xref: /openbmc/linux/fs/ceph/mds_client.c (revision a8a28aff)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/gfp.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 
11 #include "super.h"
12 #include "mds_client.h"
13 
14 #include <linux/ceph/ceph_features.h>
15 #include <linux/ceph/messenger.h>
16 #include <linux/ceph/decode.h>
17 #include <linux/ceph/pagelist.h>
18 #include <linux/ceph/auth.h>
19 #include <linux/ceph/debugfs.h>
20 
21 /*
22  * A cluster of MDS (metadata server) daemons is responsible for
23  * managing the file system namespace (the directory hierarchy and
24  * inodes) and for coordinating shared access to storage.  Metadata is
25  * partitioning hierarchically across a number of servers, and that
26  * partition varies over time as the cluster adjusts the distribution
27  * in order to balance load.
28  *
29  * The MDS client is primarily responsible to managing synchronous
30  * metadata requests for operations like open, unlink, and so forth.
31  * If there is a MDS failure, we find out about it when we (possibly
32  * request and) receive a new MDS map, and can resubmit affected
33  * requests.
34  *
35  * For the most part, though, we take advantage of a lossless
36  * communications channel to the MDS, and do not need to worry about
37  * timing out or resubmitting requests.
38  *
39  * We maintain a stateful "session" with each MDS we interact with.
40  * Within each session, we sent periodic heartbeat messages to ensure
41  * any capabilities or leases we have been issues remain valid.  If
42  * the session times out and goes stale, our leases and capabilities
43  * are no longer valid.
44  */
45 
46 struct ceph_reconnect_state {
47 	int nr_caps;
48 	struct ceph_pagelist *pagelist;
49 	bool flock;
50 };
51 
52 static void __wake_requests(struct ceph_mds_client *mdsc,
53 			    struct list_head *head);
54 
55 static const struct ceph_connection_operations mds_con_ops;
56 
57 
58 /*
59  * mds reply parsing
60  */
61 
62 /*
63  * parse individual inode info
64  */
65 static int parse_reply_info_in(void **p, void *end,
66 			       struct ceph_mds_reply_info_in *info,
67 			       u64 features)
68 {
69 	int err = -EIO;
70 
71 	info->in = *p;
72 	*p += sizeof(struct ceph_mds_reply_inode) +
73 		sizeof(*info->in->fragtree.splits) *
74 		le32_to_cpu(info->in->fragtree.nsplits);
75 
76 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
77 	ceph_decode_need(p, end, info->symlink_len, bad);
78 	info->symlink = *p;
79 	*p += info->symlink_len;
80 
81 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
82 		ceph_decode_copy_safe(p, end, &info->dir_layout,
83 				      sizeof(info->dir_layout), bad);
84 	else
85 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
86 
87 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
88 	ceph_decode_need(p, end, info->xattr_len, bad);
89 	info->xattr_data = *p;
90 	*p += info->xattr_len;
91 	return 0;
92 bad:
93 	return err;
94 }
95 
96 /*
97  * parse a normal reply, which may contain a (dir+)dentry and/or a
98  * target inode.
99  */
100 static int parse_reply_info_trace(void **p, void *end,
101 				  struct ceph_mds_reply_info_parsed *info,
102 				  u64 features)
103 {
104 	int err;
105 
106 	if (info->head->is_dentry) {
107 		err = parse_reply_info_in(p, end, &info->diri, features);
108 		if (err < 0)
109 			goto out_bad;
110 
111 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
112 			goto bad;
113 		info->dirfrag = *p;
114 		*p += sizeof(*info->dirfrag) +
115 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
116 		if (unlikely(*p > end))
117 			goto bad;
118 
119 		ceph_decode_32_safe(p, end, info->dname_len, bad);
120 		ceph_decode_need(p, end, info->dname_len, bad);
121 		info->dname = *p;
122 		*p += info->dname_len;
123 		info->dlease = *p;
124 		*p += sizeof(*info->dlease);
125 	}
126 
127 	if (info->head->is_target) {
128 		err = parse_reply_info_in(p, end, &info->targeti, features);
129 		if (err < 0)
130 			goto out_bad;
131 	}
132 
133 	if (unlikely(*p != end))
134 		goto bad;
135 	return 0;
136 
137 bad:
138 	err = -EIO;
139 out_bad:
140 	pr_err("problem parsing mds trace %d\n", err);
141 	return err;
142 }
143 
144 /*
145  * parse readdir results
146  */
147 static int parse_reply_info_dir(void **p, void *end,
148 				struct ceph_mds_reply_info_parsed *info,
149 				u64 features)
150 {
151 	u32 num, i = 0;
152 	int err;
153 
154 	info->dir_dir = *p;
155 	if (*p + sizeof(*info->dir_dir) > end)
156 		goto bad;
157 	*p += sizeof(*info->dir_dir) +
158 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
159 	if (*p > end)
160 		goto bad;
161 
162 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
163 	num = ceph_decode_32(p);
164 	info->dir_end = ceph_decode_8(p);
165 	info->dir_complete = ceph_decode_8(p);
166 	if (num == 0)
167 		goto done;
168 
169 	BUG_ON(!info->dir_in);
170 	info->dir_dname = (void *)(info->dir_in + num);
171 	info->dir_dname_len = (void *)(info->dir_dname + num);
172 	info->dir_dlease = (void *)(info->dir_dname_len + num);
173 	if ((unsigned long)(info->dir_dlease + num) >
174 	    (unsigned long)info->dir_in + info->dir_buf_size) {
175 		pr_err("dir contents are larger than expected\n");
176 		WARN_ON(1);
177 		goto bad;
178 	}
179 
180 	info->dir_nr = num;
181 	while (num) {
182 		/* dentry */
183 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
184 		info->dir_dname_len[i] = ceph_decode_32(p);
185 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
186 		info->dir_dname[i] = *p;
187 		*p += info->dir_dname_len[i];
188 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
189 		     info->dir_dname[i]);
190 		info->dir_dlease[i] = *p;
191 		*p += sizeof(struct ceph_mds_reply_lease);
192 
193 		/* inode */
194 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
195 		if (err < 0)
196 			goto out_bad;
197 		i++;
198 		num--;
199 	}
200 
201 done:
202 	if (*p != end)
203 		goto bad;
204 	return 0;
205 
206 bad:
207 	err = -EIO;
208 out_bad:
209 	pr_err("problem parsing dir contents %d\n", err);
210 	return err;
211 }
212 
213 /*
214  * parse fcntl F_GETLK results
215  */
216 static int parse_reply_info_filelock(void **p, void *end,
217 				     struct ceph_mds_reply_info_parsed *info,
218 				     u64 features)
219 {
220 	if (*p + sizeof(*info->filelock_reply) > end)
221 		goto bad;
222 
223 	info->filelock_reply = *p;
224 	*p += sizeof(*info->filelock_reply);
225 
226 	if (unlikely(*p != end))
227 		goto bad;
228 	return 0;
229 
230 bad:
231 	return -EIO;
232 }
233 
234 /*
235  * parse create results
236  */
237 static int parse_reply_info_create(void **p, void *end,
238 				  struct ceph_mds_reply_info_parsed *info,
239 				  u64 features)
240 {
241 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
242 		if (*p == end) {
243 			info->has_create_ino = false;
244 		} else {
245 			info->has_create_ino = true;
246 			info->ino = ceph_decode_64(p);
247 		}
248 	}
249 
250 	if (unlikely(*p != end))
251 		goto bad;
252 	return 0;
253 
254 bad:
255 	return -EIO;
256 }
257 
258 /*
259  * parse extra results
260  */
261 static int parse_reply_info_extra(void **p, void *end,
262 				  struct ceph_mds_reply_info_parsed *info,
263 				  u64 features)
264 {
265 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
266 		return parse_reply_info_filelock(p, end, info, features);
267 	else if (info->head->op == CEPH_MDS_OP_READDIR ||
268 		 info->head->op == CEPH_MDS_OP_LSSNAP)
269 		return parse_reply_info_dir(p, end, info, features);
270 	else if (info->head->op == CEPH_MDS_OP_CREATE)
271 		return parse_reply_info_create(p, end, info, features);
272 	else
273 		return -EIO;
274 }
275 
276 /*
277  * parse entire mds reply
278  */
279 static int parse_reply_info(struct ceph_msg *msg,
280 			    struct ceph_mds_reply_info_parsed *info,
281 			    u64 features)
282 {
283 	void *p, *end;
284 	u32 len;
285 	int err;
286 
287 	info->head = msg->front.iov_base;
288 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
289 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
290 
291 	/* trace */
292 	ceph_decode_32_safe(&p, end, len, bad);
293 	if (len > 0) {
294 		ceph_decode_need(&p, end, len, bad);
295 		err = parse_reply_info_trace(&p, p+len, info, features);
296 		if (err < 0)
297 			goto out_bad;
298 	}
299 
300 	/* extra */
301 	ceph_decode_32_safe(&p, end, len, bad);
302 	if (len > 0) {
303 		ceph_decode_need(&p, end, len, bad);
304 		err = parse_reply_info_extra(&p, p+len, info, features);
305 		if (err < 0)
306 			goto out_bad;
307 	}
308 
309 	/* snap blob */
310 	ceph_decode_32_safe(&p, end, len, bad);
311 	info->snapblob_len = len;
312 	info->snapblob = p;
313 	p += len;
314 
315 	if (p != end)
316 		goto bad;
317 	return 0;
318 
319 bad:
320 	err = -EIO;
321 out_bad:
322 	pr_err("mds parse_reply err %d\n", err);
323 	return err;
324 }
325 
326 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
327 {
328 	if (!info->dir_in)
329 		return;
330 	free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size));
331 }
332 
333 
334 /*
335  * sessions
336  */
337 static const char *session_state_name(int s)
338 {
339 	switch (s) {
340 	case CEPH_MDS_SESSION_NEW: return "new";
341 	case CEPH_MDS_SESSION_OPENING: return "opening";
342 	case CEPH_MDS_SESSION_OPEN: return "open";
343 	case CEPH_MDS_SESSION_HUNG: return "hung";
344 	case CEPH_MDS_SESSION_CLOSING: return "closing";
345 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
346 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
347 	default: return "???";
348 	}
349 }
350 
351 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
352 {
353 	if (atomic_inc_not_zero(&s->s_ref)) {
354 		dout("mdsc get_session %p %d -> %d\n", s,
355 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
356 		return s;
357 	} else {
358 		dout("mdsc get_session %p 0 -- FAIL", s);
359 		return NULL;
360 	}
361 }
362 
363 void ceph_put_mds_session(struct ceph_mds_session *s)
364 {
365 	dout("mdsc put_session %p %d -> %d\n", s,
366 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
367 	if (atomic_dec_and_test(&s->s_ref)) {
368 		if (s->s_auth.authorizer)
369 			ceph_auth_destroy_authorizer(
370 				s->s_mdsc->fsc->client->monc.auth,
371 				s->s_auth.authorizer);
372 		kfree(s);
373 	}
374 }
375 
376 /*
377  * called under mdsc->mutex
378  */
379 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
380 						   int mds)
381 {
382 	struct ceph_mds_session *session;
383 
384 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
385 		return NULL;
386 	session = mdsc->sessions[mds];
387 	dout("lookup_mds_session %p %d\n", session,
388 	     atomic_read(&session->s_ref));
389 	get_session(session);
390 	return session;
391 }
392 
393 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
394 {
395 	if (mds >= mdsc->max_sessions)
396 		return false;
397 	return mdsc->sessions[mds];
398 }
399 
400 static int __verify_registered_session(struct ceph_mds_client *mdsc,
401 				       struct ceph_mds_session *s)
402 {
403 	if (s->s_mds >= mdsc->max_sessions ||
404 	    mdsc->sessions[s->s_mds] != s)
405 		return -ENOENT;
406 	return 0;
407 }
408 
409 /*
410  * create+register a new session for given mds.
411  * called under mdsc->mutex.
412  */
413 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
414 						 int mds)
415 {
416 	struct ceph_mds_session *s;
417 
418 	if (mds >= mdsc->mdsmap->m_max_mds)
419 		return ERR_PTR(-EINVAL);
420 
421 	s = kzalloc(sizeof(*s), GFP_NOFS);
422 	if (!s)
423 		return ERR_PTR(-ENOMEM);
424 	s->s_mdsc = mdsc;
425 	s->s_mds = mds;
426 	s->s_state = CEPH_MDS_SESSION_NEW;
427 	s->s_ttl = 0;
428 	s->s_seq = 0;
429 	mutex_init(&s->s_mutex);
430 
431 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
432 
433 	spin_lock_init(&s->s_gen_ttl_lock);
434 	s->s_cap_gen = 0;
435 	s->s_cap_ttl = jiffies - 1;
436 
437 	spin_lock_init(&s->s_cap_lock);
438 	s->s_renew_requested = 0;
439 	s->s_renew_seq = 0;
440 	INIT_LIST_HEAD(&s->s_caps);
441 	s->s_nr_caps = 0;
442 	s->s_trim_caps = 0;
443 	atomic_set(&s->s_ref, 1);
444 	INIT_LIST_HEAD(&s->s_waiting);
445 	INIT_LIST_HEAD(&s->s_unsafe);
446 	s->s_num_cap_releases = 0;
447 	s->s_cap_reconnect = 0;
448 	s->s_cap_iterator = NULL;
449 	INIT_LIST_HEAD(&s->s_cap_releases);
450 	INIT_LIST_HEAD(&s->s_cap_releases_done);
451 	INIT_LIST_HEAD(&s->s_cap_flushing);
452 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
453 
454 	dout("register_session mds%d\n", mds);
455 	if (mds >= mdsc->max_sessions) {
456 		int newmax = 1 << get_count_order(mds+1);
457 		struct ceph_mds_session **sa;
458 
459 		dout("register_session realloc to %d\n", newmax);
460 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
461 		if (sa == NULL)
462 			goto fail_realloc;
463 		if (mdsc->sessions) {
464 			memcpy(sa, mdsc->sessions,
465 			       mdsc->max_sessions * sizeof(void *));
466 			kfree(mdsc->sessions);
467 		}
468 		mdsc->sessions = sa;
469 		mdsc->max_sessions = newmax;
470 	}
471 	mdsc->sessions[mds] = s;
472 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
473 
474 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
475 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
476 
477 	return s;
478 
479 fail_realloc:
480 	kfree(s);
481 	return ERR_PTR(-ENOMEM);
482 }
483 
484 /*
485  * called under mdsc->mutex
486  */
487 static void __unregister_session(struct ceph_mds_client *mdsc,
488 			       struct ceph_mds_session *s)
489 {
490 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
491 	BUG_ON(mdsc->sessions[s->s_mds] != s);
492 	mdsc->sessions[s->s_mds] = NULL;
493 	ceph_con_close(&s->s_con);
494 	ceph_put_mds_session(s);
495 }
496 
497 /*
498  * drop session refs in request.
499  *
500  * should be last request ref, or hold mdsc->mutex
501  */
502 static void put_request_session(struct ceph_mds_request *req)
503 {
504 	if (req->r_session) {
505 		ceph_put_mds_session(req->r_session);
506 		req->r_session = NULL;
507 	}
508 }
509 
510 void ceph_mdsc_release_request(struct kref *kref)
511 {
512 	struct ceph_mds_request *req = container_of(kref,
513 						    struct ceph_mds_request,
514 						    r_kref);
515 	destroy_reply_info(&req->r_reply_info);
516 	if (req->r_request)
517 		ceph_msg_put(req->r_request);
518 	if (req->r_reply)
519 		ceph_msg_put(req->r_reply);
520 	if (req->r_inode) {
521 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
522 		iput(req->r_inode);
523 	}
524 	if (req->r_locked_dir)
525 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
526 	if (req->r_target_inode)
527 		iput(req->r_target_inode);
528 	if (req->r_dentry)
529 		dput(req->r_dentry);
530 	if (req->r_old_dentry)
531 		dput(req->r_old_dentry);
532 	if (req->r_old_dentry_dir) {
533 		/*
534 		 * track (and drop pins for) r_old_dentry_dir
535 		 * separately, since r_old_dentry's d_parent may have
536 		 * changed between the dir mutex being dropped and
537 		 * this request being freed.
538 		 */
539 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
540 				  CEPH_CAP_PIN);
541 		iput(req->r_old_dentry_dir);
542 	}
543 	kfree(req->r_path1);
544 	kfree(req->r_path2);
545 	put_request_session(req);
546 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
547 	kfree(req);
548 }
549 
550 /*
551  * lookup session, bump ref if found.
552  *
553  * called under mdsc->mutex.
554  */
555 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
556 					     u64 tid)
557 {
558 	struct ceph_mds_request *req;
559 	struct rb_node *n = mdsc->request_tree.rb_node;
560 
561 	while (n) {
562 		req = rb_entry(n, struct ceph_mds_request, r_node);
563 		if (tid < req->r_tid)
564 			n = n->rb_left;
565 		else if (tid > req->r_tid)
566 			n = n->rb_right;
567 		else {
568 			ceph_mdsc_get_request(req);
569 			return req;
570 		}
571 	}
572 	return NULL;
573 }
574 
575 static void __insert_request(struct ceph_mds_client *mdsc,
576 			     struct ceph_mds_request *new)
577 {
578 	struct rb_node **p = &mdsc->request_tree.rb_node;
579 	struct rb_node *parent = NULL;
580 	struct ceph_mds_request *req = NULL;
581 
582 	while (*p) {
583 		parent = *p;
584 		req = rb_entry(parent, struct ceph_mds_request, r_node);
585 		if (new->r_tid < req->r_tid)
586 			p = &(*p)->rb_left;
587 		else if (new->r_tid > req->r_tid)
588 			p = &(*p)->rb_right;
589 		else
590 			BUG();
591 	}
592 
593 	rb_link_node(&new->r_node, parent, p);
594 	rb_insert_color(&new->r_node, &mdsc->request_tree);
595 }
596 
597 /*
598  * Register an in-flight request, and assign a tid.  Link to directory
599  * are modifying (if any).
600  *
601  * Called under mdsc->mutex.
602  */
603 static void __register_request(struct ceph_mds_client *mdsc,
604 			       struct ceph_mds_request *req,
605 			       struct inode *dir)
606 {
607 	req->r_tid = ++mdsc->last_tid;
608 	if (req->r_num_caps)
609 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
610 				  req->r_num_caps);
611 	dout("__register_request %p tid %lld\n", req, req->r_tid);
612 	ceph_mdsc_get_request(req);
613 	__insert_request(mdsc, req);
614 
615 	req->r_uid = current_fsuid();
616 	req->r_gid = current_fsgid();
617 
618 	if (dir) {
619 		struct ceph_inode_info *ci = ceph_inode(dir);
620 
621 		ihold(dir);
622 		spin_lock(&ci->i_unsafe_lock);
623 		req->r_unsafe_dir = dir;
624 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
625 		spin_unlock(&ci->i_unsafe_lock);
626 	}
627 }
628 
629 static void __unregister_request(struct ceph_mds_client *mdsc,
630 				 struct ceph_mds_request *req)
631 {
632 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
633 	rb_erase(&req->r_node, &mdsc->request_tree);
634 	RB_CLEAR_NODE(&req->r_node);
635 
636 	if (req->r_unsafe_dir) {
637 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
638 
639 		spin_lock(&ci->i_unsafe_lock);
640 		list_del_init(&req->r_unsafe_dir_item);
641 		spin_unlock(&ci->i_unsafe_lock);
642 
643 		iput(req->r_unsafe_dir);
644 		req->r_unsafe_dir = NULL;
645 	}
646 
647 	complete_all(&req->r_safe_completion);
648 
649 	ceph_mdsc_put_request(req);
650 }
651 
652 /*
653  * Choose mds to send request to next.  If there is a hint set in the
654  * request (e.g., due to a prior forward hint from the mds), use that.
655  * Otherwise, consult frag tree and/or caps to identify the
656  * appropriate mds.  If all else fails, choose randomly.
657  *
658  * Called under mdsc->mutex.
659  */
660 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
661 {
662 	/*
663 	 * we don't need to worry about protecting the d_parent access
664 	 * here because we never renaming inside the snapped namespace
665 	 * except to resplice to another snapdir, and either the old or new
666 	 * result is a valid result.
667 	 */
668 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
669 		dentry = dentry->d_parent;
670 	return dentry;
671 }
672 
673 static int __choose_mds(struct ceph_mds_client *mdsc,
674 			struct ceph_mds_request *req)
675 {
676 	struct inode *inode;
677 	struct ceph_inode_info *ci;
678 	struct ceph_cap *cap;
679 	int mode = req->r_direct_mode;
680 	int mds = -1;
681 	u32 hash = req->r_direct_hash;
682 	bool is_hash = req->r_direct_is_hash;
683 
684 	/*
685 	 * is there a specific mds we should try?  ignore hint if we have
686 	 * no session and the mds is not up (active or recovering).
687 	 */
688 	if (req->r_resend_mds >= 0 &&
689 	    (__have_session(mdsc, req->r_resend_mds) ||
690 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
691 		dout("choose_mds using resend_mds mds%d\n",
692 		     req->r_resend_mds);
693 		return req->r_resend_mds;
694 	}
695 
696 	if (mode == USE_RANDOM_MDS)
697 		goto random;
698 
699 	inode = NULL;
700 	if (req->r_inode) {
701 		inode = req->r_inode;
702 	} else if (req->r_dentry) {
703 		/* ignore race with rename; old or new d_parent is okay */
704 		struct dentry *parent = req->r_dentry->d_parent;
705 		struct inode *dir = parent->d_inode;
706 
707 		if (dir->i_sb != mdsc->fsc->sb) {
708 			/* not this fs! */
709 			inode = req->r_dentry->d_inode;
710 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
711 			/* direct snapped/virtual snapdir requests
712 			 * based on parent dir inode */
713 			struct dentry *dn = get_nonsnap_parent(parent);
714 			inode = dn->d_inode;
715 			dout("__choose_mds using nonsnap parent %p\n", inode);
716 		} else {
717 			/* dentry target */
718 			inode = req->r_dentry->d_inode;
719 			if (!inode || mode == USE_AUTH_MDS) {
720 				/* dir + name */
721 				inode = dir;
722 				hash = ceph_dentry_hash(dir, req->r_dentry);
723 				is_hash = true;
724 			}
725 		}
726 	}
727 
728 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
729 	     (int)hash, mode);
730 	if (!inode)
731 		goto random;
732 	ci = ceph_inode(inode);
733 
734 	if (is_hash && S_ISDIR(inode->i_mode)) {
735 		struct ceph_inode_frag frag;
736 		int found;
737 
738 		ceph_choose_frag(ci, hash, &frag, &found);
739 		if (found) {
740 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
741 				u8 r;
742 
743 				/* choose a random replica */
744 				get_random_bytes(&r, 1);
745 				r %= frag.ndist;
746 				mds = frag.dist[r];
747 				dout("choose_mds %p %llx.%llx "
748 				     "frag %u mds%d (%d/%d)\n",
749 				     inode, ceph_vinop(inode),
750 				     frag.frag, mds,
751 				     (int)r, frag.ndist);
752 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
753 				    CEPH_MDS_STATE_ACTIVE)
754 					return mds;
755 			}
756 
757 			/* since this file/dir wasn't known to be
758 			 * replicated, then we want to look for the
759 			 * authoritative mds. */
760 			mode = USE_AUTH_MDS;
761 			if (frag.mds >= 0) {
762 				/* choose auth mds */
763 				mds = frag.mds;
764 				dout("choose_mds %p %llx.%llx "
765 				     "frag %u mds%d (auth)\n",
766 				     inode, ceph_vinop(inode), frag.frag, mds);
767 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
768 				    CEPH_MDS_STATE_ACTIVE)
769 					return mds;
770 			}
771 		}
772 	}
773 
774 	spin_lock(&ci->i_ceph_lock);
775 	cap = NULL;
776 	if (mode == USE_AUTH_MDS)
777 		cap = ci->i_auth_cap;
778 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
779 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
780 	if (!cap) {
781 		spin_unlock(&ci->i_ceph_lock);
782 		goto random;
783 	}
784 	mds = cap->session->s_mds;
785 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
786 	     inode, ceph_vinop(inode), mds,
787 	     cap == ci->i_auth_cap ? "auth " : "", cap);
788 	spin_unlock(&ci->i_ceph_lock);
789 	return mds;
790 
791 random:
792 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
793 	dout("choose_mds chose random mds%d\n", mds);
794 	return mds;
795 }
796 
797 
798 /*
799  * session messages
800  */
801 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
802 {
803 	struct ceph_msg *msg;
804 	struct ceph_mds_session_head *h;
805 
806 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
807 			   false);
808 	if (!msg) {
809 		pr_err("create_session_msg ENOMEM creating msg\n");
810 		return NULL;
811 	}
812 	h = msg->front.iov_base;
813 	h->op = cpu_to_le32(op);
814 	h->seq = cpu_to_le64(seq);
815 	return msg;
816 }
817 
818 /*
819  * send session open request.
820  *
821  * called under mdsc->mutex
822  */
823 static int __open_session(struct ceph_mds_client *mdsc,
824 			  struct ceph_mds_session *session)
825 {
826 	struct ceph_msg *msg;
827 	int mstate;
828 	int mds = session->s_mds;
829 
830 	/* wait for mds to go active? */
831 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
832 	dout("open_session to mds%d (%s)\n", mds,
833 	     ceph_mds_state_name(mstate));
834 	session->s_state = CEPH_MDS_SESSION_OPENING;
835 	session->s_renew_requested = jiffies;
836 
837 	/* send connect message */
838 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
839 	if (!msg)
840 		return -ENOMEM;
841 	ceph_con_send(&session->s_con, msg);
842 	return 0;
843 }
844 
845 /*
846  * open sessions for any export targets for the given mds
847  *
848  * called under mdsc->mutex
849  */
850 static struct ceph_mds_session *
851 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
852 {
853 	struct ceph_mds_session *session;
854 
855 	session = __ceph_lookup_mds_session(mdsc, target);
856 	if (!session) {
857 		session = register_session(mdsc, target);
858 		if (IS_ERR(session))
859 			return session;
860 	}
861 	if (session->s_state == CEPH_MDS_SESSION_NEW ||
862 	    session->s_state == CEPH_MDS_SESSION_CLOSING)
863 		__open_session(mdsc, session);
864 
865 	return session;
866 }
867 
868 struct ceph_mds_session *
869 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
870 {
871 	struct ceph_mds_session *session;
872 
873 	dout("open_export_target_session to mds%d\n", target);
874 
875 	mutex_lock(&mdsc->mutex);
876 	session = __open_export_target_session(mdsc, target);
877 	mutex_unlock(&mdsc->mutex);
878 
879 	return session;
880 }
881 
882 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
883 					  struct ceph_mds_session *session)
884 {
885 	struct ceph_mds_info *mi;
886 	struct ceph_mds_session *ts;
887 	int i, mds = session->s_mds;
888 
889 	if (mds >= mdsc->mdsmap->m_max_mds)
890 		return;
891 
892 	mi = &mdsc->mdsmap->m_info[mds];
893 	dout("open_export_target_sessions for mds%d (%d targets)\n",
894 	     session->s_mds, mi->num_export_targets);
895 
896 	for (i = 0; i < mi->num_export_targets; i++) {
897 		ts = __open_export_target_session(mdsc, mi->export_targets[i]);
898 		if (!IS_ERR(ts))
899 			ceph_put_mds_session(ts);
900 	}
901 }
902 
903 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
904 					   struct ceph_mds_session *session)
905 {
906 	mutex_lock(&mdsc->mutex);
907 	__open_export_target_sessions(mdsc, session);
908 	mutex_unlock(&mdsc->mutex);
909 }
910 
911 /*
912  * session caps
913  */
914 
915 /*
916  * Free preallocated cap messages assigned to this session
917  */
918 static void cleanup_cap_releases(struct ceph_mds_session *session)
919 {
920 	struct ceph_msg *msg;
921 
922 	spin_lock(&session->s_cap_lock);
923 	while (!list_empty(&session->s_cap_releases)) {
924 		msg = list_first_entry(&session->s_cap_releases,
925 				       struct ceph_msg, list_head);
926 		list_del_init(&msg->list_head);
927 		ceph_msg_put(msg);
928 	}
929 	while (!list_empty(&session->s_cap_releases_done)) {
930 		msg = list_first_entry(&session->s_cap_releases_done,
931 				       struct ceph_msg, list_head);
932 		list_del_init(&msg->list_head);
933 		ceph_msg_put(msg);
934 	}
935 	spin_unlock(&session->s_cap_lock);
936 }
937 
938 /*
939  * Helper to safely iterate over all caps associated with a session, with
940  * special care taken to handle a racing __ceph_remove_cap().
941  *
942  * Caller must hold session s_mutex.
943  */
944 static int iterate_session_caps(struct ceph_mds_session *session,
945 				 int (*cb)(struct inode *, struct ceph_cap *,
946 					    void *), void *arg)
947 {
948 	struct list_head *p;
949 	struct ceph_cap *cap;
950 	struct inode *inode, *last_inode = NULL;
951 	struct ceph_cap *old_cap = NULL;
952 	int ret;
953 
954 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
955 	spin_lock(&session->s_cap_lock);
956 	p = session->s_caps.next;
957 	while (p != &session->s_caps) {
958 		cap = list_entry(p, struct ceph_cap, session_caps);
959 		inode = igrab(&cap->ci->vfs_inode);
960 		if (!inode) {
961 			p = p->next;
962 			continue;
963 		}
964 		session->s_cap_iterator = cap;
965 		spin_unlock(&session->s_cap_lock);
966 
967 		if (last_inode) {
968 			iput(last_inode);
969 			last_inode = NULL;
970 		}
971 		if (old_cap) {
972 			ceph_put_cap(session->s_mdsc, old_cap);
973 			old_cap = NULL;
974 		}
975 
976 		ret = cb(inode, cap, arg);
977 		last_inode = inode;
978 
979 		spin_lock(&session->s_cap_lock);
980 		p = p->next;
981 		if (cap->ci == NULL) {
982 			dout("iterate_session_caps  finishing cap %p removal\n",
983 			     cap);
984 			BUG_ON(cap->session != session);
985 			list_del_init(&cap->session_caps);
986 			session->s_nr_caps--;
987 			cap->session = NULL;
988 			old_cap = cap;  /* put_cap it w/o locks held */
989 		}
990 		if (ret < 0)
991 			goto out;
992 	}
993 	ret = 0;
994 out:
995 	session->s_cap_iterator = NULL;
996 	spin_unlock(&session->s_cap_lock);
997 
998 	if (last_inode)
999 		iput(last_inode);
1000 	if (old_cap)
1001 		ceph_put_cap(session->s_mdsc, old_cap);
1002 
1003 	return ret;
1004 }
1005 
1006 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1007 				  void *arg)
1008 {
1009 	struct ceph_inode_info *ci = ceph_inode(inode);
1010 	int drop = 0;
1011 
1012 	dout("removing cap %p, ci is %p, inode is %p\n",
1013 	     cap, ci, &ci->vfs_inode);
1014 	spin_lock(&ci->i_ceph_lock);
1015 	__ceph_remove_cap(cap, false);
1016 	if (!__ceph_is_any_real_caps(ci)) {
1017 		struct ceph_mds_client *mdsc =
1018 			ceph_sb_to_client(inode->i_sb)->mdsc;
1019 
1020 		spin_lock(&mdsc->cap_dirty_lock);
1021 		if (!list_empty(&ci->i_dirty_item)) {
1022 			pr_info(" dropping dirty %s state for %p %lld\n",
1023 				ceph_cap_string(ci->i_dirty_caps),
1024 				inode, ceph_ino(inode));
1025 			ci->i_dirty_caps = 0;
1026 			list_del_init(&ci->i_dirty_item);
1027 			drop = 1;
1028 		}
1029 		if (!list_empty(&ci->i_flushing_item)) {
1030 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1031 				ceph_cap_string(ci->i_flushing_caps),
1032 				inode, ceph_ino(inode));
1033 			ci->i_flushing_caps = 0;
1034 			list_del_init(&ci->i_flushing_item);
1035 			mdsc->num_cap_flushing--;
1036 			drop = 1;
1037 		}
1038 		if (drop && ci->i_wrbuffer_ref) {
1039 			pr_info(" dropping dirty data for %p %lld\n",
1040 				inode, ceph_ino(inode));
1041 			ci->i_wrbuffer_ref = 0;
1042 			ci->i_wrbuffer_ref_head = 0;
1043 			drop++;
1044 		}
1045 		spin_unlock(&mdsc->cap_dirty_lock);
1046 	}
1047 	spin_unlock(&ci->i_ceph_lock);
1048 	while (drop--)
1049 		iput(inode);
1050 	return 0;
1051 }
1052 
1053 /*
1054  * caller must hold session s_mutex
1055  */
1056 static void remove_session_caps(struct ceph_mds_session *session)
1057 {
1058 	dout("remove_session_caps on %p\n", session);
1059 	iterate_session_caps(session, remove_session_caps_cb, NULL);
1060 
1061 	spin_lock(&session->s_cap_lock);
1062 	if (session->s_nr_caps > 0) {
1063 		struct super_block *sb = session->s_mdsc->fsc->sb;
1064 		struct inode *inode;
1065 		struct ceph_cap *cap, *prev = NULL;
1066 		struct ceph_vino vino;
1067 		/*
1068 		 * iterate_session_caps() skips inodes that are being
1069 		 * deleted, we need to wait until deletions are complete.
1070 		 * __wait_on_freeing_inode() is designed for the job,
1071 		 * but it is not exported, so use lookup inode function
1072 		 * to access it.
1073 		 */
1074 		while (!list_empty(&session->s_caps)) {
1075 			cap = list_entry(session->s_caps.next,
1076 					 struct ceph_cap, session_caps);
1077 			if (cap == prev)
1078 				break;
1079 			prev = cap;
1080 			vino = cap->ci->i_vino;
1081 			spin_unlock(&session->s_cap_lock);
1082 
1083 			inode = ceph_find_inode(sb, vino);
1084 			iput(inode);
1085 
1086 			spin_lock(&session->s_cap_lock);
1087 		}
1088 	}
1089 	spin_unlock(&session->s_cap_lock);
1090 
1091 	BUG_ON(session->s_nr_caps > 0);
1092 	BUG_ON(!list_empty(&session->s_cap_flushing));
1093 	cleanup_cap_releases(session);
1094 }
1095 
1096 /*
1097  * wake up any threads waiting on this session's caps.  if the cap is
1098  * old (didn't get renewed on the client reconnect), remove it now.
1099  *
1100  * caller must hold s_mutex.
1101  */
1102 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1103 			      void *arg)
1104 {
1105 	struct ceph_inode_info *ci = ceph_inode(inode);
1106 
1107 	wake_up_all(&ci->i_cap_wq);
1108 	if (arg) {
1109 		spin_lock(&ci->i_ceph_lock);
1110 		ci->i_wanted_max_size = 0;
1111 		ci->i_requested_max_size = 0;
1112 		spin_unlock(&ci->i_ceph_lock);
1113 	}
1114 	return 0;
1115 }
1116 
1117 static void wake_up_session_caps(struct ceph_mds_session *session,
1118 				 int reconnect)
1119 {
1120 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1121 	iterate_session_caps(session, wake_up_session_cb,
1122 			     (void *)(unsigned long)reconnect);
1123 }
1124 
1125 /*
1126  * Send periodic message to MDS renewing all currently held caps.  The
1127  * ack will reset the expiration for all caps from this session.
1128  *
1129  * caller holds s_mutex
1130  */
1131 static int send_renew_caps(struct ceph_mds_client *mdsc,
1132 			   struct ceph_mds_session *session)
1133 {
1134 	struct ceph_msg *msg;
1135 	int state;
1136 
1137 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1138 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1139 		pr_info("mds%d caps stale\n", session->s_mds);
1140 	session->s_renew_requested = jiffies;
1141 
1142 	/* do not try to renew caps until a recovering mds has reconnected
1143 	 * with its clients. */
1144 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1145 	if (state < CEPH_MDS_STATE_RECONNECT) {
1146 		dout("send_renew_caps ignoring mds%d (%s)\n",
1147 		     session->s_mds, ceph_mds_state_name(state));
1148 		return 0;
1149 	}
1150 
1151 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1152 		ceph_mds_state_name(state));
1153 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1154 				 ++session->s_renew_seq);
1155 	if (!msg)
1156 		return -ENOMEM;
1157 	ceph_con_send(&session->s_con, msg);
1158 	return 0;
1159 }
1160 
1161 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1162 			     struct ceph_mds_session *session, u64 seq)
1163 {
1164 	struct ceph_msg *msg;
1165 
1166 	dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1167 	     session->s_mds, session_state_name(session->s_state), seq);
1168 	msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1169 	if (!msg)
1170 		return -ENOMEM;
1171 	ceph_con_send(&session->s_con, msg);
1172 	return 0;
1173 }
1174 
1175 
1176 /*
1177  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1178  *
1179  * Called under session->s_mutex
1180  */
1181 static void renewed_caps(struct ceph_mds_client *mdsc,
1182 			 struct ceph_mds_session *session, int is_renew)
1183 {
1184 	int was_stale;
1185 	int wake = 0;
1186 
1187 	spin_lock(&session->s_cap_lock);
1188 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1189 
1190 	session->s_cap_ttl = session->s_renew_requested +
1191 		mdsc->mdsmap->m_session_timeout*HZ;
1192 
1193 	if (was_stale) {
1194 		if (time_before(jiffies, session->s_cap_ttl)) {
1195 			pr_info("mds%d caps renewed\n", session->s_mds);
1196 			wake = 1;
1197 		} else {
1198 			pr_info("mds%d caps still stale\n", session->s_mds);
1199 		}
1200 	}
1201 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1202 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1203 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1204 	spin_unlock(&session->s_cap_lock);
1205 
1206 	if (wake)
1207 		wake_up_session_caps(session, 0);
1208 }
1209 
1210 /*
1211  * send a session close request
1212  */
1213 static int request_close_session(struct ceph_mds_client *mdsc,
1214 				 struct ceph_mds_session *session)
1215 {
1216 	struct ceph_msg *msg;
1217 
1218 	dout("request_close_session mds%d state %s seq %lld\n",
1219 	     session->s_mds, session_state_name(session->s_state),
1220 	     session->s_seq);
1221 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1222 	if (!msg)
1223 		return -ENOMEM;
1224 	ceph_con_send(&session->s_con, msg);
1225 	return 0;
1226 }
1227 
1228 /*
1229  * Called with s_mutex held.
1230  */
1231 static int __close_session(struct ceph_mds_client *mdsc,
1232 			 struct ceph_mds_session *session)
1233 {
1234 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1235 		return 0;
1236 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1237 	return request_close_session(mdsc, session);
1238 }
1239 
1240 /*
1241  * Trim old(er) caps.
1242  *
1243  * Because we can't cache an inode without one or more caps, we do
1244  * this indirectly: if a cap is unused, we prune its aliases, at which
1245  * point the inode will hopefully get dropped to.
1246  *
1247  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1248  * memory pressure from the MDS, though, so it needn't be perfect.
1249  */
1250 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1251 {
1252 	struct ceph_mds_session *session = arg;
1253 	struct ceph_inode_info *ci = ceph_inode(inode);
1254 	int used, wanted, oissued, mine;
1255 
1256 	if (session->s_trim_caps <= 0)
1257 		return -1;
1258 
1259 	spin_lock(&ci->i_ceph_lock);
1260 	mine = cap->issued | cap->implemented;
1261 	used = __ceph_caps_used(ci);
1262 	wanted = __ceph_caps_file_wanted(ci);
1263 	oissued = __ceph_caps_issued_other(ci, cap);
1264 
1265 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1266 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1267 	     ceph_cap_string(used), ceph_cap_string(wanted));
1268 	if (cap == ci->i_auth_cap) {
1269 		if (ci->i_dirty_caps | ci->i_flushing_caps)
1270 			goto out;
1271 		if ((used | wanted) & CEPH_CAP_ANY_WR)
1272 			goto out;
1273 	}
1274 	if ((used | wanted) & ~oissued & mine)
1275 		goto out;   /* we need these caps */
1276 
1277 	session->s_trim_caps--;
1278 	if (oissued) {
1279 		/* we aren't the only cap.. just remove us */
1280 		__ceph_remove_cap(cap, true);
1281 	} else {
1282 		/* try to drop referring dentries */
1283 		spin_unlock(&ci->i_ceph_lock);
1284 		d_prune_aliases(inode);
1285 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1286 		     inode, cap, atomic_read(&inode->i_count));
1287 		return 0;
1288 	}
1289 
1290 out:
1291 	spin_unlock(&ci->i_ceph_lock);
1292 	return 0;
1293 }
1294 
1295 /*
1296  * Trim session cap count down to some max number.
1297  */
1298 static int trim_caps(struct ceph_mds_client *mdsc,
1299 		     struct ceph_mds_session *session,
1300 		     int max_caps)
1301 {
1302 	int trim_caps = session->s_nr_caps - max_caps;
1303 
1304 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1305 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1306 	if (trim_caps > 0) {
1307 		session->s_trim_caps = trim_caps;
1308 		iterate_session_caps(session, trim_caps_cb, session);
1309 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1310 		     session->s_mds, session->s_nr_caps, max_caps,
1311 			trim_caps - session->s_trim_caps);
1312 		session->s_trim_caps = 0;
1313 	}
1314 
1315 	ceph_add_cap_releases(mdsc, session);
1316 	ceph_send_cap_releases(mdsc, session);
1317 	return 0;
1318 }
1319 
1320 /*
1321  * Allocate cap_release messages.  If there is a partially full message
1322  * in the queue, try to allocate enough to cover it's remainder, so that
1323  * we can send it immediately.
1324  *
1325  * Called under s_mutex.
1326  */
1327 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1328 			  struct ceph_mds_session *session)
1329 {
1330 	struct ceph_msg *msg, *partial = NULL;
1331 	struct ceph_mds_cap_release *head;
1332 	int err = -ENOMEM;
1333 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1334 	int num;
1335 
1336 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1337 	     extra);
1338 
1339 	spin_lock(&session->s_cap_lock);
1340 
1341 	if (!list_empty(&session->s_cap_releases)) {
1342 		msg = list_first_entry(&session->s_cap_releases,
1343 				       struct ceph_msg,
1344 				 list_head);
1345 		head = msg->front.iov_base;
1346 		num = le32_to_cpu(head->num);
1347 		if (num) {
1348 			dout(" partial %p with (%d/%d)\n", msg, num,
1349 			     (int)CEPH_CAPS_PER_RELEASE);
1350 			extra += CEPH_CAPS_PER_RELEASE - num;
1351 			partial = msg;
1352 		}
1353 	}
1354 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1355 		spin_unlock(&session->s_cap_lock);
1356 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1357 				   GFP_NOFS, false);
1358 		if (!msg)
1359 			goto out_unlocked;
1360 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1361 		     (int)msg->front.iov_len);
1362 		head = msg->front.iov_base;
1363 		head->num = cpu_to_le32(0);
1364 		msg->front.iov_len = sizeof(*head);
1365 		spin_lock(&session->s_cap_lock);
1366 		list_add(&msg->list_head, &session->s_cap_releases);
1367 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1368 	}
1369 
1370 	if (partial) {
1371 		head = partial->front.iov_base;
1372 		num = le32_to_cpu(head->num);
1373 		dout(" queueing partial %p with %d/%d\n", partial, num,
1374 		     (int)CEPH_CAPS_PER_RELEASE);
1375 		list_move_tail(&partial->list_head,
1376 			       &session->s_cap_releases_done);
1377 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1378 	}
1379 	err = 0;
1380 	spin_unlock(&session->s_cap_lock);
1381 out_unlocked:
1382 	return err;
1383 }
1384 
1385 /*
1386  * flush all dirty inode data to disk.
1387  *
1388  * returns true if we've flushed through want_flush_seq
1389  */
1390 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1391 {
1392 	int mds, ret = 1;
1393 
1394 	dout("check_cap_flush want %lld\n", want_flush_seq);
1395 	mutex_lock(&mdsc->mutex);
1396 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1397 		struct ceph_mds_session *session = mdsc->sessions[mds];
1398 
1399 		if (!session)
1400 			continue;
1401 		get_session(session);
1402 		mutex_unlock(&mdsc->mutex);
1403 
1404 		mutex_lock(&session->s_mutex);
1405 		if (!list_empty(&session->s_cap_flushing)) {
1406 			struct ceph_inode_info *ci =
1407 				list_entry(session->s_cap_flushing.next,
1408 					   struct ceph_inode_info,
1409 					   i_flushing_item);
1410 			struct inode *inode = &ci->vfs_inode;
1411 
1412 			spin_lock(&ci->i_ceph_lock);
1413 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1414 				dout("check_cap_flush still flushing %p "
1415 				     "seq %lld <= %lld to mds%d\n", inode,
1416 				     ci->i_cap_flush_seq, want_flush_seq,
1417 				     session->s_mds);
1418 				ret = 0;
1419 			}
1420 			spin_unlock(&ci->i_ceph_lock);
1421 		}
1422 		mutex_unlock(&session->s_mutex);
1423 		ceph_put_mds_session(session);
1424 
1425 		if (!ret)
1426 			return ret;
1427 		mutex_lock(&mdsc->mutex);
1428 	}
1429 
1430 	mutex_unlock(&mdsc->mutex);
1431 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1432 	return ret;
1433 }
1434 
1435 /*
1436  * called under s_mutex
1437  */
1438 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1439 			    struct ceph_mds_session *session)
1440 {
1441 	struct ceph_msg *msg;
1442 
1443 	dout("send_cap_releases mds%d\n", session->s_mds);
1444 	spin_lock(&session->s_cap_lock);
1445 	while (!list_empty(&session->s_cap_releases_done)) {
1446 		msg = list_first_entry(&session->s_cap_releases_done,
1447 				 struct ceph_msg, list_head);
1448 		list_del_init(&msg->list_head);
1449 		spin_unlock(&session->s_cap_lock);
1450 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1451 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1452 		ceph_con_send(&session->s_con, msg);
1453 		spin_lock(&session->s_cap_lock);
1454 	}
1455 	spin_unlock(&session->s_cap_lock);
1456 }
1457 
1458 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1459 				 struct ceph_mds_session *session)
1460 {
1461 	struct ceph_msg *msg;
1462 	struct ceph_mds_cap_release *head;
1463 	unsigned num;
1464 
1465 	dout("discard_cap_releases mds%d\n", session->s_mds);
1466 
1467 	if (!list_empty(&session->s_cap_releases)) {
1468 		/* zero out the in-progress message */
1469 		msg = list_first_entry(&session->s_cap_releases,
1470 					struct ceph_msg, list_head);
1471 		head = msg->front.iov_base;
1472 		num = le32_to_cpu(head->num);
1473 		dout("discard_cap_releases mds%d %p %u\n",
1474 		     session->s_mds, msg, num);
1475 		head->num = cpu_to_le32(0);
1476 		msg->front.iov_len = sizeof(*head);
1477 		session->s_num_cap_releases += num;
1478 	}
1479 
1480 	/* requeue completed messages */
1481 	while (!list_empty(&session->s_cap_releases_done)) {
1482 		msg = list_first_entry(&session->s_cap_releases_done,
1483 				 struct ceph_msg, list_head);
1484 		list_del_init(&msg->list_head);
1485 
1486 		head = msg->front.iov_base;
1487 		num = le32_to_cpu(head->num);
1488 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1489 		     num);
1490 		session->s_num_cap_releases += num;
1491 		head->num = cpu_to_le32(0);
1492 		msg->front.iov_len = sizeof(*head);
1493 		list_add(&msg->list_head, &session->s_cap_releases);
1494 	}
1495 }
1496 
1497 /*
1498  * requests
1499  */
1500 
1501 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1502 				    struct inode *dir)
1503 {
1504 	struct ceph_inode_info *ci = ceph_inode(dir);
1505 	struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1506 	struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1507 	size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) +
1508 		      sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease);
1509 	int order, num_entries;
1510 
1511 	spin_lock(&ci->i_ceph_lock);
1512 	num_entries = ci->i_files + ci->i_subdirs;
1513 	spin_unlock(&ci->i_ceph_lock);
1514 	num_entries = max(num_entries, 1);
1515 	num_entries = min(num_entries, opt->max_readdir);
1516 
1517 	order = get_order(size * num_entries);
1518 	while (order >= 0) {
1519 		rinfo->dir_in = (void*)__get_free_pages(GFP_NOFS | __GFP_NOWARN,
1520 							order);
1521 		if (rinfo->dir_in)
1522 			break;
1523 		order--;
1524 	}
1525 	if (!rinfo->dir_in)
1526 		return -ENOMEM;
1527 
1528 	num_entries = (PAGE_SIZE << order) / size;
1529 	num_entries = min(num_entries, opt->max_readdir);
1530 
1531 	rinfo->dir_buf_size = PAGE_SIZE << order;
1532 	req->r_num_caps = num_entries + 1;
1533 	req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1534 	req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1535 	return 0;
1536 }
1537 
1538 /*
1539  * Create an mds request.
1540  */
1541 struct ceph_mds_request *
1542 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1543 {
1544 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1545 
1546 	if (!req)
1547 		return ERR_PTR(-ENOMEM);
1548 
1549 	mutex_init(&req->r_fill_mutex);
1550 	req->r_mdsc = mdsc;
1551 	req->r_started = jiffies;
1552 	req->r_resend_mds = -1;
1553 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1554 	req->r_fmode = -1;
1555 	kref_init(&req->r_kref);
1556 	INIT_LIST_HEAD(&req->r_wait);
1557 	init_completion(&req->r_completion);
1558 	init_completion(&req->r_safe_completion);
1559 	INIT_LIST_HEAD(&req->r_unsafe_item);
1560 
1561 	req->r_stamp = CURRENT_TIME;
1562 
1563 	req->r_op = op;
1564 	req->r_direct_mode = mode;
1565 	return req;
1566 }
1567 
1568 /*
1569  * return oldest (lowest) request, tid in request tree, 0 if none.
1570  *
1571  * called under mdsc->mutex.
1572  */
1573 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1574 {
1575 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1576 		return NULL;
1577 	return rb_entry(rb_first(&mdsc->request_tree),
1578 			struct ceph_mds_request, r_node);
1579 }
1580 
1581 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1582 {
1583 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1584 
1585 	if (req)
1586 		return req->r_tid;
1587 	return 0;
1588 }
1589 
1590 /*
1591  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1592  * on build_path_from_dentry in fs/cifs/dir.c.
1593  *
1594  * If @stop_on_nosnap, generate path relative to the first non-snapped
1595  * inode.
1596  *
1597  * Encode hidden .snap dirs as a double /, i.e.
1598  *   foo/.snap/bar -> foo//bar
1599  */
1600 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1601 			   int stop_on_nosnap)
1602 {
1603 	struct dentry *temp;
1604 	char *path;
1605 	int len, pos;
1606 	unsigned seq;
1607 
1608 	if (dentry == NULL)
1609 		return ERR_PTR(-EINVAL);
1610 
1611 retry:
1612 	len = 0;
1613 	seq = read_seqbegin(&rename_lock);
1614 	rcu_read_lock();
1615 	for (temp = dentry; !IS_ROOT(temp);) {
1616 		struct inode *inode = temp->d_inode;
1617 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1618 			len++;  /* slash only */
1619 		else if (stop_on_nosnap && inode &&
1620 			 ceph_snap(inode) == CEPH_NOSNAP)
1621 			break;
1622 		else
1623 			len += 1 + temp->d_name.len;
1624 		temp = temp->d_parent;
1625 	}
1626 	rcu_read_unlock();
1627 	if (len)
1628 		len--;  /* no leading '/' */
1629 
1630 	path = kmalloc(len+1, GFP_NOFS);
1631 	if (path == NULL)
1632 		return ERR_PTR(-ENOMEM);
1633 	pos = len;
1634 	path[pos] = 0;	/* trailing null */
1635 	rcu_read_lock();
1636 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1637 		struct inode *inode;
1638 
1639 		spin_lock(&temp->d_lock);
1640 		inode = temp->d_inode;
1641 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1642 			dout("build_path path+%d: %p SNAPDIR\n",
1643 			     pos, temp);
1644 		} else if (stop_on_nosnap && inode &&
1645 			   ceph_snap(inode) == CEPH_NOSNAP) {
1646 			spin_unlock(&temp->d_lock);
1647 			break;
1648 		} else {
1649 			pos -= temp->d_name.len;
1650 			if (pos < 0) {
1651 				spin_unlock(&temp->d_lock);
1652 				break;
1653 			}
1654 			strncpy(path + pos, temp->d_name.name,
1655 				temp->d_name.len);
1656 		}
1657 		spin_unlock(&temp->d_lock);
1658 		if (pos)
1659 			path[--pos] = '/';
1660 		temp = temp->d_parent;
1661 	}
1662 	rcu_read_unlock();
1663 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1664 		pr_err("build_path did not end path lookup where "
1665 		       "expected, namelen is %d, pos is %d\n", len, pos);
1666 		/* presumably this is only possible if racing with a
1667 		   rename of one of the parent directories (we can not
1668 		   lock the dentries above us to prevent this, but
1669 		   retrying should be harmless) */
1670 		kfree(path);
1671 		goto retry;
1672 	}
1673 
1674 	*base = ceph_ino(temp->d_inode);
1675 	*plen = len;
1676 	dout("build_path on %p %d built %llx '%.*s'\n",
1677 	     dentry, d_count(dentry), *base, len, path);
1678 	return path;
1679 }
1680 
1681 static int build_dentry_path(struct dentry *dentry,
1682 			     const char **ppath, int *ppathlen, u64 *pino,
1683 			     int *pfreepath)
1684 {
1685 	char *path;
1686 
1687 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1688 		*pino = ceph_ino(dentry->d_parent->d_inode);
1689 		*ppath = dentry->d_name.name;
1690 		*ppathlen = dentry->d_name.len;
1691 		return 0;
1692 	}
1693 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1694 	if (IS_ERR(path))
1695 		return PTR_ERR(path);
1696 	*ppath = path;
1697 	*pfreepath = 1;
1698 	return 0;
1699 }
1700 
1701 static int build_inode_path(struct inode *inode,
1702 			    const char **ppath, int *ppathlen, u64 *pino,
1703 			    int *pfreepath)
1704 {
1705 	struct dentry *dentry;
1706 	char *path;
1707 
1708 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1709 		*pino = ceph_ino(inode);
1710 		*ppathlen = 0;
1711 		return 0;
1712 	}
1713 	dentry = d_find_alias(inode);
1714 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1715 	dput(dentry);
1716 	if (IS_ERR(path))
1717 		return PTR_ERR(path);
1718 	*ppath = path;
1719 	*pfreepath = 1;
1720 	return 0;
1721 }
1722 
1723 /*
1724  * request arguments may be specified via an inode *, a dentry *, or
1725  * an explicit ino+path.
1726  */
1727 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1728 				  const char *rpath, u64 rino,
1729 				  const char **ppath, int *pathlen,
1730 				  u64 *ino, int *freepath)
1731 {
1732 	int r = 0;
1733 
1734 	if (rinode) {
1735 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1736 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1737 		     ceph_snap(rinode));
1738 	} else if (rdentry) {
1739 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1740 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1741 		     *ppath);
1742 	} else if (rpath || rino) {
1743 		*ino = rino;
1744 		*ppath = rpath;
1745 		*pathlen = rpath ? strlen(rpath) : 0;
1746 		dout(" path %.*s\n", *pathlen, rpath);
1747 	}
1748 
1749 	return r;
1750 }
1751 
1752 /*
1753  * called under mdsc->mutex
1754  */
1755 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1756 					       struct ceph_mds_request *req,
1757 					       int mds)
1758 {
1759 	struct ceph_msg *msg;
1760 	struct ceph_mds_request_head *head;
1761 	const char *path1 = NULL;
1762 	const char *path2 = NULL;
1763 	u64 ino1 = 0, ino2 = 0;
1764 	int pathlen1 = 0, pathlen2 = 0;
1765 	int freepath1 = 0, freepath2 = 0;
1766 	int len;
1767 	u16 releases;
1768 	void *p, *end;
1769 	int ret;
1770 
1771 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1772 			      req->r_path1, req->r_ino1.ino,
1773 			      &path1, &pathlen1, &ino1, &freepath1);
1774 	if (ret < 0) {
1775 		msg = ERR_PTR(ret);
1776 		goto out;
1777 	}
1778 
1779 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1780 			      req->r_path2, req->r_ino2.ino,
1781 			      &path2, &pathlen2, &ino2, &freepath2);
1782 	if (ret < 0) {
1783 		msg = ERR_PTR(ret);
1784 		goto out_free1;
1785 	}
1786 
1787 	len = sizeof(*head) +
1788 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1789 		sizeof(struct timespec);
1790 
1791 	/* calculate (max) length for cap releases */
1792 	len += sizeof(struct ceph_mds_request_release) *
1793 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1794 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1795 	if (req->r_dentry_drop)
1796 		len += req->r_dentry->d_name.len;
1797 	if (req->r_old_dentry_drop)
1798 		len += req->r_old_dentry->d_name.len;
1799 
1800 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1801 	if (!msg) {
1802 		msg = ERR_PTR(-ENOMEM);
1803 		goto out_free2;
1804 	}
1805 
1806 	msg->hdr.version = 2;
1807 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1808 
1809 	head = msg->front.iov_base;
1810 	p = msg->front.iov_base + sizeof(*head);
1811 	end = msg->front.iov_base + msg->front.iov_len;
1812 
1813 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1814 	head->op = cpu_to_le32(req->r_op);
1815 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1816 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1817 	head->args = req->r_args;
1818 
1819 	ceph_encode_filepath(&p, end, ino1, path1);
1820 	ceph_encode_filepath(&p, end, ino2, path2);
1821 
1822 	/* make note of release offset, in case we need to replay */
1823 	req->r_request_release_offset = p - msg->front.iov_base;
1824 
1825 	/* cap releases */
1826 	releases = 0;
1827 	if (req->r_inode_drop)
1828 		releases += ceph_encode_inode_release(&p,
1829 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1830 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1831 	if (req->r_dentry_drop)
1832 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1833 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1834 	if (req->r_old_dentry_drop)
1835 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1836 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1837 	if (req->r_old_inode_drop)
1838 		releases += ceph_encode_inode_release(&p,
1839 		      req->r_old_dentry->d_inode,
1840 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1841 	head->num_releases = cpu_to_le16(releases);
1842 
1843 	/* time stamp */
1844 	ceph_encode_copy(&p, &req->r_stamp, sizeof(req->r_stamp));
1845 
1846 	BUG_ON(p > end);
1847 	msg->front.iov_len = p - msg->front.iov_base;
1848 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1849 
1850 	if (req->r_data_len) {
1851 		/* outbound data set only by ceph_sync_setxattr() */
1852 		BUG_ON(!req->r_pages);
1853 		ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
1854 	}
1855 
1856 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1857 	msg->hdr.data_off = cpu_to_le16(0);
1858 
1859 out_free2:
1860 	if (freepath2)
1861 		kfree((char *)path2);
1862 out_free1:
1863 	if (freepath1)
1864 		kfree((char *)path1);
1865 out:
1866 	return msg;
1867 }
1868 
1869 /*
1870  * called under mdsc->mutex if error, under no mutex if
1871  * success.
1872  */
1873 static void complete_request(struct ceph_mds_client *mdsc,
1874 			     struct ceph_mds_request *req)
1875 {
1876 	if (req->r_callback)
1877 		req->r_callback(mdsc, req);
1878 	else
1879 		complete_all(&req->r_completion);
1880 }
1881 
1882 /*
1883  * called under mdsc->mutex
1884  */
1885 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1886 				  struct ceph_mds_request *req,
1887 				  int mds)
1888 {
1889 	struct ceph_mds_request_head *rhead;
1890 	struct ceph_msg *msg;
1891 	int flags = 0;
1892 
1893 	req->r_attempts++;
1894 	if (req->r_inode) {
1895 		struct ceph_cap *cap =
1896 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1897 
1898 		if (cap)
1899 			req->r_sent_on_mseq = cap->mseq;
1900 		else
1901 			req->r_sent_on_mseq = -1;
1902 	}
1903 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1904 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1905 
1906 	if (req->r_got_unsafe) {
1907 		/*
1908 		 * Replay.  Do not regenerate message (and rebuild
1909 		 * paths, etc.); just use the original message.
1910 		 * Rebuilding paths will break for renames because
1911 		 * d_move mangles the src name.
1912 		 */
1913 		msg = req->r_request;
1914 		rhead = msg->front.iov_base;
1915 
1916 		flags = le32_to_cpu(rhead->flags);
1917 		flags |= CEPH_MDS_FLAG_REPLAY;
1918 		rhead->flags = cpu_to_le32(flags);
1919 
1920 		if (req->r_target_inode)
1921 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1922 
1923 		rhead->num_retry = req->r_attempts - 1;
1924 
1925 		/* remove cap/dentry releases from message */
1926 		rhead->num_releases = 0;
1927 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1928 		msg->front.iov_len = req->r_request_release_offset;
1929 		return 0;
1930 	}
1931 
1932 	if (req->r_request) {
1933 		ceph_msg_put(req->r_request);
1934 		req->r_request = NULL;
1935 	}
1936 	msg = create_request_message(mdsc, req, mds);
1937 	if (IS_ERR(msg)) {
1938 		req->r_err = PTR_ERR(msg);
1939 		complete_request(mdsc, req);
1940 		return PTR_ERR(msg);
1941 	}
1942 	req->r_request = msg;
1943 
1944 	rhead = msg->front.iov_base;
1945 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1946 	if (req->r_got_unsafe)
1947 		flags |= CEPH_MDS_FLAG_REPLAY;
1948 	if (req->r_locked_dir)
1949 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1950 	rhead->flags = cpu_to_le32(flags);
1951 	rhead->num_fwd = req->r_num_fwd;
1952 	rhead->num_retry = req->r_attempts - 1;
1953 	rhead->ino = 0;
1954 
1955 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1956 	return 0;
1957 }
1958 
1959 /*
1960  * send request, or put it on the appropriate wait list.
1961  */
1962 static int __do_request(struct ceph_mds_client *mdsc,
1963 			struct ceph_mds_request *req)
1964 {
1965 	struct ceph_mds_session *session = NULL;
1966 	int mds = -1;
1967 	int err = -EAGAIN;
1968 
1969 	if (req->r_err || req->r_got_result) {
1970 		if (req->r_aborted)
1971 			__unregister_request(mdsc, req);
1972 		goto out;
1973 	}
1974 
1975 	if (req->r_timeout &&
1976 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1977 		dout("do_request timed out\n");
1978 		err = -EIO;
1979 		goto finish;
1980 	}
1981 
1982 	put_request_session(req);
1983 
1984 	mds = __choose_mds(mdsc, req);
1985 	if (mds < 0 ||
1986 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1987 		dout("do_request no mds or not active, waiting for map\n");
1988 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1989 		goto out;
1990 	}
1991 
1992 	/* get, open session */
1993 	session = __ceph_lookup_mds_session(mdsc, mds);
1994 	if (!session) {
1995 		session = register_session(mdsc, mds);
1996 		if (IS_ERR(session)) {
1997 			err = PTR_ERR(session);
1998 			goto finish;
1999 		}
2000 	}
2001 	req->r_session = get_session(session);
2002 
2003 	dout("do_request mds%d session %p state %s\n", mds, session,
2004 	     session_state_name(session->s_state));
2005 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2006 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
2007 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
2008 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
2009 			__open_session(mdsc, session);
2010 		list_add(&req->r_wait, &session->s_waiting);
2011 		goto out_session;
2012 	}
2013 
2014 	/* send request */
2015 	req->r_resend_mds = -1;   /* forget any previous mds hint */
2016 
2017 	if (req->r_request_started == 0)   /* note request start time */
2018 		req->r_request_started = jiffies;
2019 
2020 	err = __prepare_send_request(mdsc, req, mds);
2021 	if (!err) {
2022 		ceph_msg_get(req->r_request);
2023 		ceph_con_send(&session->s_con, req->r_request);
2024 	}
2025 
2026 out_session:
2027 	ceph_put_mds_session(session);
2028 out:
2029 	return err;
2030 
2031 finish:
2032 	req->r_err = err;
2033 	complete_request(mdsc, req);
2034 	goto out;
2035 }
2036 
2037 /*
2038  * called under mdsc->mutex
2039  */
2040 static void __wake_requests(struct ceph_mds_client *mdsc,
2041 			    struct list_head *head)
2042 {
2043 	struct ceph_mds_request *req;
2044 	LIST_HEAD(tmp_list);
2045 
2046 	list_splice_init(head, &tmp_list);
2047 
2048 	while (!list_empty(&tmp_list)) {
2049 		req = list_entry(tmp_list.next,
2050 				 struct ceph_mds_request, r_wait);
2051 		list_del_init(&req->r_wait);
2052 		dout(" wake request %p tid %llu\n", req, req->r_tid);
2053 		__do_request(mdsc, req);
2054 	}
2055 }
2056 
2057 /*
2058  * Wake up threads with requests pending for @mds, so that they can
2059  * resubmit their requests to a possibly different mds.
2060  */
2061 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2062 {
2063 	struct ceph_mds_request *req;
2064 	struct rb_node *p;
2065 
2066 	dout("kick_requests mds%d\n", mds);
2067 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
2068 		req = rb_entry(p, struct ceph_mds_request, r_node);
2069 		if (req->r_got_unsafe)
2070 			continue;
2071 		if (req->r_session &&
2072 		    req->r_session->s_mds == mds) {
2073 			dout(" kicking tid %llu\n", req->r_tid);
2074 			__do_request(mdsc, req);
2075 		}
2076 	}
2077 }
2078 
2079 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2080 			      struct ceph_mds_request *req)
2081 {
2082 	dout("submit_request on %p\n", req);
2083 	mutex_lock(&mdsc->mutex);
2084 	__register_request(mdsc, req, NULL);
2085 	__do_request(mdsc, req);
2086 	mutex_unlock(&mdsc->mutex);
2087 }
2088 
2089 /*
2090  * Synchrously perform an mds request.  Take care of all of the
2091  * session setup, forwarding, retry details.
2092  */
2093 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2094 			 struct inode *dir,
2095 			 struct ceph_mds_request *req)
2096 {
2097 	int err;
2098 
2099 	dout("do_request on %p\n", req);
2100 
2101 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2102 	if (req->r_inode)
2103 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2104 	if (req->r_locked_dir)
2105 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2106 	if (req->r_old_dentry_dir)
2107 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2108 				  CEPH_CAP_PIN);
2109 
2110 	/* issue */
2111 	mutex_lock(&mdsc->mutex);
2112 	__register_request(mdsc, req, dir);
2113 	__do_request(mdsc, req);
2114 
2115 	if (req->r_err) {
2116 		err = req->r_err;
2117 		__unregister_request(mdsc, req);
2118 		dout("do_request early error %d\n", err);
2119 		goto out;
2120 	}
2121 
2122 	/* wait */
2123 	mutex_unlock(&mdsc->mutex);
2124 	dout("do_request waiting\n");
2125 	if (req->r_timeout) {
2126 		err = (long)wait_for_completion_killable_timeout(
2127 			&req->r_completion, req->r_timeout);
2128 		if (err == 0)
2129 			err = -EIO;
2130 	} else {
2131 		err = wait_for_completion_killable(&req->r_completion);
2132 	}
2133 	dout("do_request waited, got %d\n", err);
2134 	mutex_lock(&mdsc->mutex);
2135 
2136 	/* only abort if we didn't race with a real reply */
2137 	if (req->r_got_result) {
2138 		err = le32_to_cpu(req->r_reply_info.head->result);
2139 	} else if (err < 0) {
2140 		dout("aborted request %lld with %d\n", req->r_tid, err);
2141 
2142 		/*
2143 		 * ensure we aren't running concurrently with
2144 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2145 		 * rely on locks (dir mutex) held by our caller.
2146 		 */
2147 		mutex_lock(&req->r_fill_mutex);
2148 		req->r_err = err;
2149 		req->r_aborted = true;
2150 		mutex_unlock(&req->r_fill_mutex);
2151 
2152 		if (req->r_locked_dir &&
2153 		    (req->r_op & CEPH_MDS_OP_WRITE))
2154 			ceph_invalidate_dir_request(req);
2155 	} else {
2156 		err = req->r_err;
2157 	}
2158 
2159 out:
2160 	mutex_unlock(&mdsc->mutex);
2161 	dout("do_request %p done, result %d\n", req, err);
2162 	return err;
2163 }
2164 
2165 /*
2166  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2167  * namespace request.
2168  */
2169 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2170 {
2171 	struct inode *inode = req->r_locked_dir;
2172 
2173 	dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2174 
2175 	ceph_dir_clear_complete(inode);
2176 	if (req->r_dentry)
2177 		ceph_invalidate_dentry_lease(req->r_dentry);
2178 	if (req->r_old_dentry)
2179 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2180 }
2181 
2182 /*
2183  * Handle mds reply.
2184  *
2185  * We take the session mutex and parse and process the reply immediately.
2186  * This preserves the logical ordering of replies, capabilities, etc., sent
2187  * by the MDS as they are applied to our local cache.
2188  */
2189 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2190 {
2191 	struct ceph_mds_client *mdsc = session->s_mdsc;
2192 	struct ceph_mds_request *req;
2193 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2194 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2195 	u64 tid;
2196 	int err, result;
2197 	int mds = session->s_mds;
2198 
2199 	if (msg->front.iov_len < sizeof(*head)) {
2200 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2201 		ceph_msg_dump(msg);
2202 		return;
2203 	}
2204 
2205 	/* get request, session */
2206 	tid = le64_to_cpu(msg->hdr.tid);
2207 	mutex_lock(&mdsc->mutex);
2208 	req = __lookup_request(mdsc, tid);
2209 	if (!req) {
2210 		dout("handle_reply on unknown tid %llu\n", tid);
2211 		mutex_unlock(&mdsc->mutex);
2212 		return;
2213 	}
2214 	dout("handle_reply %p\n", req);
2215 
2216 	/* correct session? */
2217 	if (req->r_session != session) {
2218 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2219 		       " not mds%d\n", tid, session->s_mds,
2220 		       req->r_session ? req->r_session->s_mds : -1);
2221 		mutex_unlock(&mdsc->mutex);
2222 		goto out;
2223 	}
2224 
2225 	/* dup? */
2226 	if ((req->r_got_unsafe && !head->safe) ||
2227 	    (req->r_got_safe && head->safe)) {
2228 		pr_warn("got a dup %s reply on %llu from mds%d\n",
2229 			   head->safe ? "safe" : "unsafe", tid, mds);
2230 		mutex_unlock(&mdsc->mutex);
2231 		goto out;
2232 	}
2233 	if (req->r_got_safe && !head->safe) {
2234 		pr_warn("got unsafe after safe on %llu from mds%d\n",
2235 			   tid, mds);
2236 		mutex_unlock(&mdsc->mutex);
2237 		goto out;
2238 	}
2239 
2240 	result = le32_to_cpu(head->result);
2241 
2242 	/*
2243 	 * Handle an ESTALE
2244 	 * if we're not talking to the authority, send to them
2245 	 * if the authority has changed while we weren't looking,
2246 	 * send to new authority
2247 	 * Otherwise we just have to return an ESTALE
2248 	 */
2249 	if (result == -ESTALE) {
2250 		dout("got ESTALE on request %llu", req->r_tid);
2251 		if (req->r_direct_mode != USE_AUTH_MDS) {
2252 			dout("not using auth, setting for that now");
2253 			req->r_direct_mode = USE_AUTH_MDS;
2254 			__do_request(mdsc, req);
2255 			mutex_unlock(&mdsc->mutex);
2256 			goto out;
2257 		} else  {
2258 			int mds = __choose_mds(mdsc, req);
2259 			if (mds >= 0 && mds != req->r_session->s_mds) {
2260 				dout("but auth changed, so resending");
2261 				__do_request(mdsc, req);
2262 				mutex_unlock(&mdsc->mutex);
2263 				goto out;
2264 			}
2265 		}
2266 		dout("have to return ESTALE on request %llu", req->r_tid);
2267 	}
2268 
2269 
2270 	if (head->safe) {
2271 		req->r_got_safe = true;
2272 		__unregister_request(mdsc, req);
2273 
2274 		if (req->r_got_unsafe) {
2275 			/*
2276 			 * We already handled the unsafe response, now do the
2277 			 * cleanup.  No need to examine the response; the MDS
2278 			 * doesn't include any result info in the safe
2279 			 * response.  And even if it did, there is nothing
2280 			 * useful we could do with a revised return value.
2281 			 */
2282 			dout("got safe reply %llu, mds%d\n", tid, mds);
2283 			list_del_init(&req->r_unsafe_item);
2284 
2285 			/* last unsafe request during umount? */
2286 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2287 				complete_all(&mdsc->safe_umount_waiters);
2288 			mutex_unlock(&mdsc->mutex);
2289 			goto out;
2290 		}
2291 	} else {
2292 		req->r_got_unsafe = true;
2293 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2294 	}
2295 
2296 	dout("handle_reply tid %lld result %d\n", tid, result);
2297 	rinfo = &req->r_reply_info;
2298 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2299 	mutex_unlock(&mdsc->mutex);
2300 
2301 	mutex_lock(&session->s_mutex);
2302 	if (err < 0) {
2303 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2304 		ceph_msg_dump(msg);
2305 		goto out_err;
2306 	}
2307 
2308 	/* snap trace */
2309 	if (rinfo->snapblob_len) {
2310 		down_write(&mdsc->snap_rwsem);
2311 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2312 			       rinfo->snapblob + rinfo->snapblob_len,
2313 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2314 		downgrade_write(&mdsc->snap_rwsem);
2315 	} else {
2316 		down_read(&mdsc->snap_rwsem);
2317 	}
2318 
2319 	/* insert trace into our cache */
2320 	mutex_lock(&req->r_fill_mutex);
2321 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2322 	if (err == 0) {
2323 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2324 				    req->r_op == CEPH_MDS_OP_LSSNAP))
2325 			ceph_readdir_prepopulate(req, req->r_session);
2326 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2327 	}
2328 	mutex_unlock(&req->r_fill_mutex);
2329 
2330 	up_read(&mdsc->snap_rwsem);
2331 out_err:
2332 	mutex_lock(&mdsc->mutex);
2333 	if (!req->r_aborted) {
2334 		if (err) {
2335 			req->r_err = err;
2336 		} else {
2337 			req->r_reply = msg;
2338 			ceph_msg_get(msg);
2339 			req->r_got_result = true;
2340 		}
2341 	} else {
2342 		dout("reply arrived after request %lld was aborted\n", tid);
2343 	}
2344 	mutex_unlock(&mdsc->mutex);
2345 
2346 	ceph_add_cap_releases(mdsc, req->r_session);
2347 	mutex_unlock(&session->s_mutex);
2348 
2349 	/* kick calling process */
2350 	complete_request(mdsc, req);
2351 out:
2352 	ceph_mdsc_put_request(req);
2353 	return;
2354 }
2355 
2356 
2357 
2358 /*
2359  * handle mds notification that our request has been forwarded.
2360  */
2361 static void handle_forward(struct ceph_mds_client *mdsc,
2362 			   struct ceph_mds_session *session,
2363 			   struct ceph_msg *msg)
2364 {
2365 	struct ceph_mds_request *req;
2366 	u64 tid = le64_to_cpu(msg->hdr.tid);
2367 	u32 next_mds;
2368 	u32 fwd_seq;
2369 	int err = -EINVAL;
2370 	void *p = msg->front.iov_base;
2371 	void *end = p + msg->front.iov_len;
2372 
2373 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2374 	next_mds = ceph_decode_32(&p);
2375 	fwd_seq = ceph_decode_32(&p);
2376 
2377 	mutex_lock(&mdsc->mutex);
2378 	req = __lookup_request(mdsc, tid);
2379 	if (!req) {
2380 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2381 		goto out;  /* dup reply? */
2382 	}
2383 
2384 	if (req->r_aborted) {
2385 		dout("forward tid %llu aborted, unregistering\n", tid);
2386 		__unregister_request(mdsc, req);
2387 	} else if (fwd_seq <= req->r_num_fwd) {
2388 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2389 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2390 	} else {
2391 		/* resend. forward race not possible; mds would drop */
2392 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2393 		BUG_ON(req->r_err);
2394 		BUG_ON(req->r_got_result);
2395 		req->r_num_fwd = fwd_seq;
2396 		req->r_resend_mds = next_mds;
2397 		put_request_session(req);
2398 		__do_request(mdsc, req);
2399 	}
2400 	ceph_mdsc_put_request(req);
2401 out:
2402 	mutex_unlock(&mdsc->mutex);
2403 	return;
2404 
2405 bad:
2406 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2407 }
2408 
2409 /*
2410  * handle a mds session control message
2411  */
2412 static void handle_session(struct ceph_mds_session *session,
2413 			   struct ceph_msg *msg)
2414 {
2415 	struct ceph_mds_client *mdsc = session->s_mdsc;
2416 	u32 op;
2417 	u64 seq;
2418 	int mds = session->s_mds;
2419 	struct ceph_mds_session_head *h = msg->front.iov_base;
2420 	int wake = 0;
2421 
2422 	/* decode */
2423 	if (msg->front.iov_len != sizeof(*h))
2424 		goto bad;
2425 	op = le32_to_cpu(h->op);
2426 	seq = le64_to_cpu(h->seq);
2427 
2428 	mutex_lock(&mdsc->mutex);
2429 	if (op == CEPH_SESSION_CLOSE)
2430 		__unregister_session(mdsc, session);
2431 	/* FIXME: this ttl calculation is generous */
2432 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2433 	mutex_unlock(&mdsc->mutex);
2434 
2435 	mutex_lock(&session->s_mutex);
2436 
2437 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2438 	     mds, ceph_session_op_name(op), session,
2439 	     session_state_name(session->s_state), seq);
2440 
2441 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2442 		session->s_state = CEPH_MDS_SESSION_OPEN;
2443 		pr_info("mds%d came back\n", session->s_mds);
2444 	}
2445 
2446 	switch (op) {
2447 	case CEPH_SESSION_OPEN:
2448 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2449 			pr_info("mds%d reconnect success\n", session->s_mds);
2450 		session->s_state = CEPH_MDS_SESSION_OPEN;
2451 		renewed_caps(mdsc, session, 0);
2452 		wake = 1;
2453 		if (mdsc->stopping)
2454 			__close_session(mdsc, session);
2455 		break;
2456 
2457 	case CEPH_SESSION_RENEWCAPS:
2458 		if (session->s_renew_seq == seq)
2459 			renewed_caps(mdsc, session, 1);
2460 		break;
2461 
2462 	case CEPH_SESSION_CLOSE:
2463 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2464 			pr_info("mds%d reconnect denied\n", session->s_mds);
2465 		remove_session_caps(session);
2466 		wake = 1; /* for good measure */
2467 		wake_up_all(&mdsc->session_close_wq);
2468 		kick_requests(mdsc, mds);
2469 		break;
2470 
2471 	case CEPH_SESSION_STALE:
2472 		pr_info("mds%d caps went stale, renewing\n",
2473 			session->s_mds);
2474 		spin_lock(&session->s_gen_ttl_lock);
2475 		session->s_cap_gen++;
2476 		session->s_cap_ttl = jiffies - 1;
2477 		spin_unlock(&session->s_gen_ttl_lock);
2478 		send_renew_caps(mdsc, session);
2479 		break;
2480 
2481 	case CEPH_SESSION_RECALL_STATE:
2482 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2483 		break;
2484 
2485 	case CEPH_SESSION_FLUSHMSG:
2486 		send_flushmsg_ack(mdsc, session, seq);
2487 		break;
2488 
2489 	default:
2490 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2491 		WARN_ON(1);
2492 	}
2493 
2494 	mutex_unlock(&session->s_mutex);
2495 	if (wake) {
2496 		mutex_lock(&mdsc->mutex);
2497 		__wake_requests(mdsc, &session->s_waiting);
2498 		mutex_unlock(&mdsc->mutex);
2499 	}
2500 	return;
2501 
2502 bad:
2503 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2504 	       (int)msg->front.iov_len);
2505 	ceph_msg_dump(msg);
2506 	return;
2507 }
2508 
2509 
2510 /*
2511  * called under session->mutex.
2512  */
2513 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2514 				   struct ceph_mds_session *session)
2515 {
2516 	struct ceph_mds_request *req, *nreq;
2517 	int err;
2518 
2519 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2520 
2521 	mutex_lock(&mdsc->mutex);
2522 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2523 		err = __prepare_send_request(mdsc, req, session->s_mds);
2524 		if (!err) {
2525 			ceph_msg_get(req->r_request);
2526 			ceph_con_send(&session->s_con, req->r_request);
2527 		}
2528 	}
2529 	mutex_unlock(&mdsc->mutex);
2530 }
2531 
2532 /*
2533  * Encode information about a cap for a reconnect with the MDS.
2534  */
2535 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2536 			  void *arg)
2537 {
2538 	union {
2539 		struct ceph_mds_cap_reconnect v2;
2540 		struct ceph_mds_cap_reconnect_v1 v1;
2541 	} rec;
2542 	size_t reclen;
2543 	struct ceph_inode_info *ci;
2544 	struct ceph_reconnect_state *recon_state = arg;
2545 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2546 	char *path;
2547 	int pathlen, err;
2548 	u64 pathbase;
2549 	struct dentry *dentry;
2550 
2551 	ci = cap->ci;
2552 
2553 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2554 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2555 	     ceph_cap_string(cap->issued));
2556 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2557 	if (err)
2558 		return err;
2559 
2560 	dentry = d_find_alias(inode);
2561 	if (dentry) {
2562 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2563 		if (IS_ERR(path)) {
2564 			err = PTR_ERR(path);
2565 			goto out_dput;
2566 		}
2567 	} else {
2568 		path = NULL;
2569 		pathlen = 0;
2570 	}
2571 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2572 	if (err)
2573 		goto out_free;
2574 
2575 	spin_lock(&ci->i_ceph_lock);
2576 	cap->seq = 0;        /* reset cap seq */
2577 	cap->issue_seq = 0;  /* and issue_seq */
2578 	cap->mseq = 0;       /* and migrate_seq */
2579 	cap->cap_gen = cap->session->s_cap_gen;
2580 
2581 	if (recon_state->flock) {
2582 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2583 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2584 		rec.v2.issued = cpu_to_le32(cap->issued);
2585 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2586 		rec.v2.pathbase = cpu_to_le64(pathbase);
2587 		rec.v2.flock_len = 0;
2588 		reclen = sizeof(rec.v2);
2589 	} else {
2590 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2591 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2592 		rec.v1.issued = cpu_to_le32(cap->issued);
2593 		rec.v1.size = cpu_to_le64(inode->i_size);
2594 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2595 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2596 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2597 		rec.v1.pathbase = cpu_to_le64(pathbase);
2598 		reclen = sizeof(rec.v1);
2599 	}
2600 	spin_unlock(&ci->i_ceph_lock);
2601 
2602 	if (recon_state->flock) {
2603 		int num_fcntl_locks, num_flock_locks;
2604 		struct ceph_filelock *flocks;
2605 
2606 encode_again:
2607 		spin_lock(&inode->i_lock);
2608 		ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2609 		spin_unlock(&inode->i_lock);
2610 		flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2611 				 sizeof(struct ceph_filelock), GFP_NOFS);
2612 		if (!flocks) {
2613 			err = -ENOMEM;
2614 			goto out_free;
2615 		}
2616 		spin_lock(&inode->i_lock);
2617 		err = ceph_encode_locks_to_buffer(inode, flocks,
2618 						  num_fcntl_locks,
2619 						  num_flock_locks);
2620 		spin_unlock(&inode->i_lock);
2621 		if (err) {
2622 			kfree(flocks);
2623 			if (err == -ENOSPC)
2624 				goto encode_again;
2625 			goto out_free;
2626 		}
2627 		/*
2628 		 * number of encoded locks is stable, so copy to pagelist
2629 		 */
2630 		rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2631 				    (num_fcntl_locks+num_flock_locks) *
2632 				    sizeof(struct ceph_filelock));
2633 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2634 		if (!err)
2635 			err = ceph_locks_to_pagelist(flocks, pagelist,
2636 						     num_fcntl_locks,
2637 						     num_flock_locks);
2638 		kfree(flocks);
2639 	} else {
2640 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2641 	}
2642 
2643 	recon_state->nr_caps++;
2644 out_free:
2645 	kfree(path);
2646 out_dput:
2647 	dput(dentry);
2648 	return err;
2649 }
2650 
2651 
2652 /*
2653  * If an MDS fails and recovers, clients need to reconnect in order to
2654  * reestablish shared state.  This includes all caps issued through
2655  * this session _and_ the snap_realm hierarchy.  Because it's not
2656  * clear which snap realms the mds cares about, we send everything we
2657  * know about.. that ensures we'll then get any new info the
2658  * recovering MDS might have.
2659  *
2660  * This is a relatively heavyweight operation, but it's rare.
2661  *
2662  * called with mdsc->mutex held.
2663  */
2664 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2665 			       struct ceph_mds_session *session)
2666 {
2667 	struct ceph_msg *reply;
2668 	struct rb_node *p;
2669 	int mds = session->s_mds;
2670 	int err = -ENOMEM;
2671 	int s_nr_caps;
2672 	struct ceph_pagelist *pagelist;
2673 	struct ceph_reconnect_state recon_state;
2674 
2675 	pr_info("mds%d reconnect start\n", mds);
2676 
2677 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2678 	if (!pagelist)
2679 		goto fail_nopagelist;
2680 	ceph_pagelist_init(pagelist);
2681 
2682 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2683 	if (!reply)
2684 		goto fail_nomsg;
2685 
2686 	mutex_lock(&session->s_mutex);
2687 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2688 	session->s_seq = 0;
2689 
2690 	ceph_con_close(&session->s_con);
2691 	ceph_con_open(&session->s_con,
2692 		      CEPH_ENTITY_TYPE_MDS, mds,
2693 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2694 
2695 	/* replay unsafe requests */
2696 	replay_unsafe_requests(mdsc, session);
2697 
2698 	down_read(&mdsc->snap_rwsem);
2699 
2700 	dout("session %p state %s\n", session,
2701 	     session_state_name(session->s_state));
2702 
2703 	spin_lock(&session->s_gen_ttl_lock);
2704 	session->s_cap_gen++;
2705 	spin_unlock(&session->s_gen_ttl_lock);
2706 
2707 	spin_lock(&session->s_cap_lock);
2708 	/*
2709 	 * notify __ceph_remove_cap() that we are composing cap reconnect.
2710 	 * If a cap get released before being added to the cap reconnect,
2711 	 * __ceph_remove_cap() should skip queuing cap release.
2712 	 */
2713 	session->s_cap_reconnect = 1;
2714 	/* drop old cap expires; we're about to reestablish that state */
2715 	discard_cap_releases(mdsc, session);
2716 	spin_unlock(&session->s_cap_lock);
2717 
2718 	/* traverse this session's caps */
2719 	s_nr_caps = session->s_nr_caps;
2720 	err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2721 	if (err)
2722 		goto fail;
2723 
2724 	recon_state.nr_caps = 0;
2725 	recon_state.pagelist = pagelist;
2726 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2727 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2728 	if (err < 0)
2729 		goto fail;
2730 
2731 	spin_lock(&session->s_cap_lock);
2732 	session->s_cap_reconnect = 0;
2733 	spin_unlock(&session->s_cap_lock);
2734 
2735 	/*
2736 	 * snaprealms.  we provide mds with the ino, seq (version), and
2737 	 * parent for all of our realms.  If the mds has any newer info,
2738 	 * it will tell us.
2739 	 */
2740 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2741 		struct ceph_snap_realm *realm =
2742 			rb_entry(p, struct ceph_snap_realm, node);
2743 		struct ceph_mds_snaprealm_reconnect sr_rec;
2744 
2745 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2746 		     realm->ino, realm->seq, realm->parent_ino);
2747 		sr_rec.ino = cpu_to_le64(realm->ino);
2748 		sr_rec.seq = cpu_to_le64(realm->seq);
2749 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2750 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2751 		if (err)
2752 			goto fail;
2753 	}
2754 
2755 	if (recon_state.flock)
2756 		reply->hdr.version = cpu_to_le16(2);
2757 
2758 	/* raced with cap release? */
2759 	if (s_nr_caps != recon_state.nr_caps) {
2760 		struct page *page = list_first_entry(&pagelist->head,
2761 						     struct page, lru);
2762 		__le32 *addr = kmap_atomic(page);
2763 		*addr = cpu_to_le32(recon_state.nr_caps);
2764 		kunmap_atomic(addr);
2765 	}
2766 
2767 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2768 	ceph_msg_data_add_pagelist(reply, pagelist);
2769 	ceph_con_send(&session->s_con, reply);
2770 
2771 	mutex_unlock(&session->s_mutex);
2772 
2773 	mutex_lock(&mdsc->mutex);
2774 	__wake_requests(mdsc, &session->s_waiting);
2775 	mutex_unlock(&mdsc->mutex);
2776 
2777 	up_read(&mdsc->snap_rwsem);
2778 	return;
2779 
2780 fail:
2781 	ceph_msg_put(reply);
2782 	up_read(&mdsc->snap_rwsem);
2783 	mutex_unlock(&session->s_mutex);
2784 fail_nomsg:
2785 	ceph_pagelist_release(pagelist);
2786 	kfree(pagelist);
2787 fail_nopagelist:
2788 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2789 	return;
2790 }
2791 
2792 
2793 /*
2794  * compare old and new mdsmaps, kicking requests
2795  * and closing out old connections as necessary
2796  *
2797  * called under mdsc->mutex.
2798  */
2799 static void check_new_map(struct ceph_mds_client *mdsc,
2800 			  struct ceph_mdsmap *newmap,
2801 			  struct ceph_mdsmap *oldmap)
2802 {
2803 	int i;
2804 	int oldstate, newstate;
2805 	struct ceph_mds_session *s;
2806 
2807 	dout("check_new_map new %u old %u\n",
2808 	     newmap->m_epoch, oldmap->m_epoch);
2809 
2810 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2811 		if (mdsc->sessions[i] == NULL)
2812 			continue;
2813 		s = mdsc->sessions[i];
2814 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2815 		newstate = ceph_mdsmap_get_state(newmap, i);
2816 
2817 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2818 		     i, ceph_mds_state_name(oldstate),
2819 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2820 		     ceph_mds_state_name(newstate),
2821 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2822 		     session_state_name(s->s_state));
2823 
2824 		if (i >= newmap->m_max_mds ||
2825 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
2826 			   ceph_mdsmap_get_addr(newmap, i),
2827 			   sizeof(struct ceph_entity_addr))) {
2828 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2829 				/* the session never opened, just close it
2830 				 * out now */
2831 				__wake_requests(mdsc, &s->s_waiting);
2832 				__unregister_session(mdsc, s);
2833 			} else {
2834 				/* just close it */
2835 				mutex_unlock(&mdsc->mutex);
2836 				mutex_lock(&s->s_mutex);
2837 				mutex_lock(&mdsc->mutex);
2838 				ceph_con_close(&s->s_con);
2839 				mutex_unlock(&s->s_mutex);
2840 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2841 			}
2842 
2843 			/* kick any requests waiting on the recovering mds */
2844 			kick_requests(mdsc, i);
2845 		} else if (oldstate == newstate) {
2846 			continue;  /* nothing new with this mds */
2847 		}
2848 
2849 		/*
2850 		 * send reconnect?
2851 		 */
2852 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2853 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2854 			mutex_unlock(&mdsc->mutex);
2855 			send_mds_reconnect(mdsc, s);
2856 			mutex_lock(&mdsc->mutex);
2857 		}
2858 
2859 		/*
2860 		 * kick request on any mds that has gone active.
2861 		 */
2862 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2863 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2864 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2865 			    oldstate != CEPH_MDS_STATE_STARTING)
2866 				pr_info("mds%d recovery completed\n", s->s_mds);
2867 			kick_requests(mdsc, i);
2868 			ceph_kick_flushing_caps(mdsc, s);
2869 			wake_up_session_caps(s, 1);
2870 		}
2871 	}
2872 
2873 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2874 		s = mdsc->sessions[i];
2875 		if (!s)
2876 			continue;
2877 		if (!ceph_mdsmap_is_laggy(newmap, i))
2878 			continue;
2879 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2880 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2881 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2882 			dout(" connecting to export targets of laggy mds%d\n",
2883 			     i);
2884 			__open_export_target_sessions(mdsc, s);
2885 		}
2886 	}
2887 }
2888 
2889 
2890 
2891 /*
2892  * leases
2893  */
2894 
2895 /*
2896  * caller must hold session s_mutex, dentry->d_lock
2897  */
2898 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2899 {
2900 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2901 
2902 	ceph_put_mds_session(di->lease_session);
2903 	di->lease_session = NULL;
2904 }
2905 
2906 static void handle_lease(struct ceph_mds_client *mdsc,
2907 			 struct ceph_mds_session *session,
2908 			 struct ceph_msg *msg)
2909 {
2910 	struct super_block *sb = mdsc->fsc->sb;
2911 	struct inode *inode;
2912 	struct dentry *parent, *dentry;
2913 	struct ceph_dentry_info *di;
2914 	int mds = session->s_mds;
2915 	struct ceph_mds_lease *h = msg->front.iov_base;
2916 	u32 seq;
2917 	struct ceph_vino vino;
2918 	struct qstr dname;
2919 	int release = 0;
2920 
2921 	dout("handle_lease from mds%d\n", mds);
2922 
2923 	/* decode */
2924 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2925 		goto bad;
2926 	vino.ino = le64_to_cpu(h->ino);
2927 	vino.snap = CEPH_NOSNAP;
2928 	seq = le32_to_cpu(h->seq);
2929 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2930 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2931 	if (dname.len != get_unaligned_le32(h+1))
2932 		goto bad;
2933 
2934 	mutex_lock(&session->s_mutex);
2935 	session->s_seq++;
2936 
2937 	/* lookup inode */
2938 	inode = ceph_find_inode(sb, vino);
2939 	dout("handle_lease %s, ino %llx %p %.*s\n",
2940 	     ceph_lease_op_name(h->action), vino.ino, inode,
2941 	     dname.len, dname.name);
2942 	if (inode == NULL) {
2943 		dout("handle_lease no inode %llx\n", vino.ino);
2944 		goto release;
2945 	}
2946 
2947 	/* dentry */
2948 	parent = d_find_alias(inode);
2949 	if (!parent) {
2950 		dout("no parent dentry on inode %p\n", inode);
2951 		WARN_ON(1);
2952 		goto release;  /* hrm... */
2953 	}
2954 	dname.hash = full_name_hash(dname.name, dname.len);
2955 	dentry = d_lookup(parent, &dname);
2956 	dput(parent);
2957 	if (!dentry)
2958 		goto release;
2959 
2960 	spin_lock(&dentry->d_lock);
2961 	di = ceph_dentry(dentry);
2962 	switch (h->action) {
2963 	case CEPH_MDS_LEASE_REVOKE:
2964 		if (di->lease_session == session) {
2965 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2966 				h->seq = cpu_to_le32(di->lease_seq);
2967 			__ceph_mdsc_drop_dentry_lease(dentry);
2968 		}
2969 		release = 1;
2970 		break;
2971 
2972 	case CEPH_MDS_LEASE_RENEW:
2973 		if (di->lease_session == session &&
2974 		    di->lease_gen == session->s_cap_gen &&
2975 		    di->lease_renew_from &&
2976 		    di->lease_renew_after == 0) {
2977 			unsigned long duration =
2978 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2979 
2980 			di->lease_seq = seq;
2981 			dentry->d_time = di->lease_renew_from + duration;
2982 			di->lease_renew_after = di->lease_renew_from +
2983 				(duration >> 1);
2984 			di->lease_renew_from = 0;
2985 		}
2986 		break;
2987 	}
2988 	spin_unlock(&dentry->d_lock);
2989 	dput(dentry);
2990 
2991 	if (!release)
2992 		goto out;
2993 
2994 release:
2995 	/* let's just reuse the same message */
2996 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2997 	ceph_msg_get(msg);
2998 	ceph_con_send(&session->s_con, msg);
2999 
3000 out:
3001 	iput(inode);
3002 	mutex_unlock(&session->s_mutex);
3003 	return;
3004 
3005 bad:
3006 	pr_err("corrupt lease message\n");
3007 	ceph_msg_dump(msg);
3008 }
3009 
3010 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3011 			      struct inode *inode,
3012 			      struct dentry *dentry, char action,
3013 			      u32 seq)
3014 {
3015 	struct ceph_msg *msg;
3016 	struct ceph_mds_lease *lease;
3017 	int len = sizeof(*lease) + sizeof(u32);
3018 	int dnamelen = 0;
3019 
3020 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3021 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
3022 	dnamelen = dentry->d_name.len;
3023 	len += dnamelen;
3024 
3025 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3026 	if (!msg)
3027 		return;
3028 	lease = msg->front.iov_base;
3029 	lease->action = action;
3030 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3031 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3032 	lease->seq = cpu_to_le32(seq);
3033 	put_unaligned_le32(dnamelen, lease + 1);
3034 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3035 
3036 	/*
3037 	 * if this is a preemptive lease RELEASE, no need to
3038 	 * flush request stream, since the actual request will
3039 	 * soon follow.
3040 	 */
3041 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3042 
3043 	ceph_con_send(&session->s_con, msg);
3044 }
3045 
3046 /*
3047  * Preemptively release a lease we expect to invalidate anyway.
3048  * Pass @inode always, @dentry is optional.
3049  */
3050 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
3051 			     struct dentry *dentry)
3052 {
3053 	struct ceph_dentry_info *di;
3054 	struct ceph_mds_session *session;
3055 	u32 seq;
3056 
3057 	BUG_ON(inode == NULL);
3058 	BUG_ON(dentry == NULL);
3059 
3060 	/* is dentry lease valid? */
3061 	spin_lock(&dentry->d_lock);
3062 	di = ceph_dentry(dentry);
3063 	if (!di || !di->lease_session ||
3064 	    di->lease_session->s_mds < 0 ||
3065 	    di->lease_gen != di->lease_session->s_cap_gen ||
3066 	    !time_before(jiffies, dentry->d_time)) {
3067 		dout("lease_release inode %p dentry %p -- "
3068 		     "no lease\n",
3069 		     inode, dentry);
3070 		spin_unlock(&dentry->d_lock);
3071 		return;
3072 	}
3073 
3074 	/* we do have a lease on this dentry; note mds and seq */
3075 	session = ceph_get_mds_session(di->lease_session);
3076 	seq = di->lease_seq;
3077 	__ceph_mdsc_drop_dentry_lease(dentry);
3078 	spin_unlock(&dentry->d_lock);
3079 
3080 	dout("lease_release inode %p dentry %p to mds%d\n",
3081 	     inode, dentry, session->s_mds);
3082 	ceph_mdsc_lease_send_msg(session, inode, dentry,
3083 				 CEPH_MDS_LEASE_RELEASE, seq);
3084 	ceph_put_mds_session(session);
3085 }
3086 
3087 /*
3088  * drop all leases (and dentry refs) in preparation for umount
3089  */
3090 static void drop_leases(struct ceph_mds_client *mdsc)
3091 {
3092 	int i;
3093 
3094 	dout("drop_leases\n");
3095 	mutex_lock(&mdsc->mutex);
3096 	for (i = 0; i < mdsc->max_sessions; i++) {
3097 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3098 		if (!s)
3099 			continue;
3100 		mutex_unlock(&mdsc->mutex);
3101 		mutex_lock(&s->s_mutex);
3102 		mutex_unlock(&s->s_mutex);
3103 		ceph_put_mds_session(s);
3104 		mutex_lock(&mdsc->mutex);
3105 	}
3106 	mutex_unlock(&mdsc->mutex);
3107 }
3108 
3109 
3110 
3111 /*
3112  * delayed work -- periodically trim expired leases, renew caps with mds
3113  */
3114 static void schedule_delayed(struct ceph_mds_client *mdsc)
3115 {
3116 	int delay = 5;
3117 	unsigned hz = round_jiffies_relative(HZ * delay);
3118 	schedule_delayed_work(&mdsc->delayed_work, hz);
3119 }
3120 
3121 static void delayed_work(struct work_struct *work)
3122 {
3123 	int i;
3124 	struct ceph_mds_client *mdsc =
3125 		container_of(work, struct ceph_mds_client, delayed_work.work);
3126 	int renew_interval;
3127 	int renew_caps;
3128 
3129 	dout("mdsc delayed_work\n");
3130 	ceph_check_delayed_caps(mdsc);
3131 
3132 	mutex_lock(&mdsc->mutex);
3133 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3134 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3135 				   mdsc->last_renew_caps);
3136 	if (renew_caps)
3137 		mdsc->last_renew_caps = jiffies;
3138 
3139 	for (i = 0; i < mdsc->max_sessions; i++) {
3140 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3141 		if (s == NULL)
3142 			continue;
3143 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3144 			dout("resending session close request for mds%d\n",
3145 			     s->s_mds);
3146 			request_close_session(mdsc, s);
3147 			ceph_put_mds_session(s);
3148 			continue;
3149 		}
3150 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3151 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3152 				s->s_state = CEPH_MDS_SESSION_HUNG;
3153 				pr_info("mds%d hung\n", s->s_mds);
3154 			}
3155 		}
3156 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3157 			/* this mds is failed or recovering, just wait */
3158 			ceph_put_mds_session(s);
3159 			continue;
3160 		}
3161 		mutex_unlock(&mdsc->mutex);
3162 
3163 		mutex_lock(&s->s_mutex);
3164 		if (renew_caps)
3165 			send_renew_caps(mdsc, s);
3166 		else
3167 			ceph_con_keepalive(&s->s_con);
3168 		ceph_add_cap_releases(mdsc, s);
3169 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3170 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3171 			ceph_send_cap_releases(mdsc, s);
3172 		mutex_unlock(&s->s_mutex);
3173 		ceph_put_mds_session(s);
3174 
3175 		mutex_lock(&mdsc->mutex);
3176 	}
3177 	mutex_unlock(&mdsc->mutex);
3178 
3179 	schedule_delayed(mdsc);
3180 }
3181 
3182 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3183 
3184 {
3185 	struct ceph_mds_client *mdsc;
3186 
3187 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3188 	if (!mdsc)
3189 		return -ENOMEM;
3190 	mdsc->fsc = fsc;
3191 	fsc->mdsc = mdsc;
3192 	mutex_init(&mdsc->mutex);
3193 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3194 	if (mdsc->mdsmap == NULL) {
3195 		kfree(mdsc);
3196 		return -ENOMEM;
3197 	}
3198 
3199 	init_completion(&mdsc->safe_umount_waiters);
3200 	init_waitqueue_head(&mdsc->session_close_wq);
3201 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3202 	mdsc->sessions = NULL;
3203 	mdsc->max_sessions = 0;
3204 	mdsc->stopping = 0;
3205 	init_rwsem(&mdsc->snap_rwsem);
3206 	mdsc->snap_realms = RB_ROOT;
3207 	INIT_LIST_HEAD(&mdsc->snap_empty);
3208 	spin_lock_init(&mdsc->snap_empty_lock);
3209 	mdsc->last_tid = 0;
3210 	mdsc->request_tree = RB_ROOT;
3211 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3212 	mdsc->last_renew_caps = jiffies;
3213 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3214 	spin_lock_init(&mdsc->cap_delay_lock);
3215 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3216 	spin_lock_init(&mdsc->snap_flush_lock);
3217 	mdsc->cap_flush_seq = 0;
3218 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3219 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3220 	mdsc->num_cap_flushing = 0;
3221 	spin_lock_init(&mdsc->cap_dirty_lock);
3222 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3223 	spin_lock_init(&mdsc->dentry_lru_lock);
3224 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3225 
3226 	ceph_caps_init(mdsc);
3227 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3228 
3229 	return 0;
3230 }
3231 
3232 /*
3233  * Wait for safe replies on open mds requests.  If we time out, drop
3234  * all requests from the tree to avoid dangling dentry refs.
3235  */
3236 static void wait_requests(struct ceph_mds_client *mdsc)
3237 {
3238 	struct ceph_mds_request *req;
3239 	struct ceph_fs_client *fsc = mdsc->fsc;
3240 
3241 	mutex_lock(&mdsc->mutex);
3242 	if (__get_oldest_req(mdsc)) {
3243 		mutex_unlock(&mdsc->mutex);
3244 
3245 		dout("wait_requests waiting for requests\n");
3246 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3247 				    fsc->client->options->mount_timeout * HZ);
3248 
3249 		/* tear down remaining requests */
3250 		mutex_lock(&mdsc->mutex);
3251 		while ((req = __get_oldest_req(mdsc))) {
3252 			dout("wait_requests timed out on tid %llu\n",
3253 			     req->r_tid);
3254 			__unregister_request(mdsc, req);
3255 		}
3256 	}
3257 	mutex_unlock(&mdsc->mutex);
3258 	dout("wait_requests done\n");
3259 }
3260 
3261 /*
3262  * called before mount is ro, and before dentries are torn down.
3263  * (hmm, does this still race with new lookups?)
3264  */
3265 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3266 {
3267 	dout("pre_umount\n");
3268 	mdsc->stopping = 1;
3269 
3270 	drop_leases(mdsc);
3271 	ceph_flush_dirty_caps(mdsc);
3272 	wait_requests(mdsc);
3273 
3274 	/*
3275 	 * wait for reply handlers to drop their request refs and
3276 	 * their inode/dcache refs
3277 	 */
3278 	ceph_msgr_flush();
3279 }
3280 
3281 /*
3282  * wait for all write mds requests to flush.
3283  */
3284 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3285 {
3286 	struct ceph_mds_request *req = NULL, *nextreq;
3287 	struct rb_node *n;
3288 
3289 	mutex_lock(&mdsc->mutex);
3290 	dout("wait_unsafe_requests want %lld\n", want_tid);
3291 restart:
3292 	req = __get_oldest_req(mdsc);
3293 	while (req && req->r_tid <= want_tid) {
3294 		/* find next request */
3295 		n = rb_next(&req->r_node);
3296 		if (n)
3297 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3298 		else
3299 			nextreq = NULL;
3300 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3301 			/* write op */
3302 			ceph_mdsc_get_request(req);
3303 			if (nextreq)
3304 				ceph_mdsc_get_request(nextreq);
3305 			mutex_unlock(&mdsc->mutex);
3306 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3307 			     req->r_tid, want_tid);
3308 			wait_for_completion(&req->r_safe_completion);
3309 			mutex_lock(&mdsc->mutex);
3310 			ceph_mdsc_put_request(req);
3311 			if (!nextreq)
3312 				break;  /* next dne before, so we're done! */
3313 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3314 				/* next request was removed from tree */
3315 				ceph_mdsc_put_request(nextreq);
3316 				goto restart;
3317 			}
3318 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3319 		}
3320 		req = nextreq;
3321 	}
3322 	mutex_unlock(&mdsc->mutex);
3323 	dout("wait_unsafe_requests done\n");
3324 }
3325 
3326 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3327 {
3328 	u64 want_tid, want_flush;
3329 
3330 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3331 		return;
3332 
3333 	dout("sync\n");
3334 	mutex_lock(&mdsc->mutex);
3335 	want_tid = mdsc->last_tid;
3336 	want_flush = mdsc->cap_flush_seq;
3337 	mutex_unlock(&mdsc->mutex);
3338 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3339 
3340 	ceph_flush_dirty_caps(mdsc);
3341 
3342 	wait_unsafe_requests(mdsc, want_tid);
3343 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3344 }
3345 
3346 /*
3347  * true if all sessions are closed, or we force unmount
3348  */
3349 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3350 {
3351 	int i, n = 0;
3352 
3353 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3354 		return true;
3355 
3356 	mutex_lock(&mdsc->mutex);
3357 	for (i = 0; i < mdsc->max_sessions; i++)
3358 		if (mdsc->sessions[i])
3359 			n++;
3360 	mutex_unlock(&mdsc->mutex);
3361 	return n == 0;
3362 }
3363 
3364 /*
3365  * called after sb is ro.
3366  */
3367 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3368 {
3369 	struct ceph_mds_session *session;
3370 	int i;
3371 	struct ceph_fs_client *fsc = mdsc->fsc;
3372 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3373 
3374 	dout("close_sessions\n");
3375 
3376 	/* close sessions */
3377 	mutex_lock(&mdsc->mutex);
3378 	for (i = 0; i < mdsc->max_sessions; i++) {
3379 		session = __ceph_lookup_mds_session(mdsc, i);
3380 		if (!session)
3381 			continue;
3382 		mutex_unlock(&mdsc->mutex);
3383 		mutex_lock(&session->s_mutex);
3384 		__close_session(mdsc, session);
3385 		mutex_unlock(&session->s_mutex);
3386 		ceph_put_mds_session(session);
3387 		mutex_lock(&mdsc->mutex);
3388 	}
3389 	mutex_unlock(&mdsc->mutex);
3390 
3391 	dout("waiting for sessions to close\n");
3392 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3393 			   timeout);
3394 
3395 	/* tear down remaining sessions */
3396 	mutex_lock(&mdsc->mutex);
3397 	for (i = 0; i < mdsc->max_sessions; i++) {
3398 		if (mdsc->sessions[i]) {
3399 			session = get_session(mdsc->sessions[i]);
3400 			__unregister_session(mdsc, session);
3401 			mutex_unlock(&mdsc->mutex);
3402 			mutex_lock(&session->s_mutex);
3403 			remove_session_caps(session);
3404 			mutex_unlock(&session->s_mutex);
3405 			ceph_put_mds_session(session);
3406 			mutex_lock(&mdsc->mutex);
3407 		}
3408 	}
3409 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3410 	mutex_unlock(&mdsc->mutex);
3411 
3412 	ceph_cleanup_empty_realms(mdsc);
3413 
3414 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3415 
3416 	dout("stopped\n");
3417 }
3418 
3419 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3420 {
3421 	dout("stop\n");
3422 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3423 	if (mdsc->mdsmap)
3424 		ceph_mdsmap_destroy(mdsc->mdsmap);
3425 	kfree(mdsc->sessions);
3426 	ceph_caps_finalize(mdsc);
3427 }
3428 
3429 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3430 {
3431 	struct ceph_mds_client *mdsc = fsc->mdsc;
3432 
3433 	dout("mdsc_destroy %p\n", mdsc);
3434 	ceph_mdsc_stop(mdsc);
3435 
3436 	/* flush out any connection work with references to us */
3437 	ceph_msgr_flush();
3438 
3439 	fsc->mdsc = NULL;
3440 	kfree(mdsc);
3441 	dout("mdsc_destroy %p done\n", mdsc);
3442 }
3443 
3444 
3445 /*
3446  * handle mds map update.
3447  */
3448 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3449 {
3450 	u32 epoch;
3451 	u32 maplen;
3452 	void *p = msg->front.iov_base;
3453 	void *end = p + msg->front.iov_len;
3454 	struct ceph_mdsmap *newmap, *oldmap;
3455 	struct ceph_fsid fsid;
3456 	int err = -EINVAL;
3457 
3458 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3459 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3460 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3461 		return;
3462 	epoch = ceph_decode_32(&p);
3463 	maplen = ceph_decode_32(&p);
3464 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3465 
3466 	/* do we need it? */
3467 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3468 	mutex_lock(&mdsc->mutex);
3469 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3470 		dout("handle_map epoch %u <= our %u\n",
3471 		     epoch, mdsc->mdsmap->m_epoch);
3472 		mutex_unlock(&mdsc->mutex);
3473 		return;
3474 	}
3475 
3476 	newmap = ceph_mdsmap_decode(&p, end);
3477 	if (IS_ERR(newmap)) {
3478 		err = PTR_ERR(newmap);
3479 		goto bad_unlock;
3480 	}
3481 
3482 	/* swap into place */
3483 	if (mdsc->mdsmap) {
3484 		oldmap = mdsc->mdsmap;
3485 		mdsc->mdsmap = newmap;
3486 		check_new_map(mdsc, newmap, oldmap);
3487 		ceph_mdsmap_destroy(oldmap);
3488 	} else {
3489 		mdsc->mdsmap = newmap;  /* first mds map */
3490 	}
3491 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3492 
3493 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3494 
3495 	mutex_unlock(&mdsc->mutex);
3496 	schedule_delayed(mdsc);
3497 	return;
3498 
3499 bad_unlock:
3500 	mutex_unlock(&mdsc->mutex);
3501 bad:
3502 	pr_err("error decoding mdsmap %d\n", err);
3503 	return;
3504 }
3505 
3506 static struct ceph_connection *con_get(struct ceph_connection *con)
3507 {
3508 	struct ceph_mds_session *s = con->private;
3509 
3510 	if (get_session(s)) {
3511 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3512 		return con;
3513 	}
3514 	dout("mdsc con_get %p FAIL\n", s);
3515 	return NULL;
3516 }
3517 
3518 static void con_put(struct ceph_connection *con)
3519 {
3520 	struct ceph_mds_session *s = con->private;
3521 
3522 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3523 	ceph_put_mds_session(s);
3524 }
3525 
3526 /*
3527  * if the client is unresponsive for long enough, the mds will kill
3528  * the session entirely.
3529  */
3530 static void peer_reset(struct ceph_connection *con)
3531 {
3532 	struct ceph_mds_session *s = con->private;
3533 	struct ceph_mds_client *mdsc = s->s_mdsc;
3534 
3535 	pr_warn("mds%d closed our session\n", s->s_mds);
3536 	send_mds_reconnect(mdsc, s);
3537 }
3538 
3539 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3540 {
3541 	struct ceph_mds_session *s = con->private;
3542 	struct ceph_mds_client *mdsc = s->s_mdsc;
3543 	int type = le16_to_cpu(msg->hdr.type);
3544 
3545 	mutex_lock(&mdsc->mutex);
3546 	if (__verify_registered_session(mdsc, s) < 0) {
3547 		mutex_unlock(&mdsc->mutex);
3548 		goto out;
3549 	}
3550 	mutex_unlock(&mdsc->mutex);
3551 
3552 	switch (type) {
3553 	case CEPH_MSG_MDS_MAP:
3554 		ceph_mdsc_handle_map(mdsc, msg);
3555 		break;
3556 	case CEPH_MSG_CLIENT_SESSION:
3557 		handle_session(s, msg);
3558 		break;
3559 	case CEPH_MSG_CLIENT_REPLY:
3560 		handle_reply(s, msg);
3561 		break;
3562 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3563 		handle_forward(mdsc, s, msg);
3564 		break;
3565 	case CEPH_MSG_CLIENT_CAPS:
3566 		ceph_handle_caps(s, msg);
3567 		break;
3568 	case CEPH_MSG_CLIENT_SNAP:
3569 		ceph_handle_snap(mdsc, s, msg);
3570 		break;
3571 	case CEPH_MSG_CLIENT_LEASE:
3572 		handle_lease(mdsc, s, msg);
3573 		break;
3574 
3575 	default:
3576 		pr_err("received unknown message type %d %s\n", type,
3577 		       ceph_msg_type_name(type));
3578 	}
3579 out:
3580 	ceph_msg_put(msg);
3581 }
3582 
3583 /*
3584  * authentication
3585  */
3586 
3587 /*
3588  * Note: returned pointer is the address of a structure that's
3589  * managed separately.  Caller must *not* attempt to free it.
3590  */
3591 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3592 					int *proto, int force_new)
3593 {
3594 	struct ceph_mds_session *s = con->private;
3595 	struct ceph_mds_client *mdsc = s->s_mdsc;
3596 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3597 	struct ceph_auth_handshake *auth = &s->s_auth;
3598 
3599 	if (force_new && auth->authorizer) {
3600 		ceph_auth_destroy_authorizer(ac, auth->authorizer);
3601 		auth->authorizer = NULL;
3602 	}
3603 	if (!auth->authorizer) {
3604 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3605 						      auth);
3606 		if (ret)
3607 			return ERR_PTR(ret);
3608 	} else {
3609 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3610 						      auth);
3611 		if (ret)
3612 			return ERR_PTR(ret);
3613 	}
3614 	*proto = ac->protocol;
3615 
3616 	return auth;
3617 }
3618 
3619 
3620 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3621 {
3622 	struct ceph_mds_session *s = con->private;
3623 	struct ceph_mds_client *mdsc = s->s_mdsc;
3624 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3625 
3626 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3627 }
3628 
3629 static int invalidate_authorizer(struct ceph_connection *con)
3630 {
3631 	struct ceph_mds_session *s = con->private;
3632 	struct ceph_mds_client *mdsc = s->s_mdsc;
3633 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3634 
3635 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3636 
3637 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3638 }
3639 
3640 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3641 				struct ceph_msg_header *hdr, int *skip)
3642 {
3643 	struct ceph_msg *msg;
3644 	int type = (int) le16_to_cpu(hdr->type);
3645 	int front_len = (int) le32_to_cpu(hdr->front_len);
3646 
3647 	if (con->in_msg)
3648 		return con->in_msg;
3649 
3650 	*skip = 0;
3651 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3652 	if (!msg) {
3653 		pr_err("unable to allocate msg type %d len %d\n",
3654 		       type, front_len);
3655 		return NULL;
3656 	}
3657 
3658 	return msg;
3659 }
3660 
3661 static const struct ceph_connection_operations mds_con_ops = {
3662 	.get = con_get,
3663 	.put = con_put,
3664 	.dispatch = dispatch,
3665 	.get_authorizer = get_authorizer,
3666 	.verify_authorizer_reply = verify_authorizer_reply,
3667 	.invalidate_authorizer = invalidate_authorizer,
3668 	.peer_reset = peer_reset,
3669 	.alloc_msg = mds_alloc_msg,
3670 };
3671 
3672 /* eof */
3673