xref: /openbmc/linux/fs/ceph/mds_client.c (revision 97da55fc)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9 
10 #include "super.h"
11 #include "mds_client.h"
12 
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
19 
20 /*
21  * A cluster of MDS (metadata server) daemons is responsible for
22  * managing the file system namespace (the directory hierarchy and
23  * inodes) and for coordinating shared access to storage.  Metadata is
24  * partitioning hierarchically across a number of servers, and that
25  * partition varies over time as the cluster adjusts the distribution
26  * in order to balance load.
27  *
28  * The MDS client is primarily responsible to managing synchronous
29  * metadata requests for operations like open, unlink, and so forth.
30  * If there is a MDS failure, we find out about it when we (possibly
31  * request and) receive a new MDS map, and can resubmit affected
32  * requests.
33  *
34  * For the most part, though, we take advantage of a lossless
35  * communications channel to the MDS, and do not need to worry about
36  * timing out or resubmitting requests.
37  *
38  * We maintain a stateful "session" with each MDS we interact with.
39  * Within each session, we sent periodic heartbeat messages to ensure
40  * any capabilities or leases we have been issues remain valid.  If
41  * the session times out and goes stale, our leases and capabilities
42  * are no longer valid.
43  */
44 
45 struct ceph_reconnect_state {
46 	struct ceph_pagelist *pagelist;
47 	bool flock;
48 };
49 
50 static void __wake_requests(struct ceph_mds_client *mdsc,
51 			    struct list_head *head);
52 
53 static const struct ceph_connection_operations mds_con_ops;
54 
55 
56 /*
57  * mds reply parsing
58  */
59 
60 /*
61  * parse individual inode info
62  */
63 static int parse_reply_info_in(void **p, void *end,
64 			       struct ceph_mds_reply_info_in *info,
65 			       int features)
66 {
67 	int err = -EIO;
68 
69 	info->in = *p;
70 	*p += sizeof(struct ceph_mds_reply_inode) +
71 		sizeof(*info->in->fragtree.splits) *
72 		le32_to_cpu(info->in->fragtree.nsplits);
73 
74 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
75 	ceph_decode_need(p, end, info->symlink_len, bad);
76 	info->symlink = *p;
77 	*p += info->symlink_len;
78 
79 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
80 		ceph_decode_copy_safe(p, end, &info->dir_layout,
81 				      sizeof(info->dir_layout), bad);
82 	else
83 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
84 
85 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
86 	ceph_decode_need(p, end, info->xattr_len, bad);
87 	info->xattr_data = *p;
88 	*p += info->xattr_len;
89 	return 0;
90 bad:
91 	return err;
92 }
93 
94 /*
95  * parse a normal reply, which may contain a (dir+)dentry and/or a
96  * target inode.
97  */
98 static int parse_reply_info_trace(void **p, void *end,
99 				  struct ceph_mds_reply_info_parsed *info,
100 				  int features)
101 {
102 	int err;
103 
104 	if (info->head->is_dentry) {
105 		err = parse_reply_info_in(p, end, &info->diri, features);
106 		if (err < 0)
107 			goto out_bad;
108 
109 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
110 			goto bad;
111 		info->dirfrag = *p;
112 		*p += sizeof(*info->dirfrag) +
113 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
114 		if (unlikely(*p > end))
115 			goto bad;
116 
117 		ceph_decode_32_safe(p, end, info->dname_len, bad);
118 		ceph_decode_need(p, end, info->dname_len, bad);
119 		info->dname = *p;
120 		*p += info->dname_len;
121 		info->dlease = *p;
122 		*p += sizeof(*info->dlease);
123 	}
124 
125 	if (info->head->is_target) {
126 		err = parse_reply_info_in(p, end, &info->targeti, features);
127 		if (err < 0)
128 			goto out_bad;
129 	}
130 
131 	if (unlikely(*p != end))
132 		goto bad;
133 	return 0;
134 
135 bad:
136 	err = -EIO;
137 out_bad:
138 	pr_err("problem parsing mds trace %d\n", err);
139 	return err;
140 }
141 
142 /*
143  * parse readdir results
144  */
145 static int parse_reply_info_dir(void **p, void *end,
146 				struct ceph_mds_reply_info_parsed *info,
147 				int features)
148 {
149 	u32 num, i = 0;
150 	int err;
151 
152 	info->dir_dir = *p;
153 	if (*p + sizeof(*info->dir_dir) > end)
154 		goto bad;
155 	*p += sizeof(*info->dir_dir) +
156 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
157 	if (*p > end)
158 		goto bad;
159 
160 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
161 	num = ceph_decode_32(p);
162 	info->dir_end = ceph_decode_8(p);
163 	info->dir_complete = ceph_decode_8(p);
164 	if (num == 0)
165 		goto done;
166 
167 	/* alloc large array */
168 	info->dir_nr = num;
169 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
170 			       sizeof(*info->dir_dname) +
171 			       sizeof(*info->dir_dname_len) +
172 			       sizeof(*info->dir_dlease),
173 			       GFP_NOFS);
174 	if (info->dir_in == NULL) {
175 		err = -ENOMEM;
176 		goto out_bad;
177 	}
178 	info->dir_dname = (void *)(info->dir_in + num);
179 	info->dir_dname_len = (void *)(info->dir_dname + num);
180 	info->dir_dlease = (void *)(info->dir_dname_len + num);
181 
182 	while (num) {
183 		/* dentry */
184 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
185 		info->dir_dname_len[i] = ceph_decode_32(p);
186 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
187 		info->dir_dname[i] = *p;
188 		*p += info->dir_dname_len[i];
189 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
190 		     info->dir_dname[i]);
191 		info->dir_dlease[i] = *p;
192 		*p += sizeof(struct ceph_mds_reply_lease);
193 
194 		/* inode */
195 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
196 		if (err < 0)
197 			goto out_bad;
198 		i++;
199 		num--;
200 	}
201 
202 done:
203 	if (*p != end)
204 		goto bad;
205 	return 0;
206 
207 bad:
208 	err = -EIO;
209 out_bad:
210 	pr_err("problem parsing dir contents %d\n", err);
211 	return err;
212 }
213 
214 /*
215  * parse fcntl F_GETLK results
216  */
217 static int parse_reply_info_filelock(void **p, void *end,
218 				     struct ceph_mds_reply_info_parsed *info,
219 				     int features)
220 {
221 	if (*p + sizeof(*info->filelock_reply) > end)
222 		goto bad;
223 
224 	info->filelock_reply = *p;
225 	*p += sizeof(*info->filelock_reply);
226 
227 	if (unlikely(*p != end))
228 		goto bad;
229 	return 0;
230 
231 bad:
232 	return -EIO;
233 }
234 
235 /*
236  * parse create results
237  */
238 static int parse_reply_info_create(void **p, void *end,
239 				  struct ceph_mds_reply_info_parsed *info,
240 				  int features)
241 {
242 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
243 		if (*p == end) {
244 			info->has_create_ino = false;
245 		} else {
246 			info->has_create_ino = true;
247 			info->ino = ceph_decode_64(p);
248 		}
249 	}
250 
251 	if (unlikely(*p != end))
252 		goto bad;
253 	return 0;
254 
255 bad:
256 	return -EIO;
257 }
258 
259 /*
260  * parse extra results
261  */
262 static int parse_reply_info_extra(void **p, void *end,
263 				  struct ceph_mds_reply_info_parsed *info,
264 				  int features)
265 {
266 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
267 		return parse_reply_info_filelock(p, end, info, features);
268 	else if (info->head->op == CEPH_MDS_OP_READDIR)
269 		return parse_reply_info_dir(p, end, info, features);
270 	else if (info->head->op == CEPH_MDS_OP_CREATE)
271 		return parse_reply_info_create(p, end, info, features);
272 	else
273 		return -EIO;
274 }
275 
276 /*
277  * parse entire mds reply
278  */
279 static int parse_reply_info(struct ceph_msg *msg,
280 			    struct ceph_mds_reply_info_parsed *info,
281 			    int features)
282 {
283 	void *p, *end;
284 	u32 len;
285 	int err;
286 
287 	info->head = msg->front.iov_base;
288 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
289 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
290 
291 	/* trace */
292 	ceph_decode_32_safe(&p, end, len, bad);
293 	if (len > 0) {
294 		ceph_decode_need(&p, end, len, bad);
295 		err = parse_reply_info_trace(&p, p+len, info, features);
296 		if (err < 0)
297 			goto out_bad;
298 	}
299 
300 	/* extra */
301 	ceph_decode_32_safe(&p, end, len, bad);
302 	if (len > 0) {
303 		ceph_decode_need(&p, end, len, bad);
304 		err = parse_reply_info_extra(&p, p+len, info, features);
305 		if (err < 0)
306 			goto out_bad;
307 	}
308 
309 	/* snap blob */
310 	ceph_decode_32_safe(&p, end, len, bad);
311 	info->snapblob_len = len;
312 	info->snapblob = p;
313 	p += len;
314 
315 	if (p != end)
316 		goto bad;
317 	return 0;
318 
319 bad:
320 	err = -EIO;
321 out_bad:
322 	pr_err("mds parse_reply err %d\n", err);
323 	return err;
324 }
325 
326 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
327 {
328 	kfree(info->dir_in);
329 }
330 
331 
332 /*
333  * sessions
334  */
335 static const char *session_state_name(int s)
336 {
337 	switch (s) {
338 	case CEPH_MDS_SESSION_NEW: return "new";
339 	case CEPH_MDS_SESSION_OPENING: return "opening";
340 	case CEPH_MDS_SESSION_OPEN: return "open";
341 	case CEPH_MDS_SESSION_HUNG: return "hung";
342 	case CEPH_MDS_SESSION_CLOSING: return "closing";
343 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
344 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
345 	default: return "???";
346 	}
347 }
348 
349 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
350 {
351 	if (atomic_inc_not_zero(&s->s_ref)) {
352 		dout("mdsc get_session %p %d -> %d\n", s,
353 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
354 		return s;
355 	} else {
356 		dout("mdsc get_session %p 0 -- FAIL", s);
357 		return NULL;
358 	}
359 }
360 
361 void ceph_put_mds_session(struct ceph_mds_session *s)
362 {
363 	dout("mdsc put_session %p %d -> %d\n", s,
364 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
365 	if (atomic_dec_and_test(&s->s_ref)) {
366 		if (s->s_auth.authorizer)
367 		     s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer(
368 			     s->s_mdsc->fsc->client->monc.auth,
369 			     s->s_auth.authorizer);
370 		kfree(s);
371 	}
372 }
373 
374 /*
375  * called under mdsc->mutex
376  */
377 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
378 						   int mds)
379 {
380 	struct ceph_mds_session *session;
381 
382 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
383 		return NULL;
384 	session = mdsc->sessions[mds];
385 	dout("lookup_mds_session %p %d\n", session,
386 	     atomic_read(&session->s_ref));
387 	get_session(session);
388 	return session;
389 }
390 
391 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
392 {
393 	if (mds >= mdsc->max_sessions)
394 		return false;
395 	return mdsc->sessions[mds];
396 }
397 
398 static int __verify_registered_session(struct ceph_mds_client *mdsc,
399 				       struct ceph_mds_session *s)
400 {
401 	if (s->s_mds >= mdsc->max_sessions ||
402 	    mdsc->sessions[s->s_mds] != s)
403 		return -ENOENT;
404 	return 0;
405 }
406 
407 /*
408  * create+register a new session for given mds.
409  * called under mdsc->mutex.
410  */
411 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
412 						 int mds)
413 {
414 	struct ceph_mds_session *s;
415 
416 	s = kzalloc(sizeof(*s), GFP_NOFS);
417 	if (!s)
418 		return ERR_PTR(-ENOMEM);
419 	s->s_mdsc = mdsc;
420 	s->s_mds = mds;
421 	s->s_state = CEPH_MDS_SESSION_NEW;
422 	s->s_ttl = 0;
423 	s->s_seq = 0;
424 	mutex_init(&s->s_mutex);
425 
426 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
427 
428 	spin_lock_init(&s->s_gen_ttl_lock);
429 	s->s_cap_gen = 0;
430 	s->s_cap_ttl = jiffies - 1;
431 
432 	spin_lock_init(&s->s_cap_lock);
433 	s->s_renew_requested = 0;
434 	s->s_renew_seq = 0;
435 	INIT_LIST_HEAD(&s->s_caps);
436 	s->s_nr_caps = 0;
437 	s->s_trim_caps = 0;
438 	atomic_set(&s->s_ref, 1);
439 	INIT_LIST_HEAD(&s->s_waiting);
440 	INIT_LIST_HEAD(&s->s_unsafe);
441 	s->s_num_cap_releases = 0;
442 	s->s_cap_iterator = NULL;
443 	INIT_LIST_HEAD(&s->s_cap_releases);
444 	INIT_LIST_HEAD(&s->s_cap_releases_done);
445 	INIT_LIST_HEAD(&s->s_cap_flushing);
446 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
447 
448 	dout("register_session mds%d\n", mds);
449 	if (mds >= mdsc->max_sessions) {
450 		int newmax = 1 << get_count_order(mds+1);
451 		struct ceph_mds_session **sa;
452 
453 		dout("register_session realloc to %d\n", newmax);
454 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
455 		if (sa == NULL)
456 			goto fail_realloc;
457 		if (mdsc->sessions) {
458 			memcpy(sa, mdsc->sessions,
459 			       mdsc->max_sessions * sizeof(void *));
460 			kfree(mdsc->sessions);
461 		}
462 		mdsc->sessions = sa;
463 		mdsc->max_sessions = newmax;
464 	}
465 	mdsc->sessions[mds] = s;
466 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
467 
468 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
469 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
470 
471 	return s;
472 
473 fail_realloc:
474 	kfree(s);
475 	return ERR_PTR(-ENOMEM);
476 }
477 
478 /*
479  * called under mdsc->mutex
480  */
481 static void __unregister_session(struct ceph_mds_client *mdsc,
482 			       struct ceph_mds_session *s)
483 {
484 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
485 	BUG_ON(mdsc->sessions[s->s_mds] != s);
486 	mdsc->sessions[s->s_mds] = NULL;
487 	ceph_con_close(&s->s_con);
488 	ceph_put_mds_session(s);
489 }
490 
491 /*
492  * drop session refs in request.
493  *
494  * should be last request ref, or hold mdsc->mutex
495  */
496 static void put_request_session(struct ceph_mds_request *req)
497 {
498 	if (req->r_session) {
499 		ceph_put_mds_session(req->r_session);
500 		req->r_session = NULL;
501 	}
502 }
503 
504 void ceph_mdsc_release_request(struct kref *kref)
505 {
506 	struct ceph_mds_request *req = container_of(kref,
507 						    struct ceph_mds_request,
508 						    r_kref);
509 	if (req->r_request)
510 		ceph_msg_put(req->r_request);
511 	if (req->r_reply) {
512 		ceph_msg_put(req->r_reply);
513 		destroy_reply_info(&req->r_reply_info);
514 	}
515 	if (req->r_inode) {
516 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
517 		iput(req->r_inode);
518 	}
519 	if (req->r_locked_dir)
520 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
521 	if (req->r_target_inode)
522 		iput(req->r_target_inode);
523 	if (req->r_dentry)
524 		dput(req->r_dentry);
525 	if (req->r_old_dentry) {
526 		/*
527 		 * track (and drop pins for) r_old_dentry_dir
528 		 * separately, since r_old_dentry's d_parent may have
529 		 * changed between the dir mutex being dropped and
530 		 * this request being freed.
531 		 */
532 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
533 				  CEPH_CAP_PIN);
534 		dput(req->r_old_dentry);
535 		iput(req->r_old_dentry_dir);
536 	}
537 	kfree(req->r_path1);
538 	kfree(req->r_path2);
539 	put_request_session(req);
540 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
541 	kfree(req);
542 }
543 
544 /*
545  * lookup session, bump ref if found.
546  *
547  * called under mdsc->mutex.
548  */
549 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
550 					     u64 tid)
551 {
552 	struct ceph_mds_request *req;
553 	struct rb_node *n = mdsc->request_tree.rb_node;
554 
555 	while (n) {
556 		req = rb_entry(n, struct ceph_mds_request, r_node);
557 		if (tid < req->r_tid)
558 			n = n->rb_left;
559 		else if (tid > req->r_tid)
560 			n = n->rb_right;
561 		else {
562 			ceph_mdsc_get_request(req);
563 			return req;
564 		}
565 	}
566 	return NULL;
567 }
568 
569 static void __insert_request(struct ceph_mds_client *mdsc,
570 			     struct ceph_mds_request *new)
571 {
572 	struct rb_node **p = &mdsc->request_tree.rb_node;
573 	struct rb_node *parent = NULL;
574 	struct ceph_mds_request *req = NULL;
575 
576 	while (*p) {
577 		parent = *p;
578 		req = rb_entry(parent, struct ceph_mds_request, r_node);
579 		if (new->r_tid < req->r_tid)
580 			p = &(*p)->rb_left;
581 		else if (new->r_tid > req->r_tid)
582 			p = &(*p)->rb_right;
583 		else
584 			BUG();
585 	}
586 
587 	rb_link_node(&new->r_node, parent, p);
588 	rb_insert_color(&new->r_node, &mdsc->request_tree);
589 }
590 
591 /*
592  * Register an in-flight request, and assign a tid.  Link to directory
593  * are modifying (if any).
594  *
595  * Called under mdsc->mutex.
596  */
597 static void __register_request(struct ceph_mds_client *mdsc,
598 			       struct ceph_mds_request *req,
599 			       struct inode *dir)
600 {
601 	req->r_tid = ++mdsc->last_tid;
602 	if (req->r_num_caps)
603 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
604 				  req->r_num_caps);
605 	dout("__register_request %p tid %lld\n", req, req->r_tid);
606 	ceph_mdsc_get_request(req);
607 	__insert_request(mdsc, req);
608 
609 	req->r_uid = current_fsuid();
610 	req->r_gid = current_fsgid();
611 
612 	if (dir) {
613 		struct ceph_inode_info *ci = ceph_inode(dir);
614 
615 		ihold(dir);
616 		spin_lock(&ci->i_unsafe_lock);
617 		req->r_unsafe_dir = dir;
618 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
619 		spin_unlock(&ci->i_unsafe_lock);
620 	}
621 }
622 
623 static void __unregister_request(struct ceph_mds_client *mdsc,
624 				 struct ceph_mds_request *req)
625 {
626 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
627 	rb_erase(&req->r_node, &mdsc->request_tree);
628 	RB_CLEAR_NODE(&req->r_node);
629 
630 	if (req->r_unsafe_dir) {
631 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
632 
633 		spin_lock(&ci->i_unsafe_lock);
634 		list_del_init(&req->r_unsafe_dir_item);
635 		spin_unlock(&ci->i_unsafe_lock);
636 
637 		iput(req->r_unsafe_dir);
638 		req->r_unsafe_dir = NULL;
639 	}
640 
641 	ceph_mdsc_put_request(req);
642 }
643 
644 /*
645  * Choose mds to send request to next.  If there is a hint set in the
646  * request (e.g., due to a prior forward hint from the mds), use that.
647  * Otherwise, consult frag tree and/or caps to identify the
648  * appropriate mds.  If all else fails, choose randomly.
649  *
650  * Called under mdsc->mutex.
651  */
652 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
653 {
654 	/*
655 	 * we don't need to worry about protecting the d_parent access
656 	 * here because we never renaming inside the snapped namespace
657 	 * except to resplice to another snapdir, and either the old or new
658 	 * result is a valid result.
659 	 */
660 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
661 		dentry = dentry->d_parent;
662 	return dentry;
663 }
664 
665 static int __choose_mds(struct ceph_mds_client *mdsc,
666 			struct ceph_mds_request *req)
667 {
668 	struct inode *inode;
669 	struct ceph_inode_info *ci;
670 	struct ceph_cap *cap;
671 	int mode = req->r_direct_mode;
672 	int mds = -1;
673 	u32 hash = req->r_direct_hash;
674 	bool is_hash = req->r_direct_is_hash;
675 
676 	/*
677 	 * is there a specific mds we should try?  ignore hint if we have
678 	 * no session and the mds is not up (active or recovering).
679 	 */
680 	if (req->r_resend_mds >= 0 &&
681 	    (__have_session(mdsc, req->r_resend_mds) ||
682 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
683 		dout("choose_mds using resend_mds mds%d\n",
684 		     req->r_resend_mds);
685 		return req->r_resend_mds;
686 	}
687 
688 	if (mode == USE_RANDOM_MDS)
689 		goto random;
690 
691 	inode = NULL;
692 	if (req->r_inode) {
693 		inode = req->r_inode;
694 	} else if (req->r_dentry) {
695 		/* ignore race with rename; old or new d_parent is okay */
696 		struct dentry *parent = req->r_dentry->d_parent;
697 		struct inode *dir = parent->d_inode;
698 
699 		if (dir->i_sb != mdsc->fsc->sb) {
700 			/* not this fs! */
701 			inode = req->r_dentry->d_inode;
702 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
703 			/* direct snapped/virtual snapdir requests
704 			 * based on parent dir inode */
705 			struct dentry *dn = get_nonsnap_parent(parent);
706 			inode = dn->d_inode;
707 			dout("__choose_mds using nonsnap parent %p\n", inode);
708 		} else if (req->r_dentry->d_inode) {
709 			/* dentry target */
710 			inode = req->r_dentry->d_inode;
711 		} else {
712 			/* dir + name */
713 			inode = dir;
714 			hash = ceph_dentry_hash(dir, req->r_dentry);
715 			is_hash = true;
716 		}
717 	}
718 
719 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
720 	     (int)hash, mode);
721 	if (!inode)
722 		goto random;
723 	ci = ceph_inode(inode);
724 
725 	if (is_hash && S_ISDIR(inode->i_mode)) {
726 		struct ceph_inode_frag frag;
727 		int found;
728 
729 		ceph_choose_frag(ci, hash, &frag, &found);
730 		if (found) {
731 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
732 				u8 r;
733 
734 				/* choose a random replica */
735 				get_random_bytes(&r, 1);
736 				r %= frag.ndist;
737 				mds = frag.dist[r];
738 				dout("choose_mds %p %llx.%llx "
739 				     "frag %u mds%d (%d/%d)\n",
740 				     inode, ceph_vinop(inode),
741 				     frag.frag, mds,
742 				     (int)r, frag.ndist);
743 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
744 				    CEPH_MDS_STATE_ACTIVE)
745 					return mds;
746 			}
747 
748 			/* since this file/dir wasn't known to be
749 			 * replicated, then we want to look for the
750 			 * authoritative mds. */
751 			mode = USE_AUTH_MDS;
752 			if (frag.mds >= 0) {
753 				/* choose auth mds */
754 				mds = frag.mds;
755 				dout("choose_mds %p %llx.%llx "
756 				     "frag %u mds%d (auth)\n",
757 				     inode, ceph_vinop(inode), frag.frag, mds);
758 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
759 				    CEPH_MDS_STATE_ACTIVE)
760 					return mds;
761 			}
762 		}
763 	}
764 
765 	spin_lock(&ci->i_ceph_lock);
766 	cap = NULL;
767 	if (mode == USE_AUTH_MDS)
768 		cap = ci->i_auth_cap;
769 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
770 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
771 	if (!cap) {
772 		spin_unlock(&ci->i_ceph_lock);
773 		goto random;
774 	}
775 	mds = cap->session->s_mds;
776 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
777 	     inode, ceph_vinop(inode), mds,
778 	     cap == ci->i_auth_cap ? "auth " : "", cap);
779 	spin_unlock(&ci->i_ceph_lock);
780 	return mds;
781 
782 random:
783 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
784 	dout("choose_mds chose random mds%d\n", mds);
785 	return mds;
786 }
787 
788 
789 /*
790  * session messages
791  */
792 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
793 {
794 	struct ceph_msg *msg;
795 	struct ceph_mds_session_head *h;
796 
797 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
798 			   false);
799 	if (!msg) {
800 		pr_err("create_session_msg ENOMEM creating msg\n");
801 		return NULL;
802 	}
803 	h = msg->front.iov_base;
804 	h->op = cpu_to_le32(op);
805 	h->seq = cpu_to_le64(seq);
806 	return msg;
807 }
808 
809 /*
810  * send session open request.
811  *
812  * called under mdsc->mutex
813  */
814 static int __open_session(struct ceph_mds_client *mdsc,
815 			  struct ceph_mds_session *session)
816 {
817 	struct ceph_msg *msg;
818 	int mstate;
819 	int mds = session->s_mds;
820 
821 	/* wait for mds to go active? */
822 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
823 	dout("open_session to mds%d (%s)\n", mds,
824 	     ceph_mds_state_name(mstate));
825 	session->s_state = CEPH_MDS_SESSION_OPENING;
826 	session->s_renew_requested = jiffies;
827 
828 	/* send connect message */
829 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
830 	if (!msg)
831 		return -ENOMEM;
832 	ceph_con_send(&session->s_con, msg);
833 	return 0;
834 }
835 
836 /*
837  * open sessions for any export targets for the given mds
838  *
839  * called under mdsc->mutex
840  */
841 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
842 					  struct ceph_mds_session *session)
843 {
844 	struct ceph_mds_info *mi;
845 	struct ceph_mds_session *ts;
846 	int i, mds = session->s_mds;
847 	int target;
848 
849 	if (mds >= mdsc->mdsmap->m_max_mds)
850 		return;
851 	mi = &mdsc->mdsmap->m_info[mds];
852 	dout("open_export_target_sessions for mds%d (%d targets)\n",
853 	     session->s_mds, mi->num_export_targets);
854 
855 	for (i = 0; i < mi->num_export_targets; i++) {
856 		target = mi->export_targets[i];
857 		ts = __ceph_lookup_mds_session(mdsc, target);
858 		if (!ts) {
859 			ts = register_session(mdsc, target);
860 			if (IS_ERR(ts))
861 				return;
862 		}
863 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
864 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
865 			__open_session(mdsc, session);
866 		else
867 			dout(" mds%d target mds%d %p is %s\n", session->s_mds,
868 			     i, ts, session_state_name(ts->s_state));
869 		ceph_put_mds_session(ts);
870 	}
871 }
872 
873 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
874 					   struct ceph_mds_session *session)
875 {
876 	mutex_lock(&mdsc->mutex);
877 	__open_export_target_sessions(mdsc, session);
878 	mutex_unlock(&mdsc->mutex);
879 }
880 
881 /*
882  * session caps
883  */
884 
885 /*
886  * Free preallocated cap messages assigned to this session
887  */
888 static void cleanup_cap_releases(struct ceph_mds_session *session)
889 {
890 	struct ceph_msg *msg;
891 
892 	spin_lock(&session->s_cap_lock);
893 	while (!list_empty(&session->s_cap_releases)) {
894 		msg = list_first_entry(&session->s_cap_releases,
895 				       struct ceph_msg, list_head);
896 		list_del_init(&msg->list_head);
897 		ceph_msg_put(msg);
898 	}
899 	while (!list_empty(&session->s_cap_releases_done)) {
900 		msg = list_first_entry(&session->s_cap_releases_done,
901 				       struct ceph_msg, list_head);
902 		list_del_init(&msg->list_head);
903 		ceph_msg_put(msg);
904 	}
905 	spin_unlock(&session->s_cap_lock);
906 }
907 
908 /*
909  * Helper to safely iterate over all caps associated with a session, with
910  * special care taken to handle a racing __ceph_remove_cap().
911  *
912  * Caller must hold session s_mutex.
913  */
914 static int iterate_session_caps(struct ceph_mds_session *session,
915 				 int (*cb)(struct inode *, struct ceph_cap *,
916 					    void *), void *arg)
917 {
918 	struct list_head *p;
919 	struct ceph_cap *cap;
920 	struct inode *inode, *last_inode = NULL;
921 	struct ceph_cap *old_cap = NULL;
922 	int ret;
923 
924 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
925 	spin_lock(&session->s_cap_lock);
926 	p = session->s_caps.next;
927 	while (p != &session->s_caps) {
928 		cap = list_entry(p, struct ceph_cap, session_caps);
929 		inode = igrab(&cap->ci->vfs_inode);
930 		if (!inode) {
931 			p = p->next;
932 			continue;
933 		}
934 		session->s_cap_iterator = cap;
935 		spin_unlock(&session->s_cap_lock);
936 
937 		if (last_inode) {
938 			iput(last_inode);
939 			last_inode = NULL;
940 		}
941 		if (old_cap) {
942 			ceph_put_cap(session->s_mdsc, old_cap);
943 			old_cap = NULL;
944 		}
945 
946 		ret = cb(inode, cap, arg);
947 		last_inode = inode;
948 
949 		spin_lock(&session->s_cap_lock);
950 		p = p->next;
951 		if (cap->ci == NULL) {
952 			dout("iterate_session_caps  finishing cap %p removal\n",
953 			     cap);
954 			BUG_ON(cap->session != session);
955 			list_del_init(&cap->session_caps);
956 			session->s_nr_caps--;
957 			cap->session = NULL;
958 			old_cap = cap;  /* put_cap it w/o locks held */
959 		}
960 		if (ret < 0)
961 			goto out;
962 	}
963 	ret = 0;
964 out:
965 	session->s_cap_iterator = NULL;
966 	spin_unlock(&session->s_cap_lock);
967 
968 	if (last_inode)
969 		iput(last_inode);
970 	if (old_cap)
971 		ceph_put_cap(session->s_mdsc, old_cap);
972 
973 	return ret;
974 }
975 
976 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
977 				  void *arg)
978 {
979 	struct ceph_inode_info *ci = ceph_inode(inode);
980 	int drop = 0;
981 
982 	dout("removing cap %p, ci is %p, inode is %p\n",
983 	     cap, ci, &ci->vfs_inode);
984 	spin_lock(&ci->i_ceph_lock);
985 	__ceph_remove_cap(cap);
986 	if (!__ceph_is_any_real_caps(ci)) {
987 		struct ceph_mds_client *mdsc =
988 			ceph_sb_to_client(inode->i_sb)->mdsc;
989 
990 		spin_lock(&mdsc->cap_dirty_lock);
991 		if (!list_empty(&ci->i_dirty_item)) {
992 			pr_info(" dropping dirty %s state for %p %lld\n",
993 				ceph_cap_string(ci->i_dirty_caps),
994 				inode, ceph_ino(inode));
995 			ci->i_dirty_caps = 0;
996 			list_del_init(&ci->i_dirty_item);
997 			drop = 1;
998 		}
999 		if (!list_empty(&ci->i_flushing_item)) {
1000 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1001 				ceph_cap_string(ci->i_flushing_caps),
1002 				inode, ceph_ino(inode));
1003 			ci->i_flushing_caps = 0;
1004 			list_del_init(&ci->i_flushing_item);
1005 			mdsc->num_cap_flushing--;
1006 			drop = 1;
1007 		}
1008 		if (drop && ci->i_wrbuffer_ref) {
1009 			pr_info(" dropping dirty data for %p %lld\n",
1010 				inode, ceph_ino(inode));
1011 			ci->i_wrbuffer_ref = 0;
1012 			ci->i_wrbuffer_ref_head = 0;
1013 			drop++;
1014 		}
1015 		spin_unlock(&mdsc->cap_dirty_lock);
1016 	}
1017 	spin_unlock(&ci->i_ceph_lock);
1018 	while (drop--)
1019 		iput(inode);
1020 	return 0;
1021 }
1022 
1023 /*
1024  * caller must hold session s_mutex
1025  */
1026 static void remove_session_caps(struct ceph_mds_session *session)
1027 {
1028 	dout("remove_session_caps on %p\n", session);
1029 	iterate_session_caps(session, remove_session_caps_cb, NULL);
1030 	BUG_ON(session->s_nr_caps > 0);
1031 	BUG_ON(!list_empty(&session->s_cap_flushing));
1032 	cleanup_cap_releases(session);
1033 }
1034 
1035 /*
1036  * wake up any threads waiting on this session's caps.  if the cap is
1037  * old (didn't get renewed on the client reconnect), remove it now.
1038  *
1039  * caller must hold s_mutex.
1040  */
1041 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1042 			      void *arg)
1043 {
1044 	struct ceph_inode_info *ci = ceph_inode(inode);
1045 
1046 	wake_up_all(&ci->i_cap_wq);
1047 	if (arg) {
1048 		spin_lock(&ci->i_ceph_lock);
1049 		ci->i_wanted_max_size = 0;
1050 		ci->i_requested_max_size = 0;
1051 		spin_unlock(&ci->i_ceph_lock);
1052 	}
1053 	return 0;
1054 }
1055 
1056 static void wake_up_session_caps(struct ceph_mds_session *session,
1057 				 int reconnect)
1058 {
1059 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1060 	iterate_session_caps(session, wake_up_session_cb,
1061 			     (void *)(unsigned long)reconnect);
1062 }
1063 
1064 /*
1065  * Send periodic message to MDS renewing all currently held caps.  The
1066  * ack will reset the expiration for all caps from this session.
1067  *
1068  * caller holds s_mutex
1069  */
1070 static int send_renew_caps(struct ceph_mds_client *mdsc,
1071 			   struct ceph_mds_session *session)
1072 {
1073 	struct ceph_msg *msg;
1074 	int state;
1075 
1076 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1077 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1078 		pr_info("mds%d caps stale\n", session->s_mds);
1079 	session->s_renew_requested = jiffies;
1080 
1081 	/* do not try to renew caps until a recovering mds has reconnected
1082 	 * with its clients. */
1083 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1084 	if (state < CEPH_MDS_STATE_RECONNECT) {
1085 		dout("send_renew_caps ignoring mds%d (%s)\n",
1086 		     session->s_mds, ceph_mds_state_name(state));
1087 		return 0;
1088 	}
1089 
1090 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1091 		ceph_mds_state_name(state));
1092 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1093 				 ++session->s_renew_seq);
1094 	if (!msg)
1095 		return -ENOMEM;
1096 	ceph_con_send(&session->s_con, msg);
1097 	return 0;
1098 }
1099 
1100 /*
1101  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1102  *
1103  * Called under session->s_mutex
1104  */
1105 static void renewed_caps(struct ceph_mds_client *mdsc,
1106 			 struct ceph_mds_session *session, int is_renew)
1107 {
1108 	int was_stale;
1109 	int wake = 0;
1110 
1111 	spin_lock(&session->s_cap_lock);
1112 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1113 
1114 	session->s_cap_ttl = session->s_renew_requested +
1115 		mdsc->mdsmap->m_session_timeout*HZ;
1116 
1117 	if (was_stale) {
1118 		if (time_before(jiffies, session->s_cap_ttl)) {
1119 			pr_info("mds%d caps renewed\n", session->s_mds);
1120 			wake = 1;
1121 		} else {
1122 			pr_info("mds%d caps still stale\n", session->s_mds);
1123 		}
1124 	}
1125 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1126 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1127 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1128 	spin_unlock(&session->s_cap_lock);
1129 
1130 	if (wake)
1131 		wake_up_session_caps(session, 0);
1132 }
1133 
1134 /*
1135  * send a session close request
1136  */
1137 static int request_close_session(struct ceph_mds_client *mdsc,
1138 				 struct ceph_mds_session *session)
1139 {
1140 	struct ceph_msg *msg;
1141 
1142 	dout("request_close_session mds%d state %s seq %lld\n",
1143 	     session->s_mds, session_state_name(session->s_state),
1144 	     session->s_seq);
1145 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1146 	if (!msg)
1147 		return -ENOMEM;
1148 	ceph_con_send(&session->s_con, msg);
1149 	return 0;
1150 }
1151 
1152 /*
1153  * Called with s_mutex held.
1154  */
1155 static int __close_session(struct ceph_mds_client *mdsc,
1156 			 struct ceph_mds_session *session)
1157 {
1158 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1159 		return 0;
1160 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1161 	return request_close_session(mdsc, session);
1162 }
1163 
1164 /*
1165  * Trim old(er) caps.
1166  *
1167  * Because we can't cache an inode without one or more caps, we do
1168  * this indirectly: if a cap is unused, we prune its aliases, at which
1169  * point the inode will hopefully get dropped to.
1170  *
1171  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1172  * memory pressure from the MDS, though, so it needn't be perfect.
1173  */
1174 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1175 {
1176 	struct ceph_mds_session *session = arg;
1177 	struct ceph_inode_info *ci = ceph_inode(inode);
1178 	int used, oissued, mine;
1179 
1180 	if (session->s_trim_caps <= 0)
1181 		return -1;
1182 
1183 	spin_lock(&ci->i_ceph_lock);
1184 	mine = cap->issued | cap->implemented;
1185 	used = __ceph_caps_used(ci);
1186 	oissued = __ceph_caps_issued_other(ci, cap);
1187 
1188 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1189 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1190 	     ceph_cap_string(used));
1191 	if (ci->i_dirty_caps)
1192 		goto out;   /* dirty caps */
1193 	if ((used & ~oissued) & mine)
1194 		goto out;   /* we need these caps */
1195 
1196 	session->s_trim_caps--;
1197 	if (oissued) {
1198 		/* we aren't the only cap.. just remove us */
1199 		__ceph_remove_cap(cap);
1200 	} else {
1201 		/* try to drop referring dentries */
1202 		spin_unlock(&ci->i_ceph_lock);
1203 		d_prune_aliases(inode);
1204 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1205 		     inode, cap, atomic_read(&inode->i_count));
1206 		return 0;
1207 	}
1208 
1209 out:
1210 	spin_unlock(&ci->i_ceph_lock);
1211 	return 0;
1212 }
1213 
1214 /*
1215  * Trim session cap count down to some max number.
1216  */
1217 static int trim_caps(struct ceph_mds_client *mdsc,
1218 		     struct ceph_mds_session *session,
1219 		     int max_caps)
1220 {
1221 	int trim_caps = session->s_nr_caps - max_caps;
1222 
1223 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1224 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1225 	if (trim_caps > 0) {
1226 		session->s_trim_caps = trim_caps;
1227 		iterate_session_caps(session, trim_caps_cb, session);
1228 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1229 		     session->s_mds, session->s_nr_caps, max_caps,
1230 			trim_caps - session->s_trim_caps);
1231 		session->s_trim_caps = 0;
1232 	}
1233 	return 0;
1234 }
1235 
1236 /*
1237  * Allocate cap_release messages.  If there is a partially full message
1238  * in the queue, try to allocate enough to cover it's remainder, so that
1239  * we can send it immediately.
1240  *
1241  * Called under s_mutex.
1242  */
1243 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1244 			  struct ceph_mds_session *session)
1245 {
1246 	struct ceph_msg *msg, *partial = NULL;
1247 	struct ceph_mds_cap_release *head;
1248 	int err = -ENOMEM;
1249 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1250 	int num;
1251 
1252 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1253 	     extra);
1254 
1255 	spin_lock(&session->s_cap_lock);
1256 
1257 	if (!list_empty(&session->s_cap_releases)) {
1258 		msg = list_first_entry(&session->s_cap_releases,
1259 				       struct ceph_msg,
1260 				 list_head);
1261 		head = msg->front.iov_base;
1262 		num = le32_to_cpu(head->num);
1263 		if (num) {
1264 			dout(" partial %p with (%d/%d)\n", msg, num,
1265 			     (int)CEPH_CAPS_PER_RELEASE);
1266 			extra += CEPH_CAPS_PER_RELEASE - num;
1267 			partial = msg;
1268 		}
1269 	}
1270 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1271 		spin_unlock(&session->s_cap_lock);
1272 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1273 				   GFP_NOFS, false);
1274 		if (!msg)
1275 			goto out_unlocked;
1276 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1277 		     (int)msg->front.iov_len);
1278 		head = msg->front.iov_base;
1279 		head->num = cpu_to_le32(0);
1280 		msg->front.iov_len = sizeof(*head);
1281 		spin_lock(&session->s_cap_lock);
1282 		list_add(&msg->list_head, &session->s_cap_releases);
1283 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1284 	}
1285 
1286 	if (partial) {
1287 		head = partial->front.iov_base;
1288 		num = le32_to_cpu(head->num);
1289 		dout(" queueing partial %p with %d/%d\n", partial, num,
1290 		     (int)CEPH_CAPS_PER_RELEASE);
1291 		list_move_tail(&partial->list_head,
1292 			       &session->s_cap_releases_done);
1293 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1294 	}
1295 	err = 0;
1296 	spin_unlock(&session->s_cap_lock);
1297 out_unlocked:
1298 	return err;
1299 }
1300 
1301 /*
1302  * flush all dirty inode data to disk.
1303  *
1304  * returns true if we've flushed through want_flush_seq
1305  */
1306 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1307 {
1308 	int mds, ret = 1;
1309 
1310 	dout("check_cap_flush want %lld\n", want_flush_seq);
1311 	mutex_lock(&mdsc->mutex);
1312 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1313 		struct ceph_mds_session *session = mdsc->sessions[mds];
1314 
1315 		if (!session)
1316 			continue;
1317 		get_session(session);
1318 		mutex_unlock(&mdsc->mutex);
1319 
1320 		mutex_lock(&session->s_mutex);
1321 		if (!list_empty(&session->s_cap_flushing)) {
1322 			struct ceph_inode_info *ci =
1323 				list_entry(session->s_cap_flushing.next,
1324 					   struct ceph_inode_info,
1325 					   i_flushing_item);
1326 			struct inode *inode = &ci->vfs_inode;
1327 
1328 			spin_lock(&ci->i_ceph_lock);
1329 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1330 				dout("check_cap_flush still flushing %p "
1331 				     "seq %lld <= %lld to mds%d\n", inode,
1332 				     ci->i_cap_flush_seq, want_flush_seq,
1333 				     session->s_mds);
1334 				ret = 0;
1335 			}
1336 			spin_unlock(&ci->i_ceph_lock);
1337 		}
1338 		mutex_unlock(&session->s_mutex);
1339 		ceph_put_mds_session(session);
1340 
1341 		if (!ret)
1342 			return ret;
1343 		mutex_lock(&mdsc->mutex);
1344 	}
1345 
1346 	mutex_unlock(&mdsc->mutex);
1347 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1348 	return ret;
1349 }
1350 
1351 /*
1352  * called under s_mutex
1353  */
1354 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1355 			    struct ceph_mds_session *session)
1356 {
1357 	struct ceph_msg *msg;
1358 
1359 	dout("send_cap_releases mds%d\n", session->s_mds);
1360 	spin_lock(&session->s_cap_lock);
1361 	while (!list_empty(&session->s_cap_releases_done)) {
1362 		msg = list_first_entry(&session->s_cap_releases_done,
1363 				 struct ceph_msg, list_head);
1364 		list_del_init(&msg->list_head);
1365 		spin_unlock(&session->s_cap_lock);
1366 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1367 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1368 		ceph_con_send(&session->s_con, msg);
1369 		spin_lock(&session->s_cap_lock);
1370 	}
1371 	spin_unlock(&session->s_cap_lock);
1372 }
1373 
1374 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1375 				 struct ceph_mds_session *session)
1376 {
1377 	struct ceph_msg *msg;
1378 	struct ceph_mds_cap_release *head;
1379 	unsigned num;
1380 
1381 	dout("discard_cap_releases mds%d\n", session->s_mds);
1382 	spin_lock(&session->s_cap_lock);
1383 
1384 	/* zero out the in-progress message */
1385 	msg = list_first_entry(&session->s_cap_releases,
1386 			       struct ceph_msg, list_head);
1387 	head = msg->front.iov_base;
1388 	num = le32_to_cpu(head->num);
1389 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1390 	head->num = cpu_to_le32(0);
1391 	session->s_num_cap_releases += num;
1392 
1393 	/* requeue completed messages */
1394 	while (!list_empty(&session->s_cap_releases_done)) {
1395 		msg = list_first_entry(&session->s_cap_releases_done,
1396 				 struct ceph_msg, list_head);
1397 		list_del_init(&msg->list_head);
1398 
1399 		head = msg->front.iov_base;
1400 		num = le32_to_cpu(head->num);
1401 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1402 		     num);
1403 		session->s_num_cap_releases += num;
1404 		head->num = cpu_to_le32(0);
1405 		msg->front.iov_len = sizeof(*head);
1406 		list_add(&msg->list_head, &session->s_cap_releases);
1407 	}
1408 
1409 	spin_unlock(&session->s_cap_lock);
1410 }
1411 
1412 /*
1413  * requests
1414  */
1415 
1416 /*
1417  * Create an mds request.
1418  */
1419 struct ceph_mds_request *
1420 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1421 {
1422 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1423 
1424 	if (!req)
1425 		return ERR_PTR(-ENOMEM);
1426 
1427 	mutex_init(&req->r_fill_mutex);
1428 	req->r_mdsc = mdsc;
1429 	req->r_started = jiffies;
1430 	req->r_resend_mds = -1;
1431 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1432 	req->r_fmode = -1;
1433 	kref_init(&req->r_kref);
1434 	INIT_LIST_HEAD(&req->r_wait);
1435 	init_completion(&req->r_completion);
1436 	init_completion(&req->r_safe_completion);
1437 	INIT_LIST_HEAD(&req->r_unsafe_item);
1438 
1439 	req->r_op = op;
1440 	req->r_direct_mode = mode;
1441 	return req;
1442 }
1443 
1444 /*
1445  * return oldest (lowest) request, tid in request tree, 0 if none.
1446  *
1447  * called under mdsc->mutex.
1448  */
1449 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1450 {
1451 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1452 		return NULL;
1453 	return rb_entry(rb_first(&mdsc->request_tree),
1454 			struct ceph_mds_request, r_node);
1455 }
1456 
1457 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1458 {
1459 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1460 
1461 	if (req)
1462 		return req->r_tid;
1463 	return 0;
1464 }
1465 
1466 /*
1467  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1468  * on build_path_from_dentry in fs/cifs/dir.c.
1469  *
1470  * If @stop_on_nosnap, generate path relative to the first non-snapped
1471  * inode.
1472  *
1473  * Encode hidden .snap dirs as a double /, i.e.
1474  *   foo/.snap/bar -> foo//bar
1475  */
1476 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1477 			   int stop_on_nosnap)
1478 {
1479 	struct dentry *temp;
1480 	char *path;
1481 	int len, pos;
1482 	unsigned seq;
1483 
1484 	if (dentry == NULL)
1485 		return ERR_PTR(-EINVAL);
1486 
1487 retry:
1488 	len = 0;
1489 	seq = read_seqbegin(&rename_lock);
1490 	rcu_read_lock();
1491 	for (temp = dentry; !IS_ROOT(temp);) {
1492 		struct inode *inode = temp->d_inode;
1493 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1494 			len++;  /* slash only */
1495 		else if (stop_on_nosnap && inode &&
1496 			 ceph_snap(inode) == CEPH_NOSNAP)
1497 			break;
1498 		else
1499 			len += 1 + temp->d_name.len;
1500 		temp = temp->d_parent;
1501 	}
1502 	rcu_read_unlock();
1503 	if (len)
1504 		len--;  /* no leading '/' */
1505 
1506 	path = kmalloc(len+1, GFP_NOFS);
1507 	if (path == NULL)
1508 		return ERR_PTR(-ENOMEM);
1509 	pos = len;
1510 	path[pos] = 0;	/* trailing null */
1511 	rcu_read_lock();
1512 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1513 		struct inode *inode;
1514 
1515 		spin_lock(&temp->d_lock);
1516 		inode = temp->d_inode;
1517 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1518 			dout("build_path path+%d: %p SNAPDIR\n",
1519 			     pos, temp);
1520 		} else if (stop_on_nosnap && inode &&
1521 			   ceph_snap(inode) == CEPH_NOSNAP) {
1522 			spin_unlock(&temp->d_lock);
1523 			break;
1524 		} else {
1525 			pos -= temp->d_name.len;
1526 			if (pos < 0) {
1527 				spin_unlock(&temp->d_lock);
1528 				break;
1529 			}
1530 			strncpy(path + pos, temp->d_name.name,
1531 				temp->d_name.len);
1532 		}
1533 		spin_unlock(&temp->d_lock);
1534 		if (pos)
1535 			path[--pos] = '/';
1536 		temp = temp->d_parent;
1537 	}
1538 	rcu_read_unlock();
1539 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1540 		pr_err("build_path did not end path lookup where "
1541 		       "expected, namelen is %d, pos is %d\n", len, pos);
1542 		/* presumably this is only possible if racing with a
1543 		   rename of one of the parent directories (we can not
1544 		   lock the dentries above us to prevent this, but
1545 		   retrying should be harmless) */
1546 		kfree(path);
1547 		goto retry;
1548 	}
1549 
1550 	*base = ceph_ino(temp->d_inode);
1551 	*plen = len;
1552 	dout("build_path on %p %d built %llx '%.*s'\n",
1553 	     dentry, dentry->d_count, *base, len, path);
1554 	return path;
1555 }
1556 
1557 static int build_dentry_path(struct dentry *dentry,
1558 			     const char **ppath, int *ppathlen, u64 *pino,
1559 			     int *pfreepath)
1560 {
1561 	char *path;
1562 
1563 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1564 		*pino = ceph_ino(dentry->d_parent->d_inode);
1565 		*ppath = dentry->d_name.name;
1566 		*ppathlen = dentry->d_name.len;
1567 		return 0;
1568 	}
1569 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1570 	if (IS_ERR(path))
1571 		return PTR_ERR(path);
1572 	*ppath = path;
1573 	*pfreepath = 1;
1574 	return 0;
1575 }
1576 
1577 static int build_inode_path(struct inode *inode,
1578 			    const char **ppath, int *ppathlen, u64 *pino,
1579 			    int *pfreepath)
1580 {
1581 	struct dentry *dentry;
1582 	char *path;
1583 
1584 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1585 		*pino = ceph_ino(inode);
1586 		*ppathlen = 0;
1587 		return 0;
1588 	}
1589 	dentry = d_find_alias(inode);
1590 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1591 	dput(dentry);
1592 	if (IS_ERR(path))
1593 		return PTR_ERR(path);
1594 	*ppath = path;
1595 	*pfreepath = 1;
1596 	return 0;
1597 }
1598 
1599 /*
1600  * request arguments may be specified via an inode *, a dentry *, or
1601  * an explicit ino+path.
1602  */
1603 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1604 				  const char *rpath, u64 rino,
1605 				  const char **ppath, int *pathlen,
1606 				  u64 *ino, int *freepath)
1607 {
1608 	int r = 0;
1609 
1610 	if (rinode) {
1611 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1612 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1613 		     ceph_snap(rinode));
1614 	} else if (rdentry) {
1615 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1616 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1617 		     *ppath);
1618 	} else if (rpath || rino) {
1619 		*ino = rino;
1620 		*ppath = rpath;
1621 		*pathlen = rpath ? strlen(rpath) : 0;
1622 		dout(" path %.*s\n", *pathlen, rpath);
1623 	}
1624 
1625 	return r;
1626 }
1627 
1628 /*
1629  * called under mdsc->mutex
1630  */
1631 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1632 					       struct ceph_mds_request *req,
1633 					       int mds)
1634 {
1635 	struct ceph_msg *msg;
1636 	struct ceph_mds_request_head *head;
1637 	const char *path1 = NULL;
1638 	const char *path2 = NULL;
1639 	u64 ino1 = 0, ino2 = 0;
1640 	int pathlen1 = 0, pathlen2 = 0;
1641 	int freepath1 = 0, freepath2 = 0;
1642 	int len;
1643 	u16 releases;
1644 	void *p, *end;
1645 	int ret;
1646 
1647 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1648 			      req->r_path1, req->r_ino1.ino,
1649 			      &path1, &pathlen1, &ino1, &freepath1);
1650 	if (ret < 0) {
1651 		msg = ERR_PTR(ret);
1652 		goto out;
1653 	}
1654 
1655 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1656 			      req->r_path2, req->r_ino2.ino,
1657 			      &path2, &pathlen2, &ino2, &freepath2);
1658 	if (ret < 0) {
1659 		msg = ERR_PTR(ret);
1660 		goto out_free1;
1661 	}
1662 
1663 	len = sizeof(*head) +
1664 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1665 
1666 	/* calculate (max) length for cap releases */
1667 	len += sizeof(struct ceph_mds_request_release) *
1668 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1669 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1670 	if (req->r_dentry_drop)
1671 		len += req->r_dentry->d_name.len;
1672 	if (req->r_old_dentry_drop)
1673 		len += req->r_old_dentry->d_name.len;
1674 
1675 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1676 	if (!msg) {
1677 		msg = ERR_PTR(-ENOMEM);
1678 		goto out_free2;
1679 	}
1680 
1681 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1682 
1683 	head = msg->front.iov_base;
1684 	p = msg->front.iov_base + sizeof(*head);
1685 	end = msg->front.iov_base + msg->front.iov_len;
1686 
1687 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1688 	head->op = cpu_to_le32(req->r_op);
1689 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1690 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1691 	head->args = req->r_args;
1692 
1693 	ceph_encode_filepath(&p, end, ino1, path1);
1694 	ceph_encode_filepath(&p, end, ino2, path2);
1695 
1696 	/* make note of release offset, in case we need to replay */
1697 	req->r_request_release_offset = p - msg->front.iov_base;
1698 
1699 	/* cap releases */
1700 	releases = 0;
1701 	if (req->r_inode_drop)
1702 		releases += ceph_encode_inode_release(&p,
1703 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1704 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1705 	if (req->r_dentry_drop)
1706 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1707 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1708 	if (req->r_old_dentry_drop)
1709 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1710 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1711 	if (req->r_old_inode_drop)
1712 		releases += ceph_encode_inode_release(&p,
1713 		      req->r_old_dentry->d_inode,
1714 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1715 	head->num_releases = cpu_to_le16(releases);
1716 
1717 	BUG_ON(p > end);
1718 	msg->front.iov_len = p - msg->front.iov_base;
1719 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1720 
1721 	msg->pages = req->r_pages;
1722 	msg->nr_pages = req->r_num_pages;
1723 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1724 	msg->hdr.data_off = cpu_to_le16(0);
1725 
1726 out_free2:
1727 	if (freepath2)
1728 		kfree((char *)path2);
1729 out_free1:
1730 	if (freepath1)
1731 		kfree((char *)path1);
1732 out:
1733 	return msg;
1734 }
1735 
1736 /*
1737  * called under mdsc->mutex if error, under no mutex if
1738  * success.
1739  */
1740 static void complete_request(struct ceph_mds_client *mdsc,
1741 			     struct ceph_mds_request *req)
1742 {
1743 	if (req->r_callback)
1744 		req->r_callback(mdsc, req);
1745 	else
1746 		complete_all(&req->r_completion);
1747 }
1748 
1749 /*
1750  * called under mdsc->mutex
1751  */
1752 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1753 				  struct ceph_mds_request *req,
1754 				  int mds)
1755 {
1756 	struct ceph_mds_request_head *rhead;
1757 	struct ceph_msg *msg;
1758 	int flags = 0;
1759 
1760 	req->r_attempts++;
1761 	if (req->r_inode) {
1762 		struct ceph_cap *cap =
1763 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1764 
1765 		if (cap)
1766 			req->r_sent_on_mseq = cap->mseq;
1767 		else
1768 			req->r_sent_on_mseq = -1;
1769 	}
1770 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1771 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1772 
1773 	if (req->r_got_unsafe) {
1774 		/*
1775 		 * Replay.  Do not regenerate message (and rebuild
1776 		 * paths, etc.); just use the original message.
1777 		 * Rebuilding paths will break for renames because
1778 		 * d_move mangles the src name.
1779 		 */
1780 		msg = req->r_request;
1781 		rhead = msg->front.iov_base;
1782 
1783 		flags = le32_to_cpu(rhead->flags);
1784 		flags |= CEPH_MDS_FLAG_REPLAY;
1785 		rhead->flags = cpu_to_le32(flags);
1786 
1787 		if (req->r_target_inode)
1788 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1789 
1790 		rhead->num_retry = req->r_attempts - 1;
1791 
1792 		/* remove cap/dentry releases from message */
1793 		rhead->num_releases = 0;
1794 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1795 		msg->front.iov_len = req->r_request_release_offset;
1796 		return 0;
1797 	}
1798 
1799 	if (req->r_request) {
1800 		ceph_msg_put(req->r_request);
1801 		req->r_request = NULL;
1802 	}
1803 	msg = create_request_message(mdsc, req, mds);
1804 	if (IS_ERR(msg)) {
1805 		req->r_err = PTR_ERR(msg);
1806 		complete_request(mdsc, req);
1807 		return PTR_ERR(msg);
1808 	}
1809 	req->r_request = msg;
1810 
1811 	rhead = msg->front.iov_base;
1812 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1813 	if (req->r_got_unsafe)
1814 		flags |= CEPH_MDS_FLAG_REPLAY;
1815 	if (req->r_locked_dir)
1816 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1817 	rhead->flags = cpu_to_le32(flags);
1818 	rhead->num_fwd = req->r_num_fwd;
1819 	rhead->num_retry = req->r_attempts - 1;
1820 	rhead->ino = 0;
1821 
1822 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1823 	return 0;
1824 }
1825 
1826 /*
1827  * send request, or put it on the appropriate wait list.
1828  */
1829 static int __do_request(struct ceph_mds_client *mdsc,
1830 			struct ceph_mds_request *req)
1831 {
1832 	struct ceph_mds_session *session = NULL;
1833 	int mds = -1;
1834 	int err = -EAGAIN;
1835 
1836 	if (req->r_err || req->r_got_result)
1837 		goto out;
1838 
1839 	if (req->r_timeout &&
1840 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1841 		dout("do_request timed out\n");
1842 		err = -EIO;
1843 		goto finish;
1844 	}
1845 
1846 	put_request_session(req);
1847 
1848 	mds = __choose_mds(mdsc, req);
1849 	if (mds < 0 ||
1850 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1851 		dout("do_request no mds or not active, waiting for map\n");
1852 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1853 		goto out;
1854 	}
1855 
1856 	/* get, open session */
1857 	session = __ceph_lookup_mds_session(mdsc, mds);
1858 	if (!session) {
1859 		session = register_session(mdsc, mds);
1860 		if (IS_ERR(session)) {
1861 			err = PTR_ERR(session);
1862 			goto finish;
1863 		}
1864 	}
1865 	req->r_session = get_session(session);
1866 
1867 	dout("do_request mds%d session %p state %s\n", mds, session,
1868 	     session_state_name(session->s_state));
1869 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1870 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1871 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1872 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1873 			__open_session(mdsc, session);
1874 		list_add(&req->r_wait, &session->s_waiting);
1875 		goto out_session;
1876 	}
1877 
1878 	/* send request */
1879 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1880 
1881 	if (req->r_request_started == 0)   /* note request start time */
1882 		req->r_request_started = jiffies;
1883 
1884 	err = __prepare_send_request(mdsc, req, mds);
1885 	if (!err) {
1886 		ceph_msg_get(req->r_request);
1887 		ceph_con_send(&session->s_con, req->r_request);
1888 	}
1889 
1890 out_session:
1891 	ceph_put_mds_session(session);
1892 out:
1893 	return err;
1894 
1895 finish:
1896 	req->r_err = err;
1897 	complete_request(mdsc, req);
1898 	goto out;
1899 }
1900 
1901 /*
1902  * called under mdsc->mutex
1903  */
1904 static void __wake_requests(struct ceph_mds_client *mdsc,
1905 			    struct list_head *head)
1906 {
1907 	struct ceph_mds_request *req;
1908 	LIST_HEAD(tmp_list);
1909 
1910 	list_splice_init(head, &tmp_list);
1911 
1912 	while (!list_empty(&tmp_list)) {
1913 		req = list_entry(tmp_list.next,
1914 				 struct ceph_mds_request, r_wait);
1915 		list_del_init(&req->r_wait);
1916 		__do_request(mdsc, req);
1917 	}
1918 }
1919 
1920 /*
1921  * Wake up threads with requests pending for @mds, so that they can
1922  * resubmit their requests to a possibly different mds.
1923  */
1924 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1925 {
1926 	struct ceph_mds_request *req;
1927 	struct rb_node *p;
1928 
1929 	dout("kick_requests mds%d\n", mds);
1930 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1931 		req = rb_entry(p, struct ceph_mds_request, r_node);
1932 		if (req->r_got_unsafe)
1933 			continue;
1934 		if (req->r_session &&
1935 		    req->r_session->s_mds == mds) {
1936 			dout(" kicking tid %llu\n", req->r_tid);
1937 			__do_request(mdsc, req);
1938 		}
1939 	}
1940 }
1941 
1942 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1943 			      struct ceph_mds_request *req)
1944 {
1945 	dout("submit_request on %p\n", req);
1946 	mutex_lock(&mdsc->mutex);
1947 	__register_request(mdsc, req, NULL);
1948 	__do_request(mdsc, req);
1949 	mutex_unlock(&mdsc->mutex);
1950 }
1951 
1952 /*
1953  * Synchrously perform an mds request.  Take care of all of the
1954  * session setup, forwarding, retry details.
1955  */
1956 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1957 			 struct inode *dir,
1958 			 struct ceph_mds_request *req)
1959 {
1960 	int err;
1961 
1962 	dout("do_request on %p\n", req);
1963 
1964 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1965 	if (req->r_inode)
1966 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1967 	if (req->r_locked_dir)
1968 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1969 	if (req->r_old_dentry)
1970 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1971 				  CEPH_CAP_PIN);
1972 
1973 	/* issue */
1974 	mutex_lock(&mdsc->mutex);
1975 	__register_request(mdsc, req, dir);
1976 	__do_request(mdsc, req);
1977 
1978 	if (req->r_err) {
1979 		err = req->r_err;
1980 		__unregister_request(mdsc, req);
1981 		dout("do_request early error %d\n", err);
1982 		goto out;
1983 	}
1984 
1985 	/* wait */
1986 	mutex_unlock(&mdsc->mutex);
1987 	dout("do_request waiting\n");
1988 	if (req->r_timeout) {
1989 		err = (long)wait_for_completion_killable_timeout(
1990 			&req->r_completion, req->r_timeout);
1991 		if (err == 0)
1992 			err = -EIO;
1993 	} else {
1994 		err = wait_for_completion_killable(&req->r_completion);
1995 	}
1996 	dout("do_request waited, got %d\n", err);
1997 	mutex_lock(&mdsc->mutex);
1998 
1999 	/* only abort if we didn't race with a real reply */
2000 	if (req->r_got_result) {
2001 		err = le32_to_cpu(req->r_reply_info.head->result);
2002 	} else if (err < 0) {
2003 		dout("aborted request %lld with %d\n", req->r_tid, err);
2004 
2005 		/*
2006 		 * ensure we aren't running concurrently with
2007 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2008 		 * rely on locks (dir mutex) held by our caller.
2009 		 */
2010 		mutex_lock(&req->r_fill_mutex);
2011 		req->r_err = err;
2012 		req->r_aborted = true;
2013 		mutex_unlock(&req->r_fill_mutex);
2014 
2015 		if (req->r_locked_dir &&
2016 		    (req->r_op & CEPH_MDS_OP_WRITE))
2017 			ceph_invalidate_dir_request(req);
2018 	} else {
2019 		err = req->r_err;
2020 	}
2021 
2022 out:
2023 	mutex_unlock(&mdsc->mutex);
2024 	dout("do_request %p done, result %d\n", req, err);
2025 	return err;
2026 }
2027 
2028 /*
2029  * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS
2030  * namespace request.
2031  */
2032 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2033 {
2034 	struct inode *inode = req->r_locked_dir;
2035 	struct ceph_inode_info *ci = ceph_inode(inode);
2036 
2037 	dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode);
2038 	spin_lock(&ci->i_ceph_lock);
2039 	ceph_dir_clear_complete(inode);
2040 	ci->i_release_count++;
2041 	spin_unlock(&ci->i_ceph_lock);
2042 
2043 	if (req->r_dentry)
2044 		ceph_invalidate_dentry_lease(req->r_dentry);
2045 	if (req->r_old_dentry)
2046 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2047 }
2048 
2049 /*
2050  * Handle mds reply.
2051  *
2052  * We take the session mutex and parse and process the reply immediately.
2053  * This preserves the logical ordering of replies, capabilities, etc., sent
2054  * by the MDS as they are applied to our local cache.
2055  */
2056 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2057 {
2058 	struct ceph_mds_client *mdsc = session->s_mdsc;
2059 	struct ceph_mds_request *req;
2060 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2061 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2062 	u64 tid;
2063 	int err, result;
2064 	int mds = session->s_mds;
2065 
2066 	if (msg->front.iov_len < sizeof(*head)) {
2067 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2068 		ceph_msg_dump(msg);
2069 		return;
2070 	}
2071 
2072 	/* get request, session */
2073 	tid = le64_to_cpu(msg->hdr.tid);
2074 	mutex_lock(&mdsc->mutex);
2075 	req = __lookup_request(mdsc, tid);
2076 	if (!req) {
2077 		dout("handle_reply on unknown tid %llu\n", tid);
2078 		mutex_unlock(&mdsc->mutex);
2079 		return;
2080 	}
2081 	dout("handle_reply %p\n", req);
2082 
2083 	/* correct session? */
2084 	if (req->r_session != session) {
2085 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2086 		       " not mds%d\n", tid, session->s_mds,
2087 		       req->r_session ? req->r_session->s_mds : -1);
2088 		mutex_unlock(&mdsc->mutex);
2089 		goto out;
2090 	}
2091 
2092 	/* dup? */
2093 	if ((req->r_got_unsafe && !head->safe) ||
2094 	    (req->r_got_safe && head->safe)) {
2095 		pr_warning("got a dup %s reply on %llu from mds%d\n",
2096 			   head->safe ? "safe" : "unsafe", tid, mds);
2097 		mutex_unlock(&mdsc->mutex);
2098 		goto out;
2099 	}
2100 	if (req->r_got_safe && !head->safe) {
2101 		pr_warning("got unsafe after safe on %llu from mds%d\n",
2102 			   tid, mds);
2103 		mutex_unlock(&mdsc->mutex);
2104 		goto out;
2105 	}
2106 
2107 	result = le32_to_cpu(head->result);
2108 
2109 	/*
2110 	 * Handle an ESTALE
2111 	 * if we're not talking to the authority, send to them
2112 	 * if the authority has changed while we weren't looking,
2113 	 * send to new authority
2114 	 * Otherwise we just have to return an ESTALE
2115 	 */
2116 	if (result == -ESTALE) {
2117 		dout("got ESTALE on request %llu", req->r_tid);
2118 		if (!req->r_inode) {
2119 			/* do nothing; not an authority problem */
2120 		} else if (req->r_direct_mode != USE_AUTH_MDS) {
2121 			dout("not using auth, setting for that now");
2122 			req->r_direct_mode = USE_AUTH_MDS;
2123 			__do_request(mdsc, req);
2124 			mutex_unlock(&mdsc->mutex);
2125 			goto out;
2126 		} else  {
2127 			struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2128 			struct ceph_cap *cap = NULL;
2129 
2130 			if (req->r_session)
2131 				cap = ceph_get_cap_for_mds(ci,
2132 						   req->r_session->s_mds);
2133 
2134 			dout("already using auth");
2135 			if ((!cap || cap != ci->i_auth_cap) ||
2136 			    (cap->mseq != req->r_sent_on_mseq)) {
2137 				dout("but cap changed, so resending");
2138 				__do_request(mdsc, req);
2139 				mutex_unlock(&mdsc->mutex);
2140 				goto out;
2141 			}
2142 		}
2143 		dout("have to return ESTALE on request %llu", req->r_tid);
2144 	}
2145 
2146 
2147 	if (head->safe) {
2148 		req->r_got_safe = true;
2149 		__unregister_request(mdsc, req);
2150 		complete_all(&req->r_safe_completion);
2151 
2152 		if (req->r_got_unsafe) {
2153 			/*
2154 			 * We already handled the unsafe response, now do the
2155 			 * cleanup.  No need to examine the response; the MDS
2156 			 * doesn't include any result info in the safe
2157 			 * response.  And even if it did, there is nothing
2158 			 * useful we could do with a revised return value.
2159 			 */
2160 			dout("got safe reply %llu, mds%d\n", tid, mds);
2161 			list_del_init(&req->r_unsafe_item);
2162 
2163 			/* last unsafe request during umount? */
2164 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2165 				complete_all(&mdsc->safe_umount_waiters);
2166 			mutex_unlock(&mdsc->mutex);
2167 			goto out;
2168 		}
2169 	} else {
2170 		req->r_got_unsafe = true;
2171 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2172 	}
2173 
2174 	dout("handle_reply tid %lld result %d\n", tid, result);
2175 	rinfo = &req->r_reply_info;
2176 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2177 	mutex_unlock(&mdsc->mutex);
2178 
2179 	mutex_lock(&session->s_mutex);
2180 	if (err < 0) {
2181 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2182 		ceph_msg_dump(msg);
2183 		goto out_err;
2184 	}
2185 
2186 	/* snap trace */
2187 	if (rinfo->snapblob_len) {
2188 		down_write(&mdsc->snap_rwsem);
2189 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2190 			       rinfo->snapblob + rinfo->snapblob_len,
2191 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2192 		downgrade_write(&mdsc->snap_rwsem);
2193 	} else {
2194 		down_read(&mdsc->snap_rwsem);
2195 	}
2196 
2197 	/* insert trace into our cache */
2198 	mutex_lock(&req->r_fill_mutex);
2199 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2200 	if (err == 0) {
2201 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2202 				    req->r_op == CEPH_MDS_OP_LSSNAP) &&
2203 		    rinfo->dir_nr)
2204 			ceph_readdir_prepopulate(req, req->r_session);
2205 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2206 	}
2207 	mutex_unlock(&req->r_fill_mutex);
2208 
2209 	up_read(&mdsc->snap_rwsem);
2210 out_err:
2211 	mutex_lock(&mdsc->mutex);
2212 	if (!req->r_aborted) {
2213 		if (err) {
2214 			req->r_err = err;
2215 		} else {
2216 			req->r_reply = msg;
2217 			ceph_msg_get(msg);
2218 			req->r_got_result = true;
2219 		}
2220 	} else {
2221 		dout("reply arrived after request %lld was aborted\n", tid);
2222 	}
2223 	mutex_unlock(&mdsc->mutex);
2224 
2225 	ceph_add_cap_releases(mdsc, req->r_session);
2226 	mutex_unlock(&session->s_mutex);
2227 
2228 	/* kick calling process */
2229 	complete_request(mdsc, req);
2230 out:
2231 	ceph_mdsc_put_request(req);
2232 	return;
2233 }
2234 
2235 
2236 
2237 /*
2238  * handle mds notification that our request has been forwarded.
2239  */
2240 static void handle_forward(struct ceph_mds_client *mdsc,
2241 			   struct ceph_mds_session *session,
2242 			   struct ceph_msg *msg)
2243 {
2244 	struct ceph_mds_request *req;
2245 	u64 tid = le64_to_cpu(msg->hdr.tid);
2246 	u32 next_mds;
2247 	u32 fwd_seq;
2248 	int err = -EINVAL;
2249 	void *p = msg->front.iov_base;
2250 	void *end = p + msg->front.iov_len;
2251 
2252 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2253 	next_mds = ceph_decode_32(&p);
2254 	fwd_seq = ceph_decode_32(&p);
2255 
2256 	mutex_lock(&mdsc->mutex);
2257 	req = __lookup_request(mdsc, tid);
2258 	if (!req) {
2259 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2260 		goto out;  /* dup reply? */
2261 	}
2262 
2263 	if (req->r_aborted) {
2264 		dout("forward tid %llu aborted, unregistering\n", tid);
2265 		__unregister_request(mdsc, req);
2266 	} else if (fwd_seq <= req->r_num_fwd) {
2267 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2268 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2269 	} else {
2270 		/* resend. forward race not possible; mds would drop */
2271 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2272 		BUG_ON(req->r_err);
2273 		BUG_ON(req->r_got_result);
2274 		req->r_num_fwd = fwd_seq;
2275 		req->r_resend_mds = next_mds;
2276 		put_request_session(req);
2277 		__do_request(mdsc, req);
2278 	}
2279 	ceph_mdsc_put_request(req);
2280 out:
2281 	mutex_unlock(&mdsc->mutex);
2282 	return;
2283 
2284 bad:
2285 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2286 }
2287 
2288 /*
2289  * handle a mds session control message
2290  */
2291 static void handle_session(struct ceph_mds_session *session,
2292 			   struct ceph_msg *msg)
2293 {
2294 	struct ceph_mds_client *mdsc = session->s_mdsc;
2295 	u32 op;
2296 	u64 seq;
2297 	int mds = session->s_mds;
2298 	struct ceph_mds_session_head *h = msg->front.iov_base;
2299 	int wake = 0;
2300 
2301 	/* decode */
2302 	if (msg->front.iov_len != sizeof(*h))
2303 		goto bad;
2304 	op = le32_to_cpu(h->op);
2305 	seq = le64_to_cpu(h->seq);
2306 
2307 	mutex_lock(&mdsc->mutex);
2308 	if (op == CEPH_SESSION_CLOSE)
2309 		__unregister_session(mdsc, session);
2310 	/* FIXME: this ttl calculation is generous */
2311 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2312 	mutex_unlock(&mdsc->mutex);
2313 
2314 	mutex_lock(&session->s_mutex);
2315 
2316 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2317 	     mds, ceph_session_op_name(op), session,
2318 	     session_state_name(session->s_state), seq);
2319 
2320 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2321 		session->s_state = CEPH_MDS_SESSION_OPEN;
2322 		pr_info("mds%d came back\n", session->s_mds);
2323 	}
2324 
2325 	switch (op) {
2326 	case CEPH_SESSION_OPEN:
2327 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2328 			pr_info("mds%d reconnect success\n", session->s_mds);
2329 		session->s_state = CEPH_MDS_SESSION_OPEN;
2330 		renewed_caps(mdsc, session, 0);
2331 		wake = 1;
2332 		if (mdsc->stopping)
2333 			__close_session(mdsc, session);
2334 		break;
2335 
2336 	case CEPH_SESSION_RENEWCAPS:
2337 		if (session->s_renew_seq == seq)
2338 			renewed_caps(mdsc, session, 1);
2339 		break;
2340 
2341 	case CEPH_SESSION_CLOSE:
2342 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2343 			pr_info("mds%d reconnect denied\n", session->s_mds);
2344 		remove_session_caps(session);
2345 		wake = 1; /* for good measure */
2346 		wake_up_all(&mdsc->session_close_wq);
2347 		kick_requests(mdsc, mds);
2348 		break;
2349 
2350 	case CEPH_SESSION_STALE:
2351 		pr_info("mds%d caps went stale, renewing\n",
2352 			session->s_mds);
2353 		spin_lock(&session->s_gen_ttl_lock);
2354 		session->s_cap_gen++;
2355 		session->s_cap_ttl = jiffies - 1;
2356 		spin_unlock(&session->s_gen_ttl_lock);
2357 		send_renew_caps(mdsc, session);
2358 		break;
2359 
2360 	case CEPH_SESSION_RECALL_STATE:
2361 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2362 		break;
2363 
2364 	default:
2365 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2366 		WARN_ON(1);
2367 	}
2368 
2369 	mutex_unlock(&session->s_mutex);
2370 	if (wake) {
2371 		mutex_lock(&mdsc->mutex);
2372 		__wake_requests(mdsc, &session->s_waiting);
2373 		mutex_unlock(&mdsc->mutex);
2374 	}
2375 	return;
2376 
2377 bad:
2378 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2379 	       (int)msg->front.iov_len);
2380 	ceph_msg_dump(msg);
2381 	return;
2382 }
2383 
2384 
2385 /*
2386  * called under session->mutex.
2387  */
2388 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2389 				   struct ceph_mds_session *session)
2390 {
2391 	struct ceph_mds_request *req, *nreq;
2392 	int err;
2393 
2394 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2395 
2396 	mutex_lock(&mdsc->mutex);
2397 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2398 		err = __prepare_send_request(mdsc, req, session->s_mds);
2399 		if (!err) {
2400 			ceph_msg_get(req->r_request);
2401 			ceph_con_send(&session->s_con, req->r_request);
2402 		}
2403 	}
2404 	mutex_unlock(&mdsc->mutex);
2405 }
2406 
2407 /*
2408  * Encode information about a cap for a reconnect with the MDS.
2409  */
2410 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2411 			  void *arg)
2412 {
2413 	union {
2414 		struct ceph_mds_cap_reconnect v2;
2415 		struct ceph_mds_cap_reconnect_v1 v1;
2416 	} rec;
2417 	size_t reclen;
2418 	struct ceph_inode_info *ci;
2419 	struct ceph_reconnect_state *recon_state = arg;
2420 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2421 	char *path;
2422 	int pathlen, err;
2423 	u64 pathbase;
2424 	struct dentry *dentry;
2425 
2426 	ci = cap->ci;
2427 
2428 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2429 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2430 	     ceph_cap_string(cap->issued));
2431 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2432 	if (err)
2433 		return err;
2434 
2435 	dentry = d_find_alias(inode);
2436 	if (dentry) {
2437 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2438 		if (IS_ERR(path)) {
2439 			err = PTR_ERR(path);
2440 			goto out_dput;
2441 		}
2442 	} else {
2443 		path = NULL;
2444 		pathlen = 0;
2445 	}
2446 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2447 	if (err)
2448 		goto out_free;
2449 
2450 	spin_lock(&ci->i_ceph_lock);
2451 	cap->seq = 0;        /* reset cap seq */
2452 	cap->issue_seq = 0;  /* and issue_seq */
2453 
2454 	if (recon_state->flock) {
2455 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2456 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2457 		rec.v2.issued = cpu_to_le32(cap->issued);
2458 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2459 		rec.v2.pathbase = cpu_to_le64(pathbase);
2460 		rec.v2.flock_len = 0;
2461 		reclen = sizeof(rec.v2);
2462 	} else {
2463 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2464 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2465 		rec.v1.issued = cpu_to_le32(cap->issued);
2466 		rec.v1.size = cpu_to_le64(inode->i_size);
2467 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2468 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2469 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2470 		rec.v1.pathbase = cpu_to_le64(pathbase);
2471 		reclen = sizeof(rec.v1);
2472 	}
2473 	spin_unlock(&ci->i_ceph_lock);
2474 
2475 	if (recon_state->flock) {
2476 		int num_fcntl_locks, num_flock_locks;
2477 		struct ceph_pagelist_cursor trunc_point;
2478 
2479 		ceph_pagelist_set_cursor(pagelist, &trunc_point);
2480 		do {
2481 			lock_flocks();
2482 			ceph_count_locks(inode, &num_fcntl_locks,
2483 					 &num_flock_locks);
2484 			rec.v2.flock_len = (2*sizeof(u32) +
2485 					    (num_fcntl_locks+num_flock_locks) *
2486 					    sizeof(struct ceph_filelock));
2487 			unlock_flocks();
2488 
2489 			/* pre-alloc pagelist */
2490 			ceph_pagelist_truncate(pagelist, &trunc_point);
2491 			err = ceph_pagelist_append(pagelist, &rec, reclen);
2492 			if (!err)
2493 				err = ceph_pagelist_reserve(pagelist,
2494 							    rec.v2.flock_len);
2495 
2496 			/* encode locks */
2497 			if (!err) {
2498 				lock_flocks();
2499 				err = ceph_encode_locks(inode,
2500 							pagelist,
2501 							num_fcntl_locks,
2502 							num_flock_locks);
2503 				unlock_flocks();
2504 			}
2505 		} while (err == -ENOSPC);
2506 	} else {
2507 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2508 	}
2509 
2510 out_free:
2511 	kfree(path);
2512 out_dput:
2513 	dput(dentry);
2514 	return err;
2515 }
2516 
2517 
2518 /*
2519  * If an MDS fails and recovers, clients need to reconnect in order to
2520  * reestablish shared state.  This includes all caps issued through
2521  * this session _and_ the snap_realm hierarchy.  Because it's not
2522  * clear which snap realms the mds cares about, we send everything we
2523  * know about.. that ensures we'll then get any new info the
2524  * recovering MDS might have.
2525  *
2526  * This is a relatively heavyweight operation, but it's rare.
2527  *
2528  * called with mdsc->mutex held.
2529  */
2530 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2531 			       struct ceph_mds_session *session)
2532 {
2533 	struct ceph_msg *reply;
2534 	struct rb_node *p;
2535 	int mds = session->s_mds;
2536 	int err = -ENOMEM;
2537 	struct ceph_pagelist *pagelist;
2538 	struct ceph_reconnect_state recon_state;
2539 
2540 	pr_info("mds%d reconnect start\n", mds);
2541 
2542 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2543 	if (!pagelist)
2544 		goto fail_nopagelist;
2545 	ceph_pagelist_init(pagelist);
2546 
2547 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2548 	if (!reply)
2549 		goto fail_nomsg;
2550 
2551 	mutex_lock(&session->s_mutex);
2552 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2553 	session->s_seq = 0;
2554 
2555 	ceph_con_close(&session->s_con);
2556 	ceph_con_open(&session->s_con,
2557 		      CEPH_ENTITY_TYPE_MDS, mds,
2558 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2559 
2560 	/* replay unsafe requests */
2561 	replay_unsafe_requests(mdsc, session);
2562 
2563 	down_read(&mdsc->snap_rwsem);
2564 
2565 	dout("session %p state %s\n", session,
2566 	     session_state_name(session->s_state));
2567 
2568 	/* drop old cap expires; we're about to reestablish that state */
2569 	discard_cap_releases(mdsc, session);
2570 
2571 	/* traverse this session's caps */
2572 	err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2573 	if (err)
2574 		goto fail;
2575 
2576 	recon_state.pagelist = pagelist;
2577 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2578 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2579 	if (err < 0)
2580 		goto fail;
2581 
2582 	/*
2583 	 * snaprealms.  we provide mds with the ino, seq (version), and
2584 	 * parent for all of our realms.  If the mds has any newer info,
2585 	 * it will tell us.
2586 	 */
2587 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2588 		struct ceph_snap_realm *realm =
2589 			rb_entry(p, struct ceph_snap_realm, node);
2590 		struct ceph_mds_snaprealm_reconnect sr_rec;
2591 
2592 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2593 		     realm->ino, realm->seq, realm->parent_ino);
2594 		sr_rec.ino = cpu_to_le64(realm->ino);
2595 		sr_rec.seq = cpu_to_le64(realm->seq);
2596 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2597 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2598 		if (err)
2599 			goto fail;
2600 	}
2601 
2602 	reply->pagelist = pagelist;
2603 	if (recon_state.flock)
2604 		reply->hdr.version = cpu_to_le16(2);
2605 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2606 	reply->nr_pages = calc_pages_for(0, pagelist->length);
2607 	ceph_con_send(&session->s_con, reply);
2608 
2609 	mutex_unlock(&session->s_mutex);
2610 
2611 	mutex_lock(&mdsc->mutex);
2612 	__wake_requests(mdsc, &session->s_waiting);
2613 	mutex_unlock(&mdsc->mutex);
2614 
2615 	up_read(&mdsc->snap_rwsem);
2616 	return;
2617 
2618 fail:
2619 	ceph_msg_put(reply);
2620 	up_read(&mdsc->snap_rwsem);
2621 	mutex_unlock(&session->s_mutex);
2622 fail_nomsg:
2623 	ceph_pagelist_release(pagelist);
2624 	kfree(pagelist);
2625 fail_nopagelist:
2626 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2627 	return;
2628 }
2629 
2630 
2631 /*
2632  * compare old and new mdsmaps, kicking requests
2633  * and closing out old connections as necessary
2634  *
2635  * called under mdsc->mutex.
2636  */
2637 static void check_new_map(struct ceph_mds_client *mdsc,
2638 			  struct ceph_mdsmap *newmap,
2639 			  struct ceph_mdsmap *oldmap)
2640 {
2641 	int i;
2642 	int oldstate, newstate;
2643 	struct ceph_mds_session *s;
2644 
2645 	dout("check_new_map new %u old %u\n",
2646 	     newmap->m_epoch, oldmap->m_epoch);
2647 
2648 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2649 		if (mdsc->sessions[i] == NULL)
2650 			continue;
2651 		s = mdsc->sessions[i];
2652 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2653 		newstate = ceph_mdsmap_get_state(newmap, i);
2654 
2655 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2656 		     i, ceph_mds_state_name(oldstate),
2657 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2658 		     ceph_mds_state_name(newstate),
2659 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2660 		     session_state_name(s->s_state));
2661 
2662 		if (i >= newmap->m_max_mds ||
2663 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
2664 			   ceph_mdsmap_get_addr(newmap, i),
2665 			   sizeof(struct ceph_entity_addr))) {
2666 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2667 				/* the session never opened, just close it
2668 				 * out now */
2669 				__wake_requests(mdsc, &s->s_waiting);
2670 				__unregister_session(mdsc, s);
2671 			} else {
2672 				/* just close it */
2673 				mutex_unlock(&mdsc->mutex);
2674 				mutex_lock(&s->s_mutex);
2675 				mutex_lock(&mdsc->mutex);
2676 				ceph_con_close(&s->s_con);
2677 				mutex_unlock(&s->s_mutex);
2678 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2679 			}
2680 
2681 			/* kick any requests waiting on the recovering mds */
2682 			kick_requests(mdsc, i);
2683 		} else if (oldstate == newstate) {
2684 			continue;  /* nothing new with this mds */
2685 		}
2686 
2687 		/*
2688 		 * send reconnect?
2689 		 */
2690 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2691 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2692 			mutex_unlock(&mdsc->mutex);
2693 			send_mds_reconnect(mdsc, s);
2694 			mutex_lock(&mdsc->mutex);
2695 		}
2696 
2697 		/*
2698 		 * kick request on any mds that has gone active.
2699 		 */
2700 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2701 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2702 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2703 			    oldstate != CEPH_MDS_STATE_STARTING)
2704 				pr_info("mds%d recovery completed\n", s->s_mds);
2705 			kick_requests(mdsc, i);
2706 			ceph_kick_flushing_caps(mdsc, s);
2707 			wake_up_session_caps(s, 1);
2708 		}
2709 	}
2710 
2711 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2712 		s = mdsc->sessions[i];
2713 		if (!s)
2714 			continue;
2715 		if (!ceph_mdsmap_is_laggy(newmap, i))
2716 			continue;
2717 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2718 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2719 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2720 			dout(" connecting to export targets of laggy mds%d\n",
2721 			     i);
2722 			__open_export_target_sessions(mdsc, s);
2723 		}
2724 	}
2725 }
2726 
2727 
2728 
2729 /*
2730  * leases
2731  */
2732 
2733 /*
2734  * caller must hold session s_mutex, dentry->d_lock
2735  */
2736 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2737 {
2738 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2739 
2740 	ceph_put_mds_session(di->lease_session);
2741 	di->lease_session = NULL;
2742 }
2743 
2744 static void handle_lease(struct ceph_mds_client *mdsc,
2745 			 struct ceph_mds_session *session,
2746 			 struct ceph_msg *msg)
2747 {
2748 	struct super_block *sb = mdsc->fsc->sb;
2749 	struct inode *inode;
2750 	struct dentry *parent, *dentry;
2751 	struct ceph_dentry_info *di;
2752 	int mds = session->s_mds;
2753 	struct ceph_mds_lease *h = msg->front.iov_base;
2754 	u32 seq;
2755 	struct ceph_vino vino;
2756 	struct qstr dname;
2757 	int release = 0;
2758 
2759 	dout("handle_lease from mds%d\n", mds);
2760 
2761 	/* decode */
2762 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2763 		goto bad;
2764 	vino.ino = le64_to_cpu(h->ino);
2765 	vino.snap = CEPH_NOSNAP;
2766 	seq = le32_to_cpu(h->seq);
2767 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2768 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2769 	if (dname.len != get_unaligned_le32(h+1))
2770 		goto bad;
2771 
2772 	mutex_lock(&session->s_mutex);
2773 	session->s_seq++;
2774 
2775 	/* lookup inode */
2776 	inode = ceph_find_inode(sb, vino);
2777 	dout("handle_lease %s, ino %llx %p %.*s\n",
2778 	     ceph_lease_op_name(h->action), vino.ino, inode,
2779 	     dname.len, dname.name);
2780 	if (inode == NULL) {
2781 		dout("handle_lease no inode %llx\n", vino.ino);
2782 		goto release;
2783 	}
2784 
2785 	/* dentry */
2786 	parent = d_find_alias(inode);
2787 	if (!parent) {
2788 		dout("no parent dentry on inode %p\n", inode);
2789 		WARN_ON(1);
2790 		goto release;  /* hrm... */
2791 	}
2792 	dname.hash = full_name_hash(dname.name, dname.len);
2793 	dentry = d_lookup(parent, &dname);
2794 	dput(parent);
2795 	if (!dentry)
2796 		goto release;
2797 
2798 	spin_lock(&dentry->d_lock);
2799 	di = ceph_dentry(dentry);
2800 	switch (h->action) {
2801 	case CEPH_MDS_LEASE_REVOKE:
2802 		if (di->lease_session == session) {
2803 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2804 				h->seq = cpu_to_le32(di->lease_seq);
2805 			__ceph_mdsc_drop_dentry_lease(dentry);
2806 		}
2807 		release = 1;
2808 		break;
2809 
2810 	case CEPH_MDS_LEASE_RENEW:
2811 		if (di->lease_session == session &&
2812 		    di->lease_gen == session->s_cap_gen &&
2813 		    di->lease_renew_from &&
2814 		    di->lease_renew_after == 0) {
2815 			unsigned long duration =
2816 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2817 
2818 			di->lease_seq = seq;
2819 			dentry->d_time = di->lease_renew_from + duration;
2820 			di->lease_renew_after = di->lease_renew_from +
2821 				(duration >> 1);
2822 			di->lease_renew_from = 0;
2823 		}
2824 		break;
2825 	}
2826 	spin_unlock(&dentry->d_lock);
2827 	dput(dentry);
2828 
2829 	if (!release)
2830 		goto out;
2831 
2832 release:
2833 	/* let's just reuse the same message */
2834 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2835 	ceph_msg_get(msg);
2836 	ceph_con_send(&session->s_con, msg);
2837 
2838 out:
2839 	iput(inode);
2840 	mutex_unlock(&session->s_mutex);
2841 	return;
2842 
2843 bad:
2844 	pr_err("corrupt lease message\n");
2845 	ceph_msg_dump(msg);
2846 }
2847 
2848 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2849 			      struct inode *inode,
2850 			      struct dentry *dentry, char action,
2851 			      u32 seq)
2852 {
2853 	struct ceph_msg *msg;
2854 	struct ceph_mds_lease *lease;
2855 	int len = sizeof(*lease) + sizeof(u32);
2856 	int dnamelen = 0;
2857 
2858 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2859 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2860 	dnamelen = dentry->d_name.len;
2861 	len += dnamelen;
2862 
2863 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2864 	if (!msg)
2865 		return;
2866 	lease = msg->front.iov_base;
2867 	lease->action = action;
2868 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2869 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2870 	lease->seq = cpu_to_le32(seq);
2871 	put_unaligned_le32(dnamelen, lease + 1);
2872 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2873 
2874 	/*
2875 	 * if this is a preemptive lease RELEASE, no need to
2876 	 * flush request stream, since the actual request will
2877 	 * soon follow.
2878 	 */
2879 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2880 
2881 	ceph_con_send(&session->s_con, msg);
2882 }
2883 
2884 /*
2885  * Preemptively release a lease we expect to invalidate anyway.
2886  * Pass @inode always, @dentry is optional.
2887  */
2888 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2889 			     struct dentry *dentry)
2890 {
2891 	struct ceph_dentry_info *di;
2892 	struct ceph_mds_session *session;
2893 	u32 seq;
2894 
2895 	BUG_ON(inode == NULL);
2896 	BUG_ON(dentry == NULL);
2897 
2898 	/* is dentry lease valid? */
2899 	spin_lock(&dentry->d_lock);
2900 	di = ceph_dentry(dentry);
2901 	if (!di || !di->lease_session ||
2902 	    di->lease_session->s_mds < 0 ||
2903 	    di->lease_gen != di->lease_session->s_cap_gen ||
2904 	    !time_before(jiffies, dentry->d_time)) {
2905 		dout("lease_release inode %p dentry %p -- "
2906 		     "no lease\n",
2907 		     inode, dentry);
2908 		spin_unlock(&dentry->d_lock);
2909 		return;
2910 	}
2911 
2912 	/* we do have a lease on this dentry; note mds and seq */
2913 	session = ceph_get_mds_session(di->lease_session);
2914 	seq = di->lease_seq;
2915 	__ceph_mdsc_drop_dentry_lease(dentry);
2916 	spin_unlock(&dentry->d_lock);
2917 
2918 	dout("lease_release inode %p dentry %p to mds%d\n",
2919 	     inode, dentry, session->s_mds);
2920 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2921 				 CEPH_MDS_LEASE_RELEASE, seq);
2922 	ceph_put_mds_session(session);
2923 }
2924 
2925 /*
2926  * drop all leases (and dentry refs) in preparation for umount
2927  */
2928 static void drop_leases(struct ceph_mds_client *mdsc)
2929 {
2930 	int i;
2931 
2932 	dout("drop_leases\n");
2933 	mutex_lock(&mdsc->mutex);
2934 	for (i = 0; i < mdsc->max_sessions; i++) {
2935 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2936 		if (!s)
2937 			continue;
2938 		mutex_unlock(&mdsc->mutex);
2939 		mutex_lock(&s->s_mutex);
2940 		mutex_unlock(&s->s_mutex);
2941 		ceph_put_mds_session(s);
2942 		mutex_lock(&mdsc->mutex);
2943 	}
2944 	mutex_unlock(&mdsc->mutex);
2945 }
2946 
2947 
2948 
2949 /*
2950  * delayed work -- periodically trim expired leases, renew caps with mds
2951  */
2952 static void schedule_delayed(struct ceph_mds_client *mdsc)
2953 {
2954 	int delay = 5;
2955 	unsigned hz = round_jiffies_relative(HZ * delay);
2956 	schedule_delayed_work(&mdsc->delayed_work, hz);
2957 }
2958 
2959 static void delayed_work(struct work_struct *work)
2960 {
2961 	int i;
2962 	struct ceph_mds_client *mdsc =
2963 		container_of(work, struct ceph_mds_client, delayed_work.work);
2964 	int renew_interval;
2965 	int renew_caps;
2966 
2967 	dout("mdsc delayed_work\n");
2968 	ceph_check_delayed_caps(mdsc);
2969 
2970 	mutex_lock(&mdsc->mutex);
2971 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2972 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2973 				   mdsc->last_renew_caps);
2974 	if (renew_caps)
2975 		mdsc->last_renew_caps = jiffies;
2976 
2977 	for (i = 0; i < mdsc->max_sessions; i++) {
2978 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2979 		if (s == NULL)
2980 			continue;
2981 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2982 			dout("resending session close request for mds%d\n",
2983 			     s->s_mds);
2984 			request_close_session(mdsc, s);
2985 			ceph_put_mds_session(s);
2986 			continue;
2987 		}
2988 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2989 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2990 				s->s_state = CEPH_MDS_SESSION_HUNG;
2991 				pr_info("mds%d hung\n", s->s_mds);
2992 			}
2993 		}
2994 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2995 			/* this mds is failed or recovering, just wait */
2996 			ceph_put_mds_session(s);
2997 			continue;
2998 		}
2999 		mutex_unlock(&mdsc->mutex);
3000 
3001 		mutex_lock(&s->s_mutex);
3002 		if (renew_caps)
3003 			send_renew_caps(mdsc, s);
3004 		else
3005 			ceph_con_keepalive(&s->s_con);
3006 		ceph_add_cap_releases(mdsc, s);
3007 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3008 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3009 			ceph_send_cap_releases(mdsc, s);
3010 		mutex_unlock(&s->s_mutex);
3011 		ceph_put_mds_session(s);
3012 
3013 		mutex_lock(&mdsc->mutex);
3014 	}
3015 	mutex_unlock(&mdsc->mutex);
3016 
3017 	schedule_delayed(mdsc);
3018 }
3019 
3020 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3021 
3022 {
3023 	struct ceph_mds_client *mdsc;
3024 
3025 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3026 	if (!mdsc)
3027 		return -ENOMEM;
3028 	mdsc->fsc = fsc;
3029 	fsc->mdsc = mdsc;
3030 	mutex_init(&mdsc->mutex);
3031 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3032 	if (mdsc->mdsmap == NULL)
3033 		return -ENOMEM;
3034 
3035 	init_completion(&mdsc->safe_umount_waiters);
3036 	init_waitqueue_head(&mdsc->session_close_wq);
3037 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3038 	mdsc->sessions = NULL;
3039 	mdsc->max_sessions = 0;
3040 	mdsc->stopping = 0;
3041 	init_rwsem(&mdsc->snap_rwsem);
3042 	mdsc->snap_realms = RB_ROOT;
3043 	INIT_LIST_HEAD(&mdsc->snap_empty);
3044 	spin_lock_init(&mdsc->snap_empty_lock);
3045 	mdsc->last_tid = 0;
3046 	mdsc->request_tree = RB_ROOT;
3047 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3048 	mdsc->last_renew_caps = jiffies;
3049 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3050 	spin_lock_init(&mdsc->cap_delay_lock);
3051 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3052 	spin_lock_init(&mdsc->snap_flush_lock);
3053 	mdsc->cap_flush_seq = 0;
3054 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3055 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3056 	mdsc->num_cap_flushing = 0;
3057 	spin_lock_init(&mdsc->cap_dirty_lock);
3058 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3059 	spin_lock_init(&mdsc->dentry_lru_lock);
3060 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3061 
3062 	ceph_caps_init(mdsc);
3063 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3064 
3065 	return 0;
3066 }
3067 
3068 /*
3069  * Wait for safe replies on open mds requests.  If we time out, drop
3070  * all requests from the tree to avoid dangling dentry refs.
3071  */
3072 static void wait_requests(struct ceph_mds_client *mdsc)
3073 {
3074 	struct ceph_mds_request *req;
3075 	struct ceph_fs_client *fsc = mdsc->fsc;
3076 
3077 	mutex_lock(&mdsc->mutex);
3078 	if (__get_oldest_req(mdsc)) {
3079 		mutex_unlock(&mdsc->mutex);
3080 
3081 		dout("wait_requests waiting for requests\n");
3082 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3083 				    fsc->client->options->mount_timeout * HZ);
3084 
3085 		/* tear down remaining requests */
3086 		mutex_lock(&mdsc->mutex);
3087 		while ((req = __get_oldest_req(mdsc))) {
3088 			dout("wait_requests timed out on tid %llu\n",
3089 			     req->r_tid);
3090 			__unregister_request(mdsc, req);
3091 		}
3092 	}
3093 	mutex_unlock(&mdsc->mutex);
3094 	dout("wait_requests done\n");
3095 }
3096 
3097 /*
3098  * called before mount is ro, and before dentries are torn down.
3099  * (hmm, does this still race with new lookups?)
3100  */
3101 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3102 {
3103 	dout("pre_umount\n");
3104 	mdsc->stopping = 1;
3105 
3106 	drop_leases(mdsc);
3107 	ceph_flush_dirty_caps(mdsc);
3108 	wait_requests(mdsc);
3109 
3110 	/*
3111 	 * wait for reply handlers to drop their request refs and
3112 	 * their inode/dcache refs
3113 	 */
3114 	ceph_msgr_flush();
3115 }
3116 
3117 /*
3118  * wait for all write mds requests to flush.
3119  */
3120 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3121 {
3122 	struct ceph_mds_request *req = NULL, *nextreq;
3123 	struct rb_node *n;
3124 
3125 	mutex_lock(&mdsc->mutex);
3126 	dout("wait_unsafe_requests want %lld\n", want_tid);
3127 restart:
3128 	req = __get_oldest_req(mdsc);
3129 	while (req && req->r_tid <= want_tid) {
3130 		/* find next request */
3131 		n = rb_next(&req->r_node);
3132 		if (n)
3133 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3134 		else
3135 			nextreq = NULL;
3136 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3137 			/* write op */
3138 			ceph_mdsc_get_request(req);
3139 			if (nextreq)
3140 				ceph_mdsc_get_request(nextreq);
3141 			mutex_unlock(&mdsc->mutex);
3142 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3143 			     req->r_tid, want_tid);
3144 			wait_for_completion(&req->r_safe_completion);
3145 			mutex_lock(&mdsc->mutex);
3146 			ceph_mdsc_put_request(req);
3147 			if (!nextreq)
3148 				break;  /* next dne before, so we're done! */
3149 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3150 				/* next request was removed from tree */
3151 				ceph_mdsc_put_request(nextreq);
3152 				goto restart;
3153 			}
3154 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3155 		}
3156 		req = nextreq;
3157 	}
3158 	mutex_unlock(&mdsc->mutex);
3159 	dout("wait_unsafe_requests done\n");
3160 }
3161 
3162 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3163 {
3164 	u64 want_tid, want_flush;
3165 
3166 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3167 		return;
3168 
3169 	dout("sync\n");
3170 	mutex_lock(&mdsc->mutex);
3171 	want_tid = mdsc->last_tid;
3172 	want_flush = mdsc->cap_flush_seq;
3173 	mutex_unlock(&mdsc->mutex);
3174 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3175 
3176 	ceph_flush_dirty_caps(mdsc);
3177 
3178 	wait_unsafe_requests(mdsc, want_tid);
3179 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3180 }
3181 
3182 /*
3183  * true if all sessions are closed, or we force unmount
3184  */
3185 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3186 {
3187 	int i, n = 0;
3188 
3189 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3190 		return true;
3191 
3192 	mutex_lock(&mdsc->mutex);
3193 	for (i = 0; i < mdsc->max_sessions; i++)
3194 		if (mdsc->sessions[i])
3195 			n++;
3196 	mutex_unlock(&mdsc->mutex);
3197 	return n == 0;
3198 }
3199 
3200 /*
3201  * called after sb is ro.
3202  */
3203 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3204 {
3205 	struct ceph_mds_session *session;
3206 	int i;
3207 	struct ceph_fs_client *fsc = mdsc->fsc;
3208 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3209 
3210 	dout("close_sessions\n");
3211 
3212 	/* close sessions */
3213 	mutex_lock(&mdsc->mutex);
3214 	for (i = 0; i < mdsc->max_sessions; i++) {
3215 		session = __ceph_lookup_mds_session(mdsc, i);
3216 		if (!session)
3217 			continue;
3218 		mutex_unlock(&mdsc->mutex);
3219 		mutex_lock(&session->s_mutex);
3220 		__close_session(mdsc, session);
3221 		mutex_unlock(&session->s_mutex);
3222 		ceph_put_mds_session(session);
3223 		mutex_lock(&mdsc->mutex);
3224 	}
3225 	mutex_unlock(&mdsc->mutex);
3226 
3227 	dout("waiting for sessions to close\n");
3228 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3229 			   timeout);
3230 
3231 	/* tear down remaining sessions */
3232 	mutex_lock(&mdsc->mutex);
3233 	for (i = 0; i < mdsc->max_sessions; i++) {
3234 		if (mdsc->sessions[i]) {
3235 			session = get_session(mdsc->sessions[i]);
3236 			__unregister_session(mdsc, session);
3237 			mutex_unlock(&mdsc->mutex);
3238 			mutex_lock(&session->s_mutex);
3239 			remove_session_caps(session);
3240 			mutex_unlock(&session->s_mutex);
3241 			ceph_put_mds_session(session);
3242 			mutex_lock(&mdsc->mutex);
3243 		}
3244 	}
3245 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3246 	mutex_unlock(&mdsc->mutex);
3247 
3248 	ceph_cleanup_empty_realms(mdsc);
3249 
3250 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3251 
3252 	dout("stopped\n");
3253 }
3254 
3255 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3256 {
3257 	dout("stop\n");
3258 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3259 	if (mdsc->mdsmap)
3260 		ceph_mdsmap_destroy(mdsc->mdsmap);
3261 	kfree(mdsc->sessions);
3262 	ceph_caps_finalize(mdsc);
3263 }
3264 
3265 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3266 {
3267 	struct ceph_mds_client *mdsc = fsc->mdsc;
3268 
3269 	dout("mdsc_destroy %p\n", mdsc);
3270 	ceph_mdsc_stop(mdsc);
3271 
3272 	/* flush out any connection work with references to us */
3273 	ceph_msgr_flush();
3274 
3275 	fsc->mdsc = NULL;
3276 	kfree(mdsc);
3277 	dout("mdsc_destroy %p done\n", mdsc);
3278 }
3279 
3280 
3281 /*
3282  * handle mds map update.
3283  */
3284 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3285 {
3286 	u32 epoch;
3287 	u32 maplen;
3288 	void *p = msg->front.iov_base;
3289 	void *end = p + msg->front.iov_len;
3290 	struct ceph_mdsmap *newmap, *oldmap;
3291 	struct ceph_fsid fsid;
3292 	int err = -EINVAL;
3293 
3294 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3295 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3296 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3297 		return;
3298 	epoch = ceph_decode_32(&p);
3299 	maplen = ceph_decode_32(&p);
3300 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3301 
3302 	/* do we need it? */
3303 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3304 	mutex_lock(&mdsc->mutex);
3305 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3306 		dout("handle_map epoch %u <= our %u\n",
3307 		     epoch, mdsc->mdsmap->m_epoch);
3308 		mutex_unlock(&mdsc->mutex);
3309 		return;
3310 	}
3311 
3312 	newmap = ceph_mdsmap_decode(&p, end);
3313 	if (IS_ERR(newmap)) {
3314 		err = PTR_ERR(newmap);
3315 		goto bad_unlock;
3316 	}
3317 
3318 	/* swap into place */
3319 	if (mdsc->mdsmap) {
3320 		oldmap = mdsc->mdsmap;
3321 		mdsc->mdsmap = newmap;
3322 		check_new_map(mdsc, newmap, oldmap);
3323 		ceph_mdsmap_destroy(oldmap);
3324 	} else {
3325 		mdsc->mdsmap = newmap;  /* first mds map */
3326 	}
3327 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3328 
3329 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3330 
3331 	mutex_unlock(&mdsc->mutex);
3332 	schedule_delayed(mdsc);
3333 	return;
3334 
3335 bad_unlock:
3336 	mutex_unlock(&mdsc->mutex);
3337 bad:
3338 	pr_err("error decoding mdsmap %d\n", err);
3339 	return;
3340 }
3341 
3342 static struct ceph_connection *con_get(struct ceph_connection *con)
3343 {
3344 	struct ceph_mds_session *s = con->private;
3345 
3346 	if (get_session(s)) {
3347 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3348 		return con;
3349 	}
3350 	dout("mdsc con_get %p FAIL\n", s);
3351 	return NULL;
3352 }
3353 
3354 static void con_put(struct ceph_connection *con)
3355 {
3356 	struct ceph_mds_session *s = con->private;
3357 
3358 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3359 	ceph_put_mds_session(s);
3360 }
3361 
3362 /*
3363  * if the client is unresponsive for long enough, the mds will kill
3364  * the session entirely.
3365  */
3366 static void peer_reset(struct ceph_connection *con)
3367 {
3368 	struct ceph_mds_session *s = con->private;
3369 	struct ceph_mds_client *mdsc = s->s_mdsc;
3370 
3371 	pr_warning("mds%d closed our session\n", s->s_mds);
3372 	send_mds_reconnect(mdsc, s);
3373 }
3374 
3375 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3376 {
3377 	struct ceph_mds_session *s = con->private;
3378 	struct ceph_mds_client *mdsc = s->s_mdsc;
3379 	int type = le16_to_cpu(msg->hdr.type);
3380 
3381 	mutex_lock(&mdsc->mutex);
3382 	if (__verify_registered_session(mdsc, s) < 0) {
3383 		mutex_unlock(&mdsc->mutex);
3384 		goto out;
3385 	}
3386 	mutex_unlock(&mdsc->mutex);
3387 
3388 	switch (type) {
3389 	case CEPH_MSG_MDS_MAP:
3390 		ceph_mdsc_handle_map(mdsc, msg);
3391 		break;
3392 	case CEPH_MSG_CLIENT_SESSION:
3393 		handle_session(s, msg);
3394 		break;
3395 	case CEPH_MSG_CLIENT_REPLY:
3396 		handle_reply(s, msg);
3397 		break;
3398 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3399 		handle_forward(mdsc, s, msg);
3400 		break;
3401 	case CEPH_MSG_CLIENT_CAPS:
3402 		ceph_handle_caps(s, msg);
3403 		break;
3404 	case CEPH_MSG_CLIENT_SNAP:
3405 		ceph_handle_snap(mdsc, s, msg);
3406 		break;
3407 	case CEPH_MSG_CLIENT_LEASE:
3408 		handle_lease(mdsc, s, msg);
3409 		break;
3410 
3411 	default:
3412 		pr_err("received unknown message type %d %s\n", type,
3413 		       ceph_msg_type_name(type));
3414 	}
3415 out:
3416 	ceph_msg_put(msg);
3417 }
3418 
3419 /*
3420  * authentication
3421  */
3422 
3423 /*
3424  * Note: returned pointer is the address of a structure that's
3425  * managed separately.  Caller must *not* attempt to free it.
3426  */
3427 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3428 					int *proto, int force_new)
3429 {
3430 	struct ceph_mds_session *s = con->private;
3431 	struct ceph_mds_client *mdsc = s->s_mdsc;
3432 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3433 	struct ceph_auth_handshake *auth = &s->s_auth;
3434 
3435 	if (force_new && auth->authorizer) {
3436 		if (ac->ops && ac->ops->destroy_authorizer)
3437 			ac->ops->destroy_authorizer(ac, auth->authorizer);
3438 		auth->authorizer = NULL;
3439 	}
3440 	if (!auth->authorizer && ac->ops && ac->ops->create_authorizer) {
3441 		int ret = ac->ops->create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3442 							auth);
3443 		if (ret)
3444 			return ERR_PTR(ret);
3445 	}
3446 	*proto = ac->protocol;
3447 
3448 	return auth;
3449 }
3450 
3451 
3452 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3453 {
3454 	struct ceph_mds_session *s = con->private;
3455 	struct ceph_mds_client *mdsc = s->s_mdsc;
3456 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3457 
3458 	return ac->ops->verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3459 }
3460 
3461 static int invalidate_authorizer(struct ceph_connection *con)
3462 {
3463 	struct ceph_mds_session *s = con->private;
3464 	struct ceph_mds_client *mdsc = s->s_mdsc;
3465 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3466 
3467 	if (ac->ops->invalidate_authorizer)
3468 		ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3469 
3470 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3471 }
3472 
3473 static const struct ceph_connection_operations mds_con_ops = {
3474 	.get = con_get,
3475 	.put = con_put,
3476 	.dispatch = dispatch,
3477 	.get_authorizer = get_authorizer,
3478 	.verify_authorizer_reply = verify_authorizer_reply,
3479 	.invalidate_authorizer = invalidate_authorizer,
3480 	.peer_reset = peer_reset,
3481 };
3482 
3483 /* eof */
3484