state = CEPH_MDS_SESSION_OPEN;
2824 		renewed_caps(mdsc, session, 0);
2825 		wake = 1;
2826 		if (mdsc->stopping)
2827 			__close_session(mdsc, session);
2828 		break;
2829 
2830 	case CEPH_SESSION_RENEWCAPS:
2831 		if (session->s_renew_seq == seq)
2832 			renewed_caps(mdsc, session, 1);
2833 		break;
2834 
2835 	case CEPH_SESSION_CLOSE:
2836 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2837 			pr_info("mds%d reconnect denied\n", session->s_mds);
2838 		cleanup_session_requests(mdsc, session);
2839 		remove_session_caps(session);
2840 		wake = 2; /* for good measure */
2841 		wake_up_all(&mdsc->session_close_wq);
2842 		break;
2843 
2844 	case CEPH_SESSION_STALE:
2845 		pr_info("mds%d caps went stale, renewing\n",
2846 			session->s_mds);
2847 		spin_lock(&session->s_gen_ttl_lock);
2848 		session->s_cap_gen++;
2849 		session->s_cap_ttl = jiffies - 1;
2850 		spin_unlock(&session->s_gen_ttl_lock);
2851 		send_renew_caps(mdsc, session);
2852 		break;
2853 
2854 	case CEPH_SESSION_RECALL_STATE:
2855 		ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2856 		break;
2857 
2858 	case CEPH_SESSION_FLUSHMSG:
2859 		send_flushmsg_ack(mdsc, session, seq);
2860 		break;
2861 
2862 	case CEPH_SESSION_FORCE_RO:
2863 		dout("force_session_readonly %p\n", session);
2864 		spin_lock(&session->s_cap_lock);
2865 		session->s_readonly = true;
2866 		spin_unlock(&session->s_cap_lock);
2867 		wake_up_session_caps(session, FORCE_RO);
2868 		break;
2869 
2870 	case CEPH_SESSION_REJECT:
2871 		WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING);
2872 		pr_info("mds%d rejected session\n", session->s_mds);
2873 		session->s_state = CEPH_MDS_SESSION_REJECTED;
2874 		cleanup_session_requests(mdsc, session);
2875 		remove_session_caps(session);
2876 		wake = 2; /* for good measure */
2877 		break;
2878 
2879 	default:
2880 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2881 		WARN_ON(1);
2882 	}
2883 
2884 	mutex_unlock(&session->s_mutex);
2885 	if (wake) {
2886 		mutex_lock(&mdsc->mutex);
2887 		__wake_requests(mdsc, &session->s_waiting);
2888 		if (wake == 2)
2889 			kick_requests(mdsc, mds);
2890 		mutex_unlock(&mdsc->mutex);
2891 	}
2892 	if (op == CEPH_SESSION_CLOSE)
2893 		ceph_put_mds_session(session);
2894 	return;
2895 
2896 bad:
2897 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2898 	       (int)msg->front.iov_len);
2899 	ceph_msg_dump(msg);
2900 	return;
2901 }
2902 
2903 
2904 /*
2905  * called under session->mutex.
2906  */
2907 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2908 				   struct ceph_mds_session *session)
2909 {
2910 	struct ceph_mds_request *req, *nreq;
2911 	struct rb_node *p;
2912 	int err;
2913 
2914 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2915 
2916 	mutex_lock(&mdsc->mutex);
2917 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2918 		err = __prepare_send_request(mdsc, req, session->s_mds, true);
2919 		if (!err) {
2920 			ceph_msg_get(req->r_request);
2921 			ceph_con_send(&session->s_con, req->r_request);
2922 		}
2923 	}
2924 
2925 	/*
2926 	 * also re-send old requests when MDS enters reconnect stage. So that MDS
2927 	 * can process completed request in clientreplay stage.
2928 	 */
2929 	p = rb_first(&mdsc->request_tree);
2930 	while (p) {
2931 		req = rb_entry(p, struct ceph_mds_request, r_node);
2932 		p = rb_next(p);
2933 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2934 			continue;
2935 		if (req->r_attempts == 0)
2936 			continue; /* only old requests */
2937 		if (req->r_session &&
2938 		    req->r_session->s_mds == session->s_mds) {
2939 			err = __prepare_send_request(mdsc, req,
2940 						     session->s_mds, true);
2941 			if (!err) {
2942 				ceph_msg_get(req->r_request);
2943 				ceph_con_send(&session->s_con, req->r_request);
2944 			}
2945 		}
2946 	}
2947 	mutex_unlock(&mdsc->mutex);
2948 }
2949 
2950 /*
2951  * Encode information about a cap for a reconnect with the MDS.
2952  */
2953 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2954 			  void *arg)
2955 {
2956 	union {
2957 		struct ceph_mds_cap_reconnect v2;
2958 		struct ceph_mds_cap_reconnect_v1 v1;
2959 	} rec;
2960 	struct ceph_inode_info *ci = cap->ci;
2961 	struct ceph_reconnect_state *recon_state = arg;
2962 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2963 	int err;
2964 	u64 snap_follows;
2965 
2966 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2967 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2968 	     ceph_cap_string(cap->issued));
2969 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2970 	if (err)
2971 		return err;
2972 
2973 	spin_lock(&ci->i_ceph_lock);
2974 	cap->seq = 0;        /* reset cap seq */
2975 	cap->issue_seq = 0;  /* and issue_seq */
2976 	cap->mseq = 0;       /* and migrate_seq */
2977 	cap->cap_gen = cap->session->s_cap_gen;
2978 
2979 	if (recon_state->msg_version >= 2) {
2980 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2981 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2982 		rec.v2.issued = cpu_to_le32(cap->issued);
2983 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2984 		rec.v2.pathbase = 0;
2985 		rec.v2.flock_len = (__force __le32)
2986 			((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1);
2987 	} else {
2988 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2989 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2990 		rec.v1.issued = cpu_to_le32(cap->issued);
2991 		rec.v1.size = cpu_to_le64(inode->i_size);
2992 		ceph_encode_timespec64(&rec.v1.mtime, &inode->i_mtime);
2993 		ceph_encode_timespec64(&rec.v1.atime, &inode->i_atime);
2994 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2995 		rec.v1.pathbase = 0;
2996 	}
2997 
2998 	if (list_empty(&ci->i_cap_snaps)) {
2999 		snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0;
3000 	} else {
3001 		struct ceph_cap_snap *capsnap =
3002 			list_first_entry(&ci->i_cap_snaps,
3003 					 struct ceph_cap_snap, ci_item);
3004 		snap_follows = capsnap->follows;
3005 	}
3006 	spin_unlock(&ci->i_ceph_lock);
3007 
3008 	if (recon_state->msg_version >= 2) {
3009 		int num_fcntl_locks, num_flock_locks;
3010 		struct ceph_filelock *flocks = NULL;
3011 		size_t struct_len, total_len = 0;
3012 		u8 struct_v = 0;
3013 
3014 encode_again:
3015 		if (rec.v2.flock_len) {
3016 			ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
3017 		} else {
3018 			num_fcntl_locks = 0;
3019 			num_flock_locks = 0;
3020 		}
3021 		if (num_fcntl_locks + num_flock_locks > 0) {
3022 			flocks = kmalloc_array(num_fcntl_locks + num_flock_locks,
3023 					       sizeof(struct ceph_filelock),
3024 					       GFP_NOFS);
3025 			if (!flocks) {
3026 				err = -ENOMEM;
3027 				goto out_err;
3028 			}
3029 			err = ceph_encode_locks_to_buffer(inode, flocks,
3030 							  num_fcntl_locks,
3031 							  num_flock_locks);
3032 			if (err) {
3033 				kfree(flocks);
3034 				flocks = NULL;
3035 				if (err == -ENOSPC)
3036 					goto encode_again;
3037 				goto out_err;
3038 			}
3039 		} else {
3040 			kfree(flocks);
3041 			flocks = NULL;
3042 		}
3043 
3044 		if (recon_state->msg_version >= 3) {
3045 			/* version, compat_version and struct_len */
3046 			total_len = 2 * sizeof(u8) + sizeof(u32);
3047 			struct_v = 2;
3048 		}
3049 		/*
3050 		 * number of encoded locks is stable, so copy to pagelist
3051 		 */
3052 		struct_len = 2 * sizeof(u32) +
3053 			    (num_fcntl_locks + num_flock_locks) *
3054 			    sizeof(struct ceph_filelock);
3055 		rec.v2.flock_len = cpu_to_le32(struct_len);
3056 
3057 		struct_len += sizeof(u32) + sizeof(rec.v2);
3058 
3059 		if (struct_v >= 2)
3060 			struct_len += sizeof(u64); /* snap_follows */
3061 
3062 		total_len += struct_len;
3063 		err = ceph_pagelist_reserve(pagelist, total_len);
3064 		if (err) {
3065 			kfree(flocks);
3066 			goto out_err;
3067 		}
3068 
3069 		if (recon_state->msg_version >= 3) {
3070 			ceph_pagelist_encode_8(pagelist, struct_v);
3071 			ceph_pagelist_encode_8(pagelist, 1);
3072 			ceph_pagelist_encode_32(pagelist, struct_len);
3073 		}
3074 		ceph_pagelist_encode_string(pagelist, NULL, 0);
3075 		ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2));
3076 		ceph_locks_to_pagelist(flocks, pagelist,
3077 				       num_fcntl_locks, num_flock_locks);
3078 		if (struct_v >= 2)
3079 			ceph_pagelist_encode_64(pagelist, snap_follows);
3080 
3081 		kfree(flocks);
3082 	} else {
3083 		u64 pathbase = 0;
3084 		int pathlen = 0;
3085 		char *path = NULL;
3086 		struct dentry *dentry;
3087 
3088 		dentry = d_find_alias(inode);
3089 		if (dentry) {
3090 			path = ceph_mdsc_build_path(dentry,
3091 						&pathlen, &pathbase, 0);
3092 			dput(dentry);
3093 			if (IS_ERR(path)) {
3094 				err = PTR_ERR(path);
3095 				goto out_err;
3096 			}
3097 			rec.v1.pathbase = cpu_to_le64(pathbase);
3098 		}
3099 
3100 		err = ceph_pagelist_reserve(pagelist,
3101 				pathlen + sizeof(u32) + sizeof(rec.v1));
3102 		if (err) {
3103 			kfree(path);
3104 			goto out_err;
3105 		}
3106 
3107 		ceph_pagelist_encode_string(pagelist, path, pathlen);
3108 		ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1));
3109 
3110 		kfree(path);
3111 	}
3112 
3113 	recon_state->nr_caps++;
3114 out_err:
3115 	return err;
3116 }
3117 
3118 
3119 /*
3120  * If an MDS fails and recovers, clients need to reconnect in order to
3121  * reestablish shared state.  This includes all caps issued through
3122  * this session _and_ the snap_realm hierarchy.  Because it's not
3123  * clear which snap realms the mds cares about, we send everything we
3124  * know about.. that ensures we'll then get any new info the
3125  * recovering MDS might have.
3126  *
3127  * This is a relatively heavyweight operation, but it's rare.
3128  *
3129  * called with mdsc->mutex held.
3130  */
3131 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
3132 			       struct ceph_mds_session *session)
3133 {
3134 	struct ceph_msg *reply;
3135 	struct rb_node *p;
3136 	int mds = session->s_mds;
3137 	int err = -ENOMEM;
3138 	int s_nr_caps;
3139 	struct ceph_pagelist *pagelist;
3140 	struct ceph_reconnect_state recon_state;
3141 	LIST_HEAD(dispose);
3142 
3143 	pr_info("mds%d reconnect start\n", mds);
3144 
3145 	pagelist = ceph_pagelist_alloc(GFP_NOFS);
3146 	if (!pagelist)
3147 		goto fail_nopagelist;
3148 
3149 	reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false);
3150 	if (!reply)
3151 		goto fail_nomsg;
3152 
3153 	mutex_lock(&session->s_mutex);
3154 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
3155 	session->s_seq = 0;
3156 
3157 	dout("session %p state %s\n", session,
3158 	     ceph_session_state_name(session->s_state));
3159 
3160 	spin_lock(&session->s_gen_ttl_lock);
3161 	session->s_cap_gen++;
3162 	spin_unlock(&session->s_gen_ttl_lock);
3163 
3164 	spin_lock(&session->s_cap_lock);
3165 	/* don't know if session is readonly */
3166 	session->s_readonly = 0;
3167 	/*
3168 	 * notify __ceph_remove_cap() that we are composing cap reconnect.
3169 	 * If a cap get released before being added to the cap reconnect,
3170 	 * __ceph_remove_cap() should skip queuing cap release.
3171 	 */
3172 	session->s_cap_reconnect = 1;
3173 	/* drop old cap expires; we're about to reestablish that state */
3174 	detach_cap_releases(session, &dispose);
3175 	spin_unlock(&session->s_cap_lock);
3176 	dispose_cap_releases(mdsc, &dispose);
3177 
3178 	/* trim unused caps to reduce MDS's cache rejoin time */
3179 	if (mdsc->fsc->sb->s_root)
3180 		shrink_dcache_parent(mdsc->fsc->sb->s_root);
3181 
3182 	ceph_con_close(&session->s_con);
3183 	ceph_con_open(&session->s_con,
3184 		      CEPH_ENTITY_TYPE_MDS, mds,
3185 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
3186 
3187 	/* replay unsafe requests */
3188 	replay_unsafe_requests(mdsc, session);
3189 
3190 	down_read(&mdsc->snap_rwsem);
3191 
3192 	/* traverse this session's caps */
3193 	s_nr_caps = session->s_nr_caps;
3194 	err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
3195 	if (err)
3196 		goto fail;
3197 
3198 	recon_state.nr_caps = 0;
3199 	recon_state.pagelist = pagelist;
3200 	if (session->s_con.peer_features & CEPH_FEATURE_MDSENC)
3201 		recon_state.msg_version = 3;
3202 	else
3203 		recon_state.msg_version = 2;
3204 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
3205 	if (err < 0)
3206 		goto fail;
3207 
3208 	spin_lock(&session->s_cap_lock);
3209 	session->s_cap_reconnect = 0;
3210 	spin_unlock(&session->s_cap_lock);
3211 
3212 	/*
3213 	 * snaprealms.  we provide mds with the ino, seq (version), and
3214 	 * parent for all of our realms.  If the mds has any newer info,
3215 	 * it will tell us.
3216 	 */
3217 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
3218 		struct ceph_snap_realm *realm =
3219 			rb_entry(p, struct ceph_snap_realm, node);
3220 		struct ceph_mds_snaprealm_reconnect sr_rec;
3221 
3222 		dout(" adding snap realm %llx seq %lld parent %llx\n",
3223 		     realm->ino, realm->seq, realm->parent_ino);
3224 		sr_rec.ino = cpu_to_le64(realm->ino);
3225 		sr_rec.seq = cpu_to_le64(realm->seq);
3226 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
3227 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
3228 		if (err)
3229 			goto fail;
3230 	}
3231 
3232 	reply->hdr.version = cpu_to_le16(recon_state.msg_version);
3233 
3234 	/* raced with cap release? */
3235 	if (s_nr_caps != recon_state.nr_caps) {
3236 		struct page *page = list_first_entry(&pagelist->head,
3237 						     struct page, lru);
3238 		__le32 *addr = kmap_atomic(page);
3239 		*addr = cpu_to_le32(recon_state.nr_caps);
3240 		kunmap_atomic(addr);
3241 	}
3242 
3243 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
3244 	ceph_msg_data_add_pagelist(reply, pagelist);
3245 
3246 	ceph_early_kick_flushing_caps(mdsc, session);
3247 
3248 	ceph_con_send(&session->s_con, reply);
3249 
3250 	mutex_unlock(&session->s_mutex);
3251 
3252 	mutex_lock(&mdsc->mutex);
3253 	__wake_requests(mdsc, &session->s_waiting);
3254 	mutex_unlock(&mdsc->mutex);
3255 
3256 	up_read(&mdsc->snap_rwsem);
3257 	ceph_pagelist_release(pagelist);
3258 	return;
3259 
3260 fail:
3261 	ceph_msg_put(reply);
3262 	up_read(&mdsc->snap_rwsem);
3263 	mutex_unlock(&session->s_mutex);
3264 fail_nomsg:
3265 	ceph_pagelist_release(pagelist);
3266 fail_nopagelist:
3267 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3268 	return;
3269 }
3270 
3271 
3272 /*
3273  * compare old and new mdsmaps, kicking requests
3274  * and closing out old connections as necessary
3275  *
3276  * called under mdsc->mutex.
3277  */
3278 static void check_new_map(struct ceph_mds_client *mdsc,
3279 			  struct ceph_mdsmap *newmap,
3280 			  struct ceph_mdsmap *oldmap)
3281 {
3282 	int i;
3283 	int oldstate, newstate;
3284 	struct ceph_mds_session *s;
3285 
3286 	dout("check_new_map new %u old %u\n",
3287 	     newmap->m_epoch, oldmap->m_epoch);
3288 
3289 	for (i = 0; i < oldmap->m_num_mds && i < mdsc->max_sessions; i++) {
3290 		if (!mdsc->sessions[i])
3291 			continue;
3292 		s = mdsc->sessions[i];
3293 		oldstate = ceph_mdsmap_get_state(oldmap, i);
3294 		newstate = ceph_mdsmap_get_state(newmap, i);
3295 
3296 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3297 		     i, ceph_mds_state_name(oldstate),
3298 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3299 		     ceph_mds_state_name(newstate),
3300 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3301 		     ceph_session_state_name(s->s_state));
3302 
3303 		if (i >= newmap->m_num_mds ||
3304 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
3305 			   ceph_mdsmap_get_addr(newmap, i),
3306 			   sizeof(struct ceph_entity_addr))) {
3307 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3308 				/* the session never opened, just close it
3309 				 * out now */
3310 				get_session(s);
3311 				__unregister_session(mdsc, s);
3312 				__wake_requests(mdsc, &s->s_waiting);
3313 				ceph_put_mds_session(s);
3314 			} else if (i >= newmap->m_num_mds) {
3315 				/* force close session for stopped mds */
3316 				get_session(s);
3317 				__unregister_session(mdsc, s);
3318 				__wake_requests(mdsc, &s->s_waiting);
3319 				kick_requests(mdsc, i);
3320 				mutex_unlock(&mdsc->mutex);
3321 
3322 				mutex_lock(&s->s_mutex);
3323 				cleanup_session_requests(mdsc, s);
3324 				remove_session_caps(s);
3325 				mutex_unlock(&s->s_mutex);
3326 
3327 				ceph_put_mds_session(s);
3328 
3329 				mutex_lock(&mdsc->mutex);
3330 			} else {
3331 				/* just close it */
3332 				mutex_unlock(&mdsc->mutex);
3333 				mutex_lock(&s->s_mutex);
3334 				mutex_lock(&mdsc->mutex);
3335 				ceph_con_close(&s->s_con);
3336 				mutex_unlock(&s->s_mutex);
3337 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
3338 			}
3339 		} else if (oldstate == newstate) {
3340 			continue;  /* nothing new with this mds */
3341 		}
3342 
3343 		/*
3344 		 * send reconnect?
3345 		 */
3346 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3347 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
3348 			mutex_unlock(&mdsc->mutex);
3349 			send_mds_reconnect(mdsc, s);
3350 			mutex_lock(&mdsc->mutex);
3351 		}
3352 
3353 		/*
3354 		 * kick request on any mds that has gone active.
3355 		 */
3356 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3357 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
3358 			if (oldstate != CEPH_MDS_STATE_CREATING &&
3359 			    oldstate != CEPH_MDS_STATE_STARTING)
3360 				pr_info("mds%d recovery completed\n", s->s_mds);
3361 			kick_requests(mdsc, i);
3362 			ceph_kick_flushing_caps(mdsc, s);
3363 			wake_up_session_caps(s, RECONNECT);
3364 		}
3365 	}
3366 
3367 	for (i = 0; i < newmap->m_num_mds && i < mdsc->max_sessions; i++) {
3368 		s = mdsc->sessions[i];
3369 		if (!s)
3370 			continue;
3371 		if (!ceph_mdsmap_is_laggy(newmap, i))
3372 			continue;
3373 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3374 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
3375 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
3376 			dout(" connecting to export targets of laggy mds%d\n",
3377 			     i);
3378 			__open_export_target_sessions(mdsc, s);
3379 		}
3380 	}
3381 }
3382 
3383 
3384 
3385 /*
3386  * leases
3387  */
3388 
3389 /*
3390  * caller must hold session s_mutex, dentry->d_lock
3391  */
3392 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3393 {
3394 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3395 
3396 	ceph_put_mds_session(di->lease_session);
3397 	di->lease_session = NULL;
3398 }
3399 
3400 static void handle_lease(struct ceph_mds_client *mdsc,
3401 			 struct ceph_mds_session *session,
3402 			 struct ceph_msg *msg)
3403 {
3404 	struct super_block *sb = mdsc->fsc->sb;
3405 	struct inode *inode;
3406 	struct dentry *parent, *dentry;
3407 	struct ceph_dentry_info *di;
3408 	int mds = session->s_mds;
3409 	struct ceph_mds_lease *h = msg->front.iov_base;
3410 	u32 seq;
3411 	struct ceph_vino vino;
3412 	struct qstr dname;
3413 	int release = 0;
3414 
3415 	dout("handle_lease from mds%d\n", mds);
3416 
3417 	/* decode */
3418 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3419 		goto bad;
3420 	vino.ino = le64_to_cpu(h->ino);
3421 	vino.snap = CEPH_NOSNAP;
3422 	seq = le32_to_cpu(h->seq);
3423 	dname.len = get_unaligned_le32(h + 1);
3424 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len)
3425 		goto bad;
3426 	dname.name = (void *)(h + 1) + sizeof(u32);
3427 
3428 	/* lookup inode */
3429 	inode = ceph_find_inode(sb, vino);
3430 	dout("handle_lease %s, ino %llx %p %.*s\n",
3431 	     ceph_lease_op_name(h->action), vino.ino, inode,
3432 	     dname.len, dname.name);
3433 
3434 	mutex_lock(&session->s_mutex);
3435 	session->s_seq++;
3436 
3437 	if (!inode) {
3438 		dout("handle_lease no inode %llx\n", vino.ino);
3439 		goto release;
3440 	}
3441 
3442 	/* dentry */
3443 	parent = d_find_alias(inode);
3444 	if (!parent) {
3445 		dout("no parent dentry on inode %p\n", inode);
3446 		WARN_ON(1);
3447 		goto release;  /* hrm... */
3448 	}
3449 	dname.hash = full_name_hash(parent, dname.name, dname.len);
3450 	dentry = d_lookup(parent, &dname);
3451 	dput(parent);
3452 	if (!dentry)
3453 		goto release;
3454 
3455 	spin_lock(&dentry->d_lock);
3456 	di = ceph_dentry(dentry);
3457 	switch (h->action) {
3458 	case CEPH_MDS_LEASE_REVOKE:
3459 		if (di->lease_session == session) {
3460 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3461 				h->seq = cpu_to_le32(di->lease_seq);
3462 			__ceph_mdsc_drop_dentry_lease(dentry);
3463 		}
3464 		release = 1;
3465 		break;
3466 
3467 	case CEPH_MDS_LEASE_RENEW:
3468 		if (di->lease_session == session &&
3469 		    di->lease_gen == session->s_cap_gen &&
3470 		    di->lease_renew_from &&
3471 		    di->lease_renew_after == 0) {
3472 			unsigned long duration =
3473 				msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3474 
3475 			di->lease_seq = seq;
3476 			di->time = di->lease_renew_from + duration;
3477 			di->lease_renew_after = di->lease_renew_from +
3478 				(duration >> 1);
3479 			di->lease_renew_from = 0;
3480 		}
3481 		break;
3482 	}
3483 	spin_unlock(&dentry->d_lock);
3484 	dput(dentry);
3485 
3486 	if (!release)
3487 		goto out;
3488 
3489 release:
3490 	/* let's just reuse the same message */
3491 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3492 	ceph_msg_get(msg);
3493 	ceph_con_send(&session->s_con, msg);
3494 
3495 out:
3496 	iput(inode);
3497 	mutex_unlock(&session->s_mutex);
3498 	return;
3499 
3500 bad:
3501 	pr_err("corrupt lease message\n");
3502 	ceph_msg_dump(msg);
3503 }
3504 
3505 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3506 			      struct inode *inode,
3507 			      struct dentry *dentry, char action,
3508 			      u32 seq)
3509 {
3510 	struct ceph_msg *msg;
3511 	struct ceph_mds_lease *lease;
3512 	int len = sizeof(*lease) + sizeof(u32);
3513 	int dnamelen = 0;
3514 
3515 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3516 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
3517 	dnamelen = dentry->d_name.len;
3518 	len += dnamelen;
3519 
3520 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3521 	if (!msg)
3522 		return;
3523 	lease = msg->front.iov_base;
3524 	lease->action = action;
3525 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3526 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3527 	lease->seq = cpu_to_le32(seq);
3528 	put_unaligned_le32(dnamelen, lease + 1);
3529 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3530 
3531 	/*
3532 	 * if this is a preemptive lease RELEASE, no need to
3533 	 * flush request stream, since the actual request will
3534 	 * soon follow.
3535 	 */
3536 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3537 
3538 	ceph_con_send(&session->s_con, msg);
3539 }
3540 
3541 /*
3542  * lock unlock sessions, to wait ongoing session activities
3543  */
3544 static void lock_unlock_sessions(struct ceph_mds_client *mdsc)
3545 {
3546 	int i;
3547 
3548 	mutex_lock(&mdsc->mutex);
3549 	for (i = 0; i < mdsc->max_sessions; i++) {
3550 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3551 		if (!s)
3552 			continue;
3553 		mutex_unlock(&mdsc->mutex);
3554 		mutex_lock(&s->s_mutex);
3555 		mutex_unlock(&s->s_mutex);
3556 		ceph_put_mds_session(s);
3557 		mutex_lock(&mdsc->mutex);
3558 	}
3559 	mutex_unlock(&mdsc->mutex);
3560 }
3561 
3562 
3563 
3564 /*
3565  * delayed work -- periodically trim expired leases, renew caps with mds
3566  */
3567 static void schedule_delayed(struct ceph_mds_client *mdsc)
3568 {
3569 	int delay = 5;
3570 	unsigned hz = round_jiffies_relative(HZ * delay);
3571 	schedule_delayed_work(&mdsc->delayed_work, hz);
3572 }
3573 
3574 static void delayed_work(struct work_struct *work)
3575 {
3576 	int i;
3577 	struct ceph_mds_client *mdsc =
3578 		container_of(work, struct ceph_mds_client, delayed_work.work);
3579 	int renew_interval;
3580 	int renew_caps;
3581 
3582 	dout("mdsc delayed_work\n");
3583 	ceph_check_delayed_caps(mdsc);
3584 
3585 	mutex_lock(&mdsc->mutex);
3586 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3587 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3588 				   mdsc->last_renew_caps);
3589 	if (renew_caps)
3590 		mdsc->last_renew_caps = jiffies;
3591 
3592 	for (i = 0; i < mdsc->max_sessions; i++) {
3593 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3594 		if (!s)
3595 			continue;
3596 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3597 			dout("resending session close request for mds%d\n",
3598 			     s->s_mds);
3599 			request_close_session(mdsc, s);
3600 			ceph_put_mds_session(s);
3601 			continue;
3602 		}
3603 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3604 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3605 				s->s_state = CEPH_MDS_SESSION_HUNG;
3606 				pr_info("mds%d hung\n", s->s_mds);
3607 			}
3608 		}
3609 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3610 			/* this mds is failed or recovering, just wait */
3611 			ceph_put_mds_session(s);
3612 			continue;
3613 		}
3614 		mutex_unlock(&mdsc->mutex);
3615 
3616 		mutex_lock(&s->s_mutex);
3617 		if (renew_caps)
3618 			send_renew_caps(mdsc, s);
3619 		else
3620 			ceph_con_keepalive(&s->s_con);
3621 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3622 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3623 			ceph_send_cap_releases(mdsc, s);
3624 		mutex_unlock(&s->s_mutex);
3625 		ceph_put_mds_session(s);
3626 
3627 		mutex_lock(&mdsc->mutex);
3628 	}
3629 	mutex_unlock(&mdsc->mutex);
3630 
3631 	schedule_delayed(mdsc);
3632 }
3633 
3634 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3635 
3636 {
3637 	struct ceph_mds_client *mdsc;
3638 
3639 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3640 	if (!mdsc)
3641 		return -ENOMEM;
3642 	mdsc->fsc = fsc;
3643 	mutex_init(&mdsc->mutex);
3644 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3645 	if (!mdsc->mdsmap) {
3646 		kfree(mdsc);
3647 		return -ENOMEM;
3648 	}
3649 
3650 	fsc->mdsc = mdsc;
3651 	init_completion(&mdsc->safe_umount_waiters);
3652 	init_waitqueue_head(&mdsc->session_close_wq);
3653 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3654 	mdsc->sessions = NULL;
3655 	atomic_set(&mdsc->num_sessions, 0);
3656 	mdsc->max_sessions = 0;
3657 	mdsc->stopping = 0;
3658 	atomic64_set(&mdsc->quotarealms_count, 0);
3659 	mdsc->last_snap_seq = 0;
3660 	init_rwsem(&mdsc->snap_rwsem);
3661 	mdsc->snap_realms = RB_ROOT;
3662 	INIT_LIST_HEAD(&mdsc->snap_empty);
3663 	spin_lock_init(&mdsc->snap_empty_lock);
3664 	mdsc->last_tid = 0;
3665 	mdsc->oldest_tid = 0;
3666 	mdsc->request_tree = RB_ROOT;
3667 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3668 	mdsc->last_renew_caps = jiffies;
3669 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3670 	spin_lock_init(&mdsc->cap_delay_lock);
3671 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3672 	spin_lock_init(&mdsc->snap_flush_lock);
3673 	mdsc->last_cap_flush_tid = 1;
3674 	INIT_LIST_HEAD(&mdsc->cap_flush_list);
3675 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3676 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3677 	mdsc->num_cap_flushing = 0;
3678 	spin_lock_init(&mdsc->cap_dirty_lock);
3679 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3680 	spin_lock_init(&mdsc->dentry_lru_lock);
3681 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3682 
3683 	ceph_caps_init(mdsc);
3684 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3685 
3686 	init_rwsem(&mdsc->pool_perm_rwsem);
3687 	mdsc->pool_perm_tree = RB_ROOT;
3688 
3689 	strscpy(mdsc->nodename, utsname()->nodename,
3690 		sizeof(mdsc->nodename));
3691 	return 0;
3692 }
3693 
3694 /*
3695  * Wait for safe replies on open mds requests.  If we time out, drop
3696  * all requests from the tree to avoid dangling dentry refs.
3697  */
3698 static void wait_requests(struct ceph_mds_client *mdsc)
3699 {
3700 	struct ceph_options *opts = mdsc->fsc->client->options;
3701 	struct ceph_mds_request *req;
3702 
3703 	mutex_lock(&mdsc->mutex);
3704 	if (__get_oldest_req(mdsc)) {
3705 		mutex_unlock(&mdsc->mutex);
3706 
3707 		dout("wait_requests waiting for requests\n");
3708 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3709 				    ceph_timeout_jiffies(opts->mount_timeout));
3710 
3711 		/* tear down remaining requests */
3712 		mutex_lock(&mdsc->mutex);
3713 		while ((req = __get_oldest_req(mdsc))) {
3714 			dout("wait_requests timed out on tid %llu\n",
3715 			     req->r_tid);
3716 			__unregister_request(mdsc, req);
3717 		}
3718 	}
3719 	mutex_unlock(&mdsc->mutex);
3720 	dout("wait_requests done\n");
3721 }
3722 
3723 /*
3724  * called before mount is ro, and before dentries are torn down.
3725  * (hmm, does this still race with new lookups?)
3726  */
3727 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3728 {
3729 	dout("pre_umount\n");
3730 	mdsc->stopping = 1;
3731 
3732 	lock_unlock_sessions(mdsc);
3733 	ceph_flush_dirty_caps(mdsc);
3734 	wait_requests(mdsc);
3735 
3736 	/*
3737 	 * wait for reply handlers to drop their request refs and
3738 	 * their inode/dcache refs
3739 	 */
3740 	ceph_msgr_flush();
3741 }
3742 
3743 /*
3744  * wait for all write mds requests to flush.
3745  */
3746 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3747 {
3748 	struct ceph_mds_request *req = NULL, *nextreq;
3749 	struct rb_node *n;
3750 
3751 	mutex_lock(&mdsc->mutex);
3752 	dout("wait_unsafe_requests want %lld\n", want_tid);
3753 restart:
3754 	req = __get_oldest_req(mdsc);
3755 	while (req && req->r_tid <= want_tid) {
3756 		/* find next request */
3757 		n = rb_next(&req->r_node);
3758 		if (n)
3759 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3760 		else
3761 			nextreq = NULL;
3762 		if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3763 		    (req->r_op & CEPH_MDS_OP_WRITE)) {
3764 			/* write op */
3765 			ceph_mdsc_get_request(req);
3766 			if (nextreq)
3767 				ceph_mdsc_get_request(nextreq);
3768 			mutex_unlock(&mdsc->mutex);
3769 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3770 			     req->r_tid, want_tid);
3771 			wait_for_completion(&req->r_safe_completion);
3772 			mutex_lock(&mdsc->mutex);
3773 			ceph_mdsc_put_request(req);
3774 			if (!nextreq)
3775 				break;  /* next dne before, so we're done! */
3776 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3777 				/* next request was removed from tree */
3778 				ceph_mdsc_put_request(nextreq);
3779 				goto restart;
3780 			}
3781 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3782 		}
3783 		req = nextreq;
3784 	}
3785 	mutex_unlock(&mdsc->mutex);
3786 	dout("wait_unsafe_requests done\n");
3787 }
3788 
3789 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3790 {
3791 	u64 want_tid, want_flush;
3792 
3793 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3794 		return;
3795 
3796 	dout("sync\n");
3797 	mutex_lock(&mdsc->mutex);
3798 	want_tid = mdsc->last_tid;
3799 	mutex_unlock(&mdsc->mutex);
3800 
3801 	ceph_flush_dirty_caps(mdsc);
3802 	spin_lock(&mdsc->cap_dirty_lock);
3803 	want_flush = mdsc->last_cap_flush_tid;
3804 	if (!list_empty(&mdsc->cap_flush_list)) {
3805 		struct ceph_cap_flush *cf =
3806 			list_last_entry(&mdsc->cap_flush_list,
3807 					struct ceph_cap_flush, g_list);
3808 		cf->wake = true;
3809 	}
3810 	spin_unlock(&mdsc->cap_dirty_lock);
3811 
3812 	dout("sync want tid %lld flush_seq %lld\n",
3813 	     want_tid, want_flush);
3814 
3815 	wait_unsafe_requests(mdsc, want_tid);
3816 	wait_caps_flush(mdsc, want_flush);
3817 }
3818 
3819 /*
3820  * true if all sessions are closed, or we force unmount
3821  */
3822 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped)
3823 {
3824 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3825 		return true;
3826 	return atomic_read(&mdsc->num_sessions) <= skipped;
3827 }
3828 
3829 /*
3830  * called after sb is ro.
3831  */
3832 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3833 {
3834 	struct ceph_options *opts = mdsc->fsc->client->options;
3835 	struct ceph_mds_session *session;
3836 	int i;
3837 	int skipped = 0;
3838 
3839 	dout("close_sessions\n");
3840 
3841 	/* close sessions */
3842 	mutex_lock(&mdsc->mutex);
3843 	for (i = 0; i < mdsc->max_sessions; i++) {
3844 		session = __ceph_lookup_mds_session(mdsc, i);
3845 		if (!session)
3846 			continue;
3847 		mutex_unlock(&mdsc->mutex);
3848 		mutex_lock(&session->s_mutex);
3849 		if (__close_session(mdsc, session) <= 0)
3850 			skipped++;
3851 		mutex_unlock(&session->s_mutex);
3852 		ceph_put_mds_session(session);
3853 		mutex_lock(&mdsc->mutex);
3854 	}
3855 	mutex_unlock(&mdsc->mutex);
3856 
3857 	dout("waiting for sessions to close\n");
3858 	wait_event_timeout(mdsc->session_close_wq,
3859 			   done_closing_sessions(mdsc, skipped),
3860 			   ceph_timeout_jiffies(opts->mount_timeout));
3861 
3862 	/* tear down remaining sessions */
3863 	mutex_lock(&mdsc->mutex);
3864 	for (i = 0; i < mdsc->max_sessions; i++) {
3865 		if (mdsc->sessions[i]) {
3866 			session = get_session(mdsc->sessions[i]);
3867 			__unregister_session(mdsc, session);
3868 			mutex_unlock(&mdsc->mutex);
3869 			mutex_lock(&session->s_mutex);
3870 			remove_session_caps(session);
3871 			mutex_unlock(&session->s_mutex);
3872 			ceph_put_mds_session(session);
3873 			mutex_lock(&mdsc->mutex);
3874 		}
3875 	}
3876 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3877 	mutex_unlock(&mdsc->mutex);
3878 
3879 	ceph_cleanup_empty_realms(mdsc);
3880 
3881 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3882 
3883 	dout("stopped\n");
3884 }
3885 
3886 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3887 {
3888 	struct ceph_mds_session *session;
3889 	int mds;
3890 
3891 	dout("force umount\n");
3892 
3893 	mutex_lock(&mdsc->mutex);
3894 	for (mds = 0; mds < mdsc->max_sessions; mds++) {
3895 		session = __ceph_lookup_mds_session(mdsc, mds);
3896 		if (!session)
3897 			continue;
3898 		mutex_unlock(&mdsc->mutex);
3899 		mutex_lock(&session->s_mutex);
3900 		__close_session(mdsc, session);
3901 		if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3902 			cleanup_session_requests(mdsc, session);
3903 			remove_session_caps(session);
3904 		}
3905 		mutex_unlock(&session->s_mutex);
3906 		ceph_put_mds_session(session);
3907 		mutex_lock(&mdsc->mutex);
3908 		kick_requests(mdsc, mds);
3909 	}
3910 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3911 	mutex_unlock(&mdsc->mutex);
3912 }
3913 
3914 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3915 {
3916 	dout("stop\n");
3917 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3918 	if (mdsc->mdsmap)
3919 		ceph_mdsmap_destroy(mdsc->mdsmap);
3920 	kfree(mdsc->sessions);
3921 	ceph_caps_finalize(mdsc);
3922 	ceph_pool_perm_destroy(mdsc);
3923 }
3924 
3925 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3926 {
3927 	struct ceph_mds_client *mdsc = fsc->mdsc;
3928 	dout("mdsc_destroy %p\n", mdsc);
3929 
3930 	if (!mdsc)
3931 		return;
3932 
3933 	/* flush out any connection work with references to us */
3934 	ceph_msgr_flush();
3935 
3936 	ceph_mdsc_stop(mdsc);
3937 
3938 	fsc->mdsc = NULL;
3939 	kfree(mdsc);
3940 	dout("mdsc_destroy %p done\n", mdsc);
3941 }
3942 
3943 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3944 {
3945 	struct ceph_fs_client *fsc = mdsc->fsc;
3946 	const char *mds_namespace = fsc->mount_options->mds_namespace;
3947 	void *p = msg->front.iov_base;
3948 	void *end = p + msg->front.iov_len;
3949 	u32 epoch;
3950 	u32 map_len;
3951 	u32 num_fs;
3952 	u32 mount_fscid = (u32)-1;
3953 	u8 struct_v, struct_cv;
3954 	int err = -EINVAL;
3955 
3956 	ceph_decode_need(&p, end, sizeof(u32), bad);
3957 	epoch = ceph_decode_32(&p);
3958 
3959 	dout("handle_fsmap epoch %u\n", epoch);
3960 
3961 	ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3962 	struct_v = ceph_decode_8(&p);
3963 	struct_cv = ceph_decode_8(&p);
3964 	map_len = ceph_decode_32(&p);
3965 
3966 	ceph_decode_need(&p, end, sizeof(u32) * 3, bad);
3967 	p += sizeof(u32) * 2; /* skip epoch and legacy_client_fscid */
3968 
3969 	num_fs = ceph_decode_32(&p);
3970 	while (num_fs-- > 0) {
3971 		void *info_p, *info_end;
3972 		u32 info_len;
3973 		u8 info_v, info_cv;
3974 		u32 fscid, namelen;
3975 
3976 		ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3977 		info_v = ceph_decode_8(&p);
3978 		info_cv = ceph_decode_8(&p);
3979 		info_len = ceph_decode_32(&p);
3980 		ceph_decode_need(&p, end, info_len, bad);
3981 		info_p = p;
3982 		info_end = p + info_len;
3983 		p = info_end;
3984 
3985 		ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad);
3986 		fscid = ceph_decode_32(&info_p);
3987 		namelen = ceph_decode_32(&info_p);
3988 		ceph_decode_need(&info_p, info_end, namelen, bad);
3989 
3990 		if (mds_namespace &&
3991 		    strlen(mds_namespace) == namelen &&
3992 		    !strncmp(mds_namespace, (char *)info_p, namelen)) {
3993 			mount_fscid = fscid;
3994 			break;
3995 		}
3996 	}
3997 
3998 	ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch);
3999 	if (mount_fscid != (u32)-1) {
4000 		fsc->client->monc.fs_cluster_id = mount_fscid;
4001 		ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP,
4002 				   0, true);
4003 		ceph_monc_renew_subs(&fsc->client->monc);
4004 	} else {
4005 		err = -ENOENT;
4006 		goto err_out;
4007 	}
4008 	return;
4009 
4010 bad:
4011 	pr_err("error decoding fsmap\n");
4012 err_out:
4013 	mutex_lock(&mdsc->mutex);
4014 	mdsc->mdsmap_err = err;
4015 	__wake_requests(mdsc, &mdsc->waiting_for_map);
4016 	mutex_unlock(&mdsc->mutex);
4017 }
4018 
4019 /*
4020  * handle mds map update.
4021  */
4022 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
4023 {
4024 	u32 epoch;
4025 	u32 maplen;
4026 	void *p = msg->front.iov_base;
4027 	void *end = p + msg->front.iov_len;
4028 	struct ceph_mdsmap *newmap, *oldmap;
4029 	struct ceph_fsid fsid;
4030 	int err = -EINVAL;
4031 
4032 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
4033 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
4034 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
4035 		return;
4036 	epoch = ceph_decode_32(&p);
4037 	maplen = ceph_decode_32(&p);
4038 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
4039 
4040 	/* do we need it? */
4041 	mutex_lock(&mdsc->mutex);
4042 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
4043 		dout("handle_map epoch %u <= our %u\n",
4044 		     epoch, mdsc->mdsmap->m_epoch);
4045 		mutex_unlock(&mdsc->mutex);
4046 		return;
4047 	}
4048 
4049 	newmap = ceph_mdsmap_decode(&p, end);
4050 	if (IS_ERR(newmap)) {
4051 		err = PTR_ERR(newmap);
4052 		goto bad_unlock;
4053 	}
4054 
4055 	/* swap into place */
4056 	if (mdsc->mdsmap) {
4057 		oldmap = mdsc->mdsmap;
4058 		mdsc->mdsmap = newmap;
4059 		check_new_map(mdsc, newmap, oldmap);
4060 		ceph_mdsmap_destroy(oldmap);
4061 	} else {
4062 		mdsc->mdsmap = newmap;  /* first mds map */
4063 	}
4064 	mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size,
4065 					MAX_LFS_FILESIZE);
4066 
4067 	__wake_requests(mdsc, &mdsc->waiting_for_map);
4068 	ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
4069 			  mdsc->mdsmap->m_epoch);
4070 
4071 	mutex_unlock(&mdsc->mutex);
4072 	schedule_delayed(mdsc);
4073 	return;
4074 
4075 bad_unlock:
4076 	mutex_unlock(&mdsc->mutex);
4077 bad:
4078 	pr_err("error decoding mdsmap %d\n", err);
4079 	return;
4080 }
4081 
4082 static struct ceph_connection *con_get(struct ceph_connection *con)
4083 {
4084 	struct ceph_mds_session *s = con->private;
4085 
4086 	if (get_session(s)) {
4087 		dout("mdsc con_get %p ok (%d)\n", s, refcount_read(&s->s_ref));
4088 		return con;
4089 	}
4090 	dout("mdsc con_get %p FAIL\n", s);
4091 	return NULL;
4092 }
4093 
4094 static void con_put(struct ceph_connection *con)
4095 {
4096 	struct ceph_mds_session *s = con->private;
4097 
4098 	dout("mdsc con_put %p (%d)\n", s, refcount_read(&s->s_ref) - 1);
4099 	ceph_put_mds_session(s);
4100 }
4101 
4102 /*
4103  * if the client is unresponsive for long enough, the mds will kill
4104  * the session entirely.
4105  */
4106 static void peer_reset(struct ceph_connection *con)
4107 {
4108 	struct ceph_mds_session *s = con->private;
4109 	struct ceph_mds_client *mdsc = s->s_mdsc;
4110 
4111 	pr_warn("mds%d closed our session\n", s->s_mds);
4112 	send_mds_reconnect(mdsc, s);
4113 }
4114 
4115 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
4116 {
4117 	struct ceph_mds_session *s = con->private;
4118 	struct ceph_mds_client *mdsc = s->s_mdsc;
4119 	int type = le16_to_cpu(msg->hdr.type);
4120 
4121 	mutex_lock(&mdsc->mutex);
4122 	if (__verify_registered_session(mdsc, s) < 0) {
4123 		mutex_unlock(&mdsc->mutex);
4124 		goto out;
4125 	}
4126 	mutex_unlock(&mdsc->mutex);
4127 
4128 	switch (type) {
4129 	case CEPH_MSG_MDS_MAP:
4130 		ceph_mdsc_handle_mdsmap(mdsc, msg);
4131 		break;
4132 	case CEPH_MSG_FS_MAP_USER:
4133 		ceph_mdsc_handle_fsmap(mdsc, msg);
4134 		break;
4135 	case CEPH_MSG_CLIENT_SESSION:
4136 		handle_session(s, msg);
4137 		break;
4138 	case CEPH_MSG_CLIENT_REPLY:
4139 		handle_reply(s, msg);
4140 		break;
4141 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
4142 		handle_forward(mdsc, s, msg);
4143 		break;
4144 	case CEPH_MSG_CLIENT_CAPS:
4145 		ceph_handle_caps(s, msg);
4146 		break;
4147 	case CEPH_MSG_CLIENT_SNAP:
4148 		ceph_handle_snap(mdsc, s, msg);
4149 		break;
4150 	case CEPH_MSG_CLIENT_LEASE:
4151 		handle_lease(mdsc, s, msg);
4152 		break;
4153 	case CEPH_MSG_CLIENT_QUOTA:
4154 		ceph_handle_quota(mdsc, s, msg);
4155 		break;
4156 
4157 	default:
4158 		pr_err("received unknown message type %d %s\n", type,
4159 		       ceph_msg_type_name(type));
4160 	}
4161 out:
4162 	ceph_msg_put(msg);
4163 }
4164 
4165 /*
4166  * authentication
4167  */
4168 
4169 /*
4170  * Note: returned pointer is the address of a structure that's
4171  * managed separately.  Caller must *not* attempt to free it.
4172  */
4173 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
4174 					int *proto, int force_new)
4175 {
4176 	struct ceph_mds_session *s = con->private;
4177 	struct ceph_mds_client *mdsc = s->s_mdsc;
4178 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4179 	struct ceph_auth_handshake *auth = &s->s_auth;
4180 
4181 	if (force_new && auth->authorizer) {
4182 		ceph_auth_destroy_authorizer(auth->authorizer);
4183 		auth->authorizer = NULL;
4184 	}
4185 	if (!auth->authorizer) {
4186 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
4187 						      auth);
4188 		if (ret)
4189 			return ERR_PTR(ret);
4190 	} else {
4191 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
4192 						      auth);
4193 		if (ret)
4194 			return ERR_PTR(ret);
4195 	}
4196 	*proto = ac->protocol;
4197 
4198 	return auth;
4199 }
4200 
4201 static int add_authorizer_challenge(struct ceph_connection *con,
4202 				    void *challenge_buf, int challenge_buf_len)
4203 {
4204 	struct ceph_mds_session *s = con->private;
4205 	struct ceph_mds_client *mdsc = s->s_mdsc;
4206 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4207 
4208 	return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer,
4209 					    challenge_buf, challenge_buf_len);
4210 }
4211 
4212 static int verify_authorizer_reply(struct ceph_connection *con)
4213 {
4214 	struct ceph_mds_session *s = con->private;
4215 	struct ceph_mds_client *mdsc = s->s_mdsc;
4216 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4217 
4218 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer);
4219 }
4220 
4221 static int invalidate_authorizer(struct ceph_connection *con)
4222 {
4223 	struct ceph_mds_session *s = con->private;
4224 	struct ceph_mds_client *mdsc = s->s_mdsc;
4225 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4226 
4227 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
4228 
4229 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
4230 }
4231 
4232 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
4233 				struct ceph_msg_header *hdr, int *skip)
4234 {
4235 	struct ceph_msg *msg;
4236 	int type = (int) le16_to_cpu(hdr->type);
4237 	int front_len = (int) le32_to_cpu(hdr->front_len);
4238 
4239 	if (con->in_msg)
4240 		return con->in_msg;
4241 
4242 	*skip = 0;
4243 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
4244 	if (!msg) {
4245 		pr_err("unable to allocate msg type %d len %d\n",
4246 		       type, front_len);
4247 		return NULL;
4248 	}
4249 
4250 	return msg;
4251 }
4252 
4253 static int mds_sign_message(struct ceph_msg *msg)
4254 {
4255        struct ceph_mds_session *s = msg->con->private;
4256        struct ceph_auth_handshake *auth = &s->s_auth;
4257 
4258        return ceph_auth_sign_message(auth, msg);
4259 }
4260 
4261 static int mds_check_message_signature(struct ceph_msg *msg)
4262 {
4263        struct ceph_mds_session *s = msg->con->private;
4264        struct ceph_auth_handshake *auth = &s->s_auth;
4265 
4266        return ceph_auth_check_message_signature(auth, msg);
4267 }
4268 
4269 static const struct ceph_connection_operations mds_con_ops = {
4270 	.get = con_get,
4271 	.put = con_put,
4272 	.dispatch = dispatch,
4273 	.get_authorizer = get_authorizer,
4274 	.add_authorizer_challenge = add_authorizer_challenge,
4275 	.verify_authorizer_reply = verify_authorizer_reply,
4276 	.invalidate_authorizer = invalidate_authorizer,
4277 	.peer_reset = peer_reset,
4278 	.alloc_msg = mds_alloc_msg,
4279 	.sign_message = mds_sign_message,
4280 	.check_message_signature = mds_check_message_signature,
4281 };
4282 
4283 /* eof */
4284