1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/gfp.h> 7 #include <linux/sched.h> 8 #include <linux/debugfs.h> 9 #include <linux/seq_file.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 14 #include <linux/ceph/ceph_features.h> 15 #include <linux/ceph/messenger.h> 16 #include <linux/ceph/decode.h> 17 #include <linux/ceph/pagelist.h> 18 #include <linux/ceph/auth.h> 19 #include <linux/ceph/debugfs.h> 20 21 /* 22 * A cluster of MDS (metadata server) daemons is responsible for 23 * managing the file system namespace (the directory hierarchy and 24 * inodes) and for coordinating shared access to storage. Metadata is 25 * partitioning hierarchically across a number of servers, and that 26 * partition varies over time as the cluster adjusts the distribution 27 * in order to balance load. 28 * 29 * The MDS client is primarily responsible to managing synchronous 30 * metadata requests for operations like open, unlink, and so forth. 31 * If there is a MDS failure, we find out about it when we (possibly 32 * request and) receive a new MDS map, and can resubmit affected 33 * requests. 34 * 35 * For the most part, though, we take advantage of a lossless 36 * communications channel to the MDS, and do not need to worry about 37 * timing out or resubmitting requests. 38 * 39 * We maintain a stateful "session" with each MDS we interact with. 40 * Within each session, we sent periodic heartbeat messages to ensure 41 * any capabilities or leases we have been issues remain valid. If 42 * the session times out and goes stale, our leases and capabilities 43 * are no longer valid. 44 */ 45 46 struct ceph_reconnect_state { 47 int nr_caps; 48 struct ceph_pagelist *pagelist; 49 bool flock; 50 }; 51 52 static void __wake_requests(struct ceph_mds_client *mdsc, 53 struct list_head *head); 54 55 static const struct ceph_connection_operations mds_con_ops; 56 57 58 /* 59 * mds reply parsing 60 */ 61 62 /* 63 * parse individual inode info 64 */ 65 static int parse_reply_info_in(void **p, void *end, 66 struct ceph_mds_reply_info_in *info, 67 u64 features) 68 { 69 int err = -EIO; 70 71 info->in = *p; 72 *p += sizeof(struct ceph_mds_reply_inode) + 73 sizeof(*info->in->fragtree.splits) * 74 le32_to_cpu(info->in->fragtree.nsplits); 75 76 ceph_decode_32_safe(p, end, info->symlink_len, bad); 77 ceph_decode_need(p, end, info->symlink_len, bad); 78 info->symlink = *p; 79 *p += info->symlink_len; 80 81 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 82 ceph_decode_copy_safe(p, end, &info->dir_layout, 83 sizeof(info->dir_layout), bad); 84 else 85 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 86 87 ceph_decode_32_safe(p, end, info->xattr_len, bad); 88 ceph_decode_need(p, end, info->xattr_len, bad); 89 info->xattr_data = *p; 90 *p += info->xattr_len; 91 return 0; 92 bad: 93 return err; 94 } 95 96 /* 97 * parse a normal reply, which may contain a (dir+)dentry and/or a 98 * target inode. 99 */ 100 static int parse_reply_info_trace(void **p, void *end, 101 struct ceph_mds_reply_info_parsed *info, 102 u64 features) 103 { 104 int err; 105 106 if (info->head->is_dentry) { 107 err = parse_reply_info_in(p, end, &info->diri, features); 108 if (err < 0) 109 goto out_bad; 110 111 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 112 goto bad; 113 info->dirfrag = *p; 114 *p += sizeof(*info->dirfrag) + 115 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 116 if (unlikely(*p > end)) 117 goto bad; 118 119 ceph_decode_32_safe(p, end, info->dname_len, bad); 120 ceph_decode_need(p, end, info->dname_len, bad); 121 info->dname = *p; 122 *p += info->dname_len; 123 info->dlease = *p; 124 *p += sizeof(*info->dlease); 125 } 126 127 if (info->head->is_target) { 128 err = parse_reply_info_in(p, end, &info->targeti, features); 129 if (err < 0) 130 goto out_bad; 131 } 132 133 if (unlikely(*p != end)) 134 goto bad; 135 return 0; 136 137 bad: 138 err = -EIO; 139 out_bad: 140 pr_err("problem parsing mds trace %d\n", err); 141 return err; 142 } 143 144 /* 145 * parse readdir results 146 */ 147 static int parse_reply_info_dir(void **p, void *end, 148 struct ceph_mds_reply_info_parsed *info, 149 u64 features) 150 { 151 u32 num, i = 0; 152 int err; 153 154 info->dir_dir = *p; 155 if (*p + sizeof(*info->dir_dir) > end) 156 goto bad; 157 *p += sizeof(*info->dir_dir) + 158 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 159 if (*p > end) 160 goto bad; 161 162 ceph_decode_need(p, end, sizeof(num) + 2, bad); 163 num = ceph_decode_32(p); 164 info->dir_end = ceph_decode_8(p); 165 info->dir_complete = ceph_decode_8(p); 166 if (num == 0) 167 goto done; 168 169 BUG_ON(!info->dir_in); 170 info->dir_dname = (void *)(info->dir_in + num); 171 info->dir_dname_len = (void *)(info->dir_dname + num); 172 info->dir_dlease = (void *)(info->dir_dname_len + num); 173 if ((unsigned long)(info->dir_dlease + num) > 174 (unsigned long)info->dir_in + info->dir_buf_size) { 175 pr_err("dir contents are larger than expected\n"); 176 WARN_ON(1); 177 goto bad; 178 } 179 180 info->dir_nr = num; 181 while (num) { 182 /* dentry */ 183 ceph_decode_need(p, end, sizeof(u32)*2, bad); 184 info->dir_dname_len[i] = ceph_decode_32(p); 185 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 186 info->dir_dname[i] = *p; 187 *p += info->dir_dname_len[i]; 188 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 189 info->dir_dname[i]); 190 info->dir_dlease[i] = *p; 191 *p += sizeof(struct ceph_mds_reply_lease); 192 193 /* inode */ 194 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 195 if (err < 0) 196 goto out_bad; 197 i++; 198 num--; 199 } 200 201 done: 202 if (*p != end) 203 goto bad; 204 return 0; 205 206 bad: 207 err = -EIO; 208 out_bad: 209 pr_err("problem parsing dir contents %d\n", err); 210 return err; 211 } 212 213 /* 214 * parse fcntl F_GETLK results 215 */ 216 static int parse_reply_info_filelock(void **p, void *end, 217 struct ceph_mds_reply_info_parsed *info, 218 u64 features) 219 { 220 if (*p + sizeof(*info->filelock_reply) > end) 221 goto bad; 222 223 info->filelock_reply = *p; 224 *p += sizeof(*info->filelock_reply); 225 226 if (unlikely(*p != end)) 227 goto bad; 228 return 0; 229 230 bad: 231 return -EIO; 232 } 233 234 /* 235 * parse create results 236 */ 237 static int parse_reply_info_create(void **p, void *end, 238 struct ceph_mds_reply_info_parsed *info, 239 u64 features) 240 { 241 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) { 242 if (*p == end) { 243 info->has_create_ino = false; 244 } else { 245 info->has_create_ino = true; 246 info->ino = ceph_decode_64(p); 247 } 248 } 249 250 if (unlikely(*p != end)) 251 goto bad; 252 return 0; 253 254 bad: 255 return -EIO; 256 } 257 258 /* 259 * parse extra results 260 */ 261 static int parse_reply_info_extra(void **p, void *end, 262 struct ceph_mds_reply_info_parsed *info, 263 u64 features) 264 { 265 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 266 return parse_reply_info_filelock(p, end, info, features); 267 else if (info->head->op == CEPH_MDS_OP_READDIR || 268 info->head->op == CEPH_MDS_OP_LSSNAP) 269 return parse_reply_info_dir(p, end, info, features); 270 else if (info->head->op == CEPH_MDS_OP_CREATE) 271 return parse_reply_info_create(p, end, info, features); 272 else 273 return -EIO; 274 } 275 276 /* 277 * parse entire mds reply 278 */ 279 static int parse_reply_info(struct ceph_msg *msg, 280 struct ceph_mds_reply_info_parsed *info, 281 u64 features) 282 { 283 void *p, *end; 284 u32 len; 285 int err; 286 287 info->head = msg->front.iov_base; 288 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 289 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 290 291 /* trace */ 292 ceph_decode_32_safe(&p, end, len, bad); 293 if (len > 0) { 294 ceph_decode_need(&p, end, len, bad); 295 err = parse_reply_info_trace(&p, p+len, info, features); 296 if (err < 0) 297 goto out_bad; 298 } 299 300 /* extra */ 301 ceph_decode_32_safe(&p, end, len, bad); 302 if (len > 0) { 303 ceph_decode_need(&p, end, len, bad); 304 err = parse_reply_info_extra(&p, p+len, info, features); 305 if (err < 0) 306 goto out_bad; 307 } 308 309 /* snap blob */ 310 ceph_decode_32_safe(&p, end, len, bad); 311 info->snapblob_len = len; 312 info->snapblob = p; 313 p += len; 314 315 if (p != end) 316 goto bad; 317 return 0; 318 319 bad: 320 err = -EIO; 321 out_bad: 322 pr_err("mds parse_reply err %d\n", err); 323 return err; 324 } 325 326 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 327 { 328 if (!info->dir_in) 329 return; 330 free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size)); 331 } 332 333 334 /* 335 * sessions 336 */ 337 static const char *session_state_name(int s) 338 { 339 switch (s) { 340 case CEPH_MDS_SESSION_NEW: return "new"; 341 case CEPH_MDS_SESSION_OPENING: return "opening"; 342 case CEPH_MDS_SESSION_OPEN: return "open"; 343 case CEPH_MDS_SESSION_HUNG: return "hung"; 344 case CEPH_MDS_SESSION_CLOSING: return "closing"; 345 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 346 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 347 default: return "???"; 348 } 349 } 350 351 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 352 { 353 if (atomic_inc_not_zero(&s->s_ref)) { 354 dout("mdsc get_session %p %d -> %d\n", s, 355 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 356 return s; 357 } else { 358 dout("mdsc get_session %p 0 -- FAIL", s); 359 return NULL; 360 } 361 } 362 363 void ceph_put_mds_session(struct ceph_mds_session *s) 364 { 365 dout("mdsc put_session %p %d -> %d\n", s, 366 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 367 if (atomic_dec_and_test(&s->s_ref)) { 368 if (s->s_auth.authorizer) 369 ceph_auth_destroy_authorizer( 370 s->s_mdsc->fsc->client->monc.auth, 371 s->s_auth.authorizer); 372 kfree(s); 373 } 374 } 375 376 /* 377 * called under mdsc->mutex 378 */ 379 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 380 int mds) 381 { 382 struct ceph_mds_session *session; 383 384 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 385 return NULL; 386 session = mdsc->sessions[mds]; 387 dout("lookup_mds_session %p %d\n", session, 388 atomic_read(&session->s_ref)); 389 get_session(session); 390 return session; 391 } 392 393 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 394 { 395 if (mds >= mdsc->max_sessions) 396 return false; 397 return mdsc->sessions[mds]; 398 } 399 400 static int __verify_registered_session(struct ceph_mds_client *mdsc, 401 struct ceph_mds_session *s) 402 { 403 if (s->s_mds >= mdsc->max_sessions || 404 mdsc->sessions[s->s_mds] != s) 405 return -ENOENT; 406 return 0; 407 } 408 409 /* 410 * create+register a new session for given mds. 411 * called under mdsc->mutex. 412 */ 413 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 414 int mds) 415 { 416 struct ceph_mds_session *s; 417 418 if (mds >= mdsc->mdsmap->m_max_mds) 419 return ERR_PTR(-EINVAL); 420 421 s = kzalloc(sizeof(*s), GFP_NOFS); 422 if (!s) 423 return ERR_PTR(-ENOMEM); 424 s->s_mdsc = mdsc; 425 s->s_mds = mds; 426 s->s_state = CEPH_MDS_SESSION_NEW; 427 s->s_ttl = 0; 428 s->s_seq = 0; 429 mutex_init(&s->s_mutex); 430 431 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 432 433 spin_lock_init(&s->s_gen_ttl_lock); 434 s->s_cap_gen = 0; 435 s->s_cap_ttl = jiffies - 1; 436 437 spin_lock_init(&s->s_cap_lock); 438 s->s_renew_requested = 0; 439 s->s_renew_seq = 0; 440 INIT_LIST_HEAD(&s->s_caps); 441 s->s_nr_caps = 0; 442 s->s_trim_caps = 0; 443 atomic_set(&s->s_ref, 1); 444 INIT_LIST_HEAD(&s->s_waiting); 445 INIT_LIST_HEAD(&s->s_unsafe); 446 s->s_num_cap_releases = 0; 447 s->s_cap_reconnect = 0; 448 s->s_cap_iterator = NULL; 449 INIT_LIST_HEAD(&s->s_cap_releases); 450 INIT_LIST_HEAD(&s->s_cap_releases_done); 451 INIT_LIST_HEAD(&s->s_cap_flushing); 452 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 453 454 dout("register_session mds%d\n", mds); 455 if (mds >= mdsc->max_sessions) { 456 int newmax = 1 << get_count_order(mds+1); 457 struct ceph_mds_session **sa; 458 459 dout("register_session realloc to %d\n", newmax); 460 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 461 if (sa == NULL) 462 goto fail_realloc; 463 if (mdsc->sessions) { 464 memcpy(sa, mdsc->sessions, 465 mdsc->max_sessions * sizeof(void *)); 466 kfree(mdsc->sessions); 467 } 468 mdsc->sessions = sa; 469 mdsc->max_sessions = newmax; 470 } 471 mdsc->sessions[mds] = s; 472 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 473 474 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 475 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 476 477 return s; 478 479 fail_realloc: 480 kfree(s); 481 return ERR_PTR(-ENOMEM); 482 } 483 484 /* 485 * called under mdsc->mutex 486 */ 487 static void __unregister_session(struct ceph_mds_client *mdsc, 488 struct ceph_mds_session *s) 489 { 490 dout("__unregister_session mds%d %p\n", s->s_mds, s); 491 BUG_ON(mdsc->sessions[s->s_mds] != s); 492 mdsc->sessions[s->s_mds] = NULL; 493 ceph_con_close(&s->s_con); 494 ceph_put_mds_session(s); 495 } 496 497 /* 498 * drop session refs in request. 499 * 500 * should be last request ref, or hold mdsc->mutex 501 */ 502 static void put_request_session(struct ceph_mds_request *req) 503 { 504 if (req->r_session) { 505 ceph_put_mds_session(req->r_session); 506 req->r_session = NULL; 507 } 508 } 509 510 void ceph_mdsc_release_request(struct kref *kref) 511 { 512 struct ceph_mds_request *req = container_of(kref, 513 struct ceph_mds_request, 514 r_kref); 515 destroy_reply_info(&req->r_reply_info); 516 if (req->r_request) 517 ceph_msg_put(req->r_request); 518 if (req->r_reply) 519 ceph_msg_put(req->r_reply); 520 if (req->r_inode) { 521 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 522 iput(req->r_inode); 523 } 524 if (req->r_locked_dir) 525 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 526 if (req->r_target_inode) 527 iput(req->r_target_inode); 528 if (req->r_dentry) 529 dput(req->r_dentry); 530 if (req->r_old_dentry) 531 dput(req->r_old_dentry); 532 if (req->r_old_dentry_dir) { 533 /* 534 * track (and drop pins for) r_old_dentry_dir 535 * separately, since r_old_dentry's d_parent may have 536 * changed between the dir mutex being dropped and 537 * this request being freed. 538 */ 539 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 540 CEPH_CAP_PIN); 541 iput(req->r_old_dentry_dir); 542 } 543 kfree(req->r_path1); 544 kfree(req->r_path2); 545 put_request_session(req); 546 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 547 kfree(req); 548 } 549 550 /* 551 * lookup session, bump ref if found. 552 * 553 * called under mdsc->mutex. 554 */ 555 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 556 u64 tid) 557 { 558 struct ceph_mds_request *req; 559 struct rb_node *n = mdsc->request_tree.rb_node; 560 561 while (n) { 562 req = rb_entry(n, struct ceph_mds_request, r_node); 563 if (tid < req->r_tid) 564 n = n->rb_left; 565 else if (tid > req->r_tid) 566 n = n->rb_right; 567 else { 568 ceph_mdsc_get_request(req); 569 return req; 570 } 571 } 572 return NULL; 573 } 574 575 static void __insert_request(struct ceph_mds_client *mdsc, 576 struct ceph_mds_request *new) 577 { 578 struct rb_node **p = &mdsc->request_tree.rb_node; 579 struct rb_node *parent = NULL; 580 struct ceph_mds_request *req = NULL; 581 582 while (*p) { 583 parent = *p; 584 req = rb_entry(parent, struct ceph_mds_request, r_node); 585 if (new->r_tid < req->r_tid) 586 p = &(*p)->rb_left; 587 else if (new->r_tid > req->r_tid) 588 p = &(*p)->rb_right; 589 else 590 BUG(); 591 } 592 593 rb_link_node(&new->r_node, parent, p); 594 rb_insert_color(&new->r_node, &mdsc->request_tree); 595 } 596 597 /* 598 * Register an in-flight request, and assign a tid. Link to directory 599 * are modifying (if any). 600 * 601 * Called under mdsc->mutex. 602 */ 603 static void __register_request(struct ceph_mds_client *mdsc, 604 struct ceph_mds_request *req, 605 struct inode *dir) 606 { 607 req->r_tid = ++mdsc->last_tid; 608 if (req->r_num_caps) 609 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 610 req->r_num_caps); 611 dout("__register_request %p tid %lld\n", req, req->r_tid); 612 ceph_mdsc_get_request(req); 613 __insert_request(mdsc, req); 614 615 req->r_uid = current_fsuid(); 616 req->r_gid = current_fsgid(); 617 618 if (dir) { 619 struct ceph_inode_info *ci = ceph_inode(dir); 620 621 ihold(dir); 622 spin_lock(&ci->i_unsafe_lock); 623 req->r_unsafe_dir = dir; 624 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 625 spin_unlock(&ci->i_unsafe_lock); 626 } 627 } 628 629 static void __unregister_request(struct ceph_mds_client *mdsc, 630 struct ceph_mds_request *req) 631 { 632 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 633 rb_erase(&req->r_node, &mdsc->request_tree); 634 RB_CLEAR_NODE(&req->r_node); 635 636 if (req->r_unsafe_dir) { 637 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 638 639 spin_lock(&ci->i_unsafe_lock); 640 list_del_init(&req->r_unsafe_dir_item); 641 spin_unlock(&ci->i_unsafe_lock); 642 643 iput(req->r_unsafe_dir); 644 req->r_unsafe_dir = NULL; 645 } 646 647 complete_all(&req->r_safe_completion); 648 649 ceph_mdsc_put_request(req); 650 } 651 652 /* 653 * Choose mds to send request to next. If there is a hint set in the 654 * request (e.g., due to a prior forward hint from the mds), use that. 655 * Otherwise, consult frag tree and/or caps to identify the 656 * appropriate mds. If all else fails, choose randomly. 657 * 658 * Called under mdsc->mutex. 659 */ 660 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 661 { 662 /* 663 * we don't need to worry about protecting the d_parent access 664 * here because we never renaming inside the snapped namespace 665 * except to resplice to another snapdir, and either the old or new 666 * result is a valid result. 667 */ 668 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP) 669 dentry = dentry->d_parent; 670 return dentry; 671 } 672 673 static int __choose_mds(struct ceph_mds_client *mdsc, 674 struct ceph_mds_request *req) 675 { 676 struct inode *inode; 677 struct ceph_inode_info *ci; 678 struct ceph_cap *cap; 679 int mode = req->r_direct_mode; 680 int mds = -1; 681 u32 hash = req->r_direct_hash; 682 bool is_hash = req->r_direct_is_hash; 683 684 /* 685 * is there a specific mds we should try? ignore hint if we have 686 * no session and the mds is not up (active or recovering). 687 */ 688 if (req->r_resend_mds >= 0 && 689 (__have_session(mdsc, req->r_resend_mds) || 690 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 691 dout("choose_mds using resend_mds mds%d\n", 692 req->r_resend_mds); 693 return req->r_resend_mds; 694 } 695 696 if (mode == USE_RANDOM_MDS) 697 goto random; 698 699 inode = NULL; 700 if (req->r_inode) { 701 inode = req->r_inode; 702 } else if (req->r_dentry) { 703 /* ignore race with rename; old or new d_parent is okay */ 704 struct dentry *parent = req->r_dentry->d_parent; 705 struct inode *dir = parent->d_inode; 706 707 if (dir->i_sb != mdsc->fsc->sb) { 708 /* not this fs! */ 709 inode = req->r_dentry->d_inode; 710 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 711 /* direct snapped/virtual snapdir requests 712 * based on parent dir inode */ 713 struct dentry *dn = get_nonsnap_parent(parent); 714 inode = dn->d_inode; 715 dout("__choose_mds using nonsnap parent %p\n", inode); 716 } else { 717 /* dentry target */ 718 inode = req->r_dentry->d_inode; 719 if (!inode || mode == USE_AUTH_MDS) { 720 /* dir + name */ 721 inode = dir; 722 hash = ceph_dentry_hash(dir, req->r_dentry); 723 is_hash = true; 724 } 725 } 726 } 727 728 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 729 (int)hash, mode); 730 if (!inode) 731 goto random; 732 ci = ceph_inode(inode); 733 734 if (is_hash && S_ISDIR(inode->i_mode)) { 735 struct ceph_inode_frag frag; 736 int found; 737 738 ceph_choose_frag(ci, hash, &frag, &found); 739 if (found) { 740 if (mode == USE_ANY_MDS && frag.ndist > 0) { 741 u8 r; 742 743 /* choose a random replica */ 744 get_random_bytes(&r, 1); 745 r %= frag.ndist; 746 mds = frag.dist[r]; 747 dout("choose_mds %p %llx.%llx " 748 "frag %u mds%d (%d/%d)\n", 749 inode, ceph_vinop(inode), 750 frag.frag, mds, 751 (int)r, frag.ndist); 752 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 753 CEPH_MDS_STATE_ACTIVE) 754 return mds; 755 } 756 757 /* since this file/dir wasn't known to be 758 * replicated, then we want to look for the 759 * authoritative mds. */ 760 mode = USE_AUTH_MDS; 761 if (frag.mds >= 0) { 762 /* choose auth mds */ 763 mds = frag.mds; 764 dout("choose_mds %p %llx.%llx " 765 "frag %u mds%d (auth)\n", 766 inode, ceph_vinop(inode), frag.frag, mds); 767 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 768 CEPH_MDS_STATE_ACTIVE) 769 return mds; 770 } 771 } 772 } 773 774 spin_lock(&ci->i_ceph_lock); 775 cap = NULL; 776 if (mode == USE_AUTH_MDS) 777 cap = ci->i_auth_cap; 778 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 779 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 780 if (!cap) { 781 spin_unlock(&ci->i_ceph_lock); 782 goto random; 783 } 784 mds = cap->session->s_mds; 785 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 786 inode, ceph_vinop(inode), mds, 787 cap == ci->i_auth_cap ? "auth " : "", cap); 788 spin_unlock(&ci->i_ceph_lock); 789 return mds; 790 791 random: 792 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 793 dout("choose_mds chose random mds%d\n", mds); 794 return mds; 795 } 796 797 798 /* 799 * session messages 800 */ 801 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 802 { 803 struct ceph_msg *msg; 804 struct ceph_mds_session_head *h; 805 806 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 807 false); 808 if (!msg) { 809 pr_err("create_session_msg ENOMEM creating msg\n"); 810 return NULL; 811 } 812 h = msg->front.iov_base; 813 h->op = cpu_to_le32(op); 814 h->seq = cpu_to_le64(seq); 815 return msg; 816 } 817 818 /* 819 * send session open request. 820 * 821 * called under mdsc->mutex 822 */ 823 static int __open_session(struct ceph_mds_client *mdsc, 824 struct ceph_mds_session *session) 825 { 826 struct ceph_msg *msg; 827 int mstate; 828 int mds = session->s_mds; 829 830 /* wait for mds to go active? */ 831 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 832 dout("open_session to mds%d (%s)\n", mds, 833 ceph_mds_state_name(mstate)); 834 session->s_state = CEPH_MDS_SESSION_OPENING; 835 session->s_renew_requested = jiffies; 836 837 /* send connect message */ 838 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq); 839 if (!msg) 840 return -ENOMEM; 841 ceph_con_send(&session->s_con, msg); 842 return 0; 843 } 844 845 /* 846 * open sessions for any export targets for the given mds 847 * 848 * called under mdsc->mutex 849 */ 850 static struct ceph_mds_session * 851 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 852 { 853 struct ceph_mds_session *session; 854 855 session = __ceph_lookup_mds_session(mdsc, target); 856 if (!session) { 857 session = register_session(mdsc, target); 858 if (IS_ERR(session)) 859 return session; 860 } 861 if (session->s_state == CEPH_MDS_SESSION_NEW || 862 session->s_state == CEPH_MDS_SESSION_CLOSING) 863 __open_session(mdsc, session); 864 865 return session; 866 } 867 868 struct ceph_mds_session * 869 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 870 { 871 struct ceph_mds_session *session; 872 873 dout("open_export_target_session to mds%d\n", target); 874 875 mutex_lock(&mdsc->mutex); 876 session = __open_export_target_session(mdsc, target); 877 mutex_unlock(&mdsc->mutex); 878 879 return session; 880 } 881 882 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 883 struct ceph_mds_session *session) 884 { 885 struct ceph_mds_info *mi; 886 struct ceph_mds_session *ts; 887 int i, mds = session->s_mds; 888 889 if (mds >= mdsc->mdsmap->m_max_mds) 890 return; 891 892 mi = &mdsc->mdsmap->m_info[mds]; 893 dout("open_export_target_sessions for mds%d (%d targets)\n", 894 session->s_mds, mi->num_export_targets); 895 896 for (i = 0; i < mi->num_export_targets; i++) { 897 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 898 if (!IS_ERR(ts)) 899 ceph_put_mds_session(ts); 900 } 901 } 902 903 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 904 struct ceph_mds_session *session) 905 { 906 mutex_lock(&mdsc->mutex); 907 __open_export_target_sessions(mdsc, session); 908 mutex_unlock(&mdsc->mutex); 909 } 910 911 /* 912 * session caps 913 */ 914 915 /* 916 * Free preallocated cap messages assigned to this session 917 */ 918 static void cleanup_cap_releases(struct ceph_mds_session *session) 919 { 920 struct ceph_msg *msg; 921 922 spin_lock(&session->s_cap_lock); 923 while (!list_empty(&session->s_cap_releases)) { 924 msg = list_first_entry(&session->s_cap_releases, 925 struct ceph_msg, list_head); 926 list_del_init(&msg->list_head); 927 ceph_msg_put(msg); 928 } 929 while (!list_empty(&session->s_cap_releases_done)) { 930 msg = list_first_entry(&session->s_cap_releases_done, 931 struct ceph_msg, list_head); 932 list_del_init(&msg->list_head); 933 ceph_msg_put(msg); 934 } 935 spin_unlock(&session->s_cap_lock); 936 } 937 938 /* 939 * Helper to safely iterate over all caps associated with a session, with 940 * special care taken to handle a racing __ceph_remove_cap(). 941 * 942 * Caller must hold session s_mutex. 943 */ 944 static int iterate_session_caps(struct ceph_mds_session *session, 945 int (*cb)(struct inode *, struct ceph_cap *, 946 void *), void *arg) 947 { 948 struct list_head *p; 949 struct ceph_cap *cap; 950 struct inode *inode, *last_inode = NULL; 951 struct ceph_cap *old_cap = NULL; 952 int ret; 953 954 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 955 spin_lock(&session->s_cap_lock); 956 p = session->s_caps.next; 957 while (p != &session->s_caps) { 958 cap = list_entry(p, struct ceph_cap, session_caps); 959 inode = igrab(&cap->ci->vfs_inode); 960 if (!inode) { 961 p = p->next; 962 continue; 963 } 964 session->s_cap_iterator = cap; 965 spin_unlock(&session->s_cap_lock); 966 967 if (last_inode) { 968 iput(last_inode); 969 last_inode = NULL; 970 } 971 if (old_cap) { 972 ceph_put_cap(session->s_mdsc, old_cap); 973 old_cap = NULL; 974 } 975 976 ret = cb(inode, cap, arg); 977 last_inode = inode; 978 979 spin_lock(&session->s_cap_lock); 980 p = p->next; 981 if (cap->ci == NULL) { 982 dout("iterate_session_caps finishing cap %p removal\n", 983 cap); 984 BUG_ON(cap->session != session); 985 list_del_init(&cap->session_caps); 986 session->s_nr_caps--; 987 cap->session = NULL; 988 old_cap = cap; /* put_cap it w/o locks held */ 989 } 990 if (ret < 0) 991 goto out; 992 } 993 ret = 0; 994 out: 995 session->s_cap_iterator = NULL; 996 spin_unlock(&session->s_cap_lock); 997 998 if (last_inode) 999 iput(last_inode); 1000 if (old_cap) 1001 ceph_put_cap(session->s_mdsc, old_cap); 1002 1003 return ret; 1004 } 1005 1006 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 1007 void *arg) 1008 { 1009 struct ceph_inode_info *ci = ceph_inode(inode); 1010 int drop = 0; 1011 1012 dout("removing cap %p, ci is %p, inode is %p\n", 1013 cap, ci, &ci->vfs_inode); 1014 spin_lock(&ci->i_ceph_lock); 1015 __ceph_remove_cap(cap, false); 1016 if (!__ceph_is_any_real_caps(ci)) { 1017 struct ceph_mds_client *mdsc = 1018 ceph_sb_to_client(inode->i_sb)->mdsc; 1019 1020 spin_lock(&mdsc->cap_dirty_lock); 1021 if (!list_empty(&ci->i_dirty_item)) { 1022 pr_info(" dropping dirty %s state for %p %lld\n", 1023 ceph_cap_string(ci->i_dirty_caps), 1024 inode, ceph_ino(inode)); 1025 ci->i_dirty_caps = 0; 1026 list_del_init(&ci->i_dirty_item); 1027 drop = 1; 1028 } 1029 if (!list_empty(&ci->i_flushing_item)) { 1030 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 1031 ceph_cap_string(ci->i_flushing_caps), 1032 inode, ceph_ino(inode)); 1033 ci->i_flushing_caps = 0; 1034 list_del_init(&ci->i_flushing_item); 1035 mdsc->num_cap_flushing--; 1036 drop = 1; 1037 } 1038 if (drop && ci->i_wrbuffer_ref) { 1039 pr_info(" dropping dirty data for %p %lld\n", 1040 inode, ceph_ino(inode)); 1041 ci->i_wrbuffer_ref = 0; 1042 ci->i_wrbuffer_ref_head = 0; 1043 drop++; 1044 } 1045 spin_unlock(&mdsc->cap_dirty_lock); 1046 } 1047 spin_unlock(&ci->i_ceph_lock); 1048 while (drop--) 1049 iput(inode); 1050 return 0; 1051 } 1052 1053 /* 1054 * caller must hold session s_mutex 1055 */ 1056 static void remove_session_caps(struct ceph_mds_session *session) 1057 { 1058 dout("remove_session_caps on %p\n", session); 1059 iterate_session_caps(session, remove_session_caps_cb, NULL); 1060 1061 spin_lock(&session->s_cap_lock); 1062 if (session->s_nr_caps > 0) { 1063 struct super_block *sb = session->s_mdsc->fsc->sb; 1064 struct inode *inode; 1065 struct ceph_cap *cap, *prev = NULL; 1066 struct ceph_vino vino; 1067 /* 1068 * iterate_session_caps() skips inodes that are being 1069 * deleted, we need to wait until deletions are complete. 1070 * __wait_on_freeing_inode() is designed for the job, 1071 * but it is not exported, so use lookup inode function 1072 * to access it. 1073 */ 1074 while (!list_empty(&session->s_caps)) { 1075 cap = list_entry(session->s_caps.next, 1076 struct ceph_cap, session_caps); 1077 if (cap == prev) 1078 break; 1079 prev = cap; 1080 vino = cap->ci->i_vino; 1081 spin_unlock(&session->s_cap_lock); 1082 1083 inode = ceph_find_inode(sb, vino); 1084 iput(inode); 1085 1086 spin_lock(&session->s_cap_lock); 1087 } 1088 } 1089 spin_unlock(&session->s_cap_lock); 1090 1091 BUG_ON(session->s_nr_caps > 0); 1092 BUG_ON(!list_empty(&session->s_cap_flushing)); 1093 cleanup_cap_releases(session); 1094 } 1095 1096 /* 1097 * wake up any threads waiting on this session's caps. if the cap is 1098 * old (didn't get renewed on the client reconnect), remove it now. 1099 * 1100 * caller must hold s_mutex. 1101 */ 1102 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1103 void *arg) 1104 { 1105 struct ceph_inode_info *ci = ceph_inode(inode); 1106 1107 wake_up_all(&ci->i_cap_wq); 1108 if (arg) { 1109 spin_lock(&ci->i_ceph_lock); 1110 ci->i_wanted_max_size = 0; 1111 ci->i_requested_max_size = 0; 1112 spin_unlock(&ci->i_ceph_lock); 1113 } 1114 return 0; 1115 } 1116 1117 static void wake_up_session_caps(struct ceph_mds_session *session, 1118 int reconnect) 1119 { 1120 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1121 iterate_session_caps(session, wake_up_session_cb, 1122 (void *)(unsigned long)reconnect); 1123 } 1124 1125 /* 1126 * Send periodic message to MDS renewing all currently held caps. The 1127 * ack will reset the expiration for all caps from this session. 1128 * 1129 * caller holds s_mutex 1130 */ 1131 static int send_renew_caps(struct ceph_mds_client *mdsc, 1132 struct ceph_mds_session *session) 1133 { 1134 struct ceph_msg *msg; 1135 int state; 1136 1137 if (time_after_eq(jiffies, session->s_cap_ttl) && 1138 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1139 pr_info("mds%d caps stale\n", session->s_mds); 1140 session->s_renew_requested = jiffies; 1141 1142 /* do not try to renew caps until a recovering mds has reconnected 1143 * with its clients. */ 1144 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1145 if (state < CEPH_MDS_STATE_RECONNECT) { 1146 dout("send_renew_caps ignoring mds%d (%s)\n", 1147 session->s_mds, ceph_mds_state_name(state)); 1148 return 0; 1149 } 1150 1151 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1152 ceph_mds_state_name(state)); 1153 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1154 ++session->s_renew_seq); 1155 if (!msg) 1156 return -ENOMEM; 1157 ceph_con_send(&session->s_con, msg); 1158 return 0; 1159 } 1160 1161 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 1162 struct ceph_mds_session *session, u64 seq) 1163 { 1164 struct ceph_msg *msg; 1165 1166 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 1167 session->s_mds, session_state_name(session->s_state), seq); 1168 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 1169 if (!msg) 1170 return -ENOMEM; 1171 ceph_con_send(&session->s_con, msg); 1172 return 0; 1173 } 1174 1175 1176 /* 1177 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1178 * 1179 * Called under session->s_mutex 1180 */ 1181 static void renewed_caps(struct ceph_mds_client *mdsc, 1182 struct ceph_mds_session *session, int is_renew) 1183 { 1184 int was_stale; 1185 int wake = 0; 1186 1187 spin_lock(&session->s_cap_lock); 1188 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1189 1190 session->s_cap_ttl = session->s_renew_requested + 1191 mdsc->mdsmap->m_session_timeout*HZ; 1192 1193 if (was_stale) { 1194 if (time_before(jiffies, session->s_cap_ttl)) { 1195 pr_info("mds%d caps renewed\n", session->s_mds); 1196 wake = 1; 1197 } else { 1198 pr_info("mds%d caps still stale\n", session->s_mds); 1199 } 1200 } 1201 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1202 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1203 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1204 spin_unlock(&session->s_cap_lock); 1205 1206 if (wake) 1207 wake_up_session_caps(session, 0); 1208 } 1209 1210 /* 1211 * send a session close request 1212 */ 1213 static int request_close_session(struct ceph_mds_client *mdsc, 1214 struct ceph_mds_session *session) 1215 { 1216 struct ceph_msg *msg; 1217 1218 dout("request_close_session mds%d state %s seq %lld\n", 1219 session->s_mds, session_state_name(session->s_state), 1220 session->s_seq); 1221 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1222 if (!msg) 1223 return -ENOMEM; 1224 ceph_con_send(&session->s_con, msg); 1225 return 0; 1226 } 1227 1228 /* 1229 * Called with s_mutex held. 1230 */ 1231 static int __close_session(struct ceph_mds_client *mdsc, 1232 struct ceph_mds_session *session) 1233 { 1234 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1235 return 0; 1236 session->s_state = CEPH_MDS_SESSION_CLOSING; 1237 return request_close_session(mdsc, session); 1238 } 1239 1240 /* 1241 * Trim old(er) caps. 1242 * 1243 * Because we can't cache an inode without one or more caps, we do 1244 * this indirectly: if a cap is unused, we prune its aliases, at which 1245 * point the inode will hopefully get dropped to. 1246 * 1247 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1248 * memory pressure from the MDS, though, so it needn't be perfect. 1249 */ 1250 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1251 { 1252 struct ceph_mds_session *session = arg; 1253 struct ceph_inode_info *ci = ceph_inode(inode); 1254 int used, wanted, oissued, mine; 1255 1256 if (session->s_trim_caps <= 0) 1257 return -1; 1258 1259 spin_lock(&ci->i_ceph_lock); 1260 mine = cap->issued | cap->implemented; 1261 used = __ceph_caps_used(ci); 1262 wanted = __ceph_caps_file_wanted(ci); 1263 oissued = __ceph_caps_issued_other(ci, cap); 1264 1265 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 1266 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1267 ceph_cap_string(used), ceph_cap_string(wanted)); 1268 if (cap == ci->i_auth_cap) { 1269 if (ci->i_dirty_caps | ci->i_flushing_caps) 1270 goto out; 1271 if ((used | wanted) & CEPH_CAP_ANY_WR) 1272 goto out; 1273 } 1274 if ((used | wanted) & ~oissued & mine) 1275 goto out; /* we need these caps */ 1276 1277 session->s_trim_caps--; 1278 if (oissued) { 1279 /* we aren't the only cap.. just remove us */ 1280 __ceph_remove_cap(cap, true); 1281 } else { 1282 /* try to drop referring dentries */ 1283 spin_unlock(&ci->i_ceph_lock); 1284 d_prune_aliases(inode); 1285 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1286 inode, cap, atomic_read(&inode->i_count)); 1287 return 0; 1288 } 1289 1290 out: 1291 spin_unlock(&ci->i_ceph_lock); 1292 return 0; 1293 } 1294 1295 /* 1296 * Trim session cap count down to some max number. 1297 */ 1298 static int trim_caps(struct ceph_mds_client *mdsc, 1299 struct ceph_mds_session *session, 1300 int max_caps) 1301 { 1302 int trim_caps = session->s_nr_caps - max_caps; 1303 1304 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1305 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1306 if (trim_caps > 0) { 1307 session->s_trim_caps = trim_caps; 1308 iterate_session_caps(session, trim_caps_cb, session); 1309 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1310 session->s_mds, session->s_nr_caps, max_caps, 1311 trim_caps - session->s_trim_caps); 1312 session->s_trim_caps = 0; 1313 } 1314 1315 ceph_add_cap_releases(mdsc, session); 1316 ceph_send_cap_releases(mdsc, session); 1317 return 0; 1318 } 1319 1320 /* 1321 * Allocate cap_release messages. If there is a partially full message 1322 * in the queue, try to allocate enough to cover it's remainder, so that 1323 * we can send it immediately. 1324 * 1325 * Called under s_mutex. 1326 */ 1327 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1328 struct ceph_mds_session *session) 1329 { 1330 struct ceph_msg *msg, *partial = NULL; 1331 struct ceph_mds_cap_release *head; 1332 int err = -ENOMEM; 1333 int extra = mdsc->fsc->mount_options->cap_release_safety; 1334 int num; 1335 1336 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1337 extra); 1338 1339 spin_lock(&session->s_cap_lock); 1340 1341 if (!list_empty(&session->s_cap_releases)) { 1342 msg = list_first_entry(&session->s_cap_releases, 1343 struct ceph_msg, 1344 list_head); 1345 head = msg->front.iov_base; 1346 num = le32_to_cpu(head->num); 1347 if (num) { 1348 dout(" partial %p with (%d/%d)\n", msg, num, 1349 (int)CEPH_CAPS_PER_RELEASE); 1350 extra += CEPH_CAPS_PER_RELEASE - num; 1351 partial = msg; 1352 } 1353 } 1354 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1355 spin_unlock(&session->s_cap_lock); 1356 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1357 GFP_NOFS, false); 1358 if (!msg) 1359 goto out_unlocked; 1360 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1361 (int)msg->front.iov_len); 1362 head = msg->front.iov_base; 1363 head->num = cpu_to_le32(0); 1364 msg->front.iov_len = sizeof(*head); 1365 spin_lock(&session->s_cap_lock); 1366 list_add(&msg->list_head, &session->s_cap_releases); 1367 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1368 } 1369 1370 if (partial) { 1371 head = partial->front.iov_base; 1372 num = le32_to_cpu(head->num); 1373 dout(" queueing partial %p with %d/%d\n", partial, num, 1374 (int)CEPH_CAPS_PER_RELEASE); 1375 list_move_tail(&partial->list_head, 1376 &session->s_cap_releases_done); 1377 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1378 } 1379 err = 0; 1380 spin_unlock(&session->s_cap_lock); 1381 out_unlocked: 1382 return err; 1383 } 1384 1385 /* 1386 * flush all dirty inode data to disk. 1387 * 1388 * returns true if we've flushed through want_flush_seq 1389 */ 1390 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1391 { 1392 int mds, ret = 1; 1393 1394 dout("check_cap_flush want %lld\n", want_flush_seq); 1395 mutex_lock(&mdsc->mutex); 1396 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1397 struct ceph_mds_session *session = mdsc->sessions[mds]; 1398 1399 if (!session) 1400 continue; 1401 get_session(session); 1402 mutex_unlock(&mdsc->mutex); 1403 1404 mutex_lock(&session->s_mutex); 1405 if (!list_empty(&session->s_cap_flushing)) { 1406 struct ceph_inode_info *ci = 1407 list_entry(session->s_cap_flushing.next, 1408 struct ceph_inode_info, 1409 i_flushing_item); 1410 struct inode *inode = &ci->vfs_inode; 1411 1412 spin_lock(&ci->i_ceph_lock); 1413 if (ci->i_cap_flush_seq <= want_flush_seq) { 1414 dout("check_cap_flush still flushing %p " 1415 "seq %lld <= %lld to mds%d\n", inode, 1416 ci->i_cap_flush_seq, want_flush_seq, 1417 session->s_mds); 1418 ret = 0; 1419 } 1420 spin_unlock(&ci->i_ceph_lock); 1421 } 1422 mutex_unlock(&session->s_mutex); 1423 ceph_put_mds_session(session); 1424 1425 if (!ret) 1426 return ret; 1427 mutex_lock(&mdsc->mutex); 1428 } 1429 1430 mutex_unlock(&mdsc->mutex); 1431 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1432 return ret; 1433 } 1434 1435 /* 1436 * called under s_mutex 1437 */ 1438 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1439 struct ceph_mds_session *session) 1440 { 1441 struct ceph_msg *msg; 1442 1443 dout("send_cap_releases mds%d\n", session->s_mds); 1444 spin_lock(&session->s_cap_lock); 1445 while (!list_empty(&session->s_cap_releases_done)) { 1446 msg = list_first_entry(&session->s_cap_releases_done, 1447 struct ceph_msg, list_head); 1448 list_del_init(&msg->list_head); 1449 spin_unlock(&session->s_cap_lock); 1450 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1451 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1452 ceph_con_send(&session->s_con, msg); 1453 spin_lock(&session->s_cap_lock); 1454 } 1455 spin_unlock(&session->s_cap_lock); 1456 } 1457 1458 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1459 struct ceph_mds_session *session) 1460 { 1461 struct ceph_msg *msg; 1462 struct ceph_mds_cap_release *head; 1463 unsigned num; 1464 1465 dout("discard_cap_releases mds%d\n", session->s_mds); 1466 1467 if (!list_empty(&session->s_cap_releases)) { 1468 /* zero out the in-progress message */ 1469 msg = list_first_entry(&session->s_cap_releases, 1470 struct ceph_msg, list_head); 1471 head = msg->front.iov_base; 1472 num = le32_to_cpu(head->num); 1473 dout("discard_cap_releases mds%d %p %u\n", 1474 session->s_mds, msg, num); 1475 head->num = cpu_to_le32(0); 1476 msg->front.iov_len = sizeof(*head); 1477 session->s_num_cap_releases += num; 1478 } 1479 1480 /* requeue completed messages */ 1481 while (!list_empty(&session->s_cap_releases_done)) { 1482 msg = list_first_entry(&session->s_cap_releases_done, 1483 struct ceph_msg, list_head); 1484 list_del_init(&msg->list_head); 1485 1486 head = msg->front.iov_base; 1487 num = le32_to_cpu(head->num); 1488 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1489 num); 1490 session->s_num_cap_releases += num; 1491 head->num = cpu_to_le32(0); 1492 msg->front.iov_len = sizeof(*head); 1493 list_add(&msg->list_head, &session->s_cap_releases); 1494 } 1495 } 1496 1497 /* 1498 * requests 1499 */ 1500 1501 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 1502 struct inode *dir) 1503 { 1504 struct ceph_inode_info *ci = ceph_inode(dir); 1505 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 1506 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 1507 size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) + 1508 sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease); 1509 int order, num_entries; 1510 1511 spin_lock(&ci->i_ceph_lock); 1512 num_entries = ci->i_files + ci->i_subdirs; 1513 spin_unlock(&ci->i_ceph_lock); 1514 num_entries = max(num_entries, 1); 1515 num_entries = min(num_entries, opt->max_readdir); 1516 1517 order = get_order(size * num_entries); 1518 while (order >= 0) { 1519 rinfo->dir_in = (void*)__get_free_pages(GFP_NOFS | __GFP_NOWARN, 1520 order); 1521 if (rinfo->dir_in) 1522 break; 1523 order--; 1524 } 1525 if (!rinfo->dir_in) 1526 return -ENOMEM; 1527 1528 num_entries = (PAGE_SIZE << order) / size; 1529 num_entries = min(num_entries, opt->max_readdir); 1530 1531 rinfo->dir_buf_size = PAGE_SIZE << order; 1532 req->r_num_caps = num_entries + 1; 1533 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 1534 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 1535 return 0; 1536 } 1537 1538 /* 1539 * Create an mds request. 1540 */ 1541 struct ceph_mds_request * 1542 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1543 { 1544 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1545 1546 if (!req) 1547 return ERR_PTR(-ENOMEM); 1548 1549 mutex_init(&req->r_fill_mutex); 1550 req->r_mdsc = mdsc; 1551 req->r_started = jiffies; 1552 req->r_resend_mds = -1; 1553 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1554 req->r_fmode = -1; 1555 kref_init(&req->r_kref); 1556 INIT_LIST_HEAD(&req->r_wait); 1557 init_completion(&req->r_completion); 1558 init_completion(&req->r_safe_completion); 1559 INIT_LIST_HEAD(&req->r_unsafe_item); 1560 1561 req->r_stamp = CURRENT_TIME; 1562 1563 req->r_op = op; 1564 req->r_direct_mode = mode; 1565 return req; 1566 } 1567 1568 /* 1569 * return oldest (lowest) request, tid in request tree, 0 if none. 1570 * 1571 * called under mdsc->mutex. 1572 */ 1573 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1574 { 1575 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1576 return NULL; 1577 return rb_entry(rb_first(&mdsc->request_tree), 1578 struct ceph_mds_request, r_node); 1579 } 1580 1581 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1582 { 1583 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1584 1585 if (req) 1586 return req->r_tid; 1587 return 0; 1588 } 1589 1590 /* 1591 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1592 * on build_path_from_dentry in fs/cifs/dir.c. 1593 * 1594 * If @stop_on_nosnap, generate path relative to the first non-snapped 1595 * inode. 1596 * 1597 * Encode hidden .snap dirs as a double /, i.e. 1598 * foo/.snap/bar -> foo//bar 1599 */ 1600 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1601 int stop_on_nosnap) 1602 { 1603 struct dentry *temp; 1604 char *path; 1605 int len, pos; 1606 unsigned seq; 1607 1608 if (dentry == NULL) 1609 return ERR_PTR(-EINVAL); 1610 1611 retry: 1612 len = 0; 1613 seq = read_seqbegin(&rename_lock); 1614 rcu_read_lock(); 1615 for (temp = dentry; !IS_ROOT(temp);) { 1616 struct inode *inode = temp->d_inode; 1617 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1618 len++; /* slash only */ 1619 else if (stop_on_nosnap && inode && 1620 ceph_snap(inode) == CEPH_NOSNAP) 1621 break; 1622 else 1623 len += 1 + temp->d_name.len; 1624 temp = temp->d_parent; 1625 } 1626 rcu_read_unlock(); 1627 if (len) 1628 len--; /* no leading '/' */ 1629 1630 path = kmalloc(len+1, GFP_NOFS); 1631 if (path == NULL) 1632 return ERR_PTR(-ENOMEM); 1633 pos = len; 1634 path[pos] = 0; /* trailing null */ 1635 rcu_read_lock(); 1636 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1637 struct inode *inode; 1638 1639 spin_lock(&temp->d_lock); 1640 inode = temp->d_inode; 1641 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1642 dout("build_path path+%d: %p SNAPDIR\n", 1643 pos, temp); 1644 } else if (stop_on_nosnap && inode && 1645 ceph_snap(inode) == CEPH_NOSNAP) { 1646 spin_unlock(&temp->d_lock); 1647 break; 1648 } else { 1649 pos -= temp->d_name.len; 1650 if (pos < 0) { 1651 spin_unlock(&temp->d_lock); 1652 break; 1653 } 1654 strncpy(path + pos, temp->d_name.name, 1655 temp->d_name.len); 1656 } 1657 spin_unlock(&temp->d_lock); 1658 if (pos) 1659 path[--pos] = '/'; 1660 temp = temp->d_parent; 1661 } 1662 rcu_read_unlock(); 1663 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1664 pr_err("build_path did not end path lookup where " 1665 "expected, namelen is %d, pos is %d\n", len, pos); 1666 /* presumably this is only possible if racing with a 1667 rename of one of the parent directories (we can not 1668 lock the dentries above us to prevent this, but 1669 retrying should be harmless) */ 1670 kfree(path); 1671 goto retry; 1672 } 1673 1674 *base = ceph_ino(temp->d_inode); 1675 *plen = len; 1676 dout("build_path on %p %d built %llx '%.*s'\n", 1677 dentry, d_count(dentry), *base, len, path); 1678 return path; 1679 } 1680 1681 static int build_dentry_path(struct dentry *dentry, 1682 const char **ppath, int *ppathlen, u64 *pino, 1683 int *pfreepath) 1684 { 1685 char *path; 1686 1687 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1688 *pino = ceph_ino(dentry->d_parent->d_inode); 1689 *ppath = dentry->d_name.name; 1690 *ppathlen = dentry->d_name.len; 1691 return 0; 1692 } 1693 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1694 if (IS_ERR(path)) 1695 return PTR_ERR(path); 1696 *ppath = path; 1697 *pfreepath = 1; 1698 return 0; 1699 } 1700 1701 static int build_inode_path(struct inode *inode, 1702 const char **ppath, int *ppathlen, u64 *pino, 1703 int *pfreepath) 1704 { 1705 struct dentry *dentry; 1706 char *path; 1707 1708 if (ceph_snap(inode) == CEPH_NOSNAP) { 1709 *pino = ceph_ino(inode); 1710 *ppathlen = 0; 1711 return 0; 1712 } 1713 dentry = d_find_alias(inode); 1714 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1715 dput(dentry); 1716 if (IS_ERR(path)) 1717 return PTR_ERR(path); 1718 *ppath = path; 1719 *pfreepath = 1; 1720 return 0; 1721 } 1722 1723 /* 1724 * request arguments may be specified via an inode *, a dentry *, or 1725 * an explicit ino+path. 1726 */ 1727 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1728 const char *rpath, u64 rino, 1729 const char **ppath, int *pathlen, 1730 u64 *ino, int *freepath) 1731 { 1732 int r = 0; 1733 1734 if (rinode) { 1735 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1736 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1737 ceph_snap(rinode)); 1738 } else if (rdentry) { 1739 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1740 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1741 *ppath); 1742 } else if (rpath || rino) { 1743 *ino = rino; 1744 *ppath = rpath; 1745 *pathlen = rpath ? strlen(rpath) : 0; 1746 dout(" path %.*s\n", *pathlen, rpath); 1747 } 1748 1749 return r; 1750 } 1751 1752 /* 1753 * called under mdsc->mutex 1754 */ 1755 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1756 struct ceph_mds_request *req, 1757 int mds) 1758 { 1759 struct ceph_msg *msg; 1760 struct ceph_mds_request_head *head; 1761 const char *path1 = NULL; 1762 const char *path2 = NULL; 1763 u64 ino1 = 0, ino2 = 0; 1764 int pathlen1 = 0, pathlen2 = 0; 1765 int freepath1 = 0, freepath2 = 0; 1766 int len; 1767 u16 releases; 1768 void *p, *end; 1769 int ret; 1770 1771 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1772 req->r_path1, req->r_ino1.ino, 1773 &path1, &pathlen1, &ino1, &freepath1); 1774 if (ret < 0) { 1775 msg = ERR_PTR(ret); 1776 goto out; 1777 } 1778 1779 ret = set_request_path_attr(NULL, req->r_old_dentry, 1780 req->r_path2, req->r_ino2.ino, 1781 &path2, &pathlen2, &ino2, &freepath2); 1782 if (ret < 0) { 1783 msg = ERR_PTR(ret); 1784 goto out_free1; 1785 } 1786 1787 len = sizeof(*head) + 1788 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) + 1789 sizeof(struct timespec); 1790 1791 /* calculate (max) length for cap releases */ 1792 len += sizeof(struct ceph_mds_request_release) * 1793 (!!req->r_inode_drop + !!req->r_dentry_drop + 1794 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1795 if (req->r_dentry_drop) 1796 len += req->r_dentry->d_name.len; 1797 if (req->r_old_dentry_drop) 1798 len += req->r_old_dentry->d_name.len; 1799 1800 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1801 if (!msg) { 1802 msg = ERR_PTR(-ENOMEM); 1803 goto out_free2; 1804 } 1805 1806 msg->hdr.version = 2; 1807 msg->hdr.tid = cpu_to_le64(req->r_tid); 1808 1809 head = msg->front.iov_base; 1810 p = msg->front.iov_base + sizeof(*head); 1811 end = msg->front.iov_base + msg->front.iov_len; 1812 1813 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1814 head->op = cpu_to_le32(req->r_op); 1815 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); 1816 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); 1817 head->args = req->r_args; 1818 1819 ceph_encode_filepath(&p, end, ino1, path1); 1820 ceph_encode_filepath(&p, end, ino2, path2); 1821 1822 /* make note of release offset, in case we need to replay */ 1823 req->r_request_release_offset = p - msg->front.iov_base; 1824 1825 /* cap releases */ 1826 releases = 0; 1827 if (req->r_inode_drop) 1828 releases += ceph_encode_inode_release(&p, 1829 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1830 mds, req->r_inode_drop, req->r_inode_unless, 0); 1831 if (req->r_dentry_drop) 1832 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1833 mds, req->r_dentry_drop, req->r_dentry_unless); 1834 if (req->r_old_dentry_drop) 1835 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1836 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1837 if (req->r_old_inode_drop) 1838 releases += ceph_encode_inode_release(&p, 1839 req->r_old_dentry->d_inode, 1840 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1841 head->num_releases = cpu_to_le16(releases); 1842 1843 /* time stamp */ 1844 ceph_encode_copy(&p, &req->r_stamp, sizeof(req->r_stamp)); 1845 1846 BUG_ON(p > end); 1847 msg->front.iov_len = p - msg->front.iov_base; 1848 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1849 1850 if (req->r_data_len) { 1851 /* outbound data set only by ceph_sync_setxattr() */ 1852 BUG_ON(!req->r_pages); 1853 ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0); 1854 } 1855 1856 msg->hdr.data_len = cpu_to_le32(req->r_data_len); 1857 msg->hdr.data_off = cpu_to_le16(0); 1858 1859 out_free2: 1860 if (freepath2) 1861 kfree((char *)path2); 1862 out_free1: 1863 if (freepath1) 1864 kfree((char *)path1); 1865 out: 1866 return msg; 1867 } 1868 1869 /* 1870 * called under mdsc->mutex if error, under no mutex if 1871 * success. 1872 */ 1873 static void complete_request(struct ceph_mds_client *mdsc, 1874 struct ceph_mds_request *req) 1875 { 1876 if (req->r_callback) 1877 req->r_callback(mdsc, req); 1878 else 1879 complete_all(&req->r_completion); 1880 } 1881 1882 /* 1883 * called under mdsc->mutex 1884 */ 1885 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1886 struct ceph_mds_request *req, 1887 int mds) 1888 { 1889 struct ceph_mds_request_head *rhead; 1890 struct ceph_msg *msg; 1891 int flags = 0; 1892 1893 req->r_attempts++; 1894 if (req->r_inode) { 1895 struct ceph_cap *cap = 1896 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 1897 1898 if (cap) 1899 req->r_sent_on_mseq = cap->mseq; 1900 else 1901 req->r_sent_on_mseq = -1; 1902 } 1903 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1904 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1905 1906 if (req->r_got_unsafe) { 1907 /* 1908 * Replay. Do not regenerate message (and rebuild 1909 * paths, etc.); just use the original message. 1910 * Rebuilding paths will break for renames because 1911 * d_move mangles the src name. 1912 */ 1913 msg = req->r_request; 1914 rhead = msg->front.iov_base; 1915 1916 flags = le32_to_cpu(rhead->flags); 1917 flags |= CEPH_MDS_FLAG_REPLAY; 1918 rhead->flags = cpu_to_le32(flags); 1919 1920 if (req->r_target_inode) 1921 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 1922 1923 rhead->num_retry = req->r_attempts - 1; 1924 1925 /* remove cap/dentry releases from message */ 1926 rhead->num_releases = 0; 1927 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset); 1928 msg->front.iov_len = req->r_request_release_offset; 1929 return 0; 1930 } 1931 1932 if (req->r_request) { 1933 ceph_msg_put(req->r_request); 1934 req->r_request = NULL; 1935 } 1936 msg = create_request_message(mdsc, req, mds); 1937 if (IS_ERR(msg)) { 1938 req->r_err = PTR_ERR(msg); 1939 complete_request(mdsc, req); 1940 return PTR_ERR(msg); 1941 } 1942 req->r_request = msg; 1943 1944 rhead = msg->front.iov_base; 1945 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 1946 if (req->r_got_unsafe) 1947 flags |= CEPH_MDS_FLAG_REPLAY; 1948 if (req->r_locked_dir) 1949 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 1950 rhead->flags = cpu_to_le32(flags); 1951 rhead->num_fwd = req->r_num_fwd; 1952 rhead->num_retry = req->r_attempts - 1; 1953 rhead->ino = 0; 1954 1955 dout(" r_locked_dir = %p\n", req->r_locked_dir); 1956 return 0; 1957 } 1958 1959 /* 1960 * send request, or put it on the appropriate wait list. 1961 */ 1962 static int __do_request(struct ceph_mds_client *mdsc, 1963 struct ceph_mds_request *req) 1964 { 1965 struct ceph_mds_session *session = NULL; 1966 int mds = -1; 1967 int err = -EAGAIN; 1968 1969 if (req->r_err || req->r_got_result) { 1970 if (req->r_aborted) 1971 __unregister_request(mdsc, req); 1972 goto out; 1973 } 1974 1975 if (req->r_timeout && 1976 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 1977 dout("do_request timed out\n"); 1978 err = -EIO; 1979 goto finish; 1980 } 1981 1982 put_request_session(req); 1983 1984 mds = __choose_mds(mdsc, req); 1985 if (mds < 0 || 1986 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 1987 dout("do_request no mds or not active, waiting for map\n"); 1988 list_add(&req->r_wait, &mdsc->waiting_for_map); 1989 goto out; 1990 } 1991 1992 /* get, open session */ 1993 session = __ceph_lookup_mds_session(mdsc, mds); 1994 if (!session) { 1995 session = register_session(mdsc, mds); 1996 if (IS_ERR(session)) { 1997 err = PTR_ERR(session); 1998 goto finish; 1999 } 2000 } 2001 req->r_session = get_session(session); 2002 2003 dout("do_request mds%d session %p state %s\n", mds, session, 2004 session_state_name(session->s_state)); 2005 if (session->s_state != CEPH_MDS_SESSION_OPEN && 2006 session->s_state != CEPH_MDS_SESSION_HUNG) { 2007 if (session->s_state == CEPH_MDS_SESSION_NEW || 2008 session->s_state == CEPH_MDS_SESSION_CLOSING) 2009 __open_session(mdsc, session); 2010 list_add(&req->r_wait, &session->s_waiting); 2011 goto out_session; 2012 } 2013 2014 /* send request */ 2015 req->r_resend_mds = -1; /* forget any previous mds hint */ 2016 2017 if (req->r_request_started == 0) /* note request start time */ 2018 req->r_request_started = jiffies; 2019 2020 err = __prepare_send_request(mdsc, req, mds); 2021 if (!err) { 2022 ceph_msg_get(req->r_request); 2023 ceph_con_send(&session->s_con, req->r_request); 2024 } 2025 2026 out_session: 2027 ceph_put_mds_session(session); 2028 out: 2029 return err; 2030 2031 finish: 2032 req->r_err = err; 2033 complete_request(mdsc, req); 2034 goto out; 2035 } 2036 2037 /* 2038 * called under mdsc->mutex 2039 */ 2040 static void __wake_requests(struct ceph_mds_client *mdsc, 2041 struct list_head *head) 2042 { 2043 struct ceph_mds_request *req; 2044 LIST_HEAD(tmp_list); 2045 2046 list_splice_init(head, &tmp_list); 2047 2048 while (!list_empty(&tmp_list)) { 2049 req = list_entry(tmp_list.next, 2050 struct ceph_mds_request, r_wait); 2051 list_del_init(&req->r_wait); 2052 dout(" wake request %p tid %llu\n", req, req->r_tid); 2053 __do_request(mdsc, req); 2054 } 2055 } 2056 2057 /* 2058 * Wake up threads with requests pending for @mds, so that they can 2059 * resubmit their requests to a possibly different mds. 2060 */ 2061 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 2062 { 2063 struct ceph_mds_request *req; 2064 struct rb_node *p; 2065 2066 dout("kick_requests mds%d\n", mds); 2067 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) { 2068 req = rb_entry(p, struct ceph_mds_request, r_node); 2069 if (req->r_got_unsafe) 2070 continue; 2071 if (req->r_session && 2072 req->r_session->s_mds == mds) { 2073 dout(" kicking tid %llu\n", req->r_tid); 2074 __do_request(mdsc, req); 2075 } 2076 } 2077 } 2078 2079 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 2080 struct ceph_mds_request *req) 2081 { 2082 dout("submit_request on %p\n", req); 2083 mutex_lock(&mdsc->mutex); 2084 __register_request(mdsc, req, NULL); 2085 __do_request(mdsc, req); 2086 mutex_unlock(&mdsc->mutex); 2087 } 2088 2089 /* 2090 * Synchrously perform an mds request. Take care of all of the 2091 * session setup, forwarding, retry details. 2092 */ 2093 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 2094 struct inode *dir, 2095 struct ceph_mds_request *req) 2096 { 2097 int err; 2098 2099 dout("do_request on %p\n", req); 2100 2101 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 2102 if (req->r_inode) 2103 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 2104 if (req->r_locked_dir) 2105 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 2106 if (req->r_old_dentry_dir) 2107 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 2108 CEPH_CAP_PIN); 2109 2110 /* issue */ 2111 mutex_lock(&mdsc->mutex); 2112 __register_request(mdsc, req, dir); 2113 __do_request(mdsc, req); 2114 2115 if (req->r_err) { 2116 err = req->r_err; 2117 __unregister_request(mdsc, req); 2118 dout("do_request early error %d\n", err); 2119 goto out; 2120 } 2121 2122 /* wait */ 2123 mutex_unlock(&mdsc->mutex); 2124 dout("do_request waiting\n"); 2125 if (req->r_timeout) { 2126 err = (long)wait_for_completion_killable_timeout( 2127 &req->r_completion, req->r_timeout); 2128 if (err == 0) 2129 err = -EIO; 2130 } else { 2131 err = wait_for_completion_killable(&req->r_completion); 2132 } 2133 dout("do_request waited, got %d\n", err); 2134 mutex_lock(&mdsc->mutex); 2135 2136 /* only abort if we didn't race with a real reply */ 2137 if (req->r_got_result) { 2138 err = le32_to_cpu(req->r_reply_info.head->result); 2139 } else if (err < 0) { 2140 dout("aborted request %lld with %d\n", req->r_tid, err); 2141 2142 /* 2143 * ensure we aren't running concurrently with 2144 * ceph_fill_trace or ceph_readdir_prepopulate, which 2145 * rely on locks (dir mutex) held by our caller. 2146 */ 2147 mutex_lock(&req->r_fill_mutex); 2148 req->r_err = err; 2149 req->r_aborted = true; 2150 mutex_unlock(&req->r_fill_mutex); 2151 2152 if (req->r_locked_dir && 2153 (req->r_op & CEPH_MDS_OP_WRITE)) 2154 ceph_invalidate_dir_request(req); 2155 } else { 2156 err = req->r_err; 2157 } 2158 2159 out: 2160 mutex_unlock(&mdsc->mutex); 2161 dout("do_request %p done, result %d\n", req, err); 2162 return err; 2163 } 2164 2165 /* 2166 * Invalidate dir's completeness, dentry lease state on an aborted MDS 2167 * namespace request. 2168 */ 2169 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2170 { 2171 struct inode *inode = req->r_locked_dir; 2172 2173 dout("invalidate_dir_request %p (complete, lease(s))\n", inode); 2174 2175 ceph_dir_clear_complete(inode); 2176 if (req->r_dentry) 2177 ceph_invalidate_dentry_lease(req->r_dentry); 2178 if (req->r_old_dentry) 2179 ceph_invalidate_dentry_lease(req->r_old_dentry); 2180 } 2181 2182 /* 2183 * Handle mds reply. 2184 * 2185 * We take the session mutex and parse and process the reply immediately. 2186 * This preserves the logical ordering of replies, capabilities, etc., sent 2187 * by the MDS as they are applied to our local cache. 2188 */ 2189 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2190 { 2191 struct ceph_mds_client *mdsc = session->s_mdsc; 2192 struct ceph_mds_request *req; 2193 struct ceph_mds_reply_head *head = msg->front.iov_base; 2194 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2195 u64 tid; 2196 int err, result; 2197 int mds = session->s_mds; 2198 2199 if (msg->front.iov_len < sizeof(*head)) { 2200 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2201 ceph_msg_dump(msg); 2202 return; 2203 } 2204 2205 /* get request, session */ 2206 tid = le64_to_cpu(msg->hdr.tid); 2207 mutex_lock(&mdsc->mutex); 2208 req = __lookup_request(mdsc, tid); 2209 if (!req) { 2210 dout("handle_reply on unknown tid %llu\n", tid); 2211 mutex_unlock(&mdsc->mutex); 2212 return; 2213 } 2214 dout("handle_reply %p\n", req); 2215 2216 /* correct session? */ 2217 if (req->r_session != session) { 2218 pr_err("mdsc_handle_reply got %llu on session mds%d" 2219 " not mds%d\n", tid, session->s_mds, 2220 req->r_session ? req->r_session->s_mds : -1); 2221 mutex_unlock(&mdsc->mutex); 2222 goto out; 2223 } 2224 2225 /* dup? */ 2226 if ((req->r_got_unsafe && !head->safe) || 2227 (req->r_got_safe && head->safe)) { 2228 pr_warn("got a dup %s reply on %llu from mds%d\n", 2229 head->safe ? "safe" : "unsafe", tid, mds); 2230 mutex_unlock(&mdsc->mutex); 2231 goto out; 2232 } 2233 if (req->r_got_safe && !head->safe) { 2234 pr_warn("got unsafe after safe on %llu from mds%d\n", 2235 tid, mds); 2236 mutex_unlock(&mdsc->mutex); 2237 goto out; 2238 } 2239 2240 result = le32_to_cpu(head->result); 2241 2242 /* 2243 * Handle an ESTALE 2244 * if we're not talking to the authority, send to them 2245 * if the authority has changed while we weren't looking, 2246 * send to new authority 2247 * Otherwise we just have to return an ESTALE 2248 */ 2249 if (result == -ESTALE) { 2250 dout("got ESTALE on request %llu", req->r_tid); 2251 if (req->r_direct_mode != USE_AUTH_MDS) { 2252 dout("not using auth, setting for that now"); 2253 req->r_direct_mode = USE_AUTH_MDS; 2254 __do_request(mdsc, req); 2255 mutex_unlock(&mdsc->mutex); 2256 goto out; 2257 } else { 2258 int mds = __choose_mds(mdsc, req); 2259 if (mds >= 0 && mds != req->r_session->s_mds) { 2260 dout("but auth changed, so resending"); 2261 __do_request(mdsc, req); 2262 mutex_unlock(&mdsc->mutex); 2263 goto out; 2264 } 2265 } 2266 dout("have to return ESTALE on request %llu", req->r_tid); 2267 } 2268 2269 2270 if (head->safe) { 2271 req->r_got_safe = true; 2272 __unregister_request(mdsc, req); 2273 2274 if (req->r_got_unsafe) { 2275 /* 2276 * We already handled the unsafe response, now do the 2277 * cleanup. No need to examine the response; the MDS 2278 * doesn't include any result info in the safe 2279 * response. And even if it did, there is nothing 2280 * useful we could do with a revised return value. 2281 */ 2282 dout("got safe reply %llu, mds%d\n", tid, mds); 2283 list_del_init(&req->r_unsafe_item); 2284 2285 /* last unsafe request during umount? */ 2286 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2287 complete_all(&mdsc->safe_umount_waiters); 2288 mutex_unlock(&mdsc->mutex); 2289 goto out; 2290 } 2291 } else { 2292 req->r_got_unsafe = true; 2293 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2294 } 2295 2296 dout("handle_reply tid %lld result %d\n", tid, result); 2297 rinfo = &req->r_reply_info; 2298 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2299 mutex_unlock(&mdsc->mutex); 2300 2301 mutex_lock(&session->s_mutex); 2302 if (err < 0) { 2303 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2304 ceph_msg_dump(msg); 2305 goto out_err; 2306 } 2307 2308 /* snap trace */ 2309 if (rinfo->snapblob_len) { 2310 down_write(&mdsc->snap_rwsem); 2311 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2312 rinfo->snapblob + rinfo->snapblob_len, 2313 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 2314 downgrade_write(&mdsc->snap_rwsem); 2315 } else { 2316 down_read(&mdsc->snap_rwsem); 2317 } 2318 2319 /* insert trace into our cache */ 2320 mutex_lock(&req->r_fill_mutex); 2321 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2322 if (err == 0) { 2323 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 2324 req->r_op == CEPH_MDS_OP_LSSNAP)) 2325 ceph_readdir_prepopulate(req, req->r_session); 2326 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2327 } 2328 mutex_unlock(&req->r_fill_mutex); 2329 2330 up_read(&mdsc->snap_rwsem); 2331 out_err: 2332 mutex_lock(&mdsc->mutex); 2333 if (!req->r_aborted) { 2334 if (err) { 2335 req->r_err = err; 2336 } else { 2337 req->r_reply = msg; 2338 ceph_msg_get(msg); 2339 req->r_got_result = true; 2340 } 2341 } else { 2342 dout("reply arrived after request %lld was aborted\n", tid); 2343 } 2344 mutex_unlock(&mdsc->mutex); 2345 2346 ceph_add_cap_releases(mdsc, req->r_session); 2347 mutex_unlock(&session->s_mutex); 2348 2349 /* kick calling process */ 2350 complete_request(mdsc, req); 2351 out: 2352 ceph_mdsc_put_request(req); 2353 return; 2354 } 2355 2356 2357 2358 /* 2359 * handle mds notification that our request has been forwarded. 2360 */ 2361 static void handle_forward(struct ceph_mds_client *mdsc, 2362 struct ceph_mds_session *session, 2363 struct ceph_msg *msg) 2364 { 2365 struct ceph_mds_request *req; 2366 u64 tid = le64_to_cpu(msg->hdr.tid); 2367 u32 next_mds; 2368 u32 fwd_seq; 2369 int err = -EINVAL; 2370 void *p = msg->front.iov_base; 2371 void *end = p + msg->front.iov_len; 2372 2373 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2374 next_mds = ceph_decode_32(&p); 2375 fwd_seq = ceph_decode_32(&p); 2376 2377 mutex_lock(&mdsc->mutex); 2378 req = __lookup_request(mdsc, tid); 2379 if (!req) { 2380 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2381 goto out; /* dup reply? */ 2382 } 2383 2384 if (req->r_aborted) { 2385 dout("forward tid %llu aborted, unregistering\n", tid); 2386 __unregister_request(mdsc, req); 2387 } else if (fwd_seq <= req->r_num_fwd) { 2388 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2389 tid, next_mds, req->r_num_fwd, fwd_seq); 2390 } else { 2391 /* resend. forward race not possible; mds would drop */ 2392 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2393 BUG_ON(req->r_err); 2394 BUG_ON(req->r_got_result); 2395 req->r_num_fwd = fwd_seq; 2396 req->r_resend_mds = next_mds; 2397 put_request_session(req); 2398 __do_request(mdsc, req); 2399 } 2400 ceph_mdsc_put_request(req); 2401 out: 2402 mutex_unlock(&mdsc->mutex); 2403 return; 2404 2405 bad: 2406 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2407 } 2408 2409 /* 2410 * handle a mds session control message 2411 */ 2412 static void handle_session(struct ceph_mds_session *session, 2413 struct ceph_msg *msg) 2414 { 2415 struct ceph_mds_client *mdsc = session->s_mdsc; 2416 u32 op; 2417 u64 seq; 2418 int mds = session->s_mds; 2419 struct ceph_mds_session_head *h = msg->front.iov_base; 2420 int wake = 0; 2421 2422 /* decode */ 2423 if (msg->front.iov_len != sizeof(*h)) 2424 goto bad; 2425 op = le32_to_cpu(h->op); 2426 seq = le64_to_cpu(h->seq); 2427 2428 mutex_lock(&mdsc->mutex); 2429 if (op == CEPH_SESSION_CLOSE) 2430 __unregister_session(mdsc, session); 2431 /* FIXME: this ttl calculation is generous */ 2432 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2433 mutex_unlock(&mdsc->mutex); 2434 2435 mutex_lock(&session->s_mutex); 2436 2437 dout("handle_session mds%d %s %p state %s seq %llu\n", 2438 mds, ceph_session_op_name(op), session, 2439 session_state_name(session->s_state), seq); 2440 2441 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2442 session->s_state = CEPH_MDS_SESSION_OPEN; 2443 pr_info("mds%d came back\n", session->s_mds); 2444 } 2445 2446 switch (op) { 2447 case CEPH_SESSION_OPEN: 2448 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2449 pr_info("mds%d reconnect success\n", session->s_mds); 2450 session->s_state = CEPH_MDS_SESSION_OPEN; 2451 renewed_caps(mdsc, session, 0); 2452 wake = 1; 2453 if (mdsc->stopping) 2454 __close_session(mdsc, session); 2455 break; 2456 2457 case CEPH_SESSION_RENEWCAPS: 2458 if (session->s_renew_seq == seq) 2459 renewed_caps(mdsc, session, 1); 2460 break; 2461 2462 case CEPH_SESSION_CLOSE: 2463 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2464 pr_info("mds%d reconnect denied\n", session->s_mds); 2465 remove_session_caps(session); 2466 wake = 1; /* for good measure */ 2467 wake_up_all(&mdsc->session_close_wq); 2468 kick_requests(mdsc, mds); 2469 break; 2470 2471 case CEPH_SESSION_STALE: 2472 pr_info("mds%d caps went stale, renewing\n", 2473 session->s_mds); 2474 spin_lock(&session->s_gen_ttl_lock); 2475 session->s_cap_gen++; 2476 session->s_cap_ttl = jiffies - 1; 2477 spin_unlock(&session->s_gen_ttl_lock); 2478 send_renew_caps(mdsc, session); 2479 break; 2480 2481 case CEPH_SESSION_RECALL_STATE: 2482 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2483 break; 2484 2485 case CEPH_SESSION_FLUSHMSG: 2486 send_flushmsg_ack(mdsc, session, seq); 2487 break; 2488 2489 default: 2490 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2491 WARN_ON(1); 2492 } 2493 2494 mutex_unlock(&session->s_mutex); 2495 if (wake) { 2496 mutex_lock(&mdsc->mutex); 2497 __wake_requests(mdsc, &session->s_waiting); 2498 mutex_unlock(&mdsc->mutex); 2499 } 2500 return; 2501 2502 bad: 2503 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2504 (int)msg->front.iov_len); 2505 ceph_msg_dump(msg); 2506 return; 2507 } 2508 2509 2510 /* 2511 * called under session->mutex. 2512 */ 2513 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2514 struct ceph_mds_session *session) 2515 { 2516 struct ceph_mds_request *req, *nreq; 2517 int err; 2518 2519 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2520 2521 mutex_lock(&mdsc->mutex); 2522 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2523 err = __prepare_send_request(mdsc, req, session->s_mds); 2524 if (!err) { 2525 ceph_msg_get(req->r_request); 2526 ceph_con_send(&session->s_con, req->r_request); 2527 } 2528 } 2529 mutex_unlock(&mdsc->mutex); 2530 } 2531 2532 /* 2533 * Encode information about a cap for a reconnect with the MDS. 2534 */ 2535 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2536 void *arg) 2537 { 2538 union { 2539 struct ceph_mds_cap_reconnect v2; 2540 struct ceph_mds_cap_reconnect_v1 v1; 2541 } rec; 2542 size_t reclen; 2543 struct ceph_inode_info *ci; 2544 struct ceph_reconnect_state *recon_state = arg; 2545 struct ceph_pagelist *pagelist = recon_state->pagelist; 2546 char *path; 2547 int pathlen, err; 2548 u64 pathbase; 2549 struct dentry *dentry; 2550 2551 ci = cap->ci; 2552 2553 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2554 inode, ceph_vinop(inode), cap, cap->cap_id, 2555 ceph_cap_string(cap->issued)); 2556 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2557 if (err) 2558 return err; 2559 2560 dentry = d_find_alias(inode); 2561 if (dentry) { 2562 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2563 if (IS_ERR(path)) { 2564 err = PTR_ERR(path); 2565 goto out_dput; 2566 } 2567 } else { 2568 path = NULL; 2569 pathlen = 0; 2570 } 2571 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2572 if (err) 2573 goto out_free; 2574 2575 spin_lock(&ci->i_ceph_lock); 2576 cap->seq = 0; /* reset cap seq */ 2577 cap->issue_seq = 0; /* and issue_seq */ 2578 cap->mseq = 0; /* and migrate_seq */ 2579 cap->cap_gen = cap->session->s_cap_gen; 2580 2581 if (recon_state->flock) { 2582 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2583 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2584 rec.v2.issued = cpu_to_le32(cap->issued); 2585 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2586 rec.v2.pathbase = cpu_to_le64(pathbase); 2587 rec.v2.flock_len = 0; 2588 reclen = sizeof(rec.v2); 2589 } else { 2590 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2591 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2592 rec.v1.issued = cpu_to_le32(cap->issued); 2593 rec.v1.size = cpu_to_le64(inode->i_size); 2594 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2595 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2596 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2597 rec.v1.pathbase = cpu_to_le64(pathbase); 2598 reclen = sizeof(rec.v1); 2599 } 2600 spin_unlock(&ci->i_ceph_lock); 2601 2602 if (recon_state->flock) { 2603 int num_fcntl_locks, num_flock_locks; 2604 struct ceph_filelock *flocks; 2605 2606 encode_again: 2607 spin_lock(&inode->i_lock); 2608 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 2609 spin_unlock(&inode->i_lock); 2610 flocks = kmalloc((num_fcntl_locks+num_flock_locks) * 2611 sizeof(struct ceph_filelock), GFP_NOFS); 2612 if (!flocks) { 2613 err = -ENOMEM; 2614 goto out_free; 2615 } 2616 spin_lock(&inode->i_lock); 2617 err = ceph_encode_locks_to_buffer(inode, flocks, 2618 num_fcntl_locks, 2619 num_flock_locks); 2620 spin_unlock(&inode->i_lock); 2621 if (err) { 2622 kfree(flocks); 2623 if (err == -ENOSPC) 2624 goto encode_again; 2625 goto out_free; 2626 } 2627 /* 2628 * number of encoded locks is stable, so copy to pagelist 2629 */ 2630 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) + 2631 (num_fcntl_locks+num_flock_locks) * 2632 sizeof(struct ceph_filelock)); 2633 err = ceph_pagelist_append(pagelist, &rec, reclen); 2634 if (!err) 2635 err = ceph_locks_to_pagelist(flocks, pagelist, 2636 num_fcntl_locks, 2637 num_flock_locks); 2638 kfree(flocks); 2639 } else { 2640 err = ceph_pagelist_append(pagelist, &rec, reclen); 2641 } 2642 2643 recon_state->nr_caps++; 2644 out_free: 2645 kfree(path); 2646 out_dput: 2647 dput(dentry); 2648 return err; 2649 } 2650 2651 2652 /* 2653 * If an MDS fails and recovers, clients need to reconnect in order to 2654 * reestablish shared state. This includes all caps issued through 2655 * this session _and_ the snap_realm hierarchy. Because it's not 2656 * clear which snap realms the mds cares about, we send everything we 2657 * know about.. that ensures we'll then get any new info the 2658 * recovering MDS might have. 2659 * 2660 * This is a relatively heavyweight operation, but it's rare. 2661 * 2662 * called with mdsc->mutex held. 2663 */ 2664 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2665 struct ceph_mds_session *session) 2666 { 2667 struct ceph_msg *reply; 2668 struct rb_node *p; 2669 int mds = session->s_mds; 2670 int err = -ENOMEM; 2671 int s_nr_caps; 2672 struct ceph_pagelist *pagelist; 2673 struct ceph_reconnect_state recon_state; 2674 2675 pr_info("mds%d reconnect start\n", mds); 2676 2677 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2678 if (!pagelist) 2679 goto fail_nopagelist; 2680 ceph_pagelist_init(pagelist); 2681 2682 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2683 if (!reply) 2684 goto fail_nomsg; 2685 2686 mutex_lock(&session->s_mutex); 2687 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2688 session->s_seq = 0; 2689 2690 ceph_con_close(&session->s_con); 2691 ceph_con_open(&session->s_con, 2692 CEPH_ENTITY_TYPE_MDS, mds, 2693 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2694 2695 /* replay unsafe requests */ 2696 replay_unsafe_requests(mdsc, session); 2697 2698 down_read(&mdsc->snap_rwsem); 2699 2700 dout("session %p state %s\n", session, 2701 session_state_name(session->s_state)); 2702 2703 spin_lock(&session->s_gen_ttl_lock); 2704 session->s_cap_gen++; 2705 spin_unlock(&session->s_gen_ttl_lock); 2706 2707 spin_lock(&session->s_cap_lock); 2708 /* 2709 * notify __ceph_remove_cap() that we are composing cap reconnect. 2710 * If a cap get released before being added to the cap reconnect, 2711 * __ceph_remove_cap() should skip queuing cap release. 2712 */ 2713 session->s_cap_reconnect = 1; 2714 /* drop old cap expires; we're about to reestablish that state */ 2715 discard_cap_releases(mdsc, session); 2716 spin_unlock(&session->s_cap_lock); 2717 2718 /* traverse this session's caps */ 2719 s_nr_caps = session->s_nr_caps; 2720 err = ceph_pagelist_encode_32(pagelist, s_nr_caps); 2721 if (err) 2722 goto fail; 2723 2724 recon_state.nr_caps = 0; 2725 recon_state.pagelist = pagelist; 2726 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2727 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2728 if (err < 0) 2729 goto fail; 2730 2731 spin_lock(&session->s_cap_lock); 2732 session->s_cap_reconnect = 0; 2733 spin_unlock(&session->s_cap_lock); 2734 2735 /* 2736 * snaprealms. we provide mds with the ino, seq (version), and 2737 * parent for all of our realms. If the mds has any newer info, 2738 * it will tell us. 2739 */ 2740 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2741 struct ceph_snap_realm *realm = 2742 rb_entry(p, struct ceph_snap_realm, node); 2743 struct ceph_mds_snaprealm_reconnect sr_rec; 2744 2745 dout(" adding snap realm %llx seq %lld parent %llx\n", 2746 realm->ino, realm->seq, realm->parent_ino); 2747 sr_rec.ino = cpu_to_le64(realm->ino); 2748 sr_rec.seq = cpu_to_le64(realm->seq); 2749 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2750 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2751 if (err) 2752 goto fail; 2753 } 2754 2755 if (recon_state.flock) 2756 reply->hdr.version = cpu_to_le16(2); 2757 2758 /* raced with cap release? */ 2759 if (s_nr_caps != recon_state.nr_caps) { 2760 struct page *page = list_first_entry(&pagelist->head, 2761 struct page, lru); 2762 __le32 *addr = kmap_atomic(page); 2763 *addr = cpu_to_le32(recon_state.nr_caps); 2764 kunmap_atomic(addr); 2765 } 2766 2767 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2768 ceph_msg_data_add_pagelist(reply, pagelist); 2769 ceph_con_send(&session->s_con, reply); 2770 2771 mutex_unlock(&session->s_mutex); 2772 2773 mutex_lock(&mdsc->mutex); 2774 __wake_requests(mdsc, &session->s_waiting); 2775 mutex_unlock(&mdsc->mutex); 2776 2777 up_read(&mdsc->snap_rwsem); 2778 return; 2779 2780 fail: 2781 ceph_msg_put(reply); 2782 up_read(&mdsc->snap_rwsem); 2783 mutex_unlock(&session->s_mutex); 2784 fail_nomsg: 2785 ceph_pagelist_release(pagelist); 2786 kfree(pagelist); 2787 fail_nopagelist: 2788 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2789 return; 2790 } 2791 2792 2793 /* 2794 * compare old and new mdsmaps, kicking requests 2795 * and closing out old connections as necessary 2796 * 2797 * called under mdsc->mutex. 2798 */ 2799 static void check_new_map(struct ceph_mds_client *mdsc, 2800 struct ceph_mdsmap *newmap, 2801 struct ceph_mdsmap *oldmap) 2802 { 2803 int i; 2804 int oldstate, newstate; 2805 struct ceph_mds_session *s; 2806 2807 dout("check_new_map new %u old %u\n", 2808 newmap->m_epoch, oldmap->m_epoch); 2809 2810 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2811 if (mdsc->sessions[i] == NULL) 2812 continue; 2813 s = mdsc->sessions[i]; 2814 oldstate = ceph_mdsmap_get_state(oldmap, i); 2815 newstate = ceph_mdsmap_get_state(newmap, i); 2816 2817 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 2818 i, ceph_mds_state_name(oldstate), 2819 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 2820 ceph_mds_state_name(newstate), 2821 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 2822 session_state_name(s->s_state)); 2823 2824 if (i >= newmap->m_max_mds || 2825 memcmp(ceph_mdsmap_get_addr(oldmap, i), 2826 ceph_mdsmap_get_addr(newmap, i), 2827 sizeof(struct ceph_entity_addr))) { 2828 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2829 /* the session never opened, just close it 2830 * out now */ 2831 __wake_requests(mdsc, &s->s_waiting); 2832 __unregister_session(mdsc, s); 2833 } else { 2834 /* just close it */ 2835 mutex_unlock(&mdsc->mutex); 2836 mutex_lock(&s->s_mutex); 2837 mutex_lock(&mdsc->mutex); 2838 ceph_con_close(&s->s_con); 2839 mutex_unlock(&s->s_mutex); 2840 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2841 } 2842 2843 /* kick any requests waiting on the recovering mds */ 2844 kick_requests(mdsc, i); 2845 } else if (oldstate == newstate) { 2846 continue; /* nothing new with this mds */ 2847 } 2848 2849 /* 2850 * send reconnect? 2851 */ 2852 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2853 newstate >= CEPH_MDS_STATE_RECONNECT) { 2854 mutex_unlock(&mdsc->mutex); 2855 send_mds_reconnect(mdsc, s); 2856 mutex_lock(&mdsc->mutex); 2857 } 2858 2859 /* 2860 * kick request on any mds that has gone active. 2861 */ 2862 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2863 newstate >= CEPH_MDS_STATE_ACTIVE) { 2864 if (oldstate != CEPH_MDS_STATE_CREATING && 2865 oldstate != CEPH_MDS_STATE_STARTING) 2866 pr_info("mds%d recovery completed\n", s->s_mds); 2867 kick_requests(mdsc, i); 2868 ceph_kick_flushing_caps(mdsc, s); 2869 wake_up_session_caps(s, 1); 2870 } 2871 } 2872 2873 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 2874 s = mdsc->sessions[i]; 2875 if (!s) 2876 continue; 2877 if (!ceph_mdsmap_is_laggy(newmap, i)) 2878 continue; 2879 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2880 s->s_state == CEPH_MDS_SESSION_HUNG || 2881 s->s_state == CEPH_MDS_SESSION_CLOSING) { 2882 dout(" connecting to export targets of laggy mds%d\n", 2883 i); 2884 __open_export_target_sessions(mdsc, s); 2885 } 2886 } 2887 } 2888 2889 2890 2891 /* 2892 * leases 2893 */ 2894 2895 /* 2896 * caller must hold session s_mutex, dentry->d_lock 2897 */ 2898 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2899 { 2900 struct ceph_dentry_info *di = ceph_dentry(dentry); 2901 2902 ceph_put_mds_session(di->lease_session); 2903 di->lease_session = NULL; 2904 } 2905 2906 static void handle_lease(struct ceph_mds_client *mdsc, 2907 struct ceph_mds_session *session, 2908 struct ceph_msg *msg) 2909 { 2910 struct super_block *sb = mdsc->fsc->sb; 2911 struct inode *inode; 2912 struct dentry *parent, *dentry; 2913 struct ceph_dentry_info *di; 2914 int mds = session->s_mds; 2915 struct ceph_mds_lease *h = msg->front.iov_base; 2916 u32 seq; 2917 struct ceph_vino vino; 2918 struct qstr dname; 2919 int release = 0; 2920 2921 dout("handle_lease from mds%d\n", mds); 2922 2923 /* decode */ 2924 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 2925 goto bad; 2926 vino.ino = le64_to_cpu(h->ino); 2927 vino.snap = CEPH_NOSNAP; 2928 seq = le32_to_cpu(h->seq); 2929 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 2930 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 2931 if (dname.len != get_unaligned_le32(h+1)) 2932 goto bad; 2933 2934 mutex_lock(&session->s_mutex); 2935 session->s_seq++; 2936 2937 /* lookup inode */ 2938 inode = ceph_find_inode(sb, vino); 2939 dout("handle_lease %s, ino %llx %p %.*s\n", 2940 ceph_lease_op_name(h->action), vino.ino, inode, 2941 dname.len, dname.name); 2942 if (inode == NULL) { 2943 dout("handle_lease no inode %llx\n", vino.ino); 2944 goto release; 2945 } 2946 2947 /* dentry */ 2948 parent = d_find_alias(inode); 2949 if (!parent) { 2950 dout("no parent dentry on inode %p\n", inode); 2951 WARN_ON(1); 2952 goto release; /* hrm... */ 2953 } 2954 dname.hash = full_name_hash(dname.name, dname.len); 2955 dentry = d_lookup(parent, &dname); 2956 dput(parent); 2957 if (!dentry) 2958 goto release; 2959 2960 spin_lock(&dentry->d_lock); 2961 di = ceph_dentry(dentry); 2962 switch (h->action) { 2963 case CEPH_MDS_LEASE_REVOKE: 2964 if (di->lease_session == session) { 2965 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 2966 h->seq = cpu_to_le32(di->lease_seq); 2967 __ceph_mdsc_drop_dentry_lease(dentry); 2968 } 2969 release = 1; 2970 break; 2971 2972 case CEPH_MDS_LEASE_RENEW: 2973 if (di->lease_session == session && 2974 di->lease_gen == session->s_cap_gen && 2975 di->lease_renew_from && 2976 di->lease_renew_after == 0) { 2977 unsigned long duration = 2978 le32_to_cpu(h->duration_ms) * HZ / 1000; 2979 2980 di->lease_seq = seq; 2981 dentry->d_time = di->lease_renew_from + duration; 2982 di->lease_renew_after = di->lease_renew_from + 2983 (duration >> 1); 2984 di->lease_renew_from = 0; 2985 } 2986 break; 2987 } 2988 spin_unlock(&dentry->d_lock); 2989 dput(dentry); 2990 2991 if (!release) 2992 goto out; 2993 2994 release: 2995 /* let's just reuse the same message */ 2996 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 2997 ceph_msg_get(msg); 2998 ceph_con_send(&session->s_con, msg); 2999 3000 out: 3001 iput(inode); 3002 mutex_unlock(&session->s_mutex); 3003 return; 3004 3005 bad: 3006 pr_err("corrupt lease message\n"); 3007 ceph_msg_dump(msg); 3008 } 3009 3010 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 3011 struct inode *inode, 3012 struct dentry *dentry, char action, 3013 u32 seq) 3014 { 3015 struct ceph_msg *msg; 3016 struct ceph_mds_lease *lease; 3017 int len = sizeof(*lease) + sizeof(u32); 3018 int dnamelen = 0; 3019 3020 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 3021 inode, dentry, ceph_lease_op_name(action), session->s_mds); 3022 dnamelen = dentry->d_name.len; 3023 len += dnamelen; 3024 3025 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 3026 if (!msg) 3027 return; 3028 lease = msg->front.iov_base; 3029 lease->action = action; 3030 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 3031 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 3032 lease->seq = cpu_to_le32(seq); 3033 put_unaligned_le32(dnamelen, lease + 1); 3034 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 3035 3036 /* 3037 * if this is a preemptive lease RELEASE, no need to 3038 * flush request stream, since the actual request will 3039 * soon follow. 3040 */ 3041 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 3042 3043 ceph_con_send(&session->s_con, msg); 3044 } 3045 3046 /* 3047 * Preemptively release a lease we expect to invalidate anyway. 3048 * Pass @inode always, @dentry is optional. 3049 */ 3050 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 3051 struct dentry *dentry) 3052 { 3053 struct ceph_dentry_info *di; 3054 struct ceph_mds_session *session; 3055 u32 seq; 3056 3057 BUG_ON(inode == NULL); 3058 BUG_ON(dentry == NULL); 3059 3060 /* is dentry lease valid? */ 3061 spin_lock(&dentry->d_lock); 3062 di = ceph_dentry(dentry); 3063 if (!di || !di->lease_session || 3064 di->lease_session->s_mds < 0 || 3065 di->lease_gen != di->lease_session->s_cap_gen || 3066 !time_before(jiffies, dentry->d_time)) { 3067 dout("lease_release inode %p dentry %p -- " 3068 "no lease\n", 3069 inode, dentry); 3070 spin_unlock(&dentry->d_lock); 3071 return; 3072 } 3073 3074 /* we do have a lease on this dentry; note mds and seq */ 3075 session = ceph_get_mds_session(di->lease_session); 3076 seq = di->lease_seq; 3077 __ceph_mdsc_drop_dentry_lease(dentry); 3078 spin_unlock(&dentry->d_lock); 3079 3080 dout("lease_release inode %p dentry %p to mds%d\n", 3081 inode, dentry, session->s_mds); 3082 ceph_mdsc_lease_send_msg(session, inode, dentry, 3083 CEPH_MDS_LEASE_RELEASE, seq); 3084 ceph_put_mds_session(session); 3085 } 3086 3087 /* 3088 * drop all leases (and dentry refs) in preparation for umount 3089 */ 3090 static void drop_leases(struct ceph_mds_client *mdsc) 3091 { 3092 int i; 3093 3094 dout("drop_leases\n"); 3095 mutex_lock(&mdsc->mutex); 3096 for (i = 0; i < mdsc->max_sessions; i++) { 3097 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3098 if (!s) 3099 continue; 3100 mutex_unlock(&mdsc->mutex); 3101 mutex_lock(&s->s_mutex); 3102 mutex_unlock(&s->s_mutex); 3103 ceph_put_mds_session(s); 3104 mutex_lock(&mdsc->mutex); 3105 } 3106 mutex_unlock(&mdsc->mutex); 3107 } 3108 3109 3110 3111 /* 3112 * delayed work -- periodically trim expired leases, renew caps with mds 3113 */ 3114 static void schedule_delayed(struct ceph_mds_client *mdsc) 3115 { 3116 int delay = 5; 3117 unsigned hz = round_jiffies_relative(HZ * delay); 3118 schedule_delayed_work(&mdsc->delayed_work, hz); 3119 } 3120 3121 static void delayed_work(struct work_struct *work) 3122 { 3123 int i; 3124 struct ceph_mds_client *mdsc = 3125 container_of(work, struct ceph_mds_client, delayed_work.work); 3126 int renew_interval; 3127 int renew_caps; 3128 3129 dout("mdsc delayed_work\n"); 3130 ceph_check_delayed_caps(mdsc); 3131 3132 mutex_lock(&mdsc->mutex); 3133 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 3134 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 3135 mdsc->last_renew_caps); 3136 if (renew_caps) 3137 mdsc->last_renew_caps = jiffies; 3138 3139 for (i = 0; i < mdsc->max_sessions; i++) { 3140 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3141 if (s == NULL) 3142 continue; 3143 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 3144 dout("resending session close request for mds%d\n", 3145 s->s_mds); 3146 request_close_session(mdsc, s); 3147 ceph_put_mds_session(s); 3148 continue; 3149 } 3150 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 3151 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 3152 s->s_state = CEPH_MDS_SESSION_HUNG; 3153 pr_info("mds%d hung\n", s->s_mds); 3154 } 3155 } 3156 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 3157 /* this mds is failed or recovering, just wait */ 3158 ceph_put_mds_session(s); 3159 continue; 3160 } 3161 mutex_unlock(&mdsc->mutex); 3162 3163 mutex_lock(&s->s_mutex); 3164 if (renew_caps) 3165 send_renew_caps(mdsc, s); 3166 else 3167 ceph_con_keepalive(&s->s_con); 3168 ceph_add_cap_releases(mdsc, s); 3169 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3170 s->s_state == CEPH_MDS_SESSION_HUNG) 3171 ceph_send_cap_releases(mdsc, s); 3172 mutex_unlock(&s->s_mutex); 3173 ceph_put_mds_session(s); 3174 3175 mutex_lock(&mdsc->mutex); 3176 } 3177 mutex_unlock(&mdsc->mutex); 3178 3179 schedule_delayed(mdsc); 3180 } 3181 3182 int ceph_mdsc_init(struct ceph_fs_client *fsc) 3183 3184 { 3185 struct ceph_mds_client *mdsc; 3186 3187 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 3188 if (!mdsc) 3189 return -ENOMEM; 3190 mdsc->fsc = fsc; 3191 fsc->mdsc = mdsc; 3192 mutex_init(&mdsc->mutex); 3193 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3194 if (mdsc->mdsmap == NULL) { 3195 kfree(mdsc); 3196 return -ENOMEM; 3197 } 3198 3199 init_completion(&mdsc->safe_umount_waiters); 3200 init_waitqueue_head(&mdsc->session_close_wq); 3201 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3202 mdsc->sessions = NULL; 3203 mdsc->max_sessions = 0; 3204 mdsc->stopping = 0; 3205 init_rwsem(&mdsc->snap_rwsem); 3206 mdsc->snap_realms = RB_ROOT; 3207 INIT_LIST_HEAD(&mdsc->snap_empty); 3208 spin_lock_init(&mdsc->snap_empty_lock); 3209 mdsc->last_tid = 0; 3210 mdsc->request_tree = RB_ROOT; 3211 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3212 mdsc->last_renew_caps = jiffies; 3213 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3214 spin_lock_init(&mdsc->cap_delay_lock); 3215 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3216 spin_lock_init(&mdsc->snap_flush_lock); 3217 mdsc->cap_flush_seq = 0; 3218 INIT_LIST_HEAD(&mdsc->cap_dirty); 3219 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3220 mdsc->num_cap_flushing = 0; 3221 spin_lock_init(&mdsc->cap_dirty_lock); 3222 init_waitqueue_head(&mdsc->cap_flushing_wq); 3223 spin_lock_init(&mdsc->dentry_lru_lock); 3224 INIT_LIST_HEAD(&mdsc->dentry_lru); 3225 3226 ceph_caps_init(mdsc); 3227 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3228 3229 return 0; 3230 } 3231 3232 /* 3233 * Wait for safe replies on open mds requests. If we time out, drop 3234 * all requests from the tree to avoid dangling dentry refs. 3235 */ 3236 static void wait_requests(struct ceph_mds_client *mdsc) 3237 { 3238 struct ceph_mds_request *req; 3239 struct ceph_fs_client *fsc = mdsc->fsc; 3240 3241 mutex_lock(&mdsc->mutex); 3242 if (__get_oldest_req(mdsc)) { 3243 mutex_unlock(&mdsc->mutex); 3244 3245 dout("wait_requests waiting for requests\n"); 3246 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3247 fsc->client->options->mount_timeout * HZ); 3248 3249 /* tear down remaining requests */ 3250 mutex_lock(&mdsc->mutex); 3251 while ((req = __get_oldest_req(mdsc))) { 3252 dout("wait_requests timed out on tid %llu\n", 3253 req->r_tid); 3254 __unregister_request(mdsc, req); 3255 } 3256 } 3257 mutex_unlock(&mdsc->mutex); 3258 dout("wait_requests done\n"); 3259 } 3260 3261 /* 3262 * called before mount is ro, and before dentries are torn down. 3263 * (hmm, does this still race with new lookups?) 3264 */ 3265 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3266 { 3267 dout("pre_umount\n"); 3268 mdsc->stopping = 1; 3269 3270 drop_leases(mdsc); 3271 ceph_flush_dirty_caps(mdsc); 3272 wait_requests(mdsc); 3273 3274 /* 3275 * wait for reply handlers to drop their request refs and 3276 * their inode/dcache refs 3277 */ 3278 ceph_msgr_flush(); 3279 } 3280 3281 /* 3282 * wait for all write mds requests to flush. 3283 */ 3284 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3285 { 3286 struct ceph_mds_request *req = NULL, *nextreq; 3287 struct rb_node *n; 3288 3289 mutex_lock(&mdsc->mutex); 3290 dout("wait_unsafe_requests want %lld\n", want_tid); 3291 restart: 3292 req = __get_oldest_req(mdsc); 3293 while (req && req->r_tid <= want_tid) { 3294 /* find next request */ 3295 n = rb_next(&req->r_node); 3296 if (n) 3297 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3298 else 3299 nextreq = NULL; 3300 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3301 /* write op */ 3302 ceph_mdsc_get_request(req); 3303 if (nextreq) 3304 ceph_mdsc_get_request(nextreq); 3305 mutex_unlock(&mdsc->mutex); 3306 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3307 req->r_tid, want_tid); 3308 wait_for_completion(&req->r_safe_completion); 3309 mutex_lock(&mdsc->mutex); 3310 ceph_mdsc_put_request(req); 3311 if (!nextreq) 3312 break; /* next dne before, so we're done! */ 3313 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3314 /* next request was removed from tree */ 3315 ceph_mdsc_put_request(nextreq); 3316 goto restart; 3317 } 3318 ceph_mdsc_put_request(nextreq); /* won't go away */ 3319 } 3320 req = nextreq; 3321 } 3322 mutex_unlock(&mdsc->mutex); 3323 dout("wait_unsafe_requests done\n"); 3324 } 3325 3326 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3327 { 3328 u64 want_tid, want_flush; 3329 3330 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3331 return; 3332 3333 dout("sync\n"); 3334 mutex_lock(&mdsc->mutex); 3335 want_tid = mdsc->last_tid; 3336 want_flush = mdsc->cap_flush_seq; 3337 mutex_unlock(&mdsc->mutex); 3338 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3339 3340 ceph_flush_dirty_caps(mdsc); 3341 3342 wait_unsafe_requests(mdsc, want_tid); 3343 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 3344 } 3345 3346 /* 3347 * true if all sessions are closed, or we force unmount 3348 */ 3349 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3350 { 3351 int i, n = 0; 3352 3353 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3354 return true; 3355 3356 mutex_lock(&mdsc->mutex); 3357 for (i = 0; i < mdsc->max_sessions; i++) 3358 if (mdsc->sessions[i]) 3359 n++; 3360 mutex_unlock(&mdsc->mutex); 3361 return n == 0; 3362 } 3363 3364 /* 3365 * called after sb is ro. 3366 */ 3367 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3368 { 3369 struct ceph_mds_session *session; 3370 int i; 3371 struct ceph_fs_client *fsc = mdsc->fsc; 3372 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3373 3374 dout("close_sessions\n"); 3375 3376 /* close sessions */ 3377 mutex_lock(&mdsc->mutex); 3378 for (i = 0; i < mdsc->max_sessions; i++) { 3379 session = __ceph_lookup_mds_session(mdsc, i); 3380 if (!session) 3381 continue; 3382 mutex_unlock(&mdsc->mutex); 3383 mutex_lock(&session->s_mutex); 3384 __close_session(mdsc, session); 3385 mutex_unlock(&session->s_mutex); 3386 ceph_put_mds_session(session); 3387 mutex_lock(&mdsc->mutex); 3388 } 3389 mutex_unlock(&mdsc->mutex); 3390 3391 dout("waiting for sessions to close\n"); 3392 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3393 timeout); 3394 3395 /* tear down remaining sessions */ 3396 mutex_lock(&mdsc->mutex); 3397 for (i = 0; i < mdsc->max_sessions; i++) { 3398 if (mdsc->sessions[i]) { 3399 session = get_session(mdsc->sessions[i]); 3400 __unregister_session(mdsc, session); 3401 mutex_unlock(&mdsc->mutex); 3402 mutex_lock(&session->s_mutex); 3403 remove_session_caps(session); 3404 mutex_unlock(&session->s_mutex); 3405 ceph_put_mds_session(session); 3406 mutex_lock(&mdsc->mutex); 3407 } 3408 } 3409 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3410 mutex_unlock(&mdsc->mutex); 3411 3412 ceph_cleanup_empty_realms(mdsc); 3413 3414 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3415 3416 dout("stopped\n"); 3417 } 3418 3419 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3420 { 3421 dout("stop\n"); 3422 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3423 if (mdsc->mdsmap) 3424 ceph_mdsmap_destroy(mdsc->mdsmap); 3425 kfree(mdsc->sessions); 3426 ceph_caps_finalize(mdsc); 3427 } 3428 3429 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3430 { 3431 struct ceph_mds_client *mdsc = fsc->mdsc; 3432 3433 dout("mdsc_destroy %p\n", mdsc); 3434 ceph_mdsc_stop(mdsc); 3435 3436 /* flush out any connection work with references to us */ 3437 ceph_msgr_flush(); 3438 3439 fsc->mdsc = NULL; 3440 kfree(mdsc); 3441 dout("mdsc_destroy %p done\n", mdsc); 3442 } 3443 3444 3445 /* 3446 * handle mds map update. 3447 */ 3448 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3449 { 3450 u32 epoch; 3451 u32 maplen; 3452 void *p = msg->front.iov_base; 3453 void *end = p + msg->front.iov_len; 3454 struct ceph_mdsmap *newmap, *oldmap; 3455 struct ceph_fsid fsid; 3456 int err = -EINVAL; 3457 3458 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3459 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3460 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3461 return; 3462 epoch = ceph_decode_32(&p); 3463 maplen = ceph_decode_32(&p); 3464 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3465 3466 /* do we need it? */ 3467 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3468 mutex_lock(&mdsc->mutex); 3469 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3470 dout("handle_map epoch %u <= our %u\n", 3471 epoch, mdsc->mdsmap->m_epoch); 3472 mutex_unlock(&mdsc->mutex); 3473 return; 3474 } 3475 3476 newmap = ceph_mdsmap_decode(&p, end); 3477 if (IS_ERR(newmap)) { 3478 err = PTR_ERR(newmap); 3479 goto bad_unlock; 3480 } 3481 3482 /* swap into place */ 3483 if (mdsc->mdsmap) { 3484 oldmap = mdsc->mdsmap; 3485 mdsc->mdsmap = newmap; 3486 check_new_map(mdsc, newmap, oldmap); 3487 ceph_mdsmap_destroy(oldmap); 3488 } else { 3489 mdsc->mdsmap = newmap; /* first mds map */ 3490 } 3491 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3492 3493 __wake_requests(mdsc, &mdsc->waiting_for_map); 3494 3495 mutex_unlock(&mdsc->mutex); 3496 schedule_delayed(mdsc); 3497 return; 3498 3499 bad_unlock: 3500 mutex_unlock(&mdsc->mutex); 3501 bad: 3502 pr_err("error decoding mdsmap %d\n", err); 3503 return; 3504 } 3505 3506 static struct ceph_connection *con_get(struct ceph_connection *con) 3507 { 3508 struct ceph_mds_session *s = con->private; 3509 3510 if (get_session(s)) { 3511 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3512 return con; 3513 } 3514 dout("mdsc con_get %p FAIL\n", s); 3515 return NULL; 3516 } 3517 3518 static void con_put(struct ceph_connection *con) 3519 { 3520 struct ceph_mds_session *s = con->private; 3521 3522 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3523 ceph_put_mds_session(s); 3524 } 3525 3526 /* 3527 * if the client is unresponsive for long enough, the mds will kill 3528 * the session entirely. 3529 */ 3530 static void peer_reset(struct ceph_connection *con) 3531 { 3532 struct ceph_mds_session *s = con->private; 3533 struct ceph_mds_client *mdsc = s->s_mdsc; 3534 3535 pr_warn("mds%d closed our session\n", s->s_mds); 3536 send_mds_reconnect(mdsc, s); 3537 } 3538 3539 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3540 { 3541 struct ceph_mds_session *s = con->private; 3542 struct ceph_mds_client *mdsc = s->s_mdsc; 3543 int type = le16_to_cpu(msg->hdr.type); 3544 3545 mutex_lock(&mdsc->mutex); 3546 if (__verify_registered_session(mdsc, s) < 0) { 3547 mutex_unlock(&mdsc->mutex); 3548 goto out; 3549 } 3550 mutex_unlock(&mdsc->mutex); 3551 3552 switch (type) { 3553 case CEPH_MSG_MDS_MAP: 3554 ceph_mdsc_handle_map(mdsc, msg); 3555 break; 3556 case CEPH_MSG_CLIENT_SESSION: 3557 handle_session(s, msg); 3558 break; 3559 case CEPH_MSG_CLIENT_REPLY: 3560 handle_reply(s, msg); 3561 break; 3562 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3563 handle_forward(mdsc, s, msg); 3564 break; 3565 case CEPH_MSG_CLIENT_CAPS: 3566 ceph_handle_caps(s, msg); 3567 break; 3568 case CEPH_MSG_CLIENT_SNAP: 3569 ceph_handle_snap(mdsc, s, msg); 3570 break; 3571 case CEPH_MSG_CLIENT_LEASE: 3572 handle_lease(mdsc, s, msg); 3573 break; 3574 3575 default: 3576 pr_err("received unknown message type %d %s\n", type, 3577 ceph_msg_type_name(type)); 3578 } 3579 out: 3580 ceph_msg_put(msg); 3581 } 3582 3583 /* 3584 * authentication 3585 */ 3586 3587 /* 3588 * Note: returned pointer is the address of a structure that's 3589 * managed separately. Caller must *not* attempt to free it. 3590 */ 3591 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 3592 int *proto, int force_new) 3593 { 3594 struct ceph_mds_session *s = con->private; 3595 struct ceph_mds_client *mdsc = s->s_mdsc; 3596 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3597 struct ceph_auth_handshake *auth = &s->s_auth; 3598 3599 if (force_new && auth->authorizer) { 3600 ceph_auth_destroy_authorizer(ac, auth->authorizer); 3601 auth->authorizer = NULL; 3602 } 3603 if (!auth->authorizer) { 3604 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3605 auth); 3606 if (ret) 3607 return ERR_PTR(ret); 3608 } else { 3609 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3610 auth); 3611 if (ret) 3612 return ERR_PTR(ret); 3613 } 3614 *proto = ac->protocol; 3615 3616 return auth; 3617 } 3618 3619 3620 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3621 { 3622 struct ceph_mds_session *s = con->private; 3623 struct ceph_mds_client *mdsc = s->s_mdsc; 3624 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3625 3626 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len); 3627 } 3628 3629 static int invalidate_authorizer(struct ceph_connection *con) 3630 { 3631 struct ceph_mds_session *s = con->private; 3632 struct ceph_mds_client *mdsc = s->s_mdsc; 3633 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3634 3635 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3636 3637 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3638 } 3639 3640 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 3641 struct ceph_msg_header *hdr, int *skip) 3642 { 3643 struct ceph_msg *msg; 3644 int type = (int) le16_to_cpu(hdr->type); 3645 int front_len = (int) le32_to_cpu(hdr->front_len); 3646 3647 if (con->in_msg) 3648 return con->in_msg; 3649 3650 *skip = 0; 3651 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 3652 if (!msg) { 3653 pr_err("unable to allocate msg type %d len %d\n", 3654 type, front_len); 3655 return NULL; 3656 } 3657 3658 return msg; 3659 } 3660 3661 static const struct ceph_connection_operations mds_con_ops = { 3662 .get = con_get, 3663 .put = con_put, 3664 .dispatch = dispatch, 3665 .get_authorizer = get_authorizer, 3666 .verify_authorizer_reply = verify_authorizer_reply, 3667 .invalidate_authorizer = invalidate_authorizer, 3668 .peer_reset = peer_reset, 3669 .alloc_msg = mds_alloc_msg, 3670 }; 3671 3672 /* eof */ 3673