1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/fs.h> 5 #include <linux/wait.h> 6 #include <linux/slab.h> 7 #include <linux/gfp.h> 8 #include <linux/sched.h> 9 #include <linux/debugfs.h> 10 #include <linux/seq_file.h> 11 #include <linux/ratelimit.h> 12 #include <linux/bits.h> 13 #include <linux/ktime.h> 14 #include <linux/bitmap.h> 15 16 #include "super.h" 17 #include "mds_client.h" 18 #include "crypto.h" 19 20 #include <linux/ceph/ceph_features.h> 21 #include <linux/ceph/messenger.h> 22 #include <linux/ceph/decode.h> 23 #include <linux/ceph/pagelist.h> 24 #include <linux/ceph/auth.h> 25 #include <linux/ceph/debugfs.h> 26 27 #define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE) 28 29 /* 30 * A cluster of MDS (metadata server) daemons is responsible for 31 * managing the file system namespace (the directory hierarchy and 32 * inodes) and for coordinating shared access to storage. Metadata is 33 * partitioning hierarchically across a number of servers, and that 34 * partition varies over time as the cluster adjusts the distribution 35 * in order to balance load. 36 * 37 * The MDS client is primarily responsible to managing synchronous 38 * metadata requests for operations like open, unlink, and so forth. 39 * If there is a MDS failure, we find out about it when we (possibly 40 * request and) receive a new MDS map, and can resubmit affected 41 * requests. 42 * 43 * For the most part, though, we take advantage of a lossless 44 * communications channel to the MDS, and do not need to worry about 45 * timing out or resubmitting requests. 46 * 47 * We maintain a stateful "session" with each MDS we interact with. 48 * Within each session, we sent periodic heartbeat messages to ensure 49 * any capabilities or leases we have been issues remain valid. If 50 * the session times out and goes stale, our leases and capabilities 51 * are no longer valid. 52 */ 53 54 struct ceph_reconnect_state { 55 struct ceph_mds_session *session; 56 int nr_caps, nr_realms; 57 struct ceph_pagelist *pagelist; 58 unsigned msg_version; 59 bool allow_multi; 60 }; 61 62 static void __wake_requests(struct ceph_mds_client *mdsc, 63 struct list_head *head); 64 static void ceph_cap_release_work(struct work_struct *work); 65 static void ceph_cap_reclaim_work(struct work_struct *work); 66 67 static const struct ceph_connection_operations mds_con_ops; 68 69 70 /* 71 * mds reply parsing 72 */ 73 74 static int parse_reply_info_quota(void **p, void *end, 75 struct ceph_mds_reply_info_in *info) 76 { 77 u8 struct_v, struct_compat; 78 u32 struct_len; 79 80 ceph_decode_8_safe(p, end, struct_v, bad); 81 ceph_decode_8_safe(p, end, struct_compat, bad); 82 /* struct_v is expected to be >= 1. we only 83 * understand encoding with struct_compat == 1. */ 84 if (!struct_v || struct_compat != 1) 85 goto bad; 86 ceph_decode_32_safe(p, end, struct_len, bad); 87 ceph_decode_need(p, end, struct_len, bad); 88 end = *p + struct_len; 89 ceph_decode_64_safe(p, end, info->max_bytes, bad); 90 ceph_decode_64_safe(p, end, info->max_files, bad); 91 *p = end; 92 return 0; 93 bad: 94 return -EIO; 95 } 96 97 /* 98 * parse individual inode info 99 */ 100 static int parse_reply_info_in(void **p, void *end, 101 struct ceph_mds_reply_info_in *info, 102 u64 features) 103 { 104 int err = 0; 105 u8 struct_v = 0; 106 107 if (features == (u64)-1) { 108 u32 struct_len; 109 u8 struct_compat; 110 ceph_decode_8_safe(p, end, struct_v, bad); 111 ceph_decode_8_safe(p, end, struct_compat, bad); 112 /* struct_v is expected to be >= 1. we only understand 113 * encoding with struct_compat == 1. */ 114 if (!struct_v || struct_compat != 1) 115 goto bad; 116 ceph_decode_32_safe(p, end, struct_len, bad); 117 ceph_decode_need(p, end, struct_len, bad); 118 end = *p + struct_len; 119 } 120 121 ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad); 122 info->in = *p; 123 *p += sizeof(struct ceph_mds_reply_inode) + 124 sizeof(*info->in->fragtree.splits) * 125 le32_to_cpu(info->in->fragtree.nsplits); 126 127 ceph_decode_32_safe(p, end, info->symlink_len, bad); 128 ceph_decode_need(p, end, info->symlink_len, bad); 129 info->symlink = *p; 130 *p += info->symlink_len; 131 132 ceph_decode_copy_safe(p, end, &info->dir_layout, 133 sizeof(info->dir_layout), bad); 134 ceph_decode_32_safe(p, end, info->xattr_len, bad); 135 ceph_decode_need(p, end, info->xattr_len, bad); 136 info->xattr_data = *p; 137 *p += info->xattr_len; 138 139 if (features == (u64)-1) { 140 /* inline data */ 141 ceph_decode_64_safe(p, end, info->inline_version, bad); 142 ceph_decode_32_safe(p, end, info->inline_len, bad); 143 ceph_decode_need(p, end, info->inline_len, bad); 144 info->inline_data = *p; 145 *p += info->inline_len; 146 /* quota */ 147 err = parse_reply_info_quota(p, end, info); 148 if (err < 0) 149 goto out_bad; 150 /* pool namespace */ 151 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 152 if (info->pool_ns_len > 0) { 153 ceph_decode_need(p, end, info->pool_ns_len, bad); 154 info->pool_ns_data = *p; 155 *p += info->pool_ns_len; 156 } 157 158 /* btime */ 159 ceph_decode_need(p, end, sizeof(info->btime), bad); 160 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 161 162 /* change attribute */ 163 ceph_decode_64_safe(p, end, info->change_attr, bad); 164 165 /* dir pin */ 166 if (struct_v >= 2) { 167 ceph_decode_32_safe(p, end, info->dir_pin, bad); 168 } else { 169 info->dir_pin = -ENODATA; 170 } 171 172 /* snapshot birth time, remains zero for v<=2 */ 173 if (struct_v >= 3) { 174 ceph_decode_need(p, end, sizeof(info->snap_btime), bad); 175 ceph_decode_copy(p, &info->snap_btime, 176 sizeof(info->snap_btime)); 177 } else { 178 memset(&info->snap_btime, 0, sizeof(info->snap_btime)); 179 } 180 181 /* snapshot count, remains zero for v<=3 */ 182 if (struct_v >= 4) { 183 ceph_decode_64_safe(p, end, info->rsnaps, bad); 184 } else { 185 info->rsnaps = 0; 186 } 187 188 if (struct_v >= 5) { 189 u32 alen; 190 191 ceph_decode_32_safe(p, end, alen, bad); 192 193 while (alen--) { 194 u32 len; 195 196 /* key */ 197 ceph_decode_32_safe(p, end, len, bad); 198 ceph_decode_skip_n(p, end, len, bad); 199 /* value */ 200 ceph_decode_32_safe(p, end, len, bad); 201 ceph_decode_skip_n(p, end, len, bad); 202 } 203 } 204 205 /* fscrypt flag -- ignore */ 206 if (struct_v >= 6) 207 ceph_decode_skip_8(p, end, bad); 208 209 info->fscrypt_auth = NULL; 210 info->fscrypt_auth_len = 0; 211 info->fscrypt_file = NULL; 212 info->fscrypt_file_len = 0; 213 if (struct_v >= 7) { 214 ceph_decode_32_safe(p, end, info->fscrypt_auth_len, bad); 215 if (info->fscrypt_auth_len) { 216 info->fscrypt_auth = kmalloc(info->fscrypt_auth_len, 217 GFP_KERNEL); 218 if (!info->fscrypt_auth) 219 return -ENOMEM; 220 ceph_decode_copy_safe(p, end, info->fscrypt_auth, 221 info->fscrypt_auth_len, bad); 222 } 223 ceph_decode_32_safe(p, end, info->fscrypt_file_len, bad); 224 if (info->fscrypt_file_len) { 225 info->fscrypt_file = kmalloc(info->fscrypt_file_len, 226 GFP_KERNEL); 227 if (!info->fscrypt_file) 228 return -ENOMEM; 229 ceph_decode_copy_safe(p, end, info->fscrypt_file, 230 info->fscrypt_file_len, bad); 231 } 232 } 233 *p = end; 234 } else { 235 /* legacy (unversioned) struct */ 236 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 237 ceph_decode_64_safe(p, end, info->inline_version, bad); 238 ceph_decode_32_safe(p, end, info->inline_len, bad); 239 ceph_decode_need(p, end, info->inline_len, bad); 240 info->inline_data = *p; 241 *p += info->inline_len; 242 } else 243 info->inline_version = CEPH_INLINE_NONE; 244 245 if (features & CEPH_FEATURE_MDS_QUOTA) { 246 err = parse_reply_info_quota(p, end, info); 247 if (err < 0) 248 goto out_bad; 249 } else { 250 info->max_bytes = 0; 251 info->max_files = 0; 252 } 253 254 info->pool_ns_len = 0; 255 info->pool_ns_data = NULL; 256 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) { 257 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 258 if (info->pool_ns_len > 0) { 259 ceph_decode_need(p, end, info->pool_ns_len, bad); 260 info->pool_ns_data = *p; 261 *p += info->pool_ns_len; 262 } 263 } 264 265 if (features & CEPH_FEATURE_FS_BTIME) { 266 ceph_decode_need(p, end, sizeof(info->btime), bad); 267 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 268 ceph_decode_64_safe(p, end, info->change_attr, bad); 269 } 270 271 info->dir_pin = -ENODATA; 272 /* info->snap_btime and info->rsnaps remain zero */ 273 } 274 return 0; 275 bad: 276 err = -EIO; 277 out_bad: 278 return err; 279 } 280 281 static int parse_reply_info_dir(void **p, void *end, 282 struct ceph_mds_reply_dirfrag **dirfrag, 283 u64 features) 284 { 285 if (features == (u64)-1) { 286 u8 struct_v, struct_compat; 287 u32 struct_len; 288 ceph_decode_8_safe(p, end, struct_v, bad); 289 ceph_decode_8_safe(p, end, struct_compat, bad); 290 /* struct_v is expected to be >= 1. we only understand 291 * encoding whose struct_compat == 1. */ 292 if (!struct_v || struct_compat != 1) 293 goto bad; 294 ceph_decode_32_safe(p, end, struct_len, bad); 295 ceph_decode_need(p, end, struct_len, bad); 296 end = *p + struct_len; 297 } 298 299 ceph_decode_need(p, end, sizeof(**dirfrag), bad); 300 *dirfrag = *p; 301 *p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist); 302 if (unlikely(*p > end)) 303 goto bad; 304 if (features == (u64)-1) 305 *p = end; 306 return 0; 307 bad: 308 return -EIO; 309 } 310 311 static int parse_reply_info_lease(void **p, void *end, 312 struct ceph_mds_reply_lease **lease, 313 u64 features, u32 *altname_len, u8 **altname) 314 { 315 u8 struct_v; 316 u32 struct_len; 317 void *lend; 318 319 if (features == (u64)-1) { 320 u8 struct_compat; 321 322 ceph_decode_8_safe(p, end, struct_v, bad); 323 ceph_decode_8_safe(p, end, struct_compat, bad); 324 325 /* struct_v is expected to be >= 1. we only understand 326 * encoding whose struct_compat == 1. */ 327 if (!struct_v || struct_compat != 1) 328 goto bad; 329 330 ceph_decode_32_safe(p, end, struct_len, bad); 331 } else { 332 struct_len = sizeof(**lease); 333 *altname_len = 0; 334 *altname = NULL; 335 } 336 337 lend = *p + struct_len; 338 ceph_decode_need(p, end, struct_len, bad); 339 *lease = *p; 340 *p += sizeof(**lease); 341 342 if (features == (u64)-1) { 343 if (struct_v >= 2) { 344 ceph_decode_32_safe(p, end, *altname_len, bad); 345 ceph_decode_need(p, end, *altname_len, bad); 346 *altname = *p; 347 *p += *altname_len; 348 } else { 349 *altname = NULL; 350 *altname_len = 0; 351 } 352 } 353 *p = lend; 354 return 0; 355 bad: 356 return -EIO; 357 } 358 359 /* 360 * parse a normal reply, which may contain a (dir+)dentry and/or a 361 * target inode. 362 */ 363 static int parse_reply_info_trace(void **p, void *end, 364 struct ceph_mds_reply_info_parsed *info, 365 u64 features) 366 { 367 int err; 368 369 if (info->head->is_dentry) { 370 err = parse_reply_info_in(p, end, &info->diri, features); 371 if (err < 0) 372 goto out_bad; 373 374 err = parse_reply_info_dir(p, end, &info->dirfrag, features); 375 if (err < 0) 376 goto out_bad; 377 378 ceph_decode_32_safe(p, end, info->dname_len, bad); 379 ceph_decode_need(p, end, info->dname_len, bad); 380 info->dname = *p; 381 *p += info->dname_len; 382 383 err = parse_reply_info_lease(p, end, &info->dlease, features, 384 &info->altname_len, &info->altname); 385 if (err < 0) 386 goto out_bad; 387 } 388 389 if (info->head->is_target) { 390 err = parse_reply_info_in(p, end, &info->targeti, features); 391 if (err < 0) 392 goto out_bad; 393 } 394 395 if (unlikely(*p != end)) 396 goto bad; 397 return 0; 398 399 bad: 400 err = -EIO; 401 out_bad: 402 pr_err("problem parsing mds trace %d\n", err); 403 return err; 404 } 405 406 /* 407 * parse readdir results 408 */ 409 static int parse_reply_info_readdir(void **p, void *end, 410 struct ceph_mds_request *req, 411 u64 features) 412 { 413 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 414 u32 num, i = 0; 415 int err; 416 417 err = parse_reply_info_dir(p, end, &info->dir_dir, features); 418 if (err < 0) 419 goto out_bad; 420 421 ceph_decode_need(p, end, sizeof(num) + 2, bad); 422 num = ceph_decode_32(p); 423 { 424 u16 flags = ceph_decode_16(p); 425 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END); 426 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE); 427 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER); 428 info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH); 429 } 430 if (num == 0) 431 goto done; 432 433 BUG_ON(!info->dir_entries); 434 if ((unsigned long)(info->dir_entries + num) > 435 (unsigned long)info->dir_entries + info->dir_buf_size) { 436 pr_err("dir contents are larger than expected\n"); 437 WARN_ON(1); 438 goto bad; 439 } 440 441 info->dir_nr = num; 442 while (num) { 443 struct inode *inode = d_inode(req->r_dentry); 444 struct ceph_inode_info *ci = ceph_inode(inode); 445 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 446 struct fscrypt_str tname = FSTR_INIT(NULL, 0); 447 struct fscrypt_str oname = FSTR_INIT(NULL, 0); 448 struct ceph_fname fname; 449 u32 altname_len, _name_len; 450 u8 *altname, *_name; 451 452 /* dentry */ 453 ceph_decode_32_safe(p, end, _name_len, bad); 454 ceph_decode_need(p, end, _name_len, bad); 455 _name = *p; 456 *p += _name_len; 457 dout("parsed dir dname '%.*s'\n", _name_len, _name); 458 459 if (info->hash_order) 460 rde->raw_hash = ceph_str_hash(ci->i_dir_layout.dl_dir_hash, 461 _name, _name_len); 462 463 /* dentry lease */ 464 err = parse_reply_info_lease(p, end, &rde->lease, features, 465 &altname_len, &altname); 466 if (err) 467 goto out_bad; 468 469 /* 470 * Try to dencrypt the dentry names and update them 471 * in the ceph_mds_reply_dir_entry struct. 472 */ 473 fname.dir = inode; 474 fname.name = _name; 475 fname.name_len = _name_len; 476 fname.ctext = altname; 477 fname.ctext_len = altname_len; 478 /* 479 * The _name_len maybe larger than altname_len, such as 480 * when the human readable name length is in range of 481 * (CEPH_NOHASH_NAME_MAX, CEPH_NOHASH_NAME_MAX + SHA256_DIGEST_SIZE), 482 * then the copy in ceph_fname_to_usr will corrupt the 483 * data if there has no encryption key. 484 * 485 * Just set the no_copy flag and then if there has no 486 * encryption key the oname.name will be assigned to 487 * _name always. 488 */ 489 fname.no_copy = true; 490 if (altname_len == 0) { 491 /* 492 * Set tname to _name, and this will be used 493 * to do the base64_decode in-place. It's 494 * safe because the decoded string should 495 * always be shorter, which is 3/4 of origin 496 * string. 497 */ 498 tname.name = _name; 499 500 /* 501 * Set oname to _name too, and this will be 502 * used to do the dencryption in-place. 503 */ 504 oname.name = _name; 505 oname.len = _name_len; 506 } else { 507 /* 508 * This will do the decryption only in-place 509 * from altname cryptext directly. 510 */ 511 oname.name = altname; 512 oname.len = altname_len; 513 } 514 rde->is_nokey = false; 515 err = ceph_fname_to_usr(&fname, &tname, &oname, &rde->is_nokey); 516 if (err) { 517 pr_err("%s unable to decode %.*s, got %d\n", __func__, 518 _name_len, _name, err); 519 goto out_bad; 520 } 521 rde->name = oname.name; 522 rde->name_len = oname.len; 523 524 /* inode */ 525 err = parse_reply_info_in(p, end, &rde->inode, features); 526 if (err < 0) 527 goto out_bad; 528 /* ceph_readdir_prepopulate() will update it */ 529 rde->offset = 0; 530 i++; 531 num--; 532 } 533 534 done: 535 /* Skip over any unrecognized fields */ 536 *p = end; 537 return 0; 538 539 bad: 540 err = -EIO; 541 out_bad: 542 pr_err("problem parsing dir contents %d\n", err); 543 return err; 544 } 545 546 /* 547 * parse fcntl F_GETLK results 548 */ 549 static int parse_reply_info_filelock(void **p, void *end, 550 struct ceph_mds_reply_info_parsed *info, 551 u64 features) 552 { 553 if (*p + sizeof(*info->filelock_reply) > end) 554 goto bad; 555 556 info->filelock_reply = *p; 557 558 /* Skip over any unrecognized fields */ 559 *p = end; 560 return 0; 561 bad: 562 return -EIO; 563 } 564 565 566 #if BITS_PER_LONG == 64 567 568 #define DELEGATED_INO_AVAILABLE xa_mk_value(1) 569 570 static int ceph_parse_deleg_inos(void **p, void *end, 571 struct ceph_mds_session *s) 572 { 573 u32 sets; 574 575 ceph_decode_32_safe(p, end, sets, bad); 576 dout("got %u sets of delegated inodes\n", sets); 577 while (sets--) { 578 u64 start, len; 579 580 ceph_decode_64_safe(p, end, start, bad); 581 ceph_decode_64_safe(p, end, len, bad); 582 583 /* Don't accept a delegation of system inodes */ 584 if (start < CEPH_INO_SYSTEM_BASE) { 585 pr_warn_ratelimited("ceph: ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n", 586 start, len); 587 continue; 588 } 589 while (len--) { 590 int err = xa_insert(&s->s_delegated_inos, start++, 591 DELEGATED_INO_AVAILABLE, 592 GFP_KERNEL); 593 if (!err) { 594 dout("added delegated inode 0x%llx\n", 595 start - 1); 596 } else if (err == -EBUSY) { 597 pr_warn("MDS delegated inode 0x%llx more than once.\n", 598 start - 1); 599 } else { 600 return err; 601 } 602 } 603 } 604 return 0; 605 bad: 606 return -EIO; 607 } 608 609 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 610 { 611 unsigned long ino; 612 void *val; 613 614 xa_for_each(&s->s_delegated_inos, ino, val) { 615 val = xa_erase(&s->s_delegated_inos, ino); 616 if (val == DELEGATED_INO_AVAILABLE) 617 return ino; 618 } 619 return 0; 620 } 621 622 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 623 { 624 return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE, 625 GFP_KERNEL); 626 } 627 #else /* BITS_PER_LONG == 64 */ 628 /* 629 * FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just 630 * ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top 631 * and bottom words? 632 */ 633 static int ceph_parse_deleg_inos(void **p, void *end, 634 struct ceph_mds_session *s) 635 { 636 u32 sets; 637 638 ceph_decode_32_safe(p, end, sets, bad); 639 if (sets) 640 ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad); 641 return 0; 642 bad: 643 return -EIO; 644 } 645 646 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 647 { 648 return 0; 649 } 650 651 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 652 { 653 return 0; 654 } 655 #endif /* BITS_PER_LONG == 64 */ 656 657 /* 658 * parse create results 659 */ 660 static int parse_reply_info_create(void **p, void *end, 661 struct ceph_mds_reply_info_parsed *info, 662 u64 features, struct ceph_mds_session *s) 663 { 664 int ret; 665 666 if (features == (u64)-1 || 667 (features & CEPH_FEATURE_REPLY_CREATE_INODE)) { 668 if (*p == end) { 669 /* Malformed reply? */ 670 info->has_create_ino = false; 671 } else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) { 672 info->has_create_ino = true; 673 /* struct_v, struct_compat, and len */ 674 ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad); 675 ceph_decode_64_safe(p, end, info->ino, bad); 676 ret = ceph_parse_deleg_inos(p, end, s); 677 if (ret) 678 return ret; 679 } else { 680 /* legacy */ 681 ceph_decode_64_safe(p, end, info->ino, bad); 682 info->has_create_ino = true; 683 } 684 } else { 685 if (*p != end) 686 goto bad; 687 } 688 689 /* Skip over any unrecognized fields */ 690 *p = end; 691 return 0; 692 bad: 693 return -EIO; 694 } 695 696 static int parse_reply_info_getvxattr(void **p, void *end, 697 struct ceph_mds_reply_info_parsed *info, 698 u64 features) 699 { 700 u32 value_len; 701 702 ceph_decode_skip_8(p, end, bad); /* skip current version: 1 */ 703 ceph_decode_skip_8(p, end, bad); /* skip first version: 1 */ 704 ceph_decode_skip_32(p, end, bad); /* skip payload length */ 705 706 ceph_decode_32_safe(p, end, value_len, bad); 707 708 if (value_len == end - *p) { 709 info->xattr_info.xattr_value = *p; 710 info->xattr_info.xattr_value_len = value_len; 711 *p = end; 712 return value_len; 713 } 714 bad: 715 return -EIO; 716 } 717 718 /* 719 * parse extra results 720 */ 721 static int parse_reply_info_extra(void **p, void *end, 722 struct ceph_mds_request *req, 723 u64 features, struct ceph_mds_session *s) 724 { 725 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 726 u32 op = le32_to_cpu(info->head->op); 727 728 if (op == CEPH_MDS_OP_GETFILELOCK) 729 return parse_reply_info_filelock(p, end, info, features); 730 else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP) 731 return parse_reply_info_readdir(p, end, req, features); 732 else if (op == CEPH_MDS_OP_CREATE) 733 return parse_reply_info_create(p, end, info, features, s); 734 else if (op == CEPH_MDS_OP_GETVXATTR) 735 return parse_reply_info_getvxattr(p, end, info, features); 736 else 737 return -EIO; 738 } 739 740 /* 741 * parse entire mds reply 742 */ 743 static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg, 744 struct ceph_mds_request *req, u64 features) 745 { 746 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 747 void *p, *end; 748 u32 len; 749 int err; 750 751 info->head = msg->front.iov_base; 752 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 753 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 754 755 /* trace */ 756 ceph_decode_32_safe(&p, end, len, bad); 757 if (len > 0) { 758 ceph_decode_need(&p, end, len, bad); 759 err = parse_reply_info_trace(&p, p+len, info, features); 760 if (err < 0) 761 goto out_bad; 762 } 763 764 /* extra */ 765 ceph_decode_32_safe(&p, end, len, bad); 766 if (len > 0) { 767 ceph_decode_need(&p, end, len, bad); 768 err = parse_reply_info_extra(&p, p+len, req, features, s); 769 if (err < 0) 770 goto out_bad; 771 } 772 773 /* snap blob */ 774 ceph_decode_32_safe(&p, end, len, bad); 775 info->snapblob_len = len; 776 info->snapblob = p; 777 p += len; 778 779 if (p != end) 780 goto bad; 781 return 0; 782 783 bad: 784 err = -EIO; 785 out_bad: 786 pr_err("mds parse_reply err %d\n", err); 787 ceph_msg_dump(msg); 788 return err; 789 } 790 791 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 792 { 793 int i; 794 795 kfree(info->diri.fscrypt_auth); 796 kfree(info->diri.fscrypt_file); 797 kfree(info->targeti.fscrypt_auth); 798 kfree(info->targeti.fscrypt_file); 799 if (!info->dir_entries) 800 return; 801 802 for (i = 0; i < info->dir_nr; i++) { 803 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 804 805 kfree(rde->inode.fscrypt_auth); 806 kfree(rde->inode.fscrypt_file); 807 } 808 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size)); 809 } 810 811 /* 812 * In async unlink case the kclient won't wait for the first reply 813 * from MDS and just drop all the links and unhash the dentry and then 814 * succeeds immediately. 815 * 816 * For any new create/link/rename,etc requests followed by using the 817 * same file names we must wait for the first reply of the inflight 818 * unlink request, or the MDS possibly will fail these following 819 * requests with -EEXIST if the inflight async unlink request was 820 * delayed for some reasons. 821 * 822 * And the worst case is that for the none async openc request it will 823 * successfully open the file if the CDentry hasn't been unlinked yet, 824 * but later the previous delayed async unlink request will remove the 825 * CDenty. That means the just created file is possiblly deleted later 826 * by accident. 827 * 828 * We need to wait for the inflight async unlink requests to finish 829 * when creating new files/directories by using the same file names. 830 */ 831 int ceph_wait_on_conflict_unlink(struct dentry *dentry) 832 { 833 struct ceph_fs_client *fsc = ceph_sb_to_fs_client(dentry->d_sb); 834 struct dentry *pdentry = dentry->d_parent; 835 struct dentry *udentry, *found = NULL; 836 struct ceph_dentry_info *di; 837 struct qstr dname; 838 u32 hash = dentry->d_name.hash; 839 int err; 840 841 dname.name = dentry->d_name.name; 842 dname.len = dentry->d_name.len; 843 844 rcu_read_lock(); 845 hash_for_each_possible_rcu(fsc->async_unlink_conflict, di, 846 hnode, hash) { 847 udentry = di->dentry; 848 849 spin_lock(&udentry->d_lock); 850 if (udentry->d_name.hash != hash) 851 goto next; 852 if (unlikely(udentry->d_parent != pdentry)) 853 goto next; 854 if (!hash_hashed(&di->hnode)) 855 goto next; 856 857 if (!test_bit(CEPH_DENTRY_ASYNC_UNLINK_BIT, &di->flags)) 858 pr_warn("%s dentry %p:%pd async unlink bit is not set\n", 859 __func__, dentry, dentry); 860 861 if (!d_same_name(udentry, pdentry, &dname)) 862 goto next; 863 864 found = dget_dlock(udentry); 865 spin_unlock(&udentry->d_lock); 866 break; 867 next: 868 spin_unlock(&udentry->d_lock); 869 } 870 rcu_read_unlock(); 871 872 if (likely(!found)) 873 return 0; 874 875 dout("%s dentry %p:%pd conflict with old %p:%pd\n", __func__, 876 dentry, dentry, found, found); 877 878 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_UNLINK_BIT, 879 TASK_KILLABLE); 880 dput(found); 881 return err; 882 } 883 884 885 /* 886 * sessions 887 */ 888 const char *ceph_session_state_name(int s) 889 { 890 switch (s) { 891 case CEPH_MDS_SESSION_NEW: return "new"; 892 case CEPH_MDS_SESSION_OPENING: return "opening"; 893 case CEPH_MDS_SESSION_OPEN: return "open"; 894 case CEPH_MDS_SESSION_HUNG: return "hung"; 895 case CEPH_MDS_SESSION_CLOSING: return "closing"; 896 case CEPH_MDS_SESSION_CLOSED: return "closed"; 897 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 898 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 899 case CEPH_MDS_SESSION_REJECTED: return "rejected"; 900 default: return "???"; 901 } 902 } 903 904 struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s) 905 { 906 if (refcount_inc_not_zero(&s->s_ref)) 907 return s; 908 return NULL; 909 } 910 911 void ceph_put_mds_session(struct ceph_mds_session *s) 912 { 913 if (IS_ERR_OR_NULL(s)) 914 return; 915 916 if (refcount_dec_and_test(&s->s_ref)) { 917 if (s->s_auth.authorizer) 918 ceph_auth_destroy_authorizer(s->s_auth.authorizer); 919 WARN_ON(mutex_is_locked(&s->s_mutex)); 920 xa_destroy(&s->s_delegated_inos); 921 kfree(s); 922 } 923 } 924 925 /* 926 * called under mdsc->mutex 927 */ 928 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 929 int mds) 930 { 931 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 932 return NULL; 933 return ceph_get_mds_session(mdsc->sessions[mds]); 934 } 935 936 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 937 { 938 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 939 return false; 940 else 941 return true; 942 } 943 944 static int __verify_registered_session(struct ceph_mds_client *mdsc, 945 struct ceph_mds_session *s) 946 { 947 if (s->s_mds >= mdsc->max_sessions || 948 mdsc->sessions[s->s_mds] != s) 949 return -ENOENT; 950 return 0; 951 } 952 953 /* 954 * create+register a new session for given mds. 955 * called under mdsc->mutex. 956 */ 957 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 958 int mds) 959 { 960 struct ceph_mds_session *s; 961 962 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) 963 return ERR_PTR(-EIO); 964 965 if (mds >= mdsc->mdsmap->possible_max_rank) 966 return ERR_PTR(-EINVAL); 967 968 s = kzalloc(sizeof(*s), GFP_NOFS); 969 if (!s) 970 return ERR_PTR(-ENOMEM); 971 972 if (mds >= mdsc->max_sessions) { 973 int newmax = 1 << get_count_order(mds + 1); 974 struct ceph_mds_session **sa; 975 976 dout("%s: realloc to %d\n", __func__, newmax); 977 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 978 if (!sa) 979 goto fail_realloc; 980 if (mdsc->sessions) { 981 memcpy(sa, mdsc->sessions, 982 mdsc->max_sessions * sizeof(void *)); 983 kfree(mdsc->sessions); 984 } 985 mdsc->sessions = sa; 986 mdsc->max_sessions = newmax; 987 } 988 989 dout("%s: mds%d\n", __func__, mds); 990 s->s_mdsc = mdsc; 991 s->s_mds = mds; 992 s->s_state = CEPH_MDS_SESSION_NEW; 993 mutex_init(&s->s_mutex); 994 995 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 996 997 atomic_set(&s->s_cap_gen, 1); 998 s->s_cap_ttl = jiffies - 1; 999 1000 spin_lock_init(&s->s_cap_lock); 1001 INIT_LIST_HEAD(&s->s_caps); 1002 refcount_set(&s->s_ref, 1); 1003 INIT_LIST_HEAD(&s->s_waiting); 1004 INIT_LIST_HEAD(&s->s_unsafe); 1005 xa_init(&s->s_delegated_inos); 1006 INIT_LIST_HEAD(&s->s_cap_releases); 1007 INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work); 1008 1009 INIT_LIST_HEAD(&s->s_cap_dirty); 1010 INIT_LIST_HEAD(&s->s_cap_flushing); 1011 1012 mdsc->sessions[mds] = s; 1013 atomic_inc(&mdsc->num_sessions); 1014 refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 1015 1016 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 1017 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 1018 1019 return s; 1020 1021 fail_realloc: 1022 kfree(s); 1023 return ERR_PTR(-ENOMEM); 1024 } 1025 1026 /* 1027 * called under mdsc->mutex 1028 */ 1029 static void __unregister_session(struct ceph_mds_client *mdsc, 1030 struct ceph_mds_session *s) 1031 { 1032 dout("__unregister_session mds%d %p\n", s->s_mds, s); 1033 BUG_ON(mdsc->sessions[s->s_mds] != s); 1034 mdsc->sessions[s->s_mds] = NULL; 1035 ceph_con_close(&s->s_con); 1036 ceph_put_mds_session(s); 1037 atomic_dec(&mdsc->num_sessions); 1038 } 1039 1040 /* 1041 * drop session refs in request. 1042 * 1043 * should be last request ref, or hold mdsc->mutex 1044 */ 1045 static void put_request_session(struct ceph_mds_request *req) 1046 { 1047 if (req->r_session) { 1048 ceph_put_mds_session(req->r_session); 1049 req->r_session = NULL; 1050 } 1051 } 1052 1053 void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc, 1054 void (*cb)(struct ceph_mds_session *), 1055 bool check_state) 1056 { 1057 int mds; 1058 1059 mutex_lock(&mdsc->mutex); 1060 for (mds = 0; mds < mdsc->max_sessions; ++mds) { 1061 struct ceph_mds_session *s; 1062 1063 s = __ceph_lookup_mds_session(mdsc, mds); 1064 if (!s) 1065 continue; 1066 1067 if (check_state && !check_session_state(s)) { 1068 ceph_put_mds_session(s); 1069 continue; 1070 } 1071 1072 mutex_unlock(&mdsc->mutex); 1073 cb(s); 1074 ceph_put_mds_session(s); 1075 mutex_lock(&mdsc->mutex); 1076 } 1077 mutex_unlock(&mdsc->mutex); 1078 } 1079 1080 void ceph_mdsc_release_request(struct kref *kref) 1081 { 1082 struct ceph_mds_request *req = container_of(kref, 1083 struct ceph_mds_request, 1084 r_kref); 1085 ceph_mdsc_release_dir_caps_no_check(req); 1086 destroy_reply_info(&req->r_reply_info); 1087 if (req->r_request) 1088 ceph_msg_put(req->r_request); 1089 if (req->r_reply) 1090 ceph_msg_put(req->r_reply); 1091 if (req->r_inode) { 1092 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1093 iput(req->r_inode); 1094 } 1095 if (req->r_parent) { 1096 ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN); 1097 iput(req->r_parent); 1098 } 1099 iput(req->r_target_inode); 1100 iput(req->r_new_inode); 1101 if (req->r_dentry) 1102 dput(req->r_dentry); 1103 if (req->r_old_dentry) 1104 dput(req->r_old_dentry); 1105 if (req->r_old_dentry_dir) { 1106 /* 1107 * track (and drop pins for) r_old_dentry_dir 1108 * separately, since r_old_dentry's d_parent may have 1109 * changed between the dir mutex being dropped and 1110 * this request being freed. 1111 */ 1112 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 1113 CEPH_CAP_PIN); 1114 iput(req->r_old_dentry_dir); 1115 } 1116 kfree(req->r_path1); 1117 kfree(req->r_path2); 1118 put_cred(req->r_cred); 1119 if (req->r_pagelist) 1120 ceph_pagelist_release(req->r_pagelist); 1121 kfree(req->r_fscrypt_auth); 1122 kfree(req->r_altname); 1123 put_request_session(req); 1124 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 1125 WARN_ON_ONCE(!list_empty(&req->r_wait)); 1126 kmem_cache_free(ceph_mds_request_cachep, req); 1127 } 1128 1129 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node) 1130 1131 /* 1132 * lookup session, bump ref if found. 1133 * 1134 * called under mdsc->mutex. 1135 */ 1136 static struct ceph_mds_request * 1137 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid) 1138 { 1139 struct ceph_mds_request *req; 1140 1141 req = lookup_request(&mdsc->request_tree, tid); 1142 if (req) 1143 ceph_mdsc_get_request(req); 1144 1145 return req; 1146 } 1147 1148 /* 1149 * Register an in-flight request, and assign a tid. Link to directory 1150 * are modifying (if any). 1151 * 1152 * Called under mdsc->mutex. 1153 */ 1154 static void __register_request(struct ceph_mds_client *mdsc, 1155 struct ceph_mds_request *req, 1156 struct inode *dir) 1157 { 1158 int ret = 0; 1159 1160 req->r_tid = ++mdsc->last_tid; 1161 if (req->r_num_caps) { 1162 ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation, 1163 req->r_num_caps); 1164 if (ret < 0) { 1165 pr_err("__register_request %p " 1166 "failed to reserve caps: %d\n", req, ret); 1167 /* set req->r_err to fail early from __do_request */ 1168 req->r_err = ret; 1169 return; 1170 } 1171 } 1172 dout("__register_request %p tid %lld\n", req, req->r_tid); 1173 ceph_mdsc_get_request(req); 1174 insert_request(&mdsc->request_tree, req); 1175 1176 req->r_cred = get_current_cred(); 1177 1178 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) 1179 mdsc->oldest_tid = req->r_tid; 1180 1181 if (dir) { 1182 struct ceph_inode_info *ci = ceph_inode(dir); 1183 1184 ihold(dir); 1185 req->r_unsafe_dir = dir; 1186 spin_lock(&ci->i_unsafe_lock); 1187 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 1188 spin_unlock(&ci->i_unsafe_lock); 1189 } 1190 } 1191 1192 static void __unregister_request(struct ceph_mds_client *mdsc, 1193 struct ceph_mds_request *req) 1194 { 1195 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 1196 1197 /* Never leave an unregistered request on an unsafe list! */ 1198 list_del_init(&req->r_unsafe_item); 1199 1200 if (req->r_tid == mdsc->oldest_tid) { 1201 struct rb_node *p = rb_next(&req->r_node); 1202 mdsc->oldest_tid = 0; 1203 while (p) { 1204 struct ceph_mds_request *next_req = 1205 rb_entry(p, struct ceph_mds_request, r_node); 1206 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { 1207 mdsc->oldest_tid = next_req->r_tid; 1208 break; 1209 } 1210 p = rb_next(p); 1211 } 1212 } 1213 1214 erase_request(&mdsc->request_tree, req); 1215 1216 if (req->r_unsafe_dir) { 1217 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 1218 spin_lock(&ci->i_unsafe_lock); 1219 list_del_init(&req->r_unsafe_dir_item); 1220 spin_unlock(&ci->i_unsafe_lock); 1221 } 1222 if (req->r_target_inode && 1223 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 1224 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 1225 spin_lock(&ci->i_unsafe_lock); 1226 list_del_init(&req->r_unsafe_target_item); 1227 spin_unlock(&ci->i_unsafe_lock); 1228 } 1229 1230 if (req->r_unsafe_dir) { 1231 iput(req->r_unsafe_dir); 1232 req->r_unsafe_dir = NULL; 1233 } 1234 1235 complete_all(&req->r_safe_completion); 1236 1237 ceph_mdsc_put_request(req); 1238 } 1239 1240 /* 1241 * Walk back up the dentry tree until we hit a dentry representing a 1242 * non-snapshot inode. We do this using the rcu_read_lock (which must be held 1243 * when calling this) to ensure that the objects won't disappear while we're 1244 * working with them. Once we hit a candidate dentry, we attempt to take a 1245 * reference to it, and return that as the result. 1246 */ 1247 static struct inode *get_nonsnap_parent(struct dentry *dentry) 1248 { 1249 struct inode *inode = NULL; 1250 1251 while (dentry && !IS_ROOT(dentry)) { 1252 inode = d_inode_rcu(dentry); 1253 if (!inode || ceph_snap(inode) == CEPH_NOSNAP) 1254 break; 1255 dentry = dentry->d_parent; 1256 } 1257 if (inode) 1258 inode = igrab(inode); 1259 return inode; 1260 } 1261 1262 /* 1263 * Choose mds to send request to next. If there is a hint set in the 1264 * request (e.g., due to a prior forward hint from the mds), use that. 1265 * Otherwise, consult frag tree and/or caps to identify the 1266 * appropriate mds. If all else fails, choose randomly. 1267 * 1268 * Called under mdsc->mutex. 1269 */ 1270 static int __choose_mds(struct ceph_mds_client *mdsc, 1271 struct ceph_mds_request *req, 1272 bool *random) 1273 { 1274 struct inode *inode; 1275 struct ceph_inode_info *ci; 1276 struct ceph_cap *cap; 1277 int mode = req->r_direct_mode; 1278 int mds = -1; 1279 u32 hash = req->r_direct_hash; 1280 bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags); 1281 1282 if (random) 1283 *random = false; 1284 1285 /* 1286 * is there a specific mds we should try? ignore hint if we have 1287 * no session and the mds is not up (active or recovering). 1288 */ 1289 if (req->r_resend_mds >= 0 && 1290 (__have_session(mdsc, req->r_resend_mds) || 1291 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 1292 dout("%s using resend_mds mds%d\n", __func__, 1293 req->r_resend_mds); 1294 return req->r_resend_mds; 1295 } 1296 1297 if (mode == USE_RANDOM_MDS) 1298 goto random; 1299 1300 inode = NULL; 1301 if (req->r_inode) { 1302 if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) { 1303 inode = req->r_inode; 1304 ihold(inode); 1305 } else { 1306 /* req->r_dentry is non-null for LSSNAP request */ 1307 rcu_read_lock(); 1308 inode = get_nonsnap_parent(req->r_dentry); 1309 rcu_read_unlock(); 1310 dout("%s using snapdir's parent %p\n", __func__, inode); 1311 } 1312 } else if (req->r_dentry) { 1313 /* ignore race with rename; old or new d_parent is okay */ 1314 struct dentry *parent; 1315 struct inode *dir; 1316 1317 rcu_read_lock(); 1318 parent = READ_ONCE(req->r_dentry->d_parent); 1319 dir = req->r_parent ? : d_inode_rcu(parent); 1320 1321 if (!dir || dir->i_sb != mdsc->fsc->sb) { 1322 /* not this fs or parent went negative */ 1323 inode = d_inode(req->r_dentry); 1324 if (inode) 1325 ihold(inode); 1326 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 1327 /* direct snapped/virtual snapdir requests 1328 * based on parent dir inode */ 1329 inode = get_nonsnap_parent(parent); 1330 dout("%s using nonsnap parent %p\n", __func__, inode); 1331 } else { 1332 /* dentry target */ 1333 inode = d_inode(req->r_dentry); 1334 if (!inode || mode == USE_AUTH_MDS) { 1335 /* dir + name */ 1336 inode = igrab(dir); 1337 hash = ceph_dentry_hash(dir, req->r_dentry); 1338 is_hash = true; 1339 } else { 1340 ihold(inode); 1341 } 1342 } 1343 rcu_read_unlock(); 1344 } 1345 1346 dout("%s %p is_hash=%d (0x%x) mode %d\n", __func__, inode, (int)is_hash, 1347 hash, mode); 1348 if (!inode) 1349 goto random; 1350 ci = ceph_inode(inode); 1351 1352 if (is_hash && S_ISDIR(inode->i_mode)) { 1353 struct ceph_inode_frag frag; 1354 int found; 1355 1356 ceph_choose_frag(ci, hash, &frag, &found); 1357 if (found) { 1358 if (mode == USE_ANY_MDS && frag.ndist > 0) { 1359 u8 r; 1360 1361 /* choose a random replica */ 1362 get_random_bytes(&r, 1); 1363 r %= frag.ndist; 1364 mds = frag.dist[r]; 1365 dout("%s %p %llx.%llx frag %u mds%d (%d/%d)\n", 1366 __func__, inode, ceph_vinop(inode), 1367 frag.frag, mds, (int)r, frag.ndist); 1368 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1369 CEPH_MDS_STATE_ACTIVE && 1370 !ceph_mdsmap_is_laggy(mdsc->mdsmap, mds)) 1371 goto out; 1372 } 1373 1374 /* since this file/dir wasn't known to be 1375 * replicated, then we want to look for the 1376 * authoritative mds. */ 1377 if (frag.mds >= 0) { 1378 /* choose auth mds */ 1379 mds = frag.mds; 1380 dout("%s %p %llx.%llx frag %u mds%d (auth)\n", 1381 __func__, inode, ceph_vinop(inode), 1382 frag.frag, mds); 1383 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1384 CEPH_MDS_STATE_ACTIVE) { 1385 if (!ceph_mdsmap_is_laggy(mdsc->mdsmap, 1386 mds)) 1387 goto out; 1388 } 1389 } 1390 mode = USE_AUTH_MDS; 1391 } 1392 } 1393 1394 spin_lock(&ci->i_ceph_lock); 1395 cap = NULL; 1396 if (mode == USE_AUTH_MDS) 1397 cap = ci->i_auth_cap; 1398 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 1399 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 1400 if (!cap) { 1401 spin_unlock(&ci->i_ceph_lock); 1402 iput(inode); 1403 goto random; 1404 } 1405 mds = cap->session->s_mds; 1406 dout("%s %p %llx.%llx mds%d (%scap %p)\n", __func__, 1407 inode, ceph_vinop(inode), mds, 1408 cap == ci->i_auth_cap ? "auth " : "", cap); 1409 spin_unlock(&ci->i_ceph_lock); 1410 out: 1411 iput(inode); 1412 return mds; 1413 1414 random: 1415 if (random) 1416 *random = true; 1417 1418 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 1419 dout("%s chose random mds%d\n", __func__, mds); 1420 return mds; 1421 } 1422 1423 1424 /* 1425 * session messages 1426 */ 1427 struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq) 1428 { 1429 struct ceph_msg *msg; 1430 struct ceph_mds_session_head *h; 1431 1432 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 1433 false); 1434 if (!msg) { 1435 pr_err("ENOMEM creating session %s msg\n", 1436 ceph_session_op_name(op)); 1437 return NULL; 1438 } 1439 h = msg->front.iov_base; 1440 h->op = cpu_to_le32(op); 1441 h->seq = cpu_to_le64(seq); 1442 1443 return msg; 1444 } 1445 1446 static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED; 1447 #define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8) 1448 static int encode_supported_features(void **p, void *end) 1449 { 1450 static const size_t count = ARRAY_SIZE(feature_bits); 1451 1452 if (count > 0) { 1453 size_t i; 1454 size_t size = FEATURE_BYTES(count); 1455 unsigned long bit; 1456 1457 if (WARN_ON_ONCE(*p + 4 + size > end)) 1458 return -ERANGE; 1459 1460 ceph_encode_32(p, size); 1461 memset(*p, 0, size); 1462 for (i = 0; i < count; i++) { 1463 bit = feature_bits[i]; 1464 ((unsigned char *)(*p))[bit / 8] |= BIT(bit % 8); 1465 } 1466 *p += size; 1467 } else { 1468 if (WARN_ON_ONCE(*p + 4 > end)) 1469 return -ERANGE; 1470 1471 ceph_encode_32(p, 0); 1472 } 1473 1474 return 0; 1475 } 1476 1477 static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED; 1478 #define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8) 1479 static int encode_metric_spec(void **p, void *end) 1480 { 1481 static const size_t count = ARRAY_SIZE(metric_bits); 1482 1483 /* header */ 1484 if (WARN_ON_ONCE(*p + 2 > end)) 1485 return -ERANGE; 1486 1487 ceph_encode_8(p, 1); /* version */ 1488 ceph_encode_8(p, 1); /* compat */ 1489 1490 if (count > 0) { 1491 size_t i; 1492 size_t size = METRIC_BYTES(count); 1493 1494 if (WARN_ON_ONCE(*p + 4 + 4 + size > end)) 1495 return -ERANGE; 1496 1497 /* metric spec info length */ 1498 ceph_encode_32(p, 4 + size); 1499 1500 /* metric spec */ 1501 ceph_encode_32(p, size); 1502 memset(*p, 0, size); 1503 for (i = 0; i < count; i++) 1504 ((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8); 1505 *p += size; 1506 } else { 1507 if (WARN_ON_ONCE(*p + 4 + 4 > end)) 1508 return -ERANGE; 1509 1510 /* metric spec info length */ 1511 ceph_encode_32(p, 4); 1512 /* metric spec */ 1513 ceph_encode_32(p, 0); 1514 } 1515 1516 return 0; 1517 } 1518 1519 /* 1520 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 1521 * to include additional client metadata fields. 1522 */ 1523 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq) 1524 { 1525 struct ceph_msg *msg; 1526 struct ceph_mds_session_head *h; 1527 int i; 1528 int extra_bytes = 0; 1529 int metadata_key_count = 0; 1530 struct ceph_options *opt = mdsc->fsc->client->options; 1531 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options; 1532 size_t size, count; 1533 void *p, *end; 1534 int ret; 1535 1536 const char* metadata[][2] = { 1537 {"hostname", mdsc->nodename}, 1538 {"kernel_version", init_utsname()->release}, 1539 {"entity_id", opt->name ? : ""}, 1540 {"root", fsopt->server_path ? : "/"}, 1541 {NULL, NULL} 1542 }; 1543 1544 /* Calculate serialized length of metadata */ 1545 extra_bytes = 4; /* map length */ 1546 for (i = 0; metadata[i][0]; ++i) { 1547 extra_bytes += 8 + strlen(metadata[i][0]) + 1548 strlen(metadata[i][1]); 1549 metadata_key_count++; 1550 } 1551 1552 /* supported feature */ 1553 size = 0; 1554 count = ARRAY_SIZE(feature_bits); 1555 if (count > 0) 1556 size = FEATURE_BYTES(count); 1557 extra_bytes += 4 + size; 1558 1559 /* metric spec */ 1560 size = 0; 1561 count = ARRAY_SIZE(metric_bits); 1562 if (count > 0) 1563 size = METRIC_BYTES(count); 1564 extra_bytes += 2 + 4 + 4 + size; 1565 1566 /* Allocate the message */ 1567 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes, 1568 GFP_NOFS, false); 1569 if (!msg) { 1570 pr_err("ENOMEM creating session open msg\n"); 1571 return ERR_PTR(-ENOMEM); 1572 } 1573 p = msg->front.iov_base; 1574 end = p + msg->front.iov_len; 1575 1576 h = p; 1577 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN); 1578 h->seq = cpu_to_le64(seq); 1579 1580 /* 1581 * Serialize client metadata into waiting buffer space, using 1582 * the format that userspace expects for map<string, string> 1583 * 1584 * ClientSession messages with metadata are v4 1585 */ 1586 msg->hdr.version = cpu_to_le16(4); 1587 msg->hdr.compat_version = cpu_to_le16(1); 1588 1589 /* The write pointer, following the session_head structure */ 1590 p += sizeof(*h); 1591 1592 /* Number of entries in the map */ 1593 ceph_encode_32(&p, metadata_key_count); 1594 1595 /* Two length-prefixed strings for each entry in the map */ 1596 for (i = 0; metadata[i][0]; ++i) { 1597 size_t const key_len = strlen(metadata[i][0]); 1598 size_t const val_len = strlen(metadata[i][1]); 1599 1600 ceph_encode_32(&p, key_len); 1601 memcpy(p, metadata[i][0], key_len); 1602 p += key_len; 1603 ceph_encode_32(&p, val_len); 1604 memcpy(p, metadata[i][1], val_len); 1605 p += val_len; 1606 } 1607 1608 ret = encode_supported_features(&p, end); 1609 if (ret) { 1610 pr_err("encode_supported_features failed!\n"); 1611 ceph_msg_put(msg); 1612 return ERR_PTR(ret); 1613 } 1614 1615 ret = encode_metric_spec(&p, end); 1616 if (ret) { 1617 pr_err("encode_metric_spec failed!\n"); 1618 ceph_msg_put(msg); 1619 return ERR_PTR(ret); 1620 } 1621 1622 msg->front.iov_len = p - msg->front.iov_base; 1623 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1624 1625 return msg; 1626 } 1627 1628 /* 1629 * send session open request. 1630 * 1631 * called under mdsc->mutex 1632 */ 1633 static int __open_session(struct ceph_mds_client *mdsc, 1634 struct ceph_mds_session *session) 1635 { 1636 struct ceph_msg *msg; 1637 int mstate; 1638 int mds = session->s_mds; 1639 1640 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) 1641 return -EIO; 1642 1643 /* wait for mds to go active? */ 1644 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 1645 dout("open_session to mds%d (%s)\n", mds, 1646 ceph_mds_state_name(mstate)); 1647 session->s_state = CEPH_MDS_SESSION_OPENING; 1648 session->s_renew_requested = jiffies; 1649 1650 /* send connect message */ 1651 msg = create_session_open_msg(mdsc, session->s_seq); 1652 if (IS_ERR(msg)) 1653 return PTR_ERR(msg); 1654 ceph_con_send(&session->s_con, msg); 1655 return 0; 1656 } 1657 1658 /* 1659 * open sessions for any export targets for the given mds 1660 * 1661 * called under mdsc->mutex 1662 */ 1663 static struct ceph_mds_session * 1664 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 1665 { 1666 struct ceph_mds_session *session; 1667 int ret; 1668 1669 session = __ceph_lookup_mds_session(mdsc, target); 1670 if (!session) { 1671 session = register_session(mdsc, target); 1672 if (IS_ERR(session)) 1673 return session; 1674 } 1675 if (session->s_state == CEPH_MDS_SESSION_NEW || 1676 session->s_state == CEPH_MDS_SESSION_CLOSING) { 1677 ret = __open_session(mdsc, session); 1678 if (ret) 1679 return ERR_PTR(ret); 1680 } 1681 1682 return session; 1683 } 1684 1685 struct ceph_mds_session * 1686 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 1687 { 1688 struct ceph_mds_session *session; 1689 1690 dout("open_export_target_session to mds%d\n", target); 1691 1692 mutex_lock(&mdsc->mutex); 1693 session = __open_export_target_session(mdsc, target); 1694 mutex_unlock(&mdsc->mutex); 1695 1696 return session; 1697 } 1698 1699 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 1700 struct ceph_mds_session *session) 1701 { 1702 struct ceph_mds_info *mi; 1703 struct ceph_mds_session *ts; 1704 int i, mds = session->s_mds; 1705 1706 if (mds >= mdsc->mdsmap->possible_max_rank) 1707 return; 1708 1709 mi = &mdsc->mdsmap->m_info[mds]; 1710 dout("open_export_target_sessions for mds%d (%d targets)\n", 1711 session->s_mds, mi->num_export_targets); 1712 1713 for (i = 0; i < mi->num_export_targets; i++) { 1714 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 1715 ceph_put_mds_session(ts); 1716 } 1717 } 1718 1719 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 1720 struct ceph_mds_session *session) 1721 { 1722 mutex_lock(&mdsc->mutex); 1723 __open_export_target_sessions(mdsc, session); 1724 mutex_unlock(&mdsc->mutex); 1725 } 1726 1727 /* 1728 * session caps 1729 */ 1730 1731 static void detach_cap_releases(struct ceph_mds_session *session, 1732 struct list_head *target) 1733 { 1734 lockdep_assert_held(&session->s_cap_lock); 1735 1736 list_splice_init(&session->s_cap_releases, target); 1737 session->s_num_cap_releases = 0; 1738 dout("dispose_cap_releases mds%d\n", session->s_mds); 1739 } 1740 1741 static void dispose_cap_releases(struct ceph_mds_client *mdsc, 1742 struct list_head *dispose) 1743 { 1744 while (!list_empty(dispose)) { 1745 struct ceph_cap *cap; 1746 /* zero out the in-progress message */ 1747 cap = list_first_entry(dispose, struct ceph_cap, session_caps); 1748 list_del(&cap->session_caps); 1749 ceph_put_cap(mdsc, cap); 1750 } 1751 } 1752 1753 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1754 struct ceph_mds_session *session) 1755 { 1756 struct ceph_mds_request *req; 1757 struct rb_node *p; 1758 1759 dout("cleanup_session_requests mds%d\n", session->s_mds); 1760 mutex_lock(&mdsc->mutex); 1761 while (!list_empty(&session->s_unsafe)) { 1762 req = list_first_entry(&session->s_unsafe, 1763 struct ceph_mds_request, r_unsafe_item); 1764 pr_warn_ratelimited(" dropping unsafe request %llu\n", 1765 req->r_tid); 1766 if (req->r_target_inode) 1767 mapping_set_error(req->r_target_inode->i_mapping, -EIO); 1768 if (req->r_unsafe_dir) 1769 mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO); 1770 __unregister_request(mdsc, req); 1771 } 1772 /* zero r_attempts, so kick_requests() will re-send requests */ 1773 p = rb_first(&mdsc->request_tree); 1774 while (p) { 1775 req = rb_entry(p, struct ceph_mds_request, r_node); 1776 p = rb_next(p); 1777 if (req->r_session && 1778 req->r_session->s_mds == session->s_mds) 1779 req->r_attempts = 0; 1780 } 1781 mutex_unlock(&mdsc->mutex); 1782 } 1783 1784 /* 1785 * Helper to safely iterate over all caps associated with a session, with 1786 * special care taken to handle a racing __ceph_remove_cap(). 1787 * 1788 * Caller must hold session s_mutex. 1789 */ 1790 int ceph_iterate_session_caps(struct ceph_mds_session *session, 1791 int (*cb)(struct inode *, int mds, void *), 1792 void *arg) 1793 { 1794 struct list_head *p; 1795 struct ceph_cap *cap; 1796 struct inode *inode, *last_inode = NULL; 1797 struct ceph_cap *old_cap = NULL; 1798 int ret; 1799 1800 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 1801 spin_lock(&session->s_cap_lock); 1802 p = session->s_caps.next; 1803 while (p != &session->s_caps) { 1804 int mds; 1805 1806 cap = list_entry(p, struct ceph_cap, session_caps); 1807 inode = igrab(&cap->ci->netfs.inode); 1808 if (!inode) { 1809 p = p->next; 1810 continue; 1811 } 1812 session->s_cap_iterator = cap; 1813 mds = cap->mds; 1814 spin_unlock(&session->s_cap_lock); 1815 1816 if (last_inode) { 1817 iput(last_inode); 1818 last_inode = NULL; 1819 } 1820 if (old_cap) { 1821 ceph_put_cap(session->s_mdsc, old_cap); 1822 old_cap = NULL; 1823 } 1824 1825 ret = cb(inode, mds, arg); 1826 last_inode = inode; 1827 1828 spin_lock(&session->s_cap_lock); 1829 p = p->next; 1830 if (!cap->ci) { 1831 dout("iterate_session_caps finishing cap %p removal\n", 1832 cap); 1833 BUG_ON(cap->session != session); 1834 cap->session = NULL; 1835 list_del_init(&cap->session_caps); 1836 session->s_nr_caps--; 1837 atomic64_dec(&session->s_mdsc->metric.total_caps); 1838 if (cap->queue_release) 1839 __ceph_queue_cap_release(session, cap); 1840 else 1841 old_cap = cap; /* put_cap it w/o locks held */ 1842 } 1843 if (ret < 0) 1844 goto out; 1845 } 1846 ret = 0; 1847 out: 1848 session->s_cap_iterator = NULL; 1849 spin_unlock(&session->s_cap_lock); 1850 1851 iput(last_inode); 1852 if (old_cap) 1853 ceph_put_cap(session->s_mdsc, old_cap); 1854 1855 return ret; 1856 } 1857 1858 static int remove_session_caps_cb(struct inode *inode, int mds, void *arg) 1859 { 1860 struct ceph_inode_info *ci = ceph_inode(inode); 1861 bool invalidate = false; 1862 struct ceph_cap *cap; 1863 int iputs = 0; 1864 1865 spin_lock(&ci->i_ceph_lock); 1866 cap = __get_cap_for_mds(ci, mds); 1867 if (cap) { 1868 dout(" removing cap %p, ci is %p, inode is %p\n", 1869 cap, ci, &ci->netfs.inode); 1870 1871 iputs = ceph_purge_inode_cap(inode, cap, &invalidate); 1872 } 1873 spin_unlock(&ci->i_ceph_lock); 1874 1875 if (cap) 1876 wake_up_all(&ci->i_cap_wq); 1877 if (invalidate) 1878 ceph_queue_invalidate(inode); 1879 while (iputs--) 1880 iput(inode); 1881 return 0; 1882 } 1883 1884 /* 1885 * caller must hold session s_mutex 1886 */ 1887 static void remove_session_caps(struct ceph_mds_session *session) 1888 { 1889 struct ceph_fs_client *fsc = session->s_mdsc->fsc; 1890 struct super_block *sb = fsc->sb; 1891 LIST_HEAD(dispose); 1892 1893 dout("remove_session_caps on %p\n", session); 1894 ceph_iterate_session_caps(session, remove_session_caps_cb, fsc); 1895 1896 wake_up_all(&fsc->mdsc->cap_flushing_wq); 1897 1898 spin_lock(&session->s_cap_lock); 1899 if (session->s_nr_caps > 0) { 1900 struct inode *inode; 1901 struct ceph_cap *cap, *prev = NULL; 1902 struct ceph_vino vino; 1903 /* 1904 * iterate_session_caps() skips inodes that are being 1905 * deleted, we need to wait until deletions are complete. 1906 * __wait_on_freeing_inode() is designed for the job, 1907 * but it is not exported, so use lookup inode function 1908 * to access it. 1909 */ 1910 while (!list_empty(&session->s_caps)) { 1911 cap = list_entry(session->s_caps.next, 1912 struct ceph_cap, session_caps); 1913 if (cap == prev) 1914 break; 1915 prev = cap; 1916 vino = cap->ci->i_vino; 1917 spin_unlock(&session->s_cap_lock); 1918 1919 inode = ceph_find_inode(sb, vino); 1920 iput(inode); 1921 1922 spin_lock(&session->s_cap_lock); 1923 } 1924 } 1925 1926 // drop cap expires and unlock s_cap_lock 1927 detach_cap_releases(session, &dispose); 1928 1929 BUG_ON(session->s_nr_caps > 0); 1930 BUG_ON(!list_empty(&session->s_cap_flushing)); 1931 spin_unlock(&session->s_cap_lock); 1932 dispose_cap_releases(session->s_mdsc, &dispose); 1933 } 1934 1935 enum { 1936 RECONNECT, 1937 RENEWCAPS, 1938 FORCE_RO, 1939 }; 1940 1941 /* 1942 * wake up any threads waiting on this session's caps. if the cap is 1943 * old (didn't get renewed on the client reconnect), remove it now. 1944 * 1945 * caller must hold s_mutex. 1946 */ 1947 static int wake_up_session_cb(struct inode *inode, int mds, void *arg) 1948 { 1949 struct ceph_inode_info *ci = ceph_inode(inode); 1950 unsigned long ev = (unsigned long)arg; 1951 1952 if (ev == RECONNECT) { 1953 spin_lock(&ci->i_ceph_lock); 1954 ci->i_wanted_max_size = 0; 1955 ci->i_requested_max_size = 0; 1956 spin_unlock(&ci->i_ceph_lock); 1957 } else if (ev == RENEWCAPS) { 1958 struct ceph_cap *cap; 1959 1960 spin_lock(&ci->i_ceph_lock); 1961 cap = __get_cap_for_mds(ci, mds); 1962 /* mds did not re-issue stale cap */ 1963 if (cap && cap->cap_gen < atomic_read(&cap->session->s_cap_gen)) 1964 cap->issued = cap->implemented = CEPH_CAP_PIN; 1965 spin_unlock(&ci->i_ceph_lock); 1966 } else if (ev == FORCE_RO) { 1967 } 1968 wake_up_all(&ci->i_cap_wq); 1969 return 0; 1970 } 1971 1972 static void wake_up_session_caps(struct ceph_mds_session *session, int ev) 1973 { 1974 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1975 ceph_iterate_session_caps(session, wake_up_session_cb, 1976 (void *)(unsigned long)ev); 1977 } 1978 1979 /* 1980 * Send periodic message to MDS renewing all currently held caps. The 1981 * ack will reset the expiration for all caps from this session. 1982 * 1983 * caller holds s_mutex 1984 */ 1985 static int send_renew_caps(struct ceph_mds_client *mdsc, 1986 struct ceph_mds_session *session) 1987 { 1988 struct ceph_msg *msg; 1989 int state; 1990 1991 if (time_after_eq(jiffies, session->s_cap_ttl) && 1992 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1993 pr_info("mds%d caps stale\n", session->s_mds); 1994 session->s_renew_requested = jiffies; 1995 1996 /* do not try to renew caps until a recovering mds has reconnected 1997 * with its clients. */ 1998 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1999 if (state < CEPH_MDS_STATE_RECONNECT) { 2000 dout("send_renew_caps ignoring mds%d (%s)\n", 2001 session->s_mds, ceph_mds_state_name(state)); 2002 return 0; 2003 } 2004 2005 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 2006 ceph_mds_state_name(state)); 2007 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 2008 ++session->s_renew_seq); 2009 if (!msg) 2010 return -ENOMEM; 2011 ceph_con_send(&session->s_con, msg); 2012 return 0; 2013 } 2014 2015 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 2016 struct ceph_mds_session *session, u64 seq) 2017 { 2018 struct ceph_msg *msg; 2019 2020 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 2021 session->s_mds, ceph_session_state_name(session->s_state), seq); 2022 msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 2023 if (!msg) 2024 return -ENOMEM; 2025 ceph_con_send(&session->s_con, msg); 2026 return 0; 2027 } 2028 2029 2030 /* 2031 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 2032 * 2033 * Called under session->s_mutex 2034 */ 2035 static void renewed_caps(struct ceph_mds_client *mdsc, 2036 struct ceph_mds_session *session, int is_renew) 2037 { 2038 int was_stale; 2039 int wake = 0; 2040 2041 spin_lock(&session->s_cap_lock); 2042 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 2043 2044 session->s_cap_ttl = session->s_renew_requested + 2045 mdsc->mdsmap->m_session_timeout*HZ; 2046 2047 if (was_stale) { 2048 if (time_before(jiffies, session->s_cap_ttl)) { 2049 pr_info("mds%d caps renewed\n", session->s_mds); 2050 wake = 1; 2051 } else { 2052 pr_info("mds%d caps still stale\n", session->s_mds); 2053 } 2054 } 2055 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 2056 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 2057 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 2058 spin_unlock(&session->s_cap_lock); 2059 2060 if (wake) 2061 wake_up_session_caps(session, RENEWCAPS); 2062 } 2063 2064 /* 2065 * send a session close request 2066 */ 2067 static int request_close_session(struct ceph_mds_session *session) 2068 { 2069 struct ceph_msg *msg; 2070 2071 dout("request_close_session mds%d state %s seq %lld\n", 2072 session->s_mds, ceph_session_state_name(session->s_state), 2073 session->s_seq); 2074 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE, 2075 session->s_seq); 2076 if (!msg) 2077 return -ENOMEM; 2078 ceph_con_send(&session->s_con, msg); 2079 return 1; 2080 } 2081 2082 /* 2083 * Called with s_mutex held. 2084 */ 2085 static int __close_session(struct ceph_mds_client *mdsc, 2086 struct ceph_mds_session *session) 2087 { 2088 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 2089 return 0; 2090 session->s_state = CEPH_MDS_SESSION_CLOSING; 2091 return request_close_session(session); 2092 } 2093 2094 static bool drop_negative_children(struct dentry *dentry) 2095 { 2096 struct dentry *child; 2097 bool all_negative = true; 2098 2099 if (!d_is_dir(dentry)) 2100 goto out; 2101 2102 spin_lock(&dentry->d_lock); 2103 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 2104 if (d_really_is_positive(child)) { 2105 all_negative = false; 2106 break; 2107 } 2108 } 2109 spin_unlock(&dentry->d_lock); 2110 2111 if (all_negative) 2112 shrink_dcache_parent(dentry); 2113 out: 2114 return all_negative; 2115 } 2116 2117 /* 2118 * Trim old(er) caps. 2119 * 2120 * Because we can't cache an inode without one or more caps, we do 2121 * this indirectly: if a cap is unused, we prune its aliases, at which 2122 * point the inode will hopefully get dropped to. 2123 * 2124 * Yes, this is a bit sloppy. Our only real goal here is to respond to 2125 * memory pressure from the MDS, though, so it needn't be perfect. 2126 */ 2127 static int trim_caps_cb(struct inode *inode, int mds, void *arg) 2128 { 2129 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 2130 int *remaining = arg; 2131 struct ceph_inode_info *ci = ceph_inode(inode); 2132 int used, wanted, oissued, mine; 2133 struct ceph_cap *cap; 2134 2135 if (*remaining <= 0) 2136 return -1; 2137 2138 spin_lock(&ci->i_ceph_lock); 2139 cap = __get_cap_for_mds(ci, mds); 2140 if (!cap) { 2141 spin_unlock(&ci->i_ceph_lock); 2142 return 0; 2143 } 2144 mine = cap->issued | cap->implemented; 2145 used = __ceph_caps_used(ci); 2146 wanted = __ceph_caps_file_wanted(ci); 2147 oissued = __ceph_caps_issued_other(ci, cap); 2148 2149 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 2150 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 2151 ceph_cap_string(used), ceph_cap_string(wanted)); 2152 if (cap == ci->i_auth_cap) { 2153 if (ci->i_dirty_caps || ci->i_flushing_caps || 2154 !list_empty(&ci->i_cap_snaps)) 2155 goto out; 2156 if ((used | wanted) & CEPH_CAP_ANY_WR) 2157 goto out; 2158 /* Note: it's possible that i_filelock_ref becomes non-zero 2159 * after dropping auth caps. It doesn't hurt because reply 2160 * of lock mds request will re-add auth caps. */ 2161 if (atomic_read(&ci->i_filelock_ref) > 0) 2162 goto out; 2163 } 2164 /* The inode has cached pages, but it's no longer used. 2165 * we can safely drop it */ 2166 if (S_ISREG(inode->i_mode) && 2167 wanted == 0 && used == CEPH_CAP_FILE_CACHE && 2168 !(oissued & CEPH_CAP_FILE_CACHE)) { 2169 used = 0; 2170 oissued = 0; 2171 } 2172 if ((used | wanted) & ~oissued & mine) 2173 goto out; /* we need these caps */ 2174 2175 if (oissued) { 2176 /* we aren't the only cap.. just remove us */ 2177 ceph_remove_cap(mdsc, cap, true); 2178 (*remaining)--; 2179 } else { 2180 struct dentry *dentry; 2181 /* try dropping referring dentries */ 2182 spin_unlock(&ci->i_ceph_lock); 2183 dentry = d_find_any_alias(inode); 2184 if (dentry && drop_negative_children(dentry)) { 2185 int count; 2186 dput(dentry); 2187 d_prune_aliases(inode); 2188 count = atomic_read(&inode->i_count); 2189 if (count == 1) 2190 (*remaining)--; 2191 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 2192 inode, cap, count); 2193 } else { 2194 dput(dentry); 2195 } 2196 return 0; 2197 } 2198 2199 out: 2200 spin_unlock(&ci->i_ceph_lock); 2201 return 0; 2202 } 2203 2204 /* 2205 * Trim session cap count down to some max number. 2206 */ 2207 int ceph_trim_caps(struct ceph_mds_client *mdsc, 2208 struct ceph_mds_session *session, 2209 int max_caps) 2210 { 2211 int trim_caps = session->s_nr_caps - max_caps; 2212 2213 dout("trim_caps mds%d start: %d / %d, trim %d\n", 2214 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 2215 if (trim_caps > 0) { 2216 int remaining = trim_caps; 2217 2218 ceph_iterate_session_caps(session, trim_caps_cb, &remaining); 2219 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 2220 session->s_mds, session->s_nr_caps, max_caps, 2221 trim_caps - remaining); 2222 } 2223 2224 ceph_flush_cap_releases(mdsc, session); 2225 return 0; 2226 } 2227 2228 static int check_caps_flush(struct ceph_mds_client *mdsc, 2229 u64 want_flush_tid) 2230 { 2231 int ret = 1; 2232 2233 spin_lock(&mdsc->cap_dirty_lock); 2234 if (!list_empty(&mdsc->cap_flush_list)) { 2235 struct ceph_cap_flush *cf = 2236 list_first_entry(&mdsc->cap_flush_list, 2237 struct ceph_cap_flush, g_list); 2238 if (cf->tid <= want_flush_tid) { 2239 dout("check_caps_flush still flushing tid " 2240 "%llu <= %llu\n", cf->tid, want_flush_tid); 2241 ret = 0; 2242 } 2243 } 2244 spin_unlock(&mdsc->cap_dirty_lock); 2245 return ret; 2246 } 2247 2248 /* 2249 * flush all dirty inode data to disk. 2250 * 2251 * returns true if we've flushed through want_flush_tid 2252 */ 2253 static void wait_caps_flush(struct ceph_mds_client *mdsc, 2254 u64 want_flush_tid) 2255 { 2256 dout("check_caps_flush want %llu\n", want_flush_tid); 2257 2258 wait_event(mdsc->cap_flushing_wq, 2259 check_caps_flush(mdsc, want_flush_tid)); 2260 2261 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid); 2262 } 2263 2264 /* 2265 * called under s_mutex 2266 */ 2267 static void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 2268 struct ceph_mds_session *session) 2269 { 2270 struct ceph_msg *msg = NULL; 2271 struct ceph_mds_cap_release *head; 2272 struct ceph_mds_cap_item *item; 2273 struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc; 2274 struct ceph_cap *cap; 2275 LIST_HEAD(tmp_list); 2276 int num_cap_releases; 2277 __le32 barrier, *cap_barrier; 2278 2279 down_read(&osdc->lock); 2280 barrier = cpu_to_le32(osdc->epoch_barrier); 2281 up_read(&osdc->lock); 2282 2283 spin_lock(&session->s_cap_lock); 2284 again: 2285 list_splice_init(&session->s_cap_releases, &tmp_list); 2286 num_cap_releases = session->s_num_cap_releases; 2287 session->s_num_cap_releases = 0; 2288 spin_unlock(&session->s_cap_lock); 2289 2290 while (!list_empty(&tmp_list)) { 2291 if (!msg) { 2292 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, 2293 PAGE_SIZE, GFP_NOFS, false); 2294 if (!msg) 2295 goto out_err; 2296 head = msg->front.iov_base; 2297 head->num = cpu_to_le32(0); 2298 msg->front.iov_len = sizeof(*head); 2299 2300 msg->hdr.version = cpu_to_le16(2); 2301 msg->hdr.compat_version = cpu_to_le16(1); 2302 } 2303 2304 cap = list_first_entry(&tmp_list, struct ceph_cap, 2305 session_caps); 2306 list_del(&cap->session_caps); 2307 num_cap_releases--; 2308 2309 head = msg->front.iov_base; 2310 put_unaligned_le32(get_unaligned_le32(&head->num) + 1, 2311 &head->num); 2312 item = msg->front.iov_base + msg->front.iov_len; 2313 item->ino = cpu_to_le64(cap->cap_ino); 2314 item->cap_id = cpu_to_le64(cap->cap_id); 2315 item->migrate_seq = cpu_to_le32(cap->mseq); 2316 item->seq = cpu_to_le32(cap->issue_seq); 2317 msg->front.iov_len += sizeof(*item); 2318 2319 ceph_put_cap(mdsc, cap); 2320 2321 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 2322 // Append cap_barrier field 2323 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2324 *cap_barrier = barrier; 2325 msg->front.iov_len += sizeof(*cap_barrier); 2326 2327 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2328 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 2329 ceph_con_send(&session->s_con, msg); 2330 msg = NULL; 2331 } 2332 } 2333 2334 BUG_ON(num_cap_releases != 0); 2335 2336 spin_lock(&session->s_cap_lock); 2337 if (!list_empty(&session->s_cap_releases)) 2338 goto again; 2339 spin_unlock(&session->s_cap_lock); 2340 2341 if (msg) { 2342 // Append cap_barrier field 2343 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2344 *cap_barrier = barrier; 2345 msg->front.iov_len += sizeof(*cap_barrier); 2346 2347 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2348 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 2349 ceph_con_send(&session->s_con, msg); 2350 } 2351 return; 2352 out_err: 2353 pr_err("send_cap_releases mds%d, failed to allocate message\n", 2354 session->s_mds); 2355 spin_lock(&session->s_cap_lock); 2356 list_splice(&tmp_list, &session->s_cap_releases); 2357 session->s_num_cap_releases += num_cap_releases; 2358 spin_unlock(&session->s_cap_lock); 2359 } 2360 2361 static void ceph_cap_release_work(struct work_struct *work) 2362 { 2363 struct ceph_mds_session *session = 2364 container_of(work, struct ceph_mds_session, s_cap_release_work); 2365 2366 mutex_lock(&session->s_mutex); 2367 if (session->s_state == CEPH_MDS_SESSION_OPEN || 2368 session->s_state == CEPH_MDS_SESSION_HUNG) 2369 ceph_send_cap_releases(session->s_mdsc, session); 2370 mutex_unlock(&session->s_mutex); 2371 ceph_put_mds_session(session); 2372 } 2373 2374 void ceph_flush_cap_releases(struct ceph_mds_client *mdsc, 2375 struct ceph_mds_session *session) 2376 { 2377 if (mdsc->stopping) 2378 return; 2379 2380 ceph_get_mds_session(session); 2381 if (queue_work(mdsc->fsc->cap_wq, 2382 &session->s_cap_release_work)) { 2383 dout("cap release work queued\n"); 2384 } else { 2385 ceph_put_mds_session(session); 2386 dout("failed to queue cap release work\n"); 2387 } 2388 } 2389 2390 /* 2391 * caller holds session->s_cap_lock 2392 */ 2393 void __ceph_queue_cap_release(struct ceph_mds_session *session, 2394 struct ceph_cap *cap) 2395 { 2396 list_add_tail(&cap->session_caps, &session->s_cap_releases); 2397 session->s_num_cap_releases++; 2398 2399 if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE)) 2400 ceph_flush_cap_releases(session->s_mdsc, session); 2401 } 2402 2403 static void ceph_cap_reclaim_work(struct work_struct *work) 2404 { 2405 struct ceph_mds_client *mdsc = 2406 container_of(work, struct ceph_mds_client, cap_reclaim_work); 2407 int ret = ceph_trim_dentries(mdsc); 2408 if (ret == -EAGAIN) 2409 ceph_queue_cap_reclaim_work(mdsc); 2410 } 2411 2412 void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc) 2413 { 2414 if (mdsc->stopping) 2415 return; 2416 2417 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) { 2418 dout("caps reclaim work queued\n"); 2419 } else { 2420 dout("failed to queue caps release work\n"); 2421 } 2422 } 2423 2424 void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr) 2425 { 2426 int val; 2427 if (!nr) 2428 return; 2429 val = atomic_add_return(nr, &mdsc->cap_reclaim_pending); 2430 if ((val % CEPH_CAPS_PER_RELEASE) < nr) { 2431 atomic_set(&mdsc->cap_reclaim_pending, 0); 2432 ceph_queue_cap_reclaim_work(mdsc); 2433 } 2434 } 2435 2436 /* 2437 * requests 2438 */ 2439 2440 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 2441 struct inode *dir) 2442 { 2443 struct ceph_inode_info *ci = ceph_inode(dir); 2444 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 2445 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 2446 size_t size = sizeof(struct ceph_mds_reply_dir_entry); 2447 unsigned int num_entries; 2448 int order; 2449 2450 spin_lock(&ci->i_ceph_lock); 2451 num_entries = ci->i_files + ci->i_subdirs; 2452 spin_unlock(&ci->i_ceph_lock); 2453 num_entries = max(num_entries, 1U); 2454 num_entries = min(num_entries, opt->max_readdir); 2455 2456 order = get_order(size * num_entries); 2457 while (order >= 0) { 2458 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL | 2459 __GFP_NOWARN | 2460 __GFP_ZERO, 2461 order); 2462 if (rinfo->dir_entries) 2463 break; 2464 order--; 2465 } 2466 if (!rinfo->dir_entries) 2467 return -ENOMEM; 2468 2469 num_entries = (PAGE_SIZE << order) / size; 2470 num_entries = min(num_entries, opt->max_readdir); 2471 2472 rinfo->dir_buf_size = PAGE_SIZE << order; 2473 req->r_num_caps = num_entries + 1; 2474 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 2475 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 2476 return 0; 2477 } 2478 2479 /* 2480 * Create an mds request. 2481 */ 2482 struct ceph_mds_request * 2483 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 2484 { 2485 struct ceph_mds_request *req; 2486 2487 req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS); 2488 if (!req) 2489 return ERR_PTR(-ENOMEM); 2490 2491 mutex_init(&req->r_fill_mutex); 2492 req->r_mdsc = mdsc; 2493 req->r_started = jiffies; 2494 req->r_start_latency = ktime_get(); 2495 req->r_resend_mds = -1; 2496 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 2497 INIT_LIST_HEAD(&req->r_unsafe_target_item); 2498 req->r_fmode = -1; 2499 req->r_feature_needed = -1; 2500 kref_init(&req->r_kref); 2501 RB_CLEAR_NODE(&req->r_node); 2502 INIT_LIST_HEAD(&req->r_wait); 2503 init_completion(&req->r_completion); 2504 init_completion(&req->r_safe_completion); 2505 INIT_LIST_HEAD(&req->r_unsafe_item); 2506 2507 ktime_get_coarse_real_ts64(&req->r_stamp); 2508 2509 req->r_op = op; 2510 req->r_direct_mode = mode; 2511 return req; 2512 } 2513 2514 /* 2515 * return oldest (lowest) request, tid in request tree, 0 if none. 2516 * 2517 * called under mdsc->mutex. 2518 */ 2519 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 2520 { 2521 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 2522 return NULL; 2523 return rb_entry(rb_first(&mdsc->request_tree), 2524 struct ceph_mds_request, r_node); 2525 } 2526 2527 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 2528 { 2529 return mdsc->oldest_tid; 2530 } 2531 2532 #if IS_ENABLED(CONFIG_FS_ENCRYPTION) 2533 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) 2534 { 2535 struct inode *dir = req->r_parent; 2536 struct dentry *dentry = req->r_dentry; 2537 u8 *cryptbuf = NULL; 2538 u32 len = 0; 2539 int ret = 0; 2540 2541 /* only encode if we have parent and dentry */ 2542 if (!dir || !dentry) 2543 goto success; 2544 2545 /* No-op unless this is encrypted */ 2546 if (!IS_ENCRYPTED(dir)) 2547 goto success; 2548 2549 ret = ceph_fscrypt_prepare_readdir(dir); 2550 if (ret < 0) 2551 return ERR_PTR(ret); 2552 2553 /* No key? Just ignore it. */ 2554 if (!fscrypt_has_encryption_key(dir)) 2555 goto success; 2556 2557 if (!fscrypt_fname_encrypted_size(dir, dentry->d_name.len, NAME_MAX, 2558 &len)) { 2559 WARN_ON_ONCE(1); 2560 return ERR_PTR(-ENAMETOOLONG); 2561 } 2562 2563 /* No need to append altname if name is short enough */ 2564 if (len <= CEPH_NOHASH_NAME_MAX) { 2565 len = 0; 2566 goto success; 2567 } 2568 2569 cryptbuf = kmalloc(len, GFP_KERNEL); 2570 if (!cryptbuf) 2571 return ERR_PTR(-ENOMEM); 2572 2573 ret = fscrypt_fname_encrypt(dir, &dentry->d_name, cryptbuf, len); 2574 if (ret) { 2575 kfree(cryptbuf); 2576 return ERR_PTR(ret); 2577 } 2578 success: 2579 *plen = len; 2580 return cryptbuf; 2581 } 2582 #else 2583 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) 2584 { 2585 *plen = 0; 2586 return NULL; 2587 } 2588 #endif 2589 2590 /** 2591 * ceph_mdsc_build_path - build a path string to a given dentry 2592 * @mdsc: mds client 2593 * @dentry: dentry to which path should be built 2594 * @plen: returned length of string 2595 * @pbase: returned base inode number 2596 * @for_wire: is this path going to be sent to the MDS? 2597 * 2598 * Build a string that represents the path to the dentry. This is mostly called 2599 * for two different purposes: 2600 * 2601 * 1) we need to build a path string to send to the MDS (for_wire == true) 2602 * 2) we need a path string for local presentation (e.g. debugfs) 2603 * (for_wire == false) 2604 * 2605 * The path is built in reverse, starting with the dentry. Walk back up toward 2606 * the root, building the path until the first non-snapped inode is reached 2607 * (for_wire) or the root inode is reached (!for_wire). 2608 * 2609 * Encode hidden .snap dirs as a double /, i.e. 2610 * foo/.snap/bar -> foo//bar 2611 */ 2612 char *ceph_mdsc_build_path(struct ceph_mds_client *mdsc, struct dentry *dentry, 2613 int *plen, u64 *pbase, int for_wire) 2614 { 2615 struct dentry *cur; 2616 struct inode *inode; 2617 char *path; 2618 int pos; 2619 unsigned seq; 2620 u64 base; 2621 2622 if (!dentry) 2623 return ERR_PTR(-EINVAL); 2624 2625 path = __getname(); 2626 if (!path) 2627 return ERR_PTR(-ENOMEM); 2628 retry: 2629 pos = PATH_MAX - 1; 2630 path[pos] = '\0'; 2631 2632 seq = read_seqbegin(&rename_lock); 2633 cur = dget(dentry); 2634 for (;;) { 2635 struct dentry *parent; 2636 2637 spin_lock(&cur->d_lock); 2638 inode = d_inode(cur); 2639 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 2640 dout("build_path path+%d: %p SNAPDIR\n", 2641 pos, cur); 2642 spin_unlock(&cur->d_lock); 2643 parent = dget_parent(cur); 2644 } else if (for_wire && inode && dentry != cur && 2645 ceph_snap(inode) == CEPH_NOSNAP) { 2646 spin_unlock(&cur->d_lock); 2647 pos++; /* get rid of any prepended '/' */ 2648 break; 2649 } else if (!for_wire || !IS_ENCRYPTED(d_inode(cur->d_parent))) { 2650 pos -= cur->d_name.len; 2651 if (pos < 0) { 2652 spin_unlock(&cur->d_lock); 2653 break; 2654 } 2655 memcpy(path + pos, cur->d_name.name, cur->d_name.len); 2656 spin_unlock(&cur->d_lock); 2657 parent = dget_parent(cur); 2658 } else { 2659 int len, ret; 2660 char buf[NAME_MAX]; 2661 2662 /* 2663 * Proactively copy name into buf, in case we need to 2664 * present it as-is. 2665 */ 2666 memcpy(buf, cur->d_name.name, cur->d_name.len); 2667 len = cur->d_name.len; 2668 spin_unlock(&cur->d_lock); 2669 parent = dget_parent(cur); 2670 2671 ret = ceph_fscrypt_prepare_readdir(d_inode(parent)); 2672 if (ret < 0) { 2673 dput(parent); 2674 dput(cur); 2675 return ERR_PTR(ret); 2676 } 2677 2678 if (fscrypt_has_encryption_key(d_inode(parent))) { 2679 len = ceph_encode_encrypted_fname(d_inode(parent), 2680 cur, buf); 2681 if (len < 0) { 2682 dput(parent); 2683 dput(cur); 2684 return ERR_PTR(len); 2685 } 2686 } 2687 pos -= len; 2688 if (pos < 0) { 2689 dput(parent); 2690 break; 2691 } 2692 memcpy(path + pos, buf, len); 2693 } 2694 dput(cur); 2695 cur = parent; 2696 2697 /* Are we at the root? */ 2698 if (IS_ROOT(cur)) 2699 break; 2700 2701 /* Are we out of buffer? */ 2702 if (--pos < 0) 2703 break; 2704 2705 path[pos] = '/'; 2706 } 2707 inode = d_inode(cur); 2708 base = inode ? ceph_ino(inode) : 0; 2709 dput(cur); 2710 2711 if (read_seqretry(&rename_lock, seq)) 2712 goto retry; 2713 2714 if (pos < 0) { 2715 /* 2716 * A rename didn't occur, but somehow we didn't end up where 2717 * we thought we would. Throw a warning and try again. 2718 */ 2719 pr_warn("build_path did not end path lookup where expected (pos = %d)\n", 2720 pos); 2721 goto retry; 2722 } 2723 2724 *pbase = base; 2725 *plen = PATH_MAX - 1 - pos; 2726 dout("build_path on %p %d built %llx '%.*s'\n", 2727 dentry, d_count(dentry), base, *plen, path + pos); 2728 return path + pos; 2729 } 2730 2731 static int build_dentry_path(struct ceph_mds_client *mdsc, struct dentry *dentry, 2732 struct inode *dir, const char **ppath, int *ppathlen, 2733 u64 *pino, bool *pfreepath, bool parent_locked) 2734 { 2735 char *path; 2736 2737 rcu_read_lock(); 2738 if (!dir) 2739 dir = d_inode_rcu(dentry->d_parent); 2740 if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP && 2741 !IS_ENCRYPTED(dir)) { 2742 *pino = ceph_ino(dir); 2743 rcu_read_unlock(); 2744 *ppath = dentry->d_name.name; 2745 *ppathlen = dentry->d_name.len; 2746 return 0; 2747 } 2748 rcu_read_unlock(); 2749 path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1); 2750 if (IS_ERR(path)) 2751 return PTR_ERR(path); 2752 *ppath = path; 2753 *pfreepath = true; 2754 return 0; 2755 } 2756 2757 static int build_inode_path(struct inode *inode, 2758 const char **ppath, int *ppathlen, u64 *pino, 2759 bool *pfreepath) 2760 { 2761 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 2762 struct dentry *dentry; 2763 char *path; 2764 2765 if (ceph_snap(inode) == CEPH_NOSNAP) { 2766 *pino = ceph_ino(inode); 2767 *ppathlen = 0; 2768 return 0; 2769 } 2770 dentry = d_find_alias(inode); 2771 path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1); 2772 dput(dentry); 2773 if (IS_ERR(path)) 2774 return PTR_ERR(path); 2775 *ppath = path; 2776 *pfreepath = true; 2777 return 0; 2778 } 2779 2780 /* 2781 * request arguments may be specified via an inode *, a dentry *, or 2782 * an explicit ino+path. 2783 */ 2784 static int set_request_path_attr(struct ceph_mds_client *mdsc, struct inode *rinode, 2785 struct dentry *rdentry, struct inode *rdiri, 2786 const char *rpath, u64 rino, const char **ppath, 2787 int *pathlen, u64 *ino, bool *freepath, 2788 bool parent_locked) 2789 { 2790 int r = 0; 2791 2792 if (rinode) { 2793 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 2794 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 2795 ceph_snap(rinode)); 2796 } else if (rdentry) { 2797 r = build_dentry_path(mdsc, rdentry, rdiri, ppath, pathlen, ino, 2798 freepath, parent_locked); 2799 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 2800 *ppath); 2801 } else if (rpath || rino) { 2802 *ino = rino; 2803 *ppath = rpath; 2804 *pathlen = rpath ? strlen(rpath) : 0; 2805 dout(" path %.*s\n", *pathlen, rpath); 2806 } 2807 2808 return r; 2809 } 2810 2811 static void encode_mclientrequest_tail(void **p, 2812 const struct ceph_mds_request *req) 2813 { 2814 struct ceph_timespec ts; 2815 int i; 2816 2817 ceph_encode_timespec64(&ts, &req->r_stamp); 2818 ceph_encode_copy(p, &ts, sizeof(ts)); 2819 2820 /* v4: gid_list */ 2821 ceph_encode_32(p, req->r_cred->group_info->ngroups); 2822 for (i = 0; i < req->r_cred->group_info->ngroups; i++) 2823 ceph_encode_64(p, from_kgid(&init_user_ns, 2824 req->r_cred->group_info->gid[i])); 2825 2826 /* v5: altname */ 2827 ceph_encode_32(p, req->r_altname_len); 2828 ceph_encode_copy(p, req->r_altname, req->r_altname_len); 2829 2830 /* v6: fscrypt_auth and fscrypt_file */ 2831 if (req->r_fscrypt_auth) { 2832 u32 authlen = ceph_fscrypt_auth_len(req->r_fscrypt_auth); 2833 2834 ceph_encode_32(p, authlen); 2835 ceph_encode_copy(p, req->r_fscrypt_auth, authlen); 2836 } else { 2837 ceph_encode_32(p, 0); 2838 } 2839 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) { 2840 ceph_encode_32(p, sizeof(__le64)); 2841 ceph_encode_64(p, req->r_fscrypt_file); 2842 } else { 2843 ceph_encode_32(p, 0); 2844 } 2845 } 2846 2847 static struct ceph_mds_request_head_legacy * 2848 find_legacy_request_head(void *p, u64 features) 2849 { 2850 bool legacy = !(features & CEPH_FEATURE_FS_BTIME); 2851 struct ceph_mds_request_head_old *ohead; 2852 2853 if (legacy) 2854 return (struct ceph_mds_request_head_legacy *)p; 2855 ohead = (struct ceph_mds_request_head_old *)p; 2856 return (struct ceph_mds_request_head_legacy *)&ohead->oldest_client_tid; 2857 } 2858 2859 /* 2860 * called under mdsc->mutex 2861 */ 2862 static struct ceph_msg *create_request_message(struct ceph_mds_session *session, 2863 struct ceph_mds_request *req, 2864 bool drop_cap_releases) 2865 { 2866 int mds = session->s_mds; 2867 struct ceph_mds_client *mdsc = session->s_mdsc; 2868 struct ceph_msg *msg; 2869 struct ceph_mds_request_head_legacy *lhead; 2870 const char *path1 = NULL; 2871 const char *path2 = NULL; 2872 u64 ino1 = 0, ino2 = 0; 2873 int pathlen1 = 0, pathlen2 = 0; 2874 bool freepath1 = false, freepath2 = false; 2875 struct dentry *old_dentry = NULL; 2876 int len; 2877 u16 releases; 2878 void *p, *end; 2879 int ret; 2880 bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME); 2881 bool old_version = !test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, 2882 &session->s_features); 2883 2884 ret = set_request_path_attr(mdsc, req->r_inode, req->r_dentry, 2885 req->r_parent, req->r_path1, req->r_ino1.ino, 2886 &path1, &pathlen1, &ino1, &freepath1, 2887 test_bit(CEPH_MDS_R_PARENT_LOCKED, 2888 &req->r_req_flags)); 2889 if (ret < 0) { 2890 msg = ERR_PTR(ret); 2891 goto out; 2892 } 2893 2894 /* If r_old_dentry is set, then assume that its parent is locked */ 2895 if (req->r_old_dentry && 2896 !(req->r_old_dentry->d_flags & DCACHE_DISCONNECTED)) 2897 old_dentry = req->r_old_dentry; 2898 ret = set_request_path_attr(mdsc, NULL, old_dentry, 2899 req->r_old_dentry_dir, 2900 req->r_path2, req->r_ino2.ino, 2901 &path2, &pathlen2, &ino2, &freepath2, true); 2902 if (ret < 0) { 2903 msg = ERR_PTR(ret); 2904 goto out_free1; 2905 } 2906 2907 req->r_altname = get_fscrypt_altname(req, &req->r_altname_len); 2908 if (IS_ERR(req->r_altname)) { 2909 msg = ERR_CAST(req->r_altname); 2910 req->r_altname = NULL; 2911 goto out_free2; 2912 } 2913 2914 /* 2915 * For old cephs without supporting the 32bit retry/fwd feature 2916 * it will copy the raw memories directly when decoding the 2917 * requests. While new cephs will decode the head depending the 2918 * version member, so we need to make sure it will be compatible 2919 * with them both. 2920 */ 2921 if (legacy) 2922 len = sizeof(struct ceph_mds_request_head_legacy); 2923 else if (old_version) 2924 len = sizeof(struct ceph_mds_request_head_old); 2925 else 2926 len = sizeof(struct ceph_mds_request_head); 2927 2928 /* filepaths */ 2929 len += 2 * (1 + sizeof(u32) + sizeof(u64)); 2930 len += pathlen1 + pathlen2; 2931 2932 /* cap releases */ 2933 len += sizeof(struct ceph_mds_request_release) * 2934 (!!req->r_inode_drop + !!req->r_dentry_drop + 2935 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 2936 2937 if (req->r_dentry_drop) 2938 len += pathlen1; 2939 if (req->r_old_dentry_drop) 2940 len += pathlen2; 2941 2942 /* MClientRequest tail */ 2943 2944 /* req->r_stamp */ 2945 len += sizeof(struct ceph_timespec); 2946 2947 /* gid list */ 2948 len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups); 2949 2950 /* alternate name */ 2951 len += sizeof(u32) + req->r_altname_len; 2952 2953 /* fscrypt_auth */ 2954 len += sizeof(u32); // fscrypt_auth 2955 if (req->r_fscrypt_auth) 2956 len += ceph_fscrypt_auth_len(req->r_fscrypt_auth); 2957 2958 /* fscrypt_file */ 2959 len += sizeof(u32); 2960 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) 2961 len += sizeof(__le64); 2962 2963 msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false); 2964 if (!msg) { 2965 msg = ERR_PTR(-ENOMEM); 2966 goto out_free2; 2967 } 2968 2969 msg->hdr.tid = cpu_to_le64(req->r_tid); 2970 2971 lhead = find_legacy_request_head(msg->front.iov_base, 2972 session->s_con.peer_features); 2973 2974 /* 2975 * The ceph_mds_request_head_legacy didn't contain a version field, and 2976 * one was added when we moved the message version from 3->4. 2977 */ 2978 if (legacy) { 2979 msg->hdr.version = cpu_to_le16(3); 2980 p = msg->front.iov_base + sizeof(*lhead); 2981 } else if (old_version) { 2982 struct ceph_mds_request_head_old *ohead = msg->front.iov_base; 2983 2984 msg->hdr.version = cpu_to_le16(4); 2985 ohead->version = cpu_to_le16(1); 2986 p = msg->front.iov_base + sizeof(*ohead); 2987 } else { 2988 struct ceph_mds_request_head *nhead = msg->front.iov_base; 2989 2990 msg->hdr.version = cpu_to_le16(6); 2991 nhead->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION); 2992 p = msg->front.iov_base + sizeof(*nhead); 2993 } 2994 2995 end = msg->front.iov_base + msg->front.iov_len; 2996 2997 lhead->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 2998 lhead->op = cpu_to_le32(req->r_op); 2999 lhead->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, 3000 req->r_cred->fsuid)); 3001 lhead->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, 3002 req->r_cred->fsgid)); 3003 lhead->ino = cpu_to_le64(req->r_deleg_ino); 3004 lhead->args = req->r_args; 3005 3006 ceph_encode_filepath(&p, end, ino1, path1); 3007 ceph_encode_filepath(&p, end, ino2, path2); 3008 3009 /* make note of release offset, in case we need to replay */ 3010 req->r_request_release_offset = p - msg->front.iov_base; 3011 3012 /* cap releases */ 3013 releases = 0; 3014 if (req->r_inode_drop) 3015 releases += ceph_encode_inode_release(&p, 3016 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 3017 mds, req->r_inode_drop, req->r_inode_unless, 3018 req->r_op == CEPH_MDS_OP_READDIR); 3019 if (req->r_dentry_drop) { 3020 ret = ceph_encode_dentry_release(&p, req->r_dentry, 3021 req->r_parent, mds, req->r_dentry_drop, 3022 req->r_dentry_unless); 3023 if (ret < 0) 3024 goto out_err; 3025 releases += ret; 3026 } 3027 if (req->r_old_dentry_drop) { 3028 ret = ceph_encode_dentry_release(&p, req->r_old_dentry, 3029 req->r_old_dentry_dir, mds, 3030 req->r_old_dentry_drop, 3031 req->r_old_dentry_unless); 3032 if (ret < 0) 3033 goto out_err; 3034 releases += ret; 3035 } 3036 if (req->r_old_inode_drop) 3037 releases += ceph_encode_inode_release(&p, 3038 d_inode(req->r_old_dentry), 3039 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 3040 3041 if (drop_cap_releases) { 3042 releases = 0; 3043 p = msg->front.iov_base + req->r_request_release_offset; 3044 } 3045 3046 lhead->num_releases = cpu_to_le16(releases); 3047 3048 encode_mclientrequest_tail(&p, req); 3049 3050 if (WARN_ON_ONCE(p > end)) { 3051 ceph_msg_put(msg); 3052 msg = ERR_PTR(-ERANGE); 3053 goto out_free2; 3054 } 3055 3056 msg->front.iov_len = p - msg->front.iov_base; 3057 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 3058 3059 if (req->r_pagelist) { 3060 struct ceph_pagelist *pagelist = req->r_pagelist; 3061 ceph_msg_data_add_pagelist(msg, pagelist); 3062 msg->hdr.data_len = cpu_to_le32(pagelist->length); 3063 } else { 3064 msg->hdr.data_len = 0; 3065 } 3066 3067 msg->hdr.data_off = cpu_to_le16(0); 3068 3069 out_free2: 3070 if (freepath2) 3071 ceph_mdsc_free_path((char *)path2, pathlen2); 3072 out_free1: 3073 if (freepath1) 3074 ceph_mdsc_free_path((char *)path1, pathlen1); 3075 out: 3076 return msg; 3077 out_err: 3078 ceph_msg_put(msg); 3079 msg = ERR_PTR(ret); 3080 goto out_free2; 3081 } 3082 3083 /* 3084 * called under mdsc->mutex if error, under no mutex if 3085 * success. 3086 */ 3087 static void complete_request(struct ceph_mds_client *mdsc, 3088 struct ceph_mds_request *req) 3089 { 3090 req->r_end_latency = ktime_get(); 3091 3092 if (req->r_callback) 3093 req->r_callback(mdsc, req); 3094 complete_all(&req->r_completion); 3095 } 3096 3097 /* 3098 * called under mdsc->mutex 3099 */ 3100 static int __prepare_send_request(struct ceph_mds_session *session, 3101 struct ceph_mds_request *req, 3102 bool drop_cap_releases) 3103 { 3104 int mds = session->s_mds; 3105 struct ceph_mds_client *mdsc = session->s_mdsc; 3106 struct ceph_mds_request_head_legacy *lhead; 3107 struct ceph_mds_request_head *nhead; 3108 struct ceph_msg *msg; 3109 int flags = 0, old_max_retry; 3110 bool old_version = !test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, 3111 &session->s_features); 3112 3113 /* 3114 * Avoid inifinite retrying after overflow. The client will 3115 * increase the retry count and if the MDS is old version, 3116 * so we limit to retry at most 256 times. 3117 */ 3118 if (req->r_attempts) { 3119 old_max_retry = sizeof_field(struct ceph_mds_request_head_old, 3120 num_retry); 3121 old_max_retry = 1 << (old_max_retry * BITS_PER_BYTE); 3122 if ((old_version && req->r_attempts >= old_max_retry) || 3123 ((uint32_t)req->r_attempts >= U32_MAX)) { 3124 pr_warn_ratelimited("%s request tid %llu seq overflow\n", 3125 __func__, req->r_tid); 3126 return -EMULTIHOP; 3127 } 3128 } 3129 3130 req->r_attempts++; 3131 if (req->r_inode) { 3132 struct ceph_cap *cap = 3133 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 3134 3135 if (cap) 3136 req->r_sent_on_mseq = cap->mseq; 3137 else 3138 req->r_sent_on_mseq = -1; 3139 } 3140 dout("%s %p tid %lld %s (attempt %d)\n", __func__, req, 3141 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 3142 3143 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3144 void *p; 3145 3146 /* 3147 * Replay. Do not regenerate message (and rebuild 3148 * paths, etc.); just use the original message. 3149 * Rebuilding paths will break for renames because 3150 * d_move mangles the src name. 3151 */ 3152 msg = req->r_request; 3153 lhead = find_legacy_request_head(msg->front.iov_base, 3154 session->s_con.peer_features); 3155 3156 flags = le32_to_cpu(lhead->flags); 3157 flags |= CEPH_MDS_FLAG_REPLAY; 3158 lhead->flags = cpu_to_le32(flags); 3159 3160 if (req->r_target_inode) 3161 lhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 3162 3163 lhead->num_retry = req->r_attempts - 1; 3164 if (!old_version) { 3165 nhead = (struct ceph_mds_request_head*)msg->front.iov_base; 3166 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); 3167 } 3168 3169 /* remove cap/dentry releases from message */ 3170 lhead->num_releases = 0; 3171 3172 p = msg->front.iov_base + req->r_request_release_offset; 3173 encode_mclientrequest_tail(&p, req); 3174 3175 msg->front.iov_len = p - msg->front.iov_base; 3176 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 3177 return 0; 3178 } 3179 3180 if (req->r_request) { 3181 ceph_msg_put(req->r_request); 3182 req->r_request = NULL; 3183 } 3184 msg = create_request_message(session, req, drop_cap_releases); 3185 if (IS_ERR(msg)) { 3186 req->r_err = PTR_ERR(msg); 3187 return PTR_ERR(msg); 3188 } 3189 req->r_request = msg; 3190 3191 lhead = find_legacy_request_head(msg->front.iov_base, 3192 session->s_con.peer_features); 3193 lhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 3194 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3195 flags |= CEPH_MDS_FLAG_REPLAY; 3196 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) 3197 flags |= CEPH_MDS_FLAG_ASYNC; 3198 if (req->r_parent) 3199 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 3200 lhead->flags = cpu_to_le32(flags); 3201 lhead->num_fwd = req->r_num_fwd; 3202 lhead->num_retry = req->r_attempts - 1; 3203 if (!old_version) { 3204 nhead = (struct ceph_mds_request_head*)msg->front.iov_base; 3205 nhead->ext_num_fwd = cpu_to_le32(req->r_num_fwd); 3206 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); 3207 } 3208 3209 dout(" r_parent = %p\n", req->r_parent); 3210 return 0; 3211 } 3212 3213 /* 3214 * called under mdsc->mutex 3215 */ 3216 static int __send_request(struct ceph_mds_session *session, 3217 struct ceph_mds_request *req, 3218 bool drop_cap_releases) 3219 { 3220 int err; 3221 3222 err = __prepare_send_request(session, req, drop_cap_releases); 3223 if (!err) { 3224 ceph_msg_get(req->r_request); 3225 ceph_con_send(&session->s_con, req->r_request); 3226 } 3227 3228 return err; 3229 } 3230 3231 /* 3232 * send request, or put it on the appropriate wait list. 3233 */ 3234 static void __do_request(struct ceph_mds_client *mdsc, 3235 struct ceph_mds_request *req) 3236 { 3237 struct ceph_mds_session *session = NULL; 3238 int mds = -1; 3239 int err = 0; 3240 bool random; 3241 3242 if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3243 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) 3244 __unregister_request(mdsc, req); 3245 return; 3246 } 3247 3248 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) { 3249 dout("do_request metadata corrupted\n"); 3250 err = -EIO; 3251 goto finish; 3252 } 3253 if (req->r_timeout && 3254 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 3255 dout("do_request timed out\n"); 3256 err = -ETIMEDOUT; 3257 goto finish; 3258 } 3259 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 3260 dout("do_request forced umount\n"); 3261 err = -EIO; 3262 goto finish; 3263 } 3264 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) { 3265 if (mdsc->mdsmap_err) { 3266 err = mdsc->mdsmap_err; 3267 dout("do_request mdsmap err %d\n", err); 3268 goto finish; 3269 } 3270 if (mdsc->mdsmap->m_epoch == 0) { 3271 dout("do_request no mdsmap, waiting for map\n"); 3272 list_add(&req->r_wait, &mdsc->waiting_for_map); 3273 return; 3274 } 3275 if (!(mdsc->fsc->mount_options->flags & 3276 CEPH_MOUNT_OPT_MOUNTWAIT) && 3277 !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) { 3278 err = -EHOSTUNREACH; 3279 goto finish; 3280 } 3281 } 3282 3283 put_request_session(req); 3284 3285 mds = __choose_mds(mdsc, req, &random); 3286 if (mds < 0 || 3287 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 3288 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 3289 err = -EJUKEBOX; 3290 goto finish; 3291 } 3292 dout("do_request no mds or not active, waiting for map\n"); 3293 list_add(&req->r_wait, &mdsc->waiting_for_map); 3294 return; 3295 } 3296 3297 /* get, open session */ 3298 session = __ceph_lookup_mds_session(mdsc, mds); 3299 if (!session) { 3300 session = register_session(mdsc, mds); 3301 if (IS_ERR(session)) { 3302 err = PTR_ERR(session); 3303 goto finish; 3304 } 3305 } 3306 req->r_session = ceph_get_mds_session(session); 3307 3308 dout("do_request mds%d session %p state %s\n", mds, session, 3309 ceph_session_state_name(session->s_state)); 3310 3311 /* 3312 * The old ceph will crash the MDSs when see unknown OPs 3313 */ 3314 if (req->r_feature_needed > 0 && 3315 !test_bit(req->r_feature_needed, &session->s_features)) { 3316 err = -EOPNOTSUPP; 3317 goto out_session; 3318 } 3319 3320 if (session->s_state != CEPH_MDS_SESSION_OPEN && 3321 session->s_state != CEPH_MDS_SESSION_HUNG) { 3322 /* 3323 * We cannot queue async requests since the caps and delegated 3324 * inodes are bound to the session. Just return -EJUKEBOX and 3325 * let the caller retry a sync request in that case. 3326 */ 3327 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 3328 err = -EJUKEBOX; 3329 goto out_session; 3330 } 3331 3332 /* 3333 * If the session has been REJECTED, then return a hard error, 3334 * unless it's a CLEANRECOVER mount, in which case we'll queue 3335 * it to the mdsc queue. 3336 */ 3337 if (session->s_state == CEPH_MDS_SESSION_REJECTED) { 3338 if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER)) 3339 list_add(&req->r_wait, &mdsc->waiting_for_map); 3340 else 3341 err = -EACCES; 3342 goto out_session; 3343 } 3344 3345 if (session->s_state == CEPH_MDS_SESSION_NEW || 3346 session->s_state == CEPH_MDS_SESSION_CLOSING) { 3347 err = __open_session(mdsc, session); 3348 if (err) 3349 goto out_session; 3350 /* retry the same mds later */ 3351 if (random) 3352 req->r_resend_mds = mds; 3353 } 3354 list_add(&req->r_wait, &session->s_waiting); 3355 goto out_session; 3356 } 3357 3358 /* send request */ 3359 req->r_resend_mds = -1; /* forget any previous mds hint */ 3360 3361 if (req->r_request_started == 0) /* note request start time */ 3362 req->r_request_started = jiffies; 3363 3364 /* 3365 * For async create we will choose the auth MDS of frag in parent 3366 * directory to send the request and ususally this works fine, but 3367 * if the migrated the dirtory to another MDS before it could handle 3368 * it the request will be forwarded. 3369 * 3370 * And then the auth cap will be changed. 3371 */ 3372 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && req->r_num_fwd) { 3373 struct ceph_dentry_info *di = ceph_dentry(req->r_dentry); 3374 struct ceph_inode_info *ci; 3375 struct ceph_cap *cap; 3376 3377 /* 3378 * The request maybe handled very fast and the new inode 3379 * hasn't been linked to the dentry yet. We need to wait 3380 * for the ceph_finish_async_create(), which shouldn't be 3381 * stuck too long or fail in thoery, to finish when forwarding 3382 * the request. 3383 */ 3384 if (!d_inode(req->r_dentry)) { 3385 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_CREATE_BIT, 3386 TASK_KILLABLE); 3387 if (err) { 3388 mutex_lock(&req->r_fill_mutex); 3389 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3390 mutex_unlock(&req->r_fill_mutex); 3391 goto out_session; 3392 } 3393 } 3394 3395 ci = ceph_inode(d_inode(req->r_dentry)); 3396 3397 spin_lock(&ci->i_ceph_lock); 3398 cap = ci->i_auth_cap; 3399 if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE && mds != cap->mds) { 3400 dout("do_request session changed for auth cap %d -> %d\n", 3401 cap->session->s_mds, session->s_mds); 3402 3403 /* Remove the auth cap from old session */ 3404 spin_lock(&cap->session->s_cap_lock); 3405 cap->session->s_nr_caps--; 3406 list_del_init(&cap->session_caps); 3407 spin_unlock(&cap->session->s_cap_lock); 3408 3409 /* Add the auth cap to the new session */ 3410 cap->mds = mds; 3411 cap->session = session; 3412 spin_lock(&session->s_cap_lock); 3413 session->s_nr_caps++; 3414 list_add_tail(&cap->session_caps, &session->s_caps); 3415 spin_unlock(&session->s_cap_lock); 3416 3417 change_auth_cap_ses(ci, session); 3418 } 3419 spin_unlock(&ci->i_ceph_lock); 3420 } 3421 3422 err = __send_request(session, req, false); 3423 3424 out_session: 3425 ceph_put_mds_session(session); 3426 finish: 3427 if (err) { 3428 dout("__do_request early error %d\n", err); 3429 req->r_err = err; 3430 complete_request(mdsc, req); 3431 __unregister_request(mdsc, req); 3432 } 3433 return; 3434 } 3435 3436 /* 3437 * called under mdsc->mutex 3438 */ 3439 static void __wake_requests(struct ceph_mds_client *mdsc, 3440 struct list_head *head) 3441 { 3442 struct ceph_mds_request *req; 3443 LIST_HEAD(tmp_list); 3444 3445 list_splice_init(head, &tmp_list); 3446 3447 while (!list_empty(&tmp_list)) { 3448 req = list_entry(tmp_list.next, 3449 struct ceph_mds_request, r_wait); 3450 list_del_init(&req->r_wait); 3451 dout(" wake request %p tid %llu\n", req, req->r_tid); 3452 __do_request(mdsc, req); 3453 } 3454 } 3455 3456 /* 3457 * Wake up threads with requests pending for @mds, so that they can 3458 * resubmit their requests to a possibly different mds. 3459 */ 3460 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 3461 { 3462 struct ceph_mds_request *req; 3463 struct rb_node *p = rb_first(&mdsc->request_tree); 3464 3465 dout("kick_requests mds%d\n", mds); 3466 while (p) { 3467 req = rb_entry(p, struct ceph_mds_request, r_node); 3468 p = rb_next(p); 3469 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3470 continue; 3471 if (req->r_attempts > 0) 3472 continue; /* only new requests */ 3473 if (req->r_session && 3474 req->r_session->s_mds == mds) { 3475 dout(" kicking tid %llu\n", req->r_tid); 3476 list_del_init(&req->r_wait); 3477 __do_request(mdsc, req); 3478 } 3479 } 3480 } 3481 3482 int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir, 3483 struct ceph_mds_request *req) 3484 { 3485 int err = 0; 3486 3487 /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */ 3488 if (req->r_inode) 3489 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 3490 if (req->r_parent) { 3491 struct ceph_inode_info *ci = ceph_inode(req->r_parent); 3492 int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ? 3493 CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD; 3494 spin_lock(&ci->i_ceph_lock); 3495 ceph_take_cap_refs(ci, CEPH_CAP_PIN, false); 3496 __ceph_touch_fmode(ci, mdsc, fmode); 3497 spin_unlock(&ci->i_ceph_lock); 3498 } 3499 if (req->r_old_dentry_dir) 3500 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 3501 CEPH_CAP_PIN); 3502 3503 if (req->r_inode) { 3504 err = ceph_wait_on_async_create(req->r_inode); 3505 if (err) { 3506 dout("%s: wait for async create returned: %d\n", 3507 __func__, err); 3508 return err; 3509 } 3510 } 3511 3512 if (!err && req->r_old_inode) { 3513 err = ceph_wait_on_async_create(req->r_old_inode); 3514 if (err) { 3515 dout("%s: wait for async create returned: %d\n", 3516 __func__, err); 3517 return err; 3518 } 3519 } 3520 3521 dout("submit_request on %p for inode %p\n", req, dir); 3522 mutex_lock(&mdsc->mutex); 3523 __register_request(mdsc, req, dir); 3524 __do_request(mdsc, req); 3525 err = req->r_err; 3526 mutex_unlock(&mdsc->mutex); 3527 return err; 3528 } 3529 3530 int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc, 3531 struct ceph_mds_request *req, 3532 ceph_mds_request_wait_callback_t wait_func) 3533 { 3534 int err; 3535 3536 /* wait */ 3537 dout("do_request waiting\n"); 3538 if (wait_func) { 3539 err = wait_func(mdsc, req); 3540 } else { 3541 long timeleft = wait_for_completion_killable_timeout( 3542 &req->r_completion, 3543 ceph_timeout_jiffies(req->r_timeout)); 3544 if (timeleft > 0) 3545 err = 0; 3546 else if (!timeleft) 3547 err = -ETIMEDOUT; /* timed out */ 3548 else 3549 err = timeleft; /* killed */ 3550 } 3551 dout("do_request waited, got %d\n", err); 3552 mutex_lock(&mdsc->mutex); 3553 3554 /* only abort if we didn't race with a real reply */ 3555 if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3556 err = le32_to_cpu(req->r_reply_info.head->result); 3557 } else if (err < 0) { 3558 dout("aborted request %lld with %d\n", req->r_tid, err); 3559 3560 /* 3561 * ensure we aren't running concurrently with 3562 * ceph_fill_trace or ceph_readdir_prepopulate, which 3563 * rely on locks (dir mutex) held by our caller. 3564 */ 3565 mutex_lock(&req->r_fill_mutex); 3566 req->r_err = err; 3567 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3568 mutex_unlock(&req->r_fill_mutex); 3569 3570 if (req->r_parent && 3571 (req->r_op & CEPH_MDS_OP_WRITE)) 3572 ceph_invalidate_dir_request(req); 3573 } else { 3574 err = req->r_err; 3575 } 3576 3577 mutex_unlock(&mdsc->mutex); 3578 return err; 3579 } 3580 3581 /* 3582 * Synchrously perform an mds request. Take care of all of the 3583 * session setup, forwarding, retry details. 3584 */ 3585 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 3586 struct inode *dir, 3587 struct ceph_mds_request *req) 3588 { 3589 int err; 3590 3591 dout("do_request on %p\n", req); 3592 3593 /* issue */ 3594 err = ceph_mdsc_submit_request(mdsc, dir, req); 3595 if (!err) 3596 err = ceph_mdsc_wait_request(mdsc, req, NULL); 3597 dout("do_request %p done, result %d\n", req, err); 3598 return err; 3599 } 3600 3601 /* 3602 * Invalidate dir's completeness, dentry lease state on an aborted MDS 3603 * namespace request. 3604 */ 3605 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 3606 { 3607 struct inode *dir = req->r_parent; 3608 struct inode *old_dir = req->r_old_dentry_dir; 3609 3610 dout("invalidate_dir_request %p %p (complete, lease(s))\n", dir, old_dir); 3611 3612 ceph_dir_clear_complete(dir); 3613 if (old_dir) 3614 ceph_dir_clear_complete(old_dir); 3615 if (req->r_dentry) 3616 ceph_invalidate_dentry_lease(req->r_dentry); 3617 if (req->r_old_dentry) 3618 ceph_invalidate_dentry_lease(req->r_old_dentry); 3619 } 3620 3621 /* 3622 * Handle mds reply. 3623 * 3624 * We take the session mutex and parse and process the reply immediately. 3625 * This preserves the logical ordering of replies, capabilities, etc., sent 3626 * by the MDS as they are applied to our local cache. 3627 */ 3628 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 3629 { 3630 struct ceph_mds_client *mdsc = session->s_mdsc; 3631 struct ceph_mds_request *req; 3632 struct ceph_mds_reply_head *head = msg->front.iov_base; 3633 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 3634 struct ceph_snap_realm *realm; 3635 u64 tid; 3636 int err, result; 3637 int mds = session->s_mds; 3638 bool close_sessions = false; 3639 3640 if (msg->front.iov_len < sizeof(*head)) { 3641 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 3642 ceph_msg_dump(msg); 3643 return; 3644 } 3645 3646 /* get request, session */ 3647 tid = le64_to_cpu(msg->hdr.tid); 3648 mutex_lock(&mdsc->mutex); 3649 req = lookup_get_request(mdsc, tid); 3650 if (!req) { 3651 dout("handle_reply on unknown tid %llu\n", tid); 3652 mutex_unlock(&mdsc->mutex); 3653 return; 3654 } 3655 dout("handle_reply %p\n", req); 3656 3657 /* correct session? */ 3658 if (req->r_session != session) { 3659 pr_err("mdsc_handle_reply got %llu on session mds%d" 3660 " not mds%d\n", tid, session->s_mds, 3661 req->r_session ? req->r_session->s_mds : -1); 3662 mutex_unlock(&mdsc->mutex); 3663 goto out; 3664 } 3665 3666 /* dup? */ 3667 if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) || 3668 (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) { 3669 pr_warn("got a dup %s reply on %llu from mds%d\n", 3670 head->safe ? "safe" : "unsafe", tid, mds); 3671 mutex_unlock(&mdsc->mutex); 3672 goto out; 3673 } 3674 if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) { 3675 pr_warn("got unsafe after safe on %llu from mds%d\n", 3676 tid, mds); 3677 mutex_unlock(&mdsc->mutex); 3678 goto out; 3679 } 3680 3681 result = le32_to_cpu(head->result); 3682 3683 if (head->safe) { 3684 set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags); 3685 __unregister_request(mdsc, req); 3686 3687 /* last request during umount? */ 3688 if (mdsc->stopping && !__get_oldest_req(mdsc)) 3689 complete_all(&mdsc->safe_umount_waiters); 3690 3691 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3692 /* 3693 * We already handled the unsafe response, now do the 3694 * cleanup. No need to examine the response; the MDS 3695 * doesn't include any result info in the safe 3696 * response. And even if it did, there is nothing 3697 * useful we could do with a revised return value. 3698 */ 3699 dout("got safe reply %llu, mds%d\n", tid, mds); 3700 3701 mutex_unlock(&mdsc->mutex); 3702 goto out; 3703 } 3704 } else { 3705 set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags); 3706 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 3707 } 3708 3709 dout("handle_reply tid %lld result %d\n", tid, result); 3710 if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features)) 3711 err = parse_reply_info(session, msg, req, (u64)-1); 3712 else 3713 err = parse_reply_info(session, msg, req, 3714 session->s_con.peer_features); 3715 mutex_unlock(&mdsc->mutex); 3716 3717 /* Must find target inode outside of mutexes to avoid deadlocks */ 3718 rinfo = &req->r_reply_info; 3719 if ((err >= 0) && rinfo->head->is_target) { 3720 struct inode *in = xchg(&req->r_new_inode, NULL); 3721 struct ceph_vino tvino = { 3722 .ino = le64_to_cpu(rinfo->targeti.in->ino), 3723 .snap = le64_to_cpu(rinfo->targeti.in->snapid) 3724 }; 3725 3726 /* 3727 * If we ended up opening an existing inode, discard 3728 * r_new_inode 3729 */ 3730 if (req->r_op == CEPH_MDS_OP_CREATE && 3731 !req->r_reply_info.has_create_ino) { 3732 /* This should never happen on an async create */ 3733 WARN_ON_ONCE(req->r_deleg_ino); 3734 iput(in); 3735 in = NULL; 3736 } 3737 3738 in = ceph_get_inode(mdsc->fsc->sb, tvino, in); 3739 if (IS_ERR(in)) { 3740 err = PTR_ERR(in); 3741 mutex_lock(&session->s_mutex); 3742 goto out_err; 3743 } 3744 req->r_target_inode = in; 3745 } 3746 3747 mutex_lock(&session->s_mutex); 3748 if (err < 0) { 3749 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 3750 ceph_msg_dump(msg); 3751 goto out_err; 3752 } 3753 3754 /* snap trace */ 3755 realm = NULL; 3756 if (rinfo->snapblob_len) { 3757 down_write(&mdsc->snap_rwsem); 3758 err = ceph_update_snap_trace(mdsc, rinfo->snapblob, 3759 rinfo->snapblob + rinfo->snapblob_len, 3760 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 3761 &realm); 3762 if (err) { 3763 up_write(&mdsc->snap_rwsem); 3764 close_sessions = true; 3765 if (err == -EIO) 3766 ceph_msg_dump(msg); 3767 goto out_err; 3768 } 3769 downgrade_write(&mdsc->snap_rwsem); 3770 } else { 3771 down_read(&mdsc->snap_rwsem); 3772 } 3773 3774 /* insert trace into our cache */ 3775 mutex_lock(&req->r_fill_mutex); 3776 current->journal_info = req; 3777 err = ceph_fill_trace(mdsc->fsc->sb, req); 3778 if (err == 0) { 3779 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 3780 req->r_op == CEPH_MDS_OP_LSSNAP)) 3781 err = ceph_readdir_prepopulate(req, req->r_session); 3782 } 3783 current->journal_info = NULL; 3784 mutex_unlock(&req->r_fill_mutex); 3785 3786 up_read(&mdsc->snap_rwsem); 3787 if (realm) 3788 ceph_put_snap_realm(mdsc, realm); 3789 3790 if (err == 0) { 3791 if (req->r_target_inode && 3792 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3793 struct ceph_inode_info *ci = 3794 ceph_inode(req->r_target_inode); 3795 spin_lock(&ci->i_unsafe_lock); 3796 list_add_tail(&req->r_unsafe_target_item, 3797 &ci->i_unsafe_iops); 3798 spin_unlock(&ci->i_unsafe_lock); 3799 } 3800 3801 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 3802 } 3803 out_err: 3804 mutex_lock(&mdsc->mutex); 3805 if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 3806 if (err) { 3807 req->r_err = err; 3808 } else { 3809 req->r_reply = ceph_msg_get(msg); 3810 set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags); 3811 } 3812 } else { 3813 dout("reply arrived after request %lld was aborted\n", tid); 3814 } 3815 mutex_unlock(&mdsc->mutex); 3816 3817 mutex_unlock(&session->s_mutex); 3818 3819 /* kick calling process */ 3820 complete_request(mdsc, req); 3821 3822 ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency, 3823 req->r_end_latency, err); 3824 out: 3825 ceph_mdsc_put_request(req); 3826 3827 /* Defer closing the sessions after s_mutex lock being released */ 3828 if (close_sessions) 3829 ceph_mdsc_close_sessions(mdsc); 3830 return; 3831 } 3832 3833 3834 3835 /* 3836 * handle mds notification that our request has been forwarded. 3837 */ 3838 static void handle_forward(struct ceph_mds_client *mdsc, 3839 struct ceph_mds_session *session, 3840 struct ceph_msg *msg) 3841 { 3842 struct ceph_mds_request *req; 3843 u64 tid = le64_to_cpu(msg->hdr.tid); 3844 u32 next_mds; 3845 u32 fwd_seq; 3846 int err = -EINVAL; 3847 void *p = msg->front.iov_base; 3848 void *end = p + msg->front.iov_len; 3849 bool aborted = false; 3850 3851 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 3852 next_mds = ceph_decode_32(&p); 3853 fwd_seq = ceph_decode_32(&p); 3854 3855 mutex_lock(&mdsc->mutex); 3856 req = lookup_get_request(mdsc, tid); 3857 if (!req) { 3858 mutex_unlock(&mdsc->mutex); 3859 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 3860 return; /* dup reply? */ 3861 } 3862 3863 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 3864 dout("forward tid %llu aborted, unregistering\n", tid); 3865 __unregister_request(mdsc, req); 3866 } else if (fwd_seq <= req->r_num_fwd || (uint32_t)fwd_seq >= U32_MAX) { 3867 /* 3868 * Avoid inifinite retrying after overflow. 3869 * 3870 * The MDS will increase the fwd count and in client side 3871 * if the num_fwd is less than the one saved in request 3872 * that means the MDS is an old version and overflowed of 3873 * 8 bits. 3874 */ 3875 mutex_lock(&req->r_fill_mutex); 3876 req->r_err = -EMULTIHOP; 3877 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3878 mutex_unlock(&req->r_fill_mutex); 3879 aborted = true; 3880 pr_warn_ratelimited("forward tid %llu seq overflow\n", tid); 3881 } else { 3882 /* resend. forward race not possible; mds would drop */ 3883 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 3884 BUG_ON(req->r_err); 3885 BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)); 3886 req->r_attempts = 0; 3887 req->r_num_fwd = fwd_seq; 3888 req->r_resend_mds = next_mds; 3889 put_request_session(req); 3890 __do_request(mdsc, req); 3891 } 3892 mutex_unlock(&mdsc->mutex); 3893 3894 /* kick calling process */ 3895 if (aborted) 3896 complete_request(mdsc, req); 3897 ceph_mdsc_put_request(req); 3898 return; 3899 3900 bad: 3901 pr_err("mdsc_handle_forward decode error err=%d\n", err); 3902 ceph_msg_dump(msg); 3903 } 3904 3905 static int __decode_session_metadata(void **p, void *end, 3906 bool *blocklisted) 3907 { 3908 /* map<string,string> */ 3909 u32 n; 3910 bool err_str; 3911 ceph_decode_32_safe(p, end, n, bad); 3912 while (n-- > 0) { 3913 u32 len; 3914 ceph_decode_32_safe(p, end, len, bad); 3915 ceph_decode_need(p, end, len, bad); 3916 err_str = !strncmp(*p, "error_string", len); 3917 *p += len; 3918 ceph_decode_32_safe(p, end, len, bad); 3919 ceph_decode_need(p, end, len, bad); 3920 /* 3921 * Match "blocklisted (blacklisted)" from newer MDSes, 3922 * or "blacklisted" from older MDSes. 3923 */ 3924 if (err_str && strnstr(*p, "blacklisted", len)) 3925 *blocklisted = true; 3926 *p += len; 3927 } 3928 return 0; 3929 bad: 3930 return -1; 3931 } 3932 3933 /* 3934 * handle a mds session control message 3935 */ 3936 static void handle_session(struct ceph_mds_session *session, 3937 struct ceph_msg *msg) 3938 { 3939 struct ceph_mds_client *mdsc = session->s_mdsc; 3940 int mds = session->s_mds; 3941 int msg_version = le16_to_cpu(msg->hdr.version); 3942 void *p = msg->front.iov_base; 3943 void *end = p + msg->front.iov_len; 3944 struct ceph_mds_session_head *h; 3945 u32 op; 3946 u64 seq, features = 0; 3947 int wake = 0; 3948 bool blocklisted = false; 3949 3950 /* decode */ 3951 ceph_decode_need(&p, end, sizeof(*h), bad); 3952 h = p; 3953 p += sizeof(*h); 3954 3955 op = le32_to_cpu(h->op); 3956 seq = le64_to_cpu(h->seq); 3957 3958 if (msg_version >= 3) { 3959 u32 len; 3960 /* version >= 2 and < 5, decode metadata, skip otherwise 3961 * as it's handled via flags. 3962 */ 3963 if (msg_version >= 5) 3964 ceph_decode_skip_map(&p, end, string, string, bad); 3965 else if (__decode_session_metadata(&p, end, &blocklisted) < 0) 3966 goto bad; 3967 3968 /* version >= 3, feature bits */ 3969 ceph_decode_32_safe(&p, end, len, bad); 3970 if (len) { 3971 ceph_decode_64_safe(&p, end, features, bad); 3972 p += len - sizeof(features); 3973 } 3974 } 3975 3976 if (msg_version >= 5) { 3977 u32 flags, len; 3978 3979 /* version >= 4 */ 3980 ceph_decode_skip_16(&p, end, bad); /* struct_v, struct_cv */ 3981 ceph_decode_32_safe(&p, end, len, bad); /* len */ 3982 ceph_decode_skip_n(&p, end, len, bad); /* metric_spec */ 3983 3984 /* version >= 5, flags */ 3985 ceph_decode_32_safe(&p, end, flags, bad); 3986 if (flags & CEPH_SESSION_BLOCKLISTED) { 3987 pr_warn("mds%d session blocklisted\n", session->s_mds); 3988 blocklisted = true; 3989 } 3990 } 3991 3992 mutex_lock(&mdsc->mutex); 3993 if (op == CEPH_SESSION_CLOSE) { 3994 ceph_get_mds_session(session); 3995 __unregister_session(mdsc, session); 3996 } 3997 /* FIXME: this ttl calculation is generous */ 3998 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 3999 mutex_unlock(&mdsc->mutex); 4000 4001 mutex_lock(&session->s_mutex); 4002 4003 dout("handle_session mds%d %s %p state %s seq %llu\n", 4004 mds, ceph_session_op_name(op), session, 4005 ceph_session_state_name(session->s_state), seq); 4006 4007 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 4008 session->s_state = CEPH_MDS_SESSION_OPEN; 4009 pr_info("mds%d came back\n", session->s_mds); 4010 } 4011 4012 switch (op) { 4013 case CEPH_SESSION_OPEN: 4014 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 4015 pr_info("mds%d reconnect success\n", session->s_mds); 4016 4017 session->s_features = features; 4018 if (session->s_state == CEPH_MDS_SESSION_OPEN) { 4019 pr_notice("mds%d is already opened\n", session->s_mds); 4020 } else { 4021 session->s_state = CEPH_MDS_SESSION_OPEN; 4022 renewed_caps(mdsc, session, 0); 4023 if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT, 4024 &session->s_features)) 4025 metric_schedule_delayed(&mdsc->metric); 4026 } 4027 4028 /* 4029 * The connection maybe broken and the session in client 4030 * side has been reinitialized, need to update the seq 4031 * anyway. 4032 */ 4033 if (!session->s_seq && seq) 4034 session->s_seq = seq; 4035 4036 wake = 1; 4037 if (mdsc->stopping) 4038 __close_session(mdsc, session); 4039 break; 4040 4041 case CEPH_SESSION_RENEWCAPS: 4042 if (session->s_renew_seq == seq) 4043 renewed_caps(mdsc, session, 1); 4044 break; 4045 4046 case CEPH_SESSION_CLOSE: 4047 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 4048 pr_info("mds%d reconnect denied\n", session->s_mds); 4049 session->s_state = CEPH_MDS_SESSION_CLOSED; 4050 cleanup_session_requests(mdsc, session); 4051 remove_session_caps(session); 4052 wake = 2; /* for good measure */ 4053 wake_up_all(&mdsc->session_close_wq); 4054 break; 4055 4056 case CEPH_SESSION_STALE: 4057 pr_info("mds%d caps went stale, renewing\n", 4058 session->s_mds); 4059 atomic_inc(&session->s_cap_gen); 4060 session->s_cap_ttl = jiffies - 1; 4061 send_renew_caps(mdsc, session); 4062 break; 4063 4064 case CEPH_SESSION_RECALL_STATE: 4065 ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 4066 break; 4067 4068 case CEPH_SESSION_FLUSHMSG: 4069 /* flush cap releases */ 4070 spin_lock(&session->s_cap_lock); 4071 if (session->s_num_cap_releases) 4072 ceph_flush_cap_releases(mdsc, session); 4073 spin_unlock(&session->s_cap_lock); 4074 4075 send_flushmsg_ack(mdsc, session, seq); 4076 break; 4077 4078 case CEPH_SESSION_FORCE_RO: 4079 dout("force_session_readonly %p\n", session); 4080 spin_lock(&session->s_cap_lock); 4081 session->s_readonly = true; 4082 spin_unlock(&session->s_cap_lock); 4083 wake_up_session_caps(session, FORCE_RO); 4084 break; 4085 4086 case CEPH_SESSION_REJECT: 4087 WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING); 4088 pr_info("mds%d rejected session\n", session->s_mds); 4089 session->s_state = CEPH_MDS_SESSION_REJECTED; 4090 cleanup_session_requests(mdsc, session); 4091 remove_session_caps(session); 4092 if (blocklisted) 4093 mdsc->fsc->blocklisted = true; 4094 wake = 2; /* for good measure */ 4095 break; 4096 4097 default: 4098 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 4099 WARN_ON(1); 4100 } 4101 4102 mutex_unlock(&session->s_mutex); 4103 if (wake) { 4104 mutex_lock(&mdsc->mutex); 4105 __wake_requests(mdsc, &session->s_waiting); 4106 if (wake == 2) 4107 kick_requests(mdsc, mds); 4108 mutex_unlock(&mdsc->mutex); 4109 } 4110 if (op == CEPH_SESSION_CLOSE) 4111 ceph_put_mds_session(session); 4112 return; 4113 4114 bad: 4115 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 4116 (int)msg->front.iov_len); 4117 ceph_msg_dump(msg); 4118 return; 4119 } 4120 4121 void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req) 4122 { 4123 int dcaps; 4124 4125 dcaps = xchg(&req->r_dir_caps, 0); 4126 if (dcaps) { 4127 dout("releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 4128 ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps); 4129 } 4130 } 4131 4132 void ceph_mdsc_release_dir_caps_no_check(struct ceph_mds_request *req) 4133 { 4134 int dcaps; 4135 4136 dcaps = xchg(&req->r_dir_caps, 0); 4137 if (dcaps) { 4138 dout("releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 4139 ceph_put_cap_refs_no_check_caps(ceph_inode(req->r_parent), 4140 dcaps); 4141 } 4142 } 4143 4144 /* 4145 * called under session->mutex. 4146 */ 4147 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 4148 struct ceph_mds_session *session) 4149 { 4150 struct ceph_mds_request *req, *nreq; 4151 struct rb_node *p; 4152 4153 dout("replay_unsafe_requests mds%d\n", session->s_mds); 4154 4155 mutex_lock(&mdsc->mutex); 4156 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) 4157 __send_request(session, req, true); 4158 4159 /* 4160 * also re-send old requests when MDS enters reconnect stage. So that MDS 4161 * can process completed request in clientreplay stage. 4162 */ 4163 p = rb_first(&mdsc->request_tree); 4164 while (p) { 4165 req = rb_entry(p, struct ceph_mds_request, r_node); 4166 p = rb_next(p); 4167 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 4168 continue; 4169 if (req->r_attempts == 0) 4170 continue; /* only old requests */ 4171 if (!req->r_session) 4172 continue; 4173 if (req->r_session->s_mds != session->s_mds) 4174 continue; 4175 4176 ceph_mdsc_release_dir_caps_no_check(req); 4177 4178 __send_request(session, req, true); 4179 } 4180 mutex_unlock(&mdsc->mutex); 4181 } 4182 4183 static int send_reconnect_partial(struct ceph_reconnect_state *recon_state) 4184 { 4185 struct ceph_msg *reply; 4186 struct ceph_pagelist *_pagelist; 4187 struct page *page; 4188 __le32 *addr; 4189 int err = -ENOMEM; 4190 4191 if (!recon_state->allow_multi) 4192 return -ENOSPC; 4193 4194 /* can't handle message that contains both caps and realm */ 4195 BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms); 4196 4197 /* pre-allocate new pagelist */ 4198 _pagelist = ceph_pagelist_alloc(GFP_NOFS); 4199 if (!_pagelist) 4200 return -ENOMEM; 4201 4202 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4203 if (!reply) 4204 goto fail_msg; 4205 4206 /* placeholder for nr_caps */ 4207 err = ceph_pagelist_encode_32(_pagelist, 0); 4208 if (err < 0) 4209 goto fail; 4210 4211 if (recon_state->nr_caps) { 4212 /* currently encoding caps */ 4213 err = ceph_pagelist_encode_32(recon_state->pagelist, 0); 4214 if (err) 4215 goto fail; 4216 } else { 4217 /* placeholder for nr_realms (currently encoding relams) */ 4218 err = ceph_pagelist_encode_32(_pagelist, 0); 4219 if (err < 0) 4220 goto fail; 4221 } 4222 4223 err = ceph_pagelist_encode_8(recon_state->pagelist, 1); 4224 if (err) 4225 goto fail; 4226 4227 page = list_first_entry(&recon_state->pagelist->head, struct page, lru); 4228 addr = kmap_atomic(page); 4229 if (recon_state->nr_caps) { 4230 /* currently encoding caps */ 4231 *addr = cpu_to_le32(recon_state->nr_caps); 4232 } else { 4233 /* currently encoding relams */ 4234 *(addr + 1) = cpu_to_le32(recon_state->nr_realms); 4235 } 4236 kunmap_atomic(addr); 4237 4238 reply->hdr.version = cpu_to_le16(5); 4239 reply->hdr.compat_version = cpu_to_le16(4); 4240 4241 reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length); 4242 ceph_msg_data_add_pagelist(reply, recon_state->pagelist); 4243 4244 ceph_con_send(&recon_state->session->s_con, reply); 4245 ceph_pagelist_release(recon_state->pagelist); 4246 4247 recon_state->pagelist = _pagelist; 4248 recon_state->nr_caps = 0; 4249 recon_state->nr_realms = 0; 4250 recon_state->msg_version = 5; 4251 return 0; 4252 fail: 4253 ceph_msg_put(reply); 4254 fail_msg: 4255 ceph_pagelist_release(_pagelist); 4256 return err; 4257 } 4258 4259 static struct dentry* d_find_primary(struct inode *inode) 4260 { 4261 struct dentry *alias, *dn = NULL; 4262 4263 if (hlist_empty(&inode->i_dentry)) 4264 return NULL; 4265 4266 spin_lock(&inode->i_lock); 4267 if (hlist_empty(&inode->i_dentry)) 4268 goto out_unlock; 4269 4270 if (S_ISDIR(inode->i_mode)) { 4271 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 4272 if (!IS_ROOT(alias)) 4273 dn = dget(alias); 4274 goto out_unlock; 4275 } 4276 4277 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 4278 spin_lock(&alias->d_lock); 4279 if (!d_unhashed(alias) && 4280 (ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) { 4281 dn = dget_dlock(alias); 4282 } 4283 spin_unlock(&alias->d_lock); 4284 if (dn) 4285 break; 4286 } 4287 out_unlock: 4288 spin_unlock(&inode->i_lock); 4289 return dn; 4290 } 4291 4292 /* 4293 * Encode information about a cap for a reconnect with the MDS. 4294 */ 4295 static int reconnect_caps_cb(struct inode *inode, int mds, void *arg) 4296 { 4297 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 4298 union { 4299 struct ceph_mds_cap_reconnect v2; 4300 struct ceph_mds_cap_reconnect_v1 v1; 4301 } rec; 4302 struct ceph_inode_info *ci = ceph_inode(inode); 4303 struct ceph_reconnect_state *recon_state = arg; 4304 struct ceph_pagelist *pagelist = recon_state->pagelist; 4305 struct dentry *dentry; 4306 struct ceph_cap *cap; 4307 char *path; 4308 int pathlen = 0, err; 4309 u64 pathbase; 4310 u64 snap_follows; 4311 4312 dentry = d_find_primary(inode); 4313 if (dentry) { 4314 /* set pathbase to parent dir when msg_version >= 2 */ 4315 path = ceph_mdsc_build_path(mdsc, dentry, &pathlen, &pathbase, 4316 recon_state->msg_version >= 2); 4317 dput(dentry); 4318 if (IS_ERR(path)) { 4319 err = PTR_ERR(path); 4320 goto out_err; 4321 } 4322 } else { 4323 path = NULL; 4324 pathbase = 0; 4325 } 4326 4327 spin_lock(&ci->i_ceph_lock); 4328 cap = __get_cap_for_mds(ci, mds); 4329 if (!cap) { 4330 spin_unlock(&ci->i_ceph_lock); 4331 err = 0; 4332 goto out_err; 4333 } 4334 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 4335 inode, ceph_vinop(inode), cap, cap->cap_id, 4336 ceph_cap_string(cap->issued)); 4337 4338 cap->seq = 0; /* reset cap seq */ 4339 cap->issue_seq = 0; /* and issue_seq */ 4340 cap->mseq = 0; /* and migrate_seq */ 4341 cap->cap_gen = atomic_read(&cap->session->s_cap_gen); 4342 4343 /* These are lost when the session goes away */ 4344 if (S_ISDIR(inode->i_mode)) { 4345 if (cap->issued & CEPH_CAP_DIR_CREATE) { 4346 ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns)); 4347 memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout)); 4348 } 4349 cap->issued &= ~CEPH_CAP_ANY_DIR_OPS; 4350 } 4351 4352 if (recon_state->msg_version >= 2) { 4353 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 4354 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 4355 rec.v2.issued = cpu_to_le32(cap->issued); 4356 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 4357 rec.v2.pathbase = cpu_to_le64(pathbase); 4358 rec.v2.flock_len = (__force __le32) 4359 ((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1); 4360 } else { 4361 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 4362 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 4363 rec.v1.issued = cpu_to_le32(cap->issued); 4364 rec.v1.size = cpu_to_le64(i_size_read(inode)); 4365 ceph_encode_timespec64(&rec.v1.mtime, &inode->i_mtime); 4366 ceph_encode_timespec64(&rec.v1.atime, &inode->i_atime); 4367 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 4368 rec.v1.pathbase = cpu_to_le64(pathbase); 4369 } 4370 4371 if (list_empty(&ci->i_cap_snaps)) { 4372 snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0; 4373 } else { 4374 struct ceph_cap_snap *capsnap = 4375 list_first_entry(&ci->i_cap_snaps, 4376 struct ceph_cap_snap, ci_item); 4377 snap_follows = capsnap->follows; 4378 } 4379 spin_unlock(&ci->i_ceph_lock); 4380 4381 if (recon_state->msg_version >= 2) { 4382 int num_fcntl_locks, num_flock_locks; 4383 struct ceph_filelock *flocks = NULL; 4384 size_t struct_len, total_len = sizeof(u64); 4385 u8 struct_v = 0; 4386 4387 encode_again: 4388 if (rec.v2.flock_len) { 4389 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 4390 } else { 4391 num_fcntl_locks = 0; 4392 num_flock_locks = 0; 4393 } 4394 if (num_fcntl_locks + num_flock_locks > 0) { 4395 flocks = kmalloc_array(num_fcntl_locks + num_flock_locks, 4396 sizeof(struct ceph_filelock), 4397 GFP_NOFS); 4398 if (!flocks) { 4399 err = -ENOMEM; 4400 goto out_err; 4401 } 4402 err = ceph_encode_locks_to_buffer(inode, flocks, 4403 num_fcntl_locks, 4404 num_flock_locks); 4405 if (err) { 4406 kfree(flocks); 4407 flocks = NULL; 4408 if (err == -ENOSPC) 4409 goto encode_again; 4410 goto out_err; 4411 } 4412 } else { 4413 kfree(flocks); 4414 flocks = NULL; 4415 } 4416 4417 if (recon_state->msg_version >= 3) { 4418 /* version, compat_version and struct_len */ 4419 total_len += 2 * sizeof(u8) + sizeof(u32); 4420 struct_v = 2; 4421 } 4422 /* 4423 * number of encoded locks is stable, so copy to pagelist 4424 */ 4425 struct_len = 2 * sizeof(u32) + 4426 (num_fcntl_locks + num_flock_locks) * 4427 sizeof(struct ceph_filelock); 4428 rec.v2.flock_len = cpu_to_le32(struct_len); 4429 4430 struct_len += sizeof(u32) + pathlen + sizeof(rec.v2); 4431 4432 if (struct_v >= 2) 4433 struct_len += sizeof(u64); /* snap_follows */ 4434 4435 total_len += struct_len; 4436 4437 if (pagelist->length + total_len > RECONNECT_MAX_SIZE) { 4438 err = send_reconnect_partial(recon_state); 4439 if (err) 4440 goto out_freeflocks; 4441 pagelist = recon_state->pagelist; 4442 } 4443 4444 err = ceph_pagelist_reserve(pagelist, total_len); 4445 if (err) 4446 goto out_freeflocks; 4447 4448 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4449 if (recon_state->msg_version >= 3) { 4450 ceph_pagelist_encode_8(pagelist, struct_v); 4451 ceph_pagelist_encode_8(pagelist, 1); 4452 ceph_pagelist_encode_32(pagelist, struct_len); 4453 } 4454 ceph_pagelist_encode_string(pagelist, path, pathlen); 4455 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2)); 4456 ceph_locks_to_pagelist(flocks, pagelist, 4457 num_fcntl_locks, num_flock_locks); 4458 if (struct_v >= 2) 4459 ceph_pagelist_encode_64(pagelist, snap_follows); 4460 out_freeflocks: 4461 kfree(flocks); 4462 } else { 4463 err = ceph_pagelist_reserve(pagelist, 4464 sizeof(u64) + sizeof(u32) + 4465 pathlen + sizeof(rec.v1)); 4466 if (err) 4467 goto out_err; 4468 4469 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4470 ceph_pagelist_encode_string(pagelist, path, pathlen); 4471 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1)); 4472 } 4473 4474 out_err: 4475 ceph_mdsc_free_path(path, pathlen); 4476 if (!err) 4477 recon_state->nr_caps++; 4478 return err; 4479 } 4480 4481 static int encode_snap_realms(struct ceph_mds_client *mdsc, 4482 struct ceph_reconnect_state *recon_state) 4483 { 4484 struct rb_node *p; 4485 struct ceph_pagelist *pagelist = recon_state->pagelist; 4486 int err = 0; 4487 4488 if (recon_state->msg_version >= 4) { 4489 err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms); 4490 if (err < 0) 4491 goto fail; 4492 } 4493 4494 /* 4495 * snaprealms. we provide mds with the ino, seq (version), and 4496 * parent for all of our realms. If the mds has any newer info, 4497 * it will tell us. 4498 */ 4499 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 4500 struct ceph_snap_realm *realm = 4501 rb_entry(p, struct ceph_snap_realm, node); 4502 struct ceph_mds_snaprealm_reconnect sr_rec; 4503 4504 if (recon_state->msg_version >= 4) { 4505 size_t need = sizeof(u8) * 2 + sizeof(u32) + 4506 sizeof(sr_rec); 4507 4508 if (pagelist->length + need > RECONNECT_MAX_SIZE) { 4509 err = send_reconnect_partial(recon_state); 4510 if (err) 4511 goto fail; 4512 pagelist = recon_state->pagelist; 4513 } 4514 4515 err = ceph_pagelist_reserve(pagelist, need); 4516 if (err) 4517 goto fail; 4518 4519 ceph_pagelist_encode_8(pagelist, 1); 4520 ceph_pagelist_encode_8(pagelist, 1); 4521 ceph_pagelist_encode_32(pagelist, sizeof(sr_rec)); 4522 } 4523 4524 dout(" adding snap realm %llx seq %lld parent %llx\n", 4525 realm->ino, realm->seq, realm->parent_ino); 4526 sr_rec.ino = cpu_to_le64(realm->ino); 4527 sr_rec.seq = cpu_to_le64(realm->seq); 4528 sr_rec.parent = cpu_to_le64(realm->parent_ino); 4529 4530 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 4531 if (err) 4532 goto fail; 4533 4534 recon_state->nr_realms++; 4535 } 4536 fail: 4537 return err; 4538 } 4539 4540 4541 /* 4542 * If an MDS fails and recovers, clients need to reconnect in order to 4543 * reestablish shared state. This includes all caps issued through 4544 * this session _and_ the snap_realm hierarchy. Because it's not 4545 * clear which snap realms the mds cares about, we send everything we 4546 * know about.. that ensures we'll then get any new info the 4547 * recovering MDS might have. 4548 * 4549 * This is a relatively heavyweight operation, but it's rare. 4550 */ 4551 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 4552 struct ceph_mds_session *session) 4553 { 4554 struct ceph_msg *reply; 4555 int mds = session->s_mds; 4556 int err = -ENOMEM; 4557 struct ceph_reconnect_state recon_state = { 4558 .session = session, 4559 }; 4560 LIST_HEAD(dispose); 4561 4562 pr_info("mds%d reconnect start\n", mds); 4563 4564 recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS); 4565 if (!recon_state.pagelist) 4566 goto fail_nopagelist; 4567 4568 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4569 if (!reply) 4570 goto fail_nomsg; 4571 4572 xa_destroy(&session->s_delegated_inos); 4573 4574 mutex_lock(&session->s_mutex); 4575 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 4576 session->s_seq = 0; 4577 4578 dout("session %p state %s\n", session, 4579 ceph_session_state_name(session->s_state)); 4580 4581 atomic_inc(&session->s_cap_gen); 4582 4583 spin_lock(&session->s_cap_lock); 4584 /* don't know if session is readonly */ 4585 session->s_readonly = 0; 4586 /* 4587 * notify __ceph_remove_cap() that we are composing cap reconnect. 4588 * If a cap get released before being added to the cap reconnect, 4589 * __ceph_remove_cap() should skip queuing cap release. 4590 */ 4591 session->s_cap_reconnect = 1; 4592 /* drop old cap expires; we're about to reestablish that state */ 4593 detach_cap_releases(session, &dispose); 4594 spin_unlock(&session->s_cap_lock); 4595 dispose_cap_releases(mdsc, &dispose); 4596 4597 /* trim unused caps to reduce MDS's cache rejoin time */ 4598 if (mdsc->fsc->sb->s_root) 4599 shrink_dcache_parent(mdsc->fsc->sb->s_root); 4600 4601 ceph_con_close(&session->s_con); 4602 ceph_con_open(&session->s_con, 4603 CEPH_ENTITY_TYPE_MDS, mds, 4604 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 4605 4606 /* replay unsafe requests */ 4607 replay_unsafe_requests(mdsc, session); 4608 4609 ceph_early_kick_flushing_caps(mdsc, session); 4610 4611 down_read(&mdsc->snap_rwsem); 4612 4613 /* placeholder for nr_caps */ 4614 err = ceph_pagelist_encode_32(recon_state.pagelist, 0); 4615 if (err) 4616 goto fail; 4617 4618 if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) { 4619 recon_state.msg_version = 3; 4620 recon_state.allow_multi = true; 4621 } else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) { 4622 recon_state.msg_version = 3; 4623 } else { 4624 recon_state.msg_version = 2; 4625 } 4626 /* trsaverse this session's caps */ 4627 err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state); 4628 4629 spin_lock(&session->s_cap_lock); 4630 session->s_cap_reconnect = 0; 4631 spin_unlock(&session->s_cap_lock); 4632 4633 if (err < 0) 4634 goto fail; 4635 4636 /* check if all realms can be encoded into current message */ 4637 if (mdsc->num_snap_realms) { 4638 size_t total_len = 4639 recon_state.pagelist->length + 4640 mdsc->num_snap_realms * 4641 sizeof(struct ceph_mds_snaprealm_reconnect); 4642 if (recon_state.msg_version >= 4) { 4643 /* number of realms */ 4644 total_len += sizeof(u32); 4645 /* version, compat_version and struct_len */ 4646 total_len += mdsc->num_snap_realms * 4647 (2 * sizeof(u8) + sizeof(u32)); 4648 } 4649 if (total_len > RECONNECT_MAX_SIZE) { 4650 if (!recon_state.allow_multi) { 4651 err = -ENOSPC; 4652 goto fail; 4653 } 4654 if (recon_state.nr_caps) { 4655 err = send_reconnect_partial(&recon_state); 4656 if (err) 4657 goto fail; 4658 } 4659 recon_state.msg_version = 5; 4660 } 4661 } 4662 4663 err = encode_snap_realms(mdsc, &recon_state); 4664 if (err < 0) 4665 goto fail; 4666 4667 if (recon_state.msg_version >= 5) { 4668 err = ceph_pagelist_encode_8(recon_state.pagelist, 0); 4669 if (err < 0) 4670 goto fail; 4671 } 4672 4673 if (recon_state.nr_caps || recon_state.nr_realms) { 4674 struct page *page = 4675 list_first_entry(&recon_state.pagelist->head, 4676 struct page, lru); 4677 __le32 *addr = kmap_atomic(page); 4678 if (recon_state.nr_caps) { 4679 WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms); 4680 *addr = cpu_to_le32(recon_state.nr_caps); 4681 } else if (recon_state.msg_version >= 4) { 4682 *(addr + 1) = cpu_to_le32(recon_state.nr_realms); 4683 } 4684 kunmap_atomic(addr); 4685 } 4686 4687 reply->hdr.version = cpu_to_le16(recon_state.msg_version); 4688 if (recon_state.msg_version >= 4) 4689 reply->hdr.compat_version = cpu_to_le16(4); 4690 4691 reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length); 4692 ceph_msg_data_add_pagelist(reply, recon_state.pagelist); 4693 4694 ceph_con_send(&session->s_con, reply); 4695 4696 mutex_unlock(&session->s_mutex); 4697 4698 mutex_lock(&mdsc->mutex); 4699 __wake_requests(mdsc, &session->s_waiting); 4700 mutex_unlock(&mdsc->mutex); 4701 4702 up_read(&mdsc->snap_rwsem); 4703 ceph_pagelist_release(recon_state.pagelist); 4704 return; 4705 4706 fail: 4707 ceph_msg_put(reply); 4708 up_read(&mdsc->snap_rwsem); 4709 mutex_unlock(&session->s_mutex); 4710 fail_nomsg: 4711 ceph_pagelist_release(recon_state.pagelist); 4712 fail_nopagelist: 4713 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 4714 return; 4715 } 4716 4717 4718 /* 4719 * compare old and new mdsmaps, kicking requests 4720 * and closing out old connections as necessary 4721 * 4722 * called under mdsc->mutex. 4723 */ 4724 static void check_new_map(struct ceph_mds_client *mdsc, 4725 struct ceph_mdsmap *newmap, 4726 struct ceph_mdsmap *oldmap) 4727 { 4728 int i, j, err; 4729 int oldstate, newstate; 4730 struct ceph_mds_session *s; 4731 unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0}; 4732 4733 dout("check_new_map new %u old %u\n", 4734 newmap->m_epoch, oldmap->m_epoch); 4735 4736 if (newmap->m_info) { 4737 for (i = 0; i < newmap->possible_max_rank; i++) { 4738 for (j = 0; j < newmap->m_info[i].num_export_targets; j++) 4739 set_bit(newmap->m_info[i].export_targets[j], targets); 4740 } 4741 } 4742 4743 for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) { 4744 if (!mdsc->sessions[i]) 4745 continue; 4746 s = mdsc->sessions[i]; 4747 oldstate = ceph_mdsmap_get_state(oldmap, i); 4748 newstate = ceph_mdsmap_get_state(newmap, i); 4749 4750 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 4751 i, ceph_mds_state_name(oldstate), 4752 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 4753 ceph_mds_state_name(newstate), 4754 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 4755 ceph_session_state_name(s->s_state)); 4756 4757 if (i >= newmap->possible_max_rank) { 4758 /* force close session for stopped mds */ 4759 ceph_get_mds_session(s); 4760 __unregister_session(mdsc, s); 4761 __wake_requests(mdsc, &s->s_waiting); 4762 mutex_unlock(&mdsc->mutex); 4763 4764 mutex_lock(&s->s_mutex); 4765 cleanup_session_requests(mdsc, s); 4766 remove_session_caps(s); 4767 mutex_unlock(&s->s_mutex); 4768 4769 ceph_put_mds_session(s); 4770 4771 mutex_lock(&mdsc->mutex); 4772 kick_requests(mdsc, i); 4773 continue; 4774 } 4775 4776 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 4777 ceph_mdsmap_get_addr(newmap, i), 4778 sizeof(struct ceph_entity_addr))) { 4779 /* just close it */ 4780 mutex_unlock(&mdsc->mutex); 4781 mutex_lock(&s->s_mutex); 4782 mutex_lock(&mdsc->mutex); 4783 ceph_con_close(&s->s_con); 4784 mutex_unlock(&s->s_mutex); 4785 s->s_state = CEPH_MDS_SESSION_RESTARTING; 4786 } else if (oldstate == newstate) { 4787 continue; /* nothing new with this mds */ 4788 } 4789 4790 /* 4791 * send reconnect? 4792 */ 4793 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 4794 newstate >= CEPH_MDS_STATE_RECONNECT) { 4795 mutex_unlock(&mdsc->mutex); 4796 clear_bit(i, targets); 4797 send_mds_reconnect(mdsc, s); 4798 mutex_lock(&mdsc->mutex); 4799 } 4800 4801 /* 4802 * kick request on any mds that has gone active. 4803 */ 4804 if (oldstate < CEPH_MDS_STATE_ACTIVE && 4805 newstate >= CEPH_MDS_STATE_ACTIVE) { 4806 if (oldstate != CEPH_MDS_STATE_CREATING && 4807 oldstate != CEPH_MDS_STATE_STARTING) 4808 pr_info("mds%d recovery completed\n", s->s_mds); 4809 kick_requests(mdsc, i); 4810 mutex_unlock(&mdsc->mutex); 4811 mutex_lock(&s->s_mutex); 4812 mutex_lock(&mdsc->mutex); 4813 ceph_kick_flushing_caps(mdsc, s); 4814 mutex_unlock(&s->s_mutex); 4815 wake_up_session_caps(s, RECONNECT); 4816 } 4817 } 4818 4819 /* 4820 * Only open and reconnect sessions that don't exist yet. 4821 */ 4822 for (i = 0; i < newmap->possible_max_rank; i++) { 4823 /* 4824 * In case the import MDS is crashed just after 4825 * the EImportStart journal is flushed, so when 4826 * a standby MDS takes over it and is replaying 4827 * the EImportStart journal the new MDS daemon 4828 * will wait the client to reconnect it, but the 4829 * client may never register/open the session yet. 4830 * 4831 * Will try to reconnect that MDS daemon if the 4832 * rank number is in the export targets array and 4833 * is the up:reconnect state. 4834 */ 4835 newstate = ceph_mdsmap_get_state(newmap, i); 4836 if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT) 4837 continue; 4838 4839 /* 4840 * The session maybe registered and opened by some 4841 * requests which were choosing random MDSes during 4842 * the mdsc->mutex's unlock/lock gap below in rare 4843 * case. But the related MDS daemon will just queue 4844 * that requests and be still waiting for the client's 4845 * reconnection request in up:reconnect state. 4846 */ 4847 s = __ceph_lookup_mds_session(mdsc, i); 4848 if (likely(!s)) { 4849 s = __open_export_target_session(mdsc, i); 4850 if (IS_ERR(s)) { 4851 err = PTR_ERR(s); 4852 pr_err("failed to open export target session, err %d\n", 4853 err); 4854 continue; 4855 } 4856 } 4857 dout("send reconnect to export target mds.%d\n", i); 4858 mutex_unlock(&mdsc->mutex); 4859 send_mds_reconnect(mdsc, s); 4860 ceph_put_mds_session(s); 4861 mutex_lock(&mdsc->mutex); 4862 } 4863 4864 for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) { 4865 s = mdsc->sessions[i]; 4866 if (!s) 4867 continue; 4868 if (!ceph_mdsmap_is_laggy(newmap, i)) 4869 continue; 4870 if (s->s_state == CEPH_MDS_SESSION_OPEN || 4871 s->s_state == CEPH_MDS_SESSION_HUNG || 4872 s->s_state == CEPH_MDS_SESSION_CLOSING) { 4873 dout(" connecting to export targets of laggy mds%d\n", 4874 i); 4875 __open_export_target_sessions(mdsc, s); 4876 } 4877 } 4878 } 4879 4880 4881 4882 /* 4883 * leases 4884 */ 4885 4886 /* 4887 * caller must hold session s_mutex, dentry->d_lock 4888 */ 4889 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 4890 { 4891 struct ceph_dentry_info *di = ceph_dentry(dentry); 4892 4893 ceph_put_mds_session(di->lease_session); 4894 di->lease_session = NULL; 4895 } 4896 4897 static void handle_lease(struct ceph_mds_client *mdsc, 4898 struct ceph_mds_session *session, 4899 struct ceph_msg *msg) 4900 { 4901 struct super_block *sb = mdsc->fsc->sb; 4902 struct inode *inode; 4903 struct dentry *parent, *dentry; 4904 struct ceph_dentry_info *di; 4905 int mds = session->s_mds; 4906 struct ceph_mds_lease *h = msg->front.iov_base; 4907 u32 seq; 4908 struct ceph_vino vino; 4909 struct qstr dname; 4910 int release = 0; 4911 4912 dout("handle_lease from mds%d\n", mds); 4913 4914 if (!ceph_inc_mds_stopping_blocker(mdsc, session)) 4915 return; 4916 4917 /* decode */ 4918 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 4919 goto bad; 4920 vino.ino = le64_to_cpu(h->ino); 4921 vino.snap = CEPH_NOSNAP; 4922 seq = le32_to_cpu(h->seq); 4923 dname.len = get_unaligned_le32(h + 1); 4924 if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len) 4925 goto bad; 4926 dname.name = (void *)(h + 1) + sizeof(u32); 4927 4928 /* lookup inode */ 4929 inode = ceph_find_inode(sb, vino); 4930 dout("handle_lease %s, ino %llx %p %.*s\n", 4931 ceph_lease_op_name(h->action), vino.ino, inode, 4932 dname.len, dname.name); 4933 4934 mutex_lock(&session->s_mutex); 4935 if (!inode) { 4936 dout("handle_lease no inode %llx\n", vino.ino); 4937 goto release; 4938 } 4939 4940 /* dentry */ 4941 parent = d_find_alias(inode); 4942 if (!parent) { 4943 dout("no parent dentry on inode %p\n", inode); 4944 WARN_ON(1); 4945 goto release; /* hrm... */ 4946 } 4947 dname.hash = full_name_hash(parent, dname.name, dname.len); 4948 dentry = d_lookup(parent, &dname); 4949 dput(parent); 4950 if (!dentry) 4951 goto release; 4952 4953 spin_lock(&dentry->d_lock); 4954 di = ceph_dentry(dentry); 4955 switch (h->action) { 4956 case CEPH_MDS_LEASE_REVOKE: 4957 if (di->lease_session == session) { 4958 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 4959 h->seq = cpu_to_le32(di->lease_seq); 4960 __ceph_mdsc_drop_dentry_lease(dentry); 4961 } 4962 release = 1; 4963 break; 4964 4965 case CEPH_MDS_LEASE_RENEW: 4966 if (di->lease_session == session && 4967 di->lease_gen == atomic_read(&session->s_cap_gen) && 4968 di->lease_renew_from && 4969 di->lease_renew_after == 0) { 4970 unsigned long duration = 4971 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 4972 4973 di->lease_seq = seq; 4974 di->time = di->lease_renew_from + duration; 4975 di->lease_renew_after = di->lease_renew_from + 4976 (duration >> 1); 4977 di->lease_renew_from = 0; 4978 } 4979 break; 4980 } 4981 spin_unlock(&dentry->d_lock); 4982 dput(dentry); 4983 4984 if (!release) 4985 goto out; 4986 4987 release: 4988 /* let's just reuse the same message */ 4989 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 4990 ceph_msg_get(msg); 4991 ceph_con_send(&session->s_con, msg); 4992 4993 out: 4994 mutex_unlock(&session->s_mutex); 4995 iput(inode); 4996 4997 ceph_dec_mds_stopping_blocker(mdsc); 4998 return; 4999 5000 bad: 5001 ceph_dec_mds_stopping_blocker(mdsc); 5002 5003 pr_err("corrupt lease message\n"); 5004 ceph_msg_dump(msg); 5005 } 5006 5007 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 5008 struct dentry *dentry, char action, 5009 u32 seq) 5010 { 5011 struct ceph_msg *msg; 5012 struct ceph_mds_lease *lease; 5013 struct inode *dir; 5014 int len = sizeof(*lease) + sizeof(u32) + NAME_MAX; 5015 5016 dout("lease_send_msg identry %p %s to mds%d\n", 5017 dentry, ceph_lease_op_name(action), session->s_mds); 5018 5019 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 5020 if (!msg) 5021 return; 5022 lease = msg->front.iov_base; 5023 lease->action = action; 5024 lease->seq = cpu_to_le32(seq); 5025 5026 spin_lock(&dentry->d_lock); 5027 dir = d_inode(dentry->d_parent); 5028 lease->ino = cpu_to_le64(ceph_ino(dir)); 5029 lease->first = lease->last = cpu_to_le64(ceph_snap(dir)); 5030 5031 put_unaligned_le32(dentry->d_name.len, lease + 1); 5032 memcpy((void *)(lease + 1) + 4, 5033 dentry->d_name.name, dentry->d_name.len); 5034 spin_unlock(&dentry->d_lock); 5035 5036 ceph_con_send(&session->s_con, msg); 5037 } 5038 5039 /* 5040 * lock unlock the session, to wait ongoing session activities 5041 */ 5042 static void lock_unlock_session(struct ceph_mds_session *s) 5043 { 5044 mutex_lock(&s->s_mutex); 5045 mutex_unlock(&s->s_mutex); 5046 } 5047 5048 static void maybe_recover_session(struct ceph_mds_client *mdsc) 5049 { 5050 struct ceph_fs_client *fsc = mdsc->fsc; 5051 5052 if (!ceph_test_mount_opt(fsc, CLEANRECOVER)) 5053 return; 5054 5055 if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED) 5056 return; 5057 5058 if (!READ_ONCE(fsc->blocklisted)) 5059 return; 5060 5061 pr_info("auto reconnect after blocklisted\n"); 5062 ceph_force_reconnect(fsc->sb); 5063 } 5064 5065 bool check_session_state(struct ceph_mds_session *s) 5066 { 5067 switch (s->s_state) { 5068 case CEPH_MDS_SESSION_OPEN: 5069 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 5070 s->s_state = CEPH_MDS_SESSION_HUNG; 5071 pr_info("mds%d hung\n", s->s_mds); 5072 } 5073 break; 5074 case CEPH_MDS_SESSION_CLOSING: 5075 case CEPH_MDS_SESSION_NEW: 5076 case CEPH_MDS_SESSION_RESTARTING: 5077 case CEPH_MDS_SESSION_CLOSED: 5078 case CEPH_MDS_SESSION_REJECTED: 5079 return false; 5080 } 5081 5082 return true; 5083 } 5084 5085 /* 5086 * If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply, 5087 * then we need to retransmit that request. 5088 */ 5089 void inc_session_sequence(struct ceph_mds_session *s) 5090 { 5091 lockdep_assert_held(&s->s_mutex); 5092 5093 s->s_seq++; 5094 5095 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 5096 int ret; 5097 5098 dout("resending session close request for mds%d\n", s->s_mds); 5099 ret = request_close_session(s); 5100 if (ret < 0) 5101 pr_err("unable to close session to mds%d: %d\n", 5102 s->s_mds, ret); 5103 } 5104 } 5105 5106 /* 5107 * delayed work -- periodically trim expired leases, renew caps with mds. If 5108 * the @delay parameter is set to 0 or if it's more than 5 secs, the default 5109 * workqueue delay value of 5 secs will be used. 5110 */ 5111 static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay) 5112 { 5113 unsigned long max_delay = HZ * 5; 5114 5115 /* 5 secs default delay */ 5116 if (!delay || (delay > max_delay)) 5117 delay = max_delay; 5118 schedule_delayed_work(&mdsc->delayed_work, 5119 round_jiffies_relative(delay)); 5120 } 5121 5122 static void delayed_work(struct work_struct *work) 5123 { 5124 struct ceph_mds_client *mdsc = 5125 container_of(work, struct ceph_mds_client, delayed_work.work); 5126 unsigned long delay; 5127 int renew_interval; 5128 int renew_caps; 5129 int i; 5130 5131 dout("mdsc delayed_work\n"); 5132 5133 if (mdsc->stopping >= CEPH_MDSC_STOPPING_FLUSHED) 5134 return; 5135 5136 mutex_lock(&mdsc->mutex); 5137 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 5138 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 5139 mdsc->last_renew_caps); 5140 if (renew_caps) 5141 mdsc->last_renew_caps = jiffies; 5142 5143 for (i = 0; i < mdsc->max_sessions; i++) { 5144 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 5145 if (!s) 5146 continue; 5147 5148 if (!check_session_state(s)) { 5149 ceph_put_mds_session(s); 5150 continue; 5151 } 5152 mutex_unlock(&mdsc->mutex); 5153 5154 mutex_lock(&s->s_mutex); 5155 if (renew_caps) 5156 send_renew_caps(mdsc, s); 5157 else 5158 ceph_con_keepalive(&s->s_con); 5159 if (s->s_state == CEPH_MDS_SESSION_OPEN || 5160 s->s_state == CEPH_MDS_SESSION_HUNG) 5161 ceph_send_cap_releases(mdsc, s); 5162 mutex_unlock(&s->s_mutex); 5163 ceph_put_mds_session(s); 5164 5165 mutex_lock(&mdsc->mutex); 5166 } 5167 mutex_unlock(&mdsc->mutex); 5168 5169 delay = ceph_check_delayed_caps(mdsc); 5170 5171 ceph_queue_cap_reclaim_work(mdsc); 5172 5173 ceph_trim_snapid_map(mdsc); 5174 5175 maybe_recover_session(mdsc); 5176 5177 schedule_delayed(mdsc, delay); 5178 } 5179 5180 int ceph_mdsc_init(struct ceph_fs_client *fsc) 5181 5182 { 5183 struct ceph_mds_client *mdsc; 5184 int err; 5185 5186 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 5187 if (!mdsc) 5188 return -ENOMEM; 5189 mdsc->fsc = fsc; 5190 mutex_init(&mdsc->mutex); 5191 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 5192 if (!mdsc->mdsmap) { 5193 err = -ENOMEM; 5194 goto err_mdsc; 5195 } 5196 5197 init_completion(&mdsc->safe_umount_waiters); 5198 spin_lock_init(&mdsc->stopping_lock); 5199 atomic_set(&mdsc->stopping_blockers, 0); 5200 init_completion(&mdsc->stopping_waiter); 5201 init_waitqueue_head(&mdsc->session_close_wq); 5202 INIT_LIST_HEAD(&mdsc->waiting_for_map); 5203 mdsc->quotarealms_inodes = RB_ROOT; 5204 mutex_init(&mdsc->quotarealms_inodes_mutex); 5205 init_rwsem(&mdsc->snap_rwsem); 5206 mdsc->snap_realms = RB_ROOT; 5207 INIT_LIST_HEAD(&mdsc->snap_empty); 5208 spin_lock_init(&mdsc->snap_empty_lock); 5209 mdsc->request_tree = RB_ROOT; 5210 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 5211 mdsc->last_renew_caps = jiffies; 5212 INIT_LIST_HEAD(&mdsc->cap_delay_list); 5213 INIT_LIST_HEAD(&mdsc->cap_wait_list); 5214 spin_lock_init(&mdsc->cap_delay_lock); 5215 INIT_LIST_HEAD(&mdsc->snap_flush_list); 5216 spin_lock_init(&mdsc->snap_flush_lock); 5217 mdsc->last_cap_flush_tid = 1; 5218 INIT_LIST_HEAD(&mdsc->cap_flush_list); 5219 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 5220 spin_lock_init(&mdsc->cap_dirty_lock); 5221 init_waitqueue_head(&mdsc->cap_flushing_wq); 5222 INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work); 5223 err = ceph_metric_init(&mdsc->metric); 5224 if (err) 5225 goto err_mdsmap; 5226 5227 spin_lock_init(&mdsc->dentry_list_lock); 5228 INIT_LIST_HEAD(&mdsc->dentry_leases); 5229 INIT_LIST_HEAD(&mdsc->dentry_dir_leases); 5230 5231 ceph_caps_init(mdsc); 5232 ceph_adjust_caps_max_min(mdsc, fsc->mount_options); 5233 5234 spin_lock_init(&mdsc->snapid_map_lock); 5235 mdsc->snapid_map_tree = RB_ROOT; 5236 INIT_LIST_HEAD(&mdsc->snapid_map_lru); 5237 5238 init_rwsem(&mdsc->pool_perm_rwsem); 5239 mdsc->pool_perm_tree = RB_ROOT; 5240 5241 strscpy(mdsc->nodename, utsname()->nodename, 5242 sizeof(mdsc->nodename)); 5243 5244 fsc->mdsc = mdsc; 5245 return 0; 5246 5247 err_mdsmap: 5248 kfree(mdsc->mdsmap); 5249 err_mdsc: 5250 kfree(mdsc); 5251 return err; 5252 } 5253 5254 /* 5255 * Wait for safe replies on open mds requests. If we time out, drop 5256 * all requests from the tree to avoid dangling dentry refs. 5257 */ 5258 static void wait_requests(struct ceph_mds_client *mdsc) 5259 { 5260 struct ceph_options *opts = mdsc->fsc->client->options; 5261 struct ceph_mds_request *req; 5262 5263 mutex_lock(&mdsc->mutex); 5264 if (__get_oldest_req(mdsc)) { 5265 mutex_unlock(&mdsc->mutex); 5266 5267 dout("wait_requests waiting for requests\n"); 5268 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 5269 ceph_timeout_jiffies(opts->mount_timeout)); 5270 5271 /* tear down remaining requests */ 5272 mutex_lock(&mdsc->mutex); 5273 while ((req = __get_oldest_req(mdsc))) { 5274 dout("wait_requests timed out on tid %llu\n", 5275 req->r_tid); 5276 list_del_init(&req->r_wait); 5277 __unregister_request(mdsc, req); 5278 } 5279 } 5280 mutex_unlock(&mdsc->mutex); 5281 dout("wait_requests done\n"); 5282 } 5283 5284 void send_flush_mdlog(struct ceph_mds_session *s) 5285 { 5286 struct ceph_msg *msg; 5287 5288 /* 5289 * Pre-luminous MDS crashes when it sees an unknown session request 5290 */ 5291 if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS)) 5292 return; 5293 5294 mutex_lock(&s->s_mutex); 5295 dout("request mdlog flush to mds%d (%s)s seq %lld\n", s->s_mds, 5296 ceph_session_state_name(s->s_state), s->s_seq); 5297 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG, 5298 s->s_seq); 5299 if (!msg) { 5300 pr_err("failed to request mdlog flush to mds%d (%s) seq %lld\n", 5301 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); 5302 } else { 5303 ceph_con_send(&s->s_con, msg); 5304 } 5305 mutex_unlock(&s->s_mutex); 5306 } 5307 5308 /* 5309 * called before mount is ro, and before dentries are torn down. 5310 * (hmm, does this still race with new lookups?) 5311 */ 5312 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 5313 { 5314 dout("pre_umount\n"); 5315 mdsc->stopping = CEPH_MDSC_STOPPING_BEGIN; 5316 5317 ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true); 5318 ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false); 5319 ceph_flush_dirty_caps(mdsc); 5320 wait_requests(mdsc); 5321 5322 /* 5323 * wait for reply handlers to drop their request refs and 5324 * their inode/dcache refs 5325 */ 5326 ceph_msgr_flush(); 5327 5328 ceph_cleanup_quotarealms_inodes(mdsc); 5329 } 5330 5331 /* 5332 * flush the mdlog and wait for all write mds requests to flush. 5333 */ 5334 static void flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client *mdsc, 5335 u64 want_tid) 5336 { 5337 struct ceph_mds_request *req = NULL, *nextreq; 5338 struct ceph_mds_session *last_session = NULL; 5339 struct rb_node *n; 5340 5341 mutex_lock(&mdsc->mutex); 5342 dout("%s want %lld\n", __func__, want_tid); 5343 restart: 5344 req = __get_oldest_req(mdsc); 5345 while (req && req->r_tid <= want_tid) { 5346 /* find next request */ 5347 n = rb_next(&req->r_node); 5348 if (n) 5349 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 5350 else 5351 nextreq = NULL; 5352 if (req->r_op != CEPH_MDS_OP_SETFILELOCK && 5353 (req->r_op & CEPH_MDS_OP_WRITE)) { 5354 struct ceph_mds_session *s = req->r_session; 5355 5356 if (!s) { 5357 req = nextreq; 5358 continue; 5359 } 5360 5361 /* write op */ 5362 ceph_mdsc_get_request(req); 5363 if (nextreq) 5364 ceph_mdsc_get_request(nextreq); 5365 s = ceph_get_mds_session(s); 5366 mutex_unlock(&mdsc->mutex); 5367 5368 /* send flush mdlog request to MDS */ 5369 if (last_session != s) { 5370 send_flush_mdlog(s); 5371 ceph_put_mds_session(last_session); 5372 last_session = s; 5373 } else { 5374 ceph_put_mds_session(s); 5375 } 5376 dout("%s wait on %llu (want %llu)\n", __func__, 5377 req->r_tid, want_tid); 5378 wait_for_completion(&req->r_safe_completion); 5379 5380 mutex_lock(&mdsc->mutex); 5381 ceph_mdsc_put_request(req); 5382 if (!nextreq) 5383 break; /* next dne before, so we're done! */ 5384 if (RB_EMPTY_NODE(&nextreq->r_node)) { 5385 /* next request was removed from tree */ 5386 ceph_mdsc_put_request(nextreq); 5387 goto restart; 5388 } 5389 ceph_mdsc_put_request(nextreq); /* won't go away */ 5390 } 5391 req = nextreq; 5392 } 5393 mutex_unlock(&mdsc->mutex); 5394 ceph_put_mds_session(last_session); 5395 dout("%s done\n", __func__); 5396 } 5397 5398 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 5399 { 5400 u64 want_tid, want_flush; 5401 5402 if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN) 5403 return; 5404 5405 dout("sync\n"); 5406 mutex_lock(&mdsc->mutex); 5407 want_tid = mdsc->last_tid; 5408 mutex_unlock(&mdsc->mutex); 5409 5410 ceph_flush_dirty_caps(mdsc); 5411 spin_lock(&mdsc->cap_dirty_lock); 5412 want_flush = mdsc->last_cap_flush_tid; 5413 if (!list_empty(&mdsc->cap_flush_list)) { 5414 struct ceph_cap_flush *cf = 5415 list_last_entry(&mdsc->cap_flush_list, 5416 struct ceph_cap_flush, g_list); 5417 cf->wake = true; 5418 } 5419 spin_unlock(&mdsc->cap_dirty_lock); 5420 5421 dout("sync want tid %lld flush_seq %lld\n", 5422 want_tid, want_flush); 5423 5424 flush_mdlog_and_wait_mdsc_unsafe_requests(mdsc, want_tid); 5425 wait_caps_flush(mdsc, want_flush); 5426 } 5427 5428 /* 5429 * true if all sessions are closed, or we force unmount 5430 */ 5431 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped) 5432 { 5433 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 5434 return true; 5435 return atomic_read(&mdsc->num_sessions) <= skipped; 5436 } 5437 5438 /* 5439 * called after sb is ro or when metadata corrupted. 5440 */ 5441 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 5442 { 5443 struct ceph_options *opts = mdsc->fsc->client->options; 5444 struct ceph_mds_session *session; 5445 int i; 5446 int skipped = 0; 5447 5448 dout("close_sessions\n"); 5449 5450 /* close sessions */ 5451 mutex_lock(&mdsc->mutex); 5452 for (i = 0; i < mdsc->max_sessions; i++) { 5453 session = __ceph_lookup_mds_session(mdsc, i); 5454 if (!session) 5455 continue; 5456 mutex_unlock(&mdsc->mutex); 5457 mutex_lock(&session->s_mutex); 5458 if (__close_session(mdsc, session) <= 0) 5459 skipped++; 5460 mutex_unlock(&session->s_mutex); 5461 ceph_put_mds_session(session); 5462 mutex_lock(&mdsc->mutex); 5463 } 5464 mutex_unlock(&mdsc->mutex); 5465 5466 dout("waiting for sessions to close\n"); 5467 wait_event_timeout(mdsc->session_close_wq, 5468 done_closing_sessions(mdsc, skipped), 5469 ceph_timeout_jiffies(opts->mount_timeout)); 5470 5471 /* tear down remaining sessions */ 5472 mutex_lock(&mdsc->mutex); 5473 for (i = 0; i < mdsc->max_sessions; i++) { 5474 if (mdsc->sessions[i]) { 5475 session = ceph_get_mds_session(mdsc->sessions[i]); 5476 __unregister_session(mdsc, session); 5477 mutex_unlock(&mdsc->mutex); 5478 mutex_lock(&session->s_mutex); 5479 remove_session_caps(session); 5480 mutex_unlock(&session->s_mutex); 5481 ceph_put_mds_session(session); 5482 mutex_lock(&mdsc->mutex); 5483 } 5484 } 5485 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 5486 mutex_unlock(&mdsc->mutex); 5487 5488 ceph_cleanup_snapid_map(mdsc); 5489 ceph_cleanup_global_and_empty_realms(mdsc); 5490 5491 cancel_work_sync(&mdsc->cap_reclaim_work); 5492 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 5493 5494 dout("stopped\n"); 5495 } 5496 5497 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) 5498 { 5499 struct ceph_mds_session *session; 5500 int mds; 5501 5502 dout("force umount\n"); 5503 5504 mutex_lock(&mdsc->mutex); 5505 for (mds = 0; mds < mdsc->max_sessions; mds++) { 5506 session = __ceph_lookup_mds_session(mdsc, mds); 5507 if (!session) 5508 continue; 5509 5510 if (session->s_state == CEPH_MDS_SESSION_REJECTED) 5511 __unregister_session(mdsc, session); 5512 __wake_requests(mdsc, &session->s_waiting); 5513 mutex_unlock(&mdsc->mutex); 5514 5515 mutex_lock(&session->s_mutex); 5516 __close_session(mdsc, session); 5517 if (session->s_state == CEPH_MDS_SESSION_CLOSING) { 5518 cleanup_session_requests(mdsc, session); 5519 remove_session_caps(session); 5520 } 5521 mutex_unlock(&session->s_mutex); 5522 ceph_put_mds_session(session); 5523 5524 mutex_lock(&mdsc->mutex); 5525 kick_requests(mdsc, mds); 5526 } 5527 __wake_requests(mdsc, &mdsc->waiting_for_map); 5528 mutex_unlock(&mdsc->mutex); 5529 } 5530 5531 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 5532 { 5533 dout("stop\n"); 5534 /* 5535 * Make sure the delayed work stopped before releasing 5536 * the resources. 5537 * 5538 * Because the cancel_delayed_work_sync() will only 5539 * guarantee that the work finishes executing. But the 5540 * delayed work will re-arm itself again after that. 5541 */ 5542 flush_delayed_work(&mdsc->delayed_work); 5543 5544 if (mdsc->mdsmap) 5545 ceph_mdsmap_destroy(mdsc->mdsmap); 5546 kfree(mdsc->sessions); 5547 ceph_caps_finalize(mdsc); 5548 ceph_pool_perm_destroy(mdsc); 5549 } 5550 5551 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 5552 { 5553 struct ceph_mds_client *mdsc = fsc->mdsc; 5554 dout("mdsc_destroy %p\n", mdsc); 5555 5556 if (!mdsc) 5557 return; 5558 5559 /* flush out any connection work with references to us */ 5560 ceph_msgr_flush(); 5561 5562 ceph_mdsc_stop(mdsc); 5563 5564 ceph_metric_destroy(&mdsc->metric); 5565 5566 fsc->mdsc = NULL; 5567 kfree(mdsc); 5568 dout("mdsc_destroy %p done\n", mdsc); 5569 } 5570 5571 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 5572 { 5573 struct ceph_fs_client *fsc = mdsc->fsc; 5574 const char *mds_namespace = fsc->mount_options->mds_namespace; 5575 void *p = msg->front.iov_base; 5576 void *end = p + msg->front.iov_len; 5577 u32 epoch; 5578 u32 num_fs; 5579 u32 mount_fscid = (u32)-1; 5580 int err = -EINVAL; 5581 5582 ceph_decode_need(&p, end, sizeof(u32), bad); 5583 epoch = ceph_decode_32(&p); 5584 5585 dout("handle_fsmap epoch %u\n", epoch); 5586 5587 /* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */ 5588 ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad); 5589 5590 ceph_decode_32_safe(&p, end, num_fs, bad); 5591 while (num_fs-- > 0) { 5592 void *info_p, *info_end; 5593 u32 info_len; 5594 u32 fscid, namelen; 5595 5596 ceph_decode_need(&p, end, 2 + sizeof(u32), bad); 5597 p += 2; // info_v, info_cv 5598 info_len = ceph_decode_32(&p); 5599 ceph_decode_need(&p, end, info_len, bad); 5600 info_p = p; 5601 info_end = p + info_len; 5602 p = info_end; 5603 5604 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad); 5605 fscid = ceph_decode_32(&info_p); 5606 namelen = ceph_decode_32(&info_p); 5607 ceph_decode_need(&info_p, info_end, namelen, bad); 5608 5609 if (mds_namespace && 5610 strlen(mds_namespace) == namelen && 5611 !strncmp(mds_namespace, (char *)info_p, namelen)) { 5612 mount_fscid = fscid; 5613 break; 5614 } 5615 } 5616 5617 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch); 5618 if (mount_fscid != (u32)-1) { 5619 fsc->client->monc.fs_cluster_id = mount_fscid; 5620 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP, 5621 0, true); 5622 ceph_monc_renew_subs(&fsc->client->monc); 5623 } else { 5624 err = -ENOENT; 5625 goto err_out; 5626 } 5627 return; 5628 5629 bad: 5630 pr_err("error decoding fsmap %d. Shutting down mount.\n", err); 5631 ceph_umount_begin(mdsc->fsc->sb); 5632 ceph_msg_dump(msg); 5633 err_out: 5634 mutex_lock(&mdsc->mutex); 5635 mdsc->mdsmap_err = err; 5636 __wake_requests(mdsc, &mdsc->waiting_for_map); 5637 mutex_unlock(&mdsc->mutex); 5638 } 5639 5640 /* 5641 * handle mds map update. 5642 */ 5643 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 5644 { 5645 u32 epoch; 5646 u32 maplen; 5647 void *p = msg->front.iov_base; 5648 void *end = p + msg->front.iov_len; 5649 struct ceph_mdsmap *newmap, *oldmap; 5650 struct ceph_fsid fsid; 5651 int err = -EINVAL; 5652 5653 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 5654 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 5655 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 5656 return; 5657 epoch = ceph_decode_32(&p); 5658 maplen = ceph_decode_32(&p); 5659 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 5660 5661 /* do we need it? */ 5662 mutex_lock(&mdsc->mutex); 5663 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 5664 dout("handle_map epoch %u <= our %u\n", 5665 epoch, mdsc->mdsmap->m_epoch); 5666 mutex_unlock(&mdsc->mutex); 5667 return; 5668 } 5669 5670 newmap = ceph_mdsmap_decode(mdsc, &p, end, ceph_msgr2(mdsc->fsc->client)); 5671 if (IS_ERR(newmap)) { 5672 err = PTR_ERR(newmap); 5673 goto bad_unlock; 5674 } 5675 5676 /* swap into place */ 5677 if (mdsc->mdsmap) { 5678 oldmap = mdsc->mdsmap; 5679 mdsc->mdsmap = newmap; 5680 check_new_map(mdsc, newmap, oldmap); 5681 ceph_mdsmap_destroy(oldmap); 5682 } else { 5683 mdsc->mdsmap = newmap; /* first mds map */ 5684 } 5685 mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size, 5686 MAX_LFS_FILESIZE); 5687 5688 __wake_requests(mdsc, &mdsc->waiting_for_map); 5689 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP, 5690 mdsc->mdsmap->m_epoch); 5691 5692 mutex_unlock(&mdsc->mutex); 5693 schedule_delayed(mdsc, 0); 5694 return; 5695 5696 bad_unlock: 5697 mutex_unlock(&mdsc->mutex); 5698 bad: 5699 pr_err("error decoding mdsmap %d. Shutting down mount.\n", err); 5700 ceph_umount_begin(mdsc->fsc->sb); 5701 ceph_msg_dump(msg); 5702 return; 5703 } 5704 5705 static struct ceph_connection *mds_get_con(struct ceph_connection *con) 5706 { 5707 struct ceph_mds_session *s = con->private; 5708 5709 if (ceph_get_mds_session(s)) 5710 return con; 5711 return NULL; 5712 } 5713 5714 static void mds_put_con(struct ceph_connection *con) 5715 { 5716 struct ceph_mds_session *s = con->private; 5717 5718 ceph_put_mds_session(s); 5719 } 5720 5721 /* 5722 * if the client is unresponsive for long enough, the mds will kill 5723 * the session entirely. 5724 */ 5725 static void mds_peer_reset(struct ceph_connection *con) 5726 { 5727 struct ceph_mds_session *s = con->private; 5728 struct ceph_mds_client *mdsc = s->s_mdsc; 5729 5730 pr_warn("mds%d closed our session\n", s->s_mds); 5731 if (READ_ONCE(mdsc->fsc->mount_state) != CEPH_MOUNT_FENCE_IO) 5732 send_mds_reconnect(mdsc, s); 5733 } 5734 5735 static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg) 5736 { 5737 struct ceph_mds_session *s = con->private; 5738 struct ceph_mds_client *mdsc = s->s_mdsc; 5739 int type = le16_to_cpu(msg->hdr.type); 5740 5741 mutex_lock(&mdsc->mutex); 5742 if (__verify_registered_session(mdsc, s) < 0) { 5743 mutex_unlock(&mdsc->mutex); 5744 goto out; 5745 } 5746 mutex_unlock(&mdsc->mutex); 5747 5748 switch (type) { 5749 case CEPH_MSG_MDS_MAP: 5750 ceph_mdsc_handle_mdsmap(mdsc, msg); 5751 break; 5752 case CEPH_MSG_FS_MAP_USER: 5753 ceph_mdsc_handle_fsmap(mdsc, msg); 5754 break; 5755 case CEPH_MSG_CLIENT_SESSION: 5756 handle_session(s, msg); 5757 break; 5758 case CEPH_MSG_CLIENT_REPLY: 5759 handle_reply(s, msg); 5760 break; 5761 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 5762 handle_forward(mdsc, s, msg); 5763 break; 5764 case CEPH_MSG_CLIENT_CAPS: 5765 ceph_handle_caps(s, msg); 5766 break; 5767 case CEPH_MSG_CLIENT_SNAP: 5768 ceph_handle_snap(mdsc, s, msg); 5769 break; 5770 case CEPH_MSG_CLIENT_LEASE: 5771 handle_lease(mdsc, s, msg); 5772 break; 5773 case CEPH_MSG_CLIENT_QUOTA: 5774 ceph_handle_quota(mdsc, s, msg); 5775 break; 5776 5777 default: 5778 pr_err("received unknown message type %d %s\n", type, 5779 ceph_msg_type_name(type)); 5780 } 5781 out: 5782 ceph_msg_put(msg); 5783 } 5784 5785 /* 5786 * authentication 5787 */ 5788 5789 /* 5790 * Note: returned pointer is the address of a structure that's 5791 * managed separately. Caller must *not* attempt to free it. 5792 */ 5793 static struct ceph_auth_handshake * 5794 mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new) 5795 { 5796 struct ceph_mds_session *s = con->private; 5797 struct ceph_mds_client *mdsc = s->s_mdsc; 5798 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5799 struct ceph_auth_handshake *auth = &s->s_auth; 5800 int ret; 5801 5802 ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 5803 force_new, proto, NULL, NULL); 5804 if (ret) 5805 return ERR_PTR(ret); 5806 5807 return auth; 5808 } 5809 5810 static int mds_add_authorizer_challenge(struct ceph_connection *con, 5811 void *challenge_buf, int challenge_buf_len) 5812 { 5813 struct ceph_mds_session *s = con->private; 5814 struct ceph_mds_client *mdsc = s->s_mdsc; 5815 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5816 5817 return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer, 5818 challenge_buf, challenge_buf_len); 5819 } 5820 5821 static int mds_verify_authorizer_reply(struct ceph_connection *con) 5822 { 5823 struct ceph_mds_session *s = con->private; 5824 struct ceph_mds_client *mdsc = s->s_mdsc; 5825 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5826 struct ceph_auth_handshake *auth = &s->s_auth; 5827 5828 return ceph_auth_verify_authorizer_reply(ac, auth->authorizer, 5829 auth->authorizer_reply_buf, auth->authorizer_reply_buf_len, 5830 NULL, NULL, NULL, NULL); 5831 } 5832 5833 static int mds_invalidate_authorizer(struct ceph_connection *con) 5834 { 5835 struct ceph_mds_session *s = con->private; 5836 struct ceph_mds_client *mdsc = s->s_mdsc; 5837 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5838 5839 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 5840 5841 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 5842 } 5843 5844 static int mds_get_auth_request(struct ceph_connection *con, 5845 void *buf, int *buf_len, 5846 void **authorizer, int *authorizer_len) 5847 { 5848 struct ceph_mds_session *s = con->private; 5849 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 5850 struct ceph_auth_handshake *auth = &s->s_auth; 5851 int ret; 5852 5853 ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 5854 buf, buf_len); 5855 if (ret) 5856 return ret; 5857 5858 *authorizer = auth->authorizer_buf; 5859 *authorizer_len = auth->authorizer_buf_len; 5860 return 0; 5861 } 5862 5863 static int mds_handle_auth_reply_more(struct ceph_connection *con, 5864 void *reply, int reply_len, 5865 void *buf, int *buf_len, 5866 void **authorizer, int *authorizer_len) 5867 { 5868 struct ceph_mds_session *s = con->private; 5869 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 5870 struct ceph_auth_handshake *auth = &s->s_auth; 5871 int ret; 5872 5873 ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len, 5874 buf, buf_len); 5875 if (ret) 5876 return ret; 5877 5878 *authorizer = auth->authorizer_buf; 5879 *authorizer_len = auth->authorizer_buf_len; 5880 return 0; 5881 } 5882 5883 static int mds_handle_auth_done(struct ceph_connection *con, 5884 u64 global_id, void *reply, int reply_len, 5885 u8 *session_key, int *session_key_len, 5886 u8 *con_secret, int *con_secret_len) 5887 { 5888 struct ceph_mds_session *s = con->private; 5889 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 5890 struct ceph_auth_handshake *auth = &s->s_auth; 5891 5892 return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len, 5893 session_key, session_key_len, 5894 con_secret, con_secret_len); 5895 } 5896 5897 static int mds_handle_auth_bad_method(struct ceph_connection *con, 5898 int used_proto, int result, 5899 const int *allowed_protos, int proto_cnt, 5900 const int *allowed_modes, int mode_cnt) 5901 { 5902 struct ceph_mds_session *s = con->private; 5903 struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc; 5904 int ret; 5905 5906 if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS, 5907 used_proto, result, 5908 allowed_protos, proto_cnt, 5909 allowed_modes, mode_cnt)) { 5910 ret = ceph_monc_validate_auth(monc); 5911 if (ret) 5912 return ret; 5913 } 5914 5915 return -EACCES; 5916 } 5917 5918 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 5919 struct ceph_msg_header *hdr, int *skip) 5920 { 5921 struct ceph_msg *msg; 5922 int type = (int) le16_to_cpu(hdr->type); 5923 int front_len = (int) le32_to_cpu(hdr->front_len); 5924 5925 if (con->in_msg) 5926 return con->in_msg; 5927 5928 *skip = 0; 5929 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 5930 if (!msg) { 5931 pr_err("unable to allocate msg type %d len %d\n", 5932 type, front_len); 5933 return NULL; 5934 } 5935 5936 return msg; 5937 } 5938 5939 static int mds_sign_message(struct ceph_msg *msg) 5940 { 5941 struct ceph_mds_session *s = msg->con->private; 5942 struct ceph_auth_handshake *auth = &s->s_auth; 5943 5944 return ceph_auth_sign_message(auth, msg); 5945 } 5946 5947 static int mds_check_message_signature(struct ceph_msg *msg) 5948 { 5949 struct ceph_mds_session *s = msg->con->private; 5950 struct ceph_auth_handshake *auth = &s->s_auth; 5951 5952 return ceph_auth_check_message_signature(auth, msg); 5953 } 5954 5955 static const struct ceph_connection_operations mds_con_ops = { 5956 .get = mds_get_con, 5957 .put = mds_put_con, 5958 .alloc_msg = mds_alloc_msg, 5959 .dispatch = mds_dispatch, 5960 .peer_reset = mds_peer_reset, 5961 .get_authorizer = mds_get_authorizer, 5962 .add_authorizer_challenge = mds_add_authorizer_challenge, 5963 .verify_authorizer_reply = mds_verify_authorizer_reply, 5964 .invalidate_authorizer = mds_invalidate_authorizer, 5965 .sign_message = mds_sign_message, 5966 .check_message_signature = mds_check_message_signature, 5967 .get_auth_request = mds_get_auth_request, 5968 .handle_auth_reply_more = mds_handle_auth_reply_more, 5969 .handle_auth_done = mds_handle_auth_done, 5970 .handle_auth_bad_method = mds_handle_auth_bad_method, 5971 }; 5972 5973 /* eof */ 5974