xref: /openbmc/linux/fs/ceph/mds_client.c (revision 9c1f8594)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9 
10 #include "super.h"
11 #include "mds_client.h"
12 
13 #include <linux/ceph/messenger.h>
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/pagelist.h>
16 #include <linux/ceph/auth.h>
17 #include <linux/ceph/debugfs.h>
18 
19 /*
20  * A cluster of MDS (metadata server) daemons is responsible for
21  * managing the file system namespace (the directory hierarchy and
22  * inodes) and for coordinating shared access to storage.  Metadata is
23  * partitioning hierarchically across a number of servers, and that
24  * partition varies over time as the cluster adjusts the distribution
25  * in order to balance load.
26  *
27  * The MDS client is primarily responsible to managing synchronous
28  * metadata requests for operations like open, unlink, and so forth.
29  * If there is a MDS failure, we find out about it when we (possibly
30  * request and) receive a new MDS map, and can resubmit affected
31  * requests.
32  *
33  * For the most part, though, we take advantage of a lossless
34  * communications channel to the MDS, and do not need to worry about
35  * timing out or resubmitting requests.
36  *
37  * We maintain a stateful "session" with each MDS we interact with.
38  * Within each session, we sent periodic heartbeat messages to ensure
39  * any capabilities or leases we have been issues remain valid.  If
40  * the session times out and goes stale, our leases and capabilities
41  * are no longer valid.
42  */
43 
44 struct ceph_reconnect_state {
45 	struct ceph_pagelist *pagelist;
46 	bool flock;
47 };
48 
49 static void __wake_requests(struct ceph_mds_client *mdsc,
50 			    struct list_head *head);
51 
52 static const struct ceph_connection_operations mds_con_ops;
53 
54 
55 /*
56  * mds reply parsing
57  */
58 
59 /*
60  * parse individual inode info
61  */
62 static int parse_reply_info_in(void **p, void *end,
63 			       struct ceph_mds_reply_info_in *info,
64 			       int features)
65 {
66 	int err = -EIO;
67 
68 	info->in = *p;
69 	*p += sizeof(struct ceph_mds_reply_inode) +
70 		sizeof(*info->in->fragtree.splits) *
71 		le32_to_cpu(info->in->fragtree.nsplits);
72 
73 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
74 	ceph_decode_need(p, end, info->symlink_len, bad);
75 	info->symlink = *p;
76 	*p += info->symlink_len;
77 
78 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
79 		ceph_decode_copy_safe(p, end, &info->dir_layout,
80 				      sizeof(info->dir_layout), bad);
81 	else
82 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
83 
84 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
85 	ceph_decode_need(p, end, info->xattr_len, bad);
86 	info->xattr_data = *p;
87 	*p += info->xattr_len;
88 	return 0;
89 bad:
90 	return err;
91 }
92 
93 /*
94  * parse a normal reply, which may contain a (dir+)dentry and/or a
95  * target inode.
96  */
97 static int parse_reply_info_trace(void **p, void *end,
98 				  struct ceph_mds_reply_info_parsed *info,
99 				  int features)
100 {
101 	int err;
102 
103 	if (info->head->is_dentry) {
104 		err = parse_reply_info_in(p, end, &info->diri, features);
105 		if (err < 0)
106 			goto out_bad;
107 
108 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
109 			goto bad;
110 		info->dirfrag = *p;
111 		*p += sizeof(*info->dirfrag) +
112 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
113 		if (unlikely(*p > end))
114 			goto bad;
115 
116 		ceph_decode_32_safe(p, end, info->dname_len, bad);
117 		ceph_decode_need(p, end, info->dname_len, bad);
118 		info->dname = *p;
119 		*p += info->dname_len;
120 		info->dlease = *p;
121 		*p += sizeof(*info->dlease);
122 	}
123 
124 	if (info->head->is_target) {
125 		err = parse_reply_info_in(p, end, &info->targeti, features);
126 		if (err < 0)
127 			goto out_bad;
128 	}
129 
130 	if (unlikely(*p != end))
131 		goto bad;
132 	return 0;
133 
134 bad:
135 	err = -EIO;
136 out_bad:
137 	pr_err("problem parsing mds trace %d\n", err);
138 	return err;
139 }
140 
141 /*
142  * parse readdir results
143  */
144 static int parse_reply_info_dir(void **p, void *end,
145 				struct ceph_mds_reply_info_parsed *info,
146 				int features)
147 {
148 	u32 num, i = 0;
149 	int err;
150 
151 	info->dir_dir = *p;
152 	if (*p + sizeof(*info->dir_dir) > end)
153 		goto bad;
154 	*p += sizeof(*info->dir_dir) +
155 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
156 	if (*p > end)
157 		goto bad;
158 
159 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
160 	num = ceph_decode_32(p);
161 	info->dir_end = ceph_decode_8(p);
162 	info->dir_complete = ceph_decode_8(p);
163 	if (num == 0)
164 		goto done;
165 
166 	/* alloc large array */
167 	info->dir_nr = num;
168 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
169 			       sizeof(*info->dir_dname) +
170 			       sizeof(*info->dir_dname_len) +
171 			       sizeof(*info->dir_dlease),
172 			       GFP_NOFS);
173 	if (info->dir_in == NULL) {
174 		err = -ENOMEM;
175 		goto out_bad;
176 	}
177 	info->dir_dname = (void *)(info->dir_in + num);
178 	info->dir_dname_len = (void *)(info->dir_dname + num);
179 	info->dir_dlease = (void *)(info->dir_dname_len + num);
180 
181 	while (num) {
182 		/* dentry */
183 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
184 		info->dir_dname_len[i] = ceph_decode_32(p);
185 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
186 		info->dir_dname[i] = *p;
187 		*p += info->dir_dname_len[i];
188 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
189 		     info->dir_dname[i]);
190 		info->dir_dlease[i] = *p;
191 		*p += sizeof(struct ceph_mds_reply_lease);
192 
193 		/* inode */
194 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
195 		if (err < 0)
196 			goto out_bad;
197 		i++;
198 		num--;
199 	}
200 
201 done:
202 	if (*p != end)
203 		goto bad;
204 	return 0;
205 
206 bad:
207 	err = -EIO;
208 out_bad:
209 	pr_err("problem parsing dir contents %d\n", err);
210 	return err;
211 }
212 
213 /*
214  * parse fcntl F_GETLK results
215  */
216 static int parse_reply_info_filelock(void **p, void *end,
217 				     struct ceph_mds_reply_info_parsed *info,
218 				     int features)
219 {
220 	if (*p + sizeof(*info->filelock_reply) > end)
221 		goto bad;
222 
223 	info->filelock_reply = *p;
224 	*p += sizeof(*info->filelock_reply);
225 
226 	if (unlikely(*p != end))
227 		goto bad;
228 	return 0;
229 
230 bad:
231 	return -EIO;
232 }
233 
234 /*
235  * parse extra results
236  */
237 static int parse_reply_info_extra(void **p, void *end,
238 				  struct ceph_mds_reply_info_parsed *info,
239 				  int features)
240 {
241 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
242 		return parse_reply_info_filelock(p, end, info, features);
243 	else
244 		return parse_reply_info_dir(p, end, info, features);
245 }
246 
247 /*
248  * parse entire mds reply
249  */
250 static int parse_reply_info(struct ceph_msg *msg,
251 			    struct ceph_mds_reply_info_parsed *info,
252 			    int features)
253 {
254 	void *p, *end;
255 	u32 len;
256 	int err;
257 
258 	info->head = msg->front.iov_base;
259 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
260 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
261 
262 	/* trace */
263 	ceph_decode_32_safe(&p, end, len, bad);
264 	if (len > 0) {
265 		err = parse_reply_info_trace(&p, p+len, info, features);
266 		if (err < 0)
267 			goto out_bad;
268 	}
269 
270 	/* extra */
271 	ceph_decode_32_safe(&p, end, len, bad);
272 	if (len > 0) {
273 		err = parse_reply_info_extra(&p, p+len, info, features);
274 		if (err < 0)
275 			goto out_bad;
276 	}
277 
278 	/* snap blob */
279 	ceph_decode_32_safe(&p, end, len, bad);
280 	info->snapblob_len = len;
281 	info->snapblob = p;
282 	p += len;
283 
284 	if (p != end)
285 		goto bad;
286 	return 0;
287 
288 bad:
289 	err = -EIO;
290 out_bad:
291 	pr_err("mds parse_reply err %d\n", err);
292 	return err;
293 }
294 
295 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
296 {
297 	kfree(info->dir_in);
298 }
299 
300 
301 /*
302  * sessions
303  */
304 static const char *session_state_name(int s)
305 {
306 	switch (s) {
307 	case CEPH_MDS_SESSION_NEW: return "new";
308 	case CEPH_MDS_SESSION_OPENING: return "opening";
309 	case CEPH_MDS_SESSION_OPEN: return "open";
310 	case CEPH_MDS_SESSION_HUNG: return "hung";
311 	case CEPH_MDS_SESSION_CLOSING: return "closing";
312 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
313 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
314 	default: return "???";
315 	}
316 }
317 
318 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
319 {
320 	if (atomic_inc_not_zero(&s->s_ref)) {
321 		dout("mdsc get_session %p %d -> %d\n", s,
322 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
323 		return s;
324 	} else {
325 		dout("mdsc get_session %p 0 -- FAIL", s);
326 		return NULL;
327 	}
328 }
329 
330 void ceph_put_mds_session(struct ceph_mds_session *s)
331 {
332 	dout("mdsc put_session %p %d -> %d\n", s,
333 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
334 	if (atomic_dec_and_test(&s->s_ref)) {
335 		if (s->s_authorizer)
336 		     s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer(
337 			     s->s_mdsc->fsc->client->monc.auth,
338 			     s->s_authorizer);
339 		kfree(s);
340 	}
341 }
342 
343 /*
344  * called under mdsc->mutex
345  */
346 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
347 						   int mds)
348 {
349 	struct ceph_mds_session *session;
350 
351 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
352 		return NULL;
353 	session = mdsc->sessions[mds];
354 	dout("lookup_mds_session %p %d\n", session,
355 	     atomic_read(&session->s_ref));
356 	get_session(session);
357 	return session;
358 }
359 
360 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
361 {
362 	if (mds >= mdsc->max_sessions)
363 		return false;
364 	return mdsc->sessions[mds];
365 }
366 
367 static int __verify_registered_session(struct ceph_mds_client *mdsc,
368 				       struct ceph_mds_session *s)
369 {
370 	if (s->s_mds >= mdsc->max_sessions ||
371 	    mdsc->sessions[s->s_mds] != s)
372 		return -ENOENT;
373 	return 0;
374 }
375 
376 /*
377  * create+register a new session for given mds.
378  * called under mdsc->mutex.
379  */
380 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
381 						 int mds)
382 {
383 	struct ceph_mds_session *s;
384 
385 	s = kzalloc(sizeof(*s), GFP_NOFS);
386 	if (!s)
387 		return ERR_PTR(-ENOMEM);
388 	s->s_mdsc = mdsc;
389 	s->s_mds = mds;
390 	s->s_state = CEPH_MDS_SESSION_NEW;
391 	s->s_ttl = 0;
392 	s->s_seq = 0;
393 	mutex_init(&s->s_mutex);
394 
395 	ceph_con_init(mdsc->fsc->client->msgr, &s->s_con);
396 	s->s_con.private = s;
397 	s->s_con.ops = &mds_con_ops;
398 	s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
399 	s->s_con.peer_name.num = cpu_to_le64(mds);
400 
401 	spin_lock_init(&s->s_cap_lock);
402 	s->s_cap_gen = 0;
403 	s->s_cap_ttl = 0;
404 	s->s_renew_requested = 0;
405 	s->s_renew_seq = 0;
406 	INIT_LIST_HEAD(&s->s_caps);
407 	s->s_nr_caps = 0;
408 	s->s_trim_caps = 0;
409 	atomic_set(&s->s_ref, 1);
410 	INIT_LIST_HEAD(&s->s_waiting);
411 	INIT_LIST_HEAD(&s->s_unsafe);
412 	s->s_num_cap_releases = 0;
413 	s->s_cap_iterator = NULL;
414 	INIT_LIST_HEAD(&s->s_cap_releases);
415 	INIT_LIST_HEAD(&s->s_cap_releases_done);
416 	INIT_LIST_HEAD(&s->s_cap_flushing);
417 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
418 
419 	dout("register_session mds%d\n", mds);
420 	if (mds >= mdsc->max_sessions) {
421 		int newmax = 1 << get_count_order(mds+1);
422 		struct ceph_mds_session **sa;
423 
424 		dout("register_session realloc to %d\n", newmax);
425 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
426 		if (sa == NULL)
427 			goto fail_realloc;
428 		if (mdsc->sessions) {
429 			memcpy(sa, mdsc->sessions,
430 			       mdsc->max_sessions * sizeof(void *));
431 			kfree(mdsc->sessions);
432 		}
433 		mdsc->sessions = sa;
434 		mdsc->max_sessions = newmax;
435 	}
436 	mdsc->sessions[mds] = s;
437 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
438 
439 	ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
440 
441 	return s;
442 
443 fail_realloc:
444 	kfree(s);
445 	return ERR_PTR(-ENOMEM);
446 }
447 
448 /*
449  * called under mdsc->mutex
450  */
451 static void __unregister_session(struct ceph_mds_client *mdsc,
452 			       struct ceph_mds_session *s)
453 {
454 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
455 	BUG_ON(mdsc->sessions[s->s_mds] != s);
456 	mdsc->sessions[s->s_mds] = NULL;
457 	ceph_con_close(&s->s_con);
458 	ceph_put_mds_session(s);
459 }
460 
461 /*
462  * drop session refs in request.
463  *
464  * should be last request ref, or hold mdsc->mutex
465  */
466 static void put_request_session(struct ceph_mds_request *req)
467 {
468 	if (req->r_session) {
469 		ceph_put_mds_session(req->r_session);
470 		req->r_session = NULL;
471 	}
472 }
473 
474 void ceph_mdsc_release_request(struct kref *kref)
475 {
476 	struct ceph_mds_request *req = container_of(kref,
477 						    struct ceph_mds_request,
478 						    r_kref);
479 	if (req->r_request)
480 		ceph_msg_put(req->r_request);
481 	if (req->r_reply) {
482 		ceph_msg_put(req->r_reply);
483 		destroy_reply_info(&req->r_reply_info);
484 	}
485 	if (req->r_inode) {
486 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
487 		iput(req->r_inode);
488 	}
489 	if (req->r_locked_dir)
490 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
491 	if (req->r_target_inode)
492 		iput(req->r_target_inode);
493 	if (req->r_dentry)
494 		dput(req->r_dentry);
495 	if (req->r_old_dentry) {
496 		/*
497 		 * track (and drop pins for) r_old_dentry_dir
498 		 * separately, since r_old_dentry's d_parent may have
499 		 * changed between the dir mutex being dropped and
500 		 * this request being freed.
501 		 */
502 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
503 				  CEPH_CAP_PIN);
504 		dput(req->r_old_dentry);
505 		iput(req->r_old_dentry_dir);
506 	}
507 	kfree(req->r_path1);
508 	kfree(req->r_path2);
509 	put_request_session(req);
510 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
511 	kfree(req);
512 }
513 
514 /*
515  * lookup session, bump ref if found.
516  *
517  * called under mdsc->mutex.
518  */
519 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
520 					     u64 tid)
521 {
522 	struct ceph_mds_request *req;
523 	struct rb_node *n = mdsc->request_tree.rb_node;
524 
525 	while (n) {
526 		req = rb_entry(n, struct ceph_mds_request, r_node);
527 		if (tid < req->r_tid)
528 			n = n->rb_left;
529 		else if (tid > req->r_tid)
530 			n = n->rb_right;
531 		else {
532 			ceph_mdsc_get_request(req);
533 			return req;
534 		}
535 	}
536 	return NULL;
537 }
538 
539 static void __insert_request(struct ceph_mds_client *mdsc,
540 			     struct ceph_mds_request *new)
541 {
542 	struct rb_node **p = &mdsc->request_tree.rb_node;
543 	struct rb_node *parent = NULL;
544 	struct ceph_mds_request *req = NULL;
545 
546 	while (*p) {
547 		parent = *p;
548 		req = rb_entry(parent, struct ceph_mds_request, r_node);
549 		if (new->r_tid < req->r_tid)
550 			p = &(*p)->rb_left;
551 		else if (new->r_tid > req->r_tid)
552 			p = &(*p)->rb_right;
553 		else
554 			BUG();
555 	}
556 
557 	rb_link_node(&new->r_node, parent, p);
558 	rb_insert_color(&new->r_node, &mdsc->request_tree);
559 }
560 
561 /*
562  * Register an in-flight request, and assign a tid.  Link to directory
563  * are modifying (if any).
564  *
565  * Called under mdsc->mutex.
566  */
567 static void __register_request(struct ceph_mds_client *mdsc,
568 			       struct ceph_mds_request *req,
569 			       struct inode *dir)
570 {
571 	req->r_tid = ++mdsc->last_tid;
572 	if (req->r_num_caps)
573 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
574 				  req->r_num_caps);
575 	dout("__register_request %p tid %lld\n", req, req->r_tid);
576 	ceph_mdsc_get_request(req);
577 	__insert_request(mdsc, req);
578 
579 	req->r_uid = current_fsuid();
580 	req->r_gid = current_fsgid();
581 
582 	if (dir) {
583 		struct ceph_inode_info *ci = ceph_inode(dir);
584 
585 		ihold(dir);
586 		spin_lock(&ci->i_unsafe_lock);
587 		req->r_unsafe_dir = dir;
588 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
589 		spin_unlock(&ci->i_unsafe_lock);
590 	}
591 }
592 
593 static void __unregister_request(struct ceph_mds_client *mdsc,
594 				 struct ceph_mds_request *req)
595 {
596 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
597 	rb_erase(&req->r_node, &mdsc->request_tree);
598 	RB_CLEAR_NODE(&req->r_node);
599 
600 	if (req->r_unsafe_dir) {
601 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
602 
603 		spin_lock(&ci->i_unsafe_lock);
604 		list_del_init(&req->r_unsafe_dir_item);
605 		spin_unlock(&ci->i_unsafe_lock);
606 
607 		iput(req->r_unsafe_dir);
608 		req->r_unsafe_dir = NULL;
609 	}
610 
611 	ceph_mdsc_put_request(req);
612 }
613 
614 /*
615  * Choose mds to send request to next.  If there is a hint set in the
616  * request (e.g., due to a prior forward hint from the mds), use that.
617  * Otherwise, consult frag tree and/or caps to identify the
618  * appropriate mds.  If all else fails, choose randomly.
619  *
620  * Called under mdsc->mutex.
621  */
622 struct dentry *get_nonsnap_parent(struct dentry *dentry)
623 {
624 	/*
625 	 * we don't need to worry about protecting the d_parent access
626 	 * here because we never renaming inside the snapped namespace
627 	 * except to resplice to another snapdir, and either the old or new
628 	 * result is a valid result.
629 	 */
630 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
631 		dentry = dentry->d_parent;
632 	return dentry;
633 }
634 
635 static int __choose_mds(struct ceph_mds_client *mdsc,
636 			struct ceph_mds_request *req)
637 {
638 	struct inode *inode;
639 	struct ceph_inode_info *ci;
640 	struct ceph_cap *cap;
641 	int mode = req->r_direct_mode;
642 	int mds = -1;
643 	u32 hash = req->r_direct_hash;
644 	bool is_hash = req->r_direct_is_hash;
645 
646 	/*
647 	 * is there a specific mds we should try?  ignore hint if we have
648 	 * no session and the mds is not up (active or recovering).
649 	 */
650 	if (req->r_resend_mds >= 0 &&
651 	    (__have_session(mdsc, req->r_resend_mds) ||
652 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
653 		dout("choose_mds using resend_mds mds%d\n",
654 		     req->r_resend_mds);
655 		return req->r_resend_mds;
656 	}
657 
658 	if (mode == USE_RANDOM_MDS)
659 		goto random;
660 
661 	inode = NULL;
662 	if (req->r_inode) {
663 		inode = req->r_inode;
664 	} else if (req->r_dentry) {
665 		/* ignore race with rename; old or new d_parent is okay */
666 		struct dentry *parent = req->r_dentry->d_parent;
667 		struct inode *dir = parent->d_inode;
668 
669 		if (dir->i_sb != mdsc->fsc->sb) {
670 			/* not this fs! */
671 			inode = req->r_dentry->d_inode;
672 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
673 			/* direct snapped/virtual snapdir requests
674 			 * based on parent dir inode */
675 			struct dentry *dn = get_nonsnap_parent(parent);
676 			inode = dn->d_inode;
677 			dout("__choose_mds using nonsnap parent %p\n", inode);
678 		} else if (req->r_dentry->d_inode) {
679 			/* dentry target */
680 			inode = req->r_dentry->d_inode;
681 		} else {
682 			/* dir + name */
683 			inode = dir;
684 			hash = ceph_dentry_hash(dir, req->r_dentry);
685 			is_hash = true;
686 		}
687 	}
688 
689 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
690 	     (int)hash, mode);
691 	if (!inode)
692 		goto random;
693 	ci = ceph_inode(inode);
694 
695 	if (is_hash && S_ISDIR(inode->i_mode)) {
696 		struct ceph_inode_frag frag;
697 		int found;
698 
699 		ceph_choose_frag(ci, hash, &frag, &found);
700 		if (found) {
701 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
702 				u8 r;
703 
704 				/* choose a random replica */
705 				get_random_bytes(&r, 1);
706 				r %= frag.ndist;
707 				mds = frag.dist[r];
708 				dout("choose_mds %p %llx.%llx "
709 				     "frag %u mds%d (%d/%d)\n",
710 				     inode, ceph_vinop(inode),
711 				     frag.frag, mds,
712 				     (int)r, frag.ndist);
713 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
714 				    CEPH_MDS_STATE_ACTIVE)
715 					return mds;
716 			}
717 
718 			/* since this file/dir wasn't known to be
719 			 * replicated, then we want to look for the
720 			 * authoritative mds. */
721 			mode = USE_AUTH_MDS;
722 			if (frag.mds >= 0) {
723 				/* choose auth mds */
724 				mds = frag.mds;
725 				dout("choose_mds %p %llx.%llx "
726 				     "frag %u mds%d (auth)\n",
727 				     inode, ceph_vinop(inode), frag.frag, mds);
728 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
729 				    CEPH_MDS_STATE_ACTIVE)
730 					return mds;
731 			}
732 		}
733 	}
734 
735 	spin_lock(&inode->i_lock);
736 	cap = NULL;
737 	if (mode == USE_AUTH_MDS)
738 		cap = ci->i_auth_cap;
739 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
740 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
741 	if (!cap) {
742 		spin_unlock(&inode->i_lock);
743 		goto random;
744 	}
745 	mds = cap->session->s_mds;
746 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
747 	     inode, ceph_vinop(inode), mds,
748 	     cap == ci->i_auth_cap ? "auth " : "", cap);
749 	spin_unlock(&inode->i_lock);
750 	return mds;
751 
752 random:
753 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
754 	dout("choose_mds chose random mds%d\n", mds);
755 	return mds;
756 }
757 
758 
759 /*
760  * session messages
761  */
762 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
763 {
764 	struct ceph_msg *msg;
765 	struct ceph_mds_session_head *h;
766 
767 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS);
768 	if (!msg) {
769 		pr_err("create_session_msg ENOMEM creating msg\n");
770 		return NULL;
771 	}
772 	h = msg->front.iov_base;
773 	h->op = cpu_to_le32(op);
774 	h->seq = cpu_to_le64(seq);
775 	return msg;
776 }
777 
778 /*
779  * send session open request.
780  *
781  * called under mdsc->mutex
782  */
783 static int __open_session(struct ceph_mds_client *mdsc,
784 			  struct ceph_mds_session *session)
785 {
786 	struct ceph_msg *msg;
787 	int mstate;
788 	int mds = session->s_mds;
789 
790 	/* wait for mds to go active? */
791 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
792 	dout("open_session to mds%d (%s)\n", mds,
793 	     ceph_mds_state_name(mstate));
794 	session->s_state = CEPH_MDS_SESSION_OPENING;
795 	session->s_renew_requested = jiffies;
796 
797 	/* send connect message */
798 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
799 	if (!msg)
800 		return -ENOMEM;
801 	ceph_con_send(&session->s_con, msg);
802 	return 0;
803 }
804 
805 /*
806  * open sessions for any export targets for the given mds
807  *
808  * called under mdsc->mutex
809  */
810 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
811 					  struct ceph_mds_session *session)
812 {
813 	struct ceph_mds_info *mi;
814 	struct ceph_mds_session *ts;
815 	int i, mds = session->s_mds;
816 	int target;
817 
818 	if (mds >= mdsc->mdsmap->m_max_mds)
819 		return;
820 	mi = &mdsc->mdsmap->m_info[mds];
821 	dout("open_export_target_sessions for mds%d (%d targets)\n",
822 	     session->s_mds, mi->num_export_targets);
823 
824 	for (i = 0; i < mi->num_export_targets; i++) {
825 		target = mi->export_targets[i];
826 		ts = __ceph_lookup_mds_session(mdsc, target);
827 		if (!ts) {
828 			ts = register_session(mdsc, target);
829 			if (IS_ERR(ts))
830 				return;
831 		}
832 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
833 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
834 			__open_session(mdsc, session);
835 		else
836 			dout(" mds%d target mds%d %p is %s\n", session->s_mds,
837 			     i, ts, session_state_name(ts->s_state));
838 		ceph_put_mds_session(ts);
839 	}
840 }
841 
842 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
843 					   struct ceph_mds_session *session)
844 {
845 	mutex_lock(&mdsc->mutex);
846 	__open_export_target_sessions(mdsc, session);
847 	mutex_unlock(&mdsc->mutex);
848 }
849 
850 /*
851  * session caps
852  */
853 
854 /*
855  * Free preallocated cap messages assigned to this session
856  */
857 static void cleanup_cap_releases(struct ceph_mds_session *session)
858 {
859 	struct ceph_msg *msg;
860 
861 	spin_lock(&session->s_cap_lock);
862 	while (!list_empty(&session->s_cap_releases)) {
863 		msg = list_first_entry(&session->s_cap_releases,
864 				       struct ceph_msg, list_head);
865 		list_del_init(&msg->list_head);
866 		ceph_msg_put(msg);
867 	}
868 	while (!list_empty(&session->s_cap_releases_done)) {
869 		msg = list_first_entry(&session->s_cap_releases_done,
870 				       struct ceph_msg, list_head);
871 		list_del_init(&msg->list_head);
872 		ceph_msg_put(msg);
873 	}
874 	spin_unlock(&session->s_cap_lock);
875 }
876 
877 /*
878  * Helper to safely iterate over all caps associated with a session, with
879  * special care taken to handle a racing __ceph_remove_cap().
880  *
881  * Caller must hold session s_mutex.
882  */
883 static int iterate_session_caps(struct ceph_mds_session *session,
884 				 int (*cb)(struct inode *, struct ceph_cap *,
885 					    void *), void *arg)
886 {
887 	struct list_head *p;
888 	struct ceph_cap *cap;
889 	struct inode *inode, *last_inode = NULL;
890 	struct ceph_cap *old_cap = NULL;
891 	int ret;
892 
893 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
894 	spin_lock(&session->s_cap_lock);
895 	p = session->s_caps.next;
896 	while (p != &session->s_caps) {
897 		cap = list_entry(p, struct ceph_cap, session_caps);
898 		inode = igrab(&cap->ci->vfs_inode);
899 		if (!inode) {
900 			p = p->next;
901 			continue;
902 		}
903 		session->s_cap_iterator = cap;
904 		spin_unlock(&session->s_cap_lock);
905 
906 		if (last_inode) {
907 			iput(last_inode);
908 			last_inode = NULL;
909 		}
910 		if (old_cap) {
911 			ceph_put_cap(session->s_mdsc, old_cap);
912 			old_cap = NULL;
913 		}
914 
915 		ret = cb(inode, cap, arg);
916 		last_inode = inode;
917 
918 		spin_lock(&session->s_cap_lock);
919 		p = p->next;
920 		if (cap->ci == NULL) {
921 			dout("iterate_session_caps  finishing cap %p removal\n",
922 			     cap);
923 			BUG_ON(cap->session != session);
924 			list_del_init(&cap->session_caps);
925 			session->s_nr_caps--;
926 			cap->session = NULL;
927 			old_cap = cap;  /* put_cap it w/o locks held */
928 		}
929 		if (ret < 0)
930 			goto out;
931 	}
932 	ret = 0;
933 out:
934 	session->s_cap_iterator = NULL;
935 	spin_unlock(&session->s_cap_lock);
936 
937 	if (last_inode)
938 		iput(last_inode);
939 	if (old_cap)
940 		ceph_put_cap(session->s_mdsc, old_cap);
941 
942 	return ret;
943 }
944 
945 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
946 				  void *arg)
947 {
948 	struct ceph_inode_info *ci = ceph_inode(inode);
949 	int drop = 0;
950 
951 	dout("removing cap %p, ci is %p, inode is %p\n",
952 	     cap, ci, &ci->vfs_inode);
953 	spin_lock(&inode->i_lock);
954 	__ceph_remove_cap(cap);
955 	if (!__ceph_is_any_real_caps(ci)) {
956 		struct ceph_mds_client *mdsc =
957 			ceph_sb_to_client(inode->i_sb)->mdsc;
958 
959 		spin_lock(&mdsc->cap_dirty_lock);
960 		if (!list_empty(&ci->i_dirty_item)) {
961 			pr_info(" dropping dirty %s state for %p %lld\n",
962 				ceph_cap_string(ci->i_dirty_caps),
963 				inode, ceph_ino(inode));
964 			ci->i_dirty_caps = 0;
965 			list_del_init(&ci->i_dirty_item);
966 			drop = 1;
967 		}
968 		if (!list_empty(&ci->i_flushing_item)) {
969 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
970 				ceph_cap_string(ci->i_flushing_caps),
971 				inode, ceph_ino(inode));
972 			ci->i_flushing_caps = 0;
973 			list_del_init(&ci->i_flushing_item);
974 			mdsc->num_cap_flushing--;
975 			drop = 1;
976 		}
977 		if (drop && ci->i_wrbuffer_ref) {
978 			pr_info(" dropping dirty data for %p %lld\n",
979 				inode, ceph_ino(inode));
980 			ci->i_wrbuffer_ref = 0;
981 			ci->i_wrbuffer_ref_head = 0;
982 			drop++;
983 		}
984 		spin_unlock(&mdsc->cap_dirty_lock);
985 	}
986 	spin_unlock(&inode->i_lock);
987 	while (drop--)
988 		iput(inode);
989 	return 0;
990 }
991 
992 /*
993  * caller must hold session s_mutex
994  */
995 static void remove_session_caps(struct ceph_mds_session *session)
996 {
997 	dout("remove_session_caps on %p\n", session);
998 	iterate_session_caps(session, remove_session_caps_cb, NULL);
999 	BUG_ON(session->s_nr_caps > 0);
1000 	BUG_ON(!list_empty(&session->s_cap_flushing));
1001 	cleanup_cap_releases(session);
1002 }
1003 
1004 /*
1005  * wake up any threads waiting on this session's caps.  if the cap is
1006  * old (didn't get renewed on the client reconnect), remove it now.
1007  *
1008  * caller must hold s_mutex.
1009  */
1010 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1011 			      void *arg)
1012 {
1013 	struct ceph_inode_info *ci = ceph_inode(inode);
1014 
1015 	wake_up_all(&ci->i_cap_wq);
1016 	if (arg) {
1017 		spin_lock(&inode->i_lock);
1018 		ci->i_wanted_max_size = 0;
1019 		ci->i_requested_max_size = 0;
1020 		spin_unlock(&inode->i_lock);
1021 	}
1022 	return 0;
1023 }
1024 
1025 static void wake_up_session_caps(struct ceph_mds_session *session,
1026 				 int reconnect)
1027 {
1028 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1029 	iterate_session_caps(session, wake_up_session_cb,
1030 			     (void *)(unsigned long)reconnect);
1031 }
1032 
1033 /*
1034  * Send periodic message to MDS renewing all currently held caps.  The
1035  * ack will reset the expiration for all caps from this session.
1036  *
1037  * caller holds s_mutex
1038  */
1039 static int send_renew_caps(struct ceph_mds_client *mdsc,
1040 			   struct ceph_mds_session *session)
1041 {
1042 	struct ceph_msg *msg;
1043 	int state;
1044 
1045 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1046 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1047 		pr_info("mds%d caps stale\n", session->s_mds);
1048 	session->s_renew_requested = jiffies;
1049 
1050 	/* do not try to renew caps until a recovering mds has reconnected
1051 	 * with its clients. */
1052 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1053 	if (state < CEPH_MDS_STATE_RECONNECT) {
1054 		dout("send_renew_caps ignoring mds%d (%s)\n",
1055 		     session->s_mds, ceph_mds_state_name(state));
1056 		return 0;
1057 	}
1058 
1059 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1060 		ceph_mds_state_name(state));
1061 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1062 				 ++session->s_renew_seq);
1063 	if (!msg)
1064 		return -ENOMEM;
1065 	ceph_con_send(&session->s_con, msg);
1066 	return 0;
1067 }
1068 
1069 /*
1070  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1071  *
1072  * Called under session->s_mutex
1073  */
1074 static void renewed_caps(struct ceph_mds_client *mdsc,
1075 			 struct ceph_mds_session *session, int is_renew)
1076 {
1077 	int was_stale;
1078 	int wake = 0;
1079 
1080 	spin_lock(&session->s_cap_lock);
1081 	was_stale = is_renew && (session->s_cap_ttl == 0 ||
1082 				 time_after_eq(jiffies, session->s_cap_ttl));
1083 
1084 	session->s_cap_ttl = session->s_renew_requested +
1085 		mdsc->mdsmap->m_session_timeout*HZ;
1086 
1087 	if (was_stale) {
1088 		if (time_before(jiffies, session->s_cap_ttl)) {
1089 			pr_info("mds%d caps renewed\n", session->s_mds);
1090 			wake = 1;
1091 		} else {
1092 			pr_info("mds%d caps still stale\n", session->s_mds);
1093 		}
1094 	}
1095 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1096 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1097 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1098 	spin_unlock(&session->s_cap_lock);
1099 
1100 	if (wake)
1101 		wake_up_session_caps(session, 0);
1102 }
1103 
1104 /*
1105  * send a session close request
1106  */
1107 static int request_close_session(struct ceph_mds_client *mdsc,
1108 				 struct ceph_mds_session *session)
1109 {
1110 	struct ceph_msg *msg;
1111 
1112 	dout("request_close_session mds%d state %s seq %lld\n",
1113 	     session->s_mds, session_state_name(session->s_state),
1114 	     session->s_seq);
1115 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1116 	if (!msg)
1117 		return -ENOMEM;
1118 	ceph_con_send(&session->s_con, msg);
1119 	return 0;
1120 }
1121 
1122 /*
1123  * Called with s_mutex held.
1124  */
1125 static int __close_session(struct ceph_mds_client *mdsc,
1126 			 struct ceph_mds_session *session)
1127 {
1128 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1129 		return 0;
1130 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1131 	return request_close_session(mdsc, session);
1132 }
1133 
1134 /*
1135  * Trim old(er) caps.
1136  *
1137  * Because we can't cache an inode without one or more caps, we do
1138  * this indirectly: if a cap is unused, we prune its aliases, at which
1139  * point the inode will hopefully get dropped to.
1140  *
1141  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1142  * memory pressure from the MDS, though, so it needn't be perfect.
1143  */
1144 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1145 {
1146 	struct ceph_mds_session *session = arg;
1147 	struct ceph_inode_info *ci = ceph_inode(inode);
1148 	int used, oissued, mine;
1149 
1150 	if (session->s_trim_caps <= 0)
1151 		return -1;
1152 
1153 	spin_lock(&inode->i_lock);
1154 	mine = cap->issued | cap->implemented;
1155 	used = __ceph_caps_used(ci);
1156 	oissued = __ceph_caps_issued_other(ci, cap);
1157 
1158 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1159 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1160 	     ceph_cap_string(used));
1161 	if (ci->i_dirty_caps)
1162 		goto out;   /* dirty caps */
1163 	if ((used & ~oissued) & mine)
1164 		goto out;   /* we need these caps */
1165 
1166 	session->s_trim_caps--;
1167 	if (oissued) {
1168 		/* we aren't the only cap.. just remove us */
1169 		__ceph_remove_cap(cap);
1170 	} else {
1171 		/* try to drop referring dentries */
1172 		spin_unlock(&inode->i_lock);
1173 		d_prune_aliases(inode);
1174 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1175 		     inode, cap, atomic_read(&inode->i_count));
1176 		return 0;
1177 	}
1178 
1179 out:
1180 	spin_unlock(&inode->i_lock);
1181 	return 0;
1182 }
1183 
1184 /*
1185  * Trim session cap count down to some max number.
1186  */
1187 static int trim_caps(struct ceph_mds_client *mdsc,
1188 		     struct ceph_mds_session *session,
1189 		     int max_caps)
1190 {
1191 	int trim_caps = session->s_nr_caps - max_caps;
1192 
1193 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1194 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1195 	if (trim_caps > 0) {
1196 		session->s_trim_caps = trim_caps;
1197 		iterate_session_caps(session, trim_caps_cb, session);
1198 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1199 		     session->s_mds, session->s_nr_caps, max_caps,
1200 			trim_caps - session->s_trim_caps);
1201 		session->s_trim_caps = 0;
1202 	}
1203 	return 0;
1204 }
1205 
1206 /*
1207  * Allocate cap_release messages.  If there is a partially full message
1208  * in the queue, try to allocate enough to cover it's remainder, so that
1209  * we can send it immediately.
1210  *
1211  * Called under s_mutex.
1212  */
1213 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1214 			  struct ceph_mds_session *session)
1215 {
1216 	struct ceph_msg *msg, *partial = NULL;
1217 	struct ceph_mds_cap_release *head;
1218 	int err = -ENOMEM;
1219 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1220 	int num;
1221 
1222 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1223 	     extra);
1224 
1225 	spin_lock(&session->s_cap_lock);
1226 
1227 	if (!list_empty(&session->s_cap_releases)) {
1228 		msg = list_first_entry(&session->s_cap_releases,
1229 				       struct ceph_msg,
1230 				 list_head);
1231 		head = msg->front.iov_base;
1232 		num = le32_to_cpu(head->num);
1233 		if (num) {
1234 			dout(" partial %p with (%d/%d)\n", msg, num,
1235 			     (int)CEPH_CAPS_PER_RELEASE);
1236 			extra += CEPH_CAPS_PER_RELEASE - num;
1237 			partial = msg;
1238 		}
1239 	}
1240 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1241 		spin_unlock(&session->s_cap_lock);
1242 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1243 				   GFP_NOFS);
1244 		if (!msg)
1245 			goto out_unlocked;
1246 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1247 		     (int)msg->front.iov_len);
1248 		head = msg->front.iov_base;
1249 		head->num = cpu_to_le32(0);
1250 		msg->front.iov_len = sizeof(*head);
1251 		spin_lock(&session->s_cap_lock);
1252 		list_add(&msg->list_head, &session->s_cap_releases);
1253 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1254 	}
1255 
1256 	if (partial) {
1257 		head = partial->front.iov_base;
1258 		num = le32_to_cpu(head->num);
1259 		dout(" queueing partial %p with %d/%d\n", partial, num,
1260 		     (int)CEPH_CAPS_PER_RELEASE);
1261 		list_move_tail(&partial->list_head,
1262 			       &session->s_cap_releases_done);
1263 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1264 	}
1265 	err = 0;
1266 	spin_unlock(&session->s_cap_lock);
1267 out_unlocked:
1268 	return err;
1269 }
1270 
1271 /*
1272  * flush all dirty inode data to disk.
1273  *
1274  * returns true if we've flushed through want_flush_seq
1275  */
1276 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1277 {
1278 	int mds, ret = 1;
1279 
1280 	dout("check_cap_flush want %lld\n", want_flush_seq);
1281 	mutex_lock(&mdsc->mutex);
1282 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1283 		struct ceph_mds_session *session = mdsc->sessions[mds];
1284 
1285 		if (!session)
1286 			continue;
1287 		get_session(session);
1288 		mutex_unlock(&mdsc->mutex);
1289 
1290 		mutex_lock(&session->s_mutex);
1291 		if (!list_empty(&session->s_cap_flushing)) {
1292 			struct ceph_inode_info *ci =
1293 				list_entry(session->s_cap_flushing.next,
1294 					   struct ceph_inode_info,
1295 					   i_flushing_item);
1296 			struct inode *inode = &ci->vfs_inode;
1297 
1298 			spin_lock(&inode->i_lock);
1299 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1300 				dout("check_cap_flush still flushing %p "
1301 				     "seq %lld <= %lld to mds%d\n", inode,
1302 				     ci->i_cap_flush_seq, want_flush_seq,
1303 				     session->s_mds);
1304 				ret = 0;
1305 			}
1306 			spin_unlock(&inode->i_lock);
1307 		}
1308 		mutex_unlock(&session->s_mutex);
1309 		ceph_put_mds_session(session);
1310 
1311 		if (!ret)
1312 			return ret;
1313 		mutex_lock(&mdsc->mutex);
1314 	}
1315 
1316 	mutex_unlock(&mdsc->mutex);
1317 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1318 	return ret;
1319 }
1320 
1321 /*
1322  * called under s_mutex
1323  */
1324 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1325 			    struct ceph_mds_session *session)
1326 {
1327 	struct ceph_msg *msg;
1328 
1329 	dout("send_cap_releases mds%d\n", session->s_mds);
1330 	spin_lock(&session->s_cap_lock);
1331 	while (!list_empty(&session->s_cap_releases_done)) {
1332 		msg = list_first_entry(&session->s_cap_releases_done,
1333 				 struct ceph_msg, list_head);
1334 		list_del_init(&msg->list_head);
1335 		spin_unlock(&session->s_cap_lock);
1336 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1337 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1338 		ceph_con_send(&session->s_con, msg);
1339 		spin_lock(&session->s_cap_lock);
1340 	}
1341 	spin_unlock(&session->s_cap_lock);
1342 }
1343 
1344 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1345 				 struct ceph_mds_session *session)
1346 {
1347 	struct ceph_msg *msg;
1348 	struct ceph_mds_cap_release *head;
1349 	unsigned num;
1350 
1351 	dout("discard_cap_releases mds%d\n", session->s_mds);
1352 	spin_lock(&session->s_cap_lock);
1353 
1354 	/* zero out the in-progress message */
1355 	msg = list_first_entry(&session->s_cap_releases,
1356 			       struct ceph_msg, list_head);
1357 	head = msg->front.iov_base;
1358 	num = le32_to_cpu(head->num);
1359 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1360 	head->num = cpu_to_le32(0);
1361 	session->s_num_cap_releases += num;
1362 
1363 	/* requeue completed messages */
1364 	while (!list_empty(&session->s_cap_releases_done)) {
1365 		msg = list_first_entry(&session->s_cap_releases_done,
1366 				 struct ceph_msg, list_head);
1367 		list_del_init(&msg->list_head);
1368 
1369 		head = msg->front.iov_base;
1370 		num = le32_to_cpu(head->num);
1371 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1372 		     num);
1373 		session->s_num_cap_releases += num;
1374 		head->num = cpu_to_le32(0);
1375 		msg->front.iov_len = sizeof(*head);
1376 		list_add(&msg->list_head, &session->s_cap_releases);
1377 	}
1378 
1379 	spin_unlock(&session->s_cap_lock);
1380 }
1381 
1382 /*
1383  * requests
1384  */
1385 
1386 /*
1387  * Create an mds request.
1388  */
1389 struct ceph_mds_request *
1390 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1391 {
1392 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1393 
1394 	if (!req)
1395 		return ERR_PTR(-ENOMEM);
1396 
1397 	mutex_init(&req->r_fill_mutex);
1398 	req->r_mdsc = mdsc;
1399 	req->r_started = jiffies;
1400 	req->r_resend_mds = -1;
1401 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1402 	req->r_fmode = -1;
1403 	kref_init(&req->r_kref);
1404 	INIT_LIST_HEAD(&req->r_wait);
1405 	init_completion(&req->r_completion);
1406 	init_completion(&req->r_safe_completion);
1407 	INIT_LIST_HEAD(&req->r_unsafe_item);
1408 
1409 	req->r_op = op;
1410 	req->r_direct_mode = mode;
1411 	return req;
1412 }
1413 
1414 /*
1415  * return oldest (lowest) request, tid in request tree, 0 if none.
1416  *
1417  * called under mdsc->mutex.
1418  */
1419 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1420 {
1421 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1422 		return NULL;
1423 	return rb_entry(rb_first(&mdsc->request_tree),
1424 			struct ceph_mds_request, r_node);
1425 }
1426 
1427 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1428 {
1429 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1430 
1431 	if (req)
1432 		return req->r_tid;
1433 	return 0;
1434 }
1435 
1436 /*
1437  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1438  * on build_path_from_dentry in fs/cifs/dir.c.
1439  *
1440  * If @stop_on_nosnap, generate path relative to the first non-snapped
1441  * inode.
1442  *
1443  * Encode hidden .snap dirs as a double /, i.e.
1444  *   foo/.snap/bar -> foo//bar
1445  */
1446 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1447 			   int stop_on_nosnap)
1448 {
1449 	struct dentry *temp;
1450 	char *path;
1451 	int len, pos;
1452 	unsigned seq;
1453 
1454 	if (dentry == NULL)
1455 		return ERR_PTR(-EINVAL);
1456 
1457 retry:
1458 	len = 0;
1459 	seq = read_seqbegin(&rename_lock);
1460 	rcu_read_lock();
1461 	for (temp = dentry; !IS_ROOT(temp);) {
1462 		struct inode *inode = temp->d_inode;
1463 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1464 			len++;  /* slash only */
1465 		else if (stop_on_nosnap && inode &&
1466 			 ceph_snap(inode) == CEPH_NOSNAP)
1467 			break;
1468 		else
1469 			len += 1 + temp->d_name.len;
1470 		temp = temp->d_parent;
1471 		if (temp == NULL) {
1472 			rcu_read_unlock();
1473 			pr_err("build_path corrupt dentry %p\n", dentry);
1474 			return ERR_PTR(-EINVAL);
1475 		}
1476 	}
1477 	rcu_read_unlock();
1478 	if (len)
1479 		len--;  /* no leading '/' */
1480 
1481 	path = kmalloc(len+1, GFP_NOFS);
1482 	if (path == NULL)
1483 		return ERR_PTR(-ENOMEM);
1484 	pos = len;
1485 	path[pos] = 0;	/* trailing null */
1486 	rcu_read_lock();
1487 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1488 		struct inode *inode;
1489 
1490 		spin_lock(&temp->d_lock);
1491 		inode = temp->d_inode;
1492 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1493 			dout("build_path path+%d: %p SNAPDIR\n",
1494 			     pos, temp);
1495 		} else if (stop_on_nosnap && inode &&
1496 			   ceph_snap(inode) == CEPH_NOSNAP) {
1497 			break;
1498 		} else {
1499 			pos -= temp->d_name.len;
1500 			if (pos < 0) {
1501 				spin_unlock(&temp->d_lock);
1502 				break;
1503 			}
1504 			strncpy(path + pos, temp->d_name.name,
1505 				temp->d_name.len);
1506 		}
1507 		spin_unlock(&temp->d_lock);
1508 		if (pos)
1509 			path[--pos] = '/';
1510 		temp = temp->d_parent;
1511 		if (temp == NULL) {
1512 			rcu_read_unlock();
1513 			pr_err("build_path corrupt dentry\n");
1514 			kfree(path);
1515 			return ERR_PTR(-EINVAL);
1516 		}
1517 	}
1518 	rcu_read_unlock();
1519 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1520 		pr_err("build_path did not end path lookup where "
1521 		       "expected, namelen is %d, pos is %d\n", len, pos);
1522 		/* presumably this is only possible if racing with a
1523 		   rename of one of the parent directories (we can not
1524 		   lock the dentries above us to prevent this, but
1525 		   retrying should be harmless) */
1526 		kfree(path);
1527 		goto retry;
1528 	}
1529 
1530 	*base = ceph_ino(temp->d_inode);
1531 	*plen = len;
1532 	dout("build_path on %p %d built %llx '%.*s'\n",
1533 	     dentry, dentry->d_count, *base, len, path);
1534 	return path;
1535 }
1536 
1537 static int build_dentry_path(struct dentry *dentry,
1538 			     const char **ppath, int *ppathlen, u64 *pino,
1539 			     int *pfreepath)
1540 {
1541 	char *path;
1542 
1543 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1544 		*pino = ceph_ino(dentry->d_parent->d_inode);
1545 		*ppath = dentry->d_name.name;
1546 		*ppathlen = dentry->d_name.len;
1547 		return 0;
1548 	}
1549 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1550 	if (IS_ERR(path))
1551 		return PTR_ERR(path);
1552 	*ppath = path;
1553 	*pfreepath = 1;
1554 	return 0;
1555 }
1556 
1557 static int build_inode_path(struct inode *inode,
1558 			    const char **ppath, int *ppathlen, u64 *pino,
1559 			    int *pfreepath)
1560 {
1561 	struct dentry *dentry;
1562 	char *path;
1563 
1564 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1565 		*pino = ceph_ino(inode);
1566 		*ppathlen = 0;
1567 		return 0;
1568 	}
1569 	dentry = d_find_alias(inode);
1570 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1571 	dput(dentry);
1572 	if (IS_ERR(path))
1573 		return PTR_ERR(path);
1574 	*ppath = path;
1575 	*pfreepath = 1;
1576 	return 0;
1577 }
1578 
1579 /*
1580  * request arguments may be specified via an inode *, a dentry *, or
1581  * an explicit ino+path.
1582  */
1583 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1584 				  const char *rpath, u64 rino,
1585 				  const char **ppath, int *pathlen,
1586 				  u64 *ino, int *freepath)
1587 {
1588 	int r = 0;
1589 
1590 	if (rinode) {
1591 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1592 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1593 		     ceph_snap(rinode));
1594 	} else if (rdentry) {
1595 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1596 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1597 		     *ppath);
1598 	} else if (rpath || rino) {
1599 		*ino = rino;
1600 		*ppath = rpath;
1601 		*pathlen = strlen(rpath);
1602 		dout(" path %.*s\n", *pathlen, rpath);
1603 	}
1604 
1605 	return r;
1606 }
1607 
1608 /*
1609  * called under mdsc->mutex
1610  */
1611 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1612 					       struct ceph_mds_request *req,
1613 					       int mds)
1614 {
1615 	struct ceph_msg *msg;
1616 	struct ceph_mds_request_head *head;
1617 	const char *path1 = NULL;
1618 	const char *path2 = NULL;
1619 	u64 ino1 = 0, ino2 = 0;
1620 	int pathlen1 = 0, pathlen2 = 0;
1621 	int freepath1 = 0, freepath2 = 0;
1622 	int len;
1623 	u16 releases;
1624 	void *p, *end;
1625 	int ret;
1626 
1627 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1628 			      req->r_path1, req->r_ino1.ino,
1629 			      &path1, &pathlen1, &ino1, &freepath1);
1630 	if (ret < 0) {
1631 		msg = ERR_PTR(ret);
1632 		goto out;
1633 	}
1634 
1635 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1636 			      req->r_path2, req->r_ino2.ino,
1637 			      &path2, &pathlen2, &ino2, &freepath2);
1638 	if (ret < 0) {
1639 		msg = ERR_PTR(ret);
1640 		goto out_free1;
1641 	}
1642 
1643 	len = sizeof(*head) +
1644 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1645 
1646 	/* calculate (max) length for cap releases */
1647 	len += sizeof(struct ceph_mds_request_release) *
1648 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1649 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1650 	if (req->r_dentry_drop)
1651 		len += req->r_dentry->d_name.len;
1652 	if (req->r_old_dentry_drop)
1653 		len += req->r_old_dentry->d_name.len;
1654 
1655 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS);
1656 	if (!msg) {
1657 		msg = ERR_PTR(-ENOMEM);
1658 		goto out_free2;
1659 	}
1660 
1661 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1662 
1663 	head = msg->front.iov_base;
1664 	p = msg->front.iov_base + sizeof(*head);
1665 	end = msg->front.iov_base + msg->front.iov_len;
1666 
1667 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1668 	head->op = cpu_to_le32(req->r_op);
1669 	head->caller_uid = cpu_to_le32(req->r_uid);
1670 	head->caller_gid = cpu_to_le32(req->r_gid);
1671 	head->args = req->r_args;
1672 
1673 	ceph_encode_filepath(&p, end, ino1, path1);
1674 	ceph_encode_filepath(&p, end, ino2, path2);
1675 
1676 	/* make note of release offset, in case we need to replay */
1677 	req->r_request_release_offset = p - msg->front.iov_base;
1678 
1679 	/* cap releases */
1680 	releases = 0;
1681 	if (req->r_inode_drop)
1682 		releases += ceph_encode_inode_release(&p,
1683 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1684 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1685 	if (req->r_dentry_drop)
1686 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1687 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1688 	if (req->r_old_dentry_drop)
1689 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1690 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1691 	if (req->r_old_inode_drop)
1692 		releases += ceph_encode_inode_release(&p,
1693 		      req->r_old_dentry->d_inode,
1694 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1695 	head->num_releases = cpu_to_le16(releases);
1696 
1697 	BUG_ON(p > end);
1698 	msg->front.iov_len = p - msg->front.iov_base;
1699 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1700 
1701 	msg->pages = req->r_pages;
1702 	msg->nr_pages = req->r_num_pages;
1703 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1704 	msg->hdr.data_off = cpu_to_le16(0);
1705 
1706 out_free2:
1707 	if (freepath2)
1708 		kfree((char *)path2);
1709 out_free1:
1710 	if (freepath1)
1711 		kfree((char *)path1);
1712 out:
1713 	return msg;
1714 }
1715 
1716 /*
1717  * called under mdsc->mutex if error, under no mutex if
1718  * success.
1719  */
1720 static void complete_request(struct ceph_mds_client *mdsc,
1721 			     struct ceph_mds_request *req)
1722 {
1723 	if (req->r_callback)
1724 		req->r_callback(mdsc, req);
1725 	else
1726 		complete_all(&req->r_completion);
1727 }
1728 
1729 /*
1730  * called under mdsc->mutex
1731  */
1732 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1733 				  struct ceph_mds_request *req,
1734 				  int mds)
1735 {
1736 	struct ceph_mds_request_head *rhead;
1737 	struct ceph_msg *msg;
1738 	int flags = 0;
1739 
1740 	req->r_attempts++;
1741 	if (req->r_inode) {
1742 		struct ceph_cap *cap =
1743 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1744 
1745 		if (cap)
1746 			req->r_sent_on_mseq = cap->mseq;
1747 		else
1748 			req->r_sent_on_mseq = -1;
1749 	}
1750 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1751 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1752 
1753 	if (req->r_got_unsafe) {
1754 		/*
1755 		 * Replay.  Do not regenerate message (and rebuild
1756 		 * paths, etc.); just use the original message.
1757 		 * Rebuilding paths will break for renames because
1758 		 * d_move mangles the src name.
1759 		 */
1760 		msg = req->r_request;
1761 		rhead = msg->front.iov_base;
1762 
1763 		flags = le32_to_cpu(rhead->flags);
1764 		flags |= CEPH_MDS_FLAG_REPLAY;
1765 		rhead->flags = cpu_to_le32(flags);
1766 
1767 		if (req->r_target_inode)
1768 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1769 
1770 		rhead->num_retry = req->r_attempts - 1;
1771 
1772 		/* remove cap/dentry releases from message */
1773 		rhead->num_releases = 0;
1774 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1775 		msg->front.iov_len = req->r_request_release_offset;
1776 		return 0;
1777 	}
1778 
1779 	if (req->r_request) {
1780 		ceph_msg_put(req->r_request);
1781 		req->r_request = NULL;
1782 	}
1783 	msg = create_request_message(mdsc, req, mds);
1784 	if (IS_ERR(msg)) {
1785 		req->r_err = PTR_ERR(msg);
1786 		complete_request(mdsc, req);
1787 		return PTR_ERR(msg);
1788 	}
1789 	req->r_request = msg;
1790 
1791 	rhead = msg->front.iov_base;
1792 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1793 	if (req->r_got_unsafe)
1794 		flags |= CEPH_MDS_FLAG_REPLAY;
1795 	if (req->r_locked_dir)
1796 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1797 	rhead->flags = cpu_to_le32(flags);
1798 	rhead->num_fwd = req->r_num_fwd;
1799 	rhead->num_retry = req->r_attempts - 1;
1800 	rhead->ino = 0;
1801 
1802 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1803 	return 0;
1804 }
1805 
1806 /*
1807  * send request, or put it on the appropriate wait list.
1808  */
1809 static int __do_request(struct ceph_mds_client *mdsc,
1810 			struct ceph_mds_request *req)
1811 {
1812 	struct ceph_mds_session *session = NULL;
1813 	int mds = -1;
1814 	int err = -EAGAIN;
1815 
1816 	if (req->r_err || req->r_got_result)
1817 		goto out;
1818 
1819 	if (req->r_timeout &&
1820 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1821 		dout("do_request timed out\n");
1822 		err = -EIO;
1823 		goto finish;
1824 	}
1825 
1826 	put_request_session(req);
1827 
1828 	mds = __choose_mds(mdsc, req);
1829 	if (mds < 0 ||
1830 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1831 		dout("do_request no mds or not active, waiting for map\n");
1832 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1833 		goto out;
1834 	}
1835 
1836 	/* get, open session */
1837 	session = __ceph_lookup_mds_session(mdsc, mds);
1838 	if (!session) {
1839 		session = register_session(mdsc, mds);
1840 		if (IS_ERR(session)) {
1841 			err = PTR_ERR(session);
1842 			goto finish;
1843 		}
1844 	}
1845 	req->r_session = get_session(session);
1846 
1847 	dout("do_request mds%d session %p state %s\n", mds, session,
1848 	     session_state_name(session->s_state));
1849 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1850 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1851 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1852 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1853 			__open_session(mdsc, session);
1854 		list_add(&req->r_wait, &session->s_waiting);
1855 		goto out_session;
1856 	}
1857 
1858 	/* send request */
1859 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1860 
1861 	if (req->r_request_started == 0)   /* note request start time */
1862 		req->r_request_started = jiffies;
1863 
1864 	err = __prepare_send_request(mdsc, req, mds);
1865 	if (!err) {
1866 		ceph_msg_get(req->r_request);
1867 		ceph_con_send(&session->s_con, req->r_request);
1868 	}
1869 
1870 out_session:
1871 	ceph_put_mds_session(session);
1872 out:
1873 	return err;
1874 
1875 finish:
1876 	req->r_err = err;
1877 	complete_request(mdsc, req);
1878 	goto out;
1879 }
1880 
1881 /*
1882  * called under mdsc->mutex
1883  */
1884 static void __wake_requests(struct ceph_mds_client *mdsc,
1885 			    struct list_head *head)
1886 {
1887 	struct ceph_mds_request *req, *nreq;
1888 
1889 	list_for_each_entry_safe(req, nreq, head, r_wait) {
1890 		list_del_init(&req->r_wait);
1891 		__do_request(mdsc, req);
1892 	}
1893 }
1894 
1895 /*
1896  * Wake up threads with requests pending for @mds, so that they can
1897  * resubmit their requests to a possibly different mds.
1898  */
1899 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1900 {
1901 	struct ceph_mds_request *req;
1902 	struct rb_node *p;
1903 
1904 	dout("kick_requests mds%d\n", mds);
1905 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1906 		req = rb_entry(p, struct ceph_mds_request, r_node);
1907 		if (req->r_got_unsafe)
1908 			continue;
1909 		if (req->r_session &&
1910 		    req->r_session->s_mds == mds) {
1911 			dout(" kicking tid %llu\n", req->r_tid);
1912 			__do_request(mdsc, req);
1913 		}
1914 	}
1915 }
1916 
1917 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1918 			      struct ceph_mds_request *req)
1919 {
1920 	dout("submit_request on %p\n", req);
1921 	mutex_lock(&mdsc->mutex);
1922 	__register_request(mdsc, req, NULL);
1923 	__do_request(mdsc, req);
1924 	mutex_unlock(&mdsc->mutex);
1925 }
1926 
1927 /*
1928  * Synchrously perform an mds request.  Take care of all of the
1929  * session setup, forwarding, retry details.
1930  */
1931 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1932 			 struct inode *dir,
1933 			 struct ceph_mds_request *req)
1934 {
1935 	int err;
1936 
1937 	dout("do_request on %p\n", req);
1938 
1939 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1940 	if (req->r_inode)
1941 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1942 	if (req->r_locked_dir)
1943 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1944 	if (req->r_old_dentry)
1945 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1946 				  CEPH_CAP_PIN);
1947 
1948 	/* issue */
1949 	mutex_lock(&mdsc->mutex);
1950 	__register_request(mdsc, req, dir);
1951 	__do_request(mdsc, req);
1952 
1953 	if (req->r_err) {
1954 		err = req->r_err;
1955 		__unregister_request(mdsc, req);
1956 		dout("do_request early error %d\n", err);
1957 		goto out;
1958 	}
1959 
1960 	/* wait */
1961 	mutex_unlock(&mdsc->mutex);
1962 	dout("do_request waiting\n");
1963 	if (req->r_timeout) {
1964 		err = (long)wait_for_completion_killable_timeout(
1965 			&req->r_completion, req->r_timeout);
1966 		if (err == 0)
1967 			err = -EIO;
1968 	} else {
1969 		err = wait_for_completion_killable(&req->r_completion);
1970 	}
1971 	dout("do_request waited, got %d\n", err);
1972 	mutex_lock(&mdsc->mutex);
1973 
1974 	/* only abort if we didn't race with a real reply */
1975 	if (req->r_got_result) {
1976 		err = le32_to_cpu(req->r_reply_info.head->result);
1977 	} else if (err < 0) {
1978 		dout("aborted request %lld with %d\n", req->r_tid, err);
1979 
1980 		/*
1981 		 * ensure we aren't running concurrently with
1982 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
1983 		 * rely on locks (dir mutex) held by our caller.
1984 		 */
1985 		mutex_lock(&req->r_fill_mutex);
1986 		req->r_err = err;
1987 		req->r_aborted = true;
1988 		mutex_unlock(&req->r_fill_mutex);
1989 
1990 		if (req->r_locked_dir &&
1991 		    (req->r_op & CEPH_MDS_OP_WRITE))
1992 			ceph_invalidate_dir_request(req);
1993 	} else {
1994 		err = req->r_err;
1995 	}
1996 
1997 out:
1998 	mutex_unlock(&mdsc->mutex);
1999 	dout("do_request %p done, result %d\n", req, err);
2000 	return err;
2001 }
2002 
2003 /*
2004  * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS
2005  * namespace request.
2006  */
2007 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2008 {
2009 	struct inode *inode = req->r_locked_dir;
2010 	struct ceph_inode_info *ci = ceph_inode(inode);
2011 
2012 	dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode);
2013 	spin_lock(&inode->i_lock);
2014 	ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
2015 	ci->i_release_count++;
2016 	spin_unlock(&inode->i_lock);
2017 
2018 	if (req->r_dentry)
2019 		ceph_invalidate_dentry_lease(req->r_dentry);
2020 	if (req->r_old_dentry)
2021 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2022 }
2023 
2024 /*
2025  * Handle mds reply.
2026  *
2027  * We take the session mutex and parse and process the reply immediately.
2028  * This preserves the logical ordering of replies, capabilities, etc., sent
2029  * by the MDS as they are applied to our local cache.
2030  */
2031 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2032 {
2033 	struct ceph_mds_client *mdsc = session->s_mdsc;
2034 	struct ceph_mds_request *req;
2035 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2036 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2037 	u64 tid;
2038 	int err, result;
2039 	int mds = session->s_mds;
2040 
2041 	if (msg->front.iov_len < sizeof(*head)) {
2042 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2043 		ceph_msg_dump(msg);
2044 		return;
2045 	}
2046 
2047 	/* get request, session */
2048 	tid = le64_to_cpu(msg->hdr.tid);
2049 	mutex_lock(&mdsc->mutex);
2050 	req = __lookup_request(mdsc, tid);
2051 	if (!req) {
2052 		dout("handle_reply on unknown tid %llu\n", tid);
2053 		mutex_unlock(&mdsc->mutex);
2054 		return;
2055 	}
2056 	dout("handle_reply %p\n", req);
2057 
2058 	/* correct session? */
2059 	if (req->r_session != session) {
2060 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2061 		       " not mds%d\n", tid, session->s_mds,
2062 		       req->r_session ? req->r_session->s_mds : -1);
2063 		mutex_unlock(&mdsc->mutex);
2064 		goto out;
2065 	}
2066 
2067 	/* dup? */
2068 	if ((req->r_got_unsafe && !head->safe) ||
2069 	    (req->r_got_safe && head->safe)) {
2070 		pr_warning("got a dup %s reply on %llu from mds%d\n",
2071 			   head->safe ? "safe" : "unsafe", tid, mds);
2072 		mutex_unlock(&mdsc->mutex);
2073 		goto out;
2074 	}
2075 	if (req->r_got_safe && !head->safe) {
2076 		pr_warning("got unsafe after safe on %llu from mds%d\n",
2077 			   tid, mds);
2078 		mutex_unlock(&mdsc->mutex);
2079 		goto out;
2080 	}
2081 
2082 	result = le32_to_cpu(head->result);
2083 
2084 	/*
2085 	 * Handle an ESTALE
2086 	 * if we're not talking to the authority, send to them
2087 	 * if the authority has changed while we weren't looking,
2088 	 * send to new authority
2089 	 * Otherwise we just have to return an ESTALE
2090 	 */
2091 	if (result == -ESTALE) {
2092 		dout("got ESTALE on request %llu", req->r_tid);
2093 		if (!req->r_inode) {
2094 			/* do nothing; not an authority problem */
2095 		} else if (req->r_direct_mode != USE_AUTH_MDS) {
2096 			dout("not using auth, setting for that now");
2097 			req->r_direct_mode = USE_AUTH_MDS;
2098 			__do_request(mdsc, req);
2099 			mutex_unlock(&mdsc->mutex);
2100 			goto out;
2101 		} else  {
2102 			struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2103 			struct ceph_cap *cap = NULL;
2104 
2105 			if (req->r_session)
2106 				cap = ceph_get_cap_for_mds(ci,
2107 						   req->r_session->s_mds);
2108 
2109 			dout("already using auth");
2110 			if ((!cap || cap != ci->i_auth_cap) ||
2111 			    (cap->mseq != req->r_sent_on_mseq)) {
2112 				dout("but cap changed, so resending");
2113 				__do_request(mdsc, req);
2114 				mutex_unlock(&mdsc->mutex);
2115 				goto out;
2116 			}
2117 		}
2118 		dout("have to return ESTALE on request %llu", req->r_tid);
2119 	}
2120 
2121 
2122 	if (head->safe) {
2123 		req->r_got_safe = true;
2124 		__unregister_request(mdsc, req);
2125 		complete_all(&req->r_safe_completion);
2126 
2127 		if (req->r_got_unsafe) {
2128 			/*
2129 			 * We already handled the unsafe response, now do the
2130 			 * cleanup.  No need to examine the response; the MDS
2131 			 * doesn't include any result info in the safe
2132 			 * response.  And even if it did, there is nothing
2133 			 * useful we could do with a revised return value.
2134 			 */
2135 			dout("got safe reply %llu, mds%d\n", tid, mds);
2136 			list_del_init(&req->r_unsafe_item);
2137 
2138 			/* last unsafe request during umount? */
2139 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2140 				complete_all(&mdsc->safe_umount_waiters);
2141 			mutex_unlock(&mdsc->mutex);
2142 			goto out;
2143 		}
2144 	} else {
2145 		req->r_got_unsafe = true;
2146 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2147 	}
2148 
2149 	dout("handle_reply tid %lld result %d\n", tid, result);
2150 	rinfo = &req->r_reply_info;
2151 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2152 	mutex_unlock(&mdsc->mutex);
2153 
2154 	mutex_lock(&session->s_mutex);
2155 	if (err < 0) {
2156 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2157 		ceph_msg_dump(msg);
2158 		goto out_err;
2159 	}
2160 
2161 	/* snap trace */
2162 	if (rinfo->snapblob_len) {
2163 		down_write(&mdsc->snap_rwsem);
2164 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2165 			       rinfo->snapblob + rinfo->snapblob_len,
2166 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2167 		downgrade_write(&mdsc->snap_rwsem);
2168 	} else {
2169 		down_read(&mdsc->snap_rwsem);
2170 	}
2171 
2172 	/* insert trace into our cache */
2173 	mutex_lock(&req->r_fill_mutex);
2174 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2175 	if (err == 0) {
2176 		if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK &&
2177 		    rinfo->dir_nr)
2178 			ceph_readdir_prepopulate(req, req->r_session);
2179 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2180 	}
2181 	mutex_unlock(&req->r_fill_mutex);
2182 
2183 	up_read(&mdsc->snap_rwsem);
2184 out_err:
2185 	mutex_lock(&mdsc->mutex);
2186 	if (!req->r_aborted) {
2187 		if (err) {
2188 			req->r_err = err;
2189 		} else {
2190 			req->r_reply = msg;
2191 			ceph_msg_get(msg);
2192 			req->r_got_result = true;
2193 		}
2194 	} else {
2195 		dout("reply arrived after request %lld was aborted\n", tid);
2196 	}
2197 	mutex_unlock(&mdsc->mutex);
2198 
2199 	ceph_add_cap_releases(mdsc, req->r_session);
2200 	mutex_unlock(&session->s_mutex);
2201 
2202 	/* kick calling process */
2203 	complete_request(mdsc, req);
2204 out:
2205 	ceph_mdsc_put_request(req);
2206 	return;
2207 }
2208 
2209 
2210 
2211 /*
2212  * handle mds notification that our request has been forwarded.
2213  */
2214 static void handle_forward(struct ceph_mds_client *mdsc,
2215 			   struct ceph_mds_session *session,
2216 			   struct ceph_msg *msg)
2217 {
2218 	struct ceph_mds_request *req;
2219 	u64 tid = le64_to_cpu(msg->hdr.tid);
2220 	u32 next_mds;
2221 	u32 fwd_seq;
2222 	int err = -EINVAL;
2223 	void *p = msg->front.iov_base;
2224 	void *end = p + msg->front.iov_len;
2225 
2226 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2227 	next_mds = ceph_decode_32(&p);
2228 	fwd_seq = ceph_decode_32(&p);
2229 
2230 	mutex_lock(&mdsc->mutex);
2231 	req = __lookup_request(mdsc, tid);
2232 	if (!req) {
2233 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2234 		goto out;  /* dup reply? */
2235 	}
2236 
2237 	if (req->r_aborted) {
2238 		dout("forward tid %llu aborted, unregistering\n", tid);
2239 		__unregister_request(mdsc, req);
2240 	} else if (fwd_seq <= req->r_num_fwd) {
2241 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2242 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2243 	} else {
2244 		/* resend. forward race not possible; mds would drop */
2245 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2246 		BUG_ON(req->r_err);
2247 		BUG_ON(req->r_got_result);
2248 		req->r_num_fwd = fwd_seq;
2249 		req->r_resend_mds = next_mds;
2250 		put_request_session(req);
2251 		__do_request(mdsc, req);
2252 	}
2253 	ceph_mdsc_put_request(req);
2254 out:
2255 	mutex_unlock(&mdsc->mutex);
2256 	return;
2257 
2258 bad:
2259 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2260 }
2261 
2262 /*
2263  * handle a mds session control message
2264  */
2265 static void handle_session(struct ceph_mds_session *session,
2266 			   struct ceph_msg *msg)
2267 {
2268 	struct ceph_mds_client *mdsc = session->s_mdsc;
2269 	u32 op;
2270 	u64 seq;
2271 	int mds = session->s_mds;
2272 	struct ceph_mds_session_head *h = msg->front.iov_base;
2273 	int wake = 0;
2274 
2275 	/* decode */
2276 	if (msg->front.iov_len != sizeof(*h))
2277 		goto bad;
2278 	op = le32_to_cpu(h->op);
2279 	seq = le64_to_cpu(h->seq);
2280 
2281 	mutex_lock(&mdsc->mutex);
2282 	if (op == CEPH_SESSION_CLOSE)
2283 		__unregister_session(mdsc, session);
2284 	/* FIXME: this ttl calculation is generous */
2285 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2286 	mutex_unlock(&mdsc->mutex);
2287 
2288 	mutex_lock(&session->s_mutex);
2289 
2290 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2291 	     mds, ceph_session_op_name(op), session,
2292 	     session_state_name(session->s_state), seq);
2293 
2294 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2295 		session->s_state = CEPH_MDS_SESSION_OPEN;
2296 		pr_info("mds%d came back\n", session->s_mds);
2297 	}
2298 
2299 	switch (op) {
2300 	case CEPH_SESSION_OPEN:
2301 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2302 			pr_info("mds%d reconnect success\n", session->s_mds);
2303 		session->s_state = CEPH_MDS_SESSION_OPEN;
2304 		renewed_caps(mdsc, session, 0);
2305 		wake = 1;
2306 		if (mdsc->stopping)
2307 			__close_session(mdsc, session);
2308 		break;
2309 
2310 	case CEPH_SESSION_RENEWCAPS:
2311 		if (session->s_renew_seq == seq)
2312 			renewed_caps(mdsc, session, 1);
2313 		break;
2314 
2315 	case CEPH_SESSION_CLOSE:
2316 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2317 			pr_info("mds%d reconnect denied\n", session->s_mds);
2318 		remove_session_caps(session);
2319 		wake = 1; /* for good measure */
2320 		wake_up_all(&mdsc->session_close_wq);
2321 		kick_requests(mdsc, mds);
2322 		break;
2323 
2324 	case CEPH_SESSION_STALE:
2325 		pr_info("mds%d caps went stale, renewing\n",
2326 			session->s_mds);
2327 		spin_lock(&session->s_cap_lock);
2328 		session->s_cap_gen++;
2329 		session->s_cap_ttl = 0;
2330 		spin_unlock(&session->s_cap_lock);
2331 		send_renew_caps(mdsc, session);
2332 		break;
2333 
2334 	case CEPH_SESSION_RECALL_STATE:
2335 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2336 		break;
2337 
2338 	default:
2339 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2340 		WARN_ON(1);
2341 	}
2342 
2343 	mutex_unlock(&session->s_mutex);
2344 	if (wake) {
2345 		mutex_lock(&mdsc->mutex);
2346 		__wake_requests(mdsc, &session->s_waiting);
2347 		mutex_unlock(&mdsc->mutex);
2348 	}
2349 	return;
2350 
2351 bad:
2352 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2353 	       (int)msg->front.iov_len);
2354 	ceph_msg_dump(msg);
2355 	return;
2356 }
2357 
2358 
2359 /*
2360  * called under session->mutex.
2361  */
2362 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2363 				   struct ceph_mds_session *session)
2364 {
2365 	struct ceph_mds_request *req, *nreq;
2366 	int err;
2367 
2368 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2369 
2370 	mutex_lock(&mdsc->mutex);
2371 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2372 		err = __prepare_send_request(mdsc, req, session->s_mds);
2373 		if (!err) {
2374 			ceph_msg_get(req->r_request);
2375 			ceph_con_send(&session->s_con, req->r_request);
2376 		}
2377 	}
2378 	mutex_unlock(&mdsc->mutex);
2379 }
2380 
2381 /*
2382  * Encode information about a cap for a reconnect with the MDS.
2383  */
2384 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2385 			  void *arg)
2386 {
2387 	union {
2388 		struct ceph_mds_cap_reconnect v2;
2389 		struct ceph_mds_cap_reconnect_v1 v1;
2390 	} rec;
2391 	size_t reclen;
2392 	struct ceph_inode_info *ci;
2393 	struct ceph_reconnect_state *recon_state = arg;
2394 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2395 	char *path;
2396 	int pathlen, err;
2397 	u64 pathbase;
2398 	struct dentry *dentry;
2399 
2400 	ci = cap->ci;
2401 
2402 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2403 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2404 	     ceph_cap_string(cap->issued));
2405 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2406 	if (err)
2407 		return err;
2408 
2409 	dentry = d_find_alias(inode);
2410 	if (dentry) {
2411 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2412 		if (IS_ERR(path)) {
2413 			err = PTR_ERR(path);
2414 			goto out_dput;
2415 		}
2416 	} else {
2417 		path = NULL;
2418 		pathlen = 0;
2419 	}
2420 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2421 	if (err)
2422 		goto out_free;
2423 
2424 	spin_lock(&inode->i_lock);
2425 	cap->seq = 0;        /* reset cap seq */
2426 	cap->issue_seq = 0;  /* and issue_seq */
2427 
2428 	if (recon_state->flock) {
2429 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2430 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2431 		rec.v2.issued = cpu_to_le32(cap->issued);
2432 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2433 		rec.v2.pathbase = cpu_to_le64(pathbase);
2434 		rec.v2.flock_len = 0;
2435 		reclen = sizeof(rec.v2);
2436 	} else {
2437 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2438 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2439 		rec.v1.issued = cpu_to_le32(cap->issued);
2440 		rec.v1.size = cpu_to_le64(inode->i_size);
2441 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2442 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2443 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2444 		rec.v1.pathbase = cpu_to_le64(pathbase);
2445 		reclen = sizeof(rec.v1);
2446 	}
2447 	spin_unlock(&inode->i_lock);
2448 
2449 	if (recon_state->flock) {
2450 		int num_fcntl_locks, num_flock_locks;
2451 		struct ceph_pagelist_cursor trunc_point;
2452 
2453 		ceph_pagelist_set_cursor(pagelist, &trunc_point);
2454 		do {
2455 			lock_flocks();
2456 			ceph_count_locks(inode, &num_fcntl_locks,
2457 					 &num_flock_locks);
2458 			rec.v2.flock_len = (2*sizeof(u32) +
2459 					    (num_fcntl_locks+num_flock_locks) *
2460 					    sizeof(struct ceph_filelock));
2461 			unlock_flocks();
2462 
2463 			/* pre-alloc pagelist */
2464 			ceph_pagelist_truncate(pagelist, &trunc_point);
2465 			err = ceph_pagelist_append(pagelist, &rec, reclen);
2466 			if (!err)
2467 				err = ceph_pagelist_reserve(pagelist,
2468 							    rec.v2.flock_len);
2469 
2470 			/* encode locks */
2471 			if (!err) {
2472 				lock_flocks();
2473 				err = ceph_encode_locks(inode,
2474 							pagelist,
2475 							num_fcntl_locks,
2476 							num_flock_locks);
2477 				unlock_flocks();
2478 			}
2479 		} while (err == -ENOSPC);
2480 	} else {
2481 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2482 	}
2483 
2484 out_free:
2485 	kfree(path);
2486 out_dput:
2487 	dput(dentry);
2488 	return err;
2489 }
2490 
2491 
2492 /*
2493  * If an MDS fails and recovers, clients need to reconnect in order to
2494  * reestablish shared state.  This includes all caps issued through
2495  * this session _and_ the snap_realm hierarchy.  Because it's not
2496  * clear which snap realms the mds cares about, we send everything we
2497  * know about.. that ensures we'll then get any new info the
2498  * recovering MDS might have.
2499  *
2500  * This is a relatively heavyweight operation, but it's rare.
2501  *
2502  * called with mdsc->mutex held.
2503  */
2504 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2505 			       struct ceph_mds_session *session)
2506 {
2507 	struct ceph_msg *reply;
2508 	struct rb_node *p;
2509 	int mds = session->s_mds;
2510 	int err = -ENOMEM;
2511 	struct ceph_pagelist *pagelist;
2512 	struct ceph_reconnect_state recon_state;
2513 
2514 	pr_info("mds%d reconnect start\n", mds);
2515 
2516 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2517 	if (!pagelist)
2518 		goto fail_nopagelist;
2519 	ceph_pagelist_init(pagelist);
2520 
2521 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS);
2522 	if (!reply)
2523 		goto fail_nomsg;
2524 
2525 	mutex_lock(&session->s_mutex);
2526 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2527 	session->s_seq = 0;
2528 
2529 	ceph_con_open(&session->s_con,
2530 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2531 
2532 	/* replay unsafe requests */
2533 	replay_unsafe_requests(mdsc, session);
2534 
2535 	down_read(&mdsc->snap_rwsem);
2536 
2537 	dout("session %p state %s\n", session,
2538 	     session_state_name(session->s_state));
2539 
2540 	/* drop old cap expires; we're about to reestablish that state */
2541 	discard_cap_releases(mdsc, session);
2542 
2543 	/* traverse this session's caps */
2544 	err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2545 	if (err)
2546 		goto fail;
2547 
2548 	recon_state.pagelist = pagelist;
2549 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2550 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2551 	if (err < 0)
2552 		goto fail;
2553 
2554 	/*
2555 	 * snaprealms.  we provide mds with the ino, seq (version), and
2556 	 * parent for all of our realms.  If the mds has any newer info,
2557 	 * it will tell us.
2558 	 */
2559 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2560 		struct ceph_snap_realm *realm =
2561 			rb_entry(p, struct ceph_snap_realm, node);
2562 		struct ceph_mds_snaprealm_reconnect sr_rec;
2563 
2564 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2565 		     realm->ino, realm->seq, realm->parent_ino);
2566 		sr_rec.ino = cpu_to_le64(realm->ino);
2567 		sr_rec.seq = cpu_to_le64(realm->seq);
2568 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2569 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2570 		if (err)
2571 			goto fail;
2572 	}
2573 
2574 	reply->pagelist = pagelist;
2575 	if (recon_state.flock)
2576 		reply->hdr.version = cpu_to_le16(2);
2577 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2578 	reply->nr_pages = calc_pages_for(0, pagelist->length);
2579 	ceph_con_send(&session->s_con, reply);
2580 
2581 	mutex_unlock(&session->s_mutex);
2582 
2583 	mutex_lock(&mdsc->mutex);
2584 	__wake_requests(mdsc, &session->s_waiting);
2585 	mutex_unlock(&mdsc->mutex);
2586 
2587 	up_read(&mdsc->snap_rwsem);
2588 	return;
2589 
2590 fail:
2591 	ceph_msg_put(reply);
2592 	up_read(&mdsc->snap_rwsem);
2593 	mutex_unlock(&session->s_mutex);
2594 fail_nomsg:
2595 	ceph_pagelist_release(pagelist);
2596 	kfree(pagelist);
2597 fail_nopagelist:
2598 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2599 	return;
2600 }
2601 
2602 
2603 /*
2604  * compare old and new mdsmaps, kicking requests
2605  * and closing out old connections as necessary
2606  *
2607  * called under mdsc->mutex.
2608  */
2609 static void check_new_map(struct ceph_mds_client *mdsc,
2610 			  struct ceph_mdsmap *newmap,
2611 			  struct ceph_mdsmap *oldmap)
2612 {
2613 	int i;
2614 	int oldstate, newstate;
2615 	struct ceph_mds_session *s;
2616 
2617 	dout("check_new_map new %u old %u\n",
2618 	     newmap->m_epoch, oldmap->m_epoch);
2619 
2620 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2621 		if (mdsc->sessions[i] == NULL)
2622 			continue;
2623 		s = mdsc->sessions[i];
2624 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2625 		newstate = ceph_mdsmap_get_state(newmap, i);
2626 
2627 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2628 		     i, ceph_mds_state_name(oldstate),
2629 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2630 		     ceph_mds_state_name(newstate),
2631 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2632 		     session_state_name(s->s_state));
2633 
2634 		if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2635 			   ceph_mdsmap_get_addr(newmap, i),
2636 			   sizeof(struct ceph_entity_addr))) {
2637 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2638 				/* the session never opened, just close it
2639 				 * out now */
2640 				__wake_requests(mdsc, &s->s_waiting);
2641 				__unregister_session(mdsc, s);
2642 			} else {
2643 				/* just close it */
2644 				mutex_unlock(&mdsc->mutex);
2645 				mutex_lock(&s->s_mutex);
2646 				mutex_lock(&mdsc->mutex);
2647 				ceph_con_close(&s->s_con);
2648 				mutex_unlock(&s->s_mutex);
2649 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2650 			}
2651 
2652 			/* kick any requests waiting on the recovering mds */
2653 			kick_requests(mdsc, i);
2654 		} else if (oldstate == newstate) {
2655 			continue;  /* nothing new with this mds */
2656 		}
2657 
2658 		/*
2659 		 * send reconnect?
2660 		 */
2661 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2662 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2663 			mutex_unlock(&mdsc->mutex);
2664 			send_mds_reconnect(mdsc, s);
2665 			mutex_lock(&mdsc->mutex);
2666 		}
2667 
2668 		/*
2669 		 * kick request on any mds that has gone active.
2670 		 */
2671 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2672 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2673 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2674 			    oldstate != CEPH_MDS_STATE_STARTING)
2675 				pr_info("mds%d recovery completed\n", s->s_mds);
2676 			kick_requests(mdsc, i);
2677 			ceph_kick_flushing_caps(mdsc, s);
2678 			wake_up_session_caps(s, 1);
2679 		}
2680 	}
2681 
2682 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2683 		s = mdsc->sessions[i];
2684 		if (!s)
2685 			continue;
2686 		if (!ceph_mdsmap_is_laggy(newmap, i))
2687 			continue;
2688 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2689 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2690 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2691 			dout(" connecting to export targets of laggy mds%d\n",
2692 			     i);
2693 			__open_export_target_sessions(mdsc, s);
2694 		}
2695 	}
2696 }
2697 
2698 
2699 
2700 /*
2701  * leases
2702  */
2703 
2704 /*
2705  * caller must hold session s_mutex, dentry->d_lock
2706  */
2707 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2708 {
2709 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2710 
2711 	ceph_put_mds_session(di->lease_session);
2712 	di->lease_session = NULL;
2713 }
2714 
2715 static void handle_lease(struct ceph_mds_client *mdsc,
2716 			 struct ceph_mds_session *session,
2717 			 struct ceph_msg *msg)
2718 {
2719 	struct super_block *sb = mdsc->fsc->sb;
2720 	struct inode *inode;
2721 	struct dentry *parent, *dentry;
2722 	struct ceph_dentry_info *di;
2723 	int mds = session->s_mds;
2724 	struct ceph_mds_lease *h = msg->front.iov_base;
2725 	u32 seq;
2726 	struct ceph_vino vino;
2727 	struct qstr dname;
2728 	int release = 0;
2729 
2730 	dout("handle_lease from mds%d\n", mds);
2731 
2732 	/* decode */
2733 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2734 		goto bad;
2735 	vino.ino = le64_to_cpu(h->ino);
2736 	vino.snap = CEPH_NOSNAP;
2737 	seq = le32_to_cpu(h->seq);
2738 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2739 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2740 	if (dname.len != get_unaligned_le32(h+1))
2741 		goto bad;
2742 
2743 	mutex_lock(&session->s_mutex);
2744 	session->s_seq++;
2745 
2746 	/* lookup inode */
2747 	inode = ceph_find_inode(sb, vino);
2748 	dout("handle_lease %s, ino %llx %p %.*s\n",
2749 	     ceph_lease_op_name(h->action), vino.ino, inode,
2750 	     dname.len, dname.name);
2751 	if (inode == NULL) {
2752 		dout("handle_lease no inode %llx\n", vino.ino);
2753 		goto release;
2754 	}
2755 
2756 	/* dentry */
2757 	parent = d_find_alias(inode);
2758 	if (!parent) {
2759 		dout("no parent dentry on inode %p\n", inode);
2760 		WARN_ON(1);
2761 		goto release;  /* hrm... */
2762 	}
2763 	dname.hash = full_name_hash(dname.name, dname.len);
2764 	dentry = d_lookup(parent, &dname);
2765 	dput(parent);
2766 	if (!dentry)
2767 		goto release;
2768 
2769 	spin_lock(&dentry->d_lock);
2770 	di = ceph_dentry(dentry);
2771 	switch (h->action) {
2772 	case CEPH_MDS_LEASE_REVOKE:
2773 		if (di && di->lease_session == session) {
2774 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2775 				h->seq = cpu_to_le32(di->lease_seq);
2776 			__ceph_mdsc_drop_dentry_lease(dentry);
2777 		}
2778 		release = 1;
2779 		break;
2780 
2781 	case CEPH_MDS_LEASE_RENEW:
2782 		if (di && di->lease_session == session &&
2783 		    di->lease_gen == session->s_cap_gen &&
2784 		    di->lease_renew_from &&
2785 		    di->lease_renew_after == 0) {
2786 			unsigned long duration =
2787 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2788 
2789 			di->lease_seq = seq;
2790 			dentry->d_time = di->lease_renew_from + duration;
2791 			di->lease_renew_after = di->lease_renew_from +
2792 				(duration >> 1);
2793 			di->lease_renew_from = 0;
2794 		}
2795 		break;
2796 	}
2797 	spin_unlock(&dentry->d_lock);
2798 	dput(dentry);
2799 
2800 	if (!release)
2801 		goto out;
2802 
2803 release:
2804 	/* let's just reuse the same message */
2805 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2806 	ceph_msg_get(msg);
2807 	ceph_con_send(&session->s_con, msg);
2808 
2809 out:
2810 	iput(inode);
2811 	mutex_unlock(&session->s_mutex);
2812 	return;
2813 
2814 bad:
2815 	pr_err("corrupt lease message\n");
2816 	ceph_msg_dump(msg);
2817 }
2818 
2819 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2820 			      struct inode *inode,
2821 			      struct dentry *dentry, char action,
2822 			      u32 seq)
2823 {
2824 	struct ceph_msg *msg;
2825 	struct ceph_mds_lease *lease;
2826 	int len = sizeof(*lease) + sizeof(u32);
2827 	int dnamelen = 0;
2828 
2829 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2830 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2831 	dnamelen = dentry->d_name.len;
2832 	len += dnamelen;
2833 
2834 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS);
2835 	if (!msg)
2836 		return;
2837 	lease = msg->front.iov_base;
2838 	lease->action = action;
2839 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2840 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2841 	lease->seq = cpu_to_le32(seq);
2842 	put_unaligned_le32(dnamelen, lease + 1);
2843 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2844 
2845 	/*
2846 	 * if this is a preemptive lease RELEASE, no need to
2847 	 * flush request stream, since the actual request will
2848 	 * soon follow.
2849 	 */
2850 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2851 
2852 	ceph_con_send(&session->s_con, msg);
2853 }
2854 
2855 /*
2856  * Preemptively release a lease we expect to invalidate anyway.
2857  * Pass @inode always, @dentry is optional.
2858  */
2859 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2860 			     struct dentry *dentry)
2861 {
2862 	struct ceph_dentry_info *di;
2863 	struct ceph_mds_session *session;
2864 	u32 seq;
2865 
2866 	BUG_ON(inode == NULL);
2867 	BUG_ON(dentry == NULL);
2868 
2869 	/* is dentry lease valid? */
2870 	spin_lock(&dentry->d_lock);
2871 	di = ceph_dentry(dentry);
2872 	if (!di || !di->lease_session ||
2873 	    di->lease_session->s_mds < 0 ||
2874 	    di->lease_gen != di->lease_session->s_cap_gen ||
2875 	    !time_before(jiffies, dentry->d_time)) {
2876 		dout("lease_release inode %p dentry %p -- "
2877 		     "no lease\n",
2878 		     inode, dentry);
2879 		spin_unlock(&dentry->d_lock);
2880 		return;
2881 	}
2882 
2883 	/* we do have a lease on this dentry; note mds and seq */
2884 	session = ceph_get_mds_session(di->lease_session);
2885 	seq = di->lease_seq;
2886 	__ceph_mdsc_drop_dentry_lease(dentry);
2887 	spin_unlock(&dentry->d_lock);
2888 
2889 	dout("lease_release inode %p dentry %p to mds%d\n",
2890 	     inode, dentry, session->s_mds);
2891 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2892 				 CEPH_MDS_LEASE_RELEASE, seq);
2893 	ceph_put_mds_session(session);
2894 }
2895 
2896 /*
2897  * drop all leases (and dentry refs) in preparation for umount
2898  */
2899 static void drop_leases(struct ceph_mds_client *mdsc)
2900 {
2901 	int i;
2902 
2903 	dout("drop_leases\n");
2904 	mutex_lock(&mdsc->mutex);
2905 	for (i = 0; i < mdsc->max_sessions; i++) {
2906 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2907 		if (!s)
2908 			continue;
2909 		mutex_unlock(&mdsc->mutex);
2910 		mutex_lock(&s->s_mutex);
2911 		mutex_unlock(&s->s_mutex);
2912 		ceph_put_mds_session(s);
2913 		mutex_lock(&mdsc->mutex);
2914 	}
2915 	mutex_unlock(&mdsc->mutex);
2916 }
2917 
2918 
2919 
2920 /*
2921  * delayed work -- periodically trim expired leases, renew caps with mds
2922  */
2923 static void schedule_delayed(struct ceph_mds_client *mdsc)
2924 {
2925 	int delay = 5;
2926 	unsigned hz = round_jiffies_relative(HZ * delay);
2927 	schedule_delayed_work(&mdsc->delayed_work, hz);
2928 }
2929 
2930 static void delayed_work(struct work_struct *work)
2931 {
2932 	int i;
2933 	struct ceph_mds_client *mdsc =
2934 		container_of(work, struct ceph_mds_client, delayed_work.work);
2935 	int renew_interval;
2936 	int renew_caps;
2937 
2938 	dout("mdsc delayed_work\n");
2939 	ceph_check_delayed_caps(mdsc);
2940 
2941 	mutex_lock(&mdsc->mutex);
2942 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2943 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2944 				   mdsc->last_renew_caps);
2945 	if (renew_caps)
2946 		mdsc->last_renew_caps = jiffies;
2947 
2948 	for (i = 0; i < mdsc->max_sessions; i++) {
2949 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2950 		if (s == NULL)
2951 			continue;
2952 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2953 			dout("resending session close request for mds%d\n",
2954 			     s->s_mds);
2955 			request_close_session(mdsc, s);
2956 			ceph_put_mds_session(s);
2957 			continue;
2958 		}
2959 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2960 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2961 				s->s_state = CEPH_MDS_SESSION_HUNG;
2962 				pr_info("mds%d hung\n", s->s_mds);
2963 			}
2964 		}
2965 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2966 			/* this mds is failed or recovering, just wait */
2967 			ceph_put_mds_session(s);
2968 			continue;
2969 		}
2970 		mutex_unlock(&mdsc->mutex);
2971 
2972 		mutex_lock(&s->s_mutex);
2973 		if (renew_caps)
2974 			send_renew_caps(mdsc, s);
2975 		else
2976 			ceph_con_keepalive(&s->s_con);
2977 		ceph_add_cap_releases(mdsc, s);
2978 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2979 		    s->s_state == CEPH_MDS_SESSION_HUNG)
2980 			ceph_send_cap_releases(mdsc, s);
2981 		mutex_unlock(&s->s_mutex);
2982 		ceph_put_mds_session(s);
2983 
2984 		mutex_lock(&mdsc->mutex);
2985 	}
2986 	mutex_unlock(&mdsc->mutex);
2987 
2988 	schedule_delayed(mdsc);
2989 }
2990 
2991 int ceph_mdsc_init(struct ceph_fs_client *fsc)
2992 
2993 {
2994 	struct ceph_mds_client *mdsc;
2995 
2996 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
2997 	if (!mdsc)
2998 		return -ENOMEM;
2999 	mdsc->fsc = fsc;
3000 	fsc->mdsc = mdsc;
3001 	mutex_init(&mdsc->mutex);
3002 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3003 	if (mdsc->mdsmap == NULL)
3004 		return -ENOMEM;
3005 
3006 	init_completion(&mdsc->safe_umount_waiters);
3007 	init_waitqueue_head(&mdsc->session_close_wq);
3008 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3009 	mdsc->sessions = NULL;
3010 	mdsc->max_sessions = 0;
3011 	mdsc->stopping = 0;
3012 	init_rwsem(&mdsc->snap_rwsem);
3013 	mdsc->snap_realms = RB_ROOT;
3014 	INIT_LIST_HEAD(&mdsc->snap_empty);
3015 	spin_lock_init(&mdsc->snap_empty_lock);
3016 	mdsc->last_tid = 0;
3017 	mdsc->request_tree = RB_ROOT;
3018 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3019 	mdsc->last_renew_caps = jiffies;
3020 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3021 	spin_lock_init(&mdsc->cap_delay_lock);
3022 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3023 	spin_lock_init(&mdsc->snap_flush_lock);
3024 	mdsc->cap_flush_seq = 0;
3025 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3026 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3027 	mdsc->num_cap_flushing = 0;
3028 	spin_lock_init(&mdsc->cap_dirty_lock);
3029 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3030 	spin_lock_init(&mdsc->dentry_lru_lock);
3031 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3032 
3033 	ceph_caps_init(mdsc);
3034 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3035 
3036 	return 0;
3037 }
3038 
3039 /*
3040  * Wait for safe replies on open mds requests.  If we time out, drop
3041  * all requests from the tree to avoid dangling dentry refs.
3042  */
3043 static void wait_requests(struct ceph_mds_client *mdsc)
3044 {
3045 	struct ceph_mds_request *req;
3046 	struct ceph_fs_client *fsc = mdsc->fsc;
3047 
3048 	mutex_lock(&mdsc->mutex);
3049 	if (__get_oldest_req(mdsc)) {
3050 		mutex_unlock(&mdsc->mutex);
3051 
3052 		dout("wait_requests waiting for requests\n");
3053 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3054 				    fsc->client->options->mount_timeout * HZ);
3055 
3056 		/* tear down remaining requests */
3057 		mutex_lock(&mdsc->mutex);
3058 		while ((req = __get_oldest_req(mdsc))) {
3059 			dout("wait_requests timed out on tid %llu\n",
3060 			     req->r_tid);
3061 			__unregister_request(mdsc, req);
3062 		}
3063 	}
3064 	mutex_unlock(&mdsc->mutex);
3065 	dout("wait_requests done\n");
3066 }
3067 
3068 /*
3069  * called before mount is ro, and before dentries are torn down.
3070  * (hmm, does this still race with new lookups?)
3071  */
3072 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3073 {
3074 	dout("pre_umount\n");
3075 	mdsc->stopping = 1;
3076 
3077 	drop_leases(mdsc);
3078 	ceph_flush_dirty_caps(mdsc);
3079 	wait_requests(mdsc);
3080 
3081 	/*
3082 	 * wait for reply handlers to drop their request refs and
3083 	 * their inode/dcache refs
3084 	 */
3085 	ceph_msgr_flush();
3086 }
3087 
3088 /*
3089  * wait for all write mds requests to flush.
3090  */
3091 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3092 {
3093 	struct ceph_mds_request *req = NULL, *nextreq;
3094 	struct rb_node *n;
3095 
3096 	mutex_lock(&mdsc->mutex);
3097 	dout("wait_unsafe_requests want %lld\n", want_tid);
3098 restart:
3099 	req = __get_oldest_req(mdsc);
3100 	while (req && req->r_tid <= want_tid) {
3101 		/* find next request */
3102 		n = rb_next(&req->r_node);
3103 		if (n)
3104 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3105 		else
3106 			nextreq = NULL;
3107 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3108 			/* write op */
3109 			ceph_mdsc_get_request(req);
3110 			if (nextreq)
3111 				ceph_mdsc_get_request(nextreq);
3112 			mutex_unlock(&mdsc->mutex);
3113 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3114 			     req->r_tid, want_tid);
3115 			wait_for_completion(&req->r_safe_completion);
3116 			mutex_lock(&mdsc->mutex);
3117 			ceph_mdsc_put_request(req);
3118 			if (!nextreq)
3119 				break;  /* next dne before, so we're done! */
3120 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3121 				/* next request was removed from tree */
3122 				ceph_mdsc_put_request(nextreq);
3123 				goto restart;
3124 			}
3125 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3126 		}
3127 		req = nextreq;
3128 	}
3129 	mutex_unlock(&mdsc->mutex);
3130 	dout("wait_unsafe_requests done\n");
3131 }
3132 
3133 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3134 {
3135 	u64 want_tid, want_flush;
3136 
3137 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3138 		return;
3139 
3140 	dout("sync\n");
3141 	mutex_lock(&mdsc->mutex);
3142 	want_tid = mdsc->last_tid;
3143 	want_flush = mdsc->cap_flush_seq;
3144 	mutex_unlock(&mdsc->mutex);
3145 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3146 
3147 	ceph_flush_dirty_caps(mdsc);
3148 
3149 	wait_unsafe_requests(mdsc, want_tid);
3150 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3151 }
3152 
3153 /*
3154  * true if all sessions are closed, or we force unmount
3155  */
3156 bool done_closing_sessions(struct ceph_mds_client *mdsc)
3157 {
3158 	int i, n = 0;
3159 
3160 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3161 		return true;
3162 
3163 	mutex_lock(&mdsc->mutex);
3164 	for (i = 0; i < mdsc->max_sessions; i++)
3165 		if (mdsc->sessions[i])
3166 			n++;
3167 	mutex_unlock(&mdsc->mutex);
3168 	return n == 0;
3169 }
3170 
3171 /*
3172  * called after sb is ro.
3173  */
3174 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3175 {
3176 	struct ceph_mds_session *session;
3177 	int i;
3178 	struct ceph_fs_client *fsc = mdsc->fsc;
3179 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3180 
3181 	dout("close_sessions\n");
3182 
3183 	/* close sessions */
3184 	mutex_lock(&mdsc->mutex);
3185 	for (i = 0; i < mdsc->max_sessions; i++) {
3186 		session = __ceph_lookup_mds_session(mdsc, i);
3187 		if (!session)
3188 			continue;
3189 		mutex_unlock(&mdsc->mutex);
3190 		mutex_lock(&session->s_mutex);
3191 		__close_session(mdsc, session);
3192 		mutex_unlock(&session->s_mutex);
3193 		ceph_put_mds_session(session);
3194 		mutex_lock(&mdsc->mutex);
3195 	}
3196 	mutex_unlock(&mdsc->mutex);
3197 
3198 	dout("waiting for sessions to close\n");
3199 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3200 			   timeout);
3201 
3202 	/* tear down remaining sessions */
3203 	mutex_lock(&mdsc->mutex);
3204 	for (i = 0; i < mdsc->max_sessions; i++) {
3205 		if (mdsc->sessions[i]) {
3206 			session = get_session(mdsc->sessions[i]);
3207 			__unregister_session(mdsc, session);
3208 			mutex_unlock(&mdsc->mutex);
3209 			mutex_lock(&session->s_mutex);
3210 			remove_session_caps(session);
3211 			mutex_unlock(&session->s_mutex);
3212 			ceph_put_mds_session(session);
3213 			mutex_lock(&mdsc->mutex);
3214 		}
3215 	}
3216 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3217 	mutex_unlock(&mdsc->mutex);
3218 
3219 	ceph_cleanup_empty_realms(mdsc);
3220 
3221 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3222 
3223 	dout("stopped\n");
3224 }
3225 
3226 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3227 {
3228 	dout("stop\n");
3229 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3230 	if (mdsc->mdsmap)
3231 		ceph_mdsmap_destroy(mdsc->mdsmap);
3232 	kfree(mdsc->sessions);
3233 	ceph_caps_finalize(mdsc);
3234 }
3235 
3236 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3237 {
3238 	struct ceph_mds_client *mdsc = fsc->mdsc;
3239 
3240 	dout("mdsc_destroy %p\n", mdsc);
3241 	ceph_mdsc_stop(mdsc);
3242 
3243 	/* flush out any connection work with references to us */
3244 	ceph_msgr_flush();
3245 
3246 	fsc->mdsc = NULL;
3247 	kfree(mdsc);
3248 	dout("mdsc_destroy %p done\n", mdsc);
3249 }
3250 
3251 
3252 /*
3253  * handle mds map update.
3254  */
3255 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3256 {
3257 	u32 epoch;
3258 	u32 maplen;
3259 	void *p = msg->front.iov_base;
3260 	void *end = p + msg->front.iov_len;
3261 	struct ceph_mdsmap *newmap, *oldmap;
3262 	struct ceph_fsid fsid;
3263 	int err = -EINVAL;
3264 
3265 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3266 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3267 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3268 		return;
3269 	epoch = ceph_decode_32(&p);
3270 	maplen = ceph_decode_32(&p);
3271 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3272 
3273 	/* do we need it? */
3274 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3275 	mutex_lock(&mdsc->mutex);
3276 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3277 		dout("handle_map epoch %u <= our %u\n",
3278 		     epoch, mdsc->mdsmap->m_epoch);
3279 		mutex_unlock(&mdsc->mutex);
3280 		return;
3281 	}
3282 
3283 	newmap = ceph_mdsmap_decode(&p, end);
3284 	if (IS_ERR(newmap)) {
3285 		err = PTR_ERR(newmap);
3286 		goto bad_unlock;
3287 	}
3288 
3289 	/* swap into place */
3290 	if (mdsc->mdsmap) {
3291 		oldmap = mdsc->mdsmap;
3292 		mdsc->mdsmap = newmap;
3293 		check_new_map(mdsc, newmap, oldmap);
3294 		ceph_mdsmap_destroy(oldmap);
3295 	} else {
3296 		mdsc->mdsmap = newmap;  /* first mds map */
3297 	}
3298 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3299 
3300 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3301 
3302 	mutex_unlock(&mdsc->mutex);
3303 	schedule_delayed(mdsc);
3304 	return;
3305 
3306 bad_unlock:
3307 	mutex_unlock(&mdsc->mutex);
3308 bad:
3309 	pr_err("error decoding mdsmap %d\n", err);
3310 	return;
3311 }
3312 
3313 static struct ceph_connection *con_get(struct ceph_connection *con)
3314 {
3315 	struct ceph_mds_session *s = con->private;
3316 
3317 	if (get_session(s)) {
3318 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3319 		return con;
3320 	}
3321 	dout("mdsc con_get %p FAIL\n", s);
3322 	return NULL;
3323 }
3324 
3325 static void con_put(struct ceph_connection *con)
3326 {
3327 	struct ceph_mds_session *s = con->private;
3328 
3329 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3330 	ceph_put_mds_session(s);
3331 }
3332 
3333 /*
3334  * if the client is unresponsive for long enough, the mds will kill
3335  * the session entirely.
3336  */
3337 static void peer_reset(struct ceph_connection *con)
3338 {
3339 	struct ceph_mds_session *s = con->private;
3340 	struct ceph_mds_client *mdsc = s->s_mdsc;
3341 
3342 	pr_warning("mds%d closed our session\n", s->s_mds);
3343 	send_mds_reconnect(mdsc, s);
3344 }
3345 
3346 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3347 {
3348 	struct ceph_mds_session *s = con->private;
3349 	struct ceph_mds_client *mdsc = s->s_mdsc;
3350 	int type = le16_to_cpu(msg->hdr.type);
3351 
3352 	mutex_lock(&mdsc->mutex);
3353 	if (__verify_registered_session(mdsc, s) < 0) {
3354 		mutex_unlock(&mdsc->mutex);
3355 		goto out;
3356 	}
3357 	mutex_unlock(&mdsc->mutex);
3358 
3359 	switch (type) {
3360 	case CEPH_MSG_MDS_MAP:
3361 		ceph_mdsc_handle_map(mdsc, msg);
3362 		break;
3363 	case CEPH_MSG_CLIENT_SESSION:
3364 		handle_session(s, msg);
3365 		break;
3366 	case CEPH_MSG_CLIENT_REPLY:
3367 		handle_reply(s, msg);
3368 		break;
3369 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3370 		handle_forward(mdsc, s, msg);
3371 		break;
3372 	case CEPH_MSG_CLIENT_CAPS:
3373 		ceph_handle_caps(s, msg);
3374 		break;
3375 	case CEPH_MSG_CLIENT_SNAP:
3376 		ceph_handle_snap(mdsc, s, msg);
3377 		break;
3378 	case CEPH_MSG_CLIENT_LEASE:
3379 		handle_lease(mdsc, s, msg);
3380 		break;
3381 
3382 	default:
3383 		pr_err("received unknown message type %d %s\n", type,
3384 		       ceph_msg_type_name(type));
3385 	}
3386 out:
3387 	ceph_msg_put(msg);
3388 }
3389 
3390 /*
3391  * authentication
3392  */
3393 static int get_authorizer(struct ceph_connection *con,
3394 			  void **buf, int *len, int *proto,
3395 			  void **reply_buf, int *reply_len, int force_new)
3396 {
3397 	struct ceph_mds_session *s = con->private;
3398 	struct ceph_mds_client *mdsc = s->s_mdsc;
3399 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3400 	int ret = 0;
3401 
3402 	if (force_new && s->s_authorizer) {
3403 		ac->ops->destroy_authorizer(ac, s->s_authorizer);
3404 		s->s_authorizer = NULL;
3405 	}
3406 	if (s->s_authorizer == NULL) {
3407 		if (ac->ops->create_authorizer) {
3408 			ret = ac->ops->create_authorizer(
3409 				ac, CEPH_ENTITY_TYPE_MDS,
3410 				&s->s_authorizer,
3411 				&s->s_authorizer_buf,
3412 				&s->s_authorizer_buf_len,
3413 				&s->s_authorizer_reply_buf,
3414 				&s->s_authorizer_reply_buf_len);
3415 			if (ret)
3416 				return ret;
3417 		}
3418 	}
3419 
3420 	*proto = ac->protocol;
3421 	*buf = s->s_authorizer_buf;
3422 	*len = s->s_authorizer_buf_len;
3423 	*reply_buf = s->s_authorizer_reply_buf;
3424 	*reply_len = s->s_authorizer_reply_buf_len;
3425 	return 0;
3426 }
3427 
3428 
3429 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3430 {
3431 	struct ceph_mds_session *s = con->private;
3432 	struct ceph_mds_client *mdsc = s->s_mdsc;
3433 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3434 
3435 	return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3436 }
3437 
3438 static int invalidate_authorizer(struct ceph_connection *con)
3439 {
3440 	struct ceph_mds_session *s = con->private;
3441 	struct ceph_mds_client *mdsc = s->s_mdsc;
3442 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3443 
3444 	if (ac->ops->invalidate_authorizer)
3445 		ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3446 
3447 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3448 }
3449 
3450 static const struct ceph_connection_operations mds_con_ops = {
3451 	.get = con_get,
3452 	.put = con_put,
3453 	.dispatch = dispatch,
3454 	.get_authorizer = get_authorizer,
3455 	.verify_authorizer_reply = verify_authorizer_reply,
3456 	.invalidate_authorizer = invalidate_authorizer,
3457 	.peer_reset = peer_reset,
3458 };
3459 
3460 /* eof */
3461