1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/sched.h> 7 #include <linux/debugfs.h> 8 #include <linux/seq_file.h> 9 10 #include "super.h" 11 #include "mds_client.h" 12 13 #include <linux/ceph/ceph_features.h> 14 #include <linux/ceph/messenger.h> 15 #include <linux/ceph/decode.h> 16 #include <linux/ceph/pagelist.h> 17 #include <linux/ceph/auth.h> 18 #include <linux/ceph/debugfs.h> 19 20 /* 21 * A cluster of MDS (metadata server) daemons is responsible for 22 * managing the file system namespace (the directory hierarchy and 23 * inodes) and for coordinating shared access to storage. Metadata is 24 * partitioning hierarchically across a number of servers, and that 25 * partition varies over time as the cluster adjusts the distribution 26 * in order to balance load. 27 * 28 * The MDS client is primarily responsible to managing synchronous 29 * metadata requests for operations like open, unlink, and so forth. 30 * If there is a MDS failure, we find out about it when we (possibly 31 * request and) receive a new MDS map, and can resubmit affected 32 * requests. 33 * 34 * For the most part, though, we take advantage of a lossless 35 * communications channel to the MDS, and do not need to worry about 36 * timing out or resubmitting requests. 37 * 38 * We maintain a stateful "session" with each MDS we interact with. 39 * Within each session, we sent periodic heartbeat messages to ensure 40 * any capabilities or leases we have been issues remain valid. If 41 * the session times out and goes stale, our leases and capabilities 42 * are no longer valid. 43 */ 44 45 struct ceph_reconnect_state { 46 struct ceph_pagelist *pagelist; 47 bool flock; 48 }; 49 50 static void __wake_requests(struct ceph_mds_client *mdsc, 51 struct list_head *head); 52 53 static const struct ceph_connection_operations mds_con_ops; 54 55 56 /* 57 * mds reply parsing 58 */ 59 60 /* 61 * parse individual inode info 62 */ 63 static int parse_reply_info_in(void **p, void *end, 64 struct ceph_mds_reply_info_in *info, 65 int features) 66 { 67 int err = -EIO; 68 69 info->in = *p; 70 *p += sizeof(struct ceph_mds_reply_inode) + 71 sizeof(*info->in->fragtree.splits) * 72 le32_to_cpu(info->in->fragtree.nsplits); 73 74 ceph_decode_32_safe(p, end, info->symlink_len, bad); 75 ceph_decode_need(p, end, info->symlink_len, bad); 76 info->symlink = *p; 77 *p += info->symlink_len; 78 79 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 80 ceph_decode_copy_safe(p, end, &info->dir_layout, 81 sizeof(info->dir_layout), bad); 82 else 83 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 84 85 ceph_decode_32_safe(p, end, info->xattr_len, bad); 86 ceph_decode_need(p, end, info->xattr_len, bad); 87 info->xattr_data = *p; 88 *p += info->xattr_len; 89 return 0; 90 bad: 91 return err; 92 } 93 94 /* 95 * parse a normal reply, which may contain a (dir+)dentry and/or a 96 * target inode. 97 */ 98 static int parse_reply_info_trace(void **p, void *end, 99 struct ceph_mds_reply_info_parsed *info, 100 int features) 101 { 102 int err; 103 104 if (info->head->is_dentry) { 105 err = parse_reply_info_in(p, end, &info->diri, features); 106 if (err < 0) 107 goto out_bad; 108 109 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 110 goto bad; 111 info->dirfrag = *p; 112 *p += sizeof(*info->dirfrag) + 113 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 114 if (unlikely(*p > end)) 115 goto bad; 116 117 ceph_decode_32_safe(p, end, info->dname_len, bad); 118 ceph_decode_need(p, end, info->dname_len, bad); 119 info->dname = *p; 120 *p += info->dname_len; 121 info->dlease = *p; 122 *p += sizeof(*info->dlease); 123 } 124 125 if (info->head->is_target) { 126 err = parse_reply_info_in(p, end, &info->targeti, features); 127 if (err < 0) 128 goto out_bad; 129 } 130 131 if (unlikely(*p != end)) 132 goto bad; 133 return 0; 134 135 bad: 136 err = -EIO; 137 out_bad: 138 pr_err("problem parsing mds trace %d\n", err); 139 return err; 140 } 141 142 /* 143 * parse readdir results 144 */ 145 static int parse_reply_info_dir(void **p, void *end, 146 struct ceph_mds_reply_info_parsed *info, 147 int features) 148 { 149 u32 num, i = 0; 150 int err; 151 152 info->dir_dir = *p; 153 if (*p + sizeof(*info->dir_dir) > end) 154 goto bad; 155 *p += sizeof(*info->dir_dir) + 156 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 157 if (*p > end) 158 goto bad; 159 160 ceph_decode_need(p, end, sizeof(num) + 2, bad); 161 num = ceph_decode_32(p); 162 info->dir_end = ceph_decode_8(p); 163 info->dir_complete = ceph_decode_8(p); 164 if (num == 0) 165 goto done; 166 167 /* alloc large array */ 168 info->dir_nr = num; 169 info->dir_in = kcalloc(num, sizeof(*info->dir_in) + 170 sizeof(*info->dir_dname) + 171 sizeof(*info->dir_dname_len) + 172 sizeof(*info->dir_dlease), 173 GFP_NOFS); 174 if (info->dir_in == NULL) { 175 err = -ENOMEM; 176 goto out_bad; 177 } 178 info->dir_dname = (void *)(info->dir_in + num); 179 info->dir_dname_len = (void *)(info->dir_dname + num); 180 info->dir_dlease = (void *)(info->dir_dname_len + num); 181 182 while (num) { 183 /* dentry */ 184 ceph_decode_need(p, end, sizeof(u32)*2, bad); 185 info->dir_dname_len[i] = ceph_decode_32(p); 186 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 187 info->dir_dname[i] = *p; 188 *p += info->dir_dname_len[i]; 189 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 190 info->dir_dname[i]); 191 info->dir_dlease[i] = *p; 192 *p += sizeof(struct ceph_mds_reply_lease); 193 194 /* inode */ 195 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 196 if (err < 0) 197 goto out_bad; 198 i++; 199 num--; 200 } 201 202 done: 203 if (*p != end) 204 goto bad; 205 return 0; 206 207 bad: 208 err = -EIO; 209 out_bad: 210 pr_err("problem parsing dir contents %d\n", err); 211 return err; 212 } 213 214 /* 215 * parse fcntl F_GETLK results 216 */ 217 static int parse_reply_info_filelock(void **p, void *end, 218 struct ceph_mds_reply_info_parsed *info, 219 int features) 220 { 221 if (*p + sizeof(*info->filelock_reply) > end) 222 goto bad; 223 224 info->filelock_reply = *p; 225 *p += sizeof(*info->filelock_reply); 226 227 if (unlikely(*p != end)) 228 goto bad; 229 return 0; 230 231 bad: 232 return -EIO; 233 } 234 235 /* 236 * parse create results 237 */ 238 static int parse_reply_info_create(void **p, void *end, 239 struct ceph_mds_reply_info_parsed *info, 240 int features) 241 { 242 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) { 243 if (*p == end) { 244 info->has_create_ino = false; 245 } else { 246 info->has_create_ino = true; 247 info->ino = ceph_decode_64(p); 248 } 249 } 250 251 if (unlikely(*p != end)) 252 goto bad; 253 return 0; 254 255 bad: 256 return -EIO; 257 } 258 259 /* 260 * parse extra results 261 */ 262 static int parse_reply_info_extra(void **p, void *end, 263 struct ceph_mds_reply_info_parsed *info, 264 int features) 265 { 266 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 267 return parse_reply_info_filelock(p, end, info, features); 268 else if (info->head->op == CEPH_MDS_OP_READDIR || 269 info->head->op == CEPH_MDS_OP_LSSNAP) 270 return parse_reply_info_dir(p, end, info, features); 271 else if (info->head->op == CEPH_MDS_OP_CREATE) 272 return parse_reply_info_create(p, end, info, features); 273 else 274 return -EIO; 275 } 276 277 /* 278 * parse entire mds reply 279 */ 280 static int parse_reply_info(struct ceph_msg *msg, 281 struct ceph_mds_reply_info_parsed *info, 282 int features) 283 { 284 void *p, *end; 285 u32 len; 286 int err; 287 288 info->head = msg->front.iov_base; 289 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 290 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 291 292 /* trace */ 293 ceph_decode_32_safe(&p, end, len, bad); 294 if (len > 0) { 295 ceph_decode_need(&p, end, len, bad); 296 err = parse_reply_info_trace(&p, p+len, info, features); 297 if (err < 0) 298 goto out_bad; 299 } 300 301 /* extra */ 302 ceph_decode_32_safe(&p, end, len, bad); 303 if (len > 0) { 304 ceph_decode_need(&p, end, len, bad); 305 err = parse_reply_info_extra(&p, p+len, info, features); 306 if (err < 0) 307 goto out_bad; 308 } 309 310 /* snap blob */ 311 ceph_decode_32_safe(&p, end, len, bad); 312 info->snapblob_len = len; 313 info->snapblob = p; 314 p += len; 315 316 if (p != end) 317 goto bad; 318 return 0; 319 320 bad: 321 err = -EIO; 322 out_bad: 323 pr_err("mds parse_reply err %d\n", err); 324 return err; 325 } 326 327 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 328 { 329 kfree(info->dir_in); 330 } 331 332 333 /* 334 * sessions 335 */ 336 static const char *session_state_name(int s) 337 { 338 switch (s) { 339 case CEPH_MDS_SESSION_NEW: return "new"; 340 case CEPH_MDS_SESSION_OPENING: return "opening"; 341 case CEPH_MDS_SESSION_OPEN: return "open"; 342 case CEPH_MDS_SESSION_HUNG: return "hung"; 343 case CEPH_MDS_SESSION_CLOSING: return "closing"; 344 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 345 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 346 default: return "???"; 347 } 348 } 349 350 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 351 { 352 if (atomic_inc_not_zero(&s->s_ref)) { 353 dout("mdsc get_session %p %d -> %d\n", s, 354 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 355 return s; 356 } else { 357 dout("mdsc get_session %p 0 -- FAIL", s); 358 return NULL; 359 } 360 } 361 362 void ceph_put_mds_session(struct ceph_mds_session *s) 363 { 364 dout("mdsc put_session %p %d -> %d\n", s, 365 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 366 if (atomic_dec_and_test(&s->s_ref)) { 367 if (s->s_auth.authorizer) 368 ceph_auth_destroy_authorizer( 369 s->s_mdsc->fsc->client->monc.auth, 370 s->s_auth.authorizer); 371 kfree(s); 372 } 373 } 374 375 /* 376 * called under mdsc->mutex 377 */ 378 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 379 int mds) 380 { 381 struct ceph_mds_session *session; 382 383 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 384 return NULL; 385 session = mdsc->sessions[mds]; 386 dout("lookup_mds_session %p %d\n", session, 387 atomic_read(&session->s_ref)); 388 get_session(session); 389 return session; 390 } 391 392 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 393 { 394 if (mds >= mdsc->max_sessions) 395 return false; 396 return mdsc->sessions[mds]; 397 } 398 399 static int __verify_registered_session(struct ceph_mds_client *mdsc, 400 struct ceph_mds_session *s) 401 { 402 if (s->s_mds >= mdsc->max_sessions || 403 mdsc->sessions[s->s_mds] != s) 404 return -ENOENT; 405 return 0; 406 } 407 408 /* 409 * create+register a new session for given mds. 410 * called under mdsc->mutex. 411 */ 412 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 413 int mds) 414 { 415 struct ceph_mds_session *s; 416 417 s = kzalloc(sizeof(*s), GFP_NOFS); 418 if (!s) 419 return ERR_PTR(-ENOMEM); 420 s->s_mdsc = mdsc; 421 s->s_mds = mds; 422 s->s_state = CEPH_MDS_SESSION_NEW; 423 s->s_ttl = 0; 424 s->s_seq = 0; 425 mutex_init(&s->s_mutex); 426 427 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 428 429 spin_lock_init(&s->s_gen_ttl_lock); 430 s->s_cap_gen = 0; 431 s->s_cap_ttl = jiffies - 1; 432 433 spin_lock_init(&s->s_cap_lock); 434 s->s_renew_requested = 0; 435 s->s_renew_seq = 0; 436 INIT_LIST_HEAD(&s->s_caps); 437 s->s_nr_caps = 0; 438 s->s_trim_caps = 0; 439 atomic_set(&s->s_ref, 1); 440 INIT_LIST_HEAD(&s->s_waiting); 441 INIT_LIST_HEAD(&s->s_unsafe); 442 s->s_num_cap_releases = 0; 443 s->s_cap_iterator = NULL; 444 INIT_LIST_HEAD(&s->s_cap_releases); 445 INIT_LIST_HEAD(&s->s_cap_releases_done); 446 INIT_LIST_HEAD(&s->s_cap_flushing); 447 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 448 449 dout("register_session mds%d\n", mds); 450 if (mds >= mdsc->max_sessions) { 451 int newmax = 1 << get_count_order(mds+1); 452 struct ceph_mds_session **sa; 453 454 dout("register_session realloc to %d\n", newmax); 455 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 456 if (sa == NULL) 457 goto fail_realloc; 458 if (mdsc->sessions) { 459 memcpy(sa, mdsc->sessions, 460 mdsc->max_sessions * sizeof(void *)); 461 kfree(mdsc->sessions); 462 } 463 mdsc->sessions = sa; 464 mdsc->max_sessions = newmax; 465 } 466 mdsc->sessions[mds] = s; 467 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 468 469 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 470 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 471 472 return s; 473 474 fail_realloc: 475 kfree(s); 476 return ERR_PTR(-ENOMEM); 477 } 478 479 /* 480 * called under mdsc->mutex 481 */ 482 static void __unregister_session(struct ceph_mds_client *mdsc, 483 struct ceph_mds_session *s) 484 { 485 dout("__unregister_session mds%d %p\n", s->s_mds, s); 486 BUG_ON(mdsc->sessions[s->s_mds] != s); 487 mdsc->sessions[s->s_mds] = NULL; 488 ceph_con_close(&s->s_con); 489 ceph_put_mds_session(s); 490 } 491 492 /* 493 * drop session refs in request. 494 * 495 * should be last request ref, or hold mdsc->mutex 496 */ 497 static void put_request_session(struct ceph_mds_request *req) 498 { 499 if (req->r_session) { 500 ceph_put_mds_session(req->r_session); 501 req->r_session = NULL; 502 } 503 } 504 505 void ceph_mdsc_release_request(struct kref *kref) 506 { 507 struct ceph_mds_request *req = container_of(kref, 508 struct ceph_mds_request, 509 r_kref); 510 if (req->r_request) 511 ceph_msg_put(req->r_request); 512 if (req->r_reply) { 513 ceph_msg_put(req->r_reply); 514 destroy_reply_info(&req->r_reply_info); 515 } 516 if (req->r_inode) { 517 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 518 iput(req->r_inode); 519 } 520 if (req->r_locked_dir) 521 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 522 if (req->r_target_inode) 523 iput(req->r_target_inode); 524 if (req->r_dentry) 525 dput(req->r_dentry); 526 if (req->r_old_dentry) { 527 /* 528 * track (and drop pins for) r_old_dentry_dir 529 * separately, since r_old_dentry's d_parent may have 530 * changed between the dir mutex being dropped and 531 * this request being freed. 532 */ 533 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 534 CEPH_CAP_PIN); 535 dput(req->r_old_dentry); 536 iput(req->r_old_dentry_dir); 537 } 538 kfree(req->r_path1); 539 kfree(req->r_path2); 540 put_request_session(req); 541 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 542 kfree(req); 543 } 544 545 /* 546 * lookup session, bump ref if found. 547 * 548 * called under mdsc->mutex. 549 */ 550 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 551 u64 tid) 552 { 553 struct ceph_mds_request *req; 554 struct rb_node *n = mdsc->request_tree.rb_node; 555 556 while (n) { 557 req = rb_entry(n, struct ceph_mds_request, r_node); 558 if (tid < req->r_tid) 559 n = n->rb_left; 560 else if (tid > req->r_tid) 561 n = n->rb_right; 562 else { 563 ceph_mdsc_get_request(req); 564 return req; 565 } 566 } 567 return NULL; 568 } 569 570 static void __insert_request(struct ceph_mds_client *mdsc, 571 struct ceph_mds_request *new) 572 { 573 struct rb_node **p = &mdsc->request_tree.rb_node; 574 struct rb_node *parent = NULL; 575 struct ceph_mds_request *req = NULL; 576 577 while (*p) { 578 parent = *p; 579 req = rb_entry(parent, struct ceph_mds_request, r_node); 580 if (new->r_tid < req->r_tid) 581 p = &(*p)->rb_left; 582 else if (new->r_tid > req->r_tid) 583 p = &(*p)->rb_right; 584 else 585 BUG(); 586 } 587 588 rb_link_node(&new->r_node, parent, p); 589 rb_insert_color(&new->r_node, &mdsc->request_tree); 590 } 591 592 /* 593 * Register an in-flight request, and assign a tid. Link to directory 594 * are modifying (if any). 595 * 596 * Called under mdsc->mutex. 597 */ 598 static void __register_request(struct ceph_mds_client *mdsc, 599 struct ceph_mds_request *req, 600 struct inode *dir) 601 { 602 req->r_tid = ++mdsc->last_tid; 603 if (req->r_num_caps) 604 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 605 req->r_num_caps); 606 dout("__register_request %p tid %lld\n", req, req->r_tid); 607 ceph_mdsc_get_request(req); 608 __insert_request(mdsc, req); 609 610 req->r_uid = current_fsuid(); 611 req->r_gid = current_fsgid(); 612 613 if (dir) { 614 struct ceph_inode_info *ci = ceph_inode(dir); 615 616 ihold(dir); 617 spin_lock(&ci->i_unsafe_lock); 618 req->r_unsafe_dir = dir; 619 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 620 spin_unlock(&ci->i_unsafe_lock); 621 } 622 } 623 624 static void __unregister_request(struct ceph_mds_client *mdsc, 625 struct ceph_mds_request *req) 626 { 627 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 628 rb_erase(&req->r_node, &mdsc->request_tree); 629 RB_CLEAR_NODE(&req->r_node); 630 631 if (req->r_unsafe_dir) { 632 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 633 634 spin_lock(&ci->i_unsafe_lock); 635 list_del_init(&req->r_unsafe_dir_item); 636 spin_unlock(&ci->i_unsafe_lock); 637 638 iput(req->r_unsafe_dir); 639 req->r_unsafe_dir = NULL; 640 } 641 642 ceph_mdsc_put_request(req); 643 } 644 645 /* 646 * Choose mds to send request to next. If there is a hint set in the 647 * request (e.g., due to a prior forward hint from the mds), use that. 648 * Otherwise, consult frag tree and/or caps to identify the 649 * appropriate mds. If all else fails, choose randomly. 650 * 651 * Called under mdsc->mutex. 652 */ 653 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 654 { 655 /* 656 * we don't need to worry about protecting the d_parent access 657 * here because we never renaming inside the snapped namespace 658 * except to resplice to another snapdir, and either the old or new 659 * result is a valid result. 660 */ 661 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP) 662 dentry = dentry->d_parent; 663 return dentry; 664 } 665 666 static int __choose_mds(struct ceph_mds_client *mdsc, 667 struct ceph_mds_request *req) 668 { 669 struct inode *inode; 670 struct ceph_inode_info *ci; 671 struct ceph_cap *cap; 672 int mode = req->r_direct_mode; 673 int mds = -1; 674 u32 hash = req->r_direct_hash; 675 bool is_hash = req->r_direct_is_hash; 676 677 /* 678 * is there a specific mds we should try? ignore hint if we have 679 * no session and the mds is not up (active or recovering). 680 */ 681 if (req->r_resend_mds >= 0 && 682 (__have_session(mdsc, req->r_resend_mds) || 683 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 684 dout("choose_mds using resend_mds mds%d\n", 685 req->r_resend_mds); 686 return req->r_resend_mds; 687 } 688 689 if (mode == USE_RANDOM_MDS) 690 goto random; 691 692 inode = NULL; 693 if (req->r_inode) { 694 inode = req->r_inode; 695 } else if (req->r_dentry) { 696 /* ignore race with rename; old or new d_parent is okay */ 697 struct dentry *parent = req->r_dentry->d_parent; 698 struct inode *dir = parent->d_inode; 699 700 if (dir->i_sb != mdsc->fsc->sb) { 701 /* not this fs! */ 702 inode = req->r_dentry->d_inode; 703 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 704 /* direct snapped/virtual snapdir requests 705 * based on parent dir inode */ 706 struct dentry *dn = get_nonsnap_parent(parent); 707 inode = dn->d_inode; 708 dout("__choose_mds using nonsnap parent %p\n", inode); 709 } else if (req->r_dentry->d_inode) { 710 /* dentry target */ 711 inode = req->r_dentry->d_inode; 712 } else { 713 /* dir + name */ 714 inode = dir; 715 hash = ceph_dentry_hash(dir, req->r_dentry); 716 is_hash = true; 717 } 718 } 719 720 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 721 (int)hash, mode); 722 if (!inode) 723 goto random; 724 ci = ceph_inode(inode); 725 726 if (is_hash && S_ISDIR(inode->i_mode)) { 727 struct ceph_inode_frag frag; 728 int found; 729 730 ceph_choose_frag(ci, hash, &frag, &found); 731 if (found) { 732 if (mode == USE_ANY_MDS && frag.ndist > 0) { 733 u8 r; 734 735 /* choose a random replica */ 736 get_random_bytes(&r, 1); 737 r %= frag.ndist; 738 mds = frag.dist[r]; 739 dout("choose_mds %p %llx.%llx " 740 "frag %u mds%d (%d/%d)\n", 741 inode, ceph_vinop(inode), 742 frag.frag, mds, 743 (int)r, frag.ndist); 744 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 745 CEPH_MDS_STATE_ACTIVE) 746 return mds; 747 } 748 749 /* since this file/dir wasn't known to be 750 * replicated, then we want to look for the 751 * authoritative mds. */ 752 mode = USE_AUTH_MDS; 753 if (frag.mds >= 0) { 754 /* choose auth mds */ 755 mds = frag.mds; 756 dout("choose_mds %p %llx.%llx " 757 "frag %u mds%d (auth)\n", 758 inode, ceph_vinop(inode), frag.frag, mds); 759 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 760 CEPH_MDS_STATE_ACTIVE) 761 return mds; 762 } 763 } 764 } 765 766 spin_lock(&ci->i_ceph_lock); 767 cap = NULL; 768 if (mode == USE_AUTH_MDS) 769 cap = ci->i_auth_cap; 770 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 771 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 772 if (!cap) { 773 spin_unlock(&ci->i_ceph_lock); 774 goto random; 775 } 776 mds = cap->session->s_mds; 777 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 778 inode, ceph_vinop(inode), mds, 779 cap == ci->i_auth_cap ? "auth " : "", cap); 780 spin_unlock(&ci->i_ceph_lock); 781 return mds; 782 783 random: 784 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 785 dout("choose_mds chose random mds%d\n", mds); 786 return mds; 787 } 788 789 790 /* 791 * session messages 792 */ 793 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 794 { 795 struct ceph_msg *msg; 796 struct ceph_mds_session_head *h; 797 798 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 799 false); 800 if (!msg) { 801 pr_err("create_session_msg ENOMEM creating msg\n"); 802 return NULL; 803 } 804 h = msg->front.iov_base; 805 h->op = cpu_to_le32(op); 806 h->seq = cpu_to_le64(seq); 807 return msg; 808 } 809 810 /* 811 * send session open request. 812 * 813 * called under mdsc->mutex 814 */ 815 static int __open_session(struct ceph_mds_client *mdsc, 816 struct ceph_mds_session *session) 817 { 818 struct ceph_msg *msg; 819 int mstate; 820 int mds = session->s_mds; 821 822 /* wait for mds to go active? */ 823 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 824 dout("open_session to mds%d (%s)\n", mds, 825 ceph_mds_state_name(mstate)); 826 session->s_state = CEPH_MDS_SESSION_OPENING; 827 session->s_renew_requested = jiffies; 828 829 /* send connect message */ 830 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq); 831 if (!msg) 832 return -ENOMEM; 833 ceph_con_send(&session->s_con, msg); 834 return 0; 835 } 836 837 /* 838 * open sessions for any export targets for the given mds 839 * 840 * called under mdsc->mutex 841 */ 842 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 843 struct ceph_mds_session *session) 844 { 845 struct ceph_mds_info *mi; 846 struct ceph_mds_session *ts; 847 int i, mds = session->s_mds; 848 int target; 849 850 if (mds >= mdsc->mdsmap->m_max_mds) 851 return; 852 mi = &mdsc->mdsmap->m_info[mds]; 853 dout("open_export_target_sessions for mds%d (%d targets)\n", 854 session->s_mds, mi->num_export_targets); 855 856 for (i = 0; i < mi->num_export_targets; i++) { 857 target = mi->export_targets[i]; 858 ts = __ceph_lookup_mds_session(mdsc, target); 859 if (!ts) { 860 ts = register_session(mdsc, target); 861 if (IS_ERR(ts)) 862 return; 863 } 864 if (session->s_state == CEPH_MDS_SESSION_NEW || 865 session->s_state == CEPH_MDS_SESSION_CLOSING) 866 __open_session(mdsc, session); 867 else 868 dout(" mds%d target mds%d %p is %s\n", session->s_mds, 869 i, ts, session_state_name(ts->s_state)); 870 ceph_put_mds_session(ts); 871 } 872 } 873 874 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 875 struct ceph_mds_session *session) 876 { 877 mutex_lock(&mdsc->mutex); 878 __open_export_target_sessions(mdsc, session); 879 mutex_unlock(&mdsc->mutex); 880 } 881 882 /* 883 * session caps 884 */ 885 886 /* 887 * Free preallocated cap messages assigned to this session 888 */ 889 static void cleanup_cap_releases(struct ceph_mds_session *session) 890 { 891 struct ceph_msg *msg; 892 893 spin_lock(&session->s_cap_lock); 894 while (!list_empty(&session->s_cap_releases)) { 895 msg = list_first_entry(&session->s_cap_releases, 896 struct ceph_msg, list_head); 897 list_del_init(&msg->list_head); 898 ceph_msg_put(msg); 899 } 900 while (!list_empty(&session->s_cap_releases_done)) { 901 msg = list_first_entry(&session->s_cap_releases_done, 902 struct ceph_msg, list_head); 903 list_del_init(&msg->list_head); 904 ceph_msg_put(msg); 905 } 906 spin_unlock(&session->s_cap_lock); 907 } 908 909 /* 910 * Helper to safely iterate over all caps associated with a session, with 911 * special care taken to handle a racing __ceph_remove_cap(). 912 * 913 * Caller must hold session s_mutex. 914 */ 915 static int iterate_session_caps(struct ceph_mds_session *session, 916 int (*cb)(struct inode *, struct ceph_cap *, 917 void *), void *arg) 918 { 919 struct list_head *p; 920 struct ceph_cap *cap; 921 struct inode *inode, *last_inode = NULL; 922 struct ceph_cap *old_cap = NULL; 923 int ret; 924 925 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 926 spin_lock(&session->s_cap_lock); 927 p = session->s_caps.next; 928 while (p != &session->s_caps) { 929 cap = list_entry(p, struct ceph_cap, session_caps); 930 inode = igrab(&cap->ci->vfs_inode); 931 if (!inode) { 932 p = p->next; 933 continue; 934 } 935 session->s_cap_iterator = cap; 936 spin_unlock(&session->s_cap_lock); 937 938 if (last_inode) { 939 iput(last_inode); 940 last_inode = NULL; 941 } 942 if (old_cap) { 943 ceph_put_cap(session->s_mdsc, old_cap); 944 old_cap = NULL; 945 } 946 947 ret = cb(inode, cap, arg); 948 last_inode = inode; 949 950 spin_lock(&session->s_cap_lock); 951 p = p->next; 952 if (cap->ci == NULL) { 953 dout("iterate_session_caps finishing cap %p removal\n", 954 cap); 955 BUG_ON(cap->session != session); 956 list_del_init(&cap->session_caps); 957 session->s_nr_caps--; 958 cap->session = NULL; 959 old_cap = cap; /* put_cap it w/o locks held */ 960 } 961 if (ret < 0) 962 goto out; 963 } 964 ret = 0; 965 out: 966 session->s_cap_iterator = NULL; 967 spin_unlock(&session->s_cap_lock); 968 969 if (last_inode) 970 iput(last_inode); 971 if (old_cap) 972 ceph_put_cap(session->s_mdsc, old_cap); 973 974 return ret; 975 } 976 977 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 978 void *arg) 979 { 980 struct ceph_inode_info *ci = ceph_inode(inode); 981 int drop = 0; 982 983 dout("removing cap %p, ci is %p, inode is %p\n", 984 cap, ci, &ci->vfs_inode); 985 spin_lock(&ci->i_ceph_lock); 986 __ceph_remove_cap(cap); 987 if (!__ceph_is_any_real_caps(ci)) { 988 struct ceph_mds_client *mdsc = 989 ceph_sb_to_client(inode->i_sb)->mdsc; 990 991 spin_lock(&mdsc->cap_dirty_lock); 992 if (!list_empty(&ci->i_dirty_item)) { 993 pr_info(" dropping dirty %s state for %p %lld\n", 994 ceph_cap_string(ci->i_dirty_caps), 995 inode, ceph_ino(inode)); 996 ci->i_dirty_caps = 0; 997 list_del_init(&ci->i_dirty_item); 998 drop = 1; 999 } 1000 if (!list_empty(&ci->i_flushing_item)) { 1001 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 1002 ceph_cap_string(ci->i_flushing_caps), 1003 inode, ceph_ino(inode)); 1004 ci->i_flushing_caps = 0; 1005 list_del_init(&ci->i_flushing_item); 1006 mdsc->num_cap_flushing--; 1007 drop = 1; 1008 } 1009 if (drop && ci->i_wrbuffer_ref) { 1010 pr_info(" dropping dirty data for %p %lld\n", 1011 inode, ceph_ino(inode)); 1012 ci->i_wrbuffer_ref = 0; 1013 ci->i_wrbuffer_ref_head = 0; 1014 drop++; 1015 } 1016 spin_unlock(&mdsc->cap_dirty_lock); 1017 } 1018 spin_unlock(&ci->i_ceph_lock); 1019 while (drop--) 1020 iput(inode); 1021 return 0; 1022 } 1023 1024 /* 1025 * caller must hold session s_mutex 1026 */ 1027 static void remove_session_caps(struct ceph_mds_session *session) 1028 { 1029 dout("remove_session_caps on %p\n", session); 1030 iterate_session_caps(session, remove_session_caps_cb, NULL); 1031 BUG_ON(session->s_nr_caps > 0); 1032 BUG_ON(!list_empty(&session->s_cap_flushing)); 1033 cleanup_cap_releases(session); 1034 } 1035 1036 /* 1037 * wake up any threads waiting on this session's caps. if the cap is 1038 * old (didn't get renewed on the client reconnect), remove it now. 1039 * 1040 * caller must hold s_mutex. 1041 */ 1042 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1043 void *arg) 1044 { 1045 struct ceph_inode_info *ci = ceph_inode(inode); 1046 1047 wake_up_all(&ci->i_cap_wq); 1048 if (arg) { 1049 spin_lock(&ci->i_ceph_lock); 1050 ci->i_wanted_max_size = 0; 1051 ci->i_requested_max_size = 0; 1052 spin_unlock(&ci->i_ceph_lock); 1053 } 1054 return 0; 1055 } 1056 1057 static void wake_up_session_caps(struct ceph_mds_session *session, 1058 int reconnect) 1059 { 1060 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1061 iterate_session_caps(session, wake_up_session_cb, 1062 (void *)(unsigned long)reconnect); 1063 } 1064 1065 /* 1066 * Send periodic message to MDS renewing all currently held caps. The 1067 * ack will reset the expiration for all caps from this session. 1068 * 1069 * caller holds s_mutex 1070 */ 1071 static int send_renew_caps(struct ceph_mds_client *mdsc, 1072 struct ceph_mds_session *session) 1073 { 1074 struct ceph_msg *msg; 1075 int state; 1076 1077 if (time_after_eq(jiffies, session->s_cap_ttl) && 1078 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1079 pr_info("mds%d caps stale\n", session->s_mds); 1080 session->s_renew_requested = jiffies; 1081 1082 /* do not try to renew caps until a recovering mds has reconnected 1083 * with its clients. */ 1084 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1085 if (state < CEPH_MDS_STATE_RECONNECT) { 1086 dout("send_renew_caps ignoring mds%d (%s)\n", 1087 session->s_mds, ceph_mds_state_name(state)); 1088 return 0; 1089 } 1090 1091 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1092 ceph_mds_state_name(state)); 1093 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1094 ++session->s_renew_seq); 1095 if (!msg) 1096 return -ENOMEM; 1097 ceph_con_send(&session->s_con, msg); 1098 return 0; 1099 } 1100 1101 /* 1102 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1103 * 1104 * Called under session->s_mutex 1105 */ 1106 static void renewed_caps(struct ceph_mds_client *mdsc, 1107 struct ceph_mds_session *session, int is_renew) 1108 { 1109 int was_stale; 1110 int wake = 0; 1111 1112 spin_lock(&session->s_cap_lock); 1113 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1114 1115 session->s_cap_ttl = session->s_renew_requested + 1116 mdsc->mdsmap->m_session_timeout*HZ; 1117 1118 if (was_stale) { 1119 if (time_before(jiffies, session->s_cap_ttl)) { 1120 pr_info("mds%d caps renewed\n", session->s_mds); 1121 wake = 1; 1122 } else { 1123 pr_info("mds%d caps still stale\n", session->s_mds); 1124 } 1125 } 1126 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1127 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1128 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1129 spin_unlock(&session->s_cap_lock); 1130 1131 if (wake) 1132 wake_up_session_caps(session, 0); 1133 } 1134 1135 /* 1136 * send a session close request 1137 */ 1138 static int request_close_session(struct ceph_mds_client *mdsc, 1139 struct ceph_mds_session *session) 1140 { 1141 struct ceph_msg *msg; 1142 1143 dout("request_close_session mds%d state %s seq %lld\n", 1144 session->s_mds, session_state_name(session->s_state), 1145 session->s_seq); 1146 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1147 if (!msg) 1148 return -ENOMEM; 1149 ceph_con_send(&session->s_con, msg); 1150 return 0; 1151 } 1152 1153 /* 1154 * Called with s_mutex held. 1155 */ 1156 static int __close_session(struct ceph_mds_client *mdsc, 1157 struct ceph_mds_session *session) 1158 { 1159 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1160 return 0; 1161 session->s_state = CEPH_MDS_SESSION_CLOSING; 1162 return request_close_session(mdsc, session); 1163 } 1164 1165 /* 1166 * Trim old(er) caps. 1167 * 1168 * Because we can't cache an inode without one or more caps, we do 1169 * this indirectly: if a cap is unused, we prune its aliases, at which 1170 * point the inode will hopefully get dropped to. 1171 * 1172 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1173 * memory pressure from the MDS, though, so it needn't be perfect. 1174 */ 1175 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1176 { 1177 struct ceph_mds_session *session = arg; 1178 struct ceph_inode_info *ci = ceph_inode(inode); 1179 int used, oissued, mine; 1180 1181 if (session->s_trim_caps <= 0) 1182 return -1; 1183 1184 spin_lock(&ci->i_ceph_lock); 1185 mine = cap->issued | cap->implemented; 1186 used = __ceph_caps_used(ci); 1187 oissued = __ceph_caps_issued_other(ci, cap); 1188 1189 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n", 1190 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1191 ceph_cap_string(used)); 1192 if (ci->i_dirty_caps) 1193 goto out; /* dirty caps */ 1194 if ((used & ~oissued) & mine) 1195 goto out; /* we need these caps */ 1196 1197 session->s_trim_caps--; 1198 if (oissued) { 1199 /* we aren't the only cap.. just remove us */ 1200 __queue_cap_release(session, ceph_ino(inode), cap->cap_id, 1201 cap->mseq, cap->issue_seq); 1202 __ceph_remove_cap(cap); 1203 } else { 1204 /* try to drop referring dentries */ 1205 spin_unlock(&ci->i_ceph_lock); 1206 d_prune_aliases(inode); 1207 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1208 inode, cap, atomic_read(&inode->i_count)); 1209 return 0; 1210 } 1211 1212 out: 1213 spin_unlock(&ci->i_ceph_lock); 1214 return 0; 1215 } 1216 1217 /* 1218 * Trim session cap count down to some max number. 1219 */ 1220 static int trim_caps(struct ceph_mds_client *mdsc, 1221 struct ceph_mds_session *session, 1222 int max_caps) 1223 { 1224 int trim_caps = session->s_nr_caps - max_caps; 1225 1226 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1227 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1228 if (trim_caps > 0) { 1229 session->s_trim_caps = trim_caps; 1230 iterate_session_caps(session, trim_caps_cb, session); 1231 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1232 session->s_mds, session->s_nr_caps, max_caps, 1233 trim_caps - session->s_trim_caps); 1234 session->s_trim_caps = 0; 1235 } 1236 return 0; 1237 } 1238 1239 /* 1240 * Allocate cap_release messages. If there is a partially full message 1241 * in the queue, try to allocate enough to cover it's remainder, so that 1242 * we can send it immediately. 1243 * 1244 * Called under s_mutex. 1245 */ 1246 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1247 struct ceph_mds_session *session) 1248 { 1249 struct ceph_msg *msg, *partial = NULL; 1250 struct ceph_mds_cap_release *head; 1251 int err = -ENOMEM; 1252 int extra = mdsc->fsc->mount_options->cap_release_safety; 1253 int num; 1254 1255 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1256 extra); 1257 1258 spin_lock(&session->s_cap_lock); 1259 1260 if (!list_empty(&session->s_cap_releases)) { 1261 msg = list_first_entry(&session->s_cap_releases, 1262 struct ceph_msg, 1263 list_head); 1264 head = msg->front.iov_base; 1265 num = le32_to_cpu(head->num); 1266 if (num) { 1267 dout(" partial %p with (%d/%d)\n", msg, num, 1268 (int)CEPH_CAPS_PER_RELEASE); 1269 extra += CEPH_CAPS_PER_RELEASE - num; 1270 partial = msg; 1271 } 1272 } 1273 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1274 spin_unlock(&session->s_cap_lock); 1275 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1276 GFP_NOFS, false); 1277 if (!msg) 1278 goto out_unlocked; 1279 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1280 (int)msg->front.iov_len); 1281 head = msg->front.iov_base; 1282 head->num = cpu_to_le32(0); 1283 msg->front.iov_len = sizeof(*head); 1284 spin_lock(&session->s_cap_lock); 1285 list_add(&msg->list_head, &session->s_cap_releases); 1286 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1287 } 1288 1289 if (partial) { 1290 head = partial->front.iov_base; 1291 num = le32_to_cpu(head->num); 1292 dout(" queueing partial %p with %d/%d\n", partial, num, 1293 (int)CEPH_CAPS_PER_RELEASE); 1294 list_move_tail(&partial->list_head, 1295 &session->s_cap_releases_done); 1296 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1297 } 1298 err = 0; 1299 spin_unlock(&session->s_cap_lock); 1300 out_unlocked: 1301 return err; 1302 } 1303 1304 /* 1305 * flush all dirty inode data to disk. 1306 * 1307 * returns true if we've flushed through want_flush_seq 1308 */ 1309 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1310 { 1311 int mds, ret = 1; 1312 1313 dout("check_cap_flush want %lld\n", want_flush_seq); 1314 mutex_lock(&mdsc->mutex); 1315 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1316 struct ceph_mds_session *session = mdsc->sessions[mds]; 1317 1318 if (!session) 1319 continue; 1320 get_session(session); 1321 mutex_unlock(&mdsc->mutex); 1322 1323 mutex_lock(&session->s_mutex); 1324 if (!list_empty(&session->s_cap_flushing)) { 1325 struct ceph_inode_info *ci = 1326 list_entry(session->s_cap_flushing.next, 1327 struct ceph_inode_info, 1328 i_flushing_item); 1329 struct inode *inode = &ci->vfs_inode; 1330 1331 spin_lock(&ci->i_ceph_lock); 1332 if (ci->i_cap_flush_seq <= want_flush_seq) { 1333 dout("check_cap_flush still flushing %p " 1334 "seq %lld <= %lld to mds%d\n", inode, 1335 ci->i_cap_flush_seq, want_flush_seq, 1336 session->s_mds); 1337 ret = 0; 1338 } 1339 spin_unlock(&ci->i_ceph_lock); 1340 } 1341 mutex_unlock(&session->s_mutex); 1342 ceph_put_mds_session(session); 1343 1344 if (!ret) 1345 return ret; 1346 mutex_lock(&mdsc->mutex); 1347 } 1348 1349 mutex_unlock(&mdsc->mutex); 1350 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1351 return ret; 1352 } 1353 1354 /* 1355 * called under s_mutex 1356 */ 1357 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1358 struct ceph_mds_session *session) 1359 { 1360 struct ceph_msg *msg; 1361 1362 dout("send_cap_releases mds%d\n", session->s_mds); 1363 spin_lock(&session->s_cap_lock); 1364 while (!list_empty(&session->s_cap_releases_done)) { 1365 msg = list_first_entry(&session->s_cap_releases_done, 1366 struct ceph_msg, list_head); 1367 list_del_init(&msg->list_head); 1368 spin_unlock(&session->s_cap_lock); 1369 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1370 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1371 ceph_con_send(&session->s_con, msg); 1372 spin_lock(&session->s_cap_lock); 1373 } 1374 spin_unlock(&session->s_cap_lock); 1375 } 1376 1377 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1378 struct ceph_mds_session *session) 1379 { 1380 struct ceph_msg *msg; 1381 struct ceph_mds_cap_release *head; 1382 unsigned num; 1383 1384 dout("discard_cap_releases mds%d\n", session->s_mds); 1385 spin_lock(&session->s_cap_lock); 1386 1387 /* zero out the in-progress message */ 1388 msg = list_first_entry(&session->s_cap_releases, 1389 struct ceph_msg, list_head); 1390 head = msg->front.iov_base; 1391 num = le32_to_cpu(head->num); 1392 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num); 1393 head->num = cpu_to_le32(0); 1394 session->s_num_cap_releases += num; 1395 1396 /* requeue completed messages */ 1397 while (!list_empty(&session->s_cap_releases_done)) { 1398 msg = list_first_entry(&session->s_cap_releases_done, 1399 struct ceph_msg, list_head); 1400 list_del_init(&msg->list_head); 1401 1402 head = msg->front.iov_base; 1403 num = le32_to_cpu(head->num); 1404 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1405 num); 1406 session->s_num_cap_releases += num; 1407 head->num = cpu_to_le32(0); 1408 msg->front.iov_len = sizeof(*head); 1409 list_add(&msg->list_head, &session->s_cap_releases); 1410 } 1411 1412 spin_unlock(&session->s_cap_lock); 1413 } 1414 1415 /* 1416 * requests 1417 */ 1418 1419 /* 1420 * Create an mds request. 1421 */ 1422 struct ceph_mds_request * 1423 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1424 { 1425 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1426 1427 if (!req) 1428 return ERR_PTR(-ENOMEM); 1429 1430 mutex_init(&req->r_fill_mutex); 1431 req->r_mdsc = mdsc; 1432 req->r_started = jiffies; 1433 req->r_resend_mds = -1; 1434 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1435 req->r_fmode = -1; 1436 kref_init(&req->r_kref); 1437 INIT_LIST_HEAD(&req->r_wait); 1438 init_completion(&req->r_completion); 1439 init_completion(&req->r_safe_completion); 1440 INIT_LIST_HEAD(&req->r_unsafe_item); 1441 1442 req->r_op = op; 1443 req->r_direct_mode = mode; 1444 return req; 1445 } 1446 1447 /* 1448 * return oldest (lowest) request, tid in request tree, 0 if none. 1449 * 1450 * called under mdsc->mutex. 1451 */ 1452 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1453 { 1454 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1455 return NULL; 1456 return rb_entry(rb_first(&mdsc->request_tree), 1457 struct ceph_mds_request, r_node); 1458 } 1459 1460 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1461 { 1462 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1463 1464 if (req) 1465 return req->r_tid; 1466 return 0; 1467 } 1468 1469 /* 1470 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1471 * on build_path_from_dentry in fs/cifs/dir.c. 1472 * 1473 * If @stop_on_nosnap, generate path relative to the first non-snapped 1474 * inode. 1475 * 1476 * Encode hidden .snap dirs as a double /, i.e. 1477 * foo/.snap/bar -> foo//bar 1478 */ 1479 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1480 int stop_on_nosnap) 1481 { 1482 struct dentry *temp; 1483 char *path; 1484 int len, pos; 1485 unsigned seq; 1486 1487 if (dentry == NULL) 1488 return ERR_PTR(-EINVAL); 1489 1490 retry: 1491 len = 0; 1492 seq = read_seqbegin(&rename_lock); 1493 rcu_read_lock(); 1494 for (temp = dentry; !IS_ROOT(temp);) { 1495 struct inode *inode = temp->d_inode; 1496 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1497 len++; /* slash only */ 1498 else if (stop_on_nosnap && inode && 1499 ceph_snap(inode) == CEPH_NOSNAP) 1500 break; 1501 else 1502 len += 1 + temp->d_name.len; 1503 temp = temp->d_parent; 1504 } 1505 rcu_read_unlock(); 1506 if (len) 1507 len--; /* no leading '/' */ 1508 1509 path = kmalloc(len+1, GFP_NOFS); 1510 if (path == NULL) 1511 return ERR_PTR(-ENOMEM); 1512 pos = len; 1513 path[pos] = 0; /* trailing null */ 1514 rcu_read_lock(); 1515 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1516 struct inode *inode; 1517 1518 spin_lock(&temp->d_lock); 1519 inode = temp->d_inode; 1520 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1521 dout("build_path path+%d: %p SNAPDIR\n", 1522 pos, temp); 1523 } else if (stop_on_nosnap && inode && 1524 ceph_snap(inode) == CEPH_NOSNAP) { 1525 spin_unlock(&temp->d_lock); 1526 break; 1527 } else { 1528 pos -= temp->d_name.len; 1529 if (pos < 0) { 1530 spin_unlock(&temp->d_lock); 1531 break; 1532 } 1533 strncpy(path + pos, temp->d_name.name, 1534 temp->d_name.len); 1535 } 1536 spin_unlock(&temp->d_lock); 1537 if (pos) 1538 path[--pos] = '/'; 1539 temp = temp->d_parent; 1540 } 1541 rcu_read_unlock(); 1542 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1543 pr_err("build_path did not end path lookup where " 1544 "expected, namelen is %d, pos is %d\n", len, pos); 1545 /* presumably this is only possible if racing with a 1546 rename of one of the parent directories (we can not 1547 lock the dentries above us to prevent this, but 1548 retrying should be harmless) */ 1549 kfree(path); 1550 goto retry; 1551 } 1552 1553 *base = ceph_ino(temp->d_inode); 1554 *plen = len; 1555 dout("build_path on %p %d built %llx '%.*s'\n", 1556 dentry, dentry->d_count, *base, len, path); 1557 return path; 1558 } 1559 1560 static int build_dentry_path(struct dentry *dentry, 1561 const char **ppath, int *ppathlen, u64 *pino, 1562 int *pfreepath) 1563 { 1564 char *path; 1565 1566 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1567 *pino = ceph_ino(dentry->d_parent->d_inode); 1568 *ppath = dentry->d_name.name; 1569 *ppathlen = dentry->d_name.len; 1570 return 0; 1571 } 1572 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1573 if (IS_ERR(path)) 1574 return PTR_ERR(path); 1575 *ppath = path; 1576 *pfreepath = 1; 1577 return 0; 1578 } 1579 1580 static int build_inode_path(struct inode *inode, 1581 const char **ppath, int *ppathlen, u64 *pino, 1582 int *pfreepath) 1583 { 1584 struct dentry *dentry; 1585 char *path; 1586 1587 if (ceph_snap(inode) == CEPH_NOSNAP) { 1588 *pino = ceph_ino(inode); 1589 *ppathlen = 0; 1590 return 0; 1591 } 1592 dentry = d_find_alias(inode); 1593 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1594 dput(dentry); 1595 if (IS_ERR(path)) 1596 return PTR_ERR(path); 1597 *ppath = path; 1598 *pfreepath = 1; 1599 return 0; 1600 } 1601 1602 /* 1603 * request arguments may be specified via an inode *, a dentry *, or 1604 * an explicit ino+path. 1605 */ 1606 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1607 const char *rpath, u64 rino, 1608 const char **ppath, int *pathlen, 1609 u64 *ino, int *freepath) 1610 { 1611 int r = 0; 1612 1613 if (rinode) { 1614 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1615 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1616 ceph_snap(rinode)); 1617 } else if (rdentry) { 1618 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1619 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1620 *ppath); 1621 } else if (rpath || rino) { 1622 *ino = rino; 1623 *ppath = rpath; 1624 *pathlen = rpath ? strlen(rpath) : 0; 1625 dout(" path %.*s\n", *pathlen, rpath); 1626 } 1627 1628 return r; 1629 } 1630 1631 /* 1632 * called under mdsc->mutex 1633 */ 1634 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1635 struct ceph_mds_request *req, 1636 int mds) 1637 { 1638 struct ceph_msg *msg; 1639 struct ceph_mds_request_head *head; 1640 const char *path1 = NULL; 1641 const char *path2 = NULL; 1642 u64 ino1 = 0, ino2 = 0; 1643 int pathlen1 = 0, pathlen2 = 0; 1644 int freepath1 = 0, freepath2 = 0; 1645 int len; 1646 u16 releases; 1647 void *p, *end; 1648 int ret; 1649 1650 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1651 req->r_path1, req->r_ino1.ino, 1652 &path1, &pathlen1, &ino1, &freepath1); 1653 if (ret < 0) { 1654 msg = ERR_PTR(ret); 1655 goto out; 1656 } 1657 1658 ret = set_request_path_attr(NULL, req->r_old_dentry, 1659 req->r_path2, req->r_ino2.ino, 1660 &path2, &pathlen2, &ino2, &freepath2); 1661 if (ret < 0) { 1662 msg = ERR_PTR(ret); 1663 goto out_free1; 1664 } 1665 1666 len = sizeof(*head) + 1667 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)); 1668 1669 /* calculate (max) length for cap releases */ 1670 len += sizeof(struct ceph_mds_request_release) * 1671 (!!req->r_inode_drop + !!req->r_dentry_drop + 1672 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1673 if (req->r_dentry_drop) 1674 len += req->r_dentry->d_name.len; 1675 if (req->r_old_dentry_drop) 1676 len += req->r_old_dentry->d_name.len; 1677 1678 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1679 if (!msg) { 1680 msg = ERR_PTR(-ENOMEM); 1681 goto out_free2; 1682 } 1683 1684 msg->hdr.tid = cpu_to_le64(req->r_tid); 1685 1686 head = msg->front.iov_base; 1687 p = msg->front.iov_base + sizeof(*head); 1688 end = msg->front.iov_base + msg->front.iov_len; 1689 1690 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1691 head->op = cpu_to_le32(req->r_op); 1692 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); 1693 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); 1694 head->args = req->r_args; 1695 1696 ceph_encode_filepath(&p, end, ino1, path1); 1697 ceph_encode_filepath(&p, end, ino2, path2); 1698 1699 /* make note of release offset, in case we need to replay */ 1700 req->r_request_release_offset = p - msg->front.iov_base; 1701 1702 /* cap releases */ 1703 releases = 0; 1704 if (req->r_inode_drop) 1705 releases += ceph_encode_inode_release(&p, 1706 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1707 mds, req->r_inode_drop, req->r_inode_unless, 0); 1708 if (req->r_dentry_drop) 1709 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1710 mds, req->r_dentry_drop, req->r_dentry_unless); 1711 if (req->r_old_dentry_drop) 1712 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1713 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1714 if (req->r_old_inode_drop) 1715 releases += ceph_encode_inode_release(&p, 1716 req->r_old_dentry->d_inode, 1717 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1718 head->num_releases = cpu_to_le16(releases); 1719 1720 BUG_ON(p > end); 1721 msg->front.iov_len = p - msg->front.iov_base; 1722 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1723 1724 if (req->r_data_len) { 1725 /* outbound data set only by ceph_sync_setxattr() */ 1726 BUG_ON(!req->r_pages); 1727 ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0); 1728 } 1729 1730 msg->hdr.data_len = cpu_to_le32(req->r_data_len); 1731 msg->hdr.data_off = cpu_to_le16(0); 1732 1733 out_free2: 1734 if (freepath2) 1735 kfree((char *)path2); 1736 out_free1: 1737 if (freepath1) 1738 kfree((char *)path1); 1739 out: 1740 return msg; 1741 } 1742 1743 /* 1744 * called under mdsc->mutex if error, under no mutex if 1745 * success. 1746 */ 1747 static void complete_request(struct ceph_mds_client *mdsc, 1748 struct ceph_mds_request *req) 1749 { 1750 if (req->r_callback) 1751 req->r_callback(mdsc, req); 1752 else 1753 complete_all(&req->r_completion); 1754 } 1755 1756 /* 1757 * called under mdsc->mutex 1758 */ 1759 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1760 struct ceph_mds_request *req, 1761 int mds) 1762 { 1763 struct ceph_mds_request_head *rhead; 1764 struct ceph_msg *msg; 1765 int flags = 0; 1766 1767 req->r_attempts++; 1768 if (req->r_inode) { 1769 struct ceph_cap *cap = 1770 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 1771 1772 if (cap) 1773 req->r_sent_on_mseq = cap->mseq; 1774 else 1775 req->r_sent_on_mseq = -1; 1776 } 1777 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1778 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1779 1780 if (req->r_got_unsafe) { 1781 /* 1782 * Replay. Do not regenerate message (and rebuild 1783 * paths, etc.); just use the original message. 1784 * Rebuilding paths will break for renames because 1785 * d_move mangles the src name. 1786 */ 1787 msg = req->r_request; 1788 rhead = msg->front.iov_base; 1789 1790 flags = le32_to_cpu(rhead->flags); 1791 flags |= CEPH_MDS_FLAG_REPLAY; 1792 rhead->flags = cpu_to_le32(flags); 1793 1794 if (req->r_target_inode) 1795 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 1796 1797 rhead->num_retry = req->r_attempts - 1; 1798 1799 /* remove cap/dentry releases from message */ 1800 rhead->num_releases = 0; 1801 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset); 1802 msg->front.iov_len = req->r_request_release_offset; 1803 return 0; 1804 } 1805 1806 if (req->r_request) { 1807 ceph_msg_put(req->r_request); 1808 req->r_request = NULL; 1809 } 1810 msg = create_request_message(mdsc, req, mds); 1811 if (IS_ERR(msg)) { 1812 req->r_err = PTR_ERR(msg); 1813 complete_request(mdsc, req); 1814 return PTR_ERR(msg); 1815 } 1816 req->r_request = msg; 1817 1818 rhead = msg->front.iov_base; 1819 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 1820 if (req->r_got_unsafe) 1821 flags |= CEPH_MDS_FLAG_REPLAY; 1822 if (req->r_locked_dir) 1823 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 1824 rhead->flags = cpu_to_le32(flags); 1825 rhead->num_fwd = req->r_num_fwd; 1826 rhead->num_retry = req->r_attempts - 1; 1827 rhead->ino = 0; 1828 1829 dout(" r_locked_dir = %p\n", req->r_locked_dir); 1830 return 0; 1831 } 1832 1833 /* 1834 * send request, or put it on the appropriate wait list. 1835 */ 1836 static int __do_request(struct ceph_mds_client *mdsc, 1837 struct ceph_mds_request *req) 1838 { 1839 struct ceph_mds_session *session = NULL; 1840 int mds = -1; 1841 int err = -EAGAIN; 1842 1843 if (req->r_err || req->r_got_result) 1844 goto out; 1845 1846 if (req->r_timeout && 1847 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 1848 dout("do_request timed out\n"); 1849 err = -EIO; 1850 goto finish; 1851 } 1852 1853 put_request_session(req); 1854 1855 mds = __choose_mds(mdsc, req); 1856 if (mds < 0 || 1857 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 1858 dout("do_request no mds or not active, waiting for map\n"); 1859 list_add(&req->r_wait, &mdsc->waiting_for_map); 1860 goto out; 1861 } 1862 1863 /* get, open session */ 1864 session = __ceph_lookup_mds_session(mdsc, mds); 1865 if (!session) { 1866 session = register_session(mdsc, mds); 1867 if (IS_ERR(session)) { 1868 err = PTR_ERR(session); 1869 goto finish; 1870 } 1871 } 1872 req->r_session = get_session(session); 1873 1874 dout("do_request mds%d session %p state %s\n", mds, session, 1875 session_state_name(session->s_state)); 1876 if (session->s_state != CEPH_MDS_SESSION_OPEN && 1877 session->s_state != CEPH_MDS_SESSION_HUNG) { 1878 if (session->s_state == CEPH_MDS_SESSION_NEW || 1879 session->s_state == CEPH_MDS_SESSION_CLOSING) 1880 __open_session(mdsc, session); 1881 list_add(&req->r_wait, &session->s_waiting); 1882 goto out_session; 1883 } 1884 1885 /* send request */ 1886 req->r_resend_mds = -1; /* forget any previous mds hint */ 1887 1888 if (req->r_request_started == 0) /* note request start time */ 1889 req->r_request_started = jiffies; 1890 1891 err = __prepare_send_request(mdsc, req, mds); 1892 if (!err) { 1893 ceph_msg_get(req->r_request); 1894 ceph_con_send(&session->s_con, req->r_request); 1895 } 1896 1897 out_session: 1898 ceph_put_mds_session(session); 1899 out: 1900 return err; 1901 1902 finish: 1903 req->r_err = err; 1904 complete_request(mdsc, req); 1905 goto out; 1906 } 1907 1908 /* 1909 * called under mdsc->mutex 1910 */ 1911 static void __wake_requests(struct ceph_mds_client *mdsc, 1912 struct list_head *head) 1913 { 1914 struct ceph_mds_request *req; 1915 LIST_HEAD(tmp_list); 1916 1917 list_splice_init(head, &tmp_list); 1918 1919 while (!list_empty(&tmp_list)) { 1920 req = list_entry(tmp_list.next, 1921 struct ceph_mds_request, r_wait); 1922 list_del_init(&req->r_wait); 1923 dout(" wake request %p tid %llu\n", req, req->r_tid); 1924 __do_request(mdsc, req); 1925 } 1926 } 1927 1928 /* 1929 * Wake up threads with requests pending for @mds, so that they can 1930 * resubmit their requests to a possibly different mds. 1931 */ 1932 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 1933 { 1934 struct ceph_mds_request *req; 1935 struct rb_node *p; 1936 1937 dout("kick_requests mds%d\n", mds); 1938 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) { 1939 req = rb_entry(p, struct ceph_mds_request, r_node); 1940 if (req->r_got_unsafe) 1941 continue; 1942 if (req->r_session && 1943 req->r_session->s_mds == mds) { 1944 dout(" kicking tid %llu\n", req->r_tid); 1945 __do_request(mdsc, req); 1946 } 1947 } 1948 } 1949 1950 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 1951 struct ceph_mds_request *req) 1952 { 1953 dout("submit_request on %p\n", req); 1954 mutex_lock(&mdsc->mutex); 1955 __register_request(mdsc, req, NULL); 1956 __do_request(mdsc, req); 1957 mutex_unlock(&mdsc->mutex); 1958 } 1959 1960 /* 1961 * Synchrously perform an mds request. Take care of all of the 1962 * session setup, forwarding, retry details. 1963 */ 1964 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 1965 struct inode *dir, 1966 struct ceph_mds_request *req) 1967 { 1968 int err; 1969 1970 dout("do_request on %p\n", req); 1971 1972 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 1973 if (req->r_inode) 1974 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1975 if (req->r_locked_dir) 1976 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 1977 if (req->r_old_dentry) 1978 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 1979 CEPH_CAP_PIN); 1980 1981 /* issue */ 1982 mutex_lock(&mdsc->mutex); 1983 __register_request(mdsc, req, dir); 1984 __do_request(mdsc, req); 1985 1986 if (req->r_err) { 1987 err = req->r_err; 1988 __unregister_request(mdsc, req); 1989 dout("do_request early error %d\n", err); 1990 goto out; 1991 } 1992 1993 /* wait */ 1994 mutex_unlock(&mdsc->mutex); 1995 dout("do_request waiting\n"); 1996 if (req->r_timeout) { 1997 err = (long)wait_for_completion_killable_timeout( 1998 &req->r_completion, req->r_timeout); 1999 if (err == 0) 2000 err = -EIO; 2001 } else { 2002 err = wait_for_completion_killable(&req->r_completion); 2003 } 2004 dout("do_request waited, got %d\n", err); 2005 mutex_lock(&mdsc->mutex); 2006 2007 /* only abort if we didn't race with a real reply */ 2008 if (req->r_got_result) { 2009 err = le32_to_cpu(req->r_reply_info.head->result); 2010 } else if (err < 0) { 2011 dout("aborted request %lld with %d\n", req->r_tid, err); 2012 2013 /* 2014 * ensure we aren't running concurrently with 2015 * ceph_fill_trace or ceph_readdir_prepopulate, which 2016 * rely on locks (dir mutex) held by our caller. 2017 */ 2018 mutex_lock(&req->r_fill_mutex); 2019 req->r_err = err; 2020 req->r_aborted = true; 2021 mutex_unlock(&req->r_fill_mutex); 2022 2023 if (req->r_locked_dir && 2024 (req->r_op & CEPH_MDS_OP_WRITE)) 2025 ceph_invalidate_dir_request(req); 2026 } else { 2027 err = req->r_err; 2028 } 2029 2030 out: 2031 mutex_unlock(&mdsc->mutex); 2032 dout("do_request %p done, result %d\n", req, err); 2033 return err; 2034 } 2035 2036 /* 2037 * Invalidate dir's completeness, dentry lease state on an aborted MDS 2038 * namespace request. 2039 */ 2040 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2041 { 2042 struct inode *inode = req->r_locked_dir; 2043 2044 dout("invalidate_dir_request %p (complete, lease(s))\n", inode); 2045 2046 ceph_dir_clear_complete(inode); 2047 if (req->r_dentry) 2048 ceph_invalidate_dentry_lease(req->r_dentry); 2049 if (req->r_old_dentry) 2050 ceph_invalidate_dentry_lease(req->r_old_dentry); 2051 } 2052 2053 /* 2054 * Handle mds reply. 2055 * 2056 * We take the session mutex and parse and process the reply immediately. 2057 * This preserves the logical ordering of replies, capabilities, etc., sent 2058 * by the MDS as they are applied to our local cache. 2059 */ 2060 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2061 { 2062 struct ceph_mds_client *mdsc = session->s_mdsc; 2063 struct ceph_mds_request *req; 2064 struct ceph_mds_reply_head *head = msg->front.iov_base; 2065 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2066 u64 tid; 2067 int err, result; 2068 int mds = session->s_mds; 2069 2070 if (msg->front.iov_len < sizeof(*head)) { 2071 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2072 ceph_msg_dump(msg); 2073 return; 2074 } 2075 2076 /* get request, session */ 2077 tid = le64_to_cpu(msg->hdr.tid); 2078 mutex_lock(&mdsc->mutex); 2079 req = __lookup_request(mdsc, tid); 2080 if (!req) { 2081 dout("handle_reply on unknown tid %llu\n", tid); 2082 mutex_unlock(&mdsc->mutex); 2083 return; 2084 } 2085 dout("handle_reply %p\n", req); 2086 2087 /* correct session? */ 2088 if (req->r_session != session) { 2089 pr_err("mdsc_handle_reply got %llu on session mds%d" 2090 " not mds%d\n", tid, session->s_mds, 2091 req->r_session ? req->r_session->s_mds : -1); 2092 mutex_unlock(&mdsc->mutex); 2093 goto out; 2094 } 2095 2096 /* dup? */ 2097 if ((req->r_got_unsafe && !head->safe) || 2098 (req->r_got_safe && head->safe)) { 2099 pr_warning("got a dup %s reply on %llu from mds%d\n", 2100 head->safe ? "safe" : "unsafe", tid, mds); 2101 mutex_unlock(&mdsc->mutex); 2102 goto out; 2103 } 2104 if (req->r_got_safe && !head->safe) { 2105 pr_warning("got unsafe after safe on %llu from mds%d\n", 2106 tid, mds); 2107 mutex_unlock(&mdsc->mutex); 2108 goto out; 2109 } 2110 2111 result = le32_to_cpu(head->result); 2112 2113 /* 2114 * Handle an ESTALE 2115 * if we're not talking to the authority, send to them 2116 * if the authority has changed while we weren't looking, 2117 * send to new authority 2118 * Otherwise we just have to return an ESTALE 2119 */ 2120 if (result == -ESTALE) { 2121 dout("got ESTALE on request %llu", req->r_tid); 2122 if (!req->r_inode) { 2123 /* do nothing; not an authority problem */ 2124 } else if (req->r_direct_mode != USE_AUTH_MDS) { 2125 dout("not using auth, setting for that now"); 2126 req->r_direct_mode = USE_AUTH_MDS; 2127 __do_request(mdsc, req); 2128 mutex_unlock(&mdsc->mutex); 2129 goto out; 2130 } else { 2131 struct ceph_inode_info *ci = ceph_inode(req->r_inode); 2132 struct ceph_cap *cap = NULL; 2133 2134 if (req->r_session) 2135 cap = ceph_get_cap_for_mds(ci, 2136 req->r_session->s_mds); 2137 2138 dout("already using auth"); 2139 if ((!cap || cap != ci->i_auth_cap) || 2140 (cap->mseq != req->r_sent_on_mseq)) { 2141 dout("but cap changed, so resending"); 2142 __do_request(mdsc, req); 2143 mutex_unlock(&mdsc->mutex); 2144 goto out; 2145 } 2146 } 2147 dout("have to return ESTALE on request %llu", req->r_tid); 2148 } 2149 2150 2151 if (head->safe) { 2152 req->r_got_safe = true; 2153 __unregister_request(mdsc, req); 2154 complete_all(&req->r_safe_completion); 2155 2156 if (req->r_got_unsafe) { 2157 /* 2158 * We already handled the unsafe response, now do the 2159 * cleanup. No need to examine the response; the MDS 2160 * doesn't include any result info in the safe 2161 * response. And even if it did, there is nothing 2162 * useful we could do with a revised return value. 2163 */ 2164 dout("got safe reply %llu, mds%d\n", tid, mds); 2165 list_del_init(&req->r_unsafe_item); 2166 2167 /* last unsafe request during umount? */ 2168 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2169 complete_all(&mdsc->safe_umount_waiters); 2170 mutex_unlock(&mdsc->mutex); 2171 goto out; 2172 } 2173 } else { 2174 req->r_got_unsafe = true; 2175 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2176 } 2177 2178 dout("handle_reply tid %lld result %d\n", tid, result); 2179 rinfo = &req->r_reply_info; 2180 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2181 mutex_unlock(&mdsc->mutex); 2182 2183 mutex_lock(&session->s_mutex); 2184 if (err < 0) { 2185 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2186 ceph_msg_dump(msg); 2187 goto out_err; 2188 } 2189 2190 /* snap trace */ 2191 if (rinfo->snapblob_len) { 2192 down_write(&mdsc->snap_rwsem); 2193 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2194 rinfo->snapblob + rinfo->snapblob_len, 2195 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 2196 downgrade_write(&mdsc->snap_rwsem); 2197 } else { 2198 down_read(&mdsc->snap_rwsem); 2199 } 2200 2201 /* insert trace into our cache */ 2202 mutex_lock(&req->r_fill_mutex); 2203 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2204 if (err == 0) { 2205 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 2206 req->r_op == CEPH_MDS_OP_LSSNAP) && 2207 rinfo->dir_nr) 2208 ceph_readdir_prepopulate(req, req->r_session); 2209 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2210 } 2211 mutex_unlock(&req->r_fill_mutex); 2212 2213 up_read(&mdsc->snap_rwsem); 2214 out_err: 2215 mutex_lock(&mdsc->mutex); 2216 if (!req->r_aborted) { 2217 if (err) { 2218 req->r_err = err; 2219 } else { 2220 req->r_reply = msg; 2221 ceph_msg_get(msg); 2222 req->r_got_result = true; 2223 } 2224 } else { 2225 dout("reply arrived after request %lld was aborted\n", tid); 2226 } 2227 mutex_unlock(&mdsc->mutex); 2228 2229 ceph_add_cap_releases(mdsc, req->r_session); 2230 mutex_unlock(&session->s_mutex); 2231 2232 /* kick calling process */ 2233 complete_request(mdsc, req); 2234 out: 2235 ceph_mdsc_put_request(req); 2236 return; 2237 } 2238 2239 2240 2241 /* 2242 * handle mds notification that our request has been forwarded. 2243 */ 2244 static void handle_forward(struct ceph_mds_client *mdsc, 2245 struct ceph_mds_session *session, 2246 struct ceph_msg *msg) 2247 { 2248 struct ceph_mds_request *req; 2249 u64 tid = le64_to_cpu(msg->hdr.tid); 2250 u32 next_mds; 2251 u32 fwd_seq; 2252 int err = -EINVAL; 2253 void *p = msg->front.iov_base; 2254 void *end = p + msg->front.iov_len; 2255 2256 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2257 next_mds = ceph_decode_32(&p); 2258 fwd_seq = ceph_decode_32(&p); 2259 2260 mutex_lock(&mdsc->mutex); 2261 req = __lookup_request(mdsc, tid); 2262 if (!req) { 2263 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2264 goto out; /* dup reply? */ 2265 } 2266 2267 if (req->r_aborted) { 2268 dout("forward tid %llu aborted, unregistering\n", tid); 2269 __unregister_request(mdsc, req); 2270 } else if (fwd_seq <= req->r_num_fwd) { 2271 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2272 tid, next_mds, req->r_num_fwd, fwd_seq); 2273 } else { 2274 /* resend. forward race not possible; mds would drop */ 2275 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2276 BUG_ON(req->r_err); 2277 BUG_ON(req->r_got_result); 2278 req->r_num_fwd = fwd_seq; 2279 req->r_resend_mds = next_mds; 2280 put_request_session(req); 2281 __do_request(mdsc, req); 2282 } 2283 ceph_mdsc_put_request(req); 2284 out: 2285 mutex_unlock(&mdsc->mutex); 2286 return; 2287 2288 bad: 2289 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2290 } 2291 2292 /* 2293 * handle a mds session control message 2294 */ 2295 static void handle_session(struct ceph_mds_session *session, 2296 struct ceph_msg *msg) 2297 { 2298 struct ceph_mds_client *mdsc = session->s_mdsc; 2299 u32 op; 2300 u64 seq; 2301 int mds = session->s_mds; 2302 struct ceph_mds_session_head *h = msg->front.iov_base; 2303 int wake = 0; 2304 2305 /* decode */ 2306 if (msg->front.iov_len != sizeof(*h)) 2307 goto bad; 2308 op = le32_to_cpu(h->op); 2309 seq = le64_to_cpu(h->seq); 2310 2311 mutex_lock(&mdsc->mutex); 2312 if (op == CEPH_SESSION_CLOSE) 2313 __unregister_session(mdsc, session); 2314 /* FIXME: this ttl calculation is generous */ 2315 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2316 mutex_unlock(&mdsc->mutex); 2317 2318 mutex_lock(&session->s_mutex); 2319 2320 dout("handle_session mds%d %s %p state %s seq %llu\n", 2321 mds, ceph_session_op_name(op), session, 2322 session_state_name(session->s_state), seq); 2323 2324 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2325 session->s_state = CEPH_MDS_SESSION_OPEN; 2326 pr_info("mds%d came back\n", session->s_mds); 2327 } 2328 2329 switch (op) { 2330 case CEPH_SESSION_OPEN: 2331 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2332 pr_info("mds%d reconnect success\n", session->s_mds); 2333 session->s_state = CEPH_MDS_SESSION_OPEN; 2334 renewed_caps(mdsc, session, 0); 2335 wake = 1; 2336 if (mdsc->stopping) 2337 __close_session(mdsc, session); 2338 break; 2339 2340 case CEPH_SESSION_RENEWCAPS: 2341 if (session->s_renew_seq == seq) 2342 renewed_caps(mdsc, session, 1); 2343 break; 2344 2345 case CEPH_SESSION_CLOSE: 2346 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2347 pr_info("mds%d reconnect denied\n", session->s_mds); 2348 remove_session_caps(session); 2349 wake = 1; /* for good measure */ 2350 wake_up_all(&mdsc->session_close_wq); 2351 kick_requests(mdsc, mds); 2352 break; 2353 2354 case CEPH_SESSION_STALE: 2355 pr_info("mds%d caps went stale, renewing\n", 2356 session->s_mds); 2357 spin_lock(&session->s_gen_ttl_lock); 2358 session->s_cap_gen++; 2359 session->s_cap_ttl = jiffies - 1; 2360 spin_unlock(&session->s_gen_ttl_lock); 2361 send_renew_caps(mdsc, session); 2362 break; 2363 2364 case CEPH_SESSION_RECALL_STATE: 2365 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2366 break; 2367 2368 default: 2369 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2370 WARN_ON(1); 2371 } 2372 2373 mutex_unlock(&session->s_mutex); 2374 if (wake) { 2375 mutex_lock(&mdsc->mutex); 2376 __wake_requests(mdsc, &session->s_waiting); 2377 mutex_unlock(&mdsc->mutex); 2378 } 2379 return; 2380 2381 bad: 2382 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2383 (int)msg->front.iov_len); 2384 ceph_msg_dump(msg); 2385 return; 2386 } 2387 2388 2389 /* 2390 * called under session->mutex. 2391 */ 2392 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2393 struct ceph_mds_session *session) 2394 { 2395 struct ceph_mds_request *req, *nreq; 2396 int err; 2397 2398 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2399 2400 mutex_lock(&mdsc->mutex); 2401 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2402 err = __prepare_send_request(mdsc, req, session->s_mds); 2403 if (!err) { 2404 ceph_msg_get(req->r_request); 2405 ceph_con_send(&session->s_con, req->r_request); 2406 } 2407 } 2408 mutex_unlock(&mdsc->mutex); 2409 } 2410 2411 /* 2412 * Encode information about a cap for a reconnect with the MDS. 2413 */ 2414 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2415 void *arg) 2416 { 2417 union { 2418 struct ceph_mds_cap_reconnect v2; 2419 struct ceph_mds_cap_reconnect_v1 v1; 2420 } rec; 2421 size_t reclen; 2422 struct ceph_inode_info *ci; 2423 struct ceph_reconnect_state *recon_state = arg; 2424 struct ceph_pagelist *pagelist = recon_state->pagelist; 2425 char *path; 2426 int pathlen, err; 2427 u64 pathbase; 2428 struct dentry *dentry; 2429 2430 ci = cap->ci; 2431 2432 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2433 inode, ceph_vinop(inode), cap, cap->cap_id, 2434 ceph_cap_string(cap->issued)); 2435 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2436 if (err) 2437 return err; 2438 2439 dentry = d_find_alias(inode); 2440 if (dentry) { 2441 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2442 if (IS_ERR(path)) { 2443 err = PTR_ERR(path); 2444 goto out_dput; 2445 } 2446 } else { 2447 path = NULL; 2448 pathlen = 0; 2449 } 2450 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2451 if (err) 2452 goto out_free; 2453 2454 spin_lock(&ci->i_ceph_lock); 2455 cap->seq = 0; /* reset cap seq */ 2456 cap->issue_seq = 0; /* and issue_seq */ 2457 2458 if (recon_state->flock) { 2459 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2460 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2461 rec.v2.issued = cpu_to_le32(cap->issued); 2462 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2463 rec.v2.pathbase = cpu_to_le64(pathbase); 2464 rec.v2.flock_len = 0; 2465 reclen = sizeof(rec.v2); 2466 } else { 2467 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2468 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2469 rec.v1.issued = cpu_to_le32(cap->issued); 2470 rec.v1.size = cpu_to_le64(inode->i_size); 2471 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2472 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2473 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2474 rec.v1.pathbase = cpu_to_le64(pathbase); 2475 reclen = sizeof(rec.v1); 2476 } 2477 spin_unlock(&ci->i_ceph_lock); 2478 2479 if (recon_state->flock) { 2480 int num_fcntl_locks, num_flock_locks; 2481 struct ceph_filelock *flocks; 2482 2483 encode_again: 2484 spin_lock(&inode->i_lock); 2485 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 2486 spin_unlock(&inode->i_lock); 2487 flocks = kmalloc((num_fcntl_locks+num_flock_locks) * 2488 sizeof(struct ceph_filelock), GFP_NOFS); 2489 if (!flocks) { 2490 err = -ENOMEM; 2491 goto out_free; 2492 } 2493 spin_lock(&inode->i_lock); 2494 err = ceph_encode_locks_to_buffer(inode, flocks, 2495 num_fcntl_locks, 2496 num_flock_locks); 2497 spin_unlock(&inode->i_lock); 2498 if (err) { 2499 kfree(flocks); 2500 if (err == -ENOSPC) 2501 goto encode_again; 2502 goto out_free; 2503 } 2504 /* 2505 * number of encoded locks is stable, so copy to pagelist 2506 */ 2507 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) + 2508 (num_fcntl_locks+num_flock_locks) * 2509 sizeof(struct ceph_filelock)); 2510 err = ceph_pagelist_append(pagelist, &rec, reclen); 2511 if (!err) 2512 err = ceph_locks_to_pagelist(flocks, pagelist, 2513 num_fcntl_locks, 2514 num_flock_locks); 2515 kfree(flocks); 2516 } else { 2517 err = ceph_pagelist_append(pagelist, &rec, reclen); 2518 } 2519 out_free: 2520 kfree(path); 2521 out_dput: 2522 dput(dentry); 2523 return err; 2524 } 2525 2526 2527 /* 2528 * If an MDS fails and recovers, clients need to reconnect in order to 2529 * reestablish shared state. This includes all caps issued through 2530 * this session _and_ the snap_realm hierarchy. Because it's not 2531 * clear which snap realms the mds cares about, we send everything we 2532 * know about.. that ensures we'll then get any new info the 2533 * recovering MDS might have. 2534 * 2535 * This is a relatively heavyweight operation, but it's rare. 2536 * 2537 * called with mdsc->mutex held. 2538 */ 2539 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2540 struct ceph_mds_session *session) 2541 { 2542 struct ceph_msg *reply; 2543 struct rb_node *p; 2544 int mds = session->s_mds; 2545 int err = -ENOMEM; 2546 struct ceph_pagelist *pagelist; 2547 struct ceph_reconnect_state recon_state; 2548 2549 pr_info("mds%d reconnect start\n", mds); 2550 2551 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2552 if (!pagelist) 2553 goto fail_nopagelist; 2554 ceph_pagelist_init(pagelist); 2555 2556 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2557 if (!reply) 2558 goto fail_nomsg; 2559 2560 mutex_lock(&session->s_mutex); 2561 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2562 session->s_seq = 0; 2563 2564 ceph_con_close(&session->s_con); 2565 ceph_con_open(&session->s_con, 2566 CEPH_ENTITY_TYPE_MDS, mds, 2567 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2568 2569 /* replay unsafe requests */ 2570 replay_unsafe_requests(mdsc, session); 2571 2572 down_read(&mdsc->snap_rwsem); 2573 2574 dout("session %p state %s\n", session, 2575 session_state_name(session->s_state)); 2576 2577 /* drop old cap expires; we're about to reestablish that state */ 2578 discard_cap_releases(mdsc, session); 2579 2580 /* traverse this session's caps */ 2581 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps); 2582 if (err) 2583 goto fail; 2584 2585 recon_state.pagelist = pagelist; 2586 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2587 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2588 if (err < 0) 2589 goto fail; 2590 2591 /* 2592 * snaprealms. we provide mds with the ino, seq (version), and 2593 * parent for all of our realms. If the mds has any newer info, 2594 * it will tell us. 2595 */ 2596 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2597 struct ceph_snap_realm *realm = 2598 rb_entry(p, struct ceph_snap_realm, node); 2599 struct ceph_mds_snaprealm_reconnect sr_rec; 2600 2601 dout(" adding snap realm %llx seq %lld parent %llx\n", 2602 realm->ino, realm->seq, realm->parent_ino); 2603 sr_rec.ino = cpu_to_le64(realm->ino); 2604 sr_rec.seq = cpu_to_le64(realm->seq); 2605 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2606 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2607 if (err) 2608 goto fail; 2609 } 2610 2611 if (recon_state.flock) 2612 reply->hdr.version = cpu_to_le16(2); 2613 if (pagelist->length) { 2614 /* set up outbound data if we have any */ 2615 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2616 ceph_msg_data_add_pagelist(reply, pagelist); 2617 } 2618 ceph_con_send(&session->s_con, reply); 2619 2620 mutex_unlock(&session->s_mutex); 2621 2622 mutex_lock(&mdsc->mutex); 2623 __wake_requests(mdsc, &session->s_waiting); 2624 mutex_unlock(&mdsc->mutex); 2625 2626 up_read(&mdsc->snap_rwsem); 2627 return; 2628 2629 fail: 2630 ceph_msg_put(reply); 2631 up_read(&mdsc->snap_rwsem); 2632 mutex_unlock(&session->s_mutex); 2633 fail_nomsg: 2634 ceph_pagelist_release(pagelist); 2635 kfree(pagelist); 2636 fail_nopagelist: 2637 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2638 return; 2639 } 2640 2641 2642 /* 2643 * compare old and new mdsmaps, kicking requests 2644 * and closing out old connections as necessary 2645 * 2646 * called under mdsc->mutex. 2647 */ 2648 static void check_new_map(struct ceph_mds_client *mdsc, 2649 struct ceph_mdsmap *newmap, 2650 struct ceph_mdsmap *oldmap) 2651 { 2652 int i; 2653 int oldstate, newstate; 2654 struct ceph_mds_session *s; 2655 2656 dout("check_new_map new %u old %u\n", 2657 newmap->m_epoch, oldmap->m_epoch); 2658 2659 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2660 if (mdsc->sessions[i] == NULL) 2661 continue; 2662 s = mdsc->sessions[i]; 2663 oldstate = ceph_mdsmap_get_state(oldmap, i); 2664 newstate = ceph_mdsmap_get_state(newmap, i); 2665 2666 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 2667 i, ceph_mds_state_name(oldstate), 2668 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 2669 ceph_mds_state_name(newstate), 2670 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 2671 session_state_name(s->s_state)); 2672 2673 if (i >= newmap->m_max_mds || 2674 memcmp(ceph_mdsmap_get_addr(oldmap, i), 2675 ceph_mdsmap_get_addr(newmap, i), 2676 sizeof(struct ceph_entity_addr))) { 2677 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2678 /* the session never opened, just close it 2679 * out now */ 2680 __wake_requests(mdsc, &s->s_waiting); 2681 __unregister_session(mdsc, s); 2682 } else { 2683 /* just close it */ 2684 mutex_unlock(&mdsc->mutex); 2685 mutex_lock(&s->s_mutex); 2686 mutex_lock(&mdsc->mutex); 2687 ceph_con_close(&s->s_con); 2688 mutex_unlock(&s->s_mutex); 2689 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2690 } 2691 2692 /* kick any requests waiting on the recovering mds */ 2693 kick_requests(mdsc, i); 2694 } else if (oldstate == newstate) { 2695 continue; /* nothing new with this mds */ 2696 } 2697 2698 /* 2699 * send reconnect? 2700 */ 2701 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2702 newstate >= CEPH_MDS_STATE_RECONNECT) { 2703 mutex_unlock(&mdsc->mutex); 2704 send_mds_reconnect(mdsc, s); 2705 mutex_lock(&mdsc->mutex); 2706 } 2707 2708 /* 2709 * kick request on any mds that has gone active. 2710 */ 2711 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2712 newstate >= CEPH_MDS_STATE_ACTIVE) { 2713 if (oldstate != CEPH_MDS_STATE_CREATING && 2714 oldstate != CEPH_MDS_STATE_STARTING) 2715 pr_info("mds%d recovery completed\n", s->s_mds); 2716 kick_requests(mdsc, i); 2717 ceph_kick_flushing_caps(mdsc, s); 2718 wake_up_session_caps(s, 1); 2719 } 2720 } 2721 2722 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 2723 s = mdsc->sessions[i]; 2724 if (!s) 2725 continue; 2726 if (!ceph_mdsmap_is_laggy(newmap, i)) 2727 continue; 2728 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2729 s->s_state == CEPH_MDS_SESSION_HUNG || 2730 s->s_state == CEPH_MDS_SESSION_CLOSING) { 2731 dout(" connecting to export targets of laggy mds%d\n", 2732 i); 2733 __open_export_target_sessions(mdsc, s); 2734 } 2735 } 2736 } 2737 2738 2739 2740 /* 2741 * leases 2742 */ 2743 2744 /* 2745 * caller must hold session s_mutex, dentry->d_lock 2746 */ 2747 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2748 { 2749 struct ceph_dentry_info *di = ceph_dentry(dentry); 2750 2751 ceph_put_mds_session(di->lease_session); 2752 di->lease_session = NULL; 2753 } 2754 2755 static void handle_lease(struct ceph_mds_client *mdsc, 2756 struct ceph_mds_session *session, 2757 struct ceph_msg *msg) 2758 { 2759 struct super_block *sb = mdsc->fsc->sb; 2760 struct inode *inode; 2761 struct dentry *parent, *dentry; 2762 struct ceph_dentry_info *di; 2763 int mds = session->s_mds; 2764 struct ceph_mds_lease *h = msg->front.iov_base; 2765 u32 seq; 2766 struct ceph_vino vino; 2767 struct qstr dname; 2768 int release = 0; 2769 2770 dout("handle_lease from mds%d\n", mds); 2771 2772 /* decode */ 2773 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 2774 goto bad; 2775 vino.ino = le64_to_cpu(h->ino); 2776 vino.snap = CEPH_NOSNAP; 2777 seq = le32_to_cpu(h->seq); 2778 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 2779 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 2780 if (dname.len != get_unaligned_le32(h+1)) 2781 goto bad; 2782 2783 mutex_lock(&session->s_mutex); 2784 session->s_seq++; 2785 2786 /* lookup inode */ 2787 inode = ceph_find_inode(sb, vino); 2788 dout("handle_lease %s, ino %llx %p %.*s\n", 2789 ceph_lease_op_name(h->action), vino.ino, inode, 2790 dname.len, dname.name); 2791 if (inode == NULL) { 2792 dout("handle_lease no inode %llx\n", vino.ino); 2793 goto release; 2794 } 2795 2796 /* dentry */ 2797 parent = d_find_alias(inode); 2798 if (!parent) { 2799 dout("no parent dentry on inode %p\n", inode); 2800 WARN_ON(1); 2801 goto release; /* hrm... */ 2802 } 2803 dname.hash = full_name_hash(dname.name, dname.len); 2804 dentry = d_lookup(parent, &dname); 2805 dput(parent); 2806 if (!dentry) 2807 goto release; 2808 2809 spin_lock(&dentry->d_lock); 2810 di = ceph_dentry(dentry); 2811 switch (h->action) { 2812 case CEPH_MDS_LEASE_REVOKE: 2813 if (di->lease_session == session) { 2814 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 2815 h->seq = cpu_to_le32(di->lease_seq); 2816 __ceph_mdsc_drop_dentry_lease(dentry); 2817 } 2818 release = 1; 2819 break; 2820 2821 case CEPH_MDS_LEASE_RENEW: 2822 if (di->lease_session == session && 2823 di->lease_gen == session->s_cap_gen && 2824 di->lease_renew_from && 2825 di->lease_renew_after == 0) { 2826 unsigned long duration = 2827 le32_to_cpu(h->duration_ms) * HZ / 1000; 2828 2829 di->lease_seq = seq; 2830 dentry->d_time = di->lease_renew_from + duration; 2831 di->lease_renew_after = di->lease_renew_from + 2832 (duration >> 1); 2833 di->lease_renew_from = 0; 2834 } 2835 break; 2836 } 2837 spin_unlock(&dentry->d_lock); 2838 dput(dentry); 2839 2840 if (!release) 2841 goto out; 2842 2843 release: 2844 /* let's just reuse the same message */ 2845 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 2846 ceph_msg_get(msg); 2847 ceph_con_send(&session->s_con, msg); 2848 2849 out: 2850 iput(inode); 2851 mutex_unlock(&session->s_mutex); 2852 return; 2853 2854 bad: 2855 pr_err("corrupt lease message\n"); 2856 ceph_msg_dump(msg); 2857 } 2858 2859 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 2860 struct inode *inode, 2861 struct dentry *dentry, char action, 2862 u32 seq) 2863 { 2864 struct ceph_msg *msg; 2865 struct ceph_mds_lease *lease; 2866 int len = sizeof(*lease) + sizeof(u32); 2867 int dnamelen = 0; 2868 2869 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 2870 inode, dentry, ceph_lease_op_name(action), session->s_mds); 2871 dnamelen = dentry->d_name.len; 2872 len += dnamelen; 2873 2874 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 2875 if (!msg) 2876 return; 2877 lease = msg->front.iov_base; 2878 lease->action = action; 2879 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 2880 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 2881 lease->seq = cpu_to_le32(seq); 2882 put_unaligned_le32(dnamelen, lease + 1); 2883 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 2884 2885 /* 2886 * if this is a preemptive lease RELEASE, no need to 2887 * flush request stream, since the actual request will 2888 * soon follow. 2889 */ 2890 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 2891 2892 ceph_con_send(&session->s_con, msg); 2893 } 2894 2895 /* 2896 * Preemptively release a lease we expect to invalidate anyway. 2897 * Pass @inode always, @dentry is optional. 2898 */ 2899 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 2900 struct dentry *dentry) 2901 { 2902 struct ceph_dentry_info *di; 2903 struct ceph_mds_session *session; 2904 u32 seq; 2905 2906 BUG_ON(inode == NULL); 2907 BUG_ON(dentry == NULL); 2908 2909 /* is dentry lease valid? */ 2910 spin_lock(&dentry->d_lock); 2911 di = ceph_dentry(dentry); 2912 if (!di || !di->lease_session || 2913 di->lease_session->s_mds < 0 || 2914 di->lease_gen != di->lease_session->s_cap_gen || 2915 !time_before(jiffies, dentry->d_time)) { 2916 dout("lease_release inode %p dentry %p -- " 2917 "no lease\n", 2918 inode, dentry); 2919 spin_unlock(&dentry->d_lock); 2920 return; 2921 } 2922 2923 /* we do have a lease on this dentry; note mds and seq */ 2924 session = ceph_get_mds_session(di->lease_session); 2925 seq = di->lease_seq; 2926 __ceph_mdsc_drop_dentry_lease(dentry); 2927 spin_unlock(&dentry->d_lock); 2928 2929 dout("lease_release inode %p dentry %p to mds%d\n", 2930 inode, dentry, session->s_mds); 2931 ceph_mdsc_lease_send_msg(session, inode, dentry, 2932 CEPH_MDS_LEASE_RELEASE, seq); 2933 ceph_put_mds_session(session); 2934 } 2935 2936 /* 2937 * drop all leases (and dentry refs) in preparation for umount 2938 */ 2939 static void drop_leases(struct ceph_mds_client *mdsc) 2940 { 2941 int i; 2942 2943 dout("drop_leases\n"); 2944 mutex_lock(&mdsc->mutex); 2945 for (i = 0; i < mdsc->max_sessions; i++) { 2946 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2947 if (!s) 2948 continue; 2949 mutex_unlock(&mdsc->mutex); 2950 mutex_lock(&s->s_mutex); 2951 mutex_unlock(&s->s_mutex); 2952 ceph_put_mds_session(s); 2953 mutex_lock(&mdsc->mutex); 2954 } 2955 mutex_unlock(&mdsc->mutex); 2956 } 2957 2958 2959 2960 /* 2961 * delayed work -- periodically trim expired leases, renew caps with mds 2962 */ 2963 static void schedule_delayed(struct ceph_mds_client *mdsc) 2964 { 2965 int delay = 5; 2966 unsigned hz = round_jiffies_relative(HZ * delay); 2967 schedule_delayed_work(&mdsc->delayed_work, hz); 2968 } 2969 2970 static void delayed_work(struct work_struct *work) 2971 { 2972 int i; 2973 struct ceph_mds_client *mdsc = 2974 container_of(work, struct ceph_mds_client, delayed_work.work); 2975 int renew_interval; 2976 int renew_caps; 2977 2978 dout("mdsc delayed_work\n"); 2979 ceph_check_delayed_caps(mdsc); 2980 2981 mutex_lock(&mdsc->mutex); 2982 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 2983 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 2984 mdsc->last_renew_caps); 2985 if (renew_caps) 2986 mdsc->last_renew_caps = jiffies; 2987 2988 for (i = 0; i < mdsc->max_sessions; i++) { 2989 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2990 if (s == NULL) 2991 continue; 2992 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 2993 dout("resending session close request for mds%d\n", 2994 s->s_mds); 2995 request_close_session(mdsc, s); 2996 ceph_put_mds_session(s); 2997 continue; 2998 } 2999 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 3000 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 3001 s->s_state = CEPH_MDS_SESSION_HUNG; 3002 pr_info("mds%d hung\n", s->s_mds); 3003 } 3004 } 3005 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 3006 /* this mds is failed or recovering, just wait */ 3007 ceph_put_mds_session(s); 3008 continue; 3009 } 3010 mutex_unlock(&mdsc->mutex); 3011 3012 mutex_lock(&s->s_mutex); 3013 if (renew_caps) 3014 send_renew_caps(mdsc, s); 3015 else 3016 ceph_con_keepalive(&s->s_con); 3017 ceph_add_cap_releases(mdsc, s); 3018 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3019 s->s_state == CEPH_MDS_SESSION_HUNG) 3020 ceph_send_cap_releases(mdsc, s); 3021 mutex_unlock(&s->s_mutex); 3022 ceph_put_mds_session(s); 3023 3024 mutex_lock(&mdsc->mutex); 3025 } 3026 mutex_unlock(&mdsc->mutex); 3027 3028 schedule_delayed(mdsc); 3029 } 3030 3031 int ceph_mdsc_init(struct ceph_fs_client *fsc) 3032 3033 { 3034 struct ceph_mds_client *mdsc; 3035 3036 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 3037 if (!mdsc) 3038 return -ENOMEM; 3039 mdsc->fsc = fsc; 3040 fsc->mdsc = mdsc; 3041 mutex_init(&mdsc->mutex); 3042 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3043 if (mdsc->mdsmap == NULL) 3044 return -ENOMEM; 3045 3046 init_completion(&mdsc->safe_umount_waiters); 3047 init_waitqueue_head(&mdsc->session_close_wq); 3048 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3049 mdsc->sessions = NULL; 3050 mdsc->max_sessions = 0; 3051 mdsc->stopping = 0; 3052 init_rwsem(&mdsc->snap_rwsem); 3053 mdsc->snap_realms = RB_ROOT; 3054 INIT_LIST_HEAD(&mdsc->snap_empty); 3055 spin_lock_init(&mdsc->snap_empty_lock); 3056 mdsc->last_tid = 0; 3057 mdsc->request_tree = RB_ROOT; 3058 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3059 mdsc->last_renew_caps = jiffies; 3060 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3061 spin_lock_init(&mdsc->cap_delay_lock); 3062 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3063 spin_lock_init(&mdsc->snap_flush_lock); 3064 mdsc->cap_flush_seq = 0; 3065 INIT_LIST_HEAD(&mdsc->cap_dirty); 3066 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3067 mdsc->num_cap_flushing = 0; 3068 spin_lock_init(&mdsc->cap_dirty_lock); 3069 init_waitqueue_head(&mdsc->cap_flushing_wq); 3070 spin_lock_init(&mdsc->dentry_lru_lock); 3071 INIT_LIST_HEAD(&mdsc->dentry_lru); 3072 3073 ceph_caps_init(mdsc); 3074 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3075 3076 return 0; 3077 } 3078 3079 /* 3080 * Wait for safe replies on open mds requests. If we time out, drop 3081 * all requests from the tree to avoid dangling dentry refs. 3082 */ 3083 static void wait_requests(struct ceph_mds_client *mdsc) 3084 { 3085 struct ceph_mds_request *req; 3086 struct ceph_fs_client *fsc = mdsc->fsc; 3087 3088 mutex_lock(&mdsc->mutex); 3089 if (__get_oldest_req(mdsc)) { 3090 mutex_unlock(&mdsc->mutex); 3091 3092 dout("wait_requests waiting for requests\n"); 3093 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3094 fsc->client->options->mount_timeout * HZ); 3095 3096 /* tear down remaining requests */ 3097 mutex_lock(&mdsc->mutex); 3098 while ((req = __get_oldest_req(mdsc))) { 3099 dout("wait_requests timed out on tid %llu\n", 3100 req->r_tid); 3101 __unregister_request(mdsc, req); 3102 } 3103 } 3104 mutex_unlock(&mdsc->mutex); 3105 dout("wait_requests done\n"); 3106 } 3107 3108 /* 3109 * called before mount is ro, and before dentries are torn down. 3110 * (hmm, does this still race with new lookups?) 3111 */ 3112 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3113 { 3114 dout("pre_umount\n"); 3115 mdsc->stopping = 1; 3116 3117 drop_leases(mdsc); 3118 ceph_flush_dirty_caps(mdsc); 3119 wait_requests(mdsc); 3120 3121 /* 3122 * wait for reply handlers to drop their request refs and 3123 * their inode/dcache refs 3124 */ 3125 ceph_msgr_flush(); 3126 } 3127 3128 /* 3129 * wait for all write mds requests to flush. 3130 */ 3131 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3132 { 3133 struct ceph_mds_request *req = NULL, *nextreq; 3134 struct rb_node *n; 3135 3136 mutex_lock(&mdsc->mutex); 3137 dout("wait_unsafe_requests want %lld\n", want_tid); 3138 restart: 3139 req = __get_oldest_req(mdsc); 3140 while (req && req->r_tid <= want_tid) { 3141 /* find next request */ 3142 n = rb_next(&req->r_node); 3143 if (n) 3144 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3145 else 3146 nextreq = NULL; 3147 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3148 /* write op */ 3149 ceph_mdsc_get_request(req); 3150 if (nextreq) 3151 ceph_mdsc_get_request(nextreq); 3152 mutex_unlock(&mdsc->mutex); 3153 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3154 req->r_tid, want_tid); 3155 wait_for_completion(&req->r_safe_completion); 3156 mutex_lock(&mdsc->mutex); 3157 ceph_mdsc_put_request(req); 3158 if (!nextreq) 3159 break; /* next dne before, so we're done! */ 3160 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3161 /* next request was removed from tree */ 3162 ceph_mdsc_put_request(nextreq); 3163 goto restart; 3164 } 3165 ceph_mdsc_put_request(nextreq); /* won't go away */ 3166 } 3167 req = nextreq; 3168 } 3169 mutex_unlock(&mdsc->mutex); 3170 dout("wait_unsafe_requests done\n"); 3171 } 3172 3173 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3174 { 3175 u64 want_tid, want_flush; 3176 3177 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3178 return; 3179 3180 dout("sync\n"); 3181 mutex_lock(&mdsc->mutex); 3182 want_tid = mdsc->last_tid; 3183 want_flush = mdsc->cap_flush_seq; 3184 mutex_unlock(&mdsc->mutex); 3185 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3186 3187 ceph_flush_dirty_caps(mdsc); 3188 3189 wait_unsafe_requests(mdsc, want_tid); 3190 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 3191 } 3192 3193 /* 3194 * true if all sessions are closed, or we force unmount 3195 */ 3196 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3197 { 3198 int i, n = 0; 3199 3200 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3201 return true; 3202 3203 mutex_lock(&mdsc->mutex); 3204 for (i = 0; i < mdsc->max_sessions; i++) 3205 if (mdsc->sessions[i]) 3206 n++; 3207 mutex_unlock(&mdsc->mutex); 3208 return n == 0; 3209 } 3210 3211 /* 3212 * called after sb is ro. 3213 */ 3214 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3215 { 3216 struct ceph_mds_session *session; 3217 int i; 3218 struct ceph_fs_client *fsc = mdsc->fsc; 3219 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3220 3221 dout("close_sessions\n"); 3222 3223 /* close sessions */ 3224 mutex_lock(&mdsc->mutex); 3225 for (i = 0; i < mdsc->max_sessions; i++) { 3226 session = __ceph_lookup_mds_session(mdsc, i); 3227 if (!session) 3228 continue; 3229 mutex_unlock(&mdsc->mutex); 3230 mutex_lock(&session->s_mutex); 3231 __close_session(mdsc, session); 3232 mutex_unlock(&session->s_mutex); 3233 ceph_put_mds_session(session); 3234 mutex_lock(&mdsc->mutex); 3235 } 3236 mutex_unlock(&mdsc->mutex); 3237 3238 dout("waiting for sessions to close\n"); 3239 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3240 timeout); 3241 3242 /* tear down remaining sessions */ 3243 mutex_lock(&mdsc->mutex); 3244 for (i = 0; i < mdsc->max_sessions; i++) { 3245 if (mdsc->sessions[i]) { 3246 session = get_session(mdsc->sessions[i]); 3247 __unregister_session(mdsc, session); 3248 mutex_unlock(&mdsc->mutex); 3249 mutex_lock(&session->s_mutex); 3250 remove_session_caps(session); 3251 mutex_unlock(&session->s_mutex); 3252 ceph_put_mds_session(session); 3253 mutex_lock(&mdsc->mutex); 3254 } 3255 } 3256 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3257 mutex_unlock(&mdsc->mutex); 3258 3259 ceph_cleanup_empty_realms(mdsc); 3260 3261 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3262 3263 dout("stopped\n"); 3264 } 3265 3266 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3267 { 3268 dout("stop\n"); 3269 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3270 if (mdsc->mdsmap) 3271 ceph_mdsmap_destroy(mdsc->mdsmap); 3272 kfree(mdsc->sessions); 3273 ceph_caps_finalize(mdsc); 3274 } 3275 3276 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3277 { 3278 struct ceph_mds_client *mdsc = fsc->mdsc; 3279 3280 dout("mdsc_destroy %p\n", mdsc); 3281 ceph_mdsc_stop(mdsc); 3282 3283 /* flush out any connection work with references to us */ 3284 ceph_msgr_flush(); 3285 3286 fsc->mdsc = NULL; 3287 kfree(mdsc); 3288 dout("mdsc_destroy %p done\n", mdsc); 3289 } 3290 3291 3292 /* 3293 * handle mds map update. 3294 */ 3295 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3296 { 3297 u32 epoch; 3298 u32 maplen; 3299 void *p = msg->front.iov_base; 3300 void *end = p + msg->front.iov_len; 3301 struct ceph_mdsmap *newmap, *oldmap; 3302 struct ceph_fsid fsid; 3303 int err = -EINVAL; 3304 3305 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3306 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3307 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3308 return; 3309 epoch = ceph_decode_32(&p); 3310 maplen = ceph_decode_32(&p); 3311 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3312 3313 /* do we need it? */ 3314 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3315 mutex_lock(&mdsc->mutex); 3316 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3317 dout("handle_map epoch %u <= our %u\n", 3318 epoch, mdsc->mdsmap->m_epoch); 3319 mutex_unlock(&mdsc->mutex); 3320 return; 3321 } 3322 3323 newmap = ceph_mdsmap_decode(&p, end); 3324 if (IS_ERR(newmap)) { 3325 err = PTR_ERR(newmap); 3326 goto bad_unlock; 3327 } 3328 3329 /* swap into place */ 3330 if (mdsc->mdsmap) { 3331 oldmap = mdsc->mdsmap; 3332 mdsc->mdsmap = newmap; 3333 check_new_map(mdsc, newmap, oldmap); 3334 ceph_mdsmap_destroy(oldmap); 3335 } else { 3336 mdsc->mdsmap = newmap; /* first mds map */ 3337 } 3338 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3339 3340 __wake_requests(mdsc, &mdsc->waiting_for_map); 3341 3342 mutex_unlock(&mdsc->mutex); 3343 schedule_delayed(mdsc); 3344 return; 3345 3346 bad_unlock: 3347 mutex_unlock(&mdsc->mutex); 3348 bad: 3349 pr_err("error decoding mdsmap %d\n", err); 3350 return; 3351 } 3352 3353 static struct ceph_connection *con_get(struct ceph_connection *con) 3354 { 3355 struct ceph_mds_session *s = con->private; 3356 3357 if (get_session(s)) { 3358 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3359 return con; 3360 } 3361 dout("mdsc con_get %p FAIL\n", s); 3362 return NULL; 3363 } 3364 3365 static void con_put(struct ceph_connection *con) 3366 { 3367 struct ceph_mds_session *s = con->private; 3368 3369 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3370 ceph_put_mds_session(s); 3371 } 3372 3373 /* 3374 * if the client is unresponsive for long enough, the mds will kill 3375 * the session entirely. 3376 */ 3377 static void peer_reset(struct ceph_connection *con) 3378 { 3379 struct ceph_mds_session *s = con->private; 3380 struct ceph_mds_client *mdsc = s->s_mdsc; 3381 3382 pr_warning("mds%d closed our session\n", s->s_mds); 3383 send_mds_reconnect(mdsc, s); 3384 } 3385 3386 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3387 { 3388 struct ceph_mds_session *s = con->private; 3389 struct ceph_mds_client *mdsc = s->s_mdsc; 3390 int type = le16_to_cpu(msg->hdr.type); 3391 3392 mutex_lock(&mdsc->mutex); 3393 if (__verify_registered_session(mdsc, s) < 0) { 3394 mutex_unlock(&mdsc->mutex); 3395 goto out; 3396 } 3397 mutex_unlock(&mdsc->mutex); 3398 3399 switch (type) { 3400 case CEPH_MSG_MDS_MAP: 3401 ceph_mdsc_handle_map(mdsc, msg); 3402 break; 3403 case CEPH_MSG_CLIENT_SESSION: 3404 handle_session(s, msg); 3405 break; 3406 case CEPH_MSG_CLIENT_REPLY: 3407 handle_reply(s, msg); 3408 break; 3409 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3410 handle_forward(mdsc, s, msg); 3411 break; 3412 case CEPH_MSG_CLIENT_CAPS: 3413 ceph_handle_caps(s, msg); 3414 break; 3415 case CEPH_MSG_CLIENT_SNAP: 3416 ceph_handle_snap(mdsc, s, msg); 3417 break; 3418 case CEPH_MSG_CLIENT_LEASE: 3419 handle_lease(mdsc, s, msg); 3420 break; 3421 3422 default: 3423 pr_err("received unknown message type %d %s\n", type, 3424 ceph_msg_type_name(type)); 3425 } 3426 out: 3427 ceph_msg_put(msg); 3428 } 3429 3430 /* 3431 * authentication 3432 */ 3433 3434 /* 3435 * Note: returned pointer is the address of a structure that's 3436 * managed separately. Caller must *not* attempt to free it. 3437 */ 3438 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 3439 int *proto, int force_new) 3440 { 3441 struct ceph_mds_session *s = con->private; 3442 struct ceph_mds_client *mdsc = s->s_mdsc; 3443 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3444 struct ceph_auth_handshake *auth = &s->s_auth; 3445 3446 if (force_new && auth->authorizer) { 3447 ceph_auth_destroy_authorizer(ac, auth->authorizer); 3448 auth->authorizer = NULL; 3449 } 3450 if (!auth->authorizer) { 3451 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3452 auth); 3453 if (ret) 3454 return ERR_PTR(ret); 3455 } else { 3456 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3457 auth); 3458 if (ret) 3459 return ERR_PTR(ret); 3460 } 3461 *proto = ac->protocol; 3462 3463 return auth; 3464 } 3465 3466 3467 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3468 { 3469 struct ceph_mds_session *s = con->private; 3470 struct ceph_mds_client *mdsc = s->s_mdsc; 3471 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3472 3473 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len); 3474 } 3475 3476 static int invalidate_authorizer(struct ceph_connection *con) 3477 { 3478 struct ceph_mds_session *s = con->private; 3479 struct ceph_mds_client *mdsc = s->s_mdsc; 3480 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3481 3482 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3483 3484 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3485 } 3486 3487 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 3488 struct ceph_msg_header *hdr, int *skip) 3489 { 3490 struct ceph_msg *msg; 3491 int type = (int) le16_to_cpu(hdr->type); 3492 int front_len = (int) le32_to_cpu(hdr->front_len); 3493 3494 if (con->in_msg) 3495 return con->in_msg; 3496 3497 *skip = 0; 3498 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 3499 if (!msg) { 3500 pr_err("unable to allocate msg type %d len %d\n", 3501 type, front_len); 3502 return NULL; 3503 } 3504 3505 return msg; 3506 } 3507 3508 static const struct ceph_connection_operations mds_con_ops = { 3509 .get = con_get, 3510 .put = con_put, 3511 .dispatch = dispatch, 3512 .get_authorizer = get_authorizer, 3513 .verify_authorizer_reply = verify_authorizer_reply, 3514 .invalidate_authorizer = invalidate_authorizer, 3515 .peer_reset = peer_reset, 3516 .alloc_msg = mds_alloc_msg, 3517 }; 3518 3519 /* eof */ 3520