1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/sched.h> 7 #include <linux/debugfs.h> 8 #include <linux/seq_file.h> 9 10 #include "super.h" 11 #include "mds_client.h" 12 13 #include <linux/ceph/messenger.h> 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/pagelist.h> 16 #include <linux/ceph/auth.h> 17 #include <linux/ceph/debugfs.h> 18 19 /* 20 * A cluster of MDS (metadata server) daemons is responsible for 21 * managing the file system namespace (the directory hierarchy and 22 * inodes) and for coordinating shared access to storage. Metadata is 23 * partitioning hierarchically across a number of servers, and that 24 * partition varies over time as the cluster adjusts the distribution 25 * in order to balance load. 26 * 27 * The MDS client is primarily responsible to managing synchronous 28 * metadata requests for operations like open, unlink, and so forth. 29 * If there is a MDS failure, we find out about it when we (possibly 30 * request and) receive a new MDS map, and can resubmit affected 31 * requests. 32 * 33 * For the most part, though, we take advantage of a lossless 34 * communications channel to the MDS, and do not need to worry about 35 * timing out or resubmitting requests. 36 * 37 * We maintain a stateful "session" with each MDS we interact with. 38 * Within each session, we sent periodic heartbeat messages to ensure 39 * any capabilities or leases we have been issues remain valid. If 40 * the session times out and goes stale, our leases and capabilities 41 * are no longer valid. 42 */ 43 44 struct ceph_reconnect_state { 45 struct ceph_pagelist *pagelist; 46 bool flock; 47 }; 48 49 static void __wake_requests(struct ceph_mds_client *mdsc, 50 struct list_head *head); 51 52 static const struct ceph_connection_operations mds_con_ops; 53 54 55 /* 56 * mds reply parsing 57 */ 58 59 /* 60 * parse individual inode info 61 */ 62 static int parse_reply_info_in(void **p, void *end, 63 struct ceph_mds_reply_info_in *info) 64 { 65 int err = -EIO; 66 67 info->in = *p; 68 *p += sizeof(struct ceph_mds_reply_inode) + 69 sizeof(*info->in->fragtree.splits) * 70 le32_to_cpu(info->in->fragtree.nsplits); 71 72 ceph_decode_32_safe(p, end, info->symlink_len, bad); 73 ceph_decode_need(p, end, info->symlink_len, bad); 74 info->symlink = *p; 75 *p += info->symlink_len; 76 77 ceph_decode_32_safe(p, end, info->xattr_len, bad); 78 ceph_decode_need(p, end, info->xattr_len, bad); 79 info->xattr_data = *p; 80 *p += info->xattr_len; 81 return 0; 82 bad: 83 return err; 84 } 85 86 /* 87 * parse a normal reply, which may contain a (dir+)dentry and/or a 88 * target inode. 89 */ 90 static int parse_reply_info_trace(void **p, void *end, 91 struct ceph_mds_reply_info_parsed *info) 92 { 93 int err; 94 95 if (info->head->is_dentry) { 96 err = parse_reply_info_in(p, end, &info->diri); 97 if (err < 0) 98 goto out_bad; 99 100 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 101 goto bad; 102 info->dirfrag = *p; 103 *p += sizeof(*info->dirfrag) + 104 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 105 if (unlikely(*p > end)) 106 goto bad; 107 108 ceph_decode_32_safe(p, end, info->dname_len, bad); 109 ceph_decode_need(p, end, info->dname_len, bad); 110 info->dname = *p; 111 *p += info->dname_len; 112 info->dlease = *p; 113 *p += sizeof(*info->dlease); 114 } 115 116 if (info->head->is_target) { 117 err = parse_reply_info_in(p, end, &info->targeti); 118 if (err < 0) 119 goto out_bad; 120 } 121 122 if (unlikely(*p != end)) 123 goto bad; 124 return 0; 125 126 bad: 127 err = -EIO; 128 out_bad: 129 pr_err("problem parsing mds trace %d\n", err); 130 return err; 131 } 132 133 /* 134 * parse readdir results 135 */ 136 static int parse_reply_info_dir(void **p, void *end, 137 struct ceph_mds_reply_info_parsed *info) 138 { 139 u32 num, i = 0; 140 int err; 141 142 info->dir_dir = *p; 143 if (*p + sizeof(*info->dir_dir) > end) 144 goto bad; 145 *p += sizeof(*info->dir_dir) + 146 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 147 if (*p > end) 148 goto bad; 149 150 ceph_decode_need(p, end, sizeof(num) + 2, bad); 151 num = ceph_decode_32(p); 152 info->dir_end = ceph_decode_8(p); 153 info->dir_complete = ceph_decode_8(p); 154 if (num == 0) 155 goto done; 156 157 /* alloc large array */ 158 info->dir_nr = num; 159 info->dir_in = kcalloc(num, sizeof(*info->dir_in) + 160 sizeof(*info->dir_dname) + 161 sizeof(*info->dir_dname_len) + 162 sizeof(*info->dir_dlease), 163 GFP_NOFS); 164 if (info->dir_in == NULL) { 165 err = -ENOMEM; 166 goto out_bad; 167 } 168 info->dir_dname = (void *)(info->dir_in + num); 169 info->dir_dname_len = (void *)(info->dir_dname + num); 170 info->dir_dlease = (void *)(info->dir_dname_len + num); 171 172 while (num) { 173 /* dentry */ 174 ceph_decode_need(p, end, sizeof(u32)*2, bad); 175 info->dir_dname_len[i] = ceph_decode_32(p); 176 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 177 info->dir_dname[i] = *p; 178 *p += info->dir_dname_len[i]; 179 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 180 info->dir_dname[i]); 181 info->dir_dlease[i] = *p; 182 *p += sizeof(struct ceph_mds_reply_lease); 183 184 /* inode */ 185 err = parse_reply_info_in(p, end, &info->dir_in[i]); 186 if (err < 0) 187 goto out_bad; 188 i++; 189 num--; 190 } 191 192 done: 193 if (*p != end) 194 goto bad; 195 return 0; 196 197 bad: 198 err = -EIO; 199 out_bad: 200 pr_err("problem parsing dir contents %d\n", err); 201 return err; 202 } 203 204 /* 205 * parse fcntl F_GETLK results 206 */ 207 static int parse_reply_info_filelock(void **p, void *end, 208 struct ceph_mds_reply_info_parsed *info) 209 { 210 if (*p + sizeof(*info->filelock_reply) > end) 211 goto bad; 212 213 info->filelock_reply = *p; 214 *p += sizeof(*info->filelock_reply); 215 216 if (unlikely(*p != end)) 217 goto bad; 218 return 0; 219 220 bad: 221 return -EIO; 222 } 223 224 /* 225 * parse extra results 226 */ 227 static int parse_reply_info_extra(void **p, void *end, 228 struct ceph_mds_reply_info_parsed *info) 229 { 230 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 231 return parse_reply_info_filelock(p, end, info); 232 else 233 return parse_reply_info_dir(p, end, info); 234 } 235 236 /* 237 * parse entire mds reply 238 */ 239 static int parse_reply_info(struct ceph_msg *msg, 240 struct ceph_mds_reply_info_parsed *info) 241 { 242 void *p, *end; 243 u32 len; 244 int err; 245 246 info->head = msg->front.iov_base; 247 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 248 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 249 250 /* trace */ 251 ceph_decode_32_safe(&p, end, len, bad); 252 if (len > 0) { 253 err = parse_reply_info_trace(&p, p+len, info); 254 if (err < 0) 255 goto out_bad; 256 } 257 258 /* extra */ 259 ceph_decode_32_safe(&p, end, len, bad); 260 if (len > 0) { 261 err = parse_reply_info_extra(&p, p+len, info); 262 if (err < 0) 263 goto out_bad; 264 } 265 266 /* snap blob */ 267 ceph_decode_32_safe(&p, end, len, bad); 268 info->snapblob_len = len; 269 info->snapblob = p; 270 p += len; 271 272 if (p != end) 273 goto bad; 274 return 0; 275 276 bad: 277 err = -EIO; 278 out_bad: 279 pr_err("mds parse_reply err %d\n", err); 280 return err; 281 } 282 283 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 284 { 285 kfree(info->dir_in); 286 } 287 288 289 /* 290 * sessions 291 */ 292 static const char *session_state_name(int s) 293 { 294 switch (s) { 295 case CEPH_MDS_SESSION_NEW: return "new"; 296 case CEPH_MDS_SESSION_OPENING: return "opening"; 297 case CEPH_MDS_SESSION_OPEN: return "open"; 298 case CEPH_MDS_SESSION_HUNG: return "hung"; 299 case CEPH_MDS_SESSION_CLOSING: return "closing"; 300 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 301 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 302 default: return "???"; 303 } 304 } 305 306 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 307 { 308 if (atomic_inc_not_zero(&s->s_ref)) { 309 dout("mdsc get_session %p %d -> %d\n", s, 310 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 311 return s; 312 } else { 313 dout("mdsc get_session %p 0 -- FAIL", s); 314 return NULL; 315 } 316 } 317 318 void ceph_put_mds_session(struct ceph_mds_session *s) 319 { 320 dout("mdsc put_session %p %d -> %d\n", s, 321 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 322 if (atomic_dec_and_test(&s->s_ref)) { 323 if (s->s_authorizer) 324 s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer( 325 s->s_mdsc->fsc->client->monc.auth, 326 s->s_authorizer); 327 kfree(s); 328 } 329 } 330 331 /* 332 * called under mdsc->mutex 333 */ 334 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 335 int mds) 336 { 337 struct ceph_mds_session *session; 338 339 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 340 return NULL; 341 session = mdsc->sessions[mds]; 342 dout("lookup_mds_session %p %d\n", session, 343 atomic_read(&session->s_ref)); 344 get_session(session); 345 return session; 346 } 347 348 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 349 { 350 if (mds >= mdsc->max_sessions) 351 return false; 352 return mdsc->sessions[mds]; 353 } 354 355 static int __verify_registered_session(struct ceph_mds_client *mdsc, 356 struct ceph_mds_session *s) 357 { 358 if (s->s_mds >= mdsc->max_sessions || 359 mdsc->sessions[s->s_mds] != s) 360 return -ENOENT; 361 return 0; 362 } 363 364 /* 365 * create+register a new session for given mds. 366 * called under mdsc->mutex. 367 */ 368 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 369 int mds) 370 { 371 struct ceph_mds_session *s; 372 373 s = kzalloc(sizeof(*s), GFP_NOFS); 374 if (!s) 375 return ERR_PTR(-ENOMEM); 376 s->s_mdsc = mdsc; 377 s->s_mds = mds; 378 s->s_state = CEPH_MDS_SESSION_NEW; 379 s->s_ttl = 0; 380 s->s_seq = 0; 381 mutex_init(&s->s_mutex); 382 383 ceph_con_init(mdsc->fsc->client->msgr, &s->s_con); 384 s->s_con.private = s; 385 s->s_con.ops = &mds_con_ops; 386 s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS; 387 s->s_con.peer_name.num = cpu_to_le64(mds); 388 389 spin_lock_init(&s->s_cap_lock); 390 s->s_cap_gen = 0; 391 s->s_cap_ttl = 0; 392 s->s_renew_requested = 0; 393 s->s_renew_seq = 0; 394 INIT_LIST_HEAD(&s->s_caps); 395 s->s_nr_caps = 0; 396 s->s_trim_caps = 0; 397 atomic_set(&s->s_ref, 1); 398 INIT_LIST_HEAD(&s->s_waiting); 399 INIT_LIST_HEAD(&s->s_unsafe); 400 s->s_num_cap_releases = 0; 401 s->s_cap_iterator = NULL; 402 INIT_LIST_HEAD(&s->s_cap_releases); 403 INIT_LIST_HEAD(&s->s_cap_releases_done); 404 INIT_LIST_HEAD(&s->s_cap_flushing); 405 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 406 407 dout("register_session mds%d\n", mds); 408 if (mds >= mdsc->max_sessions) { 409 int newmax = 1 << get_count_order(mds+1); 410 struct ceph_mds_session **sa; 411 412 dout("register_session realloc to %d\n", newmax); 413 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 414 if (sa == NULL) 415 goto fail_realloc; 416 if (mdsc->sessions) { 417 memcpy(sa, mdsc->sessions, 418 mdsc->max_sessions * sizeof(void *)); 419 kfree(mdsc->sessions); 420 } 421 mdsc->sessions = sa; 422 mdsc->max_sessions = newmax; 423 } 424 mdsc->sessions[mds] = s; 425 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 426 427 ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 428 429 return s; 430 431 fail_realloc: 432 kfree(s); 433 return ERR_PTR(-ENOMEM); 434 } 435 436 /* 437 * called under mdsc->mutex 438 */ 439 static void __unregister_session(struct ceph_mds_client *mdsc, 440 struct ceph_mds_session *s) 441 { 442 dout("__unregister_session mds%d %p\n", s->s_mds, s); 443 BUG_ON(mdsc->sessions[s->s_mds] != s); 444 mdsc->sessions[s->s_mds] = NULL; 445 ceph_con_close(&s->s_con); 446 ceph_put_mds_session(s); 447 } 448 449 /* 450 * drop session refs in request. 451 * 452 * should be last request ref, or hold mdsc->mutex 453 */ 454 static void put_request_session(struct ceph_mds_request *req) 455 { 456 if (req->r_session) { 457 ceph_put_mds_session(req->r_session); 458 req->r_session = NULL; 459 } 460 } 461 462 void ceph_mdsc_release_request(struct kref *kref) 463 { 464 struct ceph_mds_request *req = container_of(kref, 465 struct ceph_mds_request, 466 r_kref); 467 if (req->r_request) 468 ceph_msg_put(req->r_request); 469 if (req->r_reply) { 470 ceph_msg_put(req->r_reply); 471 destroy_reply_info(&req->r_reply_info); 472 } 473 if (req->r_inode) { 474 ceph_put_cap_refs(ceph_inode(req->r_inode), 475 CEPH_CAP_PIN); 476 iput(req->r_inode); 477 } 478 if (req->r_locked_dir) 479 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), 480 CEPH_CAP_PIN); 481 if (req->r_target_inode) 482 iput(req->r_target_inode); 483 if (req->r_dentry) 484 dput(req->r_dentry); 485 if (req->r_old_dentry) { 486 ceph_put_cap_refs( 487 ceph_inode(req->r_old_dentry->d_parent->d_inode), 488 CEPH_CAP_PIN); 489 dput(req->r_old_dentry); 490 } 491 kfree(req->r_path1); 492 kfree(req->r_path2); 493 put_request_session(req); 494 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 495 kfree(req); 496 } 497 498 /* 499 * lookup session, bump ref if found. 500 * 501 * called under mdsc->mutex. 502 */ 503 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 504 u64 tid) 505 { 506 struct ceph_mds_request *req; 507 struct rb_node *n = mdsc->request_tree.rb_node; 508 509 while (n) { 510 req = rb_entry(n, struct ceph_mds_request, r_node); 511 if (tid < req->r_tid) 512 n = n->rb_left; 513 else if (tid > req->r_tid) 514 n = n->rb_right; 515 else { 516 ceph_mdsc_get_request(req); 517 return req; 518 } 519 } 520 return NULL; 521 } 522 523 static void __insert_request(struct ceph_mds_client *mdsc, 524 struct ceph_mds_request *new) 525 { 526 struct rb_node **p = &mdsc->request_tree.rb_node; 527 struct rb_node *parent = NULL; 528 struct ceph_mds_request *req = NULL; 529 530 while (*p) { 531 parent = *p; 532 req = rb_entry(parent, struct ceph_mds_request, r_node); 533 if (new->r_tid < req->r_tid) 534 p = &(*p)->rb_left; 535 else if (new->r_tid > req->r_tid) 536 p = &(*p)->rb_right; 537 else 538 BUG(); 539 } 540 541 rb_link_node(&new->r_node, parent, p); 542 rb_insert_color(&new->r_node, &mdsc->request_tree); 543 } 544 545 /* 546 * Register an in-flight request, and assign a tid. Link to directory 547 * are modifying (if any). 548 * 549 * Called under mdsc->mutex. 550 */ 551 static void __register_request(struct ceph_mds_client *mdsc, 552 struct ceph_mds_request *req, 553 struct inode *dir) 554 { 555 req->r_tid = ++mdsc->last_tid; 556 if (req->r_num_caps) 557 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 558 req->r_num_caps); 559 dout("__register_request %p tid %lld\n", req, req->r_tid); 560 ceph_mdsc_get_request(req); 561 __insert_request(mdsc, req); 562 563 req->r_uid = current_fsuid(); 564 req->r_gid = current_fsgid(); 565 566 if (dir) { 567 struct ceph_inode_info *ci = ceph_inode(dir); 568 569 spin_lock(&ci->i_unsafe_lock); 570 req->r_unsafe_dir = dir; 571 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 572 spin_unlock(&ci->i_unsafe_lock); 573 } 574 } 575 576 static void __unregister_request(struct ceph_mds_client *mdsc, 577 struct ceph_mds_request *req) 578 { 579 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 580 rb_erase(&req->r_node, &mdsc->request_tree); 581 RB_CLEAR_NODE(&req->r_node); 582 583 if (req->r_unsafe_dir) { 584 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 585 586 spin_lock(&ci->i_unsafe_lock); 587 list_del_init(&req->r_unsafe_dir_item); 588 spin_unlock(&ci->i_unsafe_lock); 589 } 590 591 ceph_mdsc_put_request(req); 592 } 593 594 /* 595 * Choose mds to send request to next. If there is a hint set in the 596 * request (e.g., due to a prior forward hint from the mds), use that. 597 * Otherwise, consult frag tree and/or caps to identify the 598 * appropriate mds. If all else fails, choose randomly. 599 * 600 * Called under mdsc->mutex. 601 */ 602 struct dentry *get_nonsnap_parent(struct dentry *dentry) 603 { 604 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP) 605 dentry = dentry->d_parent; 606 return dentry; 607 } 608 609 static int __choose_mds(struct ceph_mds_client *mdsc, 610 struct ceph_mds_request *req) 611 { 612 struct inode *inode; 613 struct ceph_inode_info *ci; 614 struct ceph_cap *cap; 615 int mode = req->r_direct_mode; 616 int mds = -1; 617 u32 hash = req->r_direct_hash; 618 bool is_hash = req->r_direct_is_hash; 619 620 /* 621 * is there a specific mds we should try? ignore hint if we have 622 * no session and the mds is not up (active or recovering). 623 */ 624 if (req->r_resend_mds >= 0 && 625 (__have_session(mdsc, req->r_resend_mds) || 626 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 627 dout("choose_mds using resend_mds mds%d\n", 628 req->r_resend_mds); 629 return req->r_resend_mds; 630 } 631 632 if (mode == USE_RANDOM_MDS) 633 goto random; 634 635 inode = NULL; 636 if (req->r_inode) { 637 inode = req->r_inode; 638 } else if (req->r_dentry) { 639 struct inode *dir = req->r_dentry->d_parent->d_inode; 640 641 if (dir->i_sb != mdsc->fsc->sb) { 642 /* not this fs! */ 643 inode = req->r_dentry->d_inode; 644 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 645 /* direct snapped/virtual snapdir requests 646 * based on parent dir inode */ 647 struct dentry *dn = 648 get_nonsnap_parent(req->r_dentry->d_parent); 649 inode = dn->d_inode; 650 dout("__choose_mds using nonsnap parent %p\n", inode); 651 } else if (req->r_dentry->d_inode) { 652 /* dentry target */ 653 inode = req->r_dentry->d_inode; 654 } else { 655 /* dir + name */ 656 inode = dir; 657 hash = req->r_dentry->d_name.hash; 658 is_hash = true; 659 } 660 } 661 662 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 663 (int)hash, mode); 664 if (!inode) 665 goto random; 666 ci = ceph_inode(inode); 667 668 if (is_hash && S_ISDIR(inode->i_mode)) { 669 struct ceph_inode_frag frag; 670 int found; 671 672 ceph_choose_frag(ci, hash, &frag, &found); 673 if (found) { 674 if (mode == USE_ANY_MDS && frag.ndist > 0) { 675 u8 r; 676 677 /* choose a random replica */ 678 get_random_bytes(&r, 1); 679 r %= frag.ndist; 680 mds = frag.dist[r]; 681 dout("choose_mds %p %llx.%llx " 682 "frag %u mds%d (%d/%d)\n", 683 inode, ceph_vinop(inode), 684 frag.frag, frag.mds, 685 (int)r, frag.ndist); 686 return mds; 687 } 688 689 /* since this file/dir wasn't known to be 690 * replicated, then we want to look for the 691 * authoritative mds. */ 692 mode = USE_AUTH_MDS; 693 if (frag.mds >= 0) { 694 /* choose auth mds */ 695 mds = frag.mds; 696 dout("choose_mds %p %llx.%llx " 697 "frag %u mds%d (auth)\n", 698 inode, ceph_vinop(inode), frag.frag, mds); 699 return mds; 700 } 701 } 702 } 703 704 spin_lock(&inode->i_lock); 705 cap = NULL; 706 if (mode == USE_AUTH_MDS) 707 cap = ci->i_auth_cap; 708 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 709 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 710 if (!cap) { 711 spin_unlock(&inode->i_lock); 712 goto random; 713 } 714 mds = cap->session->s_mds; 715 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 716 inode, ceph_vinop(inode), mds, 717 cap == ci->i_auth_cap ? "auth " : "", cap); 718 spin_unlock(&inode->i_lock); 719 return mds; 720 721 random: 722 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 723 dout("choose_mds chose random mds%d\n", mds); 724 return mds; 725 } 726 727 728 /* 729 * session messages 730 */ 731 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 732 { 733 struct ceph_msg *msg; 734 struct ceph_mds_session_head *h; 735 736 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS); 737 if (!msg) { 738 pr_err("create_session_msg ENOMEM creating msg\n"); 739 return NULL; 740 } 741 h = msg->front.iov_base; 742 h->op = cpu_to_le32(op); 743 h->seq = cpu_to_le64(seq); 744 return msg; 745 } 746 747 /* 748 * send session open request. 749 * 750 * called under mdsc->mutex 751 */ 752 static int __open_session(struct ceph_mds_client *mdsc, 753 struct ceph_mds_session *session) 754 { 755 struct ceph_msg *msg; 756 int mstate; 757 int mds = session->s_mds; 758 759 /* wait for mds to go active? */ 760 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 761 dout("open_session to mds%d (%s)\n", mds, 762 ceph_mds_state_name(mstate)); 763 session->s_state = CEPH_MDS_SESSION_OPENING; 764 session->s_renew_requested = jiffies; 765 766 /* send connect message */ 767 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq); 768 if (!msg) 769 return -ENOMEM; 770 ceph_con_send(&session->s_con, msg); 771 return 0; 772 } 773 774 /* 775 * open sessions for any export targets for the given mds 776 * 777 * called under mdsc->mutex 778 */ 779 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 780 struct ceph_mds_session *session) 781 { 782 struct ceph_mds_info *mi; 783 struct ceph_mds_session *ts; 784 int i, mds = session->s_mds; 785 int target; 786 787 if (mds >= mdsc->mdsmap->m_max_mds) 788 return; 789 mi = &mdsc->mdsmap->m_info[mds]; 790 dout("open_export_target_sessions for mds%d (%d targets)\n", 791 session->s_mds, mi->num_export_targets); 792 793 for (i = 0; i < mi->num_export_targets; i++) { 794 target = mi->export_targets[i]; 795 ts = __ceph_lookup_mds_session(mdsc, target); 796 if (!ts) { 797 ts = register_session(mdsc, target); 798 if (IS_ERR(ts)) 799 return; 800 } 801 if (session->s_state == CEPH_MDS_SESSION_NEW || 802 session->s_state == CEPH_MDS_SESSION_CLOSING) 803 __open_session(mdsc, session); 804 else 805 dout(" mds%d target mds%d %p is %s\n", session->s_mds, 806 i, ts, session_state_name(ts->s_state)); 807 ceph_put_mds_session(ts); 808 } 809 } 810 811 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 812 struct ceph_mds_session *session) 813 { 814 mutex_lock(&mdsc->mutex); 815 __open_export_target_sessions(mdsc, session); 816 mutex_unlock(&mdsc->mutex); 817 } 818 819 /* 820 * session caps 821 */ 822 823 /* 824 * Free preallocated cap messages assigned to this session 825 */ 826 static void cleanup_cap_releases(struct ceph_mds_session *session) 827 { 828 struct ceph_msg *msg; 829 830 spin_lock(&session->s_cap_lock); 831 while (!list_empty(&session->s_cap_releases)) { 832 msg = list_first_entry(&session->s_cap_releases, 833 struct ceph_msg, list_head); 834 list_del_init(&msg->list_head); 835 ceph_msg_put(msg); 836 } 837 while (!list_empty(&session->s_cap_releases_done)) { 838 msg = list_first_entry(&session->s_cap_releases_done, 839 struct ceph_msg, list_head); 840 list_del_init(&msg->list_head); 841 ceph_msg_put(msg); 842 } 843 spin_unlock(&session->s_cap_lock); 844 } 845 846 /* 847 * Helper to safely iterate over all caps associated with a session, with 848 * special care taken to handle a racing __ceph_remove_cap(). 849 * 850 * Caller must hold session s_mutex. 851 */ 852 static int iterate_session_caps(struct ceph_mds_session *session, 853 int (*cb)(struct inode *, struct ceph_cap *, 854 void *), void *arg) 855 { 856 struct list_head *p; 857 struct ceph_cap *cap; 858 struct inode *inode, *last_inode = NULL; 859 struct ceph_cap *old_cap = NULL; 860 int ret; 861 862 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 863 spin_lock(&session->s_cap_lock); 864 p = session->s_caps.next; 865 while (p != &session->s_caps) { 866 cap = list_entry(p, struct ceph_cap, session_caps); 867 inode = igrab(&cap->ci->vfs_inode); 868 if (!inode) { 869 p = p->next; 870 continue; 871 } 872 session->s_cap_iterator = cap; 873 spin_unlock(&session->s_cap_lock); 874 875 if (last_inode) { 876 iput(last_inode); 877 last_inode = NULL; 878 } 879 if (old_cap) { 880 ceph_put_cap(session->s_mdsc, old_cap); 881 old_cap = NULL; 882 } 883 884 ret = cb(inode, cap, arg); 885 last_inode = inode; 886 887 spin_lock(&session->s_cap_lock); 888 p = p->next; 889 if (cap->ci == NULL) { 890 dout("iterate_session_caps finishing cap %p removal\n", 891 cap); 892 BUG_ON(cap->session != session); 893 list_del_init(&cap->session_caps); 894 session->s_nr_caps--; 895 cap->session = NULL; 896 old_cap = cap; /* put_cap it w/o locks held */ 897 } 898 if (ret < 0) 899 goto out; 900 } 901 ret = 0; 902 out: 903 session->s_cap_iterator = NULL; 904 spin_unlock(&session->s_cap_lock); 905 906 if (last_inode) 907 iput(last_inode); 908 if (old_cap) 909 ceph_put_cap(session->s_mdsc, old_cap); 910 911 return ret; 912 } 913 914 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 915 void *arg) 916 { 917 struct ceph_inode_info *ci = ceph_inode(inode); 918 int drop = 0; 919 920 dout("removing cap %p, ci is %p, inode is %p\n", 921 cap, ci, &ci->vfs_inode); 922 spin_lock(&inode->i_lock); 923 __ceph_remove_cap(cap); 924 if (!__ceph_is_any_real_caps(ci)) { 925 struct ceph_mds_client *mdsc = 926 ceph_sb_to_client(inode->i_sb)->mdsc; 927 928 spin_lock(&mdsc->cap_dirty_lock); 929 if (!list_empty(&ci->i_dirty_item)) { 930 pr_info(" dropping dirty %s state for %p %lld\n", 931 ceph_cap_string(ci->i_dirty_caps), 932 inode, ceph_ino(inode)); 933 ci->i_dirty_caps = 0; 934 list_del_init(&ci->i_dirty_item); 935 drop = 1; 936 } 937 if (!list_empty(&ci->i_flushing_item)) { 938 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 939 ceph_cap_string(ci->i_flushing_caps), 940 inode, ceph_ino(inode)); 941 ci->i_flushing_caps = 0; 942 list_del_init(&ci->i_flushing_item); 943 mdsc->num_cap_flushing--; 944 drop = 1; 945 } 946 if (drop && ci->i_wrbuffer_ref) { 947 pr_info(" dropping dirty data for %p %lld\n", 948 inode, ceph_ino(inode)); 949 ci->i_wrbuffer_ref = 0; 950 ci->i_wrbuffer_ref_head = 0; 951 drop++; 952 } 953 spin_unlock(&mdsc->cap_dirty_lock); 954 } 955 spin_unlock(&inode->i_lock); 956 while (drop--) 957 iput(inode); 958 return 0; 959 } 960 961 /* 962 * caller must hold session s_mutex 963 */ 964 static void remove_session_caps(struct ceph_mds_session *session) 965 { 966 dout("remove_session_caps on %p\n", session); 967 iterate_session_caps(session, remove_session_caps_cb, NULL); 968 BUG_ON(session->s_nr_caps > 0); 969 BUG_ON(!list_empty(&session->s_cap_flushing)); 970 cleanup_cap_releases(session); 971 } 972 973 /* 974 * wake up any threads waiting on this session's caps. if the cap is 975 * old (didn't get renewed on the client reconnect), remove it now. 976 * 977 * caller must hold s_mutex. 978 */ 979 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 980 void *arg) 981 { 982 struct ceph_inode_info *ci = ceph_inode(inode); 983 984 wake_up_all(&ci->i_cap_wq); 985 if (arg) { 986 spin_lock(&inode->i_lock); 987 ci->i_wanted_max_size = 0; 988 ci->i_requested_max_size = 0; 989 spin_unlock(&inode->i_lock); 990 } 991 return 0; 992 } 993 994 static void wake_up_session_caps(struct ceph_mds_session *session, 995 int reconnect) 996 { 997 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 998 iterate_session_caps(session, wake_up_session_cb, 999 (void *)(unsigned long)reconnect); 1000 } 1001 1002 /* 1003 * Send periodic message to MDS renewing all currently held caps. The 1004 * ack will reset the expiration for all caps from this session. 1005 * 1006 * caller holds s_mutex 1007 */ 1008 static int send_renew_caps(struct ceph_mds_client *mdsc, 1009 struct ceph_mds_session *session) 1010 { 1011 struct ceph_msg *msg; 1012 int state; 1013 1014 if (time_after_eq(jiffies, session->s_cap_ttl) && 1015 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1016 pr_info("mds%d caps stale\n", session->s_mds); 1017 session->s_renew_requested = jiffies; 1018 1019 /* do not try to renew caps until a recovering mds has reconnected 1020 * with its clients. */ 1021 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1022 if (state < CEPH_MDS_STATE_RECONNECT) { 1023 dout("send_renew_caps ignoring mds%d (%s)\n", 1024 session->s_mds, ceph_mds_state_name(state)); 1025 return 0; 1026 } 1027 1028 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1029 ceph_mds_state_name(state)); 1030 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1031 ++session->s_renew_seq); 1032 if (!msg) 1033 return -ENOMEM; 1034 ceph_con_send(&session->s_con, msg); 1035 return 0; 1036 } 1037 1038 /* 1039 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1040 * 1041 * Called under session->s_mutex 1042 */ 1043 static void renewed_caps(struct ceph_mds_client *mdsc, 1044 struct ceph_mds_session *session, int is_renew) 1045 { 1046 int was_stale; 1047 int wake = 0; 1048 1049 spin_lock(&session->s_cap_lock); 1050 was_stale = is_renew && (session->s_cap_ttl == 0 || 1051 time_after_eq(jiffies, session->s_cap_ttl)); 1052 1053 session->s_cap_ttl = session->s_renew_requested + 1054 mdsc->mdsmap->m_session_timeout*HZ; 1055 1056 if (was_stale) { 1057 if (time_before(jiffies, session->s_cap_ttl)) { 1058 pr_info("mds%d caps renewed\n", session->s_mds); 1059 wake = 1; 1060 } else { 1061 pr_info("mds%d caps still stale\n", session->s_mds); 1062 } 1063 } 1064 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1065 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1066 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1067 spin_unlock(&session->s_cap_lock); 1068 1069 if (wake) 1070 wake_up_session_caps(session, 0); 1071 } 1072 1073 /* 1074 * send a session close request 1075 */ 1076 static int request_close_session(struct ceph_mds_client *mdsc, 1077 struct ceph_mds_session *session) 1078 { 1079 struct ceph_msg *msg; 1080 1081 dout("request_close_session mds%d state %s seq %lld\n", 1082 session->s_mds, session_state_name(session->s_state), 1083 session->s_seq); 1084 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1085 if (!msg) 1086 return -ENOMEM; 1087 ceph_con_send(&session->s_con, msg); 1088 return 0; 1089 } 1090 1091 /* 1092 * Called with s_mutex held. 1093 */ 1094 static int __close_session(struct ceph_mds_client *mdsc, 1095 struct ceph_mds_session *session) 1096 { 1097 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1098 return 0; 1099 session->s_state = CEPH_MDS_SESSION_CLOSING; 1100 return request_close_session(mdsc, session); 1101 } 1102 1103 /* 1104 * Trim old(er) caps. 1105 * 1106 * Because we can't cache an inode without one or more caps, we do 1107 * this indirectly: if a cap is unused, we prune its aliases, at which 1108 * point the inode will hopefully get dropped to. 1109 * 1110 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1111 * memory pressure from the MDS, though, so it needn't be perfect. 1112 */ 1113 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1114 { 1115 struct ceph_mds_session *session = arg; 1116 struct ceph_inode_info *ci = ceph_inode(inode); 1117 int used, oissued, mine; 1118 1119 if (session->s_trim_caps <= 0) 1120 return -1; 1121 1122 spin_lock(&inode->i_lock); 1123 mine = cap->issued | cap->implemented; 1124 used = __ceph_caps_used(ci); 1125 oissued = __ceph_caps_issued_other(ci, cap); 1126 1127 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n", 1128 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1129 ceph_cap_string(used)); 1130 if (ci->i_dirty_caps) 1131 goto out; /* dirty caps */ 1132 if ((used & ~oissued) & mine) 1133 goto out; /* we need these caps */ 1134 1135 session->s_trim_caps--; 1136 if (oissued) { 1137 /* we aren't the only cap.. just remove us */ 1138 __ceph_remove_cap(cap); 1139 } else { 1140 /* try to drop referring dentries */ 1141 spin_unlock(&inode->i_lock); 1142 d_prune_aliases(inode); 1143 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1144 inode, cap, atomic_read(&inode->i_count)); 1145 return 0; 1146 } 1147 1148 out: 1149 spin_unlock(&inode->i_lock); 1150 return 0; 1151 } 1152 1153 /* 1154 * Trim session cap count down to some max number. 1155 */ 1156 static int trim_caps(struct ceph_mds_client *mdsc, 1157 struct ceph_mds_session *session, 1158 int max_caps) 1159 { 1160 int trim_caps = session->s_nr_caps - max_caps; 1161 1162 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1163 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1164 if (trim_caps > 0) { 1165 session->s_trim_caps = trim_caps; 1166 iterate_session_caps(session, trim_caps_cb, session); 1167 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1168 session->s_mds, session->s_nr_caps, max_caps, 1169 trim_caps - session->s_trim_caps); 1170 session->s_trim_caps = 0; 1171 } 1172 return 0; 1173 } 1174 1175 /* 1176 * Allocate cap_release messages. If there is a partially full message 1177 * in the queue, try to allocate enough to cover it's remainder, so that 1178 * we can send it immediately. 1179 * 1180 * Called under s_mutex. 1181 */ 1182 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1183 struct ceph_mds_session *session) 1184 { 1185 struct ceph_msg *msg, *partial = NULL; 1186 struct ceph_mds_cap_release *head; 1187 int err = -ENOMEM; 1188 int extra = mdsc->fsc->mount_options->cap_release_safety; 1189 int num; 1190 1191 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1192 extra); 1193 1194 spin_lock(&session->s_cap_lock); 1195 1196 if (!list_empty(&session->s_cap_releases)) { 1197 msg = list_first_entry(&session->s_cap_releases, 1198 struct ceph_msg, 1199 list_head); 1200 head = msg->front.iov_base; 1201 num = le32_to_cpu(head->num); 1202 if (num) { 1203 dout(" partial %p with (%d/%d)\n", msg, num, 1204 (int)CEPH_CAPS_PER_RELEASE); 1205 extra += CEPH_CAPS_PER_RELEASE - num; 1206 partial = msg; 1207 } 1208 } 1209 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1210 spin_unlock(&session->s_cap_lock); 1211 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1212 GFP_NOFS); 1213 if (!msg) 1214 goto out_unlocked; 1215 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1216 (int)msg->front.iov_len); 1217 head = msg->front.iov_base; 1218 head->num = cpu_to_le32(0); 1219 msg->front.iov_len = sizeof(*head); 1220 spin_lock(&session->s_cap_lock); 1221 list_add(&msg->list_head, &session->s_cap_releases); 1222 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1223 } 1224 1225 if (partial) { 1226 head = partial->front.iov_base; 1227 num = le32_to_cpu(head->num); 1228 dout(" queueing partial %p with %d/%d\n", partial, num, 1229 (int)CEPH_CAPS_PER_RELEASE); 1230 list_move_tail(&partial->list_head, 1231 &session->s_cap_releases_done); 1232 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1233 } 1234 err = 0; 1235 spin_unlock(&session->s_cap_lock); 1236 out_unlocked: 1237 return err; 1238 } 1239 1240 /* 1241 * flush all dirty inode data to disk. 1242 * 1243 * returns true if we've flushed through want_flush_seq 1244 */ 1245 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1246 { 1247 int mds, ret = 1; 1248 1249 dout("check_cap_flush want %lld\n", want_flush_seq); 1250 mutex_lock(&mdsc->mutex); 1251 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1252 struct ceph_mds_session *session = mdsc->sessions[mds]; 1253 1254 if (!session) 1255 continue; 1256 get_session(session); 1257 mutex_unlock(&mdsc->mutex); 1258 1259 mutex_lock(&session->s_mutex); 1260 if (!list_empty(&session->s_cap_flushing)) { 1261 struct ceph_inode_info *ci = 1262 list_entry(session->s_cap_flushing.next, 1263 struct ceph_inode_info, 1264 i_flushing_item); 1265 struct inode *inode = &ci->vfs_inode; 1266 1267 spin_lock(&inode->i_lock); 1268 if (ci->i_cap_flush_seq <= want_flush_seq) { 1269 dout("check_cap_flush still flushing %p " 1270 "seq %lld <= %lld to mds%d\n", inode, 1271 ci->i_cap_flush_seq, want_flush_seq, 1272 session->s_mds); 1273 ret = 0; 1274 } 1275 spin_unlock(&inode->i_lock); 1276 } 1277 mutex_unlock(&session->s_mutex); 1278 ceph_put_mds_session(session); 1279 1280 if (!ret) 1281 return ret; 1282 mutex_lock(&mdsc->mutex); 1283 } 1284 1285 mutex_unlock(&mdsc->mutex); 1286 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1287 return ret; 1288 } 1289 1290 /* 1291 * called under s_mutex 1292 */ 1293 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1294 struct ceph_mds_session *session) 1295 { 1296 struct ceph_msg *msg; 1297 1298 dout("send_cap_releases mds%d\n", session->s_mds); 1299 spin_lock(&session->s_cap_lock); 1300 while (!list_empty(&session->s_cap_releases_done)) { 1301 msg = list_first_entry(&session->s_cap_releases_done, 1302 struct ceph_msg, list_head); 1303 list_del_init(&msg->list_head); 1304 spin_unlock(&session->s_cap_lock); 1305 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1306 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1307 ceph_con_send(&session->s_con, msg); 1308 spin_lock(&session->s_cap_lock); 1309 } 1310 spin_unlock(&session->s_cap_lock); 1311 } 1312 1313 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1314 struct ceph_mds_session *session) 1315 { 1316 struct ceph_msg *msg; 1317 struct ceph_mds_cap_release *head; 1318 unsigned num; 1319 1320 dout("discard_cap_releases mds%d\n", session->s_mds); 1321 spin_lock(&session->s_cap_lock); 1322 1323 /* zero out the in-progress message */ 1324 msg = list_first_entry(&session->s_cap_releases, 1325 struct ceph_msg, list_head); 1326 head = msg->front.iov_base; 1327 num = le32_to_cpu(head->num); 1328 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num); 1329 head->num = cpu_to_le32(0); 1330 session->s_num_cap_releases += num; 1331 1332 /* requeue completed messages */ 1333 while (!list_empty(&session->s_cap_releases_done)) { 1334 msg = list_first_entry(&session->s_cap_releases_done, 1335 struct ceph_msg, list_head); 1336 list_del_init(&msg->list_head); 1337 1338 head = msg->front.iov_base; 1339 num = le32_to_cpu(head->num); 1340 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1341 num); 1342 session->s_num_cap_releases += num; 1343 head->num = cpu_to_le32(0); 1344 msg->front.iov_len = sizeof(*head); 1345 list_add(&msg->list_head, &session->s_cap_releases); 1346 } 1347 1348 spin_unlock(&session->s_cap_lock); 1349 } 1350 1351 /* 1352 * requests 1353 */ 1354 1355 /* 1356 * Create an mds request. 1357 */ 1358 struct ceph_mds_request * 1359 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1360 { 1361 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1362 1363 if (!req) 1364 return ERR_PTR(-ENOMEM); 1365 1366 mutex_init(&req->r_fill_mutex); 1367 req->r_mdsc = mdsc; 1368 req->r_started = jiffies; 1369 req->r_resend_mds = -1; 1370 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1371 req->r_fmode = -1; 1372 kref_init(&req->r_kref); 1373 INIT_LIST_HEAD(&req->r_wait); 1374 init_completion(&req->r_completion); 1375 init_completion(&req->r_safe_completion); 1376 INIT_LIST_HEAD(&req->r_unsafe_item); 1377 1378 req->r_op = op; 1379 req->r_direct_mode = mode; 1380 return req; 1381 } 1382 1383 /* 1384 * return oldest (lowest) request, tid in request tree, 0 if none. 1385 * 1386 * called under mdsc->mutex. 1387 */ 1388 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1389 { 1390 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1391 return NULL; 1392 return rb_entry(rb_first(&mdsc->request_tree), 1393 struct ceph_mds_request, r_node); 1394 } 1395 1396 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1397 { 1398 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1399 1400 if (req) 1401 return req->r_tid; 1402 return 0; 1403 } 1404 1405 /* 1406 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1407 * on build_path_from_dentry in fs/cifs/dir.c. 1408 * 1409 * If @stop_on_nosnap, generate path relative to the first non-snapped 1410 * inode. 1411 * 1412 * Encode hidden .snap dirs as a double /, i.e. 1413 * foo/.snap/bar -> foo//bar 1414 */ 1415 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1416 int stop_on_nosnap) 1417 { 1418 struct dentry *temp; 1419 char *path; 1420 int len, pos; 1421 1422 if (dentry == NULL) 1423 return ERR_PTR(-EINVAL); 1424 1425 retry: 1426 len = 0; 1427 for (temp = dentry; !IS_ROOT(temp);) { 1428 struct inode *inode = temp->d_inode; 1429 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1430 len++; /* slash only */ 1431 else if (stop_on_nosnap && inode && 1432 ceph_snap(inode) == CEPH_NOSNAP) 1433 break; 1434 else 1435 len += 1 + temp->d_name.len; 1436 temp = temp->d_parent; 1437 if (temp == NULL) { 1438 pr_err("build_path corrupt dentry %p\n", dentry); 1439 return ERR_PTR(-EINVAL); 1440 } 1441 } 1442 if (len) 1443 len--; /* no leading '/' */ 1444 1445 path = kmalloc(len+1, GFP_NOFS); 1446 if (path == NULL) 1447 return ERR_PTR(-ENOMEM); 1448 pos = len; 1449 path[pos] = 0; /* trailing null */ 1450 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1451 struct inode *inode = temp->d_inode; 1452 1453 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1454 dout("build_path path+%d: %p SNAPDIR\n", 1455 pos, temp); 1456 } else if (stop_on_nosnap && inode && 1457 ceph_snap(inode) == CEPH_NOSNAP) { 1458 break; 1459 } else { 1460 pos -= temp->d_name.len; 1461 if (pos < 0) 1462 break; 1463 strncpy(path + pos, temp->d_name.name, 1464 temp->d_name.len); 1465 } 1466 if (pos) 1467 path[--pos] = '/'; 1468 temp = temp->d_parent; 1469 if (temp == NULL) { 1470 pr_err("build_path corrupt dentry\n"); 1471 kfree(path); 1472 return ERR_PTR(-EINVAL); 1473 } 1474 } 1475 if (pos != 0) { 1476 pr_err("build_path did not end path lookup where " 1477 "expected, namelen is %d, pos is %d\n", len, pos); 1478 /* presumably this is only possible if racing with a 1479 rename of one of the parent directories (we can not 1480 lock the dentries above us to prevent this, but 1481 retrying should be harmless) */ 1482 kfree(path); 1483 goto retry; 1484 } 1485 1486 *base = ceph_ino(temp->d_inode); 1487 *plen = len; 1488 dout("build_path on %p %d built %llx '%.*s'\n", 1489 dentry, atomic_read(&dentry->d_count), *base, len, path); 1490 return path; 1491 } 1492 1493 static int build_dentry_path(struct dentry *dentry, 1494 const char **ppath, int *ppathlen, u64 *pino, 1495 int *pfreepath) 1496 { 1497 char *path; 1498 1499 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1500 *pino = ceph_ino(dentry->d_parent->d_inode); 1501 *ppath = dentry->d_name.name; 1502 *ppathlen = dentry->d_name.len; 1503 return 0; 1504 } 1505 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1506 if (IS_ERR(path)) 1507 return PTR_ERR(path); 1508 *ppath = path; 1509 *pfreepath = 1; 1510 return 0; 1511 } 1512 1513 static int build_inode_path(struct inode *inode, 1514 const char **ppath, int *ppathlen, u64 *pino, 1515 int *pfreepath) 1516 { 1517 struct dentry *dentry; 1518 char *path; 1519 1520 if (ceph_snap(inode) == CEPH_NOSNAP) { 1521 *pino = ceph_ino(inode); 1522 *ppathlen = 0; 1523 return 0; 1524 } 1525 dentry = d_find_alias(inode); 1526 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1527 dput(dentry); 1528 if (IS_ERR(path)) 1529 return PTR_ERR(path); 1530 *ppath = path; 1531 *pfreepath = 1; 1532 return 0; 1533 } 1534 1535 /* 1536 * request arguments may be specified via an inode *, a dentry *, or 1537 * an explicit ino+path. 1538 */ 1539 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1540 const char *rpath, u64 rino, 1541 const char **ppath, int *pathlen, 1542 u64 *ino, int *freepath) 1543 { 1544 int r = 0; 1545 1546 if (rinode) { 1547 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1548 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1549 ceph_snap(rinode)); 1550 } else if (rdentry) { 1551 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1552 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1553 *ppath); 1554 } else if (rpath) { 1555 *ino = rino; 1556 *ppath = rpath; 1557 *pathlen = strlen(rpath); 1558 dout(" path %.*s\n", *pathlen, rpath); 1559 } 1560 1561 return r; 1562 } 1563 1564 /* 1565 * called under mdsc->mutex 1566 */ 1567 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1568 struct ceph_mds_request *req, 1569 int mds) 1570 { 1571 struct ceph_msg *msg; 1572 struct ceph_mds_request_head *head; 1573 const char *path1 = NULL; 1574 const char *path2 = NULL; 1575 u64 ino1 = 0, ino2 = 0; 1576 int pathlen1 = 0, pathlen2 = 0; 1577 int freepath1 = 0, freepath2 = 0; 1578 int len; 1579 u16 releases; 1580 void *p, *end; 1581 int ret; 1582 1583 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1584 req->r_path1, req->r_ino1.ino, 1585 &path1, &pathlen1, &ino1, &freepath1); 1586 if (ret < 0) { 1587 msg = ERR_PTR(ret); 1588 goto out; 1589 } 1590 1591 ret = set_request_path_attr(NULL, req->r_old_dentry, 1592 req->r_path2, req->r_ino2.ino, 1593 &path2, &pathlen2, &ino2, &freepath2); 1594 if (ret < 0) { 1595 msg = ERR_PTR(ret); 1596 goto out_free1; 1597 } 1598 1599 len = sizeof(*head) + 1600 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)); 1601 1602 /* calculate (max) length for cap releases */ 1603 len += sizeof(struct ceph_mds_request_release) * 1604 (!!req->r_inode_drop + !!req->r_dentry_drop + 1605 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1606 if (req->r_dentry_drop) 1607 len += req->r_dentry->d_name.len; 1608 if (req->r_old_dentry_drop) 1609 len += req->r_old_dentry->d_name.len; 1610 1611 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS); 1612 if (!msg) { 1613 msg = ERR_PTR(-ENOMEM); 1614 goto out_free2; 1615 } 1616 1617 msg->hdr.tid = cpu_to_le64(req->r_tid); 1618 1619 head = msg->front.iov_base; 1620 p = msg->front.iov_base + sizeof(*head); 1621 end = msg->front.iov_base + msg->front.iov_len; 1622 1623 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1624 head->op = cpu_to_le32(req->r_op); 1625 head->caller_uid = cpu_to_le32(req->r_uid); 1626 head->caller_gid = cpu_to_le32(req->r_gid); 1627 head->args = req->r_args; 1628 1629 ceph_encode_filepath(&p, end, ino1, path1); 1630 ceph_encode_filepath(&p, end, ino2, path2); 1631 1632 /* make note of release offset, in case we need to replay */ 1633 req->r_request_release_offset = p - msg->front.iov_base; 1634 1635 /* cap releases */ 1636 releases = 0; 1637 if (req->r_inode_drop) 1638 releases += ceph_encode_inode_release(&p, 1639 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1640 mds, req->r_inode_drop, req->r_inode_unless, 0); 1641 if (req->r_dentry_drop) 1642 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1643 mds, req->r_dentry_drop, req->r_dentry_unless); 1644 if (req->r_old_dentry_drop) 1645 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1646 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1647 if (req->r_old_inode_drop) 1648 releases += ceph_encode_inode_release(&p, 1649 req->r_old_dentry->d_inode, 1650 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1651 head->num_releases = cpu_to_le16(releases); 1652 1653 BUG_ON(p > end); 1654 msg->front.iov_len = p - msg->front.iov_base; 1655 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1656 1657 msg->pages = req->r_pages; 1658 msg->nr_pages = req->r_num_pages; 1659 msg->hdr.data_len = cpu_to_le32(req->r_data_len); 1660 msg->hdr.data_off = cpu_to_le16(0); 1661 1662 out_free2: 1663 if (freepath2) 1664 kfree((char *)path2); 1665 out_free1: 1666 if (freepath1) 1667 kfree((char *)path1); 1668 out: 1669 return msg; 1670 } 1671 1672 /* 1673 * called under mdsc->mutex if error, under no mutex if 1674 * success. 1675 */ 1676 static void complete_request(struct ceph_mds_client *mdsc, 1677 struct ceph_mds_request *req) 1678 { 1679 if (req->r_callback) 1680 req->r_callback(mdsc, req); 1681 else 1682 complete_all(&req->r_completion); 1683 } 1684 1685 /* 1686 * called under mdsc->mutex 1687 */ 1688 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1689 struct ceph_mds_request *req, 1690 int mds) 1691 { 1692 struct ceph_mds_request_head *rhead; 1693 struct ceph_msg *msg; 1694 int flags = 0; 1695 1696 req->r_mds = mds; 1697 req->r_attempts++; 1698 if (req->r_inode) { 1699 struct ceph_cap *cap = 1700 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 1701 1702 if (cap) 1703 req->r_sent_on_mseq = cap->mseq; 1704 else 1705 req->r_sent_on_mseq = -1; 1706 } 1707 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1708 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1709 1710 if (req->r_got_unsafe) { 1711 /* 1712 * Replay. Do not regenerate message (and rebuild 1713 * paths, etc.); just use the original message. 1714 * Rebuilding paths will break for renames because 1715 * d_move mangles the src name. 1716 */ 1717 msg = req->r_request; 1718 rhead = msg->front.iov_base; 1719 1720 flags = le32_to_cpu(rhead->flags); 1721 flags |= CEPH_MDS_FLAG_REPLAY; 1722 rhead->flags = cpu_to_le32(flags); 1723 1724 if (req->r_target_inode) 1725 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 1726 1727 rhead->num_retry = req->r_attempts - 1; 1728 1729 /* remove cap/dentry releases from message */ 1730 rhead->num_releases = 0; 1731 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset); 1732 msg->front.iov_len = req->r_request_release_offset; 1733 return 0; 1734 } 1735 1736 if (req->r_request) { 1737 ceph_msg_put(req->r_request); 1738 req->r_request = NULL; 1739 } 1740 msg = create_request_message(mdsc, req, mds); 1741 if (IS_ERR(msg)) { 1742 req->r_err = PTR_ERR(msg); 1743 complete_request(mdsc, req); 1744 return PTR_ERR(msg); 1745 } 1746 req->r_request = msg; 1747 1748 rhead = msg->front.iov_base; 1749 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 1750 if (req->r_got_unsafe) 1751 flags |= CEPH_MDS_FLAG_REPLAY; 1752 if (req->r_locked_dir) 1753 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 1754 rhead->flags = cpu_to_le32(flags); 1755 rhead->num_fwd = req->r_num_fwd; 1756 rhead->num_retry = req->r_attempts - 1; 1757 rhead->ino = 0; 1758 1759 dout(" r_locked_dir = %p\n", req->r_locked_dir); 1760 return 0; 1761 } 1762 1763 /* 1764 * send request, or put it on the appropriate wait list. 1765 */ 1766 static int __do_request(struct ceph_mds_client *mdsc, 1767 struct ceph_mds_request *req) 1768 { 1769 struct ceph_mds_session *session = NULL; 1770 int mds = -1; 1771 int err = -EAGAIN; 1772 1773 if (req->r_err || req->r_got_result) 1774 goto out; 1775 1776 if (req->r_timeout && 1777 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 1778 dout("do_request timed out\n"); 1779 err = -EIO; 1780 goto finish; 1781 } 1782 1783 mds = __choose_mds(mdsc, req); 1784 if (mds < 0 || 1785 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 1786 dout("do_request no mds or not active, waiting for map\n"); 1787 list_add(&req->r_wait, &mdsc->waiting_for_map); 1788 goto out; 1789 } 1790 1791 /* get, open session */ 1792 session = __ceph_lookup_mds_session(mdsc, mds); 1793 if (!session) { 1794 session = register_session(mdsc, mds); 1795 if (IS_ERR(session)) { 1796 err = PTR_ERR(session); 1797 goto finish; 1798 } 1799 } 1800 dout("do_request mds%d session %p state %s\n", mds, session, 1801 session_state_name(session->s_state)); 1802 if (session->s_state != CEPH_MDS_SESSION_OPEN && 1803 session->s_state != CEPH_MDS_SESSION_HUNG) { 1804 if (session->s_state == CEPH_MDS_SESSION_NEW || 1805 session->s_state == CEPH_MDS_SESSION_CLOSING) 1806 __open_session(mdsc, session); 1807 list_add(&req->r_wait, &session->s_waiting); 1808 goto out_session; 1809 } 1810 1811 /* send request */ 1812 req->r_session = get_session(session); 1813 req->r_resend_mds = -1; /* forget any previous mds hint */ 1814 1815 if (req->r_request_started == 0) /* note request start time */ 1816 req->r_request_started = jiffies; 1817 1818 err = __prepare_send_request(mdsc, req, mds); 1819 if (!err) { 1820 ceph_msg_get(req->r_request); 1821 ceph_con_send(&session->s_con, req->r_request); 1822 } 1823 1824 out_session: 1825 ceph_put_mds_session(session); 1826 out: 1827 return err; 1828 1829 finish: 1830 req->r_err = err; 1831 complete_request(mdsc, req); 1832 goto out; 1833 } 1834 1835 /* 1836 * called under mdsc->mutex 1837 */ 1838 static void __wake_requests(struct ceph_mds_client *mdsc, 1839 struct list_head *head) 1840 { 1841 struct ceph_mds_request *req, *nreq; 1842 1843 list_for_each_entry_safe(req, nreq, head, r_wait) { 1844 list_del_init(&req->r_wait); 1845 __do_request(mdsc, req); 1846 } 1847 } 1848 1849 /* 1850 * Wake up threads with requests pending for @mds, so that they can 1851 * resubmit their requests to a possibly different mds. 1852 */ 1853 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 1854 { 1855 struct ceph_mds_request *req; 1856 struct rb_node *p; 1857 1858 dout("kick_requests mds%d\n", mds); 1859 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) { 1860 req = rb_entry(p, struct ceph_mds_request, r_node); 1861 if (req->r_got_unsafe) 1862 continue; 1863 if (req->r_session && 1864 req->r_session->s_mds == mds) { 1865 dout(" kicking tid %llu\n", req->r_tid); 1866 put_request_session(req); 1867 __do_request(mdsc, req); 1868 } 1869 } 1870 } 1871 1872 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 1873 struct ceph_mds_request *req) 1874 { 1875 dout("submit_request on %p\n", req); 1876 mutex_lock(&mdsc->mutex); 1877 __register_request(mdsc, req, NULL); 1878 __do_request(mdsc, req); 1879 mutex_unlock(&mdsc->mutex); 1880 } 1881 1882 /* 1883 * Synchrously perform an mds request. Take care of all of the 1884 * session setup, forwarding, retry details. 1885 */ 1886 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 1887 struct inode *dir, 1888 struct ceph_mds_request *req) 1889 { 1890 int err; 1891 1892 dout("do_request on %p\n", req); 1893 1894 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 1895 if (req->r_inode) 1896 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1897 if (req->r_locked_dir) 1898 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 1899 if (req->r_old_dentry) 1900 ceph_get_cap_refs( 1901 ceph_inode(req->r_old_dentry->d_parent->d_inode), 1902 CEPH_CAP_PIN); 1903 1904 /* issue */ 1905 mutex_lock(&mdsc->mutex); 1906 __register_request(mdsc, req, dir); 1907 __do_request(mdsc, req); 1908 1909 if (req->r_err) { 1910 err = req->r_err; 1911 __unregister_request(mdsc, req); 1912 dout("do_request early error %d\n", err); 1913 goto out; 1914 } 1915 1916 /* wait */ 1917 mutex_unlock(&mdsc->mutex); 1918 dout("do_request waiting\n"); 1919 if (req->r_timeout) { 1920 err = (long)wait_for_completion_killable_timeout( 1921 &req->r_completion, req->r_timeout); 1922 if (err == 0) 1923 err = -EIO; 1924 } else { 1925 err = wait_for_completion_killable(&req->r_completion); 1926 } 1927 dout("do_request waited, got %d\n", err); 1928 mutex_lock(&mdsc->mutex); 1929 1930 /* only abort if we didn't race with a real reply */ 1931 if (req->r_got_result) { 1932 err = le32_to_cpu(req->r_reply_info.head->result); 1933 } else if (err < 0) { 1934 dout("aborted request %lld with %d\n", req->r_tid, err); 1935 1936 /* 1937 * ensure we aren't running concurrently with 1938 * ceph_fill_trace or ceph_readdir_prepopulate, which 1939 * rely on locks (dir mutex) held by our caller. 1940 */ 1941 mutex_lock(&req->r_fill_mutex); 1942 req->r_err = err; 1943 req->r_aborted = true; 1944 mutex_unlock(&req->r_fill_mutex); 1945 1946 if (req->r_locked_dir && 1947 (req->r_op & CEPH_MDS_OP_WRITE)) 1948 ceph_invalidate_dir_request(req); 1949 } else { 1950 err = req->r_err; 1951 } 1952 1953 out: 1954 mutex_unlock(&mdsc->mutex); 1955 dout("do_request %p done, result %d\n", req, err); 1956 return err; 1957 } 1958 1959 /* 1960 * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS 1961 * namespace request. 1962 */ 1963 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 1964 { 1965 struct inode *inode = req->r_locked_dir; 1966 struct ceph_inode_info *ci = ceph_inode(inode); 1967 1968 dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode); 1969 spin_lock(&inode->i_lock); 1970 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 1971 ci->i_release_count++; 1972 spin_unlock(&inode->i_lock); 1973 1974 if (req->r_dentry) 1975 ceph_invalidate_dentry_lease(req->r_dentry); 1976 if (req->r_old_dentry) 1977 ceph_invalidate_dentry_lease(req->r_old_dentry); 1978 } 1979 1980 /* 1981 * Handle mds reply. 1982 * 1983 * We take the session mutex and parse and process the reply immediately. 1984 * This preserves the logical ordering of replies, capabilities, etc., sent 1985 * by the MDS as they are applied to our local cache. 1986 */ 1987 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 1988 { 1989 struct ceph_mds_client *mdsc = session->s_mdsc; 1990 struct ceph_mds_request *req; 1991 struct ceph_mds_reply_head *head = msg->front.iov_base; 1992 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 1993 u64 tid; 1994 int err, result; 1995 int mds = session->s_mds; 1996 1997 if (msg->front.iov_len < sizeof(*head)) { 1998 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 1999 ceph_msg_dump(msg); 2000 return; 2001 } 2002 2003 /* get request, session */ 2004 tid = le64_to_cpu(msg->hdr.tid); 2005 mutex_lock(&mdsc->mutex); 2006 req = __lookup_request(mdsc, tid); 2007 if (!req) { 2008 dout("handle_reply on unknown tid %llu\n", tid); 2009 mutex_unlock(&mdsc->mutex); 2010 return; 2011 } 2012 dout("handle_reply %p\n", req); 2013 2014 /* correct session? */ 2015 if (req->r_session != session) { 2016 pr_err("mdsc_handle_reply got %llu on session mds%d" 2017 " not mds%d\n", tid, session->s_mds, 2018 req->r_session ? req->r_session->s_mds : -1); 2019 mutex_unlock(&mdsc->mutex); 2020 goto out; 2021 } 2022 2023 /* dup? */ 2024 if ((req->r_got_unsafe && !head->safe) || 2025 (req->r_got_safe && head->safe)) { 2026 pr_warning("got a dup %s reply on %llu from mds%d\n", 2027 head->safe ? "safe" : "unsafe", tid, mds); 2028 mutex_unlock(&mdsc->mutex); 2029 goto out; 2030 } 2031 if (req->r_got_safe && !head->safe) { 2032 pr_warning("got unsafe after safe on %llu from mds%d\n", 2033 tid, mds); 2034 mutex_unlock(&mdsc->mutex); 2035 goto out; 2036 } 2037 2038 result = le32_to_cpu(head->result); 2039 2040 /* 2041 * Handle an ESTALE 2042 * if we're not talking to the authority, send to them 2043 * if the authority has changed while we weren't looking, 2044 * send to new authority 2045 * Otherwise we just have to return an ESTALE 2046 */ 2047 if (result == -ESTALE) { 2048 dout("got ESTALE on request %llu", req->r_tid); 2049 if (!req->r_inode) { 2050 /* do nothing; not an authority problem */ 2051 } else if (req->r_direct_mode != USE_AUTH_MDS) { 2052 dout("not using auth, setting for that now"); 2053 req->r_direct_mode = USE_AUTH_MDS; 2054 __do_request(mdsc, req); 2055 mutex_unlock(&mdsc->mutex); 2056 goto out; 2057 } else { 2058 struct ceph_inode_info *ci = ceph_inode(req->r_inode); 2059 struct ceph_cap *cap = 2060 ceph_get_cap_for_mds(ci, req->r_mds);; 2061 2062 dout("already using auth"); 2063 if ((!cap || cap != ci->i_auth_cap) || 2064 (cap->mseq != req->r_sent_on_mseq)) { 2065 dout("but cap changed, so resending"); 2066 __do_request(mdsc, req); 2067 mutex_unlock(&mdsc->mutex); 2068 goto out; 2069 } 2070 } 2071 dout("have to return ESTALE on request %llu", req->r_tid); 2072 } 2073 2074 2075 if (head->safe) { 2076 req->r_got_safe = true; 2077 __unregister_request(mdsc, req); 2078 complete_all(&req->r_safe_completion); 2079 2080 if (req->r_got_unsafe) { 2081 /* 2082 * We already handled the unsafe response, now do the 2083 * cleanup. No need to examine the response; the MDS 2084 * doesn't include any result info in the safe 2085 * response. And even if it did, there is nothing 2086 * useful we could do with a revised return value. 2087 */ 2088 dout("got safe reply %llu, mds%d\n", tid, mds); 2089 list_del_init(&req->r_unsafe_item); 2090 2091 /* last unsafe request during umount? */ 2092 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2093 complete_all(&mdsc->safe_umount_waiters); 2094 mutex_unlock(&mdsc->mutex); 2095 goto out; 2096 } 2097 } else { 2098 req->r_got_unsafe = true; 2099 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2100 } 2101 2102 dout("handle_reply tid %lld result %d\n", tid, result); 2103 rinfo = &req->r_reply_info; 2104 err = parse_reply_info(msg, rinfo); 2105 mutex_unlock(&mdsc->mutex); 2106 2107 mutex_lock(&session->s_mutex); 2108 if (err < 0) { 2109 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2110 ceph_msg_dump(msg); 2111 goto out_err; 2112 } 2113 2114 /* snap trace */ 2115 if (rinfo->snapblob_len) { 2116 down_write(&mdsc->snap_rwsem); 2117 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2118 rinfo->snapblob + rinfo->snapblob_len, 2119 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 2120 downgrade_write(&mdsc->snap_rwsem); 2121 } else { 2122 down_read(&mdsc->snap_rwsem); 2123 } 2124 2125 /* insert trace into our cache */ 2126 mutex_lock(&req->r_fill_mutex); 2127 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2128 if (err == 0) { 2129 if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK && 2130 rinfo->dir_nr) 2131 ceph_readdir_prepopulate(req, req->r_session); 2132 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2133 } 2134 mutex_unlock(&req->r_fill_mutex); 2135 2136 up_read(&mdsc->snap_rwsem); 2137 out_err: 2138 mutex_lock(&mdsc->mutex); 2139 if (!req->r_aborted) { 2140 if (err) { 2141 req->r_err = err; 2142 } else { 2143 req->r_reply = msg; 2144 ceph_msg_get(msg); 2145 req->r_got_result = true; 2146 } 2147 } else { 2148 dout("reply arrived after request %lld was aborted\n", tid); 2149 } 2150 mutex_unlock(&mdsc->mutex); 2151 2152 ceph_add_cap_releases(mdsc, req->r_session); 2153 mutex_unlock(&session->s_mutex); 2154 2155 /* kick calling process */ 2156 complete_request(mdsc, req); 2157 out: 2158 ceph_mdsc_put_request(req); 2159 return; 2160 } 2161 2162 2163 2164 /* 2165 * handle mds notification that our request has been forwarded. 2166 */ 2167 static void handle_forward(struct ceph_mds_client *mdsc, 2168 struct ceph_mds_session *session, 2169 struct ceph_msg *msg) 2170 { 2171 struct ceph_mds_request *req; 2172 u64 tid = le64_to_cpu(msg->hdr.tid); 2173 u32 next_mds; 2174 u32 fwd_seq; 2175 int err = -EINVAL; 2176 void *p = msg->front.iov_base; 2177 void *end = p + msg->front.iov_len; 2178 2179 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2180 next_mds = ceph_decode_32(&p); 2181 fwd_seq = ceph_decode_32(&p); 2182 2183 mutex_lock(&mdsc->mutex); 2184 req = __lookup_request(mdsc, tid); 2185 if (!req) { 2186 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2187 goto out; /* dup reply? */ 2188 } 2189 2190 if (req->r_aborted) { 2191 dout("forward tid %llu aborted, unregistering\n", tid); 2192 __unregister_request(mdsc, req); 2193 } else if (fwd_seq <= req->r_num_fwd) { 2194 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2195 tid, next_mds, req->r_num_fwd, fwd_seq); 2196 } else { 2197 /* resend. forward race not possible; mds would drop */ 2198 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2199 BUG_ON(req->r_err); 2200 BUG_ON(req->r_got_result); 2201 req->r_num_fwd = fwd_seq; 2202 req->r_resend_mds = next_mds; 2203 put_request_session(req); 2204 __do_request(mdsc, req); 2205 } 2206 ceph_mdsc_put_request(req); 2207 out: 2208 mutex_unlock(&mdsc->mutex); 2209 return; 2210 2211 bad: 2212 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2213 } 2214 2215 /* 2216 * handle a mds session control message 2217 */ 2218 static void handle_session(struct ceph_mds_session *session, 2219 struct ceph_msg *msg) 2220 { 2221 struct ceph_mds_client *mdsc = session->s_mdsc; 2222 u32 op; 2223 u64 seq; 2224 int mds = session->s_mds; 2225 struct ceph_mds_session_head *h = msg->front.iov_base; 2226 int wake = 0; 2227 2228 /* decode */ 2229 if (msg->front.iov_len != sizeof(*h)) 2230 goto bad; 2231 op = le32_to_cpu(h->op); 2232 seq = le64_to_cpu(h->seq); 2233 2234 mutex_lock(&mdsc->mutex); 2235 if (op == CEPH_SESSION_CLOSE) 2236 __unregister_session(mdsc, session); 2237 /* FIXME: this ttl calculation is generous */ 2238 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2239 mutex_unlock(&mdsc->mutex); 2240 2241 mutex_lock(&session->s_mutex); 2242 2243 dout("handle_session mds%d %s %p state %s seq %llu\n", 2244 mds, ceph_session_op_name(op), session, 2245 session_state_name(session->s_state), seq); 2246 2247 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2248 session->s_state = CEPH_MDS_SESSION_OPEN; 2249 pr_info("mds%d came back\n", session->s_mds); 2250 } 2251 2252 switch (op) { 2253 case CEPH_SESSION_OPEN: 2254 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2255 pr_info("mds%d reconnect success\n", session->s_mds); 2256 session->s_state = CEPH_MDS_SESSION_OPEN; 2257 renewed_caps(mdsc, session, 0); 2258 wake = 1; 2259 if (mdsc->stopping) 2260 __close_session(mdsc, session); 2261 break; 2262 2263 case CEPH_SESSION_RENEWCAPS: 2264 if (session->s_renew_seq == seq) 2265 renewed_caps(mdsc, session, 1); 2266 break; 2267 2268 case CEPH_SESSION_CLOSE: 2269 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2270 pr_info("mds%d reconnect denied\n", session->s_mds); 2271 remove_session_caps(session); 2272 wake = 1; /* for good measure */ 2273 wake_up_all(&mdsc->session_close_wq); 2274 kick_requests(mdsc, mds); 2275 break; 2276 2277 case CEPH_SESSION_STALE: 2278 pr_info("mds%d caps went stale, renewing\n", 2279 session->s_mds); 2280 spin_lock(&session->s_cap_lock); 2281 session->s_cap_gen++; 2282 session->s_cap_ttl = 0; 2283 spin_unlock(&session->s_cap_lock); 2284 send_renew_caps(mdsc, session); 2285 break; 2286 2287 case CEPH_SESSION_RECALL_STATE: 2288 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2289 break; 2290 2291 default: 2292 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2293 WARN_ON(1); 2294 } 2295 2296 mutex_unlock(&session->s_mutex); 2297 if (wake) { 2298 mutex_lock(&mdsc->mutex); 2299 __wake_requests(mdsc, &session->s_waiting); 2300 mutex_unlock(&mdsc->mutex); 2301 } 2302 return; 2303 2304 bad: 2305 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2306 (int)msg->front.iov_len); 2307 ceph_msg_dump(msg); 2308 return; 2309 } 2310 2311 2312 /* 2313 * called under session->mutex. 2314 */ 2315 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2316 struct ceph_mds_session *session) 2317 { 2318 struct ceph_mds_request *req, *nreq; 2319 int err; 2320 2321 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2322 2323 mutex_lock(&mdsc->mutex); 2324 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2325 err = __prepare_send_request(mdsc, req, session->s_mds); 2326 if (!err) { 2327 ceph_msg_get(req->r_request); 2328 ceph_con_send(&session->s_con, req->r_request); 2329 } 2330 } 2331 mutex_unlock(&mdsc->mutex); 2332 } 2333 2334 /* 2335 * Encode information about a cap for a reconnect with the MDS. 2336 */ 2337 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2338 void *arg) 2339 { 2340 union { 2341 struct ceph_mds_cap_reconnect v2; 2342 struct ceph_mds_cap_reconnect_v1 v1; 2343 } rec; 2344 size_t reclen; 2345 struct ceph_inode_info *ci; 2346 struct ceph_reconnect_state *recon_state = arg; 2347 struct ceph_pagelist *pagelist = recon_state->pagelist; 2348 char *path; 2349 int pathlen, err; 2350 u64 pathbase; 2351 struct dentry *dentry; 2352 2353 ci = cap->ci; 2354 2355 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2356 inode, ceph_vinop(inode), cap, cap->cap_id, 2357 ceph_cap_string(cap->issued)); 2358 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2359 if (err) 2360 return err; 2361 2362 dentry = d_find_alias(inode); 2363 if (dentry) { 2364 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2365 if (IS_ERR(path)) { 2366 err = PTR_ERR(path); 2367 goto out_dput; 2368 } 2369 } else { 2370 path = NULL; 2371 pathlen = 0; 2372 } 2373 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2374 if (err) 2375 goto out_free; 2376 2377 spin_lock(&inode->i_lock); 2378 cap->seq = 0; /* reset cap seq */ 2379 cap->issue_seq = 0; /* and issue_seq */ 2380 2381 if (recon_state->flock) { 2382 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2383 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2384 rec.v2.issued = cpu_to_le32(cap->issued); 2385 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2386 rec.v2.pathbase = cpu_to_le64(pathbase); 2387 rec.v2.flock_len = 0; 2388 reclen = sizeof(rec.v2); 2389 } else { 2390 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2391 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2392 rec.v1.issued = cpu_to_le32(cap->issued); 2393 rec.v1.size = cpu_to_le64(inode->i_size); 2394 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2395 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2396 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2397 rec.v1.pathbase = cpu_to_le64(pathbase); 2398 reclen = sizeof(rec.v1); 2399 } 2400 spin_unlock(&inode->i_lock); 2401 2402 if (recon_state->flock) { 2403 int num_fcntl_locks, num_flock_locks; 2404 struct ceph_pagelist_cursor trunc_point; 2405 2406 ceph_pagelist_set_cursor(pagelist, &trunc_point); 2407 do { 2408 lock_flocks(); 2409 ceph_count_locks(inode, &num_fcntl_locks, 2410 &num_flock_locks); 2411 rec.v2.flock_len = (2*sizeof(u32) + 2412 (num_fcntl_locks+num_flock_locks) * 2413 sizeof(struct ceph_filelock)); 2414 unlock_flocks(); 2415 2416 /* pre-alloc pagelist */ 2417 ceph_pagelist_truncate(pagelist, &trunc_point); 2418 err = ceph_pagelist_append(pagelist, &rec, reclen); 2419 if (!err) 2420 err = ceph_pagelist_reserve(pagelist, 2421 rec.v2.flock_len); 2422 2423 /* encode locks */ 2424 if (!err) { 2425 lock_flocks(); 2426 err = ceph_encode_locks(inode, 2427 pagelist, 2428 num_fcntl_locks, 2429 num_flock_locks); 2430 unlock_flocks(); 2431 } 2432 } while (err == -ENOSPC); 2433 } else { 2434 err = ceph_pagelist_append(pagelist, &rec, reclen); 2435 } 2436 2437 out_free: 2438 kfree(path); 2439 out_dput: 2440 dput(dentry); 2441 return err; 2442 } 2443 2444 2445 /* 2446 * If an MDS fails and recovers, clients need to reconnect in order to 2447 * reestablish shared state. This includes all caps issued through 2448 * this session _and_ the snap_realm hierarchy. Because it's not 2449 * clear which snap realms the mds cares about, we send everything we 2450 * know about.. that ensures we'll then get any new info the 2451 * recovering MDS might have. 2452 * 2453 * This is a relatively heavyweight operation, but it's rare. 2454 * 2455 * called with mdsc->mutex held. 2456 */ 2457 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2458 struct ceph_mds_session *session) 2459 { 2460 struct ceph_msg *reply; 2461 struct rb_node *p; 2462 int mds = session->s_mds; 2463 int err = -ENOMEM; 2464 struct ceph_pagelist *pagelist; 2465 struct ceph_reconnect_state recon_state; 2466 2467 pr_info("mds%d reconnect start\n", mds); 2468 2469 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2470 if (!pagelist) 2471 goto fail_nopagelist; 2472 ceph_pagelist_init(pagelist); 2473 2474 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS); 2475 if (!reply) 2476 goto fail_nomsg; 2477 2478 mutex_lock(&session->s_mutex); 2479 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2480 session->s_seq = 0; 2481 2482 ceph_con_open(&session->s_con, 2483 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2484 2485 /* replay unsafe requests */ 2486 replay_unsafe_requests(mdsc, session); 2487 2488 down_read(&mdsc->snap_rwsem); 2489 2490 dout("session %p state %s\n", session, 2491 session_state_name(session->s_state)); 2492 2493 /* drop old cap expires; we're about to reestablish that state */ 2494 discard_cap_releases(mdsc, session); 2495 2496 /* traverse this session's caps */ 2497 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps); 2498 if (err) 2499 goto fail; 2500 2501 recon_state.pagelist = pagelist; 2502 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2503 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2504 if (err < 0) 2505 goto fail; 2506 2507 /* 2508 * snaprealms. we provide mds with the ino, seq (version), and 2509 * parent for all of our realms. If the mds has any newer info, 2510 * it will tell us. 2511 */ 2512 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2513 struct ceph_snap_realm *realm = 2514 rb_entry(p, struct ceph_snap_realm, node); 2515 struct ceph_mds_snaprealm_reconnect sr_rec; 2516 2517 dout(" adding snap realm %llx seq %lld parent %llx\n", 2518 realm->ino, realm->seq, realm->parent_ino); 2519 sr_rec.ino = cpu_to_le64(realm->ino); 2520 sr_rec.seq = cpu_to_le64(realm->seq); 2521 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2522 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2523 if (err) 2524 goto fail; 2525 } 2526 2527 reply->pagelist = pagelist; 2528 if (recon_state.flock) 2529 reply->hdr.version = cpu_to_le16(2); 2530 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2531 reply->nr_pages = calc_pages_for(0, pagelist->length); 2532 ceph_con_send(&session->s_con, reply); 2533 2534 mutex_unlock(&session->s_mutex); 2535 2536 mutex_lock(&mdsc->mutex); 2537 __wake_requests(mdsc, &session->s_waiting); 2538 mutex_unlock(&mdsc->mutex); 2539 2540 up_read(&mdsc->snap_rwsem); 2541 return; 2542 2543 fail: 2544 ceph_msg_put(reply); 2545 up_read(&mdsc->snap_rwsem); 2546 mutex_unlock(&session->s_mutex); 2547 fail_nomsg: 2548 ceph_pagelist_release(pagelist); 2549 kfree(pagelist); 2550 fail_nopagelist: 2551 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2552 return; 2553 } 2554 2555 2556 /* 2557 * compare old and new mdsmaps, kicking requests 2558 * and closing out old connections as necessary 2559 * 2560 * called under mdsc->mutex. 2561 */ 2562 static void check_new_map(struct ceph_mds_client *mdsc, 2563 struct ceph_mdsmap *newmap, 2564 struct ceph_mdsmap *oldmap) 2565 { 2566 int i; 2567 int oldstate, newstate; 2568 struct ceph_mds_session *s; 2569 2570 dout("check_new_map new %u old %u\n", 2571 newmap->m_epoch, oldmap->m_epoch); 2572 2573 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2574 if (mdsc->sessions[i] == NULL) 2575 continue; 2576 s = mdsc->sessions[i]; 2577 oldstate = ceph_mdsmap_get_state(oldmap, i); 2578 newstate = ceph_mdsmap_get_state(newmap, i); 2579 2580 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 2581 i, ceph_mds_state_name(oldstate), 2582 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 2583 ceph_mds_state_name(newstate), 2584 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 2585 session_state_name(s->s_state)); 2586 2587 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 2588 ceph_mdsmap_get_addr(newmap, i), 2589 sizeof(struct ceph_entity_addr))) { 2590 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2591 /* the session never opened, just close it 2592 * out now */ 2593 __wake_requests(mdsc, &s->s_waiting); 2594 __unregister_session(mdsc, s); 2595 } else { 2596 /* just close it */ 2597 mutex_unlock(&mdsc->mutex); 2598 mutex_lock(&s->s_mutex); 2599 mutex_lock(&mdsc->mutex); 2600 ceph_con_close(&s->s_con); 2601 mutex_unlock(&s->s_mutex); 2602 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2603 } 2604 2605 /* kick any requests waiting on the recovering mds */ 2606 kick_requests(mdsc, i); 2607 } else if (oldstate == newstate) { 2608 continue; /* nothing new with this mds */ 2609 } 2610 2611 /* 2612 * send reconnect? 2613 */ 2614 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2615 newstate >= CEPH_MDS_STATE_RECONNECT) { 2616 mutex_unlock(&mdsc->mutex); 2617 send_mds_reconnect(mdsc, s); 2618 mutex_lock(&mdsc->mutex); 2619 } 2620 2621 /* 2622 * kick request on any mds that has gone active. 2623 */ 2624 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2625 newstate >= CEPH_MDS_STATE_ACTIVE) { 2626 if (oldstate != CEPH_MDS_STATE_CREATING && 2627 oldstate != CEPH_MDS_STATE_STARTING) 2628 pr_info("mds%d recovery completed\n", s->s_mds); 2629 kick_requests(mdsc, i); 2630 ceph_kick_flushing_caps(mdsc, s); 2631 wake_up_session_caps(s, 1); 2632 } 2633 } 2634 2635 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 2636 s = mdsc->sessions[i]; 2637 if (!s) 2638 continue; 2639 if (!ceph_mdsmap_is_laggy(newmap, i)) 2640 continue; 2641 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2642 s->s_state == CEPH_MDS_SESSION_HUNG || 2643 s->s_state == CEPH_MDS_SESSION_CLOSING) { 2644 dout(" connecting to export targets of laggy mds%d\n", 2645 i); 2646 __open_export_target_sessions(mdsc, s); 2647 } 2648 } 2649 } 2650 2651 2652 2653 /* 2654 * leases 2655 */ 2656 2657 /* 2658 * caller must hold session s_mutex, dentry->d_lock 2659 */ 2660 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2661 { 2662 struct ceph_dentry_info *di = ceph_dentry(dentry); 2663 2664 ceph_put_mds_session(di->lease_session); 2665 di->lease_session = NULL; 2666 } 2667 2668 static void handle_lease(struct ceph_mds_client *mdsc, 2669 struct ceph_mds_session *session, 2670 struct ceph_msg *msg) 2671 { 2672 struct super_block *sb = mdsc->fsc->sb; 2673 struct inode *inode; 2674 struct ceph_inode_info *ci; 2675 struct dentry *parent, *dentry; 2676 struct ceph_dentry_info *di; 2677 int mds = session->s_mds; 2678 struct ceph_mds_lease *h = msg->front.iov_base; 2679 u32 seq; 2680 struct ceph_vino vino; 2681 int mask; 2682 struct qstr dname; 2683 int release = 0; 2684 2685 dout("handle_lease from mds%d\n", mds); 2686 2687 /* decode */ 2688 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 2689 goto bad; 2690 vino.ino = le64_to_cpu(h->ino); 2691 vino.snap = CEPH_NOSNAP; 2692 mask = le16_to_cpu(h->mask); 2693 seq = le32_to_cpu(h->seq); 2694 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 2695 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 2696 if (dname.len != get_unaligned_le32(h+1)) 2697 goto bad; 2698 2699 mutex_lock(&session->s_mutex); 2700 session->s_seq++; 2701 2702 /* lookup inode */ 2703 inode = ceph_find_inode(sb, vino); 2704 dout("handle_lease %s, mask %d, ino %llx %p %.*s\n", 2705 ceph_lease_op_name(h->action), mask, vino.ino, inode, 2706 dname.len, dname.name); 2707 if (inode == NULL) { 2708 dout("handle_lease no inode %llx\n", vino.ino); 2709 goto release; 2710 } 2711 ci = ceph_inode(inode); 2712 2713 /* dentry */ 2714 parent = d_find_alias(inode); 2715 if (!parent) { 2716 dout("no parent dentry on inode %p\n", inode); 2717 WARN_ON(1); 2718 goto release; /* hrm... */ 2719 } 2720 dname.hash = full_name_hash(dname.name, dname.len); 2721 dentry = d_lookup(parent, &dname); 2722 dput(parent); 2723 if (!dentry) 2724 goto release; 2725 2726 spin_lock(&dentry->d_lock); 2727 di = ceph_dentry(dentry); 2728 switch (h->action) { 2729 case CEPH_MDS_LEASE_REVOKE: 2730 if (di && di->lease_session == session) { 2731 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 2732 h->seq = cpu_to_le32(di->lease_seq); 2733 __ceph_mdsc_drop_dentry_lease(dentry); 2734 } 2735 release = 1; 2736 break; 2737 2738 case CEPH_MDS_LEASE_RENEW: 2739 if (di && di->lease_session == session && 2740 di->lease_gen == session->s_cap_gen && 2741 di->lease_renew_from && 2742 di->lease_renew_after == 0) { 2743 unsigned long duration = 2744 le32_to_cpu(h->duration_ms) * HZ / 1000; 2745 2746 di->lease_seq = seq; 2747 dentry->d_time = di->lease_renew_from + duration; 2748 di->lease_renew_after = di->lease_renew_from + 2749 (duration >> 1); 2750 di->lease_renew_from = 0; 2751 } 2752 break; 2753 } 2754 spin_unlock(&dentry->d_lock); 2755 dput(dentry); 2756 2757 if (!release) 2758 goto out; 2759 2760 release: 2761 /* let's just reuse the same message */ 2762 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 2763 ceph_msg_get(msg); 2764 ceph_con_send(&session->s_con, msg); 2765 2766 out: 2767 iput(inode); 2768 mutex_unlock(&session->s_mutex); 2769 return; 2770 2771 bad: 2772 pr_err("corrupt lease message\n"); 2773 ceph_msg_dump(msg); 2774 } 2775 2776 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 2777 struct inode *inode, 2778 struct dentry *dentry, char action, 2779 u32 seq) 2780 { 2781 struct ceph_msg *msg; 2782 struct ceph_mds_lease *lease; 2783 int len = sizeof(*lease) + sizeof(u32); 2784 int dnamelen = 0; 2785 2786 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 2787 inode, dentry, ceph_lease_op_name(action), session->s_mds); 2788 dnamelen = dentry->d_name.len; 2789 len += dnamelen; 2790 2791 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS); 2792 if (!msg) 2793 return; 2794 lease = msg->front.iov_base; 2795 lease->action = action; 2796 lease->mask = cpu_to_le16(1); 2797 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 2798 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 2799 lease->seq = cpu_to_le32(seq); 2800 put_unaligned_le32(dnamelen, lease + 1); 2801 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 2802 2803 /* 2804 * if this is a preemptive lease RELEASE, no need to 2805 * flush request stream, since the actual request will 2806 * soon follow. 2807 */ 2808 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 2809 2810 ceph_con_send(&session->s_con, msg); 2811 } 2812 2813 /* 2814 * Preemptively release a lease we expect to invalidate anyway. 2815 * Pass @inode always, @dentry is optional. 2816 */ 2817 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 2818 struct dentry *dentry, int mask) 2819 { 2820 struct ceph_dentry_info *di; 2821 struct ceph_mds_session *session; 2822 u32 seq; 2823 2824 BUG_ON(inode == NULL); 2825 BUG_ON(dentry == NULL); 2826 BUG_ON(mask == 0); 2827 2828 /* is dentry lease valid? */ 2829 spin_lock(&dentry->d_lock); 2830 di = ceph_dentry(dentry); 2831 if (!di || !di->lease_session || 2832 di->lease_session->s_mds < 0 || 2833 di->lease_gen != di->lease_session->s_cap_gen || 2834 !time_before(jiffies, dentry->d_time)) { 2835 dout("lease_release inode %p dentry %p -- " 2836 "no lease on %d\n", 2837 inode, dentry, mask); 2838 spin_unlock(&dentry->d_lock); 2839 return; 2840 } 2841 2842 /* we do have a lease on this dentry; note mds and seq */ 2843 session = ceph_get_mds_session(di->lease_session); 2844 seq = di->lease_seq; 2845 __ceph_mdsc_drop_dentry_lease(dentry); 2846 spin_unlock(&dentry->d_lock); 2847 2848 dout("lease_release inode %p dentry %p mask %d to mds%d\n", 2849 inode, dentry, mask, session->s_mds); 2850 ceph_mdsc_lease_send_msg(session, inode, dentry, 2851 CEPH_MDS_LEASE_RELEASE, seq); 2852 ceph_put_mds_session(session); 2853 } 2854 2855 /* 2856 * drop all leases (and dentry refs) in preparation for umount 2857 */ 2858 static void drop_leases(struct ceph_mds_client *mdsc) 2859 { 2860 int i; 2861 2862 dout("drop_leases\n"); 2863 mutex_lock(&mdsc->mutex); 2864 for (i = 0; i < mdsc->max_sessions; i++) { 2865 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2866 if (!s) 2867 continue; 2868 mutex_unlock(&mdsc->mutex); 2869 mutex_lock(&s->s_mutex); 2870 mutex_unlock(&s->s_mutex); 2871 ceph_put_mds_session(s); 2872 mutex_lock(&mdsc->mutex); 2873 } 2874 mutex_unlock(&mdsc->mutex); 2875 } 2876 2877 2878 2879 /* 2880 * delayed work -- periodically trim expired leases, renew caps with mds 2881 */ 2882 static void schedule_delayed(struct ceph_mds_client *mdsc) 2883 { 2884 int delay = 5; 2885 unsigned hz = round_jiffies_relative(HZ * delay); 2886 schedule_delayed_work(&mdsc->delayed_work, hz); 2887 } 2888 2889 static void delayed_work(struct work_struct *work) 2890 { 2891 int i; 2892 struct ceph_mds_client *mdsc = 2893 container_of(work, struct ceph_mds_client, delayed_work.work); 2894 int renew_interval; 2895 int renew_caps; 2896 2897 dout("mdsc delayed_work\n"); 2898 ceph_check_delayed_caps(mdsc); 2899 2900 mutex_lock(&mdsc->mutex); 2901 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 2902 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 2903 mdsc->last_renew_caps); 2904 if (renew_caps) 2905 mdsc->last_renew_caps = jiffies; 2906 2907 for (i = 0; i < mdsc->max_sessions; i++) { 2908 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2909 if (s == NULL) 2910 continue; 2911 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 2912 dout("resending session close request for mds%d\n", 2913 s->s_mds); 2914 request_close_session(mdsc, s); 2915 ceph_put_mds_session(s); 2916 continue; 2917 } 2918 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 2919 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 2920 s->s_state = CEPH_MDS_SESSION_HUNG; 2921 pr_info("mds%d hung\n", s->s_mds); 2922 } 2923 } 2924 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 2925 /* this mds is failed or recovering, just wait */ 2926 ceph_put_mds_session(s); 2927 continue; 2928 } 2929 mutex_unlock(&mdsc->mutex); 2930 2931 mutex_lock(&s->s_mutex); 2932 if (renew_caps) 2933 send_renew_caps(mdsc, s); 2934 else 2935 ceph_con_keepalive(&s->s_con); 2936 ceph_add_cap_releases(mdsc, s); 2937 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2938 s->s_state == CEPH_MDS_SESSION_HUNG) 2939 ceph_send_cap_releases(mdsc, s); 2940 mutex_unlock(&s->s_mutex); 2941 ceph_put_mds_session(s); 2942 2943 mutex_lock(&mdsc->mutex); 2944 } 2945 mutex_unlock(&mdsc->mutex); 2946 2947 schedule_delayed(mdsc); 2948 } 2949 2950 int ceph_mdsc_init(struct ceph_fs_client *fsc) 2951 2952 { 2953 struct ceph_mds_client *mdsc; 2954 2955 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 2956 if (!mdsc) 2957 return -ENOMEM; 2958 mdsc->fsc = fsc; 2959 fsc->mdsc = mdsc; 2960 mutex_init(&mdsc->mutex); 2961 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 2962 if (mdsc->mdsmap == NULL) 2963 return -ENOMEM; 2964 2965 init_completion(&mdsc->safe_umount_waiters); 2966 init_waitqueue_head(&mdsc->session_close_wq); 2967 INIT_LIST_HEAD(&mdsc->waiting_for_map); 2968 mdsc->sessions = NULL; 2969 mdsc->max_sessions = 0; 2970 mdsc->stopping = 0; 2971 init_rwsem(&mdsc->snap_rwsem); 2972 mdsc->snap_realms = RB_ROOT; 2973 INIT_LIST_HEAD(&mdsc->snap_empty); 2974 spin_lock_init(&mdsc->snap_empty_lock); 2975 mdsc->last_tid = 0; 2976 mdsc->request_tree = RB_ROOT; 2977 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 2978 mdsc->last_renew_caps = jiffies; 2979 INIT_LIST_HEAD(&mdsc->cap_delay_list); 2980 spin_lock_init(&mdsc->cap_delay_lock); 2981 INIT_LIST_HEAD(&mdsc->snap_flush_list); 2982 spin_lock_init(&mdsc->snap_flush_lock); 2983 mdsc->cap_flush_seq = 0; 2984 INIT_LIST_HEAD(&mdsc->cap_dirty); 2985 mdsc->num_cap_flushing = 0; 2986 spin_lock_init(&mdsc->cap_dirty_lock); 2987 init_waitqueue_head(&mdsc->cap_flushing_wq); 2988 spin_lock_init(&mdsc->dentry_lru_lock); 2989 INIT_LIST_HEAD(&mdsc->dentry_lru); 2990 2991 ceph_caps_init(mdsc); 2992 ceph_adjust_min_caps(mdsc, fsc->min_caps); 2993 2994 return 0; 2995 } 2996 2997 /* 2998 * Wait for safe replies on open mds requests. If we time out, drop 2999 * all requests from the tree to avoid dangling dentry refs. 3000 */ 3001 static void wait_requests(struct ceph_mds_client *mdsc) 3002 { 3003 struct ceph_mds_request *req; 3004 struct ceph_fs_client *fsc = mdsc->fsc; 3005 3006 mutex_lock(&mdsc->mutex); 3007 if (__get_oldest_req(mdsc)) { 3008 mutex_unlock(&mdsc->mutex); 3009 3010 dout("wait_requests waiting for requests\n"); 3011 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3012 fsc->client->options->mount_timeout * HZ); 3013 3014 /* tear down remaining requests */ 3015 mutex_lock(&mdsc->mutex); 3016 while ((req = __get_oldest_req(mdsc))) { 3017 dout("wait_requests timed out on tid %llu\n", 3018 req->r_tid); 3019 __unregister_request(mdsc, req); 3020 } 3021 } 3022 mutex_unlock(&mdsc->mutex); 3023 dout("wait_requests done\n"); 3024 } 3025 3026 /* 3027 * called before mount is ro, and before dentries are torn down. 3028 * (hmm, does this still race with new lookups?) 3029 */ 3030 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3031 { 3032 dout("pre_umount\n"); 3033 mdsc->stopping = 1; 3034 3035 drop_leases(mdsc); 3036 ceph_flush_dirty_caps(mdsc); 3037 wait_requests(mdsc); 3038 3039 /* 3040 * wait for reply handlers to drop their request refs and 3041 * their inode/dcache refs 3042 */ 3043 ceph_msgr_flush(); 3044 } 3045 3046 /* 3047 * wait for all write mds requests to flush. 3048 */ 3049 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3050 { 3051 struct ceph_mds_request *req = NULL, *nextreq; 3052 struct rb_node *n; 3053 3054 mutex_lock(&mdsc->mutex); 3055 dout("wait_unsafe_requests want %lld\n", want_tid); 3056 restart: 3057 req = __get_oldest_req(mdsc); 3058 while (req && req->r_tid <= want_tid) { 3059 /* find next request */ 3060 n = rb_next(&req->r_node); 3061 if (n) 3062 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3063 else 3064 nextreq = NULL; 3065 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3066 /* write op */ 3067 ceph_mdsc_get_request(req); 3068 if (nextreq) 3069 ceph_mdsc_get_request(nextreq); 3070 mutex_unlock(&mdsc->mutex); 3071 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3072 req->r_tid, want_tid); 3073 wait_for_completion(&req->r_safe_completion); 3074 mutex_lock(&mdsc->mutex); 3075 ceph_mdsc_put_request(req); 3076 if (!nextreq) 3077 break; /* next dne before, so we're done! */ 3078 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3079 /* next request was removed from tree */ 3080 ceph_mdsc_put_request(nextreq); 3081 goto restart; 3082 } 3083 ceph_mdsc_put_request(nextreq); /* won't go away */ 3084 } 3085 req = nextreq; 3086 } 3087 mutex_unlock(&mdsc->mutex); 3088 dout("wait_unsafe_requests done\n"); 3089 } 3090 3091 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3092 { 3093 u64 want_tid, want_flush; 3094 3095 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3096 return; 3097 3098 dout("sync\n"); 3099 mutex_lock(&mdsc->mutex); 3100 want_tid = mdsc->last_tid; 3101 want_flush = mdsc->cap_flush_seq; 3102 mutex_unlock(&mdsc->mutex); 3103 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3104 3105 ceph_flush_dirty_caps(mdsc); 3106 3107 wait_unsafe_requests(mdsc, want_tid); 3108 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 3109 } 3110 3111 /* 3112 * true if all sessions are closed, or we force unmount 3113 */ 3114 bool done_closing_sessions(struct ceph_mds_client *mdsc) 3115 { 3116 int i, n = 0; 3117 3118 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3119 return true; 3120 3121 mutex_lock(&mdsc->mutex); 3122 for (i = 0; i < mdsc->max_sessions; i++) 3123 if (mdsc->sessions[i]) 3124 n++; 3125 mutex_unlock(&mdsc->mutex); 3126 return n == 0; 3127 } 3128 3129 /* 3130 * called after sb is ro. 3131 */ 3132 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3133 { 3134 struct ceph_mds_session *session; 3135 int i; 3136 struct ceph_fs_client *fsc = mdsc->fsc; 3137 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3138 3139 dout("close_sessions\n"); 3140 3141 /* close sessions */ 3142 mutex_lock(&mdsc->mutex); 3143 for (i = 0; i < mdsc->max_sessions; i++) { 3144 session = __ceph_lookup_mds_session(mdsc, i); 3145 if (!session) 3146 continue; 3147 mutex_unlock(&mdsc->mutex); 3148 mutex_lock(&session->s_mutex); 3149 __close_session(mdsc, session); 3150 mutex_unlock(&session->s_mutex); 3151 ceph_put_mds_session(session); 3152 mutex_lock(&mdsc->mutex); 3153 } 3154 mutex_unlock(&mdsc->mutex); 3155 3156 dout("waiting for sessions to close\n"); 3157 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3158 timeout); 3159 3160 /* tear down remaining sessions */ 3161 mutex_lock(&mdsc->mutex); 3162 for (i = 0; i < mdsc->max_sessions; i++) { 3163 if (mdsc->sessions[i]) { 3164 session = get_session(mdsc->sessions[i]); 3165 __unregister_session(mdsc, session); 3166 mutex_unlock(&mdsc->mutex); 3167 mutex_lock(&session->s_mutex); 3168 remove_session_caps(session); 3169 mutex_unlock(&session->s_mutex); 3170 ceph_put_mds_session(session); 3171 mutex_lock(&mdsc->mutex); 3172 } 3173 } 3174 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3175 mutex_unlock(&mdsc->mutex); 3176 3177 ceph_cleanup_empty_realms(mdsc); 3178 3179 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3180 3181 dout("stopped\n"); 3182 } 3183 3184 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3185 { 3186 dout("stop\n"); 3187 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3188 if (mdsc->mdsmap) 3189 ceph_mdsmap_destroy(mdsc->mdsmap); 3190 kfree(mdsc->sessions); 3191 ceph_caps_finalize(mdsc); 3192 } 3193 3194 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3195 { 3196 struct ceph_mds_client *mdsc = fsc->mdsc; 3197 3198 ceph_mdsc_stop(mdsc); 3199 fsc->mdsc = NULL; 3200 kfree(mdsc); 3201 } 3202 3203 3204 /* 3205 * handle mds map update. 3206 */ 3207 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3208 { 3209 u32 epoch; 3210 u32 maplen; 3211 void *p = msg->front.iov_base; 3212 void *end = p + msg->front.iov_len; 3213 struct ceph_mdsmap *newmap, *oldmap; 3214 struct ceph_fsid fsid; 3215 int err = -EINVAL; 3216 3217 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3218 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3219 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3220 return; 3221 epoch = ceph_decode_32(&p); 3222 maplen = ceph_decode_32(&p); 3223 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3224 3225 /* do we need it? */ 3226 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3227 mutex_lock(&mdsc->mutex); 3228 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3229 dout("handle_map epoch %u <= our %u\n", 3230 epoch, mdsc->mdsmap->m_epoch); 3231 mutex_unlock(&mdsc->mutex); 3232 return; 3233 } 3234 3235 newmap = ceph_mdsmap_decode(&p, end); 3236 if (IS_ERR(newmap)) { 3237 err = PTR_ERR(newmap); 3238 goto bad_unlock; 3239 } 3240 3241 /* swap into place */ 3242 if (mdsc->mdsmap) { 3243 oldmap = mdsc->mdsmap; 3244 mdsc->mdsmap = newmap; 3245 check_new_map(mdsc, newmap, oldmap); 3246 ceph_mdsmap_destroy(oldmap); 3247 } else { 3248 mdsc->mdsmap = newmap; /* first mds map */ 3249 } 3250 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3251 3252 __wake_requests(mdsc, &mdsc->waiting_for_map); 3253 3254 mutex_unlock(&mdsc->mutex); 3255 schedule_delayed(mdsc); 3256 return; 3257 3258 bad_unlock: 3259 mutex_unlock(&mdsc->mutex); 3260 bad: 3261 pr_err("error decoding mdsmap %d\n", err); 3262 return; 3263 } 3264 3265 static struct ceph_connection *con_get(struct ceph_connection *con) 3266 { 3267 struct ceph_mds_session *s = con->private; 3268 3269 if (get_session(s)) { 3270 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3271 return con; 3272 } 3273 dout("mdsc con_get %p FAIL\n", s); 3274 return NULL; 3275 } 3276 3277 static void con_put(struct ceph_connection *con) 3278 { 3279 struct ceph_mds_session *s = con->private; 3280 3281 ceph_put_mds_session(s); 3282 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref)); 3283 } 3284 3285 /* 3286 * if the client is unresponsive for long enough, the mds will kill 3287 * the session entirely. 3288 */ 3289 static void peer_reset(struct ceph_connection *con) 3290 { 3291 struct ceph_mds_session *s = con->private; 3292 struct ceph_mds_client *mdsc = s->s_mdsc; 3293 3294 pr_warning("mds%d closed our session\n", s->s_mds); 3295 send_mds_reconnect(mdsc, s); 3296 } 3297 3298 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3299 { 3300 struct ceph_mds_session *s = con->private; 3301 struct ceph_mds_client *mdsc = s->s_mdsc; 3302 int type = le16_to_cpu(msg->hdr.type); 3303 3304 mutex_lock(&mdsc->mutex); 3305 if (__verify_registered_session(mdsc, s) < 0) { 3306 mutex_unlock(&mdsc->mutex); 3307 goto out; 3308 } 3309 mutex_unlock(&mdsc->mutex); 3310 3311 switch (type) { 3312 case CEPH_MSG_MDS_MAP: 3313 ceph_mdsc_handle_map(mdsc, msg); 3314 break; 3315 case CEPH_MSG_CLIENT_SESSION: 3316 handle_session(s, msg); 3317 break; 3318 case CEPH_MSG_CLIENT_REPLY: 3319 handle_reply(s, msg); 3320 break; 3321 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3322 handle_forward(mdsc, s, msg); 3323 break; 3324 case CEPH_MSG_CLIENT_CAPS: 3325 ceph_handle_caps(s, msg); 3326 break; 3327 case CEPH_MSG_CLIENT_SNAP: 3328 ceph_handle_snap(mdsc, s, msg); 3329 break; 3330 case CEPH_MSG_CLIENT_LEASE: 3331 handle_lease(mdsc, s, msg); 3332 break; 3333 3334 default: 3335 pr_err("received unknown message type %d %s\n", type, 3336 ceph_msg_type_name(type)); 3337 } 3338 out: 3339 ceph_msg_put(msg); 3340 } 3341 3342 /* 3343 * authentication 3344 */ 3345 static int get_authorizer(struct ceph_connection *con, 3346 void **buf, int *len, int *proto, 3347 void **reply_buf, int *reply_len, int force_new) 3348 { 3349 struct ceph_mds_session *s = con->private; 3350 struct ceph_mds_client *mdsc = s->s_mdsc; 3351 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3352 int ret = 0; 3353 3354 if (force_new && s->s_authorizer) { 3355 ac->ops->destroy_authorizer(ac, s->s_authorizer); 3356 s->s_authorizer = NULL; 3357 } 3358 if (s->s_authorizer == NULL) { 3359 if (ac->ops->create_authorizer) { 3360 ret = ac->ops->create_authorizer( 3361 ac, CEPH_ENTITY_TYPE_MDS, 3362 &s->s_authorizer, 3363 &s->s_authorizer_buf, 3364 &s->s_authorizer_buf_len, 3365 &s->s_authorizer_reply_buf, 3366 &s->s_authorizer_reply_buf_len); 3367 if (ret) 3368 return ret; 3369 } 3370 } 3371 3372 *proto = ac->protocol; 3373 *buf = s->s_authorizer_buf; 3374 *len = s->s_authorizer_buf_len; 3375 *reply_buf = s->s_authorizer_reply_buf; 3376 *reply_len = s->s_authorizer_reply_buf_len; 3377 return 0; 3378 } 3379 3380 3381 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3382 { 3383 struct ceph_mds_session *s = con->private; 3384 struct ceph_mds_client *mdsc = s->s_mdsc; 3385 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3386 3387 return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len); 3388 } 3389 3390 static int invalidate_authorizer(struct ceph_connection *con) 3391 { 3392 struct ceph_mds_session *s = con->private; 3393 struct ceph_mds_client *mdsc = s->s_mdsc; 3394 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3395 3396 if (ac->ops->invalidate_authorizer) 3397 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3398 3399 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3400 } 3401 3402 static const struct ceph_connection_operations mds_con_ops = { 3403 .get = con_get, 3404 .put = con_put, 3405 .dispatch = dispatch, 3406 .get_authorizer = get_authorizer, 3407 .verify_authorizer_reply = verify_authorizer_reply, 3408 .invalidate_authorizer = invalidate_authorizer, 3409 .peer_reset = peer_reset, 3410 }; 3411 3412 /* eof */ 3413