1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/fs.h> 5 #include <linux/wait.h> 6 #include <linux/slab.h> 7 #include <linux/gfp.h> 8 #include <linux/sched.h> 9 #include <linux/debugfs.h> 10 #include <linux/seq_file.h> 11 #include <linux/ratelimit.h> 12 #include <linux/bits.h> 13 #include <linux/ktime.h> 14 #include <linux/bitmap.h> 15 16 #include "super.h" 17 #include "mds_client.h" 18 19 #include <linux/ceph/ceph_features.h> 20 #include <linux/ceph/messenger.h> 21 #include <linux/ceph/decode.h> 22 #include <linux/ceph/pagelist.h> 23 #include <linux/ceph/auth.h> 24 #include <linux/ceph/debugfs.h> 25 26 #define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE) 27 28 /* 29 * A cluster of MDS (metadata server) daemons is responsible for 30 * managing the file system namespace (the directory hierarchy and 31 * inodes) and for coordinating shared access to storage. Metadata is 32 * partitioning hierarchically across a number of servers, and that 33 * partition varies over time as the cluster adjusts the distribution 34 * in order to balance load. 35 * 36 * The MDS client is primarily responsible to managing synchronous 37 * metadata requests for operations like open, unlink, and so forth. 38 * If there is a MDS failure, we find out about it when we (possibly 39 * request and) receive a new MDS map, and can resubmit affected 40 * requests. 41 * 42 * For the most part, though, we take advantage of a lossless 43 * communications channel to the MDS, and do not need to worry about 44 * timing out or resubmitting requests. 45 * 46 * We maintain a stateful "session" with each MDS we interact with. 47 * Within each session, we sent periodic heartbeat messages to ensure 48 * any capabilities or leases we have been issues remain valid. If 49 * the session times out and goes stale, our leases and capabilities 50 * are no longer valid. 51 */ 52 53 struct ceph_reconnect_state { 54 struct ceph_mds_session *session; 55 int nr_caps, nr_realms; 56 struct ceph_pagelist *pagelist; 57 unsigned msg_version; 58 bool allow_multi; 59 }; 60 61 static void __wake_requests(struct ceph_mds_client *mdsc, 62 struct list_head *head); 63 static void ceph_cap_release_work(struct work_struct *work); 64 static void ceph_cap_reclaim_work(struct work_struct *work); 65 66 static const struct ceph_connection_operations mds_con_ops; 67 68 69 /* 70 * mds reply parsing 71 */ 72 73 static int parse_reply_info_quota(void **p, void *end, 74 struct ceph_mds_reply_info_in *info) 75 { 76 u8 struct_v, struct_compat; 77 u32 struct_len; 78 79 ceph_decode_8_safe(p, end, struct_v, bad); 80 ceph_decode_8_safe(p, end, struct_compat, bad); 81 /* struct_v is expected to be >= 1. we only 82 * understand encoding with struct_compat == 1. */ 83 if (!struct_v || struct_compat != 1) 84 goto bad; 85 ceph_decode_32_safe(p, end, struct_len, bad); 86 ceph_decode_need(p, end, struct_len, bad); 87 end = *p + struct_len; 88 ceph_decode_64_safe(p, end, info->max_bytes, bad); 89 ceph_decode_64_safe(p, end, info->max_files, bad); 90 *p = end; 91 return 0; 92 bad: 93 return -EIO; 94 } 95 96 /* 97 * parse individual inode info 98 */ 99 static int parse_reply_info_in(void **p, void *end, 100 struct ceph_mds_reply_info_in *info, 101 u64 features) 102 { 103 int err = 0; 104 u8 struct_v = 0; 105 106 if (features == (u64)-1) { 107 u32 struct_len; 108 u8 struct_compat; 109 ceph_decode_8_safe(p, end, struct_v, bad); 110 ceph_decode_8_safe(p, end, struct_compat, bad); 111 /* struct_v is expected to be >= 1. we only understand 112 * encoding with struct_compat == 1. */ 113 if (!struct_v || struct_compat != 1) 114 goto bad; 115 ceph_decode_32_safe(p, end, struct_len, bad); 116 ceph_decode_need(p, end, struct_len, bad); 117 end = *p + struct_len; 118 } 119 120 ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad); 121 info->in = *p; 122 *p += sizeof(struct ceph_mds_reply_inode) + 123 sizeof(*info->in->fragtree.splits) * 124 le32_to_cpu(info->in->fragtree.nsplits); 125 126 ceph_decode_32_safe(p, end, info->symlink_len, bad); 127 ceph_decode_need(p, end, info->symlink_len, bad); 128 info->symlink = *p; 129 *p += info->symlink_len; 130 131 ceph_decode_copy_safe(p, end, &info->dir_layout, 132 sizeof(info->dir_layout), bad); 133 ceph_decode_32_safe(p, end, info->xattr_len, bad); 134 ceph_decode_need(p, end, info->xattr_len, bad); 135 info->xattr_data = *p; 136 *p += info->xattr_len; 137 138 if (features == (u64)-1) { 139 /* inline data */ 140 ceph_decode_64_safe(p, end, info->inline_version, bad); 141 ceph_decode_32_safe(p, end, info->inline_len, bad); 142 ceph_decode_need(p, end, info->inline_len, bad); 143 info->inline_data = *p; 144 *p += info->inline_len; 145 /* quota */ 146 err = parse_reply_info_quota(p, end, info); 147 if (err < 0) 148 goto out_bad; 149 /* pool namespace */ 150 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 151 if (info->pool_ns_len > 0) { 152 ceph_decode_need(p, end, info->pool_ns_len, bad); 153 info->pool_ns_data = *p; 154 *p += info->pool_ns_len; 155 } 156 157 /* btime */ 158 ceph_decode_need(p, end, sizeof(info->btime), bad); 159 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 160 161 /* change attribute */ 162 ceph_decode_64_safe(p, end, info->change_attr, bad); 163 164 /* dir pin */ 165 if (struct_v >= 2) { 166 ceph_decode_32_safe(p, end, info->dir_pin, bad); 167 } else { 168 info->dir_pin = -ENODATA; 169 } 170 171 /* snapshot birth time, remains zero for v<=2 */ 172 if (struct_v >= 3) { 173 ceph_decode_need(p, end, sizeof(info->snap_btime), bad); 174 ceph_decode_copy(p, &info->snap_btime, 175 sizeof(info->snap_btime)); 176 } else { 177 memset(&info->snap_btime, 0, sizeof(info->snap_btime)); 178 } 179 180 /* snapshot count, remains zero for v<=3 */ 181 if (struct_v >= 4) { 182 ceph_decode_64_safe(p, end, info->rsnaps, bad); 183 } else { 184 info->rsnaps = 0; 185 } 186 187 *p = end; 188 } else { 189 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 190 ceph_decode_64_safe(p, end, info->inline_version, bad); 191 ceph_decode_32_safe(p, end, info->inline_len, bad); 192 ceph_decode_need(p, end, info->inline_len, bad); 193 info->inline_data = *p; 194 *p += info->inline_len; 195 } else 196 info->inline_version = CEPH_INLINE_NONE; 197 198 if (features & CEPH_FEATURE_MDS_QUOTA) { 199 err = parse_reply_info_quota(p, end, info); 200 if (err < 0) 201 goto out_bad; 202 } else { 203 info->max_bytes = 0; 204 info->max_files = 0; 205 } 206 207 info->pool_ns_len = 0; 208 info->pool_ns_data = NULL; 209 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) { 210 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 211 if (info->pool_ns_len > 0) { 212 ceph_decode_need(p, end, info->pool_ns_len, bad); 213 info->pool_ns_data = *p; 214 *p += info->pool_ns_len; 215 } 216 } 217 218 if (features & CEPH_FEATURE_FS_BTIME) { 219 ceph_decode_need(p, end, sizeof(info->btime), bad); 220 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 221 ceph_decode_64_safe(p, end, info->change_attr, bad); 222 } 223 224 info->dir_pin = -ENODATA; 225 /* info->snap_btime and info->rsnaps remain zero */ 226 } 227 return 0; 228 bad: 229 err = -EIO; 230 out_bad: 231 return err; 232 } 233 234 static int parse_reply_info_dir(void **p, void *end, 235 struct ceph_mds_reply_dirfrag **dirfrag, 236 u64 features) 237 { 238 if (features == (u64)-1) { 239 u8 struct_v, struct_compat; 240 u32 struct_len; 241 ceph_decode_8_safe(p, end, struct_v, bad); 242 ceph_decode_8_safe(p, end, struct_compat, bad); 243 /* struct_v is expected to be >= 1. we only understand 244 * encoding whose struct_compat == 1. */ 245 if (!struct_v || struct_compat != 1) 246 goto bad; 247 ceph_decode_32_safe(p, end, struct_len, bad); 248 ceph_decode_need(p, end, struct_len, bad); 249 end = *p + struct_len; 250 } 251 252 ceph_decode_need(p, end, sizeof(**dirfrag), bad); 253 *dirfrag = *p; 254 *p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist); 255 if (unlikely(*p > end)) 256 goto bad; 257 if (features == (u64)-1) 258 *p = end; 259 return 0; 260 bad: 261 return -EIO; 262 } 263 264 static int parse_reply_info_lease(void **p, void *end, 265 struct ceph_mds_reply_lease **lease, 266 u64 features) 267 { 268 if (features == (u64)-1) { 269 u8 struct_v, struct_compat; 270 u32 struct_len; 271 ceph_decode_8_safe(p, end, struct_v, bad); 272 ceph_decode_8_safe(p, end, struct_compat, bad); 273 /* struct_v is expected to be >= 1. we only understand 274 * encoding whose struct_compat == 1. */ 275 if (!struct_v || struct_compat != 1) 276 goto bad; 277 ceph_decode_32_safe(p, end, struct_len, bad); 278 ceph_decode_need(p, end, struct_len, bad); 279 end = *p + struct_len; 280 } 281 282 ceph_decode_need(p, end, sizeof(**lease), bad); 283 *lease = *p; 284 *p += sizeof(**lease); 285 if (features == (u64)-1) 286 *p = end; 287 return 0; 288 bad: 289 return -EIO; 290 } 291 292 /* 293 * parse a normal reply, which may contain a (dir+)dentry and/or a 294 * target inode. 295 */ 296 static int parse_reply_info_trace(void **p, void *end, 297 struct ceph_mds_reply_info_parsed *info, 298 u64 features) 299 { 300 int err; 301 302 if (info->head->is_dentry) { 303 err = parse_reply_info_in(p, end, &info->diri, features); 304 if (err < 0) 305 goto out_bad; 306 307 err = parse_reply_info_dir(p, end, &info->dirfrag, features); 308 if (err < 0) 309 goto out_bad; 310 311 ceph_decode_32_safe(p, end, info->dname_len, bad); 312 ceph_decode_need(p, end, info->dname_len, bad); 313 info->dname = *p; 314 *p += info->dname_len; 315 316 err = parse_reply_info_lease(p, end, &info->dlease, features); 317 if (err < 0) 318 goto out_bad; 319 } 320 321 if (info->head->is_target) { 322 err = parse_reply_info_in(p, end, &info->targeti, features); 323 if (err < 0) 324 goto out_bad; 325 } 326 327 if (unlikely(*p != end)) 328 goto bad; 329 return 0; 330 331 bad: 332 err = -EIO; 333 out_bad: 334 pr_err("problem parsing mds trace %d\n", err); 335 return err; 336 } 337 338 /* 339 * parse readdir results 340 */ 341 static int parse_reply_info_readdir(void **p, void *end, 342 struct ceph_mds_reply_info_parsed *info, 343 u64 features) 344 { 345 u32 num, i = 0; 346 int err; 347 348 err = parse_reply_info_dir(p, end, &info->dir_dir, features); 349 if (err < 0) 350 goto out_bad; 351 352 ceph_decode_need(p, end, sizeof(num) + 2, bad); 353 num = ceph_decode_32(p); 354 { 355 u16 flags = ceph_decode_16(p); 356 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END); 357 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE); 358 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER); 359 info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH); 360 } 361 if (num == 0) 362 goto done; 363 364 BUG_ON(!info->dir_entries); 365 if ((unsigned long)(info->dir_entries + num) > 366 (unsigned long)info->dir_entries + info->dir_buf_size) { 367 pr_err("dir contents are larger than expected\n"); 368 WARN_ON(1); 369 goto bad; 370 } 371 372 info->dir_nr = num; 373 while (num) { 374 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 375 /* dentry */ 376 ceph_decode_32_safe(p, end, rde->name_len, bad); 377 ceph_decode_need(p, end, rde->name_len, bad); 378 rde->name = *p; 379 *p += rde->name_len; 380 dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name); 381 382 /* dentry lease */ 383 err = parse_reply_info_lease(p, end, &rde->lease, features); 384 if (err) 385 goto out_bad; 386 /* inode */ 387 err = parse_reply_info_in(p, end, &rde->inode, features); 388 if (err < 0) 389 goto out_bad; 390 /* ceph_readdir_prepopulate() will update it */ 391 rde->offset = 0; 392 i++; 393 num--; 394 } 395 396 done: 397 /* Skip over any unrecognized fields */ 398 *p = end; 399 return 0; 400 401 bad: 402 err = -EIO; 403 out_bad: 404 pr_err("problem parsing dir contents %d\n", err); 405 return err; 406 } 407 408 /* 409 * parse fcntl F_GETLK results 410 */ 411 static int parse_reply_info_filelock(void **p, void *end, 412 struct ceph_mds_reply_info_parsed *info, 413 u64 features) 414 { 415 if (*p + sizeof(*info->filelock_reply) > end) 416 goto bad; 417 418 info->filelock_reply = *p; 419 420 /* Skip over any unrecognized fields */ 421 *p = end; 422 return 0; 423 bad: 424 return -EIO; 425 } 426 427 428 #if BITS_PER_LONG == 64 429 430 #define DELEGATED_INO_AVAILABLE xa_mk_value(1) 431 432 static int ceph_parse_deleg_inos(void **p, void *end, 433 struct ceph_mds_session *s) 434 { 435 u32 sets; 436 437 ceph_decode_32_safe(p, end, sets, bad); 438 dout("got %u sets of delegated inodes\n", sets); 439 while (sets--) { 440 u64 start, len, ino; 441 442 ceph_decode_64_safe(p, end, start, bad); 443 ceph_decode_64_safe(p, end, len, bad); 444 445 /* Don't accept a delegation of system inodes */ 446 if (start < CEPH_INO_SYSTEM_BASE) { 447 pr_warn_ratelimited("ceph: ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n", 448 start, len); 449 continue; 450 } 451 while (len--) { 452 int err = xa_insert(&s->s_delegated_inos, ino = start++, 453 DELEGATED_INO_AVAILABLE, 454 GFP_KERNEL); 455 if (!err) { 456 dout("added delegated inode 0x%llx\n", 457 start - 1); 458 } else if (err == -EBUSY) { 459 pr_warn("ceph: MDS delegated inode 0x%llx more than once.\n", 460 start - 1); 461 } else { 462 return err; 463 } 464 } 465 } 466 return 0; 467 bad: 468 return -EIO; 469 } 470 471 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 472 { 473 unsigned long ino; 474 void *val; 475 476 xa_for_each(&s->s_delegated_inos, ino, val) { 477 val = xa_erase(&s->s_delegated_inos, ino); 478 if (val == DELEGATED_INO_AVAILABLE) 479 return ino; 480 } 481 return 0; 482 } 483 484 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 485 { 486 return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE, 487 GFP_KERNEL); 488 } 489 #else /* BITS_PER_LONG == 64 */ 490 /* 491 * FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just 492 * ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top 493 * and bottom words? 494 */ 495 static int ceph_parse_deleg_inos(void **p, void *end, 496 struct ceph_mds_session *s) 497 { 498 u32 sets; 499 500 ceph_decode_32_safe(p, end, sets, bad); 501 if (sets) 502 ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad); 503 return 0; 504 bad: 505 return -EIO; 506 } 507 508 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 509 { 510 return 0; 511 } 512 513 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 514 { 515 return 0; 516 } 517 #endif /* BITS_PER_LONG == 64 */ 518 519 /* 520 * parse create results 521 */ 522 static int parse_reply_info_create(void **p, void *end, 523 struct ceph_mds_reply_info_parsed *info, 524 u64 features, struct ceph_mds_session *s) 525 { 526 int ret; 527 528 if (features == (u64)-1 || 529 (features & CEPH_FEATURE_REPLY_CREATE_INODE)) { 530 if (*p == end) { 531 /* Malformed reply? */ 532 info->has_create_ino = false; 533 } else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) { 534 info->has_create_ino = true; 535 /* struct_v, struct_compat, and len */ 536 ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad); 537 ceph_decode_64_safe(p, end, info->ino, bad); 538 ret = ceph_parse_deleg_inos(p, end, s); 539 if (ret) 540 return ret; 541 } else { 542 /* legacy */ 543 ceph_decode_64_safe(p, end, info->ino, bad); 544 info->has_create_ino = true; 545 } 546 } else { 547 if (*p != end) 548 goto bad; 549 } 550 551 /* Skip over any unrecognized fields */ 552 *p = end; 553 return 0; 554 bad: 555 return -EIO; 556 } 557 558 /* 559 * parse extra results 560 */ 561 static int parse_reply_info_extra(void **p, void *end, 562 struct ceph_mds_reply_info_parsed *info, 563 u64 features, struct ceph_mds_session *s) 564 { 565 u32 op = le32_to_cpu(info->head->op); 566 567 if (op == CEPH_MDS_OP_GETFILELOCK) 568 return parse_reply_info_filelock(p, end, info, features); 569 else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP) 570 return parse_reply_info_readdir(p, end, info, features); 571 else if (op == CEPH_MDS_OP_CREATE) 572 return parse_reply_info_create(p, end, info, features, s); 573 else 574 return -EIO; 575 } 576 577 /* 578 * parse entire mds reply 579 */ 580 static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg, 581 struct ceph_mds_reply_info_parsed *info, 582 u64 features) 583 { 584 void *p, *end; 585 u32 len; 586 int err; 587 588 info->head = msg->front.iov_base; 589 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 590 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 591 592 /* trace */ 593 ceph_decode_32_safe(&p, end, len, bad); 594 if (len > 0) { 595 ceph_decode_need(&p, end, len, bad); 596 err = parse_reply_info_trace(&p, p+len, info, features); 597 if (err < 0) 598 goto out_bad; 599 } 600 601 /* extra */ 602 ceph_decode_32_safe(&p, end, len, bad); 603 if (len > 0) { 604 ceph_decode_need(&p, end, len, bad); 605 err = parse_reply_info_extra(&p, p+len, info, features, s); 606 if (err < 0) 607 goto out_bad; 608 } 609 610 /* snap blob */ 611 ceph_decode_32_safe(&p, end, len, bad); 612 info->snapblob_len = len; 613 info->snapblob = p; 614 p += len; 615 616 if (p != end) 617 goto bad; 618 return 0; 619 620 bad: 621 err = -EIO; 622 out_bad: 623 pr_err("mds parse_reply err %d\n", err); 624 return err; 625 } 626 627 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 628 { 629 if (!info->dir_entries) 630 return; 631 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size)); 632 } 633 634 635 /* 636 * sessions 637 */ 638 const char *ceph_session_state_name(int s) 639 { 640 switch (s) { 641 case CEPH_MDS_SESSION_NEW: return "new"; 642 case CEPH_MDS_SESSION_OPENING: return "opening"; 643 case CEPH_MDS_SESSION_OPEN: return "open"; 644 case CEPH_MDS_SESSION_HUNG: return "hung"; 645 case CEPH_MDS_SESSION_CLOSING: return "closing"; 646 case CEPH_MDS_SESSION_CLOSED: return "closed"; 647 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 648 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 649 case CEPH_MDS_SESSION_REJECTED: return "rejected"; 650 default: return "???"; 651 } 652 } 653 654 struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s) 655 { 656 if (refcount_inc_not_zero(&s->s_ref)) 657 return s; 658 return NULL; 659 } 660 661 void ceph_put_mds_session(struct ceph_mds_session *s) 662 { 663 if (IS_ERR_OR_NULL(s)) 664 return; 665 666 if (refcount_dec_and_test(&s->s_ref)) { 667 if (s->s_auth.authorizer) 668 ceph_auth_destroy_authorizer(s->s_auth.authorizer); 669 WARN_ON(mutex_is_locked(&s->s_mutex)); 670 xa_destroy(&s->s_delegated_inos); 671 kfree(s); 672 } 673 } 674 675 /* 676 * called under mdsc->mutex 677 */ 678 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 679 int mds) 680 { 681 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 682 return NULL; 683 return ceph_get_mds_session(mdsc->sessions[mds]); 684 } 685 686 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 687 { 688 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 689 return false; 690 else 691 return true; 692 } 693 694 static int __verify_registered_session(struct ceph_mds_client *mdsc, 695 struct ceph_mds_session *s) 696 { 697 if (s->s_mds >= mdsc->max_sessions || 698 mdsc->sessions[s->s_mds] != s) 699 return -ENOENT; 700 return 0; 701 } 702 703 /* 704 * create+register a new session for given mds. 705 * called under mdsc->mutex. 706 */ 707 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 708 int mds) 709 { 710 struct ceph_mds_session *s; 711 712 if (mds >= mdsc->mdsmap->possible_max_rank) 713 return ERR_PTR(-EINVAL); 714 715 s = kzalloc(sizeof(*s), GFP_NOFS); 716 if (!s) 717 return ERR_PTR(-ENOMEM); 718 719 if (mds >= mdsc->max_sessions) { 720 int newmax = 1 << get_count_order(mds + 1); 721 struct ceph_mds_session **sa; 722 723 dout("%s: realloc to %d\n", __func__, newmax); 724 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 725 if (!sa) 726 goto fail_realloc; 727 if (mdsc->sessions) { 728 memcpy(sa, mdsc->sessions, 729 mdsc->max_sessions * sizeof(void *)); 730 kfree(mdsc->sessions); 731 } 732 mdsc->sessions = sa; 733 mdsc->max_sessions = newmax; 734 } 735 736 dout("%s: mds%d\n", __func__, mds); 737 s->s_mdsc = mdsc; 738 s->s_mds = mds; 739 s->s_state = CEPH_MDS_SESSION_NEW; 740 mutex_init(&s->s_mutex); 741 742 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 743 744 atomic_set(&s->s_cap_gen, 1); 745 s->s_cap_ttl = jiffies - 1; 746 747 spin_lock_init(&s->s_cap_lock); 748 INIT_LIST_HEAD(&s->s_caps); 749 refcount_set(&s->s_ref, 1); 750 INIT_LIST_HEAD(&s->s_waiting); 751 INIT_LIST_HEAD(&s->s_unsafe); 752 xa_init(&s->s_delegated_inos); 753 INIT_LIST_HEAD(&s->s_cap_releases); 754 INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work); 755 756 INIT_LIST_HEAD(&s->s_cap_dirty); 757 INIT_LIST_HEAD(&s->s_cap_flushing); 758 759 mdsc->sessions[mds] = s; 760 atomic_inc(&mdsc->num_sessions); 761 refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 762 763 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 764 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 765 766 return s; 767 768 fail_realloc: 769 kfree(s); 770 return ERR_PTR(-ENOMEM); 771 } 772 773 /* 774 * called under mdsc->mutex 775 */ 776 static void __unregister_session(struct ceph_mds_client *mdsc, 777 struct ceph_mds_session *s) 778 { 779 dout("__unregister_session mds%d %p\n", s->s_mds, s); 780 BUG_ON(mdsc->sessions[s->s_mds] != s); 781 mdsc->sessions[s->s_mds] = NULL; 782 ceph_con_close(&s->s_con); 783 ceph_put_mds_session(s); 784 atomic_dec(&mdsc->num_sessions); 785 } 786 787 /* 788 * drop session refs in request. 789 * 790 * should be last request ref, or hold mdsc->mutex 791 */ 792 static void put_request_session(struct ceph_mds_request *req) 793 { 794 if (req->r_session) { 795 ceph_put_mds_session(req->r_session); 796 req->r_session = NULL; 797 } 798 } 799 800 void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc, 801 void (*cb)(struct ceph_mds_session *), 802 bool check_state) 803 { 804 int mds; 805 806 mutex_lock(&mdsc->mutex); 807 for (mds = 0; mds < mdsc->max_sessions; ++mds) { 808 struct ceph_mds_session *s; 809 810 s = __ceph_lookup_mds_session(mdsc, mds); 811 if (!s) 812 continue; 813 814 if (check_state && !check_session_state(s)) { 815 ceph_put_mds_session(s); 816 continue; 817 } 818 819 mutex_unlock(&mdsc->mutex); 820 cb(s); 821 ceph_put_mds_session(s); 822 mutex_lock(&mdsc->mutex); 823 } 824 mutex_unlock(&mdsc->mutex); 825 } 826 827 void ceph_mdsc_release_request(struct kref *kref) 828 { 829 struct ceph_mds_request *req = container_of(kref, 830 struct ceph_mds_request, 831 r_kref); 832 ceph_mdsc_release_dir_caps_no_check(req); 833 destroy_reply_info(&req->r_reply_info); 834 if (req->r_request) 835 ceph_msg_put(req->r_request); 836 if (req->r_reply) 837 ceph_msg_put(req->r_reply); 838 if (req->r_inode) { 839 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 840 iput(req->r_inode); 841 } 842 if (req->r_parent) { 843 ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN); 844 iput(req->r_parent); 845 } 846 iput(req->r_target_inode); 847 if (req->r_dentry) 848 dput(req->r_dentry); 849 if (req->r_old_dentry) 850 dput(req->r_old_dentry); 851 if (req->r_old_dentry_dir) { 852 /* 853 * track (and drop pins for) r_old_dentry_dir 854 * separately, since r_old_dentry's d_parent may have 855 * changed between the dir mutex being dropped and 856 * this request being freed. 857 */ 858 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 859 CEPH_CAP_PIN); 860 iput(req->r_old_dentry_dir); 861 } 862 kfree(req->r_path1); 863 kfree(req->r_path2); 864 put_cred(req->r_cred); 865 if (req->r_pagelist) 866 ceph_pagelist_release(req->r_pagelist); 867 put_request_session(req); 868 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 869 WARN_ON_ONCE(!list_empty(&req->r_wait)); 870 kmem_cache_free(ceph_mds_request_cachep, req); 871 } 872 873 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node) 874 875 /* 876 * lookup session, bump ref if found. 877 * 878 * called under mdsc->mutex. 879 */ 880 static struct ceph_mds_request * 881 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid) 882 { 883 struct ceph_mds_request *req; 884 885 req = lookup_request(&mdsc->request_tree, tid); 886 if (req) 887 ceph_mdsc_get_request(req); 888 889 return req; 890 } 891 892 /* 893 * Register an in-flight request, and assign a tid. Link to directory 894 * are modifying (if any). 895 * 896 * Called under mdsc->mutex. 897 */ 898 static void __register_request(struct ceph_mds_client *mdsc, 899 struct ceph_mds_request *req, 900 struct inode *dir) 901 { 902 int ret = 0; 903 904 req->r_tid = ++mdsc->last_tid; 905 if (req->r_num_caps) { 906 ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation, 907 req->r_num_caps); 908 if (ret < 0) { 909 pr_err("__register_request %p " 910 "failed to reserve caps: %d\n", req, ret); 911 /* set req->r_err to fail early from __do_request */ 912 req->r_err = ret; 913 return; 914 } 915 } 916 dout("__register_request %p tid %lld\n", req, req->r_tid); 917 ceph_mdsc_get_request(req); 918 insert_request(&mdsc->request_tree, req); 919 920 req->r_cred = get_current_cred(); 921 922 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) 923 mdsc->oldest_tid = req->r_tid; 924 925 if (dir) { 926 struct ceph_inode_info *ci = ceph_inode(dir); 927 928 ihold(dir); 929 req->r_unsafe_dir = dir; 930 spin_lock(&ci->i_unsafe_lock); 931 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 932 spin_unlock(&ci->i_unsafe_lock); 933 } 934 } 935 936 static void __unregister_request(struct ceph_mds_client *mdsc, 937 struct ceph_mds_request *req) 938 { 939 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 940 941 /* Never leave an unregistered request on an unsafe list! */ 942 list_del_init(&req->r_unsafe_item); 943 944 if (req->r_tid == mdsc->oldest_tid) { 945 struct rb_node *p = rb_next(&req->r_node); 946 mdsc->oldest_tid = 0; 947 while (p) { 948 struct ceph_mds_request *next_req = 949 rb_entry(p, struct ceph_mds_request, r_node); 950 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { 951 mdsc->oldest_tid = next_req->r_tid; 952 break; 953 } 954 p = rb_next(p); 955 } 956 } 957 958 erase_request(&mdsc->request_tree, req); 959 960 if (req->r_unsafe_dir) { 961 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 962 spin_lock(&ci->i_unsafe_lock); 963 list_del_init(&req->r_unsafe_dir_item); 964 spin_unlock(&ci->i_unsafe_lock); 965 } 966 if (req->r_target_inode && 967 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 968 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 969 spin_lock(&ci->i_unsafe_lock); 970 list_del_init(&req->r_unsafe_target_item); 971 spin_unlock(&ci->i_unsafe_lock); 972 } 973 974 if (req->r_unsafe_dir) { 975 iput(req->r_unsafe_dir); 976 req->r_unsafe_dir = NULL; 977 } 978 979 complete_all(&req->r_safe_completion); 980 981 ceph_mdsc_put_request(req); 982 } 983 984 /* 985 * Walk back up the dentry tree until we hit a dentry representing a 986 * non-snapshot inode. We do this using the rcu_read_lock (which must be held 987 * when calling this) to ensure that the objects won't disappear while we're 988 * working with them. Once we hit a candidate dentry, we attempt to take a 989 * reference to it, and return that as the result. 990 */ 991 static struct inode *get_nonsnap_parent(struct dentry *dentry) 992 { 993 struct inode *inode = NULL; 994 995 while (dentry && !IS_ROOT(dentry)) { 996 inode = d_inode_rcu(dentry); 997 if (!inode || ceph_snap(inode) == CEPH_NOSNAP) 998 break; 999 dentry = dentry->d_parent; 1000 } 1001 if (inode) 1002 inode = igrab(inode); 1003 return inode; 1004 } 1005 1006 /* 1007 * Choose mds to send request to next. If there is a hint set in the 1008 * request (e.g., due to a prior forward hint from the mds), use that. 1009 * Otherwise, consult frag tree and/or caps to identify the 1010 * appropriate mds. If all else fails, choose randomly. 1011 * 1012 * Called under mdsc->mutex. 1013 */ 1014 static int __choose_mds(struct ceph_mds_client *mdsc, 1015 struct ceph_mds_request *req, 1016 bool *random) 1017 { 1018 struct inode *inode; 1019 struct ceph_inode_info *ci; 1020 struct ceph_cap *cap; 1021 int mode = req->r_direct_mode; 1022 int mds = -1; 1023 u32 hash = req->r_direct_hash; 1024 bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags); 1025 1026 if (random) 1027 *random = false; 1028 1029 /* 1030 * is there a specific mds we should try? ignore hint if we have 1031 * no session and the mds is not up (active or recovering). 1032 */ 1033 if (req->r_resend_mds >= 0 && 1034 (__have_session(mdsc, req->r_resend_mds) || 1035 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 1036 dout("%s using resend_mds mds%d\n", __func__, 1037 req->r_resend_mds); 1038 return req->r_resend_mds; 1039 } 1040 1041 if (mode == USE_RANDOM_MDS) 1042 goto random; 1043 1044 inode = NULL; 1045 if (req->r_inode) { 1046 if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) { 1047 inode = req->r_inode; 1048 ihold(inode); 1049 } else { 1050 /* req->r_dentry is non-null for LSSNAP request */ 1051 rcu_read_lock(); 1052 inode = get_nonsnap_parent(req->r_dentry); 1053 rcu_read_unlock(); 1054 dout("%s using snapdir's parent %p\n", __func__, inode); 1055 } 1056 } else if (req->r_dentry) { 1057 /* ignore race with rename; old or new d_parent is okay */ 1058 struct dentry *parent; 1059 struct inode *dir; 1060 1061 rcu_read_lock(); 1062 parent = READ_ONCE(req->r_dentry->d_parent); 1063 dir = req->r_parent ? : d_inode_rcu(parent); 1064 1065 if (!dir || dir->i_sb != mdsc->fsc->sb) { 1066 /* not this fs or parent went negative */ 1067 inode = d_inode(req->r_dentry); 1068 if (inode) 1069 ihold(inode); 1070 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 1071 /* direct snapped/virtual snapdir requests 1072 * based on parent dir inode */ 1073 inode = get_nonsnap_parent(parent); 1074 dout("%s using nonsnap parent %p\n", __func__, inode); 1075 } else { 1076 /* dentry target */ 1077 inode = d_inode(req->r_dentry); 1078 if (!inode || mode == USE_AUTH_MDS) { 1079 /* dir + name */ 1080 inode = igrab(dir); 1081 hash = ceph_dentry_hash(dir, req->r_dentry); 1082 is_hash = true; 1083 } else { 1084 ihold(inode); 1085 } 1086 } 1087 rcu_read_unlock(); 1088 } 1089 1090 dout("%s %p is_hash=%d (0x%x) mode %d\n", __func__, inode, (int)is_hash, 1091 hash, mode); 1092 if (!inode) 1093 goto random; 1094 ci = ceph_inode(inode); 1095 1096 if (is_hash && S_ISDIR(inode->i_mode)) { 1097 struct ceph_inode_frag frag; 1098 int found; 1099 1100 ceph_choose_frag(ci, hash, &frag, &found); 1101 if (found) { 1102 if (mode == USE_ANY_MDS && frag.ndist > 0) { 1103 u8 r; 1104 1105 /* choose a random replica */ 1106 get_random_bytes(&r, 1); 1107 r %= frag.ndist; 1108 mds = frag.dist[r]; 1109 dout("%s %p %llx.%llx frag %u mds%d (%d/%d)\n", 1110 __func__, inode, ceph_vinop(inode), 1111 frag.frag, mds, (int)r, frag.ndist); 1112 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1113 CEPH_MDS_STATE_ACTIVE && 1114 !ceph_mdsmap_is_laggy(mdsc->mdsmap, mds)) 1115 goto out; 1116 } 1117 1118 /* since this file/dir wasn't known to be 1119 * replicated, then we want to look for the 1120 * authoritative mds. */ 1121 if (frag.mds >= 0) { 1122 /* choose auth mds */ 1123 mds = frag.mds; 1124 dout("%s %p %llx.%llx frag %u mds%d (auth)\n", 1125 __func__, inode, ceph_vinop(inode), 1126 frag.frag, mds); 1127 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1128 CEPH_MDS_STATE_ACTIVE) { 1129 if (!ceph_mdsmap_is_laggy(mdsc->mdsmap, 1130 mds)) 1131 goto out; 1132 } 1133 } 1134 mode = USE_AUTH_MDS; 1135 } 1136 } 1137 1138 spin_lock(&ci->i_ceph_lock); 1139 cap = NULL; 1140 if (mode == USE_AUTH_MDS) 1141 cap = ci->i_auth_cap; 1142 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 1143 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 1144 if (!cap) { 1145 spin_unlock(&ci->i_ceph_lock); 1146 iput(inode); 1147 goto random; 1148 } 1149 mds = cap->session->s_mds; 1150 dout("%s %p %llx.%llx mds%d (%scap %p)\n", __func__, 1151 inode, ceph_vinop(inode), mds, 1152 cap == ci->i_auth_cap ? "auth " : "", cap); 1153 spin_unlock(&ci->i_ceph_lock); 1154 out: 1155 iput(inode); 1156 return mds; 1157 1158 random: 1159 if (random) 1160 *random = true; 1161 1162 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 1163 dout("%s chose random mds%d\n", __func__, mds); 1164 return mds; 1165 } 1166 1167 1168 /* 1169 * session messages 1170 */ 1171 struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq) 1172 { 1173 struct ceph_msg *msg; 1174 struct ceph_mds_session_head *h; 1175 1176 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 1177 false); 1178 if (!msg) { 1179 pr_err("ENOMEM creating session %s msg\n", 1180 ceph_session_op_name(op)); 1181 return NULL; 1182 } 1183 h = msg->front.iov_base; 1184 h->op = cpu_to_le32(op); 1185 h->seq = cpu_to_le64(seq); 1186 1187 return msg; 1188 } 1189 1190 static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED; 1191 #define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8) 1192 static int encode_supported_features(void **p, void *end) 1193 { 1194 static const size_t count = ARRAY_SIZE(feature_bits); 1195 1196 if (count > 0) { 1197 size_t i; 1198 size_t size = FEATURE_BYTES(count); 1199 1200 if (WARN_ON_ONCE(*p + 4 + size > end)) 1201 return -ERANGE; 1202 1203 ceph_encode_32(p, size); 1204 memset(*p, 0, size); 1205 for (i = 0; i < count; i++) 1206 ((unsigned char*)(*p))[i / 8] |= BIT(feature_bits[i] % 8); 1207 *p += size; 1208 } else { 1209 if (WARN_ON_ONCE(*p + 4 > end)) 1210 return -ERANGE; 1211 1212 ceph_encode_32(p, 0); 1213 } 1214 1215 return 0; 1216 } 1217 1218 static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED; 1219 #define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8) 1220 static int encode_metric_spec(void **p, void *end) 1221 { 1222 static const size_t count = ARRAY_SIZE(metric_bits); 1223 1224 /* header */ 1225 if (WARN_ON_ONCE(*p + 2 > end)) 1226 return -ERANGE; 1227 1228 ceph_encode_8(p, 1); /* version */ 1229 ceph_encode_8(p, 1); /* compat */ 1230 1231 if (count > 0) { 1232 size_t i; 1233 size_t size = METRIC_BYTES(count); 1234 1235 if (WARN_ON_ONCE(*p + 4 + 4 + size > end)) 1236 return -ERANGE; 1237 1238 /* metric spec info length */ 1239 ceph_encode_32(p, 4 + size); 1240 1241 /* metric spec */ 1242 ceph_encode_32(p, size); 1243 memset(*p, 0, size); 1244 for (i = 0; i < count; i++) 1245 ((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8); 1246 *p += size; 1247 } else { 1248 if (WARN_ON_ONCE(*p + 4 + 4 > end)) 1249 return -ERANGE; 1250 1251 /* metric spec info length */ 1252 ceph_encode_32(p, 4); 1253 /* metric spec */ 1254 ceph_encode_32(p, 0); 1255 } 1256 1257 return 0; 1258 } 1259 1260 /* 1261 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 1262 * to include additional client metadata fields. 1263 */ 1264 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq) 1265 { 1266 struct ceph_msg *msg; 1267 struct ceph_mds_session_head *h; 1268 int i; 1269 int extra_bytes = 0; 1270 int metadata_key_count = 0; 1271 struct ceph_options *opt = mdsc->fsc->client->options; 1272 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options; 1273 size_t size, count; 1274 void *p, *end; 1275 int ret; 1276 1277 const char* metadata[][2] = { 1278 {"hostname", mdsc->nodename}, 1279 {"kernel_version", init_utsname()->release}, 1280 {"entity_id", opt->name ? : ""}, 1281 {"root", fsopt->server_path ? : "/"}, 1282 {NULL, NULL} 1283 }; 1284 1285 /* Calculate serialized length of metadata */ 1286 extra_bytes = 4; /* map length */ 1287 for (i = 0; metadata[i][0]; ++i) { 1288 extra_bytes += 8 + strlen(metadata[i][0]) + 1289 strlen(metadata[i][1]); 1290 metadata_key_count++; 1291 } 1292 1293 /* supported feature */ 1294 size = 0; 1295 count = ARRAY_SIZE(feature_bits); 1296 if (count > 0) 1297 size = FEATURE_BYTES(count); 1298 extra_bytes += 4 + size; 1299 1300 /* metric spec */ 1301 size = 0; 1302 count = ARRAY_SIZE(metric_bits); 1303 if (count > 0) 1304 size = METRIC_BYTES(count); 1305 extra_bytes += 2 + 4 + 4 + size; 1306 1307 /* Allocate the message */ 1308 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes, 1309 GFP_NOFS, false); 1310 if (!msg) { 1311 pr_err("ENOMEM creating session open msg\n"); 1312 return ERR_PTR(-ENOMEM); 1313 } 1314 p = msg->front.iov_base; 1315 end = p + msg->front.iov_len; 1316 1317 h = p; 1318 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN); 1319 h->seq = cpu_to_le64(seq); 1320 1321 /* 1322 * Serialize client metadata into waiting buffer space, using 1323 * the format that userspace expects for map<string, string> 1324 * 1325 * ClientSession messages with metadata are v4 1326 */ 1327 msg->hdr.version = cpu_to_le16(4); 1328 msg->hdr.compat_version = cpu_to_le16(1); 1329 1330 /* The write pointer, following the session_head structure */ 1331 p += sizeof(*h); 1332 1333 /* Number of entries in the map */ 1334 ceph_encode_32(&p, metadata_key_count); 1335 1336 /* Two length-prefixed strings for each entry in the map */ 1337 for (i = 0; metadata[i][0]; ++i) { 1338 size_t const key_len = strlen(metadata[i][0]); 1339 size_t const val_len = strlen(metadata[i][1]); 1340 1341 ceph_encode_32(&p, key_len); 1342 memcpy(p, metadata[i][0], key_len); 1343 p += key_len; 1344 ceph_encode_32(&p, val_len); 1345 memcpy(p, metadata[i][1], val_len); 1346 p += val_len; 1347 } 1348 1349 ret = encode_supported_features(&p, end); 1350 if (ret) { 1351 pr_err("encode_supported_features failed!\n"); 1352 ceph_msg_put(msg); 1353 return ERR_PTR(ret); 1354 } 1355 1356 ret = encode_metric_spec(&p, end); 1357 if (ret) { 1358 pr_err("encode_metric_spec failed!\n"); 1359 ceph_msg_put(msg); 1360 return ERR_PTR(ret); 1361 } 1362 1363 msg->front.iov_len = p - msg->front.iov_base; 1364 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1365 1366 return msg; 1367 } 1368 1369 /* 1370 * send session open request. 1371 * 1372 * called under mdsc->mutex 1373 */ 1374 static int __open_session(struct ceph_mds_client *mdsc, 1375 struct ceph_mds_session *session) 1376 { 1377 struct ceph_msg *msg; 1378 int mstate; 1379 int mds = session->s_mds; 1380 1381 /* wait for mds to go active? */ 1382 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 1383 dout("open_session to mds%d (%s)\n", mds, 1384 ceph_mds_state_name(mstate)); 1385 session->s_state = CEPH_MDS_SESSION_OPENING; 1386 session->s_renew_requested = jiffies; 1387 1388 /* send connect message */ 1389 msg = create_session_open_msg(mdsc, session->s_seq); 1390 if (IS_ERR(msg)) 1391 return PTR_ERR(msg); 1392 ceph_con_send(&session->s_con, msg); 1393 return 0; 1394 } 1395 1396 /* 1397 * open sessions for any export targets for the given mds 1398 * 1399 * called under mdsc->mutex 1400 */ 1401 static struct ceph_mds_session * 1402 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 1403 { 1404 struct ceph_mds_session *session; 1405 int ret; 1406 1407 session = __ceph_lookup_mds_session(mdsc, target); 1408 if (!session) { 1409 session = register_session(mdsc, target); 1410 if (IS_ERR(session)) 1411 return session; 1412 } 1413 if (session->s_state == CEPH_MDS_SESSION_NEW || 1414 session->s_state == CEPH_MDS_SESSION_CLOSING) { 1415 ret = __open_session(mdsc, session); 1416 if (ret) 1417 return ERR_PTR(ret); 1418 } 1419 1420 return session; 1421 } 1422 1423 struct ceph_mds_session * 1424 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 1425 { 1426 struct ceph_mds_session *session; 1427 1428 dout("open_export_target_session to mds%d\n", target); 1429 1430 mutex_lock(&mdsc->mutex); 1431 session = __open_export_target_session(mdsc, target); 1432 mutex_unlock(&mdsc->mutex); 1433 1434 return session; 1435 } 1436 1437 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 1438 struct ceph_mds_session *session) 1439 { 1440 struct ceph_mds_info *mi; 1441 struct ceph_mds_session *ts; 1442 int i, mds = session->s_mds; 1443 1444 if (mds >= mdsc->mdsmap->possible_max_rank) 1445 return; 1446 1447 mi = &mdsc->mdsmap->m_info[mds]; 1448 dout("open_export_target_sessions for mds%d (%d targets)\n", 1449 session->s_mds, mi->num_export_targets); 1450 1451 for (i = 0; i < mi->num_export_targets; i++) { 1452 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 1453 ceph_put_mds_session(ts); 1454 } 1455 } 1456 1457 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 1458 struct ceph_mds_session *session) 1459 { 1460 mutex_lock(&mdsc->mutex); 1461 __open_export_target_sessions(mdsc, session); 1462 mutex_unlock(&mdsc->mutex); 1463 } 1464 1465 /* 1466 * session caps 1467 */ 1468 1469 static void detach_cap_releases(struct ceph_mds_session *session, 1470 struct list_head *target) 1471 { 1472 lockdep_assert_held(&session->s_cap_lock); 1473 1474 list_splice_init(&session->s_cap_releases, target); 1475 session->s_num_cap_releases = 0; 1476 dout("dispose_cap_releases mds%d\n", session->s_mds); 1477 } 1478 1479 static void dispose_cap_releases(struct ceph_mds_client *mdsc, 1480 struct list_head *dispose) 1481 { 1482 while (!list_empty(dispose)) { 1483 struct ceph_cap *cap; 1484 /* zero out the in-progress message */ 1485 cap = list_first_entry(dispose, struct ceph_cap, session_caps); 1486 list_del(&cap->session_caps); 1487 ceph_put_cap(mdsc, cap); 1488 } 1489 } 1490 1491 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1492 struct ceph_mds_session *session) 1493 { 1494 struct ceph_mds_request *req; 1495 struct rb_node *p; 1496 1497 dout("cleanup_session_requests mds%d\n", session->s_mds); 1498 mutex_lock(&mdsc->mutex); 1499 while (!list_empty(&session->s_unsafe)) { 1500 req = list_first_entry(&session->s_unsafe, 1501 struct ceph_mds_request, r_unsafe_item); 1502 pr_warn_ratelimited(" dropping unsafe request %llu\n", 1503 req->r_tid); 1504 if (req->r_target_inode) 1505 mapping_set_error(req->r_target_inode->i_mapping, -EIO); 1506 if (req->r_unsafe_dir) 1507 mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO); 1508 __unregister_request(mdsc, req); 1509 } 1510 /* zero r_attempts, so kick_requests() will re-send requests */ 1511 p = rb_first(&mdsc->request_tree); 1512 while (p) { 1513 req = rb_entry(p, struct ceph_mds_request, r_node); 1514 p = rb_next(p); 1515 if (req->r_session && 1516 req->r_session->s_mds == session->s_mds) 1517 req->r_attempts = 0; 1518 } 1519 mutex_unlock(&mdsc->mutex); 1520 } 1521 1522 /* 1523 * Helper to safely iterate over all caps associated with a session, with 1524 * special care taken to handle a racing __ceph_remove_cap(). 1525 * 1526 * Caller must hold session s_mutex. 1527 */ 1528 int ceph_iterate_session_caps(struct ceph_mds_session *session, 1529 int (*cb)(struct inode *, struct ceph_cap *, 1530 void *), void *arg) 1531 { 1532 struct list_head *p; 1533 struct ceph_cap *cap; 1534 struct inode *inode, *last_inode = NULL; 1535 struct ceph_cap *old_cap = NULL; 1536 int ret; 1537 1538 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 1539 spin_lock(&session->s_cap_lock); 1540 p = session->s_caps.next; 1541 while (p != &session->s_caps) { 1542 cap = list_entry(p, struct ceph_cap, session_caps); 1543 inode = igrab(&cap->ci->vfs_inode); 1544 if (!inode) { 1545 p = p->next; 1546 continue; 1547 } 1548 session->s_cap_iterator = cap; 1549 spin_unlock(&session->s_cap_lock); 1550 1551 if (last_inode) { 1552 iput(last_inode); 1553 last_inode = NULL; 1554 } 1555 if (old_cap) { 1556 ceph_put_cap(session->s_mdsc, old_cap); 1557 old_cap = NULL; 1558 } 1559 1560 ret = cb(inode, cap, arg); 1561 last_inode = inode; 1562 1563 spin_lock(&session->s_cap_lock); 1564 p = p->next; 1565 if (!cap->ci) { 1566 dout("iterate_session_caps finishing cap %p removal\n", 1567 cap); 1568 BUG_ON(cap->session != session); 1569 cap->session = NULL; 1570 list_del_init(&cap->session_caps); 1571 session->s_nr_caps--; 1572 atomic64_dec(&session->s_mdsc->metric.total_caps); 1573 if (cap->queue_release) 1574 __ceph_queue_cap_release(session, cap); 1575 else 1576 old_cap = cap; /* put_cap it w/o locks held */ 1577 } 1578 if (ret < 0) 1579 goto out; 1580 } 1581 ret = 0; 1582 out: 1583 session->s_cap_iterator = NULL; 1584 spin_unlock(&session->s_cap_lock); 1585 1586 iput(last_inode); 1587 if (old_cap) 1588 ceph_put_cap(session->s_mdsc, old_cap); 1589 1590 return ret; 1591 } 1592 1593 static int remove_capsnaps(struct ceph_mds_client *mdsc, struct inode *inode) 1594 { 1595 struct ceph_inode_info *ci = ceph_inode(inode); 1596 struct ceph_cap_snap *capsnap; 1597 int capsnap_release = 0; 1598 1599 lockdep_assert_held(&ci->i_ceph_lock); 1600 1601 dout("removing capsnaps, ci is %p, inode is %p\n", ci, inode); 1602 1603 while (!list_empty(&ci->i_cap_snaps)) { 1604 capsnap = list_first_entry(&ci->i_cap_snaps, 1605 struct ceph_cap_snap, ci_item); 1606 __ceph_remove_capsnap(inode, capsnap, NULL, NULL); 1607 ceph_put_snap_context(capsnap->context); 1608 ceph_put_cap_snap(capsnap); 1609 capsnap_release++; 1610 } 1611 wake_up_all(&ci->i_cap_wq); 1612 wake_up_all(&mdsc->cap_flushing_wq); 1613 return capsnap_release; 1614 } 1615 1616 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 1617 void *arg) 1618 { 1619 struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg; 1620 struct ceph_mds_client *mdsc = fsc->mdsc; 1621 struct ceph_inode_info *ci = ceph_inode(inode); 1622 LIST_HEAD(to_remove); 1623 bool dirty_dropped = false; 1624 bool invalidate = false; 1625 int capsnap_release = 0; 1626 1627 dout("removing cap %p, ci is %p, inode is %p\n", 1628 cap, ci, &ci->vfs_inode); 1629 spin_lock(&ci->i_ceph_lock); 1630 __ceph_remove_cap(cap, false); 1631 if (!ci->i_auth_cap) { 1632 struct ceph_cap_flush *cf; 1633 1634 if (READ_ONCE(fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN) { 1635 if (inode->i_data.nrpages > 0) 1636 invalidate = true; 1637 if (ci->i_wrbuffer_ref > 0) 1638 mapping_set_error(&inode->i_data, -EIO); 1639 } 1640 1641 while (!list_empty(&ci->i_cap_flush_list)) { 1642 cf = list_first_entry(&ci->i_cap_flush_list, 1643 struct ceph_cap_flush, i_list); 1644 list_move(&cf->i_list, &to_remove); 1645 } 1646 1647 spin_lock(&mdsc->cap_dirty_lock); 1648 1649 list_for_each_entry(cf, &to_remove, i_list) 1650 list_del_init(&cf->g_list); 1651 1652 if (!list_empty(&ci->i_dirty_item)) { 1653 pr_warn_ratelimited( 1654 " dropping dirty %s state for %p %lld\n", 1655 ceph_cap_string(ci->i_dirty_caps), 1656 inode, ceph_ino(inode)); 1657 ci->i_dirty_caps = 0; 1658 list_del_init(&ci->i_dirty_item); 1659 dirty_dropped = true; 1660 } 1661 if (!list_empty(&ci->i_flushing_item)) { 1662 pr_warn_ratelimited( 1663 " dropping dirty+flushing %s state for %p %lld\n", 1664 ceph_cap_string(ci->i_flushing_caps), 1665 inode, ceph_ino(inode)); 1666 ci->i_flushing_caps = 0; 1667 list_del_init(&ci->i_flushing_item); 1668 mdsc->num_cap_flushing--; 1669 dirty_dropped = true; 1670 } 1671 spin_unlock(&mdsc->cap_dirty_lock); 1672 1673 if (dirty_dropped) { 1674 mapping_set_error(inode->i_mapping, -EIO); 1675 1676 if (ci->i_wrbuffer_ref_head == 0 && 1677 ci->i_wr_ref == 0 && 1678 ci->i_dirty_caps == 0 && 1679 ci->i_flushing_caps == 0) { 1680 ceph_put_snap_context(ci->i_head_snapc); 1681 ci->i_head_snapc = NULL; 1682 } 1683 } 1684 1685 if (atomic_read(&ci->i_filelock_ref) > 0) { 1686 /* make further file lock syscall return -EIO */ 1687 ci->i_ceph_flags |= CEPH_I_ERROR_FILELOCK; 1688 pr_warn_ratelimited(" dropping file locks for %p %lld\n", 1689 inode, ceph_ino(inode)); 1690 } 1691 1692 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) { 1693 list_add(&ci->i_prealloc_cap_flush->i_list, &to_remove); 1694 ci->i_prealloc_cap_flush = NULL; 1695 } 1696 1697 if (!list_empty(&ci->i_cap_snaps)) 1698 capsnap_release = remove_capsnaps(mdsc, inode); 1699 } 1700 spin_unlock(&ci->i_ceph_lock); 1701 while (!list_empty(&to_remove)) { 1702 struct ceph_cap_flush *cf; 1703 cf = list_first_entry(&to_remove, 1704 struct ceph_cap_flush, i_list); 1705 list_del_init(&cf->i_list); 1706 if (!cf->is_capsnap) 1707 ceph_free_cap_flush(cf); 1708 } 1709 1710 wake_up_all(&ci->i_cap_wq); 1711 if (invalidate) 1712 ceph_queue_invalidate(inode); 1713 if (dirty_dropped) 1714 iput(inode); 1715 while (capsnap_release--) 1716 iput(inode); 1717 return 0; 1718 } 1719 1720 /* 1721 * caller must hold session s_mutex 1722 */ 1723 static void remove_session_caps(struct ceph_mds_session *session) 1724 { 1725 struct ceph_fs_client *fsc = session->s_mdsc->fsc; 1726 struct super_block *sb = fsc->sb; 1727 LIST_HEAD(dispose); 1728 1729 dout("remove_session_caps on %p\n", session); 1730 ceph_iterate_session_caps(session, remove_session_caps_cb, fsc); 1731 1732 wake_up_all(&fsc->mdsc->cap_flushing_wq); 1733 1734 spin_lock(&session->s_cap_lock); 1735 if (session->s_nr_caps > 0) { 1736 struct inode *inode; 1737 struct ceph_cap *cap, *prev = NULL; 1738 struct ceph_vino vino; 1739 /* 1740 * iterate_session_caps() skips inodes that are being 1741 * deleted, we need to wait until deletions are complete. 1742 * __wait_on_freeing_inode() is designed for the job, 1743 * but it is not exported, so use lookup inode function 1744 * to access it. 1745 */ 1746 while (!list_empty(&session->s_caps)) { 1747 cap = list_entry(session->s_caps.next, 1748 struct ceph_cap, session_caps); 1749 if (cap == prev) 1750 break; 1751 prev = cap; 1752 vino = cap->ci->i_vino; 1753 spin_unlock(&session->s_cap_lock); 1754 1755 inode = ceph_find_inode(sb, vino); 1756 iput(inode); 1757 1758 spin_lock(&session->s_cap_lock); 1759 } 1760 } 1761 1762 // drop cap expires and unlock s_cap_lock 1763 detach_cap_releases(session, &dispose); 1764 1765 BUG_ON(session->s_nr_caps > 0); 1766 BUG_ON(!list_empty(&session->s_cap_flushing)); 1767 spin_unlock(&session->s_cap_lock); 1768 dispose_cap_releases(session->s_mdsc, &dispose); 1769 } 1770 1771 enum { 1772 RECONNECT, 1773 RENEWCAPS, 1774 FORCE_RO, 1775 }; 1776 1777 /* 1778 * wake up any threads waiting on this session's caps. if the cap is 1779 * old (didn't get renewed on the client reconnect), remove it now. 1780 * 1781 * caller must hold s_mutex. 1782 */ 1783 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1784 void *arg) 1785 { 1786 struct ceph_inode_info *ci = ceph_inode(inode); 1787 unsigned long ev = (unsigned long)arg; 1788 1789 if (ev == RECONNECT) { 1790 spin_lock(&ci->i_ceph_lock); 1791 ci->i_wanted_max_size = 0; 1792 ci->i_requested_max_size = 0; 1793 spin_unlock(&ci->i_ceph_lock); 1794 } else if (ev == RENEWCAPS) { 1795 if (cap->cap_gen < atomic_read(&cap->session->s_cap_gen)) { 1796 /* mds did not re-issue stale cap */ 1797 spin_lock(&ci->i_ceph_lock); 1798 cap->issued = cap->implemented = CEPH_CAP_PIN; 1799 spin_unlock(&ci->i_ceph_lock); 1800 } 1801 } else if (ev == FORCE_RO) { 1802 } 1803 wake_up_all(&ci->i_cap_wq); 1804 return 0; 1805 } 1806 1807 static void wake_up_session_caps(struct ceph_mds_session *session, int ev) 1808 { 1809 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1810 ceph_iterate_session_caps(session, wake_up_session_cb, 1811 (void *)(unsigned long)ev); 1812 } 1813 1814 /* 1815 * Send periodic message to MDS renewing all currently held caps. The 1816 * ack will reset the expiration for all caps from this session. 1817 * 1818 * caller holds s_mutex 1819 */ 1820 static int send_renew_caps(struct ceph_mds_client *mdsc, 1821 struct ceph_mds_session *session) 1822 { 1823 struct ceph_msg *msg; 1824 int state; 1825 1826 if (time_after_eq(jiffies, session->s_cap_ttl) && 1827 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1828 pr_info("mds%d caps stale\n", session->s_mds); 1829 session->s_renew_requested = jiffies; 1830 1831 /* do not try to renew caps until a recovering mds has reconnected 1832 * with its clients. */ 1833 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1834 if (state < CEPH_MDS_STATE_RECONNECT) { 1835 dout("send_renew_caps ignoring mds%d (%s)\n", 1836 session->s_mds, ceph_mds_state_name(state)); 1837 return 0; 1838 } 1839 1840 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1841 ceph_mds_state_name(state)); 1842 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1843 ++session->s_renew_seq); 1844 if (!msg) 1845 return -ENOMEM; 1846 ceph_con_send(&session->s_con, msg); 1847 return 0; 1848 } 1849 1850 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 1851 struct ceph_mds_session *session, u64 seq) 1852 { 1853 struct ceph_msg *msg; 1854 1855 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 1856 session->s_mds, ceph_session_state_name(session->s_state), seq); 1857 msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 1858 if (!msg) 1859 return -ENOMEM; 1860 ceph_con_send(&session->s_con, msg); 1861 return 0; 1862 } 1863 1864 1865 /* 1866 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1867 * 1868 * Called under session->s_mutex 1869 */ 1870 static void renewed_caps(struct ceph_mds_client *mdsc, 1871 struct ceph_mds_session *session, int is_renew) 1872 { 1873 int was_stale; 1874 int wake = 0; 1875 1876 spin_lock(&session->s_cap_lock); 1877 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1878 1879 session->s_cap_ttl = session->s_renew_requested + 1880 mdsc->mdsmap->m_session_timeout*HZ; 1881 1882 if (was_stale) { 1883 if (time_before(jiffies, session->s_cap_ttl)) { 1884 pr_info("mds%d caps renewed\n", session->s_mds); 1885 wake = 1; 1886 } else { 1887 pr_info("mds%d caps still stale\n", session->s_mds); 1888 } 1889 } 1890 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1891 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1892 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1893 spin_unlock(&session->s_cap_lock); 1894 1895 if (wake) 1896 wake_up_session_caps(session, RENEWCAPS); 1897 } 1898 1899 /* 1900 * send a session close request 1901 */ 1902 static int request_close_session(struct ceph_mds_session *session) 1903 { 1904 struct ceph_msg *msg; 1905 1906 dout("request_close_session mds%d state %s seq %lld\n", 1907 session->s_mds, ceph_session_state_name(session->s_state), 1908 session->s_seq); 1909 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE, 1910 session->s_seq); 1911 if (!msg) 1912 return -ENOMEM; 1913 ceph_con_send(&session->s_con, msg); 1914 return 1; 1915 } 1916 1917 /* 1918 * Called with s_mutex held. 1919 */ 1920 static int __close_session(struct ceph_mds_client *mdsc, 1921 struct ceph_mds_session *session) 1922 { 1923 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1924 return 0; 1925 session->s_state = CEPH_MDS_SESSION_CLOSING; 1926 return request_close_session(session); 1927 } 1928 1929 static bool drop_negative_children(struct dentry *dentry) 1930 { 1931 struct dentry *child; 1932 bool all_negative = true; 1933 1934 if (!d_is_dir(dentry)) 1935 goto out; 1936 1937 spin_lock(&dentry->d_lock); 1938 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 1939 if (d_really_is_positive(child)) { 1940 all_negative = false; 1941 break; 1942 } 1943 } 1944 spin_unlock(&dentry->d_lock); 1945 1946 if (all_negative) 1947 shrink_dcache_parent(dentry); 1948 out: 1949 return all_negative; 1950 } 1951 1952 /* 1953 * Trim old(er) caps. 1954 * 1955 * Because we can't cache an inode without one or more caps, we do 1956 * this indirectly: if a cap is unused, we prune its aliases, at which 1957 * point the inode will hopefully get dropped to. 1958 * 1959 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1960 * memory pressure from the MDS, though, so it needn't be perfect. 1961 */ 1962 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1963 { 1964 int *remaining = arg; 1965 struct ceph_inode_info *ci = ceph_inode(inode); 1966 int used, wanted, oissued, mine; 1967 1968 if (*remaining <= 0) 1969 return -1; 1970 1971 spin_lock(&ci->i_ceph_lock); 1972 mine = cap->issued | cap->implemented; 1973 used = __ceph_caps_used(ci); 1974 wanted = __ceph_caps_file_wanted(ci); 1975 oissued = __ceph_caps_issued_other(ci, cap); 1976 1977 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 1978 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1979 ceph_cap_string(used), ceph_cap_string(wanted)); 1980 if (cap == ci->i_auth_cap) { 1981 if (ci->i_dirty_caps || ci->i_flushing_caps || 1982 !list_empty(&ci->i_cap_snaps)) 1983 goto out; 1984 if ((used | wanted) & CEPH_CAP_ANY_WR) 1985 goto out; 1986 /* Note: it's possible that i_filelock_ref becomes non-zero 1987 * after dropping auth caps. It doesn't hurt because reply 1988 * of lock mds request will re-add auth caps. */ 1989 if (atomic_read(&ci->i_filelock_ref) > 0) 1990 goto out; 1991 } 1992 /* The inode has cached pages, but it's no longer used. 1993 * we can safely drop it */ 1994 if (S_ISREG(inode->i_mode) && 1995 wanted == 0 && used == CEPH_CAP_FILE_CACHE && 1996 !(oissued & CEPH_CAP_FILE_CACHE)) { 1997 used = 0; 1998 oissued = 0; 1999 } 2000 if ((used | wanted) & ~oissued & mine) 2001 goto out; /* we need these caps */ 2002 2003 if (oissued) { 2004 /* we aren't the only cap.. just remove us */ 2005 ceph_remove_cap(cap, true); 2006 (*remaining)--; 2007 } else { 2008 struct dentry *dentry; 2009 /* try dropping referring dentries */ 2010 spin_unlock(&ci->i_ceph_lock); 2011 dentry = d_find_any_alias(inode); 2012 if (dentry && drop_negative_children(dentry)) { 2013 int count; 2014 dput(dentry); 2015 d_prune_aliases(inode); 2016 count = atomic_read(&inode->i_count); 2017 if (count == 1) 2018 (*remaining)--; 2019 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 2020 inode, cap, count); 2021 } else { 2022 dput(dentry); 2023 } 2024 return 0; 2025 } 2026 2027 out: 2028 spin_unlock(&ci->i_ceph_lock); 2029 return 0; 2030 } 2031 2032 /* 2033 * Trim session cap count down to some max number. 2034 */ 2035 int ceph_trim_caps(struct ceph_mds_client *mdsc, 2036 struct ceph_mds_session *session, 2037 int max_caps) 2038 { 2039 int trim_caps = session->s_nr_caps - max_caps; 2040 2041 dout("trim_caps mds%d start: %d / %d, trim %d\n", 2042 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 2043 if (trim_caps > 0) { 2044 int remaining = trim_caps; 2045 2046 ceph_iterate_session_caps(session, trim_caps_cb, &remaining); 2047 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 2048 session->s_mds, session->s_nr_caps, max_caps, 2049 trim_caps - remaining); 2050 } 2051 2052 ceph_flush_cap_releases(mdsc, session); 2053 return 0; 2054 } 2055 2056 static int check_caps_flush(struct ceph_mds_client *mdsc, 2057 u64 want_flush_tid) 2058 { 2059 int ret = 1; 2060 2061 spin_lock(&mdsc->cap_dirty_lock); 2062 if (!list_empty(&mdsc->cap_flush_list)) { 2063 struct ceph_cap_flush *cf = 2064 list_first_entry(&mdsc->cap_flush_list, 2065 struct ceph_cap_flush, g_list); 2066 if (cf->tid <= want_flush_tid) { 2067 dout("check_caps_flush still flushing tid " 2068 "%llu <= %llu\n", cf->tid, want_flush_tid); 2069 ret = 0; 2070 } 2071 } 2072 spin_unlock(&mdsc->cap_dirty_lock); 2073 return ret; 2074 } 2075 2076 /* 2077 * flush all dirty inode data to disk. 2078 * 2079 * returns true if we've flushed through want_flush_tid 2080 */ 2081 static void wait_caps_flush(struct ceph_mds_client *mdsc, 2082 u64 want_flush_tid) 2083 { 2084 dout("check_caps_flush want %llu\n", want_flush_tid); 2085 2086 wait_event(mdsc->cap_flushing_wq, 2087 check_caps_flush(mdsc, want_flush_tid)); 2088 2089 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid); 2090 } 2091 2092 /* 2093 * called under s_mutex 2094 */ 2095 static void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 2096 struct ceph_mds_session *session) 2097 { 2098 struct ceph_msg *msg = NULL; 2099 struct ceph_mds_cap_release *head; 2100 struct ceph_mds_cap_item *item; 2101 struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc; 2102 struct ceph_cap *cap; 2103 LIST_HEAD(tmp_list); 2104 int num_cap_releases; 2105 __le32 barrier, *cap_barrier; 2106 2107 down_read(&osdc->lock); 2108 barrier = cpu_to_le32(osdc->epoch_barrier); 2109 up_read(&osdc->lock); 2110 2111 spin_lock(&session->s_cap_lock); 2112 again: 2113 list_splice_init(&session->s_cap_releases, &tmp_list); 2114 num_cap_releases = session->s_num_cap_releases; 2115 session->s_num_cap_releases = 0; 2116 spin_unlock(&session->s_cap_lock); 2117 2118 while (!list_empty(&tmp_list)) { 2119 if (!msg) { 2120 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, 2121 PAGE_SIZE, GFP_NOFS, false); 2122 if (!msg) 2123 goto out_err; 2124 head = msg->front.iov_base; 2125 head->num = cpu_to_le32(0); 2126 msg->front.iov_len = sizeof(*head); 2127 2128 msg->hdr.version = cpu_to_le16(2); 2129 msg->hdr.compat_version = cpu_to_le16(1); 2130 } 2131 2132 cap = list_first_entry(&tmp_list, struct ceph_cap, 2133 session_caps); 2134 list_del(&cap->session_caps); 2135 num_cap_releases--; 2136 2137 head = msg->front.iov_base; 2138 put_unaligned_le32(get_unaligned_le32(&head->num) + 1, 2139 &head->num); 2140 item = msg->front.iov_base + msg->front.iov_len; 2141 item->ino = cpu_to_le64(cap->cap_ino); 2142 item->cap_id = cpu_to_le64(cap->cap_id); 2143 item->migrate_seq = cpu_to_le32(cap->mseq); 2144 item->seq = cpu_to_le32(cap->issue_seq); 2145 msg->front.iov_len += sizeof(*item); 2146 2147 ceph_put_cap(mdsc, cap); 2148 2149 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 2150 // Append cap_barrier field 2151 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2152 *cap_barrier = barrier; 2153 msg->front.iov_len += sizeof(*cap_barrier); 2154 2155 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2156 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 2157 ceph_con_send(&session->s_con, msg); 2158 msg = NULL; 2159 } 2160 } 2161 2162 BUG_ON(num_cap_releases != 0); 2163 2164 spin_lock(&session->s_cap_lock); 2165 if (!list_empty(&session->s_cap_releases)) 2166 goto again; 2167 spin_unlock(&session->s_cap_lock); 2168 2169 if (msg) { 2170 // Append cap_barrier field 2171 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2172 *cap_barrier = barrier; 2173 msg->front.iov_len += sizeof(*cap_barrier); 2174 2175 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2176 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 2177 ceph_con_send(&session->s_con, msg); 2178 } 2179 return; 2180 out_err: 2181 pr_err("send_cap_releases mds%d, failed to allocate message\n", 2182 session->s_mds); 2183 spin_lock(&session->s_cap_lock); 2184 list_splice(&tmp_list, &session->s_cap_releases); 2185 session->s_num_cap_releases += num_cap_releases; 2186 spin_unlock(&session->s_cap_lock); 2187 } 2188 2189 static void ceph_cap_release_work(struct work_struct *work) 2190 { 2191 struct ceph_mds_session *session = 2192 container_of(work, struct ceph_mds_session, s_cap_release_work); 2193 2194 mutex_lock(&session->s_mutex); 2195 if (session->s_state == CEPH_MDS_SESSION_OPEN || 2196 session->s_state == CEPH_MDS_SESSION_HUNG) 2197 ceph_send_cap_releases(session->s_mdsc, session); 2198 mutex_unlock(&session->s_mutex); 2199 ceph_put_mds_session(session); 2200 } 2201 2202 void ceph_flush_cap_releases(struct ceph_mds_client *mdsc, 2203 struct ceph_mds_session *session) 2204 { 2205 if (mdsc->stopping) 2206 return; 2207 2208 ceph_get_mds_session(session); 2209 if (queue_work(mdsc->fsc->cap_wq, 2210 &session->s_cap_release_work)) { 2211 dout("cap release work queued\n"); 2212 } else { 2213 ceph_put_mds_session(session); 2214 dout("failed to queue cap release work\n"); 2215 } 2216 } 2217 2218 /* 2219 * caller holds session->s_cap_lock 2220 */ 2221 void __ceph_queue_cap_release(struct ceph_mds_session *session, 2222 struct ceph_cap *cap) 2223 { 2224 list_add_tail(&cap->session_caps, &session->s_cap_releases); 2225 session->s_num_cap_releases++; 2226 2227 if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE)) 2228 ceph_flush_cap_releases(session->s_mdsc, session); 2229 } 2230 2231 static void ceph_cap_reclaim_work(struct work_struct *work) 2232 { 2233 struct ceph_mds_client *mdsc = 2234 container_of(work, struct ceph_mds_client, cap_reclaim_work); 2235 int ret = ceph_trim_dentries(mdsc); 2236 if (ret == -EAGAIN) 2237 ceph_queue_cap_reclaim_work(mdsc); 2238 } 2239 2240 void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc) 2241 { 2242 if (mdsc->stopping) 2243 return; 2244 2245 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) { 2246 dout("caps reclaim work queued\n"); 2247 } else { 2248 dout("failed to queue caps release work\n"); 2249 } 2250 } 2251 2252 void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr) 2253 { 2254 int val; 2255 if (!nr) 2256 return; 2257 val = atomic_add_return(nr, &mdsc->cap_reclaim_pending); 2258 if ((val % CEPH_CAPS_PER_RELEASE) < nr) { 2259 atomic_set(&mdsc->cap_reclaim_pending, 0); 2260 ceph_queue_cap_reclaim_work(mdsc); 2261 } 2262 } 2263 2264 /* 2265 * requests 2266 */ 2267 2268 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 2269 struct inode *dir) 2270 { 2271 struct ceph_inode_info *ci = ceph_inode(dir); 2272 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 2273 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 2274 size_t size = sizeof(struct ceph_mds_reply_dir_entry); 2275 unsigned int num_entries; 2276 int order; 2277 2278 spin_lock(&ci->i_ceph_lock); 2279 num_entries = ci->i_files + ci->i_subdirs; 2280 spin_unlock(&ci->i_ceph_lock); 2281 num_entries = max(num_entries, 1U); 2282 num_entries = min(num_entries, opt->max_readdir); 2283 2284 order = get_order(size * num_entries); 2285 while (order >= 0) { 2286 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL | 2287 __GFP_NOWARN, 2288 order); 2289 if (rinfo->dir_entries) 2290 break; 2291 order--; 2292 } 2293 if (!rinfo->dir_entries) 2294 return -ENOMEM; 2295 2296 num_entries = (PAGE_SIZE << order) / size; 2297 num_entries = min(num_entries, opt->max_readdir); 2298 2299 rinfo->dir_buf_size = PAGE_SIZE << order; 2300 req->r_num_caps = num_entries + 1; 2301 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 2302 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 2303 return 0; 2304 } 2305 2306 /* 2307 * Create an mds request. 2308 */ 2309 struct ceph_mds_request * 2310 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 2311 { 2312 struct ceph_mds_request *req; 2313 2314 req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS); 2315 if (!req) 2316 return ERR_PTR(-ENOMEM); 2317 2318 mutex_init(&req->r_fill_mutex); 2319 req->r_mdsc = mdsc; 2320 req->r_started = jiffies; 2321 req->r_start_latency = ktime_get(); 2322 req->r_resend_mds = -1; 2323 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 2324 INIT_LIST_HEAD(&req->r_unsafe_target_item); 2325 req->r_fmode = -1; 2326 kref_init(&req->r_kref); 2327 RB_CLEAR_NODE(&req->r_node); 2328 INIT_LIST_HEAD(&req->r_wait); 2329 init_completion(&req->r_completion); 2330 init_completion(&req->r_safe_completion); 2331 INIT_LIST_HEAD(&req->r_unsafe_item); 2332 2333 ktime_get_coarse_real_ts64(&req->r_stamp); 2334 2335 req->r_op = op; 2336 req->r_direct_mode = mode; 2337 return req; 2338 } 2339 2340 /* 2341 * return oldest (lowest) request, tid in request tree, 0 if none. 2342 * 2343 * called under mdsc->mutex. 2344 */ 2345 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 2346 { 2347 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 2348 return NULL; 2349 return rb_entry(rb_first(&mdsc->request_tree), 2350 struct ceph_mds_request, r_node); 2351 } 2352 2353 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 2354 { 2355 return mdsc->oldest_tid; 2356 } 2357 2358 /* 2359 * Build a dentry's path. Allocate on heap; caller must kfree. Based 2360 * on build_path_from_dentry in fs/cifs/dir.c. 2361 * 2362 * If @stop_on_nosnap, generate path relative to the first non-snapped 2363 * inode. 2364 * 2365 * Encode hidden .snap dirs as a double /, i.e. 2366 * foo/.snap/bar -> foo//bar 2367 */ 2368 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *pbase, 2369 int stop_on_nosnap) 2370 { 2371 struct dentry *temp; 2372 char *path; 2373 int pos; 2374 unsigned seq; 2375 u64 base; 2376 2377 if (!dentry) 2378 return ERR_PTR(-EINVAL); 2379 2380 path = __getname(); 2381 if (!path) 2382 return ERR_PTR(-ENOMEM); 2383 retry: 2384 pos = PATH_MAX - 1; 2385 path[pos] = '\0'; 2386 2387 seq = read_seqbegin(&rename_lock); 2388 rcu_read_lock(); 2389 temp = dentry; 2390 for (;;) { 2391 struct inode *inode; 2392 2393 spin_lock(&temp->d_lock); 2394 inode = d_inode(temp); 2395 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 2396 dout("build_path path+%d: %p SNAPDIR\n", 2397 pos, temp); 2398 } else if (stop_on_nosnap && inode && dentry != temp && 2399 ceph_snap(inode) == CEPH_NOSNAP) { 2400 spin_unlock(&temp->d_lock); 2401 pos++; /* get rid of any prepended '/' */ 2402 break; 2403 } else { 2404 pos -= temp->d_name.len; 2405 if (pos < 0) { 2406 spin_unlock(&temp->d_lock); 2407 break; 2408 } 2409 memcpy(path + pos, temp->d_name.name, temp->d_name.len); 2410 } 2411 spin_unlock(&temp->d_lock); 2412 temp = READ_ONCE(temp->d_parent); 2413 2414 /* Are we at the root? */ 2415 if (IS_ROOT(temp)) 2416 break; 2417 2418 /* Are we out of buffer? */ 2419 if (--pos < 0) 2420 break; 2421 2422 path[pos] = '/'; 2423 } 2424 base = ceph_ino(d_inode(temp)); 2425 rcu_read_unlock(); 2426 2427 if (read_seqretry(&rename_lock, seq)) 2428 goto retry; 2429 2430 if (pos < 0) { 2431 /* 2432 * A rename didn't occur, but somehow we didn't end up where 2433 * we thought we would. Throw a warning and try again. 2434 */ 2435 pr_warn("build_path did not end path lookup where " 2436 "expected, pos is %d\n", pos); 2437 goto retry; 2438 } 2439 2440 *pbase = base; 2441 *plen = PATH_MAX - 1 - pos; 2442 dout("build_path on %p %d built %llx '%.*s'\n", 2443 dentry, d_count(dentry), base, *plen, path + pos); 2444 return path + pos; 2445 } 2446 2447 static int build_dentry_path(struct dentry *dentry, struct inode *dir, 2448 const char **ppath, int *ppathlen, u64 *pino, 2449 bool *pfreepath, bool parent_locked) 2450 { 2451 char *path; 2452 2453 rcu_read_lock(); 2454 if (!dir) 2455 dir = d_inode_rcu(dentry->d_parent); 2456 if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP) { 2457 *pino = ceph_ino(dir); 2458 rcu_read_unlock(); 2459 *ppath = dentry->d_name.name; 2460 *ppathlen = dentry->d_name.len; 2461 return 0; 2462 } 2463 rcu_read_unlock(); 2464 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 2465 if (IS_ERR(path)) 2466 return PTR_ERR(path); 2467 *ppath = path; 2468 *pfreepath = true; 2469 return 0; 2470 } 2471 2472 static int build_inode_path(struct inode *inode, 2473 const char **ppath, int *ppathlen, u64 *pino, 2474 bool *pfreepath) 2475 { 2476 struct dentry *dentry; 2477 char *path; 2478 2479 if (ceph_snap(inode) == CEPH_NOSNAP) { 2480 *pino = ceph_ino(inode); 2481 *ppathlen = 0; 2482 return 0; 2483 } 2484 dentry = d_find_alias(inode); 2485 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 2486 dput(dentry); 2487 if (IS_ERR(path)) 2488 return PTR_ERR(path); 2489 *ppath = path; 2490 *pfreepath = true; 2491 return 0; 2492 } 2493 2494 /* 2495 * request arguments may be specified via an inode *, a dentry *, or 2496 * an explicit ino+path. 2497 */ 2498 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 2499 struct inode *rdiri, const char *rpath, 2500 u64 rino, const char **ppath, int *pathlen, 2501 u64 *ino, bool *freepath, bool parent_locked) 2502 { 2503 int r = 0; 2504 2505 if (rinode) { 2506 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 2507 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 2508 ceph_snap(rinode)); 2509 } else if (rdentry) { 2510 r = build_dentry_path(rdentry, rdiri, ppath, pathlen, ino, 2511 freepath, parent_locked); 2512 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 2513 *ppath); 2514 } else if (rpath || rino) { 2515 *ino = rino; 2516 *ppath = rpath; 2517 *pathlen = rpath ? strlen(rpath) : 0; 2518 dout(" path %.*s\n", *pathlen, rpath); 2519 } 2520 2521 return r; 2522 } 2523 2524 static void encode_timestamp_and_gids(void **p, 2525 const struct ceph_mds_request *req) 2526 { 2527 struct ceph_timespec ts; 2528 int i; 2529 2530 ceph_encode_timespec64(&ts, &req->r_stamp); 2531 ceph_encode_copy(p, &ts, sizeof(ts)); 2532 2533 /* gid_list */ 2534 ceph_encode_32(p, req->r_cred->group_info->ngroups); 2535 for (i = 0; i < req->r_cred->group_info->ngroups; i++) 2536 ceph_encode_64(p, from_kgid(&init_user_ns, 2537 req->r_cred->group_info->gid[i])); 2538 } 2539 2540 /* 2541 * called under mdsc->mutex 2542 */ 2543 static struct ceph_msg *create_request_message(struct ceph_mds_session *session, 2544 struct ceph_mds_request *req, 2545 bool drop_cap_releases) 2546 { 2547 int mds = session->s_mds; 2548 struct ceph_mds_client *mdsc = session->s_mdsc; 2549 struct ceph_msg *msg; 2550 struct ceph_mds_request_head_old *head; 2551 const char *path1 = NULL; 2552 const char *path2 = NULL; 2553 u64 ino1 = 0, ino2 = 0; 2554 int pathlen1 = 0, pathlen2 = 0; 2555 bool freepath1 = false, freepath2 = false; 2556 int len; 2557 u16 releases; 2558 void *p, *end; 2559 int ret; 2560 bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME); 2561 2562 ret = set_request_path_attr(req->r_inode, req->r_dentry, 2563 req->r_parent, req->r_path1, req->r_ino1.ino, 2564 &path1, &pathlen1, &ino1, &freepath1, 2565 test_bit(CEPH_MDS_R_PARENT_LOCKED, 2566 &req->r_req_flags)); 2567 if (ret < 0) { 2568 msg = ERR_PTR(ret); 2569 goto out; 2570 } 2571 2572 /* If r_old_dentry is set, then assume that its parent is locked */ 2573 ret = set_request_path_attr(NULL, req->r_old_dentry, 2574 req->r_old_dentry_dir, 2575 req->r_path2, req->r_ino2.ino, 2576 &path2, &pathlen2, &ino2, &freepath2, true); 2577 if (ret < 0) { 2578 msg = ERR_PTR(ret); 2579 goto out_free1; 2580 } 2581 2582 len = legacy ? sizeof(*head) : sizeof(struct ceph_mds_request_head); 2583 len += pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) + 2584 sizeof(struct ceph_timespec); 2585 len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups); 2586 2587 /* calculate (max) length for cap releases */ 2588 len += sizeof(struct ceph_mds_request_release) * 2589 (!!req->r_inode_drop + !!req->r_dentry_drop + 2590 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 2591 2592 if (req->r_dentry_drop) 2593 len += pathlen1; 2594 if (req->r_old_dentry_drop) 2595 len += pathlen2; 2596 2597 msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false); 2598 if (!msg) { 2599 msg = ERR_PTR(-ENOMEM); 2600 goto out_free2; 2601 } 2602 2603 msg->hdr.tid = cpu_to_le64(req->r_tid); 2604 2605 /* 2606 * The old ceph_mds_request_head didn't contain a version field, and 2607 * one was added when we moved the message version from 3->4. 2608 */ 2609 if (legacy) { 2610 msg->hdr.version = cpu_to_le16(3); 2611 head = msg->front.iov_base; 2612 p = msg->front.iov_base + sizeof(*head); 2613 } else { 2614 struct ceph_mds_request_head *new_head = msg->front.iov_base; 2615 2616 msg->hdr.version = cpu_to_le16(4); 2617 new_head->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION); 2618 head = (struct ceph_mds_request_head_old *)&new_head->oldest_client_tid; 2619 p = msg->front.iov_base + sizeof(*new_head); 2620 } 2621 2622 end = msg->front.iov_base + msg->front.iov_len; 2623 2624 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 2625 head->op = cpu_to_le32(req->r_op); 2626 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, 2627 req->r_cred->fsuid)); 2628 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, 2629 req->r_cred->fsgid)); 2630 head->ino = cpu_to_le64(req->r_deleg_ino); 2631 head->args = req->r_args; 2632 2633 ceph_encode_filepath(&p, end, ino1, path1); 2634 ceph_encode_filepath(&p, end, ino2, path2); 2635 2636 /* make note of release offset, in case we need to replay */ 2637 req->r_request_release_offset = p - msg->front.iov_base; 2638 2639 /* cap releases */ 2640 releases = 0; 2641 if (req->r_inode_drop) 2642 releases += ceph_encode_inode_release(&p, 2643 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 2644 mds, req->r_inode_drop, req->r_inode_unless, 2645 req->r_op == CEPH_MDS_OP_READDIR); 2646 if (req->r_dentry_drop) 2647 releases += ceph_encode_dentry_release(&p, req->r_dentry, 2648 req->r_parent, mds, req->r_dentry_drop, 2649 req->r_dentry_unless); 2650 if (req->r_old_dentry_drop) 2651 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 2652 req->r_old_dentry_dir, mds, 2653 req->r_old_dentry_drop, 2654 req->r_old_dentry_unless); 2655 if (req->r_old_inode_drop) 2656 releases += ceph_encode_inode_release(&p, 2657 d_inode(req->r_old_dentry), 2658 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 2659 2660 if (drop_cap_releases) { 2661 releases = 0; 2662 p = msg->front.iov_base + req->r_request_release_offset; 2663 } 2664 2665 head->num_releases = cpu_to_le16(releases); 2666 2667 encode_timestamp_and_gids(&p, req); 2668 2669 if (WARN_ON_ONCE(p > end)) { 2670 ceph_msg_put(msg); 2671 msg = ERR_PTR(-ERANGE); 2672 goto out_free2; 2673 } 2674 2675 msg->front.iov_len = p - msg->front.iov_base; 2676 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2677 2678 if (req->r_pagelist) { 2679 struct ceph_pagelist *pagelist = req->r_pagelist; 2680 ceph_msg_data_add_pagelist(msg, pagelist); 2681 msg->hdr.data_len = cpu_to_le32(pagelist->length); 2682 } else { 2683 msg->hdr.data_len = 0; 2684 } 2685 2686 msg->hdr.data_off = cpu_to_le16(0); 2687 2688 out_free2: 2689 if (freepath2) 2690 ceph_mdsc_free_path((char *)path2, pathlen2); 2691 out_free1: 2692 if (freepath1) 2693 ceph_mdsc_free_path((char *)path1, pathlen1); 2694 out: 2695 return msg; 2696 } 2697 2698 /* 2699 * called under mdsc->mutex if error, under no mutex if 2700 * success. 2701 */ 2702 static void complete_request(struct ceph_mds_client *mdsc, 2703 struct ceph_mds_request *req) 2704 { 2705 req->r_end_latency = ktime_get(); 2706 2707 if (req->r_callback) 2708 req->r_callback(mdsc, req); 2709 complete_all(&req->r_completion); 2710 } 2711 2712 static struct ceph_mds_request_head_old * 2713 find_old_request_head(void *p, u64 features) 2714 { 2715 bool legacy = !(features & CEPH_FEATURE_FS_BTIME); 2716 struct ceph_mds_request_head *new_head; 2717 2718 if (legacy) 2719 return (struct ceph_mds_request_head_old *)p; 2720 new_head = (struct ceph_mds_request_head *)p; 2721 return (struct ceph_mds_request_head_old *)&new_head->oldest_client_tid; 2722 } 2723 2724 /* 2725 * called under mdsc->mutex 2726 */ 2727 static int __prepare_send_request(struct ceph_mds_session *session, 2728 struct ceph_mds_request *req, 2729 bool drop_cap_releases) 2730 { 2731 int mds = session->s_mds; 2732 struct ceph_mds_client *mdsc = session->s_mdsc; 2733 struct ceph_mds_request_head_old *rhead; 2734 struct ceph_msg *msg; 2735 int flags = 0; 2736 2737 req->r_attempts++; 2738 if (req->r_inode) { 2739 struct ceph_cap *cap = 2740 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 2741 2742 if (cap) 2743 req->r_sent_on_mseq = cap->mseq; 2744 else 2745 req->r_sent_on_mseq = -1; 2746 } 2747 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 2748 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 2749 2750 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 2751 void *p; 2752 2753 /* 2754 * Replay. Do not regenerate message (and rebuild 2755 * paths, etc.); just use the original message. 2756 * Rebuilding paths will break for renames because 2757 * d_move mangles the src name. 2758 */ 2759 msg = req->r_request; 2760 rhead = find_old_request_head(msg->front.iov_base, 2761 session->s_con.peer_features); 2762 2763 flags = le32_to_cpu(rhead->flags); 2764 flags |= CEPH_MDS_FLAG_REPLAY; 2765 rhead->flags = cpu_to_le32(flags); 2766 2767 if (req->r_target_inode) 2768 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 2769 2770 rhead->num_retry = req->r_attempts - 1; 2771 2772 /* remove cap/dentry releases from message */ 2773 rhead->num_releases = 0; 2774 2775 p = msg->front.iov_base + req->r_request_release_offset; 2776 encode_timestamp_and_gids(&p, req); 2777 2778 msg->front.iov_len = p - msg->front.iov_base; 2779 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2780 return 0; 2781 } 2782 2783 if (req->r_request) { 2784 ceph_msg_put(req->r_request); 2785 req->r_request = NULL; 2786 } 2787 msg = create_request_message(session, req, drop_cap_releases); 2788 if (IS_ERR(msg)) { 2789 req->r_err = PTR_ERR(msg); 2790 return PTR_ERR(msg); 2791 } 2792 req->r_request = msg; 2793 2794 rhead = find_old_request_head(msg->front.iov_base, 2795 session->s_con.peer_features); 2796 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 2797 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 2798 flags |= CEPH_MDS_FLAG_REPLAY; 2799 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) 2800 flags |= CEPH_MDS_FLAG_ASYNC; 2801 if (req->r_parent) 2802 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 2803 rhead->flags = cpu_to_le32(flags); 2804 rhead->num_fwd = req->r_num_fwd; 2805 rhead->num_retry = req->r_attempts - 1; 2806 2807 dout(" r_parent = %p\n", req->r_parent); 2808 return 0; 2809 } 2810 2811 /* 2812 * called under mdsc->mutex 2813 */ 2814 static int __send_request(struct ceph_mds_session *session, 2815 struct ceph_mds_request *req, 2816 bool drop_cap_releases) 2817 { 2818 int err; 2819 2820 err = __prepare_send_request(session, req, drop_cap_releases); 2821 if (!err) { 2822 ceph_msg_get(req->r_request); 2823 ceph_con_send(&session->s_con, req->r_request); 2824 } 2825 2826 return err; 2827 } 2828 2829 /* 2830 * send request, or put it on the appropriate wait list. 2831 */ 2832 static void __do_request(struct ceph_mds_client *mdsc, 2833 struct ceph_mds_request *req) 2834 { 2835 struct ceph_mds_session *session = NULL; 2836 int mds = -1; 2837 int err = 0; 2838 bool random; 2839 2840 if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 2841 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) 2842 __unregister_request(mdsc, req); 2843 return; 2844 } 2845 2846 if (req->r_timeout && 2847 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 2848 dout("do_request timed out\n"); 2849 err = -ETIMEDOUT; 2850 goto finish; 2851 } 2852 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 2853 dout("do_request forced umount\n"); 2854 err = -EIO; 2855 goto finish; 2856 } 2857 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) { 2858 if (mdsc->mdsmap_err) { 2859 err = mdsc->mdsmap_err; 2860 dout("do_request mdsmap err %d\n", err); 2861 goto finish; 2862 } 2863 if (mdsc->mdsmap->m_epoch == 0) { 2864 dout("do_request no mdsmap, waiting for map\n"); 2865 list_add(&req->r_wait, &mdsc->waiting_for_map); 2866 return; 2867 } 2868 if (!(mdsc->fsc->mount_options->flags & 2869 CEPH_MOUNT_OPT_MOUNTWAIT) && 2870 !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) { 2871 err = -EHOSTUNREACH; 2872 goto finish; 2873 } 2874 } 2875 2876 put_request_session(req); 2877 2878 mds = __choose_mds(mdsc, req, &random); 2879 if (mds < 0 || 2880 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 2881 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 2882 err = -EJUKEBOX; 2883 goto finish; 2884 } 2885 dout("do_request no mds or not active, waiting for map\n"); 2886 list_add(&req->r_wait, &mdsc->waiting_for_map); 2887 return; 2888 } 2889 2890 /* get, open session */ 2891 session = __ceph_lookup_mds_session(mdsc, mds); 2892 if (!session) { 2893 session = register_session(mdsc, mds); 2894 if (IS_ERR(session)) { 2895 err = PTR_ERR(session); 2896 goto finish; 2897 } 2898 } 2899 req->r_session = ceph_get_mds_session(session); 2900 2901 dout("do_request mds%d session %p state %s\n", mds, session, 2902 ceph_session_state_name(session->s_state)); 2903 if (session->s_state != CEPH_MDS_SESSION_OPEN && 2904 session->s_state != CEPH_MDS_SESSION_HUNG) { 2905 /* 2906 * We cannot queue async requests since the caps and delegated 2907 * inodes are bound to the session. Just return -EJUKEBOX and 2908 * let the caller retry a sync request in that case. 2909 */ 2910 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 2911 err = -EJUKEBOX; 2912 goto out_session; 2913 } 2914 2915 /* 2916 * If the session has been REJECTED, then return a hard error, 2917 * unless it's a CLEANRECOVER mount, in which case we'll queue 2918 * it to the mdsc queue. 2919 */ 2920 if (session->s_state == CEPH_MDS_SESSION_REJECTED) { 2921 if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER)) 2922 list_add(&req->r_wait, &mdsc->waiting_for_map); 2923 else 2924 err = -EACCES; 2925 goto out_session; 2926 } 2927 2928 if (session->s_state == CEPH_MDS_SESSION_NEW || 2929 session->s_state == CEPH_MDS_SESSION_CLOSING) { 2930 err = __open_session(mdsc, session); 2931 if (err) 2932 goto out_session; 2933 /* retry the same mds later */ 2934 if (random) 2935 req->r_resend_mds = mds; 2936 } 2937 list_add(&req->r_wait, &session->s_waiting); 2938 goto out_session; 2939 } 2940 2941 /* send request */ 2942 req->r_resend_mds = -1; /* forget any previous mds hint */ 2943 2944 if (req->r_request_started == 0) /* note request start time */ 2945 req->r_request_started = jiffies; 2946 2947 err = __send_request(session, req, false); 2948 2949 out_session: 2950 ceph_put_mds_session(session); 2951 finish: 2952 if (err) { 2953 dout("__do_request early error %d\n", err); 2954 req->r_err = err; 2955 complete_request(mdsc, req); 2956 __unregister_request(mdsc, req); 2957 } 2958 return; 2959 } 2960 2961 /* 2962 * called under mdsc->mutex 2963 */ 2964 static void __wake_requests(struct ceph_mds_client *mdsc, 2965 struct list_head *head) 2966 { 2967 struct ceph_mds_request *req; 2968 LIST_HEAD(tmp_list); 2969 2970 list_splice_init(head, &tmp_list); 2971 2972 while (!list_empty(&tmp_list)) { 2973 req = list_entry(tmp_list.next, 2974 struct ceph_mds_request, r_wait); 2975 list_del_init(&req->r_wait); 2976 dout(" wake request %p tid %llu\n", req, req->r_tid); 2977 __do_request(mdsc, req); 2978 } 2979 } 2980 2981 /* 2982 * Wake up threads with requests pending for @mds, so that they can 2983 * resubmit their requests to a possibly different mds. 2984 */ 2985 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 2986 { 2987 struct ceph_mds_request *req; 2988 struct rb_node *p = rb_first(&mdsc->request_tree); 2989 2990 dout("kick_requests mds%d\n", mds); 2991 while (p) { 2992 req = rb_entry(p, struct ceph_mds_request, r_node); 2993 p = rb_next(p); 2994 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 2995 continue; 2996 if (req->r_attempts > 0) 2997 continue; /* only new requests */ 2998 if (req->r_session && 2999 req->r_session->s_mds == mds) { 3000 dout(" kicking tid %llu\n", req->r_tid); 3001 list_del_init(&req->r_wait); 3002 __do_request(mdsc, req); 3003 } 3004 } 3005 } 3006 3007 int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir, 3008 struct ceph_mds_request *req) 3009 { 3010 int err = 0; 3011 3012 /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */ 3013 if (req->r_inode) 3014 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 3015 if (req->r_parent) { 3016 struct ceph_inode_info *ci = ceph_inode(req->r_parent); 3017 int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ? 3018 CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD; 3019 spin_lock(&ci->i_ceph_lock); 3020 ceph_take_cap_refs(ci, CEPH_CAP_PIN, false); 3021 __ceph_touch_fmode(ci, mdsc, fmode); 3022 spin_unlock(&ci->i_ceph_lock); 3023 } 3024 if (req->r_old_dentry_dir) 3025 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 3026 CEPH_CAP_PIN); 3027 3028 if (req->r_inode) { 3029 err = ceph_wait_on_async_create(req->r_inode); 3030 if (err) { 3031 dout("%s: wait for async create returned: %d\n", 3032 __func__, err); 3033 return err; 3034 } 3035 } 3036 3037 if (!err && req->r_old_inode) { 3038 err = ceph_wait_on_async_create(req->r_old_inode); 3039 if (err) { 3040 dout("%s: wait for async create returned: %d\n", 3041 __func__, err); 3042 return err; 3043 } 3044 } 3045 3046 dout("submit_request on %p for inode %p\n", req, dir); 3047 mutex_lock(&mdsc->mutex); 3048 __register_request(mdsc, req, dir); 3049 __do_request(mdsc, req); 3050 err = req->r_err; 3051 mutex_unlock(&mdsc->mutex); 3052 return err; 3053 } 3054 3055 static int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc, 3056 struct ceph_mds_request *req) 3057 { 3058 int err; 3059 3060 /* wait */ 3061 dout("do_request waiting\n"); 3062 if (!req->r_timeout && req->r_wait_for_completion) { 3063 err = req->r_wait_for_completion(mdsc, req); 3064 } else { 3065 long timeleft = wait_for_completion_killable_timeout( 3066 &req->r_completion, 3067 ceph_timeout_jiffies(req->r_timeout)); 3068 if (timeleft > 0) 3069 err = 0; 3070 else if (!timeleft) 3071 err = -ETIMEDOUT; /* timed out */ 3072 else 3073 err = timeleft; /* killed */ 3074 } 3075 dout("do_request waited, got %d\n", err); 3076 mutex_lock(&mdsc->mutex); 3077 3078 /* only abort if we didn't race with a real reply */ 3079 if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3080 err = le32_to_cpu(req->r_reply_info.head->result); 3081 } else if (err < 0) { 3082 dout("aborted request %lld with %d\n", req->r_tid, err); 3083 3084 /* 3085 * ensure we aren't running concurrently with 3086 * ceph_fill_trace or ceph_readdir_prepopulate, which 3087 * rely on locks (dir mutex) held by our caller. 3088 */ 3089 mutex_lock(&req->r_fill_mutex); 3090 req->r_err = err; 3091 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3092 mutex_unlock(&req->r_fill_mutex); 3093 3094 if (req->r_parent && 3095 (req->r_op & CEPH_MDS_OP_WRITE)) 3096 ceph_invalidate_dir_request(req); 3097 } else { 3098 err = req->r_err; 3099 } 3100 3101 mutex_unlock(&mdsc->mutex); 3102 return err; 3103 } 3104 3105 /* 3106 * Synchrously perform an mds request. Take care of all of the 3107 * session setup, forwarding, retry details. 3108 */ 3109 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 3110 struct inode *dir, 3111 struct ceph_mds_request *req) 3112 { 3113 int err; 3114 3115 dout("do_request on %p\n", req); 3116 3117 /* issue */ 3118 err = ceph_mdsc_submit_request(mdsc, dir, req); 3119 if (!err) 3120 err = ceph_mdsc_wait_request(mdsc, req); 3121 dout("do_request %p done, result %d\n", req, err); 3122 return err; 3123 } 3124 3125 /* 3126 * Invalidate dir's completeness, dentry lease state on an aborted MDS 3127 * namespace request. 3128 */ 3129 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 3130 { 3131 struct inode *dir = req->r_parent; 3132 struct inode *old_dir = req->r_old_dentry_dir; 3133 3134 dout("invalidate_dir_request %p %p (complete, lease(s))\n", dir, old_dir); 3135 3136 ceph_dir_clear_complete(dir); 3137 if (old_dir) 3138 ceph_dir_clear_complete(old_dir); 3139 if (req->r_dentry) 3140 ceph_invalidate_dentry_lease(req->r_dentry); 3141 if (req->r_old_dentry) 3142 ceph_invalidate_dentry_lease(req->r_old_dentry); 3143 } 3144 3145 /* 3146 * Handle mds reply. 3147 * 3148 * We take the session mutex and parse and process the reply immediately. 3149 * This preserves the logical ordering of replies, capabilities, etc., sent 3150 * by the MDS as they are applied to our local cache. 3151 */ 3152 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 3153 { 3154 struct ceph_mds_client *mdsc = session->s_mdsc; 3155 struct ceph_mds_request *req; 3156 struct ceph_mds_reply_head *head = msg->front.iov_base; 3157 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 3158 struct ceph_snap_realm *realm; 3159 u64 tid; 3160 int err, result; 3161 int mds = session->s_mds; 3162 3163 if (msg->front.iov_len < sizeof(*head)) { 3164 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 3165 ceph_msg_dump(msg); 3166 return; 3167 } 3168 3169 /* get request, session */ 3170 tid = le64_to_cpu(msg->hdr.tid); 3171 mutex_lock(&mdsc->mutex); 3172 req = lookup_get_request(mdsc, tid); 3173 if (!req) { 3174 dout("handle_reply on unknown tid %llu\n", tid); 3175 mutex_unlock(&mdsc->mutex); 3176 return; 3177 } 3178 dout("handle_reply %p\n", req); 3179 3180 /* correct session? */ 3181 if (req->r_session != session) { 3182 pr_err("mdsc_handle_reply got %llu on session mds%d" 3183 " not mds%d\n", tid, session->s_mds, 3184 req->r_session ? req->r_session->s_mds : -1); 3185 mutex_unlock(&mdsc->mutex); 3186 goto out; 3187 } 3188 3189 /* dup? */ 3190 if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) || 3191 (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) { 3192 pr_warn("got a dup %s reply on %llu from mds%d\n", 3193 head->safe ? "safe" : "unsafe", tid, mds); 3194 mutex_unlock(&mdsc->mutex); 3195 goto out; 3196 } 3197 if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) { 3198 pr_warn("got unsafe after safe on %llu from mds%d\n", 3199 tid, mds); 3200 mutex_unlock(&mdsc->mutex); 3201 goto out; 3202 } 3203 3204 result = le32_to_cpu(head->result); 3205 3206 /* 3207 * Handle an ESTALE 3208 * if we're not talking to the authority, send to them 3209 * if the authority has changed while we weren't looking, 3210 * send to new authority 3211 * Otherwise we just have to return an ESTALE 3212 */ 3213 if (result == -ESTALE) { 3214 dout("got ESTALE on request %llu\n", req->r_tid); 3215 req->r_resend_mds = -1; 3216 if (req->r_direct_mode != USE_AUTH_MDS) { 3217 dout("not using auth, setting for that now\n"); 3218 req->r_direct_mode = USE_AUTH_MDS; 3219 __do_request(mdsc, req); 3220 mutex_unlock(&mdsc->mutex); 3221 goto out; 3222 } else { 3223 int mds = __choose_mds(mdsc, req, NULL); 3224 if (mds >= 0 && mds != req->r_session->s_mds) { 3225 dout("but auth changed, so resending\n"); 3226 __do_request(mdsc, req); 3227 mutex_unlock(&mdsc->mutex); 3228 goto out; 3229 } 3230 } 3231 dout("have to return ESTALE on request %llu\n", req->r_tid); 3232 } 3233 3234 3235 if (head->safe) { 3236 set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags); 3237 __unregister_request(mdsc, req); 3238 3239 /* last request during umount? */ 3240 if (mdsc->stopping && !__get_oldest_req(mdsc)) 3241 complete_all(&mdsc->safe_umount_waiters); 3242 3243 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3244 /* 3245 * We already handled the unsafe response, now do the 3246 * cleanup. No need to examine the response; the MDS 3247 * doesn't include any result info in the safe 3248 * response. And even if it did, there is nothing 3249 * useful we could do with a revised return value. 3250 */ 3251 dout("got safe reply %llu, mds%d\n", tid, mds); 3252 3253 mutex_unlock(&mdsc->mutex); 3254 goto out; 3255 } 3256 } else { 3257 set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags); 3258 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 3259 } 3260 3261 dout("handle_reply tid %lld result %d\n", tid, result); 3262 rinfo = &req->r_reply_info; 3263 if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features)) 3264 err = parse_reply_info(session, msg, rinfo, (u64)-1); 3265 else 3266 err = parse_reply_info(session, msg, rinfo, session->s_con.peer_features); 3267 mutex_unlock(&mdsc->mutex); 3268 3269 /* Must find target inode outside of mutexes to avoid deadlocks */ 3270 if ((err >= 0) && rinfo->head->is_target) { 3271 struct inode *in; 3272 struct ceph_vino tvino = { 3273 .ino = le64_to_cpu(rinfo->targeti.in->ino), 3274 .snap = le64_to_cpu(rinfo->targeti.in->snapid) 3275 }; 3276 3277 in = ceph_get_inode(mdsc->fsc->sb, tvino); 3278 if (IS_ERR(in)) { 3279 err = PTR_ERR(in); 3280 mutex_lock(&session->s_mutex); 3281 goto out_err; 3282 } 3283 req->r_target_inode = in; 3284 } 3285 3286 mutex_lock(&session->s_mutex); 3287 if (err < 0) { 3288 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 3289 ceph_msg_dump(msg); 3290 goto out_err; 3291 } 3292 3293 /* snap trace */ 3294 realm = NULL; 3295 if (rinfo->snapblob_len) { 3296 down_write(&mdsc->snap_rwsem); 3297 ceph_update_snap_trace(mdsc, rinfo->snapblob, 3298 rinfo->snapblob + rinfo->snapblob_len, 3299 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 3300 &realm); 3301 downgrade_write(&mdsc->snap_rwsem); 3302 } else { 3303 down_read(&mdsc->snap_rwsem); 3304 } 3305 3306 /* insert trace into our cache */ 3307 mutex_lock(&req->r_fill_mutex); 3308 current->journal_info = req; 3309 err = ceph_fill_trace(mdsc->fsc->sb, req); 3310 if (err == 0) { 3311 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 3312 req->r_op == CEPH_MDS_OP_LSSNAP)) 3313 ceph_readdir_prepopulate(req, req->r_session); 3314 } 3315 current->journal_info = NULL; 3316 mutex_unlock(&req->r_fill_mutex); 3317 3318 up_read(&mdsc->snap_rwsem); 3319 if (realm) 3320 ceph_put_snap_realm(mdsc, realm); 3321 3322 if (err == 0) { 3323 if (req->r_target_inode && 3324 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3325 struct ceph_inode_info *ci = 3326 ceph_inode(req->r_target_inode); 3327 spin_lock(&ci->i_unsafe_lock); 3328 list_add_tail(&req->r_unsafe_target_item, 3329 &ci->i_unsafe_iops); 3330 spin_unlock(&ci->i_unsafe_lock); 3331 } 3332 3333 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 3334 } 3335 out_err: 3336 mutex_lock(&mdsc->mutex); 3337 if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 3338 if (err) { 3339 req->r_err = err; 3340 } else { 3341 req->r_reply = ceph_msg_get(msg); 3342 set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags); 3343 } 3344 } else { 3345 dout("reply arrived after request %lld was aborted\n", tid); 3346 } 3347 mutex_unlock(&mdsc->mutex); 3348 3349 mutex_unlock(&session->s_mutex); 3350 3351 /* kick calling process */ 3352 complete_request(mdsc, req); 3353 3354 ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency, 3355 req->r_end_latency, err); 3356 out: 3357 ceph_mdsc_put_request(req); 3358 return; 3359 } 3360 3361 3362 3363 /* 3364 * handle mds notification that our request has been forwarded. 3365 */ 3366 static void handle_forward(struct ceph_mds_client *mdsc, 3367 struct ceph_mds_session *session, 3368 struct ceph_msg *msg) 3369 { 3370 struct ceph_mds_request *req; 3371 u64 tid = le64_to_cpu(msg->hdr.tid); 3372 u32 next_mds; 3373 u32 fwd_seq; 3374 int err = -EINVAL; 3375 void *p = msg->front.iov_base; 3376 void *end = p + msg->front.iov_len; 3377 3378 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 3379 next_mds = ceph_decode_32(&p); 3380 fwd_seq = ceph_decode_32(&p); 3381 3382 mutex_lock(&mdsc->mutex); 3383 req = lookup_get_request(mdsc, tid); 3384 if (!req) { 3385 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 3386 goto out; /* dup reply? */ 3387 } 3388 3389 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 3390 dout("forward tid %llu aborted, unregistering\n", tid); 3391 __unregister_request(mdsc, req); 3392 } else if (fwd_seq <= req->r_num_fwd) { 3393 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 3394 tid, next_mds, req->r_num_fwd, fwd_seq); 3395 } else { 3396 /* resend. forward race not possible; mds would drop */ 3397 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 3398 BUG_ON(req->r_err); 3399 BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)); 3400 req->r_attempts = 0; 3401 req->r_num_fwd = fwd_seq; 3402 req->r_resend_mds = next_mds; 3403 put_request_session(req); 3404 __do_request(mdsc, req); 3405 } 3406 ceph_mdsc_put_request(req); 3407 out: 3408 mutex_unlock(&mdsc->mutex); 3409 return; 3410 3411 bad: 3412 pr_err("mdsc_handle_forward decode error err=%d\n", err); 3413 } 3414 3415 static int __decode_session_metadata(void **p, void *end, 3416 bool *blocklisted) 3417 { 3418 /* map<string,string> */ 3419 u32 n; 3420 bool err_str; 3421 ceph_decode_32_safe(p, end, n, bad); 3422 while (n-- > 0) { 3423 u32 len; 3424 ceph_decode_32_safe(p, end, len, bad); 3425 ceph_decode_need(p, end, len, bad); 3426 err_str = !strncmp(*p, "error_string", len); 3427 *p += len; 3428 ceph_decode_32_safe(p, end, len, bad); 3429 ceph_decode_need(p, end, len, bad); 3430 /* 3431 * Match "blocklisted (blacklisted)" from newer MDSes, 3432 * or "blacklisted" from older MDSes. 3433 */ 3434 if (err_str && strnstr(*p, "blacklisted", len)) 3435 *blocklisted = true; 3436 *p += len; 3437 } 3438 return 0; 3439 bad: 3440 return -1; 3441 } 3442 3443 /* 3444 * handle a mds session control message 3445 */ 3446 static void handle_session(struct ceph_mds_session *session, 3447 struct ceph_msg *msg) 3448 { 3449 struct ceph_mds_client *mdsc = session->s_mdsc; 3450 int mds = session->s_mds; 3451 int msg_version = le16_to_cpu(msg->hdr.version); 3452 void *p = msg->front.iov_base; 3453 void *end = p + msg->front.iov_len; 3454 struct ceph_mds_session_head *h; 3455 u32 op; 3456 u64 seq, features = 0; 3457 int wake = 0; 3458 bool blocklisted = false; 3459 3460 /* decode */ 3461 ceph_decode_need(&p, end, sizeof(*h), bad); 3462 h = p; 3463 p += sizeof(*h); 3464 3465 op = le32_to_cpu(h->op); 3466 seq = le64_to_cpu(h->seq); 3467 3468 if (msg_version >= 3) { 3469 u32 len; 3470 /* version >= 2, metadata */ 3471 if (__decode_session_metadata(&p, end, &blocklisted) < 0) 3472 goto bad; 3473 /* version >= 3, feature bits */ 3474 ceph_decode_32_safe(&p, end, len, bad); 3475 if (len) { 3476 ceph_decode_64_safe(&p, end, features, bad); 3477 p += len - sizeof(features); 3478 } 3479 } 3480 3481 mutex_lock(&mdsc->mutex); 3482 if (op == CEPH_SESSION_CLOSE) { 3483 ceph_get_mds_session(session); 3484 __unregister_session(mdsc, session); 3485 } 3486 /* FIXME: this ttl calculation is generous */ 3487 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 3488 mutex_unlock(&mdsc->mutex); 3489 3490 mutex_lock(&session->s_mutex); 3491 3492 dout("handle_session mds%d %s %p state %s seq %llu\n", 3493 mds, ceph_session_op_name(op), session, 3494 ceph_session_state_name(session->s_state), seq); 3495 3496 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 3497 session->s_state = CEPH_MDS_SESSION_OPEN; 3498 pr_info("mds%d came back\n", session->s_mds); 3499 } 3500 3501 switch (op) { 3502 case CEPH_SESSION_OPEN: 3503 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 3504 pr_info("mds%d reconnect success\n", session->s_mds); 3505 session->s_state = CEPH_MDS_SESSION_OPEN; 3506 session->s_features = features; 3507 renewed_caps(mdsc, session, 0); 3508 if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT, &session->s_features)) 3509 metric_schedule_delayed(&mdsc->metric); 3510 wake = 1; 3511 if (mdsc->stopping) 3512 __close_session(mdsc, session); 3513 break; 3514 3515 case CEPH_SESSION_RENEWCAPS: 3516 if (session->s_renew_seq == seq) 3517 renewed_caps(mdsc, session, 1); 3518 break; 3519 3520 case CEPH_SESSION_CLOSE: 3521 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 3522 pr_info("mds%d reconnect denied\n", session->s_mds); 3523 session->s_state = CEPH_MDS_SESSION_CLOSED; 3524 cleanup_session_requests(mdsc, session); 3525 remove_session_caps(session); 3526 wake = 2; /* for good measure */ 3527 wake_up_all(&mdsc->session_close_wq); 3528 break; 3529 3530 case CEPH_SESSION_STALE: 3531 pr_info("mds%d caps went stale, renewing\n", 3532 session->s_mds); 3533 atomic_inc(&session->s_cap_gen); 3534 session->s_cap_ttl = jiffies - 1; 3535 send_renew_caps(mdsc, session); 3536 break; 3537 3538 case CEPH_SESSION_RECALL_STATE: 3539 ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 3540 break; 3541 3542 case CEPH_SESSION_FLUSHMSG: 3543 send_flushmsg_ack(mdsc, session, seq); 3544 break; 3545 3546 case CEPH_SESSION_FORCE_RO: 3547 dout("force_session_readonly %p\n", session); 3548 spin_lock(&session->s_cap_lock); 3549 session->s_readonly = true; 3550 spin_unlock(&session->s_cap_lock); 3551 wake_up_session_caps(session, FORCE_RO); 3552 break; 3553 3554 case CEPH_SESSION_REJECT: 3555 WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING); 3556 pr_info("mds%d rejected session\n", session->s_mds); 3557 session->s_state = CEPH_MDS_SESSION_REJECTED; 3558 cleanup_session_requests(mdsc, session); 3559 remove_session_caps(session); 3560 if (blocklisted) 3561 mdsc->fsc->blocklisted = true; 3562 wake = 2; /* for good measure */ 3563 break; 3564 3565 default: 3566 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 3567 WARN_ON(1); 3568 } 3569 3570 mutex_unlock(&session->s_mutex); 3571 if (wake) { 3572 mutex_lock(&mdsc->mutex); 3573 __wake_requests(mdsc, &session->s_waiting); 3574 if (wake == 2) 3575 kick_requests(mdsc, mds); 3576 mutex_unlock(&mdsc->mutex); 3577 } 3578 if (op == CEPH_SESSION_CLOSE) 3579 ceph_put_mds_session(session); 3580 return; 3581 3582 bad: 3583 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 3584 (int)msg->front.iov_len); 3585 ceph_msg_dump(msg); 3586 return; 3587 } 3588 3589 void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req) 3590 { 3591 int dcaps; 3592 3593 dcaps = xchg(&req->r_dir_caps, 0); 3594 if (dcaps) { 3595 dout("releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 3596 ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps); 3597 } 3598 } 3599 3600 void ceph_mdsc_release_dir_caps_no_check(struct ceph_mds_request *req) 3601 { 3602 int dcaps; 3603 3604 dcaps = xchg(&req->r_dir_caps, 0); 3605 if (dcaps) { 3606 dout("releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 3607 ceph_put_cap_refs_no_check_caps(ceph_inode(req->r_parent), 3608 dcaps); 3609 } 3610 } 3611 3612 /* 3613 * called under session->mutex. 3614 */ 3615 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 3616 struct ceph_mds_session *session) 3617 { 3618 struct ceph_mds_request *req, *nreq; 3619 struct rb_node *p; 3620 3621 dout("replay_unsafe_requests mds%d\n", session->s_mds); 3622 3623 mutex_lock(&mdsc->mutex); 3624 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) 3625 __send_request(session, req, true); 3626 3627 /* 3628 * also re-send old requests when MDS enters reconnect stage. So that MDS 3629 * can process completed request in clientreplay stage. 3630 */ 3631 p = rb_first(&mdsc->request_tree); 3632 while (p) { 3633 req = rb_entry(p, struct ceph_mds_request, r_node); 3634 p = rb_next(p); 3635 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3636 continue; 3637 if (req->r_attempts == 0) 3638 continue; /* only old requests */ 3639 if (!req->r_session) 3640 continue; 3641 if (req->r_session->s_mds != session->s_mds) 3642 continue; 3643 3644 ceph_mdsc_release_dir_caps_no_check(req); 3645 3646 __send_request(session, req, true); 3647 } 3648 mutex_unlock(&mdsc->mutex); 3649 } 3650 3651 static int send_reconnect_partial(struct ceph_reconnect_state *recon_state) 3652 { 3653 struct ceph_msg *reply; 3654 struct ceph_pagelist *_pagelist; 3655 struct page *page; 3656 __le32 *addr; 3657 int err = -ENOMEM; 3658 3659 if (!recon_state->allow_multi) 3660 return -ENOSPC; 3661 3662 /* can't handle message that contains both caps and realm */ 3663 BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms); 3664 3665 /* pre-allocate new pagelist */ 3666 _pagelist = ceph_pagelist_alloc(GFP_NOFS); 3667 if (!_pagelist) 3668 return -ENOMEM; 3669 3670 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 3671 if (!reply) 3672 goto fail_msg; 3673 3674 /* placeholder for nr_caps */ 3675 err = ceph_pagelist_encode_32(_pagelist, 0); 3676 if (err < 0) 3677 goto fail; 3678 3679 if (recon_state->nr_caps) { 3680 /* currently encoding caps */ 3681 err = ceph_pagelist_encode_32(recon_state->pagelist, 0); 3682 if (err) 3683 goto fail; 3684 } else { 3685 /* placeholder for nr_realms (currently encoding relams) */ 3686 err = ceph_pagelist_encode_32(_pagelist, 0); 3687 if (err < 0) 3688 goto fail; 3689 } 3690 3691 err = ceph_pagelist_encode_8(recon_state->pagelist, 1); 3692 if (err) 3693 goto fail; 3694 3695 page = list_first_entry(&recon_state->pagelist->head, struct page, lru); 3696 addr = kmap_atomic(page); 3697 if (recon_state->nr_caps) { 3698 /* currently encoding caps */ 3699 *addr = cpu_to_le32(recon_state->nr_caps); 3700 } else { 3701 /* currently encoding relams */ 3702 *(addr + 1) = cpu_to_le32(recon_state->nr_realms); 3703 } 3704 kunmap_atomic(addr); 3705 3706 reply->hdr.version = cpu_to_le16(5); 3707 reply->hdr.compat_version = cpu_to_le16(4); 3708 3709 reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length); 3710 ceph_msg_data_add_pagelist(reply, recon_state->pagelist); 3711 3712 ceph_con_send(&recon_state->session->s_con, reply); 3713 ceph_pagelist_release(recon_state->pagelist); 3714 3715 recon_state->pagelist = _pagelist; 3716 recon_state->nr_caps = 0; 3717 recon_state->nr_realms = 0; 3718 recon_state->msg_version = 5; 3719 return 0; 3720 fail: 3721 ceph_msg_put(reply); 3722 fail_msg: 3723 ceph_pagelist_release(_pagelist); 3724 return err; 3725 } 3726 3727 static struct dentry* d_find_primary(struct inode *inode) 3728 { 3729 struct dentry *alias, *dn = NULL; 3730 3731 if (hlist_empty(&inode->i_dentry)) 3732 return NULL; 3733 3734 spin_lock(&inode->i_lock); 3735 if (hlist_empty(&inode->i_dentry)) 3736 goto out_unlock; 3737 3738 if (S_ISDIR(inode->i_mode)) { 3739 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 3740 if (!IS_ROOT(alias)) 3741 dn = dget(alias); 3742 goto out_unlock; 3743 } 3744 3745 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 3746 spin_lock(&alias->d_lock); 3747 if (!d_unhashed(alias) && 3748 (ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) { 3749 dn = dget_dlock(alias); 3750 } 3751 spin_unlock(&alias->d_lock); 3752 if (dn) 3753 break; 3754 } 3755 out_unlock: 3756 spin_unlock(&inode->i_lock); 3757 return dn; 3758 } 3759 3760 /* 3761 * Encode information about a cap for a reconnect with the MDS. 3762 */ 3763 static int reconnect_caps_cb(struct inode *inode, struct ceph_cap *cap, 3764 void *arg) 3765 { 3766 union { 3767 struct ceph_mds_cap_reconnect v2; 3768 struct ceph_mds_cap_reconnect_v1 v1; 3769 } rec; 3770 struct ceph_inode_info *ci = cap->ci; 3771 struct ceph_reconnect_state *recon_state = arg; 3772 struct ceph_pagelist *pagelist = recon_state->pagelist; 3773 struct dentry *dentry; 3774 char *path; 3775 int pathlen, err; 3776 u64 pathbase; 3777 u64 snap_follows; 3778 3779 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 3780 inode, ceph_vinop(inode), cap, cap->cap_id, 3781 ceph_cap_string(cap->issued)); 3782 3783 dentry = d_find_primary(inode); 3784 if (dentry) { 3785 /* set pathbase to parent dir when msg_version >= 2 */ 3786 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 3787 recon_state->msg_version >= 2); 3788 dput(dentry); 3789 if (IS_ERR(path)) { 3790 err = PTR_ERR(path); 3791 goto out_err; 3792 } 3793 } else { 3794 path = NULL; 3795 pathlen = 0; 3796 pathbase = 0; 3797 } 3798 3799 spin_lock(&ci->i_ceph_lock); 3800 cap->seq = 0; /* reset cap seq */ 3801 cap->issue_seq = 0; /* and issue_seq */ 3802 cap->mseq = 0; /* and migrate_seq */ 3803 cap->cap_gen = atomic_read(&cap->session->s_cap_gen); 3804 3805 /* These are lost when the session goes away */ 3806 if (S_ISDIR(inode->i_mode)) { 3807 if (cap->issued & CEPH_CAP_DIR_CREATE) { 3808 ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns)); 3809 memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout)); 3810 } 3811 cap->issued &= ~CEPH_CAP_ANY_DIR_OPS; 3812 } 3813 3814 if (recon_state->msg_version >= 2) { 3815 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 3816 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 3817 rec.v2.issued = cpu_to_le32(cap->issued); 3818 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 3819 rec.v2.pathbase = cpu_to_le64(pathbase); 3820 rec.v2.flock_len = (__force __le32) 3821 ((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1); 3822 } else { 3823 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 3824 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 3825 rec.v1.issued = cpu_to_le32(cap->issued); 3826 rec.v1.size = cpu_to_le64(i_size_read(inode)); 3827 ceph_encode_timespec64(&rec.v1.mtime, &inode->i_mtime); 3828 ceph_encode_timespec64(&rec.v1.atime, &inode->i_atime); 3829 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 3830 rec.v1.pathbase = cpu_to_le64(pathbase); 3831 } 3832 3833 if (list_empty(&ci->i_cap_snaps)) { 3834 snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0; 3835 } else { 3836 struct ceph_cap_snap *capsnap = 3837 list_first_entry(&ci->i_cap_snaps, 3838 struct ceph_cap_snap, ci_item); 3839 snap_follows = capsnap->follows; 3840 } 3841 spin_unlock(&ci->i_ceph_lock); 3842 3843 if (recon_state->msg_version >= 2) { 3844 int num_fcntl_locks, num_flock_locks; 3845 struct ceph_filelock *flocks = NULL; 3846 size_t struct_len, total_len = sizeof(u64); 3847 u8 struct_v = 0; 3848 3849 encode_again: 3850 if (rec.v2.flock_len) { 3851 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 3852 } else { 3853 num_fcntl_locks = 0; 3854 num_flock_locks = 0; 3855 } 3856 if (num_fcntl_locks + num_flock_locks > 0) { 3857 flocks = kmalloc_array(num_fcntl_locks + num_flock_locks, 3858 sizeof(struct ceph_filelock), 3859 GFP_NOFS); 3860 if (!flocks) { 3861 err = -ENOMEM; 3862 goto out_err; 3863 } 3864 err = ceph_encode_locks_to_buffer(inode, flocks, 3865 num_fcntl_locks, 3866 num_flock_locks); 3867 if (err) { 3868 kfree(flocks); 3869 flocks = NULL; 3870 if (err == -ENOSPC) 3871 goto encode_again; 3872 goto out_err; 3873 } 3874 } else { 3875 kfree(flocks); 3876 flocks = NULL; 3877 } 3878 3879 if (recon_state->msg_version >= 3) { 3880 /* version, compat_version and struct_len */ 3881 total_len += 2 * sizeof(u8) + sizeof(u32); 3882 struct_v = 2; 3883 } 3884 /* 3885 * number of encoded locks is stable, so copy to pagelist 3886 */ 3887 struct_len = 2 * sizeof(u32) + 3888 (num_fcntl_locks + num_flock_locks) * 3889 sizeof(struct ceph_filelock); 3890 rec.v2.flock_len = cpu_to_le32(struct_len); 3891 3892 struct_len += sizeof(u32) + pathlen + sizeof(rec.v2); 3893 3894 if (struct_v >= 2) 3895 struct_len += sizeof(u64); /* snap_follows */ 3896 3897 total_len += struct_len; 3898 3899 if (pagelist->length + total_len > RECONNECT_MAX_SIZE) { 3900 err = send_reconnect_partial(recon_state); 3901 if (err) 3902 goto out_freeflocks; 3903 pagelist = recon_state->pagelist; 3904 } 3905 3906 err = ceph_pagelist_reserve(pagelist, total_len); 3907 if (err) 3908 goto out_freeflocks; 3909 3910 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 3911 if (recon_state->msg_version >= 3) { 3912 ceph_pagelist_encode_8(pagelist, struct_v); 3913 ceph_pagelist_encode_8(pagelist, 1); 3914 ceph_pagelist_encode_32(pagelist, struct_len); 3915 } 3916 ceph_pagelist_encode_string(pagelist, path, pathlen); 3917 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2)); 3918 ceph_locks_to_pagelist(flocks, pagelist, 3919 num_fcntl_locks, num_flock_locks); 3920 if (struct_v >= 2) 3921 ceph_pagelist_encode_64(pagelist, snap_follows); 3922 out_freeflocks: 3923 kfree(flocks); 3924 } else { 3925 err = ceph_pagelist_reserve(pagelist, 3926 sizeof(u64) + sizeof(u32) + 3927 pathlen + sizeof(rec.v1)); 3928 if (err) 3929 goto out_err; 3930 3931 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 3932 ceph_pagelist_encode_string(pagelist, path, pathlen); 3933 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1)); 3934 } 3935 3936 out_err: 3937 ceph_mdsc_free_path(path, pathlen); 3938 if (!err) 3939 recon_state->nr_caps++; 3940 return err; 3941 } 3942 3943 static int encode_snap_realms(struct ceph_mds_client *mdsc, 3944 struct ceph_reconnect_state *recon_state) 3945 { 3946 struct rb_node *p; 3947 struct ceph_pagelist *pagelist = recon_state->pagelist; 3948 int err = 0; 3949 3950 if (recon_state->msg_version >= 4) { 3951 err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms); 3952 if (err < 0) 3953 goto fail; 3954 } 3955 3956 /* 3957 * snaprealms. we provide mds with the ino, seq (version), and 3958 * parent for all of our realms. If the mds has any newer info, 3959 * it will tell us. 3960 */ 3961 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 3962 struct ceph_snap_realm *realm = 3963 rb_entry(p, struct ceph_snap_realm, node); 3964 struct ceph_mds_snaprealm_reconnect sr_rec; 3965 3966 if (recon_state->msg_version >= 4) { 3967 size_t need = sizeof(u8) * 2 + sizeof(u32) + 3968 sizeof(sr_rec); 3969 3970 if (pagelist->length + need > RECONNECT_MAX_SIZE) { 3971 err = send_reconnect_partial(recon_state); 3972 if (err) 3973 goto fail; 3974 pagelist = recon_state->pagelist; 3975 } 3976 3977 err = ceph_pagelist_reserve(pagelist, need); 3978 if (err) 3979 goto fail; 3980 3981 ceph_pagelist_encode_8(pagelist, 1); 3982 ceph_pagelist_encode_8(pagelist, 1); 3983 ceph_pagelist_encode_32(pagelist, sizeof(sr_rec)); 3984 } 3985 3986 dout(" adding snap realm %llx seq %lld parent %llx\n", 3987 realm->ino, realm->seq, realm->parent_ino); 3988 sr_rec.ino = cpu_to_le64(realm->ino); 3989 sr_rec.seq = cpu_to_le64(realm->seq); 3990 sr_rec.parent = cpu_to_le64(realm->parent_ino); 3991 3992 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 3993 if (err) 3994 goto fail; 3995 3996 recon_state->nr_realms++; 3997 } 3998 fail: 3999 return err; 4000 } 4001 4002 4003 /* 4004 * If an MDS fails and recovers, clients need to reconnect in order to 4005 * reestablish shared state. This includes all caps issued through 4006 * this session _and_ the snap_realm hierarchy. Because it's not 4007 * clear which snap realms the mds cares about, we send everything we 4008 * know about.. that ensures we'll then get any new info the 4009 * recovering MDS might have. 4010 * 4011 * This is a relatively heavyweight operation, but it's rare. 4012 */ 4013 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 4014 struct ceph_mds_session *session) 4015 { 4016 struct ceph_msg *reply; 4017 int mds = session->s_mds; 4018 int err = -ENOMEM; 4019 struct ceph_reconnect_state recon_state = { 4020 .session = session, 4021 }; 4022 LIST_HEAD(dispose); 4023 4024 pr_info("mds%d reconnect start\n", mds); 4025 4026 recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS); 4027 if (!recon_state.pagelist) 4028 goto fail_nopagelist; 4029 4030 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4031 if (!reply) 4032 goto fail_nomsg; 4033 4034 xa_destroy(&session->s_delegated_inos); 4035 4036 mutex_lock(&session->s_mutex); 4037 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 4038 session->s_seq = 0; 4039 4040 dout("session %p state %s\n", session, 4041 ceph_session_state_name(session->s_state)); 4042 4043 atomic_inc(&session->s_cap_gen); 4044 4045 spin_lock(&session->s_cap_lock); 4046 /* don't know if session is readonly */ 4047 session->s_readonly = 0; 4048 /* 4049 * notify __ceph_remove_cap() that we are composing cap reconnect. 4050 * If a cap get released before being added to the cap reconnect, 4051 * __ceph_remove_cap() should skip queuing cap release. 4052 */ 4053 session->s_cap_reconnect = 1; 4054 /* drop old cap expires; we're about to reestablish that state */ 4055 detach_cap_releases(session, &dispose); 4056 spin_unlock(&session->s_cap_lock); 4057 dispose_cap_releases(mdsc, &dispose); 4058 4059 /* trim unused caps to reduce MDS's cache rejoin time */ 4060 if (mdsc->fsc->sb->s_root) 4061 shrink_dcache_parent(mdsc->fsc->sb->s_root); 4062 4063 ceph_con_close(&session->s_con); 4064 ceph_con_open(&session->s_con, 4065 CEPH_ENTITY_TYPE_MDS, mds, 4066 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 4067 4068 /* replay unsafe requests */ 4069 replay_unsafe_requests(mdsc, session); 4070 4071 ceph_early_kick_flushing_caps(mdsc, session); 4072 4073 down_read(&mdsc->snap_rwsem); 4074 4075 /* placeholder for nr_caps */ 4076 err = ceph_pagelist_encode_32(recon_state.pagelist, 0); 4077 if (err) 4078 goto fail; 4079 4080 if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) { 4081 recon_state.msg_version = 3; 4082 recon_state.allow_multi = true; 4083 } else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) { 4084 recon_state.msg_version = 3; 4085 } else { 4086 recon_state.msg_version = 2; 4087 } 4088 /* trsaverse this session's caps */ 4089 err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state); 4090 4091 spin_lock(&session->s_cap_lock); 4092 session->s_cap_reconnect = 0; 4093 spin_unlock(&session->s_cap_lock); 4094 4095 if (err < 0) 4096 goto fail; 4097 4098 /* check if all realms can be encoded into current message */ 4099 if (mdsc->num_snap_realms) { 4100 size_t total_len = 4101 recon_state.pagelist->length + 4102 mdsc->num_snap_realms * 4103 sizeof(struct ceph_mds_snaprealm_reconnect); 4104 if (recon_state.msg_version >= 4) { 4105 /* number of realms */ 4106 total_len += sizeof(u32); 4107 /* version, compat_version and struct_len */ 4108 total_len += mdsc->num_snap_realms * 4109 (2 * sizeof(u8) + sizeof(u32)); 4110 } 4111 if (total_len > RECONNECT_MAX_SIZE) { 4112 if (!recon_state.allow_multi) { 4113 err = -ENOSPC; 4114 goto fail; 4115 } 4116 if (recon_state.nr_caps) { 4117 err = send_reconnect_partial(&recon_state); 4118 if (err) 4119 goto fail; 4120 } 4121 recon_state.msg_version = 5; 4122 } 4123 } 4124 4125 err = encode_snap_realms(mdsc, &recon_state); 4126 if (err < 0) 4127 goto fail; 4128 4129 if (recon_state.msg_version >= 5) { 4130 err = ceph_pagelist_encode_8(recon_state.pagelist, 0); 4131 if (err < 0) 4132 goto fail; 4133 } 4134 4135 if (recon_state.nr_caps || recon_state.nr_realms) { 4136 struct page *page = 4137 list_first_entry(&recon_state.pagelist->head, 4138 struct page, lru); 4139 __le32 *addr = kmap_atomic(page); 4140 if (recon_state.nr_caps) { 4141 WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms); 4142 *addr = cpu_to_le32(recon_state.nr_caps); 4143 } else if (recon_state.msg_version >= 4) { 4144 *(addr + 1) = cpu_to_le32(recon_state.nr_realms); 4145 } 4146 kunmap_atomic(addr); 4147 } 4148 4149 reply->hdr.version = cpu_to_le16(recon_state.msg_version); 4150 if (recon_state.msg_version >= 4) 4151 reply->hdr.compat_version = cpu_to_le16(4); 4152 4153 reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length); 4154 ceph_msg_data_add_pagelist(reply, recon_state.pagelist); 4155 4156 ceph_con_send(&session->s_con, reply); 4157 4158 mutex_unlock(&session->s_mutex); 4159 4160 mutex_lock(&mdsc->mutex); 4161 __wake_requests(mdsc, &session->s_waiting); 4162 mutex_unlock(&mdsc->mutex); 4163 4164 up_read(&mdsc->snap_rwsem); 4165 ceph_pagelist_release(recon_state.pagelist); 4166 return; 4167 4168 fail: 4169 ceph_msg_put(reply); 4170 up_read(&mdsc->snap_rwsem); 4171 mutex_unlock(&session->s_mutex); 4172 fail_nomsg: 4173 ceph_pagelist_release(recon_state.pagelist); 4174 fail_nopagelist: 4175 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 4176 return; 4177 } 4178 4179 4180 /* 4181 * compare old and new mdsmaps, kicking requests 4182 * and closing out old connections as necessary 4183 * 4184 * called under mdsc->mutex. 4185 */ 4186 static void check_new_map(struct ceph_mds_client *mdsc, 4187 struct ceph_mdsmap *newmap, 4188 struct ceph_mdsmap *oldmap) 4189 { 4190 int i, j, err; 4191 int oldstate, newstate; 4192 struct ceph_mds_session *s; 4193 unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0}; 4194 4195 dout("check_new_map new %u old %u\n", 4196 newmap->m_epoch, oldmap->m_epoch); 4197 4198 if (newmap->m_info) { 4199 for (i = 0; i < newmap->possible_max_rank; i++) { 4200 for (j = 0; j < newmap->m_info[i].num_export_targets; j++) 4201 set_bit(newmap->m_info[i].export_targets[j], targets); 4202 } 4203 } 4204 4205 for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) { 4206 if (!mdsc->sessions[i]) 4207 continue; 4208 s = mdsc->sessions[i]; 4209 oldstate = ceph_mdsmap_get_state(oldmap, i); 4210 newstate = ceph_mdsmap_get_state(newmap, i); 4211 4212 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 4213 i, ceph_mds_state_name(oldstate), 4214 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 4215 ceph_mds_state_name(newstate), 4216 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 4217 ceph_session_state_name(s->s_state)); 4218 4219 if (i >= newmap->possible_max_rank) { 4220 /* force close session for stopped mds */ 4221 ceph_get_mds_session(s); 4222 __unregister_session(mdsc, s); 4223 __wake_requests(mdsc, &s->s_waiting); 4224 mutex_unlock(&mdsc->mutex); 4225 4226 mutex_lock(&s->s_mutex); 4227 cleanup_session_requests(mdsc, s); 4228 remove_session_caps(s); 4229 mutex_unlock(&s->s_mutex); 4230 4231 ceph_put_mds_session(s); 4232 4233 mutex_lock(&mdsc->mutex); 4234 kick_requests(mdsc, i); 4235 continue; 4236 } 4237 4238 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 4239 ceph_mdsmap_get_addr(newmap, i), 4240 sizeof(struct ceph_entity_addr))) { 4241 /* just close it */ 4242 mutex_unlock(&mdsc->mutex); 4243 mutex_lock(&s->s_mutex); 4244 mutex_lock(&mdsc->mutex); 4245 ceph_con_close(&s->s_con); 4246 mutex_unlock(&s->s_mutex); 4247 s->s_state = CEPH_MDS_SESSION_RESTARTING; 4248 } else if (oldstate == newstate) { 4249 continue; /* nothing new with this mds */ 4250 } 4251 4252 /* 4253 * send reconnect? 4254 */ 4255 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 4256 newstate >= CEPH_MDS_STATE_RECONNECT) { 4257 mutex_unlock(&mdsc->mutex); 4258 clear_bit(i, targets); 4259 send_mds_reconnect(mdsc, s); 4260 mutex_lock(&mdsc->mutex); 4261 } 4262 4263 /* 4264 * kick request on any mds that has gone active. 4265 */ 4266 if (oldstate < CEPH_MDS_STATE_ACTIVE && 4267 newstate >= CEPH_MDS_STATE_ACTIVE) { 4268 if (oldstate != CEPH_MDS_STATE_CREATING && 4269 oldstate != CEPH_MDS_STATE_STARTING) 4270 pr_info("mds%d recovery completed\n", s->s_mds); 4271 kick_requests(mdsc, i); 4272 mutex_unlock(&mdsc->mutex); 4273 mutex_lock(&s->s_mutex); 4274 mutex_lock(&mdsc->mutex); 4275 ceph_kick_flushing_caps(mdsc, s); 4276 mutex_unlock(&s->s_mutex); 4277 wake_up_session_caps(s, RECONNECT); 4278 } 4279 } 4280 4281 /* 4282 * Only open and reconnect sessions that don't exist yet. 4283 */ 4284 for (i = 0; i < newmap->possible_max_rank; i++) { 4285 /* 4286 * In case the import MDS is crashed just after 4287 * the EImportStart journal is flushed, so when 4288 * a standby MDS takes over it and is replaying 4289 * the EImportStart journal the new MDS daemon 4290 * will wait the client to reconnect it, but the 4291 * client may never register/open the session yet. 4292 * 4293 * Will try to reconnect that MDS daemon if the 4294 * rank number is in the export targets array and 4295 * is the up:reconnect state. 4296 */ 4297 newstate = ceph_mdsmap_get_state(newmap, i); 4298 if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT) 4299 continue; 4300 4301 /* 4302 * The session maybe registered and opened by some 4303 * requests which were choosing random MDSes during 4304 * the mdsc->mutex's unlock/lock gap below in rare 4305 * case. But the related MDS daemon will just queue 4306 * that requests and be still waiting for the client's 4307 * reconnection request in up:reconnect state. 4308 */ 4309 s = __ceph_lookup_mds_session(mdsc, i); 4310 if (likely(!s)) { 4311 s = __open_export_target_session(mdsc, i); 4312 if (IS_ERR(s)) { 4313 err = PTR_ERR(s); 4314 pr_err("failed to open export target session, err %d\n", 4315 err); 4316 continue; 4317 } 4318 } 4319 dout("send reconnect to export target mds.%d\n", i); 4320 mutex_unlock(&mdsc->mutex); 4321 send_mds_reconnect(mdsc, s); 4322 ceph_put_mds_session(s); 4323 mutex_lock(&mdsc->mutex); 4324 } 4325 4326 for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) { 4327 s = mdsc->sessions[i]; 4328 if (!s) 4329 continue; 4330 if (!ceph_mdsmap_is_laggy(newmap, i)) 4331 continue; 4332 if (s->s_state == CEPH_MDS_SESSION_OPEN || 4333 s->s_state == CEPH_MDS_SESSION_HUNG || 4334 s->s_state == CEPH_MDS_SESSION_CLOSING) { 4335 dout(" connecting to export targets of laggy mds%d\n", 4336 i); 4337 __open_export_target_sessions(mdsc, s); 4338 } 4339 } 4340 } 4341 4342 4343 4344 /* 4345 * leases 4346 */ 4347 4348 /* 4349 * caller must hold session s_mutex, dentry->d_lock 4350 */ 4351 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 4352 { 4353 struct ceph_dentry_info *di = ceph_dentry(dentry); 4354 4355 ceph_put_mds_session(di->lease_session); 4356 di->lease_session = NULL; 4357 } 4358 4359 static void handle_lease(struct ceph_mds_client *mdsc, 4360 struct ceph_mds_session *session, 4361 struct ceph_msg *msg) 4362 { 4363 struct super_block *sb = mdsc->fsc->sb; 4364 struct inode *inode; 4365 struct dentry *parent, *dentry; 4366 struct ceph_dentry_info *di; 4367 int mds = session->s_mds; 4368 struct ceph_mds_lease *h = msg->front.iov_base; 4369 u32 seq; 4370 struct ceph_vino vino; 4371 struct qstr dname; 4372 int release = 0; 4373 4374 dout("handle_lease from mds%d\n", mds); 4375 4376 /* decode */ 4377 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 4378 goto bad; 4379 vino.ino = le64_to_cpu(h->ino); 4380 vino.snap = CEPH_NOSNAP; 4381 seq = le32_to_cpu(h->seq); 4382 dname.len = get_unaligned_le32(h + 1); 4383 if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len) 4384 goto bad; 4385 dname.name = (void *)(h + 1) + sizeof(u32); 4386 4387 /* lookup inode */ 4388 inode = ceph_find_inode(sb, vino); 4389 dout("handle_lease %s, ino %llx %p %.*s\n", 4390 ceph_lease_op_name(h->action), vino.ino, inode, 4391 dname.len, dname.name); 4392 4393 mutex_lock(&session->s_mutex); 4394 inc_session_sequence(session); 4395 4396 if (!inode) { 4397 dout("handle_lease no inode %llx\n", vino.ino); 4398 goto release; 4399 } 4400 4401 /* dentry */ 4402 parent = d_find_alias(inode); 4403 if (!parent) { 4404 dout("no parent dentry on inode %p\n", inode); 4405 WARN_ON(1); 4406 goto release; /* hrm... */ 4407 } 4408 dname.hash = full_name_hash(parent, dname.name, dname.len); 4409 dentry = d_lookup(parent, &dname); 4410 dput(parent); 4411 if (!dentry) 4412 goto release; 4413 4414 spin_lock(&dentry->d_lock); 4415 di = ceph_dentry(dentry); 4416 switch (h->action) { 4417 case CEPH_MDS_LEASE_REVOKE: 4418 if (di->lease_session == session) { 4419 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 4420 h->seq = cpu_to_le32(di->lease_seq); 4421 __ceph_mdsc_drop_dentry_lease(dentry); 4422 } 4423 release = 1; 4424 break; 4425 4426 case CEPH_MDS_LEASE_RENEW: 4427 if (di->lease_session == session && 4428 di->lease_gen == atomic_read(&session->s_cap_gen) && 4429 di->lease_renew_from && 4430 di->lease_renew_after == 0) { 4431 unsigned long duration = 4432 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 4433 4434 di->lease_seq = seq; 4435 di->time = di->lease_renew_from + duration; 4436 di->lease_renew_after = di->lease_renew_from + 4437 (duration >> 1); 4438 di->lease_renew_from = 0; 4439 } 4440 break; 4441 } 4442 spin_unlock(&dentry->d_lock); 4443 dput(dentry); 4444 4445 if (!release) 4446 goto out; 4447 4448 release: 4449 /* let's just reuse the same message */ 4450 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 4451 ceph_msg_get(msg); 4452 ceph_con_send(&session->s_con, msg); 4453 4454 out: 4455 mutex_unlock(&session->s_mutex); 4456 iput(inode); 4457 return; 4458 4459 bad: 4460 pr_err("corrupt lease message\n"); 4461 ceph_msg_dump(msg); 4462 } 4463 4464 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 4465 struct dentry *dentry, char action, 4466 u32 seq) 4467 { 4468 struct ceph_msg *msg; 4469 struct ceph_mds_lease *lease; 4470 struct inode *dir; 4471 int len = sizeof(*lease) + sizeof(u32) + NAME_MAX; 4472 4473 dout("lease_send_msg identry %p %s to mds%d\n", 4474 dentry, ceph_lease_op_name(action), session->s_mds); 4475 4476 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 4477 if (!msg) 4478 return; 4479 lease = msg->front.iov_base; 4480 lease->action = action; 4481 lease->seq = cpu_to_le32(seq); 4482 4483 spin_lock(&dentry->d_lock); 4484 dir = d_inode(dentry->d_parent); 4485 lease->ino = cpu_to_le64(ceph_ino(dir)); 4486 lease->first = lease->last = cpu_to_le64(ceph_snap(dir)); 4487 4488 put_unaligned_le32(dentry->d_name.len, lease + 1); 4489 memcpy((void *)(lease + 1) + 4, 4490 dentry->d_name.name, dentry->d_name.len); 4491 spin_unlock(&dentry->d_lock); 4492 /* 4493 * if this is a preemptive lease RELEASE, no need to 4494 * flush request stream, since the actual request will 4495 * soon follow. 4496 */ 4497 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 4498 4499 ceph_con_send(&session->s_con, msg); 4500 } 4501 4502 /* 4503 * lock unlock the session, to wait ongoing session activities 4504 */ 4505 static void lock_unlock_session(struct ceph_mds_session *s) 4506 { 4507 mutex_lock(&s->s_mutex); 4508 mutex_unlock(&s->s_mutex); 4509 } 4510 4511 static void maybe_recover_session(struct ceph_mds_client *mdsc) 4512 { 4513 struct ceph_fs_client *fsc = mdsc->fsc; 4514 4515 if (!ceph_test_mount_opt(fsc, CLEANRECOVER)) 4516 return; 4517 4518 if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED) 4519 return; 4520 4521 if (!READ_ONCE(fsc->blocklisted)) 4522 return; 4523 4524 pr_info("auto reconnect after blocklisted\n"); 4525 ceph_force_reconnect(fsc->sb); 4526 } 4527 4528 bool check_session_state(struct ceph_mds_session *s) 4529 { 4530 struct ceph_fs_client *fsc = s->s_mdsc->fsc; 4531 4532 switch (s->s_state) { 4533 case CEPH_MDS_SESSION_OPEN: 4534 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 4535 s->s_state = CEPH_MDS_SESSION_HUNG; 4536 pr_info("mds%d hung\n", s->s_mds); 4537 } 4538 break; 4539 case CEPH_MDS_SESSION_CLOSING: 4540 /* Should never reach this when not force unmounting */ 4541 WARN_ON_ONCE(s->s_ttl && 4542 READ_ONCE(fsc->mount_state) != CEPH_MOUNT_SHUTDOWN); 4543 fallthrough; 4544 case CEPH_MDS_SESSION_NEW: 4545 case CEPH_MDS_SESSION_RESTARTING: 4546 case CEPH_MDS_SESSION_CLOSED: 4547 case CEPH_MDS_SESSION_REJECTED: 4548 return false; 4549 } 4550 4551 return true; 4552 } 4553 4554 /* 4555 * If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply, 4556 * then we need to retransmit that request. 4557 */ 4558 void inc_session_sequence(struct ceph_mds_session *s) 4559 { 4560 lockdep_assert_held(&s->s_mutex); 4561 4562 s->s_seq++; 4563 4564 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 4565 int ret; 4566 4567 dout("resending session close request for mds%d\n", s->s_mds); 4568 ret = request_close_session(s); 4569 if (ret < 0) 4570 pr_err("unable to close session to mds%d: %d\n", 4571 s->s_mds, ret); 4572 } 4573 } 4574 4575 /* 4576 * delayed work -- periodically trim expired leases, renew caps with mds. If 4577 * the @delay parameter is set to 0 or if it's more than 5 secs, the default 4578 * workqueue delay value of 5 secs will be used. 4579 */ 4580 static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay) 4581 { 4582 unsigned long max_delay = HZ * 5; 4583 4584 /* 5 secs default delay */ 4585 if (!delay || (delay > max_delay)) 4586 delay = max_delay; 4587 schedule_delayed_work(&mdsc->delayed_work, 4588 round_jiffies_relative(delay)); 4589 } 4590 4591 static void delayed_work(struct work_struct *work) 4592 { 4593 struct ceph_mds_client *mdsc = 4594 container_of(work, struct ceph_mds_client, delayed_work.work); 4595 unsigned long delay; 4596 int renew_interval; 4597 int renew_caps; 4598 int i; 4599 4600 dout("mdsc delayed_work\n"); 4601 4602 if (mdsc->stopping) 4603 return; 4604 4605 mutex_lock(&mdsc->mutex); 4606 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 4607 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 4608 mdsc->last_renew_caps); 4609 if (renew_caps) 4610 mdsc->last_renew_caps = jiffies; 4611 4612 for (i = 0; i < mdsc->max_sessions; i++) { 4613 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 4614 if (!s) 4615 continue; 4616 4617 if (!check_session_state(s)) { 4618 ceph_put_mds_session(s); 4619 continue; 4620 } 4621 mutex_unlock(&mdsc->mutex); 4622 4623 mutex_lock(&s->s_mutex); 4624 if (renew_caps) 4625 send_renew_caps(mdsc, s); 4626 else 4627 ceph_con_keepalive(&s->s_con); 4628 if (s->s_state == CEPH_MDS_SESSION_OPEN || 4629 s->s_state == CEPH_MDS_SESSION_HUNG) 4630 ceph_send_cap_releases(mdsc, s); 4631 mutex_unlock(&s->s_mutex); 4632 ceph_put_mds_session(s); 4633 4634 mutex_lock(&mdsc->mutex); 4635 } 4636 mutex_unlock(&mdsc->mutex); 4637 4638 delay = ceph_check_delayed_caps(mdsc); 4639 4640 ceph_queue_cap_reclaim_work(mdsc); 4641 4642 ceph_trim_snapid_map(mdsc); 4643 4644 maybe_recover_session(mdsc); 4645 4646 schedule_delayed(mdsc, delay); 4647 } 4648 4649 int ceph_mdsc_init(struct ceph_fs_client *fsc) 4650 4651 { 4652 struct ceph_mds_client *mdsc; 4653 int err; 4654 4655 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 4656 if (!mdsc) 4657 return -ENOMEM; 4658 mdsc->fsc = fsc; 4659 mutex_init(&mdsc->mutex); 4660 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 4661 if (!mdsc->mdsmap) { 4662 err = -ENOMEM; 4663 goto err_mdsc; 4664 } 4665 4666 init_completion(&mdsc->safe_umount_waiters); 4667 init_waitqueue_head(&mdsc->session_close_wq); 4668 INIT_LIST_HEAD(&mdsc->waiting_for_map); 4669 mdsc->quotarealms_inodes = RB_ROOT; 4670 mutex_init(&mdsc->quotarealms_inodes_mutex); 4671 init_rwsem(&mdsc->snap_rwsem); 4672 mdsc->snap_realms = RB_ROOT; 4673 INIT_LIST_HEAD(&mdsc->snap_empty); 4674 spin_lock_init(&mdsc->snap_empty_lock); 4675 mdsc->request_tree = RB_ROOT; 4676 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 4677 mdsc->last_renew_caps = jiffies; 4678 INIT_LIST_HEAD(&mdsc->cap_delay_list); 4679 INIT_LIST_HEAD(&mdsc->cap_wait_list); 4680 spin_lock_init(&mdsc->cap_delay_lock); 4681 INIT_LIST_HEAD(&mdsc->snap_flush_list); 4682 spin_lock_init(&mdsc->snap_flush_lock); 4683 mdsc->last_cap_flush_tid = 1; 4684 INIT_LIST_HEAD(&mdsc->cap_flush_list); 4685 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 4686 spin_lock_init(&mdsc->cap_dirty_lock); 4687 init_waitqueue_head(&mdsc->cap_flushing_wq); 4688 INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work); 4689 err = ceph_metric_init(&mdsc->metric); 4690 if (err) 4691 goto err_mdsmap; 4692 4693 spin_lock_init(&mdsc->dentry_list_lock); 4694 INIT_LIST_HEAD(&mdsc->dentry_leases); 4695 INIT_LIST_HEAD(&mdsc->dentry_dir_leases); 4696 4697 ceph_caps_init(mdsc); 4698 ceph_adjust_caps_max_min(mdsc, fsc->mount_options); 4699 4700 spin_lock_init(&mdsc->snapid_map_lock); 4701 mdsc->snapid_map_tree = RB_ROOT; 4702 INIT_LIST_HEAD(&mdsc->snapid_map_lru); 4703 4704 init_rwsem(&mdsc->pool_perm_rwsem); 4705 mdsc->pool_perm_tree = RB_ROOT; 4706 4707 strscpy(mdsc->nodename, utsname()->nodename, 4708 sizeof(mdsc->nodename)); 4709 4710 fsc->mdsc = mdsc; 4711 return 0; 4712 4713 err_mdsmap: 4714 kfree(mdsc->mdsmap); 4715 err_mdsc: 4716 kfree(mdsc); 4717 return err; 4718 } 4719 4720 /* 4721 * Wait for safe replies on open mds requests. If we time out, drop 4722 * all requests from the tree to avoid dangling dentry refs. 4723 */ 4724 static void wait_requests(struct ceph_mds_client *mdsc) 4725 { 4726 struct ceph_options *opts = mdsc->fsc->client->options; 4727 struct ceph_mds_request *req; 4728 4729 mutex_lock(&mdsc->mutex); 4730 if (__get_oldest_req(mdsc)) { 4731 mutex_unlock(&mdsc->mutex); 4732 4733 dout("wait_requests waiting for requests\n"); 4734 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 4735 ceph_timeout_jiffies(opts->mount_timeout)); 4736 4737 /* tear down remaining requests */ 4738 mutex_lock(&mdsc->mutex); 4739 while ((req = __get_oldest_req(mdsc))) { 4740 dout("wait_requests timed out on tid %llu\n", 4741 req->r_tid); 4742 list_del_init(&req->r_wait); 4743 __unregister_request(mdsc, req); 4744 } 4745 } 4746 mutex_unlock(&mdsc->mutex); 4747 dout("wait_requests done\n"); 4748 } 4749 4750 void send_flush_mdlog(struct ceph_mds_session *s) 4751 { 4752 struct ceph_msg *msg; 4753 4754 /* 4755 * Pre-luminous MDS crashes when it sees an unknown session request 4756 */ 4757 if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS)) 4758 return; 4759 4760 mutex_lock(&s->s_mutex); 4761 dout("request mdlog flush to mds%d (%s)s seq %lld\n", s->s_mds, 4762 ceph_session_state_name(s->s_state), s->s_seq); 4763 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG, 4764 s->s_seq); 4765 if (!msg) { 4766 pr_err("failed to request mdlog flush to mds%d (%s) seq %lld\n", 4767 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); 4768 } else { 4769 ceph_con_send(&s->s_con, msg); 4770 } 4771 mutex_unlock(&s->s_mutex); 4772 } 4773 4774 /* 4775 * called before mount is ro, and before dentries are torn down. 4776 * (hmm, does this still race with new lookups?) 4777 */ 4778 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 4779 { 4780 dout("pre_umount\n"); 4781 mdsc->stopping = 1; 4782 4783 ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true); 4784 ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false); 4785 ceph_flush_dirty_caps(mdsc); 4786 wait_requests(mdsc); 4787 4788 /* 4789 * wait for reply handlers to drop their request refs and 4790 * their inode/dcache refs 4791 */ 4792 ceph_msgr_flush(); 4793 4794 ceph_cleanup_quotarealms_inodes(mdsc); 4795 } 4796 4797 /* 4798 * wait for all write mds requests to flush. 4799 */ 4800 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 4801 { 4802 struct ceph_mds_request *req = NULL, *nextreq; 4803 struct rb_node *n; 4804 4805 mutex_lock(&mdsc->mutex); 4806 dout("wait_unsafe_requests want %lld\n", want_tid); 4807 restart: 4808 req = __get_oldest_req(mdsc); 4809 while (req && req->r_tid <= want_tid) { 4810 /* find next request */ 4811 n = rb_next(&req->r_node); 4812 if (n) 4813 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 4814 else 4815 nextreq = NULL; 4816 if (req->r_op != CEPH_MDS_OP_SETFILELOCK && 4817 (req->r_op & CEPH_MDS_OP_WRITE)) { 4818 /* write op */ 4819 ceph_mdsc_get_request(req); 4820 if (nextreq) 4821 ceph_mdsc_get_request(nextreq); 4822 mutex_unlock(&mdsc->mutex); 4823 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 4824 req->r_tid, want_tid); 4825 wait_for_completion(&req->r_safe_completion); 4826 mutex_lock(&mdsc->mutex); 4827 ceph_mdsc_put_request(req); 4828 if (!nextreq) 4829 break; /* next dne before, so we're done! */ 4830 if (RB_EMPTY_NODE(&nextreq->r_node)) { 4831 /* next request was removed from tree */ 4832 ceph_mdsc_put_request(nextreq); 4833 goto restart; 4834 } 4835 ceph_mdsc_put_request(nextreq); /* won't go away */ 4836 } 4837 req = nextreq; 4838 } 4839 mutex_unlock(&mdsc->mutex); 4840 dout("wait_unsafe_requests done\n"); 4841 } 4842 4843 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 4844 { 4845 u64 want_tid, want_flush; 4846 4847 if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN) 4848 return; 4849 4850 dout("sync\n"); 4851 mutex_lock(&mdsc->mutex); 4852 want_tid = mdsc->last_tid; 4853 mutex_unlock(&mdsc->mutex); 4854 4855 ceph_flush_dirty_caps(mdsc); 4856 spin_lock(&mdsc->cap_dirty_lock); 4857 want_flush = mdsc->last_cap_flush_tid; 4858 if (!list_empty(&mdsc->cap_flush_list)) { 4859 struct ceph_cap_flush *cf = 4860 list_last_entry(&mdsc->cap_flush_list, 4861 struct ceph_cap_flush, g_list); 4862 cf->wake = true; 4863 } 4864 spin_unlock(&mdsc->cap_dirty_lock); 4865 4866 dout("sync want tid %lld flush_seq %lld\n", 4867 want_tid, want_flush); 4868 4869 wait_unsafe_requests(mdsc, want_tid); 4870 wait_caps_flush(mdsc, want_flush); 4871 } 4872 4873 /* 4874 * true if all sessions are closed, or we force unmount 4875 */ 4876 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped) 4877 { 4878 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 4879 return true; 4880 return atomic_read(&mdsc->num_sessions) <= skipped; 4881 } 4882 4883 /* 4884 * called after sb is ro. 4885 */ 4886 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 4887 { 4888 struct ceph_options *opts = mdsc->fsc->client->options; 4889 struct ceph_mds_session *session; 4890 int i; 4891 int skipped = 0; 4892 4893 dout("close_sessions\n"); 4894 4895 /* close sessions */ 4896 mutex_lock(&mdsc->mutex); 4897 for (i = 0; i < mdsc->max_sessions; i++) { 4898 session = __ceph_lookup_mds_session(mdsc, i); 4899 if (!session) 4900 continue; 4901 mutex_unlock(&mdsc->mutex); 4902 mutex_lock(&session->s_mutex); 4903 if (__close_session(mdsc, session) <= 0) 4904 skipped++; 4905 mutex_unlock(&session->s_mutex); 4906 ceph_put_mds_session(session); 4907 mutex_lock(&mdsc->mutex); 4908 } 4909 mutex_unlock(&mdsc->mutex); 4910 4911 dout("waiting for sessions to close\n"); 4912 wait_event_timeout(mdsc->session_close_wq, 4913 done_closing_sessions(mdsc, skipped), 4914 ceph_timeout_jiffies(opts->mount_timeout)); 4915 4916 /* tear down remaining sessions */ 4917 mutex_lock(&mdsc->mutex); 4918 for (i = 0; i < mdsc->max_sessions; i++) { 4919 if (mdsc->sessions[i]) { 4920 session = ceph_get_mds_session(mdsc->sessions[i]); 4921 __unregister_session(mdsc, session); 4922 mutex_unlock(&mdsc->mutex); 4923 mutex_lock(&session->s_mutex); 4924 remove_session_caps(session); 4925 mutex_unlock(&session->s_mutex); 4926 ceph_put_mds_session(session); 4927 mutex_lock(&mdsc->mutex); 4928 } 4929 } 4930 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 4931 mutex_unlock(&mdsc->mutex); 4932 4933 ceph_cleanup_snapid_map(mdsc); 4934 ceph_cleanup_empty_realms(mdsc); 4935 4936 cancel_work_sync(&mdsc->cap_reclaim_work); 4937 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 4938 4939 dout("stopped\n"); 4940 } 4941 4942 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) 4943 { 4944 struct ceph_mds_session *session; 4945 int mds; 4946 4947 dout("force umount\n"); 4948 4949 mutex_lock(&mdsc->mutex); 4950 for (mds = 0; mds < mdsc->max_sessions; mds++) { 4951 session = __ceph_lookup_mds_session(mdsc, mds); 4952 if (!session) 4953 continue; 4954 4955 if (session->s_state == CEPH_MDS_SESSION_REJECTED) 4956 __unregister_session(mdsc, session); 4957 __wake_requests(mdsc, &session->s_waiting); 4958 mutex_unlock(&mdsc->mutex); 4959 4960 mutex_lock(&session->s_mutex); 4961 __close_session(mdsc, session); 4962 if (session->s_state == CEPH_MDS_SESSION_CLOSING) { 4963 cleanup_session_requests(mdsc, session); 4964 remove_session_caps(session); 4965 } 4966 mutex_unlock(&session->s_mutex); 4967 ceph_put_mds_session(session); 4968 4969 mutex_lock(&mdsc->mutex); 4970 kick_requests(mdsc, mds); 4971 } 4972 __wake_requests(mdsc, &mdsc->waiting_for_map); 4973 mutex_unlock(&mdsc->mutex); 4974 } 4975 4976 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 4977 { 4978 dout("stop\n"); 4979 /* 4980 * Make sure the delayed work stopped before releasing 4981 * the resources. 4982 * 4983 * Because the cancel_delayed_work_sync() will only 4984 * guarantee that the work finishes executing. But the 4985 * delayed work will re-arm itself again after that. 4986 */ 4987 flush_delayed_work(&mdsc->delayed_work); 4988 4989 if (mdsc->mdsmap) 4990 ceph_mdsmap_destroy(mdsc->mdsmap); 4991 kfree(mdsc->sessions); 4992 ceph_caps_finalize(mdsc); 4993 ceph_pool_perm_destroy(mdsc); 4994 } 4995 4996 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 4997 { 4998 struct ceph_mds_client *mdsc = fsc->mdsc; 4999 dout("mdsc_destroy %p\n", mdsc); 5000 5001 if (!mdsc) 5002 return; 5003 5004 /* flush out any connection work with references to us */ 5005 ceph_msgr_flush(); 5006 5007 ceph_mdsc_stop(mdsc); 5008 5009 ceph_metric_destroy(&mdsc->metric); 5010 5011 fsc->mdsc = NULL; 5012 kfree(mdsc); 5013 dout("mdsc_destroy %p done\n", mdsc); 5014 } 5015 5016 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 5017 { 5018 struct ceph_fs_client *fsc = mdsc->fsc; 5019 const char *mds_namespace = fsc->mount_options->mds_namespace; 5020 void *p = msg->front.iov_base; 5021 void *end = p + msg->front.iov_len; 5022 u32 epoch; 5023 u32 num_fs; 5024 u32 mount_fscid = (u32)-1; 5025 int err = -EINVAL; 5026 5027 ceph_decode_need(&p, end, sizeof(u32), bad); 5028 epoch = ceph_decode_32(&p); 5029 5030 dout("handle_fsmap epoch %u\n", epoch); 5031 5032 /* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */ 5033 ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad); 5034 5035 ceph_decode_32_safe(&p, end, num_fs, bad); 5036 while (num_fs-- > 0) { 5037 void *info_p, *info_end; 5038 u32 info_len; 5039 u32 fscid, namelen; 5040 5041 ceph_decode_need(&p, end, 2 + sizeof(u32), bad); 5042 p += 2; // info_v, info_cv 5043 info_len = ceph_decode_32(&p); 5044 ceph_decode_need(&p, end, info_len, bad); 5045 info_p = p; 5046 info_end = p + info_len; 5047 p = info_end; 5048 5049 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad); 5050 fscid = ceph_decode_32(&info_p); 5051 namelen = ceph_decode_32(&info_p); 5052 ceph_decode_need(&info_p, info_end, namelen, bad); 5053 5054 if (mds_namespace && 5055 strlen(mds_namespace) == namelen && 5056 !strncmp(mds_namespace, (char *)info_p, namelen)) { 5057 mount_fscid = fscid; 5058 break; 5059 } 5060 } 5061 5062 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch); 5063 if (mount_fscid != (u32)-1) { 5064 fsc->client->monc.fs_cluster_id = mount_fscid; 5065 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP, 5066 0, true); 5067 ceph_monc_renew_subs(&fsc->client->monc); 5068 } else { 5069 err = -ENOENT; 5070 goto err_out; 5071 } 5072 return; 5073 5074 bad: 5075 pr_err("error decoding fsmap\n"); 5076 err_out: 5077 mutex_lock(&mdsc->mutex); 5078 mdsc->mdsmap_err = err; 5079 __wake_requests(mdsc, &mdsc->waiting_for_map); 5080 mutex_unlock(&mdsc->mutex); 5081 } 5082 5083 /* 5084 * handle mds map update. 5085 */ 5086 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 5087 { 5088 u32 epoch; 5089 u32 maplen; 5090 void *p = msg->front.iov_base; 5091 void *end = p + msg->front.iov_len; 5092 struct ceph_mdsmap *newmap, *oldmap; 5093 struct ceph_fsid fsid; 5094 int err = -EINVAL; 5095 5096 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 5097 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 5098 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 5099 return; 5100 epoch = ceph_decode_32(&p); 5101 maplen = ceph_decode_32(&p); 5102 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 5103 5104 /* do we need it? */ 5105 mutex_lock(&mdsc->mutex); 5106 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 5107 dout("handle_map epoch %u <= our %u\n", 5108 epoch, mdsc->mdsmap->m_epoch); 5109 mutex_unlock(&mdsc->mutex); 5110 return; 5111 } 5112 5113 newmap = ceph_mdsmap_decode(&p, end, ceph_msgr2(mdsc->fsc->client)); 5114 if (IS_ERR(newmap)) { 5115 err = PTR_ERR(newmap); 5116 goto bad_unlock; 5117 } 5118 5119 /* swap into place */ 5120 if (mdsc->mdsmap) { 5121 oldmap = mdsc->mdsmap; 5122 mdsc->mdsmap = newmap; 5123 check_new_map(mdsc, newmap, oldmap); 5124 ceph_mdsmap_destroy(oldmap); 5125 } else { 5126 mdsc->mdsmap = newmap; /* first mds map */ 5127 } 5128 mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size, 5129 MAX_LFS_FILESIZE); 5130 5131 __wake_requests(mdsc, &mdsc->waiting_for_map); 5132 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP, 5133 mdsc->mdsmap->m_epoch); 5134 5135 mutex_unlock(&mdsc->mutex); 5136 schedule_delayed(mdsc, 0); 5137 return; 5138 5139 bad_unlock: 5140 mutex_unlock(&mdsc->mutex); 5141 bad: 5142 pr_err("error decoding mdsmap %d\n", err); 5143 return; 5144 } 5145 5146 static struct ceph_connection *mds_get_con(struct ceph_connection *con) 5147 { 5148 struct ceph_mds_session *s = con->private; 5149 5150 if (ceph_get_mds_session(s)) 5151 return con; 5152 return NULL; 5153 } 5154 5155 static void mds_put_con(struct ceph_connection *con) 5156 { 5157 struct ceph_mds_session *s = con->private; 5158 5159 ceph_put_mds_session(s); 5160 } 5161 5162 /* 5163 * if the client is unresponsive for long enough, the mds will kill 5164 * the session entirely. 5165 */ 5166 static void mds_peer_reset(struct ceph_connection *con) 5167 { 5168 struct ceph_mds_session *s = con->private; 5169 struct ceph_mds_client *mdsc = s->s_mdsc; 5170 5171 pr_warn("mds%d closed our session\n", s->s_mds); 5172 send_mds_reconnect(mdsc, s); 5173 } 5174 5175 static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg) 5176 { 5177 struct ceph_mds_session *s = con->private; 5178 struct ceph_mds_client *mdsc = s->s_mdsc; 5179 int type = le16_to_cpu(msg->hdr.type); 5180 5181 mutex_lock(&mdsc->mutex); 5182 if (__verify_registered_session(mdsc, s) < 0) { 5183 mutex_unlock(&mdsc->mutex); 5184 goto out; 5185 } 5186 mutex_unlock(&mdsc->mutex); 5187 5188 switch (type) { 5189 case CEPH_MSG_MDS_MAP: 5190 ceph_mdsc_handle_mdsmap(mdsc, msg); 5191 break; 5192 case CEPH_MSG_FS_MAP_USER: 5193 ceph_mdsc_handle_fsmap(mdsc, msg); 5194 break; 5195 case CEPH_MSG_CLIENT_SESSION: 5196 handle_session(s, msg); 5197 break; 5198 case CEPH_MSG_CLIENT_REPLY: 5199 handle_reply(s, msg); 5200 break; 5201 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 5202 handle_forward(mdsc, s, msg); 5203 break; 5204 case CEPH_MSG_CLIENT_CAPS: 5205 ceph_handle_caps(s, msg); 5206 break; 5207 case CEPH_MSG_CLIENT_SNAP: 5208 ceph_handle_snap(mdsc, s, msg); 5209 break; 5210 case CEPH_MSG_CLIENT_LEASE: 5211 handle_lease(mdsc, s, msg); 5212 break; 5213 case CEPH_MSG_CLIENT_QUOTA: 5214 ceph_handle_quota(mdsc, s, msg); 5215 break; 5216 5217 default: 5218 pr_err("received unknown message type %d %s\n", type, 5219 ceph_msg_type_name(type)); 5220 } 5221 out: 5222 ceph_msg_put(msg); 5223 } 5224 5225 /* 5226 * authentication 5227 */ 5228 5229 /* 5230 * Note: returned pointer is the address of a structure that's 5231 * managed separately. Caller must *not* attempt to free it. 5232 */ 5233 static struct ceph_auth_handshake * 5234 mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new) 5235 { 5236 struct ceph_mds_session *s = con->private; 5237 struct ceph_mds_client *mdsc = s->s_mdsc; 5238 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5239 struct ceph_auth_handshake *auth = &s->s_auth; 5240 int ret; 5241 5242 ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 5243 force_new, proto, NULL, NULL); 5244 if (ret) 5245 return ERR_PTR(ret); 5246 5247 return auth; 5248 } 5249 5250 static int mds_add_authorizer_challenge(struct ceph_connection *con, 5251 void *challenge_buf, int challenge_buf_len) 5252 { 5253 struct ceph_mds_session *s = con->private; 5254 struct ceph_mds_client *mdsc = s->s_mdsc; 5255 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5256 5257 return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer, 5258 challenge_buf, challenge_buf_len); 5259 } 5260 5261 static int mds_verify_authorizer_reply(struct ceph_connection *con) 5262 { 5263 struct ceph_mds_session *s = con->private; 5264 struct ceph_mds_client *mdsc = s->s_mdsc; 5265 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5266 struct ceph_auth_handshake *auth = &s->s_auth; 5267 5268 return ceph_auth_verify_authorizer_reply(ac, auth->authorizer, 5269 auth->authorizer_reply_buf, auth->authorizer_reply_buf_len, 5270 NULL, NULL, NULL, NULL); 5271 } 5272 5273 static int mds_invalidate_authorizer(struct ceph_connection *con) 5274 { 5275 struct ceph_mds_session *s = con->private; 5276 struct ceph_mds_client *mdsc = s->s_mdsc; 5277 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5278 5279 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 5280 5281 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 5282 } 5283 5284 static int mds_get_auth_request(struct ceph_connection *con, 5285 void *buf, int *buf_len, 5286 void **authorizer, int *authorizer_len) 5287 { 5288 struct ceph_mds_session *s = con->private; 5289 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 5290 struct ceph_auth_handshake *auth = &s->s_auth; 5291 int ret; 5292 5293 ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 5294 buf, buf_len); 5295 if (ret) 5296 return ret; 5297 5298 *authorizer = auth->authorizer_buf; 5299 *authorizer_len = auth->authorizer_buf_len; 5300 return 0; 5301 } 5302 5303 static int mds_handle_auth_reply_more(struct ceph_connection *con, 5304 void *reply, int reply_len, 5305 void *buf, int *buf_len, 5306 void **authorizer, int *authorizer_len) 5307 { 5308 struct ceph_mds_session *s = con->private; 5309 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 5310 struct ceph_auth_handshake *auth = &s->s_auth; 5311 int ret; 5312 5313 ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len, 5314 buf, buf_len); 5315 if (ret) 5316 return ret; 5317 5318 *authorizer = auth->authorizer_buf; 5319 *authorizer_len = auth->authorizer_buf_len; 5320 return 0; 5321 } 5322 5323 static int mds_handle_auth_done(struct ceph_connection *con, 5324 u64 global_id, void *reply, int reply_len, 5325 u8 *session_key, int *session_key_len, 5326 u8 *con_secret, int *con_secret_len) 5327 { 5328 struct ceph_mds_session *s = con->private; 5329 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 5330 struct ceph_auth_handshake *auth = &s->s_auth; 5331 5332 return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len, 5333 session_key, session_key_len, 5334 con_secret, con_secret_len); 5335 } 5336 5337 static int mds_handle_auth_bad_method(struct ceph_connection *con, 5338 int used_proto, int result, 5339 const int *allowed_protos, int proto_cnt, 5340 const int *allowed_modes, int mode_cnt) 5341 { 5342 struct ceph_mds_session *s = con->private; 5343 struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc; 5344 int ret; 5345 5346 if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS, 5347 used_proto, result, 5348 allowed_protos, proto_cnt, 5349 allowed_modes, mode_cnt)) { 5350 ret = ceph_monc_validate_auth(monc); 5351 if (ret) 5352 return ret; 5353 } 5354 5355 return -EACCES; 5356 } 5357 5358 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 5359 struct ceph_msg_header *hdr, int *skip) 5360 { 5361 struct ceph_msg *msg; 5362 int type = (int) le16_to_cpu(hdr->type); 5363 int front_len = (int) le32_to_cpu(hdr->front_len); 5364 5365 if (con->in_msg) 5366 return con->in_msg; 5367 5368 *skip = 0; 5369 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 5370 if (!msg) { 5371 pr_err("unable to allocate msg type %d len %d\n", 5372 type, front_len); 5373 return NULL; 5374 } 5375 5376 return msg; 5377 } 5378 5379 static int mds_sign_message(struct ceph_msg *msg) 5380 { 5381 struct ceph_mds_session *s = msg->con->private; 5382 struct ceph_auth_handshake *auth = &s->s_auth; 5383 5384 return ceph_auth_sign_message(auth, msg); 5385 } 5386 5387 static int mds_check_message_signature(struct ceph_msg *msg) 5388 { 5389 struct ceph_mds_session *s = msg->con->private; 5390 struct ceph_auth_handshake *auth = &s->s_auth; 5391 5392 return ceph_auth_check_message_signature(auth, msg); 5393 } 5394 5395 static const struct ceph_connection_operations mds_con_ops = { 5396 .get = mds_get_con, 5397 .put = mds_put_con, 5398 .alloc_msg = mds_alloc_msg, 5399 .dispatch = mds_dispatch, 5400 .peer_reset = mds_peer_reset, 5401 .get_authorizer = mds_get_authorizer, 5402 .add_authorizer_challenge = mds_add_authorizer_challenge, 5403 .verify_authorizer_reply = mds_verify_authorizer_reply, 5404 .invalidate_authorizer = mds_invalidate_authorizer, 5405 .sign_message = mds_sign_message, 5406 .check_message_signature = mds_check_message_signature, 5407 .get_auth_request = mds_get_auth_request, 5408 .handle_auth_reply_more = mds_handle_auth_reply_more, 5409 .handle_auth_done = mds_handle_auth_done, 5410 .handle_auth_bad_method = mds_handle_auth_bad_method, 5411 }; 5412 5413 /* eof */ 5414