1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/sched.h> 7 #include <linux/debugfs.h> 8 #include <linux/seq_file.h> 9 10 #include "super.h" 11 #include "mds_client.h" 12 13 #include <linux/ceph/ceph_features.h> 14 #include <linux/ceph/messenger.h> 15 #include <linux/ceph/decode.h> 16 #include <linux/ceph/pagelist.h> 17 #include <linux/ceph/auth.h> 18 #include <linux/ceph/debugfs.h> 19 20 /* 21 * A cluster of MDS (metadata server) daemons is responsible for 22 * managing the file system namespace (the directory hierarchy and 23 * inodes) and for coordinating shared access to storage. Metadata is 24 * partitioning hierarchically across a number of servers, and that 25 * partition varies over time as the cluster adjusts the distribution 26 * in order to balance load. 27 * 28 * The MDS client is primarily responsible to managing synchronous 29 * metadata requests for operations like open, unlink, and so forth. 30 * If there is a MDS failure, we find out about it when we (possibly 31 * request and) receive a new MDS map, and can resubmit affected 32 * requests. 33 * 34 * For the most part, though, we take advantage of a lossless 35 * communications channel to the MDS, and do not need to worry about 36 * timing out or resubmitting requests. 37 * 38 * We maintain a stateful "session" with each MDS we interact with. 39 * Within each session, we sent periodic heartbeat messages to ensure 40 * any capabilities or leases we have been issues remain valid. If 41 * the session times out and goes stale, our leases and capabilities 42 * are no longer valid. 43 */ 44 45 struct ceph_reconnect_state { 46 struct ceph_pagelist *pagelist; 47 bool flock; 48 }; 49 50 static void __wake_requests(struct ceph_mds_client *mdsc, 51 struct list_head *head); 52 53 static const struct ceph_connection_operations mds_con_ops; 54 55 56 /* 57 * mds reply parsing 58 */ 59 60 /* 61 * parse individual inode info 62 */ 63 static int parse_reply_info_in(void **p, void *end, 64 struct ceph_mds_reply_info_in *info, 65 int features) 66 { 67 int err = -EIO; 68 69 info->in = *p; 70 *p += sizeof(struct ceph_mds_reply_inode) + 71 sizeof(*info->in->fragtree.splits) * 72 le32_to_cpu(info->in->fragtree.nsplits); 73 74 ceph_decode_32_safe(p, end, info->symlink_len, bad); 75 ceph_decode_need(p, end, info->symlink_len, bad); 76 info->symlink = *p; 77 *p += info->symlink_len; 78 79 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 80 ceph_decode_copy_safe(p, end, &info->dir_layout, 81 sizeof(info->dir_layout), bad); 82 else 83 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 84 85 ceph_decode_32_safe(p, end, info->xattr_len, bad); 86 ceph_decode_need(p, end, info->xattr_len, bad); 87 info->xattr_data = *p; 88 *p += info->xattr_len; 89 return 0; 90 bad: 91 return err; 92 } 93 94 /* 95 * parse a normal reply, which may contain a (dir+)dentry and/or a 96 * target inode. 97 */ 98 static int parse_reply_info_trace(void **p, void *end, 99 struct ceph_mds_reply_info_parsed *info, 100 int features) 101 { 102 int err; 103 104 if (info->head->is_dentry) { 105 err = parse_reply_info_in(p, end, &info->diri, features); 106 if (err < 0) 107 goto out_bad; 108 109 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 110 goto bad; 111 info->dirfrag = *p; 112 *p += sizeof(*info->dirfrag) + 113 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 114 if (unlikely(*p > end)) 115 goto bad; 116 117 ceph_decode_32_safe(p, end, info->dname_len, bad); 118 ceph_decode_need(p, end, info->dname_len, bad); 119 info->dname = *p; 120 *p += info->dname_len; 121 info->dlease = *p; 122 *p += sizeof(*info->dlease); 123 } 124 125 if (info->head->is_target) { 126 err = parse_reply_info_in(p, end, &info->targeti, features); 127 if (err < 0) 128 goto out_bad; 129 } 130 131 if (unlikely(*p != end)) 132 goto bad; 133 return 0; 134 135 bad: 136 err = -EIO; 137 out_bad: 138 pr_err("problem parsing mds trace %d\n", err); 139 return err; 140 } 141 142 /* 143 * parse readdir results 144 */ 145 static int parse_reply_info_dir(void **p, void *end, 146 struct ceph_mds_reply_info_parsed *info, 147 int features) 148 { 149 u32 num, i = 0; 150 int err; 151 152 info->dir_dir = *p; 153 if (*p + sizeof(*info->dir_dir) > end) 154 goto bad; 155 *p += sizeof(*info->dir_dir) + 156 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 157 if (*p > end) 158 goto bad; 159 160 ceph_decode_need(p, end, sizeof(num) + 2, bad); 161 num = ceph_decode_32(p); 162 info->dir_end = ceph_decode_8(p); 163 info->dir_complete = ceph_decode_8(p); 164 if (num == 0) 165 goto done; 166 167 /* alloc large array */ 168 info->dir_nr = num; 169 info->dir_in = kcalloc(num, sizeof(*info->dir_in) + 170 sizeof(*info->dir_dname) + 171 sizeof(*info->dir_dname_len) + 172 sizeof(*info->dir_dlease), 173 GFP_NOFS); 174 if (info->dir_in == NULL) { 175 err = -ENOMEM; 176 goto out_bad; 177 } 178 info->dir_dname = (void *)(info->dir_in + num); 179 info->dir_dname_len = (void *)(info->dir_dname + num); 180 info->dir_dlease = (void *)(info->dir_dname_len + num); 181 182 while (num) { 183 /* dentry */ 184 ceph_decode_need(p, end, sizeof(u32)*2, bad); 185 info->dir_dname_len[i] = ceph_decode_32(p); 186 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 187 info->dir_dname[i] = *p; 188 *p += info->dir_dname_len[i]; 189 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 190 info->dir_dname[i]); 191 info->dir_dlease[i] = *p; 192 *p += sizeof(struct ceph_mds_reply_lease); 193 194 /* inode */ 195 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 196 if (err < 0) 197 goto out_bad; 198 i++; 199 num--; 200 } 201 202 done: 203 if (*p != end) 204 goto bad; 205 return 0; 206 207 bad: 208 err = -EIO; 209 out_bad: 210 pr_err("problem parsing dir contents %d\n", err); 211 return err; 212 } 213 214 /* 215 * parse fcntl F_GETLK results 216 */ 217 static int parse_reply_info_filelock(void **p, void *end, 218 struct ceph_mds_reply_info_parsed *info, 219 int features) 220 { 221 if (*p + sizeof(*info->filelock_reply) > end) 222 goto bad; 223 224 info->filelock_reply = *p; 225 *p += sizeof(*info->filelock_reply); 226 227 if (unlikely(*p != end)) 228 goto bad; 229 return 0; 230 231 bad: 232 return -EIO; 233 } 234 235 /* 236 * parse extra results 237 */ 238 static int parse_reply_info_extra(void **p, void *end, 239 struct ceph_mds_reply_info_parsed *info, 240 int features) 241 { 242 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 243 return parse_reply_info_filelock(p, end, info, features); 244 else 245 return parse_reply_info_dir(p, end, info, features); 246 } 247 248 /* 249 * parse entire mds reply 250 */ 251 static int parse_reply_info(struct ceph_msg *msg, 252 struct ceph_mds_reply_info_parsed *info, 253 int features) 254 { 255 void *p, *end; 256 u32 len; 257 int err; 258 259 info->head = msg->front.iov_base; 260 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 261 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 262 263 /* trace */ 264 ceph_decode_32_safe(&p, end, len, bad); 265 if (len > 0) { 266 ceph_decode_need(&p, end, len, bad); 267 err = parse_reply_info_trace(&p, p+len, info, features); 268 if (err < 0) 269 goto out_bad; 270 } 271 272 /* extra */ 273 ceph_decode_32_safe(&p, end, len, bad); 274 if (len > 0) { 275 ceph_decode_need(&p, end, len, bad); 276 err = parse_reply_info_extra(&p, p+len, info, features); 277 if (err < 0) 278 goto out_bad; 279 } 280 281 /* snap blob */ 282 ceph_decode_32_safe(&p, end, len, bad); 283 info->snapblob_len = len; 284 info->snapblob = p; 285 p += len; 286 287 if (p != end) 288 goto bad; 289 return 0; 290 291 bad: 292 err = -EIO; 293 out_bad: 294 pr_err("mds parse_reply err %d\n", err); 295 return err; 296 } 297 298 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 299 { 300 kfree(info->dir_in); 301 } 302 303 304 /* 305 * sessions 306 */ 307 static const char *session_state_name(int s) 308 { 309 switch (s) { 310 case CEPH_MDS_SESSION_NEW: return "new"; 311 case CEPH_MDS_SESSION_OPENING: return "opening"; 312 case CEPH_MDS_SESSION_OPEN: return "open"; 313 case CEPH_MDS_SESSION_HUNG: return "hung"; 314 case CEPH_MDS_SESSION_CLOSING: return "closing"; 315 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 316 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 317 default: return "???"; 318 } 319 } 320 321 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 322 { 323 if (atomic_inc_not_zero(&s->s_ref)) { 324 dout("mdsc get_session %p %d -> %d\n", s, 325 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 326 return s; 327 } else { 328 dout("mdsc get_session %p 0 -- FAIL", s); 329 return NULL; 330 } 331 } 332 333 void ceph_put_mds_session(struct ceph_mds_session *s) 334 { 335 dout("mdsc put_session %p %d -> %d\n", s, 336 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 337 if (atomic_dec_and_test(&s->s_ref)) { 338 if (s->s_auth.authorizer) 339 s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer( 340 s->s_mdsc->fsc->client->monc.auth, 341 s->s_auth.authorizer); 342 kfree(s); 343 } 344 } 345 346 /* 347 * called under mdsc->mutex 348 */ 349 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 350 int mds) 351 { 352 struct ceph_mds_session *session; 353 354 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 355 return NULL; 356 session = mdsc->sessions[mds]; 357 dout("lookup_mds_session %p %d\n", session, 358 atomic_read(&session->s_ref)); 359 get_session(session); 360 return session; 361 } 362 363 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 364 { 365 if (mds >= mdsc->max_sessions) 366 return false; 367 return mdsc->sessions[mds]; 368 } 369 370 static int __verify_registered_session(struct ceph_mds_client *mdsc, 371 struct ceph_mds_session *s) 372 { 373 if (s->s_mds >= mdsc->max_sessions || 374 mdsc->sessions[s->s_mds] != s) 375 return -ENOENT; 376 return 0; 377 } 378 379 /* 380 * create+register a new session for given mds. 381 * called under mdsc->mutex. 382 */ 383 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 384 int mds) 385 { 386 struct ceph_mds_session *s; 387 388 s = kzalloc(sizeof(*s), GFP_NOFS); 389 if (!s) 390 return ERR_PTR(-ENOMEM); 391 s->s_mdsc = mdsc; 392 s->s_mds = mds; 393 s->s_state = CEPH_MDS_SESSION_NEW; 394 s->s_ttl = 0; 395 s->s_seq = 0; 396 mutex_init(&s->s_mutex); 397 398 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 399 400 spin_lock_init(&s->s_gen_ttl_lock); 401 s->s_cap_gen = 0; 402 s->s_cap_ttl = jiffies - 1; 403 404 spin_lock_init(&s->s_cap_lock); 405 s->s_renew_requested = 0; 406 s->s_renew_seq = 0; 407 INIT_LIST_HEAD(&s->s_caps); 408 s->s_nr_caps = 0; 409 s->s_trim_caps = 0; 410 atomic_set(&s->s_ref, 1); 411 INIT_LIST_HEAD(&s->s_waiting); 412 INIT_LIST_HEAD(&s->s_unsafe); 413 s->s_num_cap_releases = 0; 414 s->s_cap_iterator = NULL; 415 INIT_LIST_HEAD(&s->s_cap_releases); 416 INIT_LIST_HEAD(&s->s_cap_releases_done); 417 INIT_LIST_HEAD(&s->s_cap_flushing); 418 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 419 420 dout("register_session mds%d\n", mds); 421 if (mds >= mdsc->max_sessions) { 422 int newmax = 1 << get_count_order(mds+1); 423 struct ceph_mds_session **sa; 424 425 dout("register_session realloc to %d\n", newmax); 426 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 427 if (sa == NULL) 428 goto fail_realloc; 429 if (mdsc->sessions) { 430 memcpy(sa, mdsc->sessions, 431 mdsc->max_sessions * sizeof(void *)); 432 kfree(mdsc->sessions); 433 } 434 mdsc->sessions = sa; 435 mdsc->max_sessions = newmax; 436 } 437 mdsc->sessions[mds] = s; 438 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 439 440 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 441 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 442 443 return s; 444 445 fail_realloc: 446 kfree(s); 447 return ERR_PTR(-ENOMEM); 448 } 449 450 /* 451 * called under mdsc->mutex 452 */ 453 static void __unregister_session(struct ceph_mds_client *mdsc, 454 struct ceph_mds_session *s) 455 { 456 dout("__unregister_session mds%d %p\n", s->s_mds, s); 457 BUG_ON(mdsc->sessions[s->s_mds] != s); 458 mdsc->sessions[s->s_mds] = NULL; 459 ceph_con_close(&s->s_con); 460 ceph_put_mds_session(s); 461 } 462 463 /* 464 * drop session refs in request. 465 * 466 * should be last request ref, or hold mdsc->mutex 467 */ 468 static void put_request_session(struct ceph_mds_request *req) 469 { 470 if (req->r_session) { 471 ceph_put_mds_session(req->r_session); 472 req->r_session = NULL; 473 } 474 } 475 476 void ceph_mdsc_release_request(struct kref *kref) 477 { 478 struct ceph_mds_request *req = container_of(kref, 479 struct ceph_mds_request, 480 r_kref); 481 if (req->r_request) 482 ceph_msg_put(req->r_request); 483 if (req->r_reply) { 484 ceph_msg_put(req->r_reply); 485 destroy_reply_info(&req->r_reply_info); 486 } 487 if (req->r_inode) { 488 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 489 iput(req->r_inode); 490 } 491 if (req->r_locked_dir) 492 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 493 if (req->r_target_inode) 494 iput(req->r_target_inode); 495 if (req->r_dentry) 496 dput(req->r_dentry); 497 if (req->r_old_dentry) { 498 /* 499 * track (and drop pins for) r_old_dentry_dir 500 * separately, since r_old_dentry's d_parent may have 501 * changed between the dir mutex being dropped and 502 * this request being freed. 503 */ 504 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 505 CEPH_CAP_PIN); 506 dput(req->r_old_dentry); 507 iput(req->r_old_dentry_dir); 508 } 509 kfree(req->r_path1); 510 kfree(req->r_path2); 511 put_request_session(req); 512 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 513 kfree(req); 514 } 515 516 /* 517 * lookup session, bump ref if found. 518 * 519 * called under mdsc->mutex. 520 */ 521 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 522 u64 tid) 523 { 524 struct ceph_mds_request *req; 525 struct rb_node *n = mdsc->request_tree.rb_node; 526 527 while (n) { 528 req = rb_entry(n, struct ceph_mds_request, r_node); 529 if (tid < req->r_tid) 530 n = n->rb_left; 531 else if (tid > req->r_tid) 532 n = n->rb_right; 533 else { 534 ceph_mdsc_get_request(req); 535 return req; 536 } 537 } 538 return NULL; 539 } 540 541 static void __insert_request(struct ceph_mds_client *mdsc, 542 struct ceph_mds_request *new) 543 { 544 struct rb_node **p = &mdsc->request_tree.rb_node; 545 struct rb_node *parent = NULL; 546 struct ceph_mds_request *req = NULL; 547 548 while (*p) { 549 parent = *p; 550 req = rb_entry(parent, struct ceph_mds_request, r_node); 551 if (new->r_tid < req->r_tid) 552 p = &(*p)->rb_left; 553 else if (new->r_tid > req->r_tid) 554 p = &(*p)->rb_right; 555 else 556 BUG(); 557 } 558 559 rb_link_node(&new->r_node, parent, p); 560 rb_insert_color(&new->r_node, &mdsc->request_tree); 561 } 562 563 /* 564 * Register an in-flight request, and assign a tid. Link to directory 565 * are modifying (if any). 566 * 567 * Called under mdsc->mutex. 568 */ 569 static void __register_request(struct ceph_mds_client *mdsc, 570 struct ceph_mds_request *req, 571 struct inode *dir) 572 { 573 req->r_tid = ++mdsc->last_tid; 574 if (req->r_num_caps) 575 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 576 req->r_num_caps); 577 dout("__register_request %p tid %lld\n", req, req->r_tid); 578 ceph_mdsc_get_request(req); 579 __insert_request(mdsc, req); 580 581 req->r_uid = current_fsuid(); 582 req->r_gid = current_fsgid(); 583 584 if (dir) { 585 struct ceph_inode_info *ci = ceph_inode(dir); 586 587 ihold(dir); 588 spin_lock(&ci->i_unsafe_lock); 589 req->r_unsafe_dir = dir; 590 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 591 spin_unlock(&ci->i_unsafe_lock); 592 } 593 } 594 595 static void __unregister_request(struct ceph_mds_client *mdsc, 596 struct ceph_mds_request *req) 597 { 598 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 599 rb_erase(&req->r_node, &mdsc->request_tree); 600 RB_CLEAR_NODE(&req->r_node); 601 602 if (req->r_unsafe_dir) { 603 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 604 605 spin_lock(&ci->i_unsafe_lock); 606 list_del_init(&req->r_unsafe_dir_item); 607 spin_unlock(&ci->i_unsafe_lock); 608 609 iput(req->r_unsafe_dir); 610 req->r_unsafe_dir = NULL; 611 } 612 613 ceph_mdsc_put_request(req); 614 } 615 616 /* 617 * Choose mds to send request to next. If there is a hint set in the 618 * request (e.g., due to a prior forward hint from the mds), use that. 619 * Otherwise, consult frag tree and/or caps to identify the 620 * appropriate mds. If all else fails, choose randomly. 621 * 622 * Called under mdsc->mutex. 623 */ 624 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 625 { 626 /* 627 * we don't need to worry about protecting the d_parent access 628 * here because we never renaming inside the snapped namespace 629 * except to resplice to another snapdir, and either the old or new 630 * result is a valid result. 631 */ 632 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP) 633 dentry = dentry->d_parent; 634 return dentry; 635 } 636 637 static int __choose_mds(struct ceph_mds_client *mdsc, 638 struct ceph_mds_request *req) 639 { 640 struct inode *inode; 641 struct ceph_inode_info *ci; 642 struct ceph_cap *cap; 643 int mode = req->r_direct_mode; 644 int mds = -1; 645 u32 hash = req->r_direct_hash; 646 bool is_hash = req->r_direct_is_hash; 647 648 /* 649 * is there a specific mds we should try? ignore hint if we have 650 * no session and the mds is not up (active or recovering). 651 */ 652 if (req->r_resend_mds >= 0 && 653 (__have_session(mdsc, req->r_resend_mds) || 654 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 655 dout("choose_mds using resend_mds mds%d\n", 656 req->r_resend_mds); 657 return req->r_resend_mds; 658 } 659 660 if (mode == USE_RANDOM_MDS) 661 goto random; 662 663 inode = NULL; 664 if (req->r_inode) { 665 inode = req->r_inode; 666 } else if (req->r_dentry) { 667 /* ignore race with rename; old or new d_parent is okay */ 668 struct dentry *parent = req->r_dentry->d_parent; 669 struct inode *dir = parent->d_inode; 670 671 if (dir->i_sb != mdsc->fsc->sb) { 672 /* not this fs! */ 673 inode = req->r_dentry->d_inode; 674 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 675 /* direct snapped/virtual snapdir requests 676 * based on parent dir inode */ 677 struct dentry *dn = get_nonsnap_parent(parent); 678 inode = dn->d_inode; 679 dout("__choose_mds using nonsnap parent %p\n", inode); 680 } else if (req->r_dentry->d_inode) { 681 /* dentry target */ 682 inode = req->r_dentry->d_inode; 683 } else { 684 /* dir + name */ 685 inode = dir; 686 hash = ceph_dentry_hash(dir, req->r_dentry); 687 is_hash = true; 688 } 689 } 690 691 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 692 (int)hash, mode); 693 if (!inode) 694 goto random; 695 ci = ceph_inode(inode); 696 697 if (is_hash && S_ISDIR(inode->i_mode)) { 698 struct ceph_inode_frag frag; 699 int found; 700 701 ceph_choose_frag(ci, hash, &frag, &found); 702 if (found) { 703 if (mode == USE_ANY_MDS && frag.ndist > 0) { 704 u8 r; 705 706 /* choose a random replica */ 707 get_random_bytes(&r, 1); 708 r %= frag.ndist; 709 mds = frag.dist[r]; 710 dout("choose_mds %p %llx.%llx " 711 "frag %u mds%d (%d/%d)\n", 712 inode, ceph_vinop(inode), 713 frag.frag, mds, 714 (int)r, frag.ndist); 715 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 716 CEPH_MDS_STATE_ACTIVE) 717 return mds; 718 } 719 720 /* since this file/dir wasn't known to be 721 * replicated, then we want to look for the 722 * authoritative mds. */ 723 mode = USE_AUTH_MDS; 724 if (frag.mds >= 0) { 725 /* choose auth mds */ 726 mds = frag.mds; 727 dout("choose_mds %p %llx.%llx " 728 "frag %u mds%d (auth)\n", 729 inode, ceph_vinop(inode), frag.frag, mds); 730 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 731 CEPH_MDS_STATE_ACTIVE) 732 return mds; 733 } 734 } 735 } 736 737 spin_lock(&ci->i_ceph_lock); 738 cap = NULL; 739 if (mode == USE_AUTH_MDS) 740 cap = ci->i_auth_cap; 741 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 742 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 743 if (!cap) { 744 spin_unlock(&ci->i_ceph_lock); 745 goto random; 746 } 747 mds = cap->session->s_mds; 748 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 749 inode, ceph_vinop(inode), mds, 750 cap == ci->i_auth_cap ? "auth " : "", cap); 751 spin_unlock(&ci->i_ceph_lock); 752 return mds; 753 754 random: 755 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 756 dout("choose_mds chose random mds%d\n", mds); 757 return mds; 758 } 759 760 761 /* 762 * session messages 763 */ 764 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 765 { 766 struct ceph_msg *msg; 767 struct ceph_mds_session_head *h; 768 769 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 770 false); 771 if (!msg) { 772 pr_err("create_session_msg ENOMEM creating msg\n"); 773 return NULL; 774 } 775 h = msg->front.iov_base; 776 h->op = cpu_to_le32(op); 777 h->seq = cpu_to_le64(seq); 778 return msg; 779 } 780 781 /* 782 * send session open request. 783 * 784 * called under mdsc->mutex 785 */ 786 static int __open_session(struct ceph_mds_client *mdsc, 787 struct ceph_mds_session *session) 788 { 789 struct ceph_msg *msg; 790 int mstate; 791 int mds = session->s_mds; 792 793 /* wait for mds to go active? */ 794 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 795 dout("open_session to mds%d (%s)\n", mds, 796 ceph_mds_state_name(mstate)); 797 session->s_state = CEPH_MDS_SESSION_OPENING; 798 session->s_renew_requested = jiffies; 799 800 /* send connect message */ 801 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq); 802 if (!msg) 803 return -ENOMEM; 804 ceph_con_send(&session->s_con, msg); 805 return 0; 806 } 807 808 /* 809 * open sessions for any export targets for the given mds 810 * 811 * called under mdsc->mutex 812 */ 813 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 814 struct ceph_mds_session *session) 815 { 816 struct ceph_mds_info *mi; 817 struct ceph_mds_session *ts; 818 int i, mds = session->s_mds; 819 int target; 820 821 if (mds >= mdsc->mdsmap->m_max_mds) 822 return; 823 mi = &mdsc->mdsmap->m_info[mds]; 824 dout("open_export_target_sessions for mds%d (%d targets)\n", 825 session->s_mds, mi->num_export_targets); 826 827 for (i = 0; i < mi->num_export_targets; i++) { 828 target = mi->export_targets[i]; 829 ts = __ceph_lookup_mds_session(mdsc, target); 830 if (!ts) { 831 ts = register_session(mdsc, target); 832 if (IS_ERR(ts)) 833 return; 834 } 835 if (session->s_state == CEPH_MDS_SESSION_NEW || 836 session->s_state == CEPH_MDS_SESSION_CLOSING) 837 __open_session(mdsc, session); 838 else 839 dout(" mds%d target mds%d %p is %s\n", session->s_mds, 840 i, ts, session_state_name(ts->s_state)); 841 ceph_put_mds_session(ts); 842 } 843 } 844 845 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 846 struct ceph_mds_session *session) 847 { 848 mutex_lock(&mdsc->mutex); 849 __open_export_target_sessions(mdsc, session); 850 mutex_unlock(&mdsc->mutex); 851 } 852 853 /* 854 * session caps 855 */ 856 857 /* 858 * Free preallocated cap messages assigned to this session 859 */ 860 static void cleanup_cap_releases(struct ceph_mds_session *session) 861 { 862 struct ceph_msg *msg; 863 864 spin_lock(&session->s_cap_lock); 865 while (!list_empty(&session->s_cap_releases)) { 866 msg = list_first_entry(&session->s_cap_releases, 867 struct ceph_msg, list_head); 868 list_del_init(&msg->list_head); 869 ceph_msg_put(msg); 870 } 871 while (!list_empty(&session->s_cap_releases_done)) { 872 msg = list_first_entry(&session->s_cap_releases_done, 873 struct ceph_msg, list_head); 874 list_del_init(&msg->list_head); 875 ceph_msg_put(msg); 876 } 877 spin_unlock(&session->s_cap_lock); 878 } 879 880 /* 881 * Helper to safely iterate over all caps associated with a session, with 882 * special care taken to handle a racing __ceph_remove_cap(). 883 * 884 * Caller must hold session s_mutex. 885 */ 886 static int iterate_session_caps(struct ceph_mds_session *session, 887 int (*cb)(struct inode *, struct ceph_cap *, 888 void *), void *arg) 889 { 890 struct list_head *p; 891 struct ceph_cap *cap; 892 struct inode *inode, *last_inode = NULL; 893 struct ceph_cap *old_cap = NULL; 894 int ret; 895 896 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 897 spin_lock(&session->s_cap_lock); 898 p = session->s_caps.next; 899 while (p != &session->s_caps) { 900 cap = list_entry(p, struct ceph_cap, session_caps); 901 inode = igrab(&cap->ci->vfs_inode); 902 if (!inode) { 903 p = p->next; 904 continue; 905 } 906 session->s_cap_iterator = cap; 907 spin_unlock(&session->s_cap_lock); 908 909 if (last_inode) { 910 iput(last_inode); 911 last_inode = NULL; 912 } 913 if (old_cap) { 914 ceph_put_cap(session->s_mdsc, old_cap); 915 old_cap = NULL; 916 } 917 918 ret = cb(inode, cap, arg); 919 last_inode = inode; 920 921 spin_lock(&session->s_cap_lock); 922 p = p->next; 923 if (cap->ci == NULL) { 924 dout("iterate_session_caps finishing cap %p removal\n", 925 cap); 926 BUG_ON(cap->session != session); 927 list_del_init(&cap->session_caps); 928 session->s_nr_caps--; 929 cap->session = NULL; 930 old_cap = cap; /* put_cap it w/o locks held */ 931 } 932 if (ret < 0) 933 goto out; 934 } 935 ret = 0; 936 out: 937 session->s_cap_iterator = NULL; 938 spin_unlock(&session->s_cap_lock); 939 940 if (last_inode) 941 iput(last_inode); 942 if (old_cap) 943 ceph_put_cap(session->s_mdsc, old_cap); 944 945 return ret; 946 } 947 948 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 949 void *arg) 950 { 951 struct ceph_inode_info *ci = ceph_inode(inode); 952 int drop = 0; 953 954 dout("removing cap %p, ci is %p, inode is %p\n", 955 cap, ci, &ci->vfs_inode); 956 spin_lock(&ci->i_ceph_lock); 957 __ceph_remove_cap(cap); 958 if (!__ceph_is_any_real_caps(ci)) { 959 struct ceph_mds_client *mdsc = 960 ceph_sb_to_client(inode->i_sb)->mdsc; 961 962 spin_lock(&mdsc->cap_dirty_lock); 963 if (!list_empty(&ci->i_dirty_item)) { 964 pr_info(" dropping dirty %s state for %p %lld\n", 965 ceph_cap_string(ci->i_dirty_caps), 966 inode, ceph_ino(inode)); 967 ci->i_dirty_caps = 0; 968 list_del_init(&ci->i_dirty_item); 969 drop = 1; 970 } 971 if (!list_empty(&ci->i_flushing_item)) { 972 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 973 ceph_cap_string(ci->i_flushing_caps), 974 inode, ceph_ino(inode)); 975 ci->i_flushing_caps = 0; 976 list_del_init(&ci->i_flushing_item); 977 mdsc->num_cap_flushing--; 978 drop = 1; 979 } 980 if (drop && ci->i_wrbuffer_ref) { 981 pr_info(" dropping dirty data for %p %lld\n", 982 inode, ceph_ino(inode)); 983 ci->i_wrbuffer_ref = 0; 984 ci->i_wrbuffer_ref_head = 0; 985 drop++; 986 } 987 spin_unlock(&mdsc->cap_dirty_lock); 988 } 989 spin_unlock(&ci->i_ceph_lock); 990 while (drop--) 991 iput(inode); 992 return 0; 993 } 994 995 /* 996 * caller must hold session s_mutex 997 */ 998 static void remove_session_caps(struct ceph_mds_session *session) 999 { 1000 dout("remove_session_caps on %p\n", session); 1001 iterate_session_caps(session, remove_session_caps_cb, NULL); 1002 BUG_ON(session->s_nr_caps > 0); 1003 BUG_ON(!list_empty(&session->s_cap_flushing)); 1004 cleanup_cap_releases(session); 1005 } 1006 1007 /* 1008 * wake up any threads waiting on this session's caps. if the cap is 1009 * old (didn't get renewed on the client reconnect), remove it now. 1010 * 1011 * caller must hold s_mutex. 1012 */ 1013 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1014 void *arg) 1015 { 1016 struct ceph_inode_info *ci = ceph_inode(inode); 1017 1018 wake_up_all(&ci->i_cap_wq); 1019 if (arg) { 1020 spin_lock(&ci->i_ceph_lock); 1021 ci->i_wanted_max_size = 0; 1022 ci->i_requested_max_size = 0; 1023 spin_unlock(&ci->i_ceph_lock); 1024 } 1025 return 0; 1026 } 1027 1028 static void wake_up_session_caps(struct ceph_mds_session *session, 1029 int reconnect) 1030 { 1031 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1032 iterate_session_caps(session, wake_up_session_cb, 1033 (void *)(unsigned long)reconnect); 1034 } 1035 1036 /* 1037 * Send periodic message to MDS renewing all currently held caps. The 1038 * ack will reset the expiration for all caps from this session. 1039 * 1040 * caller holds s_mutex 1041 */ 1042 static int send_renew_caps(struct ceph_mds_client *mdsc, 1043 struct ceph_mds_session *session) 1044 { 1045 struct ceph_msg *msg; 1046 int state; 1047 1048 if (time_after_eq(jiffies, session->s_cap_ttl) && 1049 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1050 pr_info("mds%d caps stale\n", session->s_mds); 1051 session->s_renew_requested = jiffies; 1052 1053 /* do not try to renew caps until a recovering mds has reconnected 1054 * with its clients. */ 1055 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1056 if (state < CEPH_MDS_STATE_RECONNECT) { 1057 dout("send_renew_caps ignoring mds%d (%s)\n", 1058 session->s_mds, ceph_mds_state_name(state)); 1059 return 0; 1060 } 1061 1062 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1063 ceph_mds_state_name(state)); 1064 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1065 ++session->s_renew_seq); 1066 if (!msg) 1067 return -ENOMEM; 1068 ceph_con_send(&session->s_con, msg); 1069 return 0; 1070 } 1071 1072 /* 1073 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1074 * 1075 * Called under session->s_mutex 1076 */ 1077 static void renewed_caps(struct ceph_mds_client *mdsc, 1078 struct ceph_mds_session *session, int is_renew) 1079 { 1080 int was_stale; 1081 int wake = 0; 1082 1083 spin_lock(&session->s_cap_lock); 1084 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1085 1086 session->s_cap_ttl = session->s_renew_requested + 1087 mdsc->mdsmap->m_session_timeout*HZ; 1088 1089 if (was_stale) { 1090 if (time_before(jiffies, session->s_cap_ttl)) { 1091 pr_info("mds%d caps renewed\n", session->s_mds); 1092 wake = 1; 1093 } else { 1094 pr_info("mds%d caps still stale\n", session->s_mds); 1095 } 1096 } 1097 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1098 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1099 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1100 spin_unlock(&session->s_cap_lock); 1101 1102 if (wake) 1103 wake_up_session_caps(session, 0); 1104 } 1105 1106 /* 1107 * send a session close request 1108 */ 1109 static int request_close_session(struct ceph_mds_client *mdsc, 1110 struct ceph_mds_session *session) 1111 { 1112 struct ceph_msg *msg; 1113 1114 dout("request_close_session mds%d state %s seq %lld\n", 1115 session->s_mds, session_state_name(session->s_state), 1116 session->s_seq); 1117 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1118 if (!msg) 1119 return -ENOMEM; 1120 ceph_con_send(&session->s_con, msg); 1121 return 0; 1122 } 1123 1124 /* 1125 * Called with s_mutex held. 1126 */ 1127 static int __close_session(struct ceph_mds_client *mdsc, 1128 struct ceph_mds_session *session) 1129 { 1130 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1131 return 0; 1132 session->s_state = CEPH_MDS_SESSION_CLOSING; 1133 return request_close_session(mdsc, session); 1134 } 1135 1136 /* 1137 * Trim old(er) caps. 1138 * 1139 * Because we can't cache an inode without one or more caps, we do 1140 * this indirectly: if a cap is unused, we prune its aliases, at which 1141 * point the inode will hopefully get dropped to. 1142 * 1143 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1144 * memory pressure from the MDS, though, so it needn't be perfect. 1145 */ 1146 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1147 { 1148 struct ceph_mds_session *session = arg; 1149 struct ceph_inode_info *ci = ceph_inode(inode); 1150 int used, oissued, mine; 1151 1152 if (session->s_trim_caps <= 0) 1153 return -1; 1154 1155 spin_lock(&ci->i_ceph_lock); 1156 mine = cap->issued | cap->implemented; 1157 used = __ceph_caps_used(ci); 1158 oissued = __ceph_caps_issued_other(ci, cap); 1159 1160 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n", 1161 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1162 ceph_cap_string(used)); 1163 if (ci->i_dirty_caps) 1164 goto out; /* dirty caps */ 1165 if ((used & ~oissued) & mine) 1166 goto out; /* we need these caps */ 1167 1168 session->s_trim_caps--; 1169 if (oissued) { 1170 /* we aren't the only cap.. just remove us */ 1171 __ceph_remove_cap(cap); 1172 } else { 1173 /* try to drop referring dentries */ 1174 spin_unlock(&ci->i_ceph_lock); 1175 d_prune_aliases(inode); 1176 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1177 inode, cap, atomic_read(&inode->i_count)); 1178 return 0; 1179 } 1180 1181 out: 1182 spin_unlock(&ci->i_ceph_lock); 1183 return 0; 1184 } 1185 1186 /* 1187 * Trim session cap count down to some max number. 1188 */ 1189 static int trim_caps(struct ceph_mds_client *mdsc, 1190 struct ceph_mds_session *session, 1191 int max_caps) 1192 { 1193 int trim_caps = session->s_nr_caps - max_caps; 1194 1195 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1196 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1197 if (trim_caps > 0) { 1198 session->s_trim_caps = trim_caps; 1199 iterate_session_caps(session, trim_caps_cb, session); 1200 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1201 session->s_mds, session->s_nr_caps, max_caps, 1202 trim_caps - session->s_trim_caps); 1203 session->s_trim_caps = 0; 1204 } 1205 return 0; 1206 } 1207 1208 /* 1209 * Allocate cap_release messages. If there is a partially full message 1210 * in the queue, try to allocate enough to cover it's remainder, so that 1211 * we can send it immediately. 1212 * 1213 * Called under s_mutex. 1214 */ 1215 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1216 struct ceph_mds_session *session) 1217 { 1218 struct ceph_msg *msg, *partial = NULL; 1219 struct ceph_mds_cap_release *head; 1220 int err = -ENOMEM; 1221 int extra = mdsc->fsc->mount_options->cap_release_safety; 1222 int num; 1223 1224 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1225 extra); 1226 1227 spin_lock(&session->s_cap_lock); 1228 1229 if (!list_empty(&session->s_cap_releases)) { 1230 msg = list_first_entry(&session->s_cap_releases, 1231 struct ceph_msg, 1232 list_head); 1233 head = msg->front.iov_base; 1234 num = le32_to_cpu(head->num); 1235 if (num) { 1236 dout(" partial %p with (%d/%d)\n", msg, num, 1237 (int)CEPH_CAPS_PER_RELEASE); 1238 extra += CEPH_CAPS_PER_RELEASE - num; 1239 partial = msg; 1240 } 1241 } 1242 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1243 spin_unlock(&session->s_cap_lock); 1244 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1245 GFP_NOFS, false); 1246 if (!msg) 1247 goto out_unlocked; 1248 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1249 (int)msg->front.iov_len); 1250 head = msg->front.iov_base; 1251 head->num = cpu_to_le32(0); 1252 msg->front.iov_len = sizeof(*head); 1253 spin_lock(&session->s_cap_lock); 1254 list_add(&msg->list_head, &session->s_cap_releases); 1255 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1256 } 1257 1258 if (partial) { 1259 head = partial->front.iov_base; 1260 num = le32_to_cpu(head->num); 1261 dout(" queueing partial %p with %d/%d\n", partial, num, 1262 (int)CEPH_CAPS_PER_RELEASE); 1263 list_move_tail(&partial->list_head, 1264 &session->s_cap_releases_done); 1265 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1266 } 1267 err = 0; 1268 spin_unlock(&session->s_cap_lock); 1269 out_unlocked: 1270 return err; 1271 } 1272 1273 /* 1274 * flush all dirty inode data to disk. 1275 * 1276 * returns true if we've flushed through want_flush_seq 1277 */ 1278 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1279 { 1280 int mds, ret = 1; 1281 1282 dout("check_cap_flush want %lld\n", want_flush_seq); 1283 mutex_lock(&mdsc->mutex); 1284 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1285 struct ceph_mds_session *session = mdsc->sessions[mds]; 1286 1287 if (!session) 1288 continue; 1289 get_session(session); 1290 mutex_unlock(&mdsc->mutex); 1291 1292 mutex_lock(&session->s_mutex); 1293 if (!list_empty(&session->s_cap_flushing)) { 1294 struct ceph_inode_info *ci = 1295 list_entry(session->s_cap_flushing.next, 1296 struct ceph_inode_info, 1297 i_flushing_item); 1298 struct inode *inode = &ci->vfs_inode; 1299 1300 spin_lock(&ci->i_ceph_lock); 1301 if (ci->i_cap_flush_seq <= want_flush_seq) { 1302 dout("check_cap_flush still flushing %p " 1303 "seq %lld <= %lld to mds%d\n", inode, 1304 ci->i_cap_flush_seq, want_flush_seq, 1305 session->s_mds); 1306 ret = 0; 1307 } 1308 spin_unlock(&ci->i_ceph_lock); 1309 } 1310 mutex_unlock(&session->s_mutex); 1311 ceph_put_mds_session(session); 1312 1313 if (!ret) 1314 return ret; 1315 mutex_lock(&mdsc->mutex); 1316 } 1317 1318 mutex_unlock(&mdsc->mutex); 1319 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1320 return ret; 1321 } 1322 1323 /* 1324 * called under s_mutex 1325 */ 1326 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1327 struct ceph_mds_session *session) 1328 { 1329 struct ceph_msg *msg; 1330 1331 dout("send_cap_releases mds%d\n", session->s_mds); 1332 spin_lock(&session->s_cap_lock); 1333 while (!list_empty(&session->s_cap_releases_done)) { 1334 msg = list_first_entry(&session->s_cap_releases_done, 1335 struct ceph_msg, list_head); 1336 list_del_init(&msg->list_head); 1337 spin_unlock(&session->s_cap_lock); 1338 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1339 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1340 ceph_con_send(&session->s_con, msg); 1341 spin_lock(&session->s_cap_lock); 1342 } 1343 spin_unlock(&session->s_cap_lock); 1344 } 1345 1346 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1347 struct ceph_mds_session *session) 1348 { 1349 struct ceph_msg *msg; 1350 struct ceph_mds_cap_release *head; 1351 unsigned num; 1352 1353 dout("discard_cap_releases mds%d\n", session->s_mds); 1354 spin_lock(&session->s_cap_lock); 1355 1356 /* zero out the in-progress message */ 1357 msg = list_first_entry(&session->s_cap_releases, 1358 struct ceph_msg, list_head); 1359 head = msg->front.iov_base; 1360 num = le32_to_cpu(head->num); 1361 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num); 1362 head->num = cpu_to_le32(0); 1363 session->s_num_cap_releases += num; 1364 1365 /* requeue completed messages */ 1366 while (!list_empty(&session->s_cap_releases_done)) { 1367 msg = list_first_entry(&session->s_cap_releases_done, 1368 struct ceph_msg, list_head); 1369 list_del_init(&msg->list_head); 1370 1371 head = msg->front.iov_base; 1372 num = le32_to_cpu(head->num); 1373 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1374 num); 1375 session->s_num_cap_releases += num; 1376 head->num = cpu_to_le32(0); 1377 msg->front.iov_len = sizeof(*head); 1378 list_add(&msg->list_head, &session->s_cap_releases); 1379 } 1380 1381 spin_unlock(&session->s_cap_lock); 1382 } 1383 1384 /* 1385 * requests 1386 */ 1387 1388 /* 1389 * Create an mds request. 1390 */ 1391 struct ceph_mds_request * 1392 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1393 { 1394 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1395 1396 if (!req) 1397 return ERR_PTR(-ENOMEM); 1398 1399 mutex_init(&req->r_fill_mutex); 1400 req->r_mdsc = mdsc; 1401 req->r_started = jiffies; 1402 req->r_resend_mds = -1; 1403 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1404 req->r_fmode = -1; 1405 kref_init(&req->r_kref); 1406 INIT_LIST_HEAD(&req->r_wait); 1407 init_completion(&req->r_completion); 1408 init_completion(&req->r_safe_completion); 1409 INIT_LIST_HEAD(&req->r_unsafe_item); 1410 1411 req->r_op = op; 1412 req->r_direct_mode = mode; 1413 return req; 1414 } 1415 1416 /* 1417 * return oldest (lowest) request, tid in request tree, 0 if none. 1418 * 1419 * called under mdsc->mutex. 1420 */ 1421 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1422 { 1423 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1424 return NULL; 1425 return rb_entry(rb_first(&mdsc->request_tree), 1426 struct ceph_mds_request, r_node); 1427 } 1428 1429 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1430 { 1431 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1432 1433 if (req) 1434 return req->r_tid; 1435 return 0; 1436 } 1437 1438 /* 1439 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1440 * on build_path_from_dentry in fs/cifs/dir.c. 1441 * 1442 * If @stop_on_nosnap, generate path relative to the first non-snapped 1443 * inode. 1444 * 1445 * Encode hidden .snap dirs as a double /, i.e. 1446 * foo/.snap/bar -> foo//bar 1447 */ 1448 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1449 int stop_on_nosnap) 1450 { 1451 struct dentry *temp; 1452 char *path; 1453 int len, pos; 1454 unsigned seq; 1455 1456 if (dentry == NULL) 1457 return ERR_PTR(-EINVAL); 1458 1459 retry: 1460 len = 0; 1461 seq = read_seqbegin(&rename_lock); 1462 rcu_read_lock(); 1463 for (temp = dentry; !IS_ROOT(temp);) { 1464 struct inode *inode = temp->d_inode; 1465 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1466 len++; /* slash only */ 1467 else if (stop_on_nosnap && inode && 1468 ceph_snap(inode) == CEPH_NOSNAP) 1469 break; 1470 else 1471 len += 1 + temp->d_name.len; 1472 temp = temp->d_parent; 1473 } 1474 rcu_read_unlock(); 1475 if (len) 1476 len--; /* no leading '/' */ 1477 1478 path = kmalloc(len+1, GFP_NOFS); 1479 if (path == NULL) 1480 return ERR_PTR(-ENOMEM); 1481 pos = len; 1482 path[pos] = 0; /* trailing null */ 1483 rcu_read_lock(); 1484 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1485 struct inode *inode; 1486 1487 spin_lock(&temp->d_lock); 1488 inode = temp->d_inode; 1489 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1490 dout("build_path path+%d: %p SNAPDIR\n", 1491 pos, temp); 1492 } else if (stop_on_nosnap && inode && 1493 ceph_snap(inode) == CEPH_NOSNAP) { 1494 spin_unlock(&temp->d_lock); 1495 break; 1496 } else { 1497 pos -= temp->d_name.len; 1498 if (pos < 0) { 1499 spin_unlock(&temp->d_lock); 1500 break; 1501 } 1502 strncpy(path + pos, temp->d_name.name, 1503 temp->d_name.len); 1504 } 1505 spin_unlock(&temp->d_lock); 1506 if (pos) 1507 path[--pos] = '/'; 1508 temp = temp->d_parent; 1509 } 1510 rcu_read_unlock(); 1511 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1512 pr_err("build_path did not end path lookup where " 1513 "expected, namelen is %d, pos is %d\n", len, pos); 1514 /* presumably this is only possible if racing with a 1515 rename of one of the parent directories (we can not 1516 lock the dentries above us to prevent this, but 1517 retrying should be harmless) */ 1518 kfree(path); 1519 goto retry; 1520 } 1521 1522 *base = ceph_ino(temp->d_inode); 1523 *plen = len; 1524 dout("build_path on %p %d built %llx '%.*s'\n", 1525 dentry, dentry->d_count, *base, len, path); 1526 return path; 1527 } 1528 1529 static int build_dentry_path(struct dentry *dentry, 1530 const char **ppath, int *ppathlen, u64 *pino, 1531 int *pfreepath) 1532 { 1533 char *path; 1534 1535 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1536 *pino = ceph_ino(dentry->d_parent->d_inode); 1537 *ppath = dentry->d_name.name; 1538 *ppathlen = dentry->d_name.len; 1539 return 0; 1540 } 1541 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1542 if (IS_ERR(path)) 1543 return PTR_ERR(path); 1544 *ppath = path; 1545 *pfreepath = 1; 1546 return 0; 1547 } 1548 1549 static int build_inode_path(struct inode *inode, 1550 const char **ppath, int *ppathlen, u64 *pino, 1551 int *pfreepath) 1552 { 1553 struct dentry *dentry; 1554 char *path; 1555 1556 if (ceph_snap(inode) == CEPH_NOSNAP) { 1557 *pino = ceph_ino(inode); 1558 *ppathlen = 0; 1559 return 0; 1560 } 1561 dentry = d_find_alias(inode); 1562 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1563 dput(dentry); 1564 if (IS_ERR(path)) 1565 return PTR_ERR(path); 1566 *ppath = path; 1567 *pfreepath = 1; 1568 return 0; 1569 } 1570 1571 /* 1572 * request arguments may be specified via an inode *, a dentry *, or 1573 * an explicit ino+path. 1574 */ 1575 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1576 const char *rpath, u64 rino, 1577 const char **ppath, int *pathlen, 1578 u64 *ino, int *freepath) 1579 { 1580 int r = 0; 1581 1582 if (rinode) { 1583 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1584 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1585 ceph_snap(rinode)); 1586 } else if (rdentry) { 1587 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1588 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1589 *ppath); 1590 } else if (rpath || rino) { 1591 *ino = rino; 1592 *ppath = rpath; 1593 *pathlen = strlen(rpath); 1594 dout(" path %.*s\n", *pathlen, rpath); 1595 } 1596 1597 return r; 1598 } 1599 1600 /* 1601 * called under mdsc->mutex 1602 */ 1603 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1604 struct ceph_mds_request *req, 1605 int mds) 1606 { 1607 struct ceph_msg *msg; 1608 struct ceph_mds_request_head *head; 1609 const char *path1 = NULL; 1610 const char *path2 = NULL; 1611 u64 ino1 = 0, ino2 = 0; 1612 int pathlen1 = 0, pathlen2 = 0; 1613 int freepath1 = 0, freepath2 = 0; 1614 int len; 1615 u16 releases; 1616 void *p, *end; 1617 int ret; 1618 1619 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1620 req->r_path1, req->r_ino1.ino, 1621 &path1, &pathlen1, &ino1, &freepath1); 1622 if (ret < 0) { 1623 msg = ERR_PTR(ret); 1624 goto out; 1625 } 1626 1627 ret = set_request_path_attr(NULL, req->r_old_dentry, 1628 req->r_path2, req->r_ino2.ino, 1629 &path2, &pathlen2, &ino2, &freepath2); 1630 if (ret < 0) { 1631 msg = ERR_PTR(ret); 1632 goto out_free1; 1633 } 1634 1635 len = sizeof(*head) + 1636 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)); 1637 1638 /* calculate (max) length for cap releases */ 1639 len += sizeof(struct ceph_mds_request_release) * 1640 (!!req->r_inode_drop + !!req->r_dentry_drop + 1641 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1642 if (req->r_dentry_drop) 1643 len += req->r_dentry->d_name.len; 1644 if (req->r_old_dentry_drop) 1645 len += req->r_old_dentry->d_name.len; 1646 1647 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1648 if (!msg) { 1649 msg = ERR_PTR(-ENOMEM); 1650 goto out_free2; 1651 } 1652 1653 msg->hdr.tid = cpu_to_le64(req->r_tid); 1654 1655 head = msg->front.iov_base; 1656 p = msg->front.iov_base + sizeof(*head); 1657 end = msg->front.iov_base + msg->front.iov_len; 1658 1659 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1660 head->op = cpu_to_le32(req->r_op); 1661 head->caller_uid = cpu_to_le32(req->r_uid); 1662 head->caller_gid = cpu_to_le32(req->r_gid); 1663 head->args = req->r_args; 1664 1665 ceph_encode_filepath(&p, end, ino1, path1); 1666 ceph_encode_filepath(&p, end, ino2, path2); 1667 1668 /* make note of release offset, in case we need to replay */ 1669 req->r_request_release_offset = p - msg->front.iov_base; 1670 1671 /* cap releases */ 1672 releases = 0; 1673 if (req->r_inode_drop) 1674 releases += ceph_encode_inode_release(&p, 1675 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1676 mds, req->r_inode_drop, req->r_inode_unless, 0); 1677 if (req->r_dentry_drop) 1678 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1679 mds, req->r_dentry_drop, req->r_dentry_unless); 1680 if (req->r_old_dentry_drop) 1681 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1682 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1683 if (req->r_old_inode_drop) 1684 releases += ceph_encode_inode_release(&p, 1685 req->r_old_dentry->d_inode, 1686 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1687 head->num_releases = cpu_to_le16(releases); 1688 1689 BUG_ON(p > end); 1690 msg->front.iov_len = p - msg->front.iov_base; 1691 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1692 1693 msg->pages = req->r_pages; 1694 msg->nr_pages = req->r_num_pages; 1695 msg->hdr.data_len = cpu_to_le32(req->r_data_len); 1696 msg->hdr.data_off = cpu_to_le16(0); 1697 1698 out_free2: 1699 if (freepath2) 1700 kfree((char *)path2); 1701 out_free1: 1702 if (freepath1) 1703 kfree((char *)path1); 1704 out: 1705 return msg; 1706 } 1707 1708 /* 1709 * called under mdsc->mutex if error, under no mutex if 1710 * success. 1711 */ 1712 static void complete_request(struct ceph_mds_client *mdsc, 1713 struct ceph_mds_request *req) 1714 { 1715 if (req->r_callback) 1716 req->r_callback(mdsc, req); 1717 else 1718 complete_all(&req->r_completion); 1719 } 1720 1721 /* 1722 * called under mdsc->mutex 1723 */ 1724 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1725 struct ceph_mds_request *req, 1726 int mds) 1727 { 1728 struct ceph_mds_request_head *rhead; 1729 struct ceph_msg *msg; 1730 int flags = 0; 1731 1732 req->r_attempts++; 1733 if (req->r_inode) { 1734 struct ceph_cap *cap = 1735 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 1736 1737 if (cap) 1738 req->r_sent_on_mseq = cap->mseq; 1739 else 1740 req->r_sent_on_mseq = -1; 1741 } 1742 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1743 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1744 1745 if (req->r_got_unsafe) { 1746 /* 1747 * Replay. Do not regenerate message (and rebuild 1748 * paths, etc.); just use the original message. 1749 * Rebuilding paths will break for renames because 1750 * d_move mangles the src name. 1751 */ 1752 msg = req->r_request; 1753 rhead = msg->front.iov_base; 1754 1755 flags = le32_to_cpu(rhead->flags); 1756 flags |= CEPH_MDS_FLAG_REPLAY; 1757 rhead->flags = cpu_to_le32(flags); 1758 1759 if (req->r_target_inode) 1760 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 1761 1762 rhead->num_retry = req->r_attempts - 1; 1763 1764 /* remove cap/dentry releases from message */ 1765 rhead->num_releases = 0; 1766 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset); 1767 msg->front.iov_len = req->r_request_release_offset; 1768 return 0; 1769 } 1770 1771 if (req->r_request) { 1772 ceph_msg_put(req->r_request); 1773 req->r_request = NULL; 1774 } 1775 msg = create_request_message(mdsc, req, mds); 1776 if (IS_ERR(msg)) { 1777 req->r_err = PTR_ERR(msg); 1778 complete_request(mdsc, req); 1779 return PTR_ERR(msg); 1780 } 1781 req->r_request = msg; 1782 1783 rhead = msg->front.iov_base; 1784 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 1785 if (req->r_got_unsafe) 1786 flags |= CEPH_MDS_FLAG_REPLAY; 1787 if (req->r_locked_dir) 1788 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 1789 rhead->flags = cpu_to_le32(flags); 1790 rhead->num_fwd = req->r_num_fwd; 1791 rhead->num_retry = req->r_attempts - 1; 1792 rhead->ino = 0; 1793 1794 dout(" r_locked_dir = %p\n", req->r_locked_dir); 1795 return 0; 1796 } 1797 1798 /* 1799 * send request, or put it on the appropriate wait list. 1800 */ 1801 static int __do_request(struct ceph_mds_client *mdsc, 1802 struct ceph_mds_request *req) 1803 { 1804 struct ceph_mds_session *session = NULL; 1805 int mds = -1; 1806 int err = -EAGAIN; 1807 1808 if (req->r_err || req->r_got_result) 1809 goto out; 1810 1811 if (req->r_timeout && 1812 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 1813 dout("do_request timed out\n"); 1814 err = -EIO; 1815 goto finish; 1816 } 1817 1818 put_request_session(req); 1819 1820 mds = __choose_mds(mdsc, req); 1821 if (mds < 0 || 1822 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 1823 dout("do_request no mds or not active, waiting for map\n"); 1824 list_add(&req->r_wait, &mdsc->waiting_for_map); 1825 goto out; 1826 } 1827 1828 /* get, open session */ 1829 session = __ceph_lookup_mds_session(mdsc, mds); 1830 if (!session) { 1831 session = register_session(mdsc, mds); 1832 if (IS_ERR(session)) { 1833 err = PTR_ERR(session); 1834 goto finish; 1835 } 1836 } 1837 req->r_session = get_session(session); 1838 1839 dout("do_request mds%d session %p state %s\n", mds, session, 1840 session_state_name(session->s_state)); 1841 if (session->s_state != CEPH_MDS_SESSION_OPEN && 1842 session->s_state != CEPH_MDS_SESSION_HUNG) { 1843 if (session->s_state == CEPH_MDS_SESSION_NEW || 1844 session->s_state == CEPH_MDS_SESSION_CLOSING) 1845 __open_session(mdsc, session); 1846 list_add(&req->r_wait, &session->s_waiting); 1847 goto out_session; 1848 } 1849 1850 /* send request */ 1851 req->r_resend_mds = -1; /* forget any previous mds hint */ 1852 1853 if (req->r_request_started == 0) /* note request start time */ 1854 req->r_request_started = jiffies; 1855 1856 err = __prepare_send_request(mdsc, req, mds); 1857 if (!err) { 1858 ceph_msg_get(req->r_request); 1859 ceph_con_send(&session->s_con, req->r_request); 1860 } 1861 1862 out_session: 1863 ceph_put_mds_session(session); 1864 out: 1865 return err; 1866 1867 finish: 1868 req->r_err = err; 1869 complete_request(mdsc, req); 1870 goto out; 1871 } 1872 1873 /* 1874 * called under mdsc->mutex 1875 */ 1876 static void __wake_requests(struct ceph_mds_client *mdsc, 1877 struct list_head *head) 1878 { 1879 struct ceph_mds_request *req, *nreq; 1880 1881 list_for_each_entry_safe(req, nreq, head, r_wait) { 1882 list_del_init(&req->r_wait); 1883 __do_request(mdsc, req); 1884 } 1885 } 1886 1887 /* 1888 * Wake up threads with requests pending for @mds, so that they can 1889 * resubmit their requests to a possibly different mds. 1890 */ 1891 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 1892 { 1893 struct ceph_mds_request *req; 1894 struct rb_node *p; 1895 1896 dout("kick_requests mds%d\n", mds); 1897 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) { 1898 req = rb_entry(p, struct ceph_mds_request, r_node); 1899 if (req->r_got_unsafe) 1900 continue; 1901 if (req->r_session && 1902 req->r_session->s_mds == mds) { 1903 dout(" kicking tid %llu\n", req->r_tid); 1904 __do_request(mdsc, req); 1905 } 1906 } 1907 } 1908 1909 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 1910 struct ceph_mds_request *req) 1911 { 1912 dout("submit_request on %p\n", req); 1913 mutex_lock(&mdsc->mutex); 1914 __register_request(mdsc, req, NULL); 1915 __do_request(mdsc, req); 1916 mutex_unlock(&mdsc->mutex); 1917 } 1918 1919 /* 1920 * Synchrously perform an mds request. Take care of all of the 1921 * session setup, forwarding, retry details. 1922 */ 1923 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 1924 struct inode *dir, 1925 struct ceph_mds_request *req) 1926 { 1927 int err; 1928 1929 dout("do_request on %p\n", req); 1930 1931 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 1932 if (req->r_inode) 1933 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1934 if (req->r_locked_dir) 1935 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 1936 if (req->r_old_dentry) 1937 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 1938 CEPH_CAP_PIN); 1939 1940 /* issue */ 1941 mutex_lock(&mdsc->mutex); 1942 __register_request(mdsc, req, dir); 1943 __do_request(mdsc, req); 1944 1945 if (req->r_err) { 1946 err = req->r_err; 1947 __unregister_request(mdsc, req); 1948 dout("do_request early error %d\n", err); 1949 goto out; 1950 } 1951 1952 /* wait */ 1953 mutex_unlock(&mdsc->mutex); 1954 dout("do_request waiting\n"); 1955 if (req->r_timeout) { 1956 err = (long)wait_for_completion_killable_timeout( 1957 &req->r_completion, req->r_timeout); 1958 if (err == 0) 1959 err = -EIO; 1960 } else { 1961 err = wait_for_completion_killable(&req->r_completion); 1962 } 1963 dout("do_request waited, got %d\n", err); 1964 mutex_lock(&mdsc->mutex); 1965 1966 /* only abort if we didn't race with a real reply */ 1967 if (req->r_got_result) { 1968 err = le32_to_cpu(req->r_reply_info.head->result); 1969 } else if (err < 0) { 1970 dout("aborted request %lld with %d\n", req->r_tid, err); 1971 1972 /* 1973 * ensure we aren't running concurrently with 1974 * ceph_fill_trace or ceph_readdir_prepopulate, which 1975 * rely on locks (dir mutex) held by our caller. 1976 */ 1977 mutex_lock(&req->r_fill_mutex); 1978 req->r_err = err; 1979 req->r_aborted = true; 1980 mutex_unlock(&req->r_fill_mutex); 1981 1982 if (req->r_locked_dir && 1983 (req->r_op & CEPH_MDS_OP_WRITE)) 1984 ceph_invalidate_dir_request(req); 1985 } else { 1986 err = req->r_err; 1987 } 1988 1989 out: 1990 mutex_unlock(&mdsc->mutex); 1991 dout("do_request %p done, result %d\n", req, err); 1992 return err; 1993 } 1994 1995 /* 1996 * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS 1997 * namespace request. 1998 */ 1999 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2000 { 2001 struct inode *inode = req->r_locked_dir; 2002 struct ceph_inode_info *ci = ceph_inode(inode); 2003 2004 dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode); 2005 spin_lock(&ci->i_ceph_lock); 2006 ceph_dir_clear_complete(inode); 2007 ci->i_release_count++; 2008 spin_unlock(&ci->i_ceph_lock); 2009 2010 if (req->r_dentry) 2011 ceph_invalidate_dentry_lease(req->r_dentry); 2012 if (req->r_old_dentry) 2013 ceph_invalidate_dentry_lease(req->r_old_dentry); 2014 } 2015 2016 /* 2017 * Handle mds reply. 2018 * 2019 * We take the session mutex and parse and process the reply immediately. 2020 * This preserves the logical ordering of replies, capabilities, etc., sent 2021 * by the MDS as they are applied to our local cache. 2022 */ 2023 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2024 { 2025 struct ceph_mds_client *mdsc = session->s_mdsc; 2026 struct ceph_mds_request *req; 2027 struct ceph_mds_reply_head *head = msg->front.iov_base; 2028 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2029 u64 tid; 2030 int err, result; 2031 int mds = session->s_mds; 2032 2033 if (msg->front.iov_len < sizeof(*head)) { 2034 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2035 ceph_msg_dump(msg); 2036 return; 2037 } 2038 2039 /* get request, session */ 2040 tid = le64_to_cpu(msg->hdr.tid); 2041 mutex_lock(&mdsc->mutex); 2042 req = __lookup_request(mdsc, tid); 2043 if (!req) { 2044 dout("handle_reply on unknown tid %llu\n", tid); 2045 mutex_unlock(&mdsc->mutex); 2046 return; 2047 } 2048 dout("handle_reply %p\n", req); 2049 2050 /* correct session? */ 2051 if (req->r_session != session) { 2052 pr_err("mdsc_handle_reply got %llu on session mds%d" 2053 " not mds%d\n", tid, session->s_mds, 2054 req->r_session ? req->r_session->s_mds : -1); 2055 mutex_unlock(&mdsc->mutex); 2056 goto out; 2057 } 2058 2059 /* dup? */ 2060 if ((req->r_got_unsafe && !head->safe) || 2061 (req->r_got_safe && head->safe)) { 2062 pr_warning("got a dup %s reply on %llu from mds%d\n", 2063 head->safe ? "safe" : "unsafe", tid, mds); 2064 mutex_unlock(&mdsc->mutex); 2065 goto out; 2066 } 2067 if (req->r_got_safe && !head->safe) { 2068 pr_warning("got unsafe after safe on %llu from mds%d\n", 2069 tid, mds); 2070 mutex_unlock(&mdsc->mutex); 2071 goto out; 2072 } 2073 2074 result = le32_to_cpu(head->result); 2075 2076 /* 2077 * Handle an ESTALE 2078 * if we're not talking to the authority, send to them 2079 * if the authority has changed while we weren't looking, 2080 * send to new authority 2081 * Otherwise we just have to return an ESTALE 2082 */ 2083 if (result == -ESTALE) { 2084 dout("got ESTALE on request %llu", req->r_tid); 2085 if (!req->r_inode) { 2086 /* do nothing; not an authority problem */ 2087 } else if (req->r_direct_mode != USE_AUTH_MDS) { 2088 dout("not using auth, setting for that now"); 2089 req->r_direct_mode = USE_AUTH_MDS; 2090 __do_request(mdsc, req); 2091 mutex_unlock(&mdsc->mutex); 2092 goto out; 2093 } else { 2094 struct ceph_inode_info *ci = ceph_inode(req->r_inode); 2095 struct ceph_cap *cap = NULL; 2096 2097 if (req->r_session) 2098 cap = ceph_get_cap_for_mds(ci, 2099 req->r_session->s_mds); 2100 2101 dout("already using auth"); 2102 if ((!cap || cap != ci->i_auth_cap) || 2103 (cap->mseq != req->r_sent_on_mseq)) { 2104 dout("but cap changed, so resending"); 2105 __do_request(mdsc, req); 2106 mutex_unlock(&mdsc->mutex); 2107 goto out; 2108 } 2109 } 2110 dout("have to return ESTALE on request %llu", req->r_tid); 2111 } 2112 2113 2114 if (head->safe) { 2115 req->r_got_safe = true; 2116 __unregister_request(mdsc, req); 2117 complete_all(&req->r_safe_completion); 2118 2119 if (req->r_got_unsafe) { 2120 /* 2121 * We already handled the unsafe response, now do the 2122 * cleanup. No need to examine the response; the MDS 2123 * doesn't include any result info in the safe 2124 * response. And even if it did, there is nothing 2125 * useful we could do with a revised return value. 2126 */ 2127 dout("got safe reply %llu, mds%d\n", tid, mds); 2128 list_del_init(&req->r_unsafe_item); 2129 2130 /* last unsafe request during umount? */ 2131 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2132 complete_all(&mdsc->safe_umount_waiters); 2133 mutex_unlock(&mdsc->mutex); 2134 goto out; 2135 } 2136 } else { 2137 req->r_got_unsafe = true; 2138 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2139 } 2140 2141 dout("handle_reply tid %lld result %d\n", tid, result); 2142 rinfo = &req->r_reply_info; 2143 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2144 mutex_unlock(&mdsc->mutex); 2145 2146 mutex_lock(&session->s_mutex); 2147 if (err < 0) { 2148 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2149 ceph_msg_dump(msg); 2150 goto out_err; 2151 } 2152 2153 /* snap trace */ 2154 if (rinfo->snapblob_len) { 2155 down_write(&mdsc->snap_rwsem); 2156 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2157 rinfo->snapblob + rinfo->snapblob_len, 2158 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 2159 downgrade_write(&mdsc->snap_rwsem); 2160 } else { 2161 down_read(&mdsc->snap_rwsem); 2162 } 2163 2164 /* insert trace into our cache */ 2165 mutex_lock(&req->r_fill_mutex); 2166 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2167 if (err == 0) { 2168 if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK && 2169 rinfo->dir_nr) 2170 ceph_readdir_prepopulate(req, req->r_session); 2171 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2172 } 2173 mutex_unlock(&req->r_fill_mutex); 2174 2175 up_read(&mdsc->snap_rwsem); 2176 out_err: 2177 mutex_lock(&mdsc->mutex); 2178 if (!req->r_aborted) { 2179 if (err) { 2180 req->r_err = err; 2181 } else { 2182 req->r_reply = msg; 2183 ceph_msg_get(msg); 2184 req->r_got_result = true; 2185 } 2186 } else { 2187 dout("reply arrived after request %lld was aborted\n", tid); 2188 } 2189 mutex_unlock(&mdsc->mutex); 2190 2191 ceph_add_cap_releases(mdsc, req->r_session); 2192 mutex_unlock(&session->s_mutex); 2193 2194 /* kick calling process */ 2195 complete_request(mdsc, req); 2196 out: 2197 ceph_mdsc_put_request(req); 2198 return; 2199 } 2200 2201 2202 2203 /* 2204 * handle mds notification that our request has been forwarded. 2205 */ 2206 static void handle_forward(struct ceph_mds_client *mdsc, 2207 struct ceph_mds_session *session, 2208 struct ceph_msg *msg) 2209 { 2210 struct ceph_mds_request *req; 2211 u64 tid = le64_to_cpu(msg->hdr.tid); 2212 u32 next_mds; 2213 u32 fwd_seq; 2214 int err = -EINVAL; 2215 void *p = msg->front.iov_base; 2216 void *end = p + msg->front.iov_len; 2217 2218 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2219 next_mds = ceph_decode_32(&p); 2220 fwd_seq = ceph_decode_32(&p); 2221 2222 mutex_lock(&mdsc->mutex); 2223 req = __lookup_request(mdsc, tid); 2224 if (!req) { 2225 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2226 goto out; /* dup reply? */ 2227 } 2228 2229 if (req->r_aborted) { 2230 dout("forward tid %llu aborted, unregistering\n", tid); 2231 __unregister_request(mdsc, req); 2232 } else if (fwd_seq <= req->r_num_fwd) { 2233 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2234 tid, next_mds, req->r_num_fwd, fwd_seq); 2235 } else { 2236 /* resend. forward race not possible; mds would drop */ 2237 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2238 BUG_ON(req->r_err); 2239 BUG_ON(req->r_got_result); 2240 req->r_num_fwd = fwd_seq; 2241 req->r_resend_mds = next_mds; 2242 put_request_session(req); 2243 __do_request(mdsc, req); 2244 } 2245 ceph_mdsc_put_request(req); 2246 out: 2247 mutex_unlock(&mdsc->mutex); 2248 return; 2249 2250 bad: 2251 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2252 } 2253 2254 /* 2255 * handle a mds session control message 2256 */ 2257 static void handle_session(struct ceph_mds_session *session, 2258 struct ceph_msg *msg) 2259 { 2260 struct ceph_mds_client *mdsc = session->s_mdsc; 2261 u32 op; 2262 u64 seq; 2263 int mds = session->s_mds; 2264 struct ceph_mds_session_head *h = msg->front.iov_base; 2265 int wake = 0; 2266 2267 /* decode */ 2268 if (msg->front.iov_len != sizeof(*h)) 2269 goto bad; 2270 op = le32_to_cpu(h->op); 2271 seq = le64_to_cpu(h->seq); 2272 2273 mutex_lock(&mdsc->mutex); 2274 if (op == CEPH_SESSION_CLOSE) 2275 __unregister_session(mdsc, session); 2276 /* FIXME: this ttl calculation is generous */ 2277 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2278 mutex_unlock(&mdsc->mutex); 2279 2280 mutex_lock(&session->s_mutex); 2281 2282 dout("handle_session mds%d %s %p state %s seq %llu\n", 2283 mds, ceph_session_op_name(op), session, 2284 session_state_name(session->s_state), seq); 2285 2286 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2287 session->s_state = CEPH_MDS_SESSION_OPEN; 2288 pr_info("mds%d came back\n", session->s_mds); 2289 } 2290 2291 switch (op) { 2292 case CEPH_SESSION_OPEN: 2293 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2294 pr_info("mds%d reconnect success\n", session->s_mds); 2295 session->s_state = CEPH_MDS_SESSION_OPEN; 2296 renewed_caps(mdsc, session, 0); 2297 wake = 1; 2298 if (mdsc->stopping) 2299 __close_session(mdsc, session); 2300 break; 2301 2302 case CEPH_SESSION_RENEWCAPS: 2303 if (session->s_renew_seq == seq) 2304 renewed_caps(mdsc, session, 1); 2305 break; 2306 2307 case CEPH_SESSION_CLOSE: 2308 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2309 pr_info("mds%d reconnect denied\n", session->s_mds); 2310 remove_session_caps(session); 2311 wake = 1; /* for good measure */ 2312 wake_up_all(&mdsc->session_close_wq); 2313 kick_requests(mdsc, mds); 2314 break; 2315 2316 case CEPH_SESSION_STALE: 2317 pr_info("mds%d caps went stale, renewing\n", 2318 session->s_mds); 2319 spin_lock(&session->s_gen_ttl_lock); 2320 session->s_cap_gen++; 2321 session->s_cap_ttl = jiffies - 1; 2322 spin_unlock(&session->s_gen_ttl_lock); 2323 send_renew_caps(mdsc, session); 2324 break; 2325 2326 case CEPH_SESSION_RECALL_STATE: 2327 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2328 break; 2329 2330 default: 2331 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2332 WARN_ON(1); 2333 } 2334 2335 mutex_unlock(&session->s_mutex); 2336 if (wake) { 2337 mutex_lock(&mdsc->mutex); 2338 __wake_requests(mdsc, &session->s_waiting); 2339 mutex_unlock(&mdsc->mutex); 2340 } 2341 return; 2342 2343 bad: 2344 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2345 (int)msg->front.iov_len); 2346 ceph_msg_dump(msg); 2347 return; 2348 } 2349 2350 2351 /* 2352 * called under session->mutex. 2353 */ 2354 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2355 struct ceph_mds_session *session) 2356 { 2357 struct ceph_mds_request *req, *nreq; 2358 int err; 2359 2360 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2361 2362 mutex_lock(&mdsc->mutex); 2363 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2364 err = __prepare_send_request(mdsc, req, session->s_mds); 2365 if (!err) { 2366 ceph_msg_get(req->r_request); 2367 ceph_con_send(&session->s_con, req->r_request); 2368 } 2369 } 2370 mutex_unlock(&mdsc->mutex); 2371 } 2372 2373 /* 2374 * Encode information about a cap for a reconnect with the MDS. 2375 */ 2376 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2377 void *arg) 2378 { 2379 union { 2380 struct ceph_mds_cap_reconnect v2; 2381 struct ceph_mds_cap_reconnect_v1 v1; 2382 } rec; 2383 size_t reclen; 2384 struct ceph_inode_info *ci; 2385 struct ceph_reconnect_state *recon_state = arg; 2386 struct ceph_pagelist *pagelist = recon_state->pagelist; 2387 char *path; 2388 int pathlen, err; 2389 u64 pathbase; 2390 struct dentry *dentry; 2391 2392 ci = cap->ci; 2393 2394 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2395 inode, ceph_vinop(inode), cap, cap->cap_id, 2396 ceph_cap_string(cap->issued)); 2397 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2398 if (err) 2399 return err; 2400 2401 dentry = d_find_alias(inode); 2402 if (dentry) { 2403 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2404 if (IS_ERR(path)) { 2405 err = PTR_ERR(path); 2406 goto out_dput; 2407 } 2408 } else { 2409 path = NULL; 2410 pathlen = 0; 2411 } 2412 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2413 if (err) 2414 goto out_free; 2415 2416 spin_lock(&ci->i_ceph_lock); 2417 cap->seq = 0; /* reset cap seq */ 2418 cap->issue_seq = 0; /* and issue_seq */ 2419 2420 if (recon_state->flock) { 2421 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2422 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2423 rec.v2.issued = cpu_to_le32(cap->issued); 2424 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2425 rec.v2.pathbase = cpu_to_le64(pathbase); 2426 rec.v2.flock_len = 0; 2427 reclen = sizeof(rec.v2); 2428 } else { 2429 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2430 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2431 rec.v1.issued = cpu_to_le32(cap->issued); 2432 rec.v1.size = cpu_to_le64(inode->i_size); 2433 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2434 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2435 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2436 rec.v1.pathbase = cpu_to_le64(pathbase); 2437 reclen = sizeof(rec.v1); 2438 } 2439 spin_unlock(&ci->i_ceph_lock); 2440 2441 if (recon_state->flock) { 2442 int num_fcntl_locks, num_flock_locks; 2443 struct ceph_pagelist_cursor trunc_point; 2444 2445 ceph_pagelist_set_cursor(pagelist, &trunc_point); 2446 do { 2447 lock_flocks(); 2448 ceph_count_locks(inode, &num_fcntl_locks, 2449 &num_flock_locks); 2450 rec.v2.flock_len = (2*sizeof(u32) + 2451 (num_fcntl_locks+num_flock_locks) * 2452 sizeof(struct ceph_filelock)); 2453 unlock_flocks(); 2454 2455 /* pre-alloc pagelist */ 2456 ceph_pagelist_truncate(pagelist, &trunc_point); 2457 err = ceph_pagelist_append(pagelist, &rec, reclen); 2458 if (!err) 2459 err = ceph_pagelist_reserve(pagelist, 2460 rec.v2.flock_len); 2461 2462 /* encode locks */ 2463 if (!err) { 2464 lock_flocks(); 2465 err = ceph_encode_locks(inode, 2466 pagelist, 2467 num_fcntl_locks, 2468 num_flock_locks); 2469 unlock_flocks(); 2470 } 2471 } while (err == -ENOSPC); 2472 } else { 2473 err = ceph_pagelist_append(pagelist, &rec, reclen); 2474 } 2475 2476 out_free: 2477 kfree(path); 2478 out_dput: 2479 dput(dentry); 2480 return err; 2481 } 2482 2483 2484 /* 2485 * If an MDS fails and recovers, clients need to reconnect in order to 2486 * reestablish shared state. This includes all caps issued through 2487 * this session _and_ the snap_realm hierarchy. Because it's not 2488 * clear which snap realms the mds cares about, we send everything we 2489 * know about.. that ensures we'll then get any new info the 2490 * recovering MDS might have. 2491 * 2492 * This is a relatively heavyweight operation, but it's rare. 2493 * 2494 * called with mdsc->mutex held. 2495 */ 2496 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2497 struct ceph_mds_session *session) 2498 { 2499 struct ceph_msg *reply; 2500 struct rb_node *p; 2501 int mds = session->s_mds; 2502 int err = -ENOMEM; 2503 struct ceph_pagelist *pagelist; 2504 struct ceph_reconnect_state recon_state; 2505 2506 pr_info("mds%d reconnect start\n", mds); 2507 2508 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2509 if (!pagelist) 2510 goto fail_nopagelist; 2511 ceph_pagelist_init(pagelist); 2512 2513 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2514 if (!reply) 2515 goto fail_nomsg; 2516 2517 mutex_lock(&session->s_mutex); 2518 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2519 session->s_seq = 0; 2520 2521 ceph_con_close(&session->s_con); 2522 ceph_con_open(&session->s_con, 2523 CEPH_ENTITY_TYPE_MDS, mds, 2524 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2525 2526 /* replay unsafe requests */ 2527 replay_unsafe_requests(mdsc, session); 2528 2529 down_read(&mdsc->snap_rwsem); 2530 2531 dout("session %p state %s\n", session, 2532 session_state_name(session->s_state)); 2533 2534 /* drop old cap expires; we're about to reestablish that state */ 2535 discard_cap_releases(mdsc, session); 2536 2537 /* traverse this session's caps */ 2538 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps); 2539 if (err) 2540 goto fail; 2541 2542 recon_state.pagelist = pagelist; 2543 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2544 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2545 if (err < 0) 2546 goto fail; 2547 2548 /* 2549 * snaprealms. we provide mds with the ino, seq (version), and 2550 * parent for all of our realms. If the mds has any newer info, 2551 * it will tell us. 2552 */ 2553 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2554 struct ceph_snap_realm *realm = 2555 rb_entry(p, struct ceph_snap_realm, node); 2556 struct ceph_mds_snaprealm_reconnect sr_rec; 2557 2558 dout(" adding snap realm %llx seq %lld parent %llx\n", 2559 realm->ino, realm->seq, realm->parent_ino); 2560 sr_rec.ino = cpu_to_le64(realm->ino); 2561 sr_rec.seq = cpu_to_le64(realm->seq); 2562 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2563 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2564 if (err) 2565 goto fail; 2566 } 2567 2568 reply->pagelist = pagelist; 2569 if (recon_state.flock) 2570 reply->hdr.version = cpu_to_le16(2); 2571 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2572 reply->nr_pages = calc_pages_for(0, pagelist->length); 2573 ceph_con_send(&session->s_con, reply); 2574 2575 mutex_unlock(&session->s_mutex); 2576 2577 mutex_lock(&mdsc->mutex); 2578 __wake_requests(mdsc, &session->s_waiting); 2579 mutex_unlock(&mdsc->mutex); 2580 2581 up_read(&mdsc->snap_rwsem); 2582 return; 2583 2584 fail: 2585 ceph_msg_put(reply); 2586 up_read(&mdsc->snap_rwsem); 2587 mutex_unlock(&session->s_mutex); 2588 fail_nomsg: 2589 ceph_pagelist_release(pagelist); 2590 kfree(pagelist); 2591 fail_nopagelist: 2592 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2593 return; 2594 } 2595 2596 2597 /* 2598 * compare old and new mdsmaps, kicking requests 2599 * and closing out old connections as necessary 2600 * 2601 * called under mdsc->mutex. 2602 */ 2603 static void check_new_map(struct ceph_mds_client *mdsc, 2604 struct ceph_mdsmap *newmap, 2605 struct ceph_mdsmap *oldmap) 2606 { 2607 int i; 2608 int oldstate, newstate; 2609 struct ceph_mds_session *s; 2610 2611 dout("check_new_map new %u old %u\n", 2612 newmap->m_epoch, oldmap->m_epoch); 2613 2614 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2615 if (mdsc->sessions[i] == NULL) 2616 continue; 2617 s = mdsc->sessions[i]; 2618 oldstate = ceph_mdsmap_get_state(oldmap, i); 2619 newstate = ceph_mdsmap_get_state(newmap, i); 2620 2621 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 2622 i, ceph_mds_state_name(oldstate), 2623 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 2624 ceph_mds_state_name(newstate), 2625 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 2626 session_state_name(s->s_state)); 2627 2628 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 2629 ceph_mdsmap_get_addr(newmap, i), 2630 sizeof(struct ceph_entity_addr))) { 2631 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2632 /* the session never opened, just close it 2633 * out now */ 2634 __wake_requests(mdsc, &s->s_waiting); 2635 __unregister_session(mdsc, s); 2636 } else { 2637 /* just close it */ 2638 mutex_unlock(&mdsc->mutex); 2639 mutex_lock(&s->s_mutex); 2640 mutex_lock(&mdsc->mutex); 2641 ceph_con_close(&s->s_con); 2642 mutex_unlock(&s->s_mutex); 2643 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2644 } 2645 2646 /* kick any requests waiting on the recovering mds */ 2647 kick_requests(mdsc, i); 2648 } else if (oldstate == newstate) { 2649 continue; /* nothing new with this mds */ 2650 } 2651 2652 /* 2653 * send reconnect? 2654 */ 2655 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2656 newstate >= CEPH_MDS_STATE_RECONNECT) { 2657 mutex_unlock(&mdsc->mutex); 2658 send_mds_reconnect(mdsc, s); 2659 mutex_lock(&mdsc->mutex); 2660 } 2661 2662 /* 2663 * kick request on any mds that has gone active. 2664 */ 2665 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2666 newstate >= CEPH_MDS_STATE_ACTIVE) { 2667 if (oldstate != CEPH_MDS_STATE_CREATING && 2668 oldstate != CEPH_MDS_STATE_STARTING) 2669 pr_info("mds%d recovery completed\n", s->s_mds); 2670 kick_requests(mdsc, i); 2671 ceph_kick_flushing_caps(mdsc, s); 2672 wake_up_session_caps(s, 1); 2673 } 2674 } 2675 2676 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 2677 s = mdsc->sessions[i]; 2678 if (!s) 2679 continue; 2680 if (!ceph_mdsmap_is_laggy(newmap, i)) 2681 continue; 2682 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2683 s->s_state == CEPH_MDS_SESSION_HUNG || 2684 s->s_state == CEPH_MDS_SESSION_CLOSING) { 2685 dout(" connecting to export targets of laggy mds%d\n", 2686 i); 2687 __open_export_target_sessions(mdsc, s); 2688 } 2689 } 2690 } 2691 2692 2693 2694 /* 2695 * leases 2696 */ 2697 2698 /* 2699 * caller must hold session s_mutex, dentry->d_lock 2700 */ 2701 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2702 { 2703 struct ceph_dentry_info *di = ceph_dentry(dentry); 2704 2705 ceph_put_mds_session(di->lease_session); 2706 di->lease_session = NULL; 2707 } 2708 2709 static void handle_lease(struct ceph_mds_client *mdsc, 2710 struct ceph_mds_session *session, 2711 struct ceph_msg *msg) 2712 { 2713 struct super_block *sb = mdsc->fsc->sb; 2714 struct inode *inode; 2715 struct dentry *parent, *dentry; 2716 struct ceph_dentry_info *di; 2717 int mds = session->s_mds; 2718 struct ceph_mds_lease *h = msg->front.iov_base; 2719 u32 seq; 2720 struct ceph_vino vino; 2721 struct qstr dname; 2722 int release = 0; 2723 2724 dout("handle_lease from mds%d\n", mds); 2725 2726 /* decode */ 2727 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 2728 goto bad; 2729 vino.ino = le64_to_cpu(h->ino); 2730 vino.snap = CEPH_NOSNAP; 2731 seq = le32_to_cpu(h->seq); 2732 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 2733 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 2734 if (dname.len != get_unaligned_le32(h+1)) 2735 goto bad; 2736 2737 mutex_lock(&session->s_mutex); 2738 session->s_seq++; 2739 2740 /* lookup inode */ 2741 inode = ceph_find_inode(sb, vino); 2742 dout("handle_lease %s, ino %llx %p %.*s\n", 2743 ceph_lease_op_name(h->action), vino.ino, inode, 2744 dname.len, dname.name); 2745 if (inode == NULL) { 2746 dout("handle_lease no inode %llx\n", vino.ino); 2747 goto release; 2748 } 2749 2750 /* dentry */ 2751 parent = d_find_alias(inode); 2752 if (!parent) { 2753 dout("no parent dentry on inode %p\n", inode); 2754 WARN_ON(1); 2755 goto release; /* hrm... */ 2756 } 2757 dname.hash = full_name_hash(dname.name, dname.len); 2758 dentry = d_lookup(parent, &dname); 2759 dput(parent); 2760 if (!dentry) 2761 goto release; 2762 2763 spin_lock(&dentry->d_lock); 2764 di = ceph_dentry(dentry); 2765 switch (h->action) { 2766 case CEPH_MDS_LEASE_REVOKE: 2767 if (di->lease_session == session) { 2768 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 2769 h->seq = cpu_to_le32(di->lease_seq); 2770 __ceph_mdsc_drop_dentry_lease(dentry); 2771 } 2772 release = 1; 2773 break; 2774 2775 case CEPH_MDS_LEASE_RENEW: 2776 if (di->lease_session == session && 2777 di->lease_gen == session->s_cap_gen && 2778 di->lease_renew_from && 2779 di->lease_renew_after == 0) { 2780 unsigned long duration = 2781 le32_to_cpu(h->duration_ms) * HZ / 1000; 2782 2783 di->lease_seq = seq; 2784 dentry->d_time = di->lease_renew_from + duration; 2785 di->lease_renew_after = di->lease_renew_from + 2786 (duration >> 1); 2787 di->lease_renew_from = 0; 2788 } 2789 break; 2790 } 2791 spin_unlock(&dentry->d_lock); 2792 dput(dentry); 2793 2794 if (!release) 2795 goto out; 2796 2797 release: 2798 /* let's just reuse the same message */ 2799 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 2800 ceph_msg_get(msg); 2801 ceph_con_send(&session->s_con, msg); 2802 2803 out: 2804 iput(inode); 2805 mutex_unlock(&session->s_mutex); 2806 return; 2807 2808 bad: 2809 pr_err("corrupt lease message\n"); 2810 ceph_msg_dump(msg); 2811 } 2812 2813 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 2814 struct inode *inode, 2815 struct dentry *dentry, char action, 2816 u32 seq) 2817 { 2818 struct ceph_msg *msg; 2819 struct ceph_mds_lease *lease; 2820 int len = sizeof(*lease) + sizeof(u32); 2821 int dnamelen = 0; 2822 2823 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 2824 inode, dentry, ceph_lease_op_name(action), session->s_mds); 2825 dnamelen = dentry->d_name.len; 2826 len += dnamelen; 2827 2828 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 2829 if (!msg) 2830 return; 2831 lease = msg->front.iov_base; 2832 lease->action = action; 2833 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 2834 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 2835 lease->seq = cpu_to_le32(seq); 2836 put_unaligned_le32(dnamelen, lease + 1); 2837 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 2838 2839 /* 2840 * if this is a preemptive lease RELEASE, no need to 2841 * flush request stream, since the actual request will 2842 * soon follow. 2843 */ 2844 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 2845 2846 ceph_con_send(&session->s_con, msg); 2847 } 2848 2849 /* 2850 * Preemptively release a lease we expect to invalidate anyway. 2851 * Pass @inode always, @dentry is optional. 2852 */ 2853 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 2854 struct dentry *dentry) 2855 { 2856 struct ceph_dentry_info *di; 2857 struct ceph_mds_session *session; 2858 u32 seq; 2859 2860 BUG_ON(inode == NULL); 2861 BUG_ON(dentry == NULL); 2862 2863 /* is dentry lease valid? */ 2864 spin_lock(&dentry->d_lock); 2865 di = ceph_dentry(dentry); 2866 if (!di || !di->lease_session || 2867 di->lease_session->s_mds < 0 || 2868 di->lease_gen != di->lease_session->s_cap_gen || 2869 !time_before(jiffies, dentry->d_time)) { 2870 dout("lease_release inode %p dentry %p -- " 2871 "no lease\n", 2872 inode, dentry); 2873 spin_unlock(&dentry->d_lock); 2874 return; 2875 } 2876 2877 /* we do have a lease on this dentry; note mds and seq */ 2878 session = ceph_get_mds_session(di->lease_session); 2879 seq = di->lease_seq; 2880 __ceph_mdsc_drop_dentry_lease(dentry); 2881 spin_unlock(&dentry->d_lock); 2882 2883 dout("lease_release inode %p dentry %p to mds%d\n", 2884 inode, dentry, session->s_mds); 2885 ceph_mdsc_lease_send_msg(session, inode, dentry, 2886 CEPH_MDS_LEASE_RELEASE, seq); 2887 ceph_put_mds_session(session); 2888 } 2889 2890 /* 2891 * drop all leases (and dentry refs) in preparation for umount 2892 */ 2893 static void drop_leases(struct ceph_mds_client *mdsc) 2894 { 2895 int i; 2896 2897 dout("drop_leases\n"); 2898 mutex_lock(&mdsc->mutex); 2899 for (i = 0; i < mdsc->max_sessions; i++) { 2900 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2901 if (!s) 2902 continue; 2903 mutex_unlock(&mdsc->mutex); 2904 mutex_lock(&s->s_mutex); 2905 mutex_unlock(&s->s_mutex); 2906 ceph_put_mds_session(s); 2907 mutex_lock(&mdsc->mutex); 2908 } 2909 mutex_unlock(&mdsc->mutex); 2910 } 2911 2912 2913 2914 /* 2915 * delayed work -- periodically trim expired leases, renew caps with mds 2916 */ 2917 static void schedule_delayed(struct ceph_mds_client *mdsc) 2918 { 2919 int delay = 5; 2920 unsigned hz = round_jiffies_relative(HZ * delay); 2921 schedule_delayed_work(&mdsc->delayed_work, hz); 2922 } 2923 2924 static void delayed_work(struct work_struct *work) 2925 { 2926 int i; 2927 struct ceph_mds_client *mdsc = 2928 container_of(work, struct ceph_mds_client, delayed_work.work); 2929 int renew_interval; 2930 int renew_caps; 2931 2932 dout("mdsc delayed_work\n"); 2933 ceph_check_delayed_caps(mdsc); 2934 2935 mutex_lock(&mdsc->mutex); 2936 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 2937 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 2938 mdsc->last_renew_caps); 2939 if (renew_caps) 2940 mdsc->last_renew_caps = jiffies; 2941 2942 for (i = 0; i < mdsc->max_sessions; i++) { 2943 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2944 if (s == NULL) 2945 continue; 2946 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 2947 dout("resending session close request for mds%d\n", 2948 s->s_mds); 2949 request_close_session(mdsc, s); 2950 ceph_put_mds_session(s); 2951 continue; 2952 } 2953 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 2954 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 2955 s->s_state = CEPH_MDS_SESSION_HUNG; 2956 pr_info("mds%d hung\n", s->s_mds); 2957 } 2958 } 2959 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 2960 /* this mds is failed or recovering, just wait */ 2961 ceph_put_mds_session(s); 2962 continue; 2963 } 2964 mutex_unlock(&mdsc->mutex); 2965 2966 mutex_lock(&s->s_mutex); 2967 if (renew_caps) 2968 send_renew_caps(mdsc, s); 2969 else 2970 ceph_con_keepalive(&s->s_con); 2971 ceph_add_cap_releases(mdsc, s); 2972 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2973 s->s_state == CEPH_MDS_SESSION_HUNG) 2974 ceph_send_cap_releases(mdsc, s); 2975 mutex_unlock(&s->s_mutex); 2976 ceph_put_mds_session(s); 2977 2978 mutex_lock(&mdsc->mutex); 2979 } 2980 mutex_unlock(&mdsc->mutex); 2981 2982 schedule_delayed(mdsc); 2983 } 2984 2985 int ceph_mdsc_init(struct ceph_fs_client *fsc) 2986 2987 { 2988 struct ceph_mds_client *mdsc; 2989 2990 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 2991 if (!mdsc) 2992 return -ENOMEM; 2993 mdsc->fsc = fsc; 2994 fsc->mdsc = mdsc; 2995 mutex_init(&mdsc->mutex); 2996 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 2997 if (mdsc->mdsmap == NULL) 2998 return -ENOMEM; 2999 3000 init_completion(&mdsc->safe_umount_waiters); 3001 init_waitqueue_head(&mdsc->session_close_wq); 3002 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3003 mdsc->sessions = NULL; 3004 mdsc->max_sessions = 0; 3005 mdsc->stopping = 0; 3006 init_rwsem(&mdsc->snap_rwsem); 3007 mdsc->snap_realms = RB_ROOT; 3008 INIT_LIST_HEAD(&mdsc->snap_empty); 3009 spin_lock_init(&mdsc->snap_empty_lock); 3010 mdsc->last_tid = 0; 3011 mdsc->request_tree = RB_ROOT; 3012 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3013 mdsc->last_renew_caps = jiffies; 3014 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3015 spin_lock_init(&mdsc->cap_delay_lock); 3016 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3017 spin_lock_init(&mdsc->snap_flush_lock); 3018 mdsc->cap_flush_seq = 0; 3019 INIT_LIST_HEAD(&mdsc->cap_dirty); 3020 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3021 mdsc->num_cap_flushing = 0; 3022 spin_lock_init(&mdsc->cap_dirty_lock); 3023 init_waitqueue_head(&mdsc->cap_flushing_wq); 3024 spin_lock_init(&mdsc->dentry_lru_lock); 3025 INIT_LIST_HEAD(&mdsc->dentry_lru); 3026 3027 ceph_caps_init(mdsc); 3028 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3029 3030 return 0; 3031 } 3032 3033 /* 3034 * Wait for safe replies on open mds requests. If we time out, drop 3035 * all requests from the tree to avoid dangling dentry refs. 3036 */ 3037 static void wait_requests(struct ceph_mds_client *mdsc) 3038 { 3039 struct ceph_mds_request *req; 3040 struct ceph_fs_client *fsc = mdsc->fsc; 3041 3042 mutex_lock(&mdsc->mutex); 3043 if (__get_oldest_req(mdsc)) { 3044 mutex_unlock(&mdsc->mutex); 3045 3046 dout("wait_requests waiting for requests\n"); 3047 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3048 fsc->client->options->mount_timeout * HZ); 3049 3050 /* tear down remaining requests */ 3051 mutex_lock(&mdsc->mutex); 3052 while ((req = __get_oldest_req(mdsc))) { 3053 dout("wait_requests timed out on tid %llu\n", 3054 req->r_tid); 3055 __unregister_request(mdsc, req); 3056 } 3057 } 3058 mutex_unlock(&mdsc->mutex); 3059 dout("wait_requests done\n"); 3060 } 3061 3062 /* 3063 * called before mount is ro, and before dentries are torn down. 3064 * (hmm, does this still race with new lookups?) 3065 */ 3066 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3067 { 3068 dout("pre_umount\n"); 3069 mdsc->stopping = 1; 3070 3071 drop_leases(mdsc); 3072 ceph_flush_dirty_caps(mdsc); 3073 wait_requests(mdsc); 3074 3075 /* 3076 * wait for reply handlers to drop their request refs and 3077 * their inode/dcache refs 3078 */ 3079 ceph_msgr_flush(); 3080 } 3081 3082 /* 3083 * wait for all write mds requests to flush. 3084 */ 3085 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3086 { 3087 struct ceph_mds_request *req = NULL, *nextreq; 3088 struct rb_node *n; 3089 3090 mutex_lock(&mdsc->mutex); 3091 dout("wait_unsafe_requests want %lld\n", want_tid); 3092 restart: 3093 req = __get_oldest_req(mdsc); 3094 while (req && req->r_tid <= want_tid) { 3095 /* find next request */ 3096 n = rb_next(&req->r_node); 3097 if (n) 3098 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3099 else 3100 nextreq = NULL; 3101 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3102 /* write op */ 3103 ceph_mdsc_get_request(req); 3104 if (nextreq) 3105 ceph_mdsc_get_request(nextreq); 3106 mutex_unlock(&mdsc->mutex); 3107 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3108 req->r_tid, want_tid); 3109 wait_for_completion(&req->r_safe_completion); 3110 mutex_lock(&mdsc->mutex); 3111 ceph_mdsc_put_request(req); 3112 if (!nextreq) 3113 break; /* next dne before, so we're done! */ 3114 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3115 /* next request was removed from tree */ 3116 ceph_mdsc_put_request(nextreq); 3117 goto restart; 3118 } 3119 ceph_mdsc_put_request(nextreq); /* won't go away */ 3120 } 3121 req = nextreq; 3122 } 3123 mutex_unlock(&mdsc->mutex); 3124 dout("wait_unsafe_requests done\n"); 3125 } 3126 3127 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3128 { 3129 u64 want_tid, want_flush; 3130 3131 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3132 return; 3133 3134 dout("sync\n"); 3135 mutex_lock(&mdsc->mutex); 3136 want_tid = mdsc->last_tid; 3137 want_flush = mdsc->cap_flush_seq; 3138 mutex_unlock(&mdsc->mutex); 3139 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3140 3141 ceph_flush_dirty_caps(mdsc); 3142 3143 wait_unsafe_requests(mdsc, want_tid); 3144 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 3145 } 3146 3147 /* 3148 * true if all sessions are closed, or we force unmount 3149 */ 3150 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3151 { 3152 int i, n = 0; 3153 3154 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3155 return true; 3156 3157 mutex_lock(&mdsc->mutex); 3158 for (i = 0; i < mdsc->max_sessions; i++) 3159 if (mdsc->sessions[i]) 3160 n++; 3161 mutex_unlock(&mdsc->mutex); 3162 return n == 0; 3163 } 3164 3165 /* 3166 * called after sb is ro. 3167 */ 3168 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3169 { 3170 struct ceph_mds_session *session; 3171 int i; 3172 struct ceph_fs_client *fsc = mdsc->fsc; 3173 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3174 3175 dout("close_sessions\n"); 3176 3177 /* close sessions */ 3178 mutex_lock(&mdsc->mutex); 3179 for (i = 0; i < mdsc->max_sessions; i++) { 3180 session = __ceph_lookup_mds_session(mdsc, i); 3181 if (!session) 3182 continue; 3183 mutex_unlock(&mdsc->mutex); 3184 mutex_lock(&session->s_mutex); 3185 __close_session(mdsc, session); 3186 mutex_unlock(&session->s_mutex); 3187 ceph_put_mds_session(session); 3188 mutex_lock(&mdsc->mutex); 3189 } 3190 mutex_unlock(&mdsc->mutex); 3191 3192 dout("waiting for sessions to close\n"); 3193 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3194 timeout); 3195 3196 /* tear down remaining sessions */ 3197 mutex_lock(&mdsc->mutex); 3198 for (i = 0; i < mdsc->max_sessions; i++) { 3199 if (mdsc->sessions[i]) { 3200 session = get_session(mdsc->sessions[i]); 3201 __unregister_session(mdsc, session); 3202 mutex_unlock(&mdsc->mutex); 3203 mutex_lock(&session->s_mutex); 3204 remove_session_caps(session); 3205 mutex_unlock(&session->s_mutex); 3206 ceph_put_mds_session(session); 3207 mutex_lock(&mdsc->mutex); 3208 } 3209 } 3210 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3211 mutex_unlock(&mdsc->mutex); 3212 3213 ceph_cleanup_empty_realms(mdsc); 3214 3215 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3216 3217 dout("stopped\n"); 3218 } 3219 3220 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3221 { 3222 dout("stop\n"); 3223 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3224 if (mdsc->mdsmap) 3225 ceph_mdsmap_destroy(mdsc->mdsmap); 3226 kfree(mdsc->sessions); 3227 ceph_caps_finalize(mdsc); 3228 } 3229 3230 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3231 { 3232 struct ceph_mds_client *mdsc = fsc->mdsc; 3233 3234 dout("mdsc_destroy %p\n", mdsc); 3235 ceph_mdsc_stop(mdsc); 3236 3237 /* flush out any connection work with references to us */ 3238 ceph_msgr_flush(); 3239 3240 fsc->mdsc = NULL; 3241 kfree(mdsc); 3242 dout("mdsc_destroy %p done\n", mdsc); 3243 } 3244 3245 3246 /* 3247 * handle mds map update. 3248 */ 3249 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3250 { 3251 u32 epoch; 3252 u32 maplen; 3253 void *p = msg->front.iov_base; 3254 void *end = p + msg->front.iov_len; 3255 struct ceph_mdsmap *newmap, *oldmap; 3256 struct ceph_fsid fsid; 3257 int err = -EINVAL; 3258 3259 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3260 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3261 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3262 return; 3263 epoch = ceph_decode_32(&p); 3264 maplen = ceph_decode_32(&p); 3265 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3266 3267 /* do we need it? */ 3268 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3269 mutex_lock(&mdsc->mutex); 3270 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3271 dout("handle_map epoch %u <= our %u\n", 3272 epoch, mdsc->mdsmap->m_epoch); 3273 mutex_unlock(&mdsc->mutex); 3274 return; 3275 } 3276 3277 newmap = ceph_mdsmap_decode(&p, end); 3278 if (IS_ERR(newmap)) { 3279 err = PTR_ERR(newmap); 3280 goto bad_unlock; 3281 } 3282 3283 /* swap into place */ 3284 if (mdsc->mdsmap) { 3285 oldmap = mdsc->mdsmap; 3286 mdsc->mdsmap = newmap; 3287 check_new_map(mdsc, newmap, oldmap); 3288 ceph_mdsmap_destroy(oldmap); 3289 } else { 3290 mdsc->mdsmap = newmap; /* first mds map */ 3291 } 3292 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3293 3294 __wake_requests(mdsc, &mdsc->waiting_for_map); 3295 3296 mutex_unlock(&mdsc->mutex); 3297 schedule_delayed(mdsc); 3298 return; 3299 3300 bad_unlock: 3301 mutex_unlock(&mdsc->mutex); 3302 bad: 3303 pr_err("error decoding mdsmap %d\n", err); 3304 return; 3305 } 3306 3307 static struct ceph_connection *con_get(struct ceph_connection *con) 3308 { 3309 struct ceph_mds_session *s = con->private; 3310 3311 if (get_session(s)) { 3312 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3313 return con; 3314 } 3315 dout("mdsc con_get %p FAIL\n", s); 3316 return NULL; 3317 } 3318 3319 static void con_put(struct ceph_connection *con) 3320 { 3321 struct ceph_mds_session *s = con->private; 3322 3323 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3324 ceph_put_mds_session(s); 3325 } 3326 3327 /* 3328 * if the client is unresponsive for long enough, the mds will kill 3329 * the session entirely. 3330 */ 3331 static void peer_reset(struct ceph_connection *con) 3332 { 3333 struct ceph_mds_session *s = con->private; 3334 struct ceph_mds_client *mdsc = s->s_mdsc; 3335 3336 pr_warning("mds%d closed our session\n", s->s_mds); 3337 send_mds_reconnect(mdsc, s); 3338 } 3339 3340 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3341 { 3342 struct ceph_mds_session *s = con->private; 3343 struct ceph_mds_client *mdsc = s->s_mdsc; 3344 int type = le16_to_cpu(msg->hdr.type); 3345 3346 mutex_lock(&mdsc->mutex); 3347 if (__verify_registered_session(mdsc, s) < 0) { 3348 mutex_unlock(&mdsc->mutex); 3349 goto out; 3350 } 3351 mutex_unlock(&mdsc->mutex); 3352 3353 switch (type) { 3354 case CEPH_MSG_MDS_MAP: 3355 ceph_mdsc_handle_map(mdsc, msg); 3356 break; 3357 case CEPH_MSG_CLIENT_SESSION: 3358 handle_session(s, msg); 3359 break; 3360 case CEPH_MSG_CLIENT_REPLY: 3361 handle_reply(s, msg); 3362 break; 3363 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3364 handle_forward(mdsc, s, msg); 3365 break; 3366 case CEPH_MSG_CLIENT_CAPS: 3367 ceph_handle_caps(s, msg); 3368 break; 3369 case CEPH_MSG_CLIENT_SNAP: 3370 ceph_handle_snap(mdsc, s, msg); 3371 break; 3372 case CEPH_MSG_CLIENT_LEASE: 3373 handle_lease(mdsc, s, msg); 3374 break; 3375 3376 default: 3377 pr_err("received unknown message type %d %s\n", type, 3378 ceph_msg_type_name(type)); 3379 } 3380 out: 3381 ceph_msg_put(msg); 3382 } 3383 3384 /* 3385 * authentication 3386 */ 3387 3388 /* 3389 * Note: returned pointer is the address of a structure that's 3390 * managed separately. Caller must *not* attempt to free it. 3391 */ 3392 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 3393 int *proto, int force_new) 3394 { 3395 struct ceph_mds_session *s = con->private; 3396 struct ceph_mds_client *mdsc = s->s_mdsc; 3397 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3398 struct ceph_auth_handshake *auth = &s->s_auth; 3399 3400 if (force_new && auth->authorizer) { 3401 if (ac->ops && ac->ops->destroy_authorizer) 3402 ac->ops->destroy_authorizer(ac, auth->authorizer); 3403 auth->authorizer = NULL; 3404 } 3405 if (!auth->authorizer && ac->ops && ac->ops->create_authorizer) { 3406 int ret = ac->ops->create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3407 auth); 3408 if (ret) 3409 return ERR_PTR(ret); 3410 } 3411 *proto = ac->protocol; 3412 3413 return auth; 3414 } 3415 3416 3417 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3418 { 3419 struct ceph_mds_session *s = con->private; 3420 struct ceph_mds_client *mdsc = s->s_mdsc; 3421 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3422 3423 return ac->ops->verify_authorizer_reply(ac, s->s_auth.authorizer, len); 3424 } 3425 3426 static int invalidate_authorizer(struct ceph_connection *con) 3427 { 3428 struct ceph_mds_session *s = con->private; 3429 struct ceph_mds_client *mdsc = s->s_mdsc; 3430 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3431 3432 if (ac->ops->invalidate_authorizer) 3433 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3434 3435 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3436 } 3437 3438 static const struct ceph_connection_operations mds_con_ops = { 3439 .get = con_get, 3440 .put = con_put, 3441 .dispatch = dispatch, 3442 .get_authorizer = get_authorizer, 3443 .verify_authorizer_reply = verify_authorizer_reply, 3444 .invalidate_authorizer = invalidate_authorizer, 3445 .peer_reset = peer_reset, 3446 }; 3447 3448 /* eof */ 3449