xref: /openbmc/linux/fs/ceph/mds_client.c (revision 77423a62)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/fs.h>
5 #include <linux/wait.h>
6 #include <linux/slab.h>
7 #include <linux/gfp.h>
8 #include <linux/sched.h>
9 #include <linux/debugfs.h>
10 #include <linux/seq_file.h>
11 #include <linux/ratelimit.h>
12 #include <linux/bits.h>
13 #include <linux/ktime.h>
14 #include <linux/bitmap.h>
15 
16 #include "super.h"
17 #include "mds_client.h"
18 
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/ceph/auth.h>
24 #include <linux/ceph/debugfs.h>
25 
26 #define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE)
27 
28 /*
29  * A cluster of MDS (metadata server) daemons is responsible for
30  * managing the file system namespace (the directory hierarchy and
31  * inodes) and for coordinating shared access to storage.  Metadata is
32  * partitioning hierarchically across a number of servers, and that
33  * partition varies over time as the cluster adjusts the distribution
34  * in order to balance load.
35  *
36  * The MDS client is primarily responsible to managing synchronous
37  * metadata requests for operations like open, unlink, and so forth.
38  * If there is a MDS failure, we find out about it when we (possibly
39  * request and) receive a new MDS map, and can resubmit affected
40  * requests.
41  *
42  * For the most part, though, we take advantage of a lossless
43  * communications channel to the MDS, and do not need to worry about
44  * timing out or resubmitting requests.
45  *
46  * We maintain a stateful "session" with each MDS we interact with.
47  * Within each session, we sent periodic heartbeat messages to ensure
48  * any capabilities or leases we have been issues remain valid.  If
49  * the session times out and goes stale, our leases and capabilities
50  * are no longer valid.
51  */
52 
53 struct ceph_reconnect_state {
54 	struct ceph_mds_session *session;
55 	int nr_caps, nr_realms;
56 	struct ceph_pagelist *pagelist;
57 	unsigned msg_version;
58 	bool allow_multi;
59 };
60 
61 static void __wake_requests(struct ceph_mds_client *mdsc,
62 			    struct list_head *head);
63 static void ceph_cap_release_work(struct work_struct *work);
64 static void ceph_cap_reclaim_work(struct work_struct *work);
65 
66 static const struct ceph_connection_operations mds_con_ops;
67 
68 
69 /*
70  * mds reply parsing
71  */
72 
73 static int parse_reply_info_quota(void **p, void *end,
74 				  struct ceph_mds_reply_info_in *info)
75 {
76 	u8 struct_v, struct_compat;
77 	u32 struct_len;
78 
79 	ceph_decode_8_safe(p, end, struct_v, bad);
80 	ceph_decode_8_safe(p, end, struct_compat, bad);
81 	/* struct_v is expected to be >= 1. we only
82 	 * understand encoding with struct_compat == 1. */
83 	if (!struct_v || struct_compat != 1)
84 		goto bad;
85 	ceph_decode_32_safe(p, end, struct_len, bad);
86 	ceph_decode_need(p, end, struct_len, bad);
87 	end = *p + struct_len;
88 	ceph_decode_64_safe(p, end, info->max_bytes, bad);
89 	ceph_decode_64_safe(p, end, info->max_files, bad);
90 	*p = end;
91 	return 0;
92 bad:
93 	return -EIO;
94 }
95 
96 /*
97  * parse individual inode info
98  */
99 static int parse_reply_info_in(void **p, void *end,
100 			       struct ceph_mds_reply_info_in *info,
101 			       u64 features)
102 {
103 	int err = 0;
104 	u8 struct_v = 0;
105 
106 	if (features == (u64)-1) {
107 		u32 struct_len;
108 		u8 struct_compat;
109 		ceph_decode_8_safe(p, end, struct_v, bad);
110 		ceph_decode_8_safe(p, end, struct_compat, bad);
111 		/* struct_v is expected to be >= 1. we only understand
112 		 * encoding with struct_compat == 1. */
113 		if (!struct_v || struct_compat != 1)
114 			goto bad;
115 		ceph_decode_32_safe(p, end, struct_len, bad);
116 		ceph_decode_need(p, end, struct_len, bad);
117 		end = *p + struct_len;
118 	}
119 
120 	ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad);
121 	info->in = *p;
122 	*p += sizeof(struct ceph_mds_reply_inode) +
123 		sizeof(*info->in->fragtree.splits) *
124 		le32_to_cpu(info->in->fragtree.nsplits);
125 
126 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
127 	ceph_decode_need(p, end, info->symlink_len, bad);
128 	info->symlink = *p;
129 	*p += info->symlink_len;
130 
131 	ceph_decode_copy_safe(p, end, &info->dir_layout,
132 			      sizeof(info->dir_layout), bad);
133 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
134 	ceph_decode_need(p, end, info->xattr_len, bad);
135 	info->xattr_data = *p;
136 	*p += info->xattr_len;
137 
138 	if (features == (u64)-1) {
139 		/* inline data */
140 		ceph_decode_64_safe(p, end, info->inline_version, bad);
141 		ceph_decode_32_safe(p, end, info->inline_len, bad);
142 		ceph_decode_need(p, end, info->inline_len, bad);
143 		info->inline_data = *p;
144 		*p += info->inline_len;
145 		/* quota */
146 		err = parse_reply_info_quota(p, end, info);
147 		if (err < 0)
148 			goto out_bad;
149 		/* pool namespace */
150 		ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
151 		if (info->pool_ns_len > 0) {
152 			ceph_decode_need(p, end, info->pool_ns_len, bad);
153 			info->pool_ns_data = *p;
154 			*p += info->pool_ns_len;
155 		}
156 
157 		/* btime */
158 		ceph_decode_need(p, end, sizeof(info->btime), bad);
159 		ceph_decode_copy(p, &info->btime, sizeof(info->btime));
160 
161 		/* change attribute */
162 		ceph_decode_64_safe(p, end, info->change_attr, bad);
163 
164 		/* dir pin */
165 		if (struct_v >= 2) {
166 			ceph_decode_32_safe(p, end, info->dir_pin, bad);
167 		} else {
168 			info->dir_pin = -ENODATA;
169 		}
170 
171 		/* snapshot birth time, remains zero for v<=2 */
172 		if (struct_v >= 3) {
173 			ceph_decode_need(p, end, sizeof(info->snap_btime), bad);
174 			ceph_decode_copy(p, &info->snap_btime,
175 					 sizeof(info->snap_btime));
176 		} else {
177 			memset(&info->snap_btime, 0, sizeof(info->snap_btime));
178 		}
179 
180 		/* snapshot count, remains zero for v<=3 */
181 		if (struct_v >= 4) {
182 			ceph_decode_64_safe(p, end, info->rsnaps, bad);
183 		} else {
184 			info->rsnaps = 0;
185 		}
186 
187 		*p = end;
188 	} else {
189 		if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
190 			ceph_decode_64_safe(p, end, info->inline_version, bad);
191 			ceph_decode_32_safe(p, end, info->inline_len, bad);
192 			ceph_decode_need(p, end, info->inline_len, bad);
193 			info->inline_data = *p;
194 			*p += info->inline_len;
195 		} else
196 			info->inline_version = CEPH_INLINE_NONE;
197 
198 		if (features & CEPH_FEATURE_MDS_QUOTA) {
199 			err = parse_reply_info_quota(p, end, info);
200 			if (err < 0)
201 				goto out_bad;
202 		} else {
203 			info->max_bytes = 0;
204 			info->max_files = 0;
205 		}
206 
207 		info->pool_ns_len = 0;
208 		info->pool_ns_data = NULL;
209 		if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
210 			ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
211 			if (info->pool_ns_len > 0) {
212 				ceph_decode_need(p, end, info->pool_ns_len, bad);
213 				info->pool_ns_data = *p;
214 				*p += info->pool_ns_len;
215 			}
216 		}
217 
218 		if (features & CEPH_FEATURE_FS_BTIME) {
219 			ceph_decode_need(p, end, sizeof(info->btime), bad);
220 			ceph_decode_copy(p, &info->btime, sizeof(info->btime));
221 			ceph_decode_64_safe(p, end, info->change_attr, bad);
222 		}
223 
224 		info->dir_pin = -ENODATA;
225 		/* info->snap_btime and info->rsnaps remain zero */
226 	}
227 	return 0;
228 bad:
229 	err = -EIO;
230 out_bad:
231 	return err;
232 }
233 
234 static int parse_reply_info_dir(void **p, void *end,
235 				struct ceph_mds_reply_dirfrag **dirfrag,
236 				u64 features)
237 {
238 	if (features == (u64)-1) {
239 		u8 struct_v, struct_compat;
240 		u32 struct_len;
241 		ceph_decode_8_safe(p, end, struct_v, bad);
242 		ceph_decode_8_safe(p, end, struct_compat, bad);
243 		/* struct_v is expected to be >= 1. we only understand
244 		 * encoding whose struct_compat == 1. */
245 		if (!struct_v || struct_compat != 1)
246 			goto bad;
247 		ceph_decode_32_safe(p, end, struct_len, bad);
248 		ceph_decode_need(p, end, struct_len, bad);
249 		end = *p + struct_len;
250 	}
251 
252 	ceph_decode_need(p, end, sizeof(**dirfrag), bad);
253 	*dirfrag = *p;
254 	*p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist);
255 	if (unlikely(*p > end))
256 		goto bad;
257 	if (features == (u64)-1)
258 		*p = end;
259 	return 0;
260 bad:
261 	return -EIO;
262 }
263 
264 static int parse_reply_info_lease(void **p, void *end,
265 				  struct ceph_mds_reply_lease **lease,
266 				  u64 features)
267 {
268 	if (features == (u64)-1) {
269 		u8 struct_v, struct_compat;
270 		u32 struct_len;
271 		ceph_decode_8_safe(p, end, struct_v, bad);
272 		ceph_decode_8_safe(p, end, struct_compat, bad);
273 		/* struct_v is expected to be >= 1. we only understand
274 		 * encoding whose struct_compat == 1. */
275 		if (!struct_v || struct_compat != 1)
276 			goto bad;
277 		ceph_decode_32_safe(p, end, struct_len, bad);
278 		ceph_decode_need(p, end, struct_len, bad);
279 		end = *p + struct_len;
280 	}
281 
282 	ceph_decode_need(p, end, sizeof(**lease), bad);
283 	*lease = *p;
284 	*p += sizeof(**lease);
285 	if (features == (u64)-1)
286 		*p = end;
287 	return 0;
288 bad:
289 	return -EIO;
290 }
291 
292 /*
293  * parse a normal reply, which may contain a (dir+)dentry and/or a
294  * target inode.
295  */
296 static int parse_reply_info_trace(void **p, void *end,
297 				  struct ceph_mds_reply_info_parsed *info,
298 				  u64 features)
299 {
300 	int err;
301 
302 	if (info->head->is_dentry) {
303 		err = parse_reply_info_in(p, end, &info->diri, features);
304 		if (err < 0)
305 			goto out_bad;
306 
307 		err = parse_reply_info_dir(p, end, &info->dirfrag, features);
308 		if (err < 0)
309 			goto out_bad;
310 
311 		ceph_decode_32_safe(p, end, info->dname_len, bad);
312 		ceph_decode_need(p, end, info->dname_len, bad);
313 		info->dname = *p;
314 		*p += info->dname_len;
315 
316 		err = parse_reply_info_lease(p, end, &info->dlease, features);
317 		if (err < 0)
318 			goto out_bad;
319 	}
320 
321 	if (info->head->is_target) {
322 		err = parse_reply_info_in(p, end, &info->targeti, features);
323 		if (err < 0)
324 			goto out_bad;
325 	}
326 
327 	if (unlikely(*p != end))
328 		goto bad;
329 	return 0;
330 
331 bad:
332 	err = -EIO;
333 out_bad:
334 	pr_err("problem parsing mds trace %d\n", err);
335 	return err;
336 }
337 
338 /*
339  * parse readdir results
340  */
341 static int parse_reply_info_readdir(void **p, void *end,
342 				struct ceph_mds_reply_info_parsed *info,
343 				u64 features)
344 {
345 	u32 num, i = 0;
346 	int err;
347 
348 	err = parse_reply_info_dir(p, end, &info->dir_dir, features);
349 	if (err < 0)
350 		goto out_bad;
351 
352 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
353 	num = ceph_decode_32(p);
354 	{
355 		u16 flags = ceph_decode_16(p);
356 		info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
357 		info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
358 		info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
359 		info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH);
360 	}
361 	if (num == 0)
362 		goto done;
363 
364 	BUG_ON(!info->dir_entries);
365 	if ((unsigned long)(info->dir_entries + num) >
366 	    (unsigned long)info->dir_entries + info->dir_buf_size) {
367 		pr_err("dir contents are larger than expected\n");
368 		WARN_ON(1);
369 		goto bad;
370 	}
371 
372 	info->dir_nr = num;
373 	while (num) {
374 		struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
375 		/* dentry */
376 		ceph_decode_32_safe(p, end, rde->name_len, bad);
377 		ceph_decode_need(p, end, rde->name_len, bad);
378 		rde->name = *p;
379 		*p += rde->name_len;
380 		dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name);
381 
382 		/* dentry lease */
383 		err = parse_reply_info_lease(p, end, &rde->lease, features);
384 		if (err)
385 			goto out_bad;
386 		/* inode */
387 		err = parse_reply_info_in(p, end, &rde->inode, features);
388 		if (err < 0)
389 			goto out_bad;
390 		/* ceph_readdir_prepopulate() will update it */
391 		rde->offset = 0;
392 		i++;
393 		num--;
394 	}
395 
396 done:
397 	/* Skip over any unrecognized fields */
398 	*p = end;
399 	return 0;
400 
401 bad:
402 	err = -EIO;
403 out_bad:
404 	pr_err("problem parsing dir contents %d\n", err);
405 	return err;
406 }
407 
408 /*
409  * parse fcntl F_GETLK results
410  */
411 static int parse_reply_info_filelock(void **p, void *end,
412 				     struct ceph_mds_reply_info_parsed *info,
413 				     u64 features)
414 {
415 	if (*p + sizeof(*info->filelock_reply) > end)
416 		goto bad;
417 
418 	info->filelock_reply = *p;
419 
420 	/* Skip over any unrecognized fields */
421 	*p = end;
422 	return 0;
423 bad:
424 	return -EIO;
425 }
426 
427 
428 #if BITS_PER_LONG == 64
429 
430 #define DELEGATED_INO_AVAILABLE		xa_mk_value(1)
431 
432 static int ceph_parse_deleg_inos(void **p, void *end,
433 				 struct ceph_mds_session *s)
434 {
435 	u32 sets;
436 
437 	ceph_decode_32_safe(p, end, sets, bad);
438 	dout("got %u sets of delegated inodes\n", sets);
439 	while (sets--) {
440 		u64 start, len;
441 
442 		ceph_decode_64_safe(p, end, start, bad);
443 		ceph_decode_64_safe(p, end, len, bad);
444 
445 		/* Don't accept a delegation of system inodes */
446 		if (start < CEPH_INO_SYSTEM_BASE) {
447 			pr_warn_ratelimited("ceph: ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n",
448 					start, len);
449 			continue;
450 		}
451 		while (len--) {
452 			int err = xa_insert(&s->s_delegated_inos, start++,
453 					    DELEGATED_INO_AVAILABLE,
454 					    GFP_KERNEL);
455 			if (!err) {
456 				dout("added delegated inode 0x%llx\n",
457 				     start - 1);
458 			} else if (err == -EBUSY) {
459 				pr_warn("MDS delegated inode 0x%llx more than once.\n",
460 					start - 1);
461 			} else {
462 				return err;
463 			}
464 		}
465 	}
466 	return 0;
467 bad:
468 	return -EIO;
469 }
470 
471 u64 ceph_get_deleg_ino(struct ceph_mds_session *s)
472 {
473 	unsigned long ino;
474 	void *val;
475 
476 	xa_for_each(&s->s_delegated_inos, ino, val) {
477 		val = xa_erase(&s->s_delegated_inos, ino);
478 		if (val == DELEGATED_INO_AVAILABLE)
479 			return ino;
480 	}
481 	return 0;
482 }
483 
484 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino)
485 {
486 	return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE,
487 			 GFP_KERNEL);
488 }
489 #else /* BITS_PER_LONG == 64 */
490 /*
491  * FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just
492  * ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top
493  * and bottom words?
494  */
495 static int ceph_parse_deleg_inos(void **p, void *end,
496 				 struct ceph_mds_session *s)
497 {
498 	u32 sets;
499 
500 	ceph_decode_32_safe(p, end, sets, bad);
501 	if (sets)
502 		ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad);
503 	return 0;
504 bad:
505 	return -EIO;
506 }
507 
508 u64 ceph_get_deleg_ino(struct ceph_mds_session *s)
509 {
510 	return 0;
511 }
512 
513 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino)
514 {
515 	return 0;
516 }
517 #endif /* BITS_PER_LONG == 64 */
518 
519 /*
520  * parse create results
521  */
522 static int parse_reply_info_create(void **p, void *end,
523 				  struct ceph_mds_reply_info_parsed *info,
524 				  u64 features, struct ceph_mds_session *s)
525 {
526 	int ret;
527 
528 	if (features == (u64)-1 ||
529 	    (features & CEPH_FEATURE_REPLY_CREATE_INODE)) {
530 		if (*p == end) {
531 			/* Malformed reply? */
532 			info->has_create_ino = false;
533 		} else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) {
534 			info->has_create_ino = true;
535 			/* struct_v, struct_compat, and len */
536 			ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad);
537 			ceph_decode_64_safe(p, end, info->ino, bad);
538 			ret = ceph_parse_deleg_inos(p, end, s);
539 			if (ret)
540 				return ret;
541 		} else {
542 			/* legacy */
543 			ceph_decode_64_safe(p, end, info->ino, bad);
544 			info->has_create_ino = true;
545 		}
546 	} else {
547 		if (*p != end)
548 			goto bad;
549 	}
550 
551 	/* Skip over any unrecognized fields */
552 	*p = end;
553 	return 0;
554 bad:
555 	return -EIO;
556 }
557 
558 static int parse_reply_info_getvxattr(void **p, void *end,
559 				      struct ceph_mds_reply_info_parsed *info,
560 				      u64 features)
561 {
562 	u32 value_len;
563 
564 	ceph_decode_skip_8(p, end, bad); /* skip current version: 1 */
565 	ceph_decode_skip_8(p, end, bad); /* skip first version: 1 */
566 	ceph_decode_skip_32(p, end, bad); /* skip payload length */
567 
568 	ceph_decode_32_safe(p, end, value_len, bad);
569 
570 	if (value_len == end - *p) {
571 	  info->xattr_info.xattr_value = *p;
572 	  info->xattr_info.xattr_value_len = value_len;
573 	  *p = end;
574 	  return value_len;
575 	}
576 bad:
577 	return -EIO;
578 }
579 
580 /*
581  * parse extra results
582  */
583 static int parse_reply_info_extra(void **p, void *end,
584 				  struct ceph_mds_reply_info_parsed *info,
585 				  u64 features, struct ceph_mds_session *s)
586 {
587 	u32 op = le32_to_cpu(info->head->op);
588 
589 	if (op == CEPH_MDS_OP_GETFILELOCK)
590 		return parse_reply_info_filelock(p, end, info, features);
591 	else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP)
592 		return parse_reply_info_readdir(p, end, info, features);
593 	else if (op == CEPH_MDS_OP_CREATE)
594 		return parse_reply_info_create(p, end, info, features, s);
595 	else if (op == CEPH_MDS_OP_GETVXATTR)
596 		return parse_reply_info_getvxattr(p, end, info, features);
597 	else
598 		return -EIO;
599 }
600 
601 /*
602  * parse entire mds reply
603  */
604 static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg,
605 			    struct ceph_mds_reply_info_parsed *info,
606 			    u64 features)
607 {
608 	void *p, *end;
609 	u32 len;
610 	int err;
611 
612 	info->head = msg->front.iov_base;
613 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
614 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
615 
616 	/* trace */
617 	ceph_decode_32_safe(&p, end, len, bad);
618 	if (len > 0) {
619 		ceph_decode_need(&p, end, len, bad);
620 		err = parse_reply_info_trace(&p, p+len, info, features);
621 		if (err < 0)
622 			goto out_bad;
623 	}
624 
625 	/* extra */
626 	ceph_decode_32_safe(&p, end, len, bad);
627 	if (len > 0) {
628 		ceph_decode_need(&p, end, len, bad);
629 		err = parse_reply_info_extra(&p, p+len, info, features, s);
630 		if (err < 0)
631 			goto out_bad;
632 	}
633 
634 	/* snap blob */
635 	ceph_decode_32_safe(&p, end, len, bad);
636 	info->snapblob_len = len;
637 	info->snapblob = p;
638 	p += len;
639 
640 	if (p != end)
641 		goto bad;
642 	return 0;
643 
644 bad:
645 	err = -EIO;
646 out_bad:
647 	pr_err("mds parse_reply err %d\n", err);
648 	return err;
649 }
650 
651 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
652 {
653 	if (!info->dir_entries)
654 		return;
655 	free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
656 }
657 
658 /*
659  * In async unlink case the kclient won't wait for the first reply
660  * from MDS and just drop all the links and unhash the dentry and then
661  * succeeds immediately.
662  *
663  * For any new create/link/rename,etc requests followed by using the
664  * same file names we must wait for the first reply of the inflight
665  * unlink request, or the MDS possibly will fail these following
666  * requests with -EEXIST if the inflight async unlink request was
667  * delayed for some reasons.
668  *
669  * And the worst case is that for the none async openc request it will
670  * successfully open the file if the CDentry hasn't been unlinked yet,
671  * but later the previous delayed async unlink request will remove the
672  * CDenty. That means the just created file is possiblly deleted later
673  * by accident.
674  *
675  * We need to wait for the inflight async unlink requests to finish
676  * when creating new files/directories by using the same file names.
677  */
678 int ceph_wait_on_conflict_unlink(struct dentry *dentry)
679 {
680 	struct ceph_fs_client *fsc = ceph_sb_to_client(dentry->d_sb);
681 	struct dentry *pdentry = dentry->d_parent;
682 	struct dentry *udentry, *found = NULL;
683 	struct ceph_dentry_info *di;
684 	struct qstr dname;
685 	u32 hash = dentry->d_name.hash;
686 	int err;
687 
688 	dname.name = dentry->d_name.name;
689 	dname.len = dentry->d_name.len;
690 
691 	rcu_read_lock();
692 	hash_for_each_possible_rcu(fsc->async_unlink_conflict, di,
693 				   hnode, hash) {
694 		udentry = di->dentry;
695 
696 		spin_lock(&udentry->d_lock);
697 		if (udentry->d_name.hash != hash)
698 			goto next;
699 		if (unlikely(udentry->d_parent != pdentry))
700 			goto next;
701 		if (!hash_hashed(&di->hnode))
702 			goto next;
703 
704 		if (!test_bit(CEPH_DENTRY_ASYNC_UNLINK_BIT, &di->flags))
705 			pr_warn("%s dentry %p:%pd async unlink bit is not set\n",
706 				__func__, dentry, dentry);
707 
708 		if (!d_same_name(udentry, pdentry, &dname))
709 			goto next;
710 
711 		spin_unlock(&udentry->d_lock);
712 		found = dget(udentry);
713 		break;
714 next:
715 		spin_unlock(&udentry->d_lock);
716 	}
717 	rcu_read_unlock();
718 
719 	if (likely(!found))
720 		return 0;
721 
722 	dout("%s dentry %p:%pd conflict with old %p:%pd\n", __func__,
723 	     dentry, dentry, found, found);
724 
725 	err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_UNLINK_BIT,
726 			  TASK_KILLABLE);
727 	dput(found);
728 	return err;
729 }
730 
731 
732 /*
733  * sessions
734  */
735 const char *ceph_session_state_name(int s)
736 {
737 	switch (s) {
738 	case CEPH_MDS_SESSION_NEW: return "new";
739 	case CEPH_MDS_SESSION_OPENING: return "opening";
740 	case CEPH_MDS_SESSION_OPEN: return "open";
741 	case CEPH_MDS_SESSION_HUNG: return "hung";
742 	case CEPH_MDS_SESSION_CLOSING: return "closing";
743 	case CEPH_MDS_SESSION_CLOSED: return "closed";
744 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
745 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
746 	case CEPH_MDS_SESSION_REJECTED: return "rejected";
747 	default: return "???";
748 	}
749 }
750 
751 struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s)
752 {
753 	if (refcount_inc_not_zero(&s->s_ref))
754 		return s;
755 	return NULL;
756 }
757 
758 void ceph_put_mds_session(struct ceph_mds_session *s)
759 {
760 	if (IS_ERR_OR_NULL(s))
761 		return;
762 
763 	if (refcount_dec_and_test(&s->s_ref)) {
764 		if (s->s_auth.authorizer)
765 			ceph_auth_destroy_authorizer(s->s_auth.authorizer);
766 		WARN_ON(mutex_is_locked(&s->s_mutex));
767 		xa_destroy(&s->s_delegated_inos);
768 		kfree(s);
769 	}
770 }
771 
772 /*
773  * called under mdsc->mutex
774  */
775 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
776 						   int mds)
777 {
778 	if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
779 		return NULL;
780 	return ceph_get_mds_session(mdsc->sessions[mds]);
781 }
782 
783 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
784 {
785 	if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
786 		return false;
787 	else
788 		return true;
789 }
790 
791 static int __verify_registered_session(struct ceph_mds_client *mdsc,
792 				       struct ceph_mds_session *s)
793 {
794 	if (s->s_mds >= mdsc->max_sessions ||
795 	    mdsc->sessions[s->s_mds] != s)
796 		return -ENOENT;
797 	return 0;
798 }
799 
800 /*
801  * create+register a new session for given mds.
802  * called under mdsc->mutex.
803  */
804 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
805 						 int mds)
806 {
807 	struct ceph_mds_session *s;
808 
809 	if (mds >= mdsc->mdsmap->possible_max_rank)
810 		return ERR_PTR(-EINVAL);
811 
812 	s = kzalloc(sizeof(*s), GFP_NOFS);
813 	if (!s)
814 		return ERR_PTR(-ENOMEM);
815 
816 	if (mds >= mdsc->max_sessions) {
817 		int newmax = 1 << get_count_order(mds + 1);
818 		struct ceph_mds_session **sa;
819 
820 		dout("%s: realloc to %d\n", __func__, newmax);
821 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
822 		if (!sa)
823 			goto fail_realloc;
824 		if (mdsc->sessions) {
825 			memcpy(sa, mdsc->sessions,
826 			       mdsc->max_sessions * sizeof(void *));
827 			kfree(mdsc->sessions);
828 		}
829 		mdsc->sessions = sa;
830 		mdsc->max_sessions = newmax;
831 	}
832 
833 	dout("%s: mds%d\n", __func__, mds);
834 	s->s_mdsc = mdsc;
835 	s->s_mds = mds;
836 	s->s_state = CEPH_MDS_SESSION_NEW;
837 	mutex_init(&s->s_mutex);
838 
839 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
840 
841 	atomic_set(&s->s_cap_gen, 1);
842 	s->s_cap_ttl = jiffies - 1;
843 
844 	spin_lock_init(&s->s_cap_lock);
845 	INIT_LIST_HEAD(&s->s_caps);
846 	refcount_set(&s->s_ref, 1);
847 	INIT_LIST_HEAD(&s->s_waiting);
848 	INIT_LIST_HEAD(&s->s_unsafe);
849 	xa_init(&s->s_delegated_inos);
850 	INIT_LIST_HEAD(&s->s_cap_releases);
851 	INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work);
852 
853 	INIT_LIST_HEAD(&s->s_cap_dirty);
854 	INIT_LIST_HEAD(&s->s_cap_flushing);
855 
856 	mdsc->sessions[mds] = s;
857 	atomic_inc(&mdsc->num_sessions);
858 	refcount_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
859 
860 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
861 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
862 
863 	return s;
864 
865 fail_realloc:
866 	kfree(s);
867 	return ERR_PTR(-ENOMEM);
868 }
869 
870 /*
871  * called under mdsc->mutex
872  */
873 static void __unregister_session(struct ceph_mds_client *mdsc,
874 			       struct ceph_mds_session *s)
875 {
876 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
877 	BUG_ON(mdsc->sessions[s->s_mds] != s);
878 	mdsc->sessions[s->s_mds] = NULL;
879 	ceph_con_close(&s->s_con);
880 	ceph_put_mds_session(s);
881 	atomic_dec(&mdsc->num_sessions);
882 }
883 
884 /*
885  * drop session refs in request.
886  *
887  * should be last request ref, or hold mdsc->mutex
888  */
889 static void put_request_session(struct ceph_mds_request *req)
890 {
891 	if (req->r_session) {
892 		ceph_put_mds_session(req->r_session);
893 		req->r_session = NULL;
894 	}
895 }
896 
897 void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc,
898 				void (*cb)(struct ceph_mds_session *),
899 				bool check_state)
900 {
901 	int mds;
902 
903 	mutex_lock(&mdsc->mutex);
904 	for (mds = 0; mds < mdsc->max_sessions; ++mds) {
905 		struct ceph_mds_session *s;
906 
907 		s = __ceph_lookup_mds_session(mdsc, mds);
908 		if (!s)
909 			continue;
910 
911 		if (check_state && !check_session_state(s)) {
912 			ceph_put_mds_session(s);
913 			continue;
914 		}
915 
916 		mutex_unlock(&mdsc->mutex);
917 		cb(s);
918 		ceph_put_mds_session(s);
919 		mutex_lock(&mdsc->mutex);
920 	}
921 	mutex_unlock(&mdsc->mutex);
922 }
923 
924 void ceph_mdsc_release_request(struct kref *kref)
925 {
926 	struct ceph_mds_request *req = container_of(kref,
927 						    struct ceph_mds_request,
928 						    r_kref);
929 	ceph_mdsc_release_dir_caps_no_check(req);
930 	destroy_reply_info(&req->r_reply_info);
931 	if (req->r_request)
932 		ceph_msg_put(req->r_request);
933 	if (req->r_reply)
934 		ceph_msg_put(req->r_reply);
935 	if (req->r_inode) {
936 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
937 		iput(req->r_inode);
938 	}
939 	if (req->r_parent) {
940 		ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
941 		iput(req->r_parent);
942 	}
943 	iput(req->r_target_inode);
944 	if (req->r_dentry)
945 		dput(req->r_dentry);
946 	if (req->r_old_dentry)
947 		dput(req->r_old_dentry);
948 	if (req->r_old_dentry_dir) {
949 		/*
950 		 * track (and drop pins for) r_old_dentry_dir
951 		 * separately, since r_old_dentry's d_parent may have
952 		 * changed between the dir mutex being dropped and
953 		 * this request being freed.
954 		 */
955 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
956 				  CEPH_CAP_PIN);
957 		iput(req->r_old_dentry_dir);
958 	}
959 	kfree(req->r_path1);
960 	kfree(req->r_path2);
961 	put_cred(req->r_cred);
962 	if (req->r_pagelist)
963 		ceph_pagelist_release(req->r_pagelist);
964 	put_request_session(req);
965 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
966 	WARN_ON_ONCE(!list_empty(&req->r_wait));
967 	kmem_cache_free(ceph_mds_request_cachep, req);
968 }
969 
970 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
971 
972 /*
973  * lookup session, bump ref if found.
974  *
975  * called under mdsc->mutex.
976  */
977 static struct ceph_mds_request *
978 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
979 {
980 	struct ceph_mds_request *req;
981 
982 	req = lookup_request(&mdsc->request_tree, tid);
983 	if (req)
984 		ceph_mdsc_get_request(req);
985 
986 	return req;
987 }
988 
989 /*
990  * Register an in-flight request, and assign a tid.  Link to directory
991  * are modifying (if any).
992  *
993  * Called under mdsc->mutex.
994  */
995 static void __register_request(struct ceph_mds_client *mdsc,
996 			       struct ceph_mds_request *req,
997 			       struct inode *dir)
998 {
999 	int ret = 0;
1000 
1001 	req->r_tid = ++mdsc->last_tid;
1002 	if (req->r_num_caps) {
1003 		ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation,
1004 					req->r_num_caps);
1005 		if (ret < 0) {
1006 			pr_err("__register_request %p "
1007 			       "failed to reserve caps: %d\n", req, ret);
1008 			/* set req->r_err to fail early from __do_request */
1009 			req->r_err = ret;
1010 			return;
1011 		}
1012 	}
1013 	dout("__register_request %p tid %lld\n", req, req->r_tid);
1014 	ceph_mdsc_get_request(req);
1015 	insert_request(&mdsc->request_tree, req);
1016 
1017 	req->r_cred = get_current_cred();
1018 
1019 	if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
1020 		mdsc->oldest_tid = req->r_tid;
1021 
1022 	if (dir) {
1023 		struct ceph_inode_info *ci = ceph_inode(dir);
1024 
1025 		ihold(dir);
1026 		req->r_unsafe_dir = dir;
1027 		spin_lock(&ci->i_unsafe_lock);
1028 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
1029 		spin_unlock(&ci->i_unsafe_lock);
1030 	}
1031 }
1032 
1033 static void __unregister_request(struct ceph_mds_client *mdsc,
1034 				 struct ceph_mds_request *req)
1035 {
1036 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
1037 
1038 	/* Never leave an unregistered request on an unsafe list! */
1039 	list_del_init(&req->r_unsafe_item);
1040 
1041 	if (req->r_tid == mdsc->oldest_tid) {
1042 		struct rb_node *p = rb_next(&req->r_node);
1043 		mdsc->oldest_tid = 0;
1044 		while (p) {
1045 			struct ceph_mds_request *next_req =
1046 				rb_entry(p, struct ceph_mds_request, r_node);
1047 			if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
1048 				mdsc->oldest_tid = next_req->r_tid;
1049 				break;
1050 			}
1051 			p = rb_next(p);
1052 		}
1053 	}
1054 
1055 	erase_request(&mdsc->request_tree, req);
1056 
1057 	if (req->r_unsafe_dir) {
1058 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
1059 		spin_lock(&ci->i_unsafe_lock);
1060 		list_del_init(&req->r_unsafe_dir_item);
1061 		spin_unlock(&ci->i_unsafe_lock);
1062 	}
1063 	if (req->r_target_inode &&
1064 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
1065 		struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
1066 		spin_lock(&ci->i_unsafe_lock);
1067 		list_del_init(&req->r_unsafe_target_item);
1068 		spin_unlock(&ci->i_unsafe_lock);
1069 	}
1070 
1071 	if (req->r_unsafe_dir) {
1072 		iput(req->r_unsafe_dir);
1073 		req->r_unsafe_dir = NULL;
1074 	}
1075 
1076 	complete_all(&req->r_safe_completion);
1077 
1078 	ceph_mdsc_put_request(req);
1079 }
1080 
1081 /*
1082  * Walk back up the dentry tree until we hit a dentry representing a
1083  * non-snapshot inode. We do this using the rcu_read_lock (which must be held
1084  * when calling this) to ensure that the objects won't disappear while we're
1085  * working with them. Once we hit a candidate dentry, we attempt to take a
1086  * reference to it, and return that as the result.
1087  */
1088 static struct inode *get_nonsnap_parent(struct dentry *dentry)
1089 {
1090 	struct inode *inode = NULL;
1091 
1092 	while (dentry && !IS_ROOT(dentry)) {
1093 		inode = d_inode_rcu(dentry);
1094 		if (!inode || ceph_snap(inode) == CEPH_NOSNAP)
1095 			break;
1096 		dentry = dentry->d_parent;
1097 	}
1098 	if (inode)
1099 		inode = igrab(inode);
1100 	return inode;
1101 }
1102 
1103 /*
1104  * Choose mds to send request to next.  If there is a hint set in the
1105  * request (e.g., due to a prior forward hint from the mds), use that.
1106  * Otherwise, consult frag tree and/or caps to identify the
1107  * appropriate mds.  If all else fails, choose randomly.
1108  *
1109  * Called under mdsc->mutex.
1110  */
1111 static int __choose_mds(struct ceph_mds_client *mdsc,
1112 			struct ceph_mds_request *req,
1113 			bool *random)
1114 {
1115 	struct inode *inode;
1116 	struct ceph_inode_info *ci;
1117 	struct ceph_cap *cap;
1118 	int mode = req->r_direct_mode;
1119 	int mds = -1;
1120 	u32 hash = req->r_direct_hash;
1121 	bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags);
1122 
1123 	if (random)
1124 		*random = false;
1125 
1126 	/*
1127 	 * is there a specific mds we should try?  ignore hint if we have
1128 	 * no session and the mds is not up (active or recovering).
1129 	 */
1130 	if (req->r_resend_mds >= 0 &&
1131 	    (__have_session(mdsc, req->r_resend_mds) ||
1132 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
1133 		dout("%s using resend_mds mds%d\n", __func__,
1134 		     req->r_resend_mds);
1135 		return req->r_resend_mds;
1136 	}
1137 
1138 	if (mode == USE_RANDOM_MDS)
1139 		goto random;
1140 
1141 	inode = NULL;
1142 	if (req->r_inode) {
1143 		if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) {
1144 			inode = req->r_inode;
1145 			ihold(inode);
1146 		} else {
1147 			/* req->r_dentry is non-null for LSSNAP request */
1148 			rcu_read_lock();
1149 			inode = get_nonsnap_parent(req->r_dentry);
1150 			rcu_read_unlock();
1151 			dout("%s using snapdir's parent %p\n", __func__, inode);
1152 		}
1153 	} else if (req->r_dentry) {
1154 		/* ignore race with rename; old or new d_parent is okay */
1155 		struct dentry *parent;
1156 		struct inode *dir;
1157 
1158 		rcu_read_lock();
1159 		parent = READ_ONCE(req->r_dentry->d_parent);
1160 		dir = req->r_parent ? : d_inode_rcu(parent);
1161 
1162 		if (!dir || dir->i_sb != mdsc->fsc->sb) {
1163 			/*  not this fs or parent went negative */
1164 			inode = d_inode(req->r_dentry);
1165 			if (inode)
1166 				ihold(inode);
1167 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
1168 			/* direct snapped/virtual snapdir requests
1169 			 * based on parent dir inode */
1170 			inode = get_nonsnap_parent(parent);
1171 			dout("%s using nonsnap parent %p\n", __func__, inode);
1172 		} else {
1173 			/* dentry target */
1174 			inode = d_inode(req->r_dentry);
1175 			if (!inode || mode == USE_AUTH_MDS) {
1176 				/* dir + name */
1177 				inode = igrab(dir);
1178 				hash = ceph_dentry_hash(dir, req->r_dentry);
1179 				is_hash = true;
1180 			} else {
1181 				ihold(inode);
1182 			}
1183 		}
1184 		rcu_read_unlock();
1185 	}
1186 
1187 	dout("%s %p is_hash=%d (0x%x) mode %d\n", __func__, inode, (int)is_hash,
1188 	     hash, mode);
1189 	if (!inode)
1190 		goto random;
1191 	ci = ceph_inode(inode);
1192 
1193 	if (is_hash && S_ISDIR(inode->i_mode)) {
1194 		struct ceph_inode_frag frag;
1195 		int found;
1196 
1197 		ceph_choose_frag(ci, hash, &frag, &found);
1198 		if (found) {
1199 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
1200 				u8 r;
1201 
1202 				/* choose a random replica */
1203 				get_random_bytes(&r, 1);
1204 				r %= frag.ndist;
1205 				mds = frag.dist[r];
1206 				dout("%s %p %llx.%llx frag %u mds%d (%d/%d)\n",
1207 				     __func__, inode, ceph_vinop(inode),
1208 				     frag.frag, mds, (int)r, frag.ndist);
1209 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
1210 				    CEPH_MDS_STATE_ACTIVE &&
1211 				    !ceph_mdsmap_is_laggy(mdsc->mdsmap, mds))
1212 					goto out;
1213 			}
1214 
1215 			/* since this file/dir wasn't known to be
1216 			 * replicated, then we want to look for the
1217 			 * authoritative mds. */
1218 			if (frag.mds >= 0) {
1219 				/* choose auth mds */
1220 				mds = frag.mds;
1221 				dout("%s %p %llx.%llx frag %u mds%d (auth)\n",
1222 				     __func__, inode, ceph_vinop(inode),
1223 				     frag.frag, mds);
1224 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
1225 				    CEPH_MDS_STATE_ACTIVE) {
1226 					if (!ceph_mdsmap_is_laggy(mdsc->mdsmap,
1227 								  mds))
1228 						goto out;
1229 				}
1230 			}
1231 			mode = USE_AUTH_MDS;
1232 		}
1233 	}
1234 
1235 	spin_lock(&ci->i_ceph_lock);
1236 	cap = NULL;
1237 	if (mode == USE_AUTH_MDS)
1238 		cap = ci->i_auth_cap;
1239 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
1240 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
1241 	if (!cap) {
1242 		spin_unlock(&ci->i_ceph_lock);
1243 		iput(inode);
1244 		goto random;
1245 	}
1246 	mds = cap->session->s_mds;
1247 	dout("%s %p %llx.%llx mds%d (%scap %p)\n", __func__,
1248 	     inode, ceph_vinop(inode), mds,
1249 	     cap == ci->i_auth_cap ? "auth " : "", cap);
1250 	spin_unlock(&ci->i_ceph_lock);
1251 out:
1252 	iput(inode);
1253 	return mds;
1254 
1255 random:
1256 	if (random)
1257 		*random = true;
1258 
1259 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
1260 	dout("%s chose random mds%d\n", __func__, mds);
1261 	return mds;
1262 }
1263 
1264 
1265 /*
1266  * session messages
1267  */
1268 struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq)
1269 {
1270 	struct ceph_msg *msg;
1271 	struct ceph_mds_session_head *h;
1272 
1273 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
1274 			   false);
1275 	if (!msg) {
1276 		pr_err("ENOMEM creating session %s msg\n",
1277 		       ceph_session_op_name(op));
1278 		return NULL;
1279 	}
1280 	h = msg->front.iov_base;
1281 	h->op = cpu_to_le32(op);
1282 	h->seq = cpu_to_le64(seq);
1283 
1284 	return msg;
1285 }
1286 
1287 static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED;
1288 #define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8)
1289 static int encode_supported_features(void **p, void *end)
1290 {
1291 	static const size_t count = ARRAY_SIZE(feature_bits);
1292 
1293 	if (count > 0) {
1294 		size_t i;
1295 		size_t size = FEATURE_BYTES(count);
1296 		unsigned long bit;
1297 
1298 		if (WARN_ON_ONCE(*p + 4 + size > end))
1299 			return -ERANGE;
1300 
1301 		ceph_encode_32(p, size);
1302 		memset(*p, 0, size);
1303 		for (i = 0; i < count; i++) {
1304 			bit = feature_bits[i];
1305 			((unsigned char *)(*p))[bit / 8] |= BIT(bit % 8);
1306 		}
1307 		*p += size;
1308 	} else {
1309 		if (WARN_ON_ONCE(*p + 4 > end))
1310 			return -ERANGE;
1311 
1312 		ceph_encode_32(p, 0);
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED;
1319 #define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8)
1320 static int encode_metric_spec(void **p, void *end)
1321 {
1322 	static const size_t count = ARRAY_SIZE(metric_bits);
1323 
1324 	/* header */
1325 	if (WARN_ON_ONCE(*p + 2 > end))
1326 		return -ERANGE;
1327 
1328 	ceph_encode_8(p, 1); /* version */
1329 	ceph_encode_8(p, 1); /* compat */
1330 
1331 	if (count > 0) {
1332 		size_t i;
1333 		size_t size = METRIC_BYTES(count);
1334 
1335 		if (WARN_ON_ONCE(*p + 4 + 4 + size > end))
1336 			return -ERANGE;
1337 
1338 		/* metric spec info length */
1339 		ceph_encode_32(p, 4 + size);
1340 
1341 		/* metric spec */
1342 		ceph_encode_32(p, size);
1343 		memset(*p, 0, size);
1344 		for (i = 0; i < count; i++)
1345 			((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8);
1346 		*p += size;
1347 	} else {
1348 		if (WARN_ON_ONCE(*p + 4 + 4 > end))
1349 			return -ERANGE;
1350 
1351 		/* metric spec info length */
1352 		ceph_encode_32(p, 4);
1353 		/* metric spec */
1354 		ceph_encode_32(p, 0);
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 /*
1361  * session message, specialization for CEPH_SESSION_REQUEST_OPEN
1362  * to include additional client metadata fields.
1363  */
1364 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
1365 {
1366 	struct ceph_msg *msg;
1367 	struct ceph_mds_session_head *h;
1368 	int i;
1369 	int extra_bytes = 0;
1370 	int metadata_key_count = 0;
1371 	struct ceph_options *opt = mdsc->fsc->client->options;
1372 	struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
1373 	size_t size, count;
1374 	void *p, *end;
1375 	int ret;
1376 
1377 	const char* metadata[][2] = {
1378 		{"hostname", mdsc->nodename},
1379 		{"kernel_version", init_utsname()->release},
1380 		{"entity_id", opt->name ? : ""},
1381 		{"root", fsopt->server_path ? : "/"},
1382 		{NULL, NULL}
1383 	};
1384 
1385 	/* Calculate serialized length of metadata */
1386 	extra_bytes = 4;  /* map length */
1387 	for (i = 0; metadata[i][0]; ++i) {
1388 		extra_bytes += 8 + strlen(metadata[i][0]) +
1389 			strlen(metadata[i][1]);
1390 		metadata_key_count++;
1391 	}
1392 
1393 	/* supported feature */
1394 	size = 0;
1395 	count = ARRAY_SIZE(feature_bits);
1396 	if (count > 0)
1397 		size = FEATURE_BYTES(count);
1398 	extra_bytes += 4 + size;
1399 
1400 	/* metric spec */
1401 	size = 0;
1402 	count = ARRAY_SIZE(metric_bits);
1403 	if (count > 0)
1404 		size = METRIC_BYTES(count);
1405 	extra_bytes += 2 + 4 + 4 + size;
1406 
1407 	/* Allocate the message */
1408 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes,
1409 			   GFP_NOFS, false);
1410 	if (!msg) {
1411 		pr_err("ENOMEM creating session open msg\n");
1412 		return ERR_PTR(-ENOMEM);
1413 	}
1414 	p = msg->front.iov_base;
1415 	end = p + msg->front.iov_len;
1416 
1417 	h = p;
1418 	h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
1419 	h->seq = cpu_to_le64(seq);
1420 
1421 	/*
1422 	 * Serialize client metadata into waiting buffer space, using
1423 	 * the format that userspace expects for map<string, string>
1424 	 *
1425 	 * ClientSession messages with metadata are v4
1426 	 */
1427 	msg->hdr.version = cpu_to_le16(4);
1428 	msg->hdr.compat_version = cpu_to_le16(1);
1429 
1430 	/* The write pointer, following the session_head structure */
1431 	p += sizeof(*h);
1432 
1433 	/* Number of entries in the map */
1434 	ceph_encode_32(&p, metadata_key_count);
1435 
1436 	/* Two length-prefixed strings for each entry in the map */
1437 	for (i = 0; metadata[i][0]; ++i) {
1438 		size_t const key_len = strlen(metadata[i][0]);
1439 		size_t const val_len = strlen(metadata[i][1]);
1440 
1441 		ceph_encode_32(&p, key_len);
1442 		memcpy(p, metadata[i][0], key_len);
1443 		p += key_len;
1444 		ceph_encode_32(&p, val_len);
1445 		memcpy(p, metadata[i][1], val_len);
1446 		p += val_len;
1447 	}
1448 
1449 	ret = encode_supported_features(&p, end);
1450 	if (ret) {
1451 		pr_err("encode_supported_features failed!\n");
1452 		ceph_msg_put(msg);
1453 		return ERR_PTR(ret);
1454 	}
1455 
1456 	ret = encode_metric_spec(&p, end);
1457 	if (ret) {
1458 		pr_err("encode_metric_spec failed!\n");
1459 		ceph_msg_put(msg);
1460 		return ERR_PTR(ret);
1461 	}
1462 
1463 	msg->front.iov_len = p - msg->front.iov_base;
1464 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1465 
1466 	return msg;
1467 }
1468 
1469 /*
1470  * send session open request.
1471  *
1472  * called under mdsc->mutex
1473  */
1474 static int __open_session(struct ceph_mds_client *mdsc,
1475 			  struct ceph_mds_session *session)
1476 {
1477 	struct ceph_msg *msg;
1478 	int mstate;
1479 	int mds = session->s_mds;
1480 
1481 	/* wait for mds to go active? */
1482 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
1483 	dout("open_session to mds%d (%s)\n", mds,
1484 	     ceph_mds_state_name(mstate));
1485 	session->s_state = CEPH_MDS_SESSION_OPENING;
1486 	session->s_renew_requested = jiffies;
1487 
1488 	/* send connect message */
1489 	msg = create_session_open_msg(mdsc, session->s_seq);
1490 	if (IS_ERR(msg))
1491 		return PTR_ERR(msg);
1492 	ceph_con_send(&session->s_con, msg);
1493 	return 0;
1494 }
1495 
1496 /*
1497  * open sessions for any export targets for the given mds
1498  *
1499  * called under mdsc->mutex
1500  */
1501 static struct ceph_mds_session *
1502 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
1503 {
1504 	struct ceph_mds_session *session;
1505 	int ret;
1506 
1507 	session = __ceph_lookup_mds_session(mdsc, target);
1508 	if (!session) {
1509 		session = register_session(mdsc, target);
1510 		if (IS_ERR(session))
1511 			return session;
1512 	}
1513 	if (session->s_state == CEPH_MDS_SESSION_NEW ||
1514 	    session->s_state == CEPH_MDS_SESSION_CLOSING) {
1515 		ret = __open_session(mdsc, session);
1516 		if (ret)
1517 			return ERR_PTR(ret);
1518 	}
1519 
1520 	return session;
1521 }
1522 
1523 struct ceph_mds_session *
1524 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
1525 {
1526 	struct ceph_mds_session *session;
1527 
1528 	dout("open_export_target_session to mds%d\n", target);
1529 
1530 	mutex_lock(&mdsc->mutex);
1531 	session = __open_export_target_session(mdsc, target);
1532 	mutex_unlock(&mdsc->mutex);
1533 
1534 	return session;
1535 }
1536 
1537 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
1538 					  struct ceph_mds_session *session)
1539 {
1540 	struct ceph_mds_info *mi;
1541 	struct ceph_mds_session *ts;
1542 	int i, mds = session->s_mds;
1543 
1544 	if (mds >= mdsc->mdsmap->possible_max_rank)
1545 		return;
1546 
1547 	mi = &mdsc->mdsmap->m_info[mds];
1548 	dout("open_export_target_sessions for mds%d (%d targets)\n",
1549 	     session->s_mds, mi->num_export_targets);
1550 
1551 	for (i = 0; i < mi->num_export_targets; i++) {
1552 		ts = __open_export_target_session(mdsc, mi->export_targets[i]);
1553 		ceph_put_mds_session(ts);
1554 	}
1555 }
1556 
1557 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
1558 					   struct ceph_mds_session *session)
1559 {
1560 	mutex_lock(&mdsc->mutex);
1561 	__open_export_target_sessions(mdsc, session);
1562 	mutex_unlock(&mdsc->mutex);
1563 }
1564 
1565 /*
1566  * session caps
1567  */
1568 
1569 static void detach_cap_releases(struct ceph_mds_session *session,
1570 				struct list_head *target)
1571 {
1572 	lockdep_assert_held(&session->s_cap_lock);
1573 
1574 	list_splice_init(&session->s_cap_releases, target);
1575 	session->s_num_cap_releases = 0;
1576 	dout("dispose_cap_releases mds%d\n", session->s_mds);
1577 }
1578 
1579 static void dispose_cap_releases(struct ceph_mds_client *mdsc,
1580 				 struct list_head *dispose)
1581 {
1582 	while (!list_empty(dispose)) {
1583 		struct ceph_cap *cap;
1584 		/* zero out the in-progress message */
1585 		cap = list_first_entry(dispose, struct ceph_cap, session_caps);
1586 		list_del(&cap->session_caps);
1587 		ceph_put_cap(mdsc, cap);
1588 	}
1589 }
1590 
1591 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1592 				     struct ceph_mds_session *session)
1593 {
1594 	struct ceph_mds_request *req;
1595 	struct rb_node *p;
1596 
1597 	dout("cleanup_session_requests mds%d\n", session->s_mds);
1598 	mutex_lock(&mdsc->mutex);
1599 	while (!list_empty(&session->s_unsafe)) {
1600 		req = list_first_entry(&session->s_unsafe,
1601 				       struct ceph_mds_request, r_unsafe_item);
1602 		pr_warn_ratelimited(" dropping unsafe request %llu\n",
1603 				    req->r_tid);
1604 		if (req->r_target_inode)
1605 			mapping_set_error(req->r_target_inode->i_mapping, -EIO);
1606 		if (req->r_unsafe_dir)
1607 			mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO);
1608 		__unregister_request(mdsc, req);
1609 	}
1610 	/* zero r_attempts, so kick_requests() will re-send requests */
1611 	p = rb_first(&mdsc->request_tree);
1612 	while (p) {
1613 		req = rb_entry(p, struct ceph_mds_request, r_node);
1614 		p = rb_next(p);
1615 		if (req->r_session &&
1616 		    req->r_session->s_mds == session->s_mds)
1617 			req->r_attempts = 0;
1618 	}
1619 	mutex_unlock(&mdsc->mutex);
1620 }
1621 
1622 /*
1623  * Helper to safely iterate over all caps associated with a session, with
1624  * special care taken to handle a racing __ceph_remove_cap().
1625  *
1626  * Caller must hold session s_mutex.
1627  */
1628 int ceph_iterate_session_caps(struct ceph_mds_session *session,
1629 			      int (*cb)(struct inode *, struct ceph_cap *,
1630 					void *), void *arg)
1631 {
1632 	struct list_head *p;
1633 	struct ceph_cap *cap;
1634 	struct inode *inode, *last_inode = NULL;
1635 	struct ceph_cap *old_cap = NULL;
1636 	int ret;
1637 
1638 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1639 	spin_lock(&session->s_cap_lock);
1640 	p = session->s_caps.next;
1641 	while (p != &session->s_caps) {
1642 		cap = list_entry(p, struct ceph_cap, session_caps);
1643 		inode = igrab(&cap->ci->netfs.inode);
1644 		if (!inode) {
1645 			p = p->next;
1646 			continue;
1647 		}
1648 		session->s_cap_iterator = cap;
1649 		spin_unlock(&session->s_cap_lock);
1650 
1651 		if (last_inode) {
1652 			iput(last_inode);
1653 			last_inode = NULL;
1654 		}
1655 		if (old_cap) {
1656 			ceph_put_cap(session->s_mdsc, old_cap);
1657 			old_cap = NULL;
1658 		}
1659 
1660 		ret = cb(inode, cap, arg);
1661 		last_inode = inode;
1662 
1663 		spin_lock(&session->s_cap_lock);
1664 		p = p->next;
1665 		if (!cap->ci) {
1666 			dout("iterate_session_caps  finishing cap %p removal\n",
1667 			     cap);
1668 			BUG_ON(cap->session != session);
1669 			cap->session = NULL;
1670 			list_del_init(&cap->session_caps);
1671 			session->s_nr_caps--;
1672 			atomic64_dec(&session->s_mdsc->metric.total_caps);
1673 			if (cap->queue_release)
1674 				__ceph_queue_cap_release(session, cap);
1675 			else
1676 				old_cap = cap;  /* put_cap it w/o locks held */
1677 		}
1678 		if (ret < 0)
1679 			goto out;
1680 	}
1681 	ret = 0;
1682 out:
1683 	session->s_cap_iterator = NULL;
1684 	spin_unlock(&session->s_cap_lock);
1685 
1686 	iput(last_inode);
1687 	if (old_cap)
1688 		ceph_put_cap(session->s_mdsc, old_cap);
1689 
1690 	return ret;
1691 }
1692 
1693 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1694 				  void *arg)
1695 {
1696 	struct ceph_inode_info *ci = ceph_inode(inode);
1697 	bool invalidate = false;
1698 	int iputs;
1699 
1700 	dout("removing cap %p, ci is %p, inode is %p\n",
1701 	     cap, ci, &ci->netfs.inode);
1702 	spin_lock(&ci->i_ceph_lock);
1703 	iputs = ceph_purge_inode_cap(inode, cap, &invalidate);
1704 	spin_unlock(&ci->i_ceph_lock);
1705 
1706 	wake_up_all(&ci->i_cap_wq);
1707 	if (invalidate)
1708 		ceph_queue_invalidate(inode);
1709 	while (iputs--)
1710 		iput(inode);
1711 	return 0;
1712 }
1713 
1714 /*
1715  * caller must hold session s_mutex
1716  */
1717 static void remove_session_caps(struct ceph_mds_session *session)
1718 {
1719 	struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1720 	struct super_block *sb = fsc->sb;
1721 	LIST_HEAD(dispose);
1722 
1723 	dout("remove_session_caps on %p\n", session);
1724 	ceph_iterate_session_caps(session, remove_session_caps_cb, fsc);
1725 
1726 	wake_up_all(&fsc->mdsc->cap_flushing_wq);
1727 
1728 	spin_lock(&session->s_cap_lock);
1729 	if (session->s_nr_caps > 0) {
1730 		struct inode *inode;
1731 		struct ceph_cap *cap, *prev = NULL;
1732 		struct ceph_vino vino;
1733 		/*
1734 		 * iterate_session_caps() skips inodes that are being
1735 		 * deleted, we need to wait until deletions are complete.
1736 		 * __wait_on_freeing_inode() is designed for the job,
1737 		 * but it is not exported, so use lookup inode function
1738 		 * to access it.
1739 		 */
1740 		while (!list_empty(&session->s_caps)) {
1741 			cap = list_entry(session->s_caps.next,
1742 					 struct ceph_cap, session_caps);
1743 			if (cap == prev)
1744 				break;
1745 			prev = cap;
1746 			vino = cap->ci->i_vino;
1747 			spin_unlock(&session->s_cap_lock);
1748 
1749 			inode = ceph_find_inode(sb, vino);
1750 			iput(inode);
1751 
1752 			spin_lock(&session->s_cap_lock);
1753 		}
1754 	}
1755 
1756 	// drop cap expires and unlock s_cap_lock
1757 	detach_cap_releases(session, &dispose);
1758 
1759 	BUG_ON(session->s_nr_caps > 0);
1760 	BUG_ON(!list_empty(&session->s_cap_flushing));
1761 	spin_unlock(&session->s_cap_lock);
1762 	dispose_cap_releases(session->s_mdsc, &dispose);
1763 }
1764 
1765 enum {
1766 	RECONNECT,
1767 	RENEWCAPS,
1768 	FORCE_RO,
1769 };
1770 
1771 /*
1772  * wake up any threads waiting on this session's caps.  if the cap is
1773  * old (didn't get renewed on the client reconnect), remove it now.
1774  *
1775  * caller must hold s_mutex.
1776  */
1777 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1778 			      void *arg)
1779 {
1780 	struct ceph_inode_info *ci = ceph_inode(inode);
1781 	unsigned long ev = (unsigned long)arg;
1782 
1783 	if (ev == RECONNECT) {
1784 		spin_lock(&ci->i_ceph_lock);
1785 		ci->i_wanted_max_size = 0;
1786 		ci->i_requested_max_size = 0;
1787 		spin_unlock(&ci->i_ceph_lock);
1788 	} else if (ev == RENEWCAPS) {
1789 		if (cap->cap_gen < atomic_read(&cap->session->s_cap_gen)) {
1790 			/* mds did not re-issue stale cap */
1791 			spin_lock(&ci->i_ceph_lock);
1792 			cap->issued = cap->implemented = CEPH_CAP_PIN;
1793 			spin_unlock(&ci->i_ceph_lock);
1794 		}
1795 	} else if (ev == FORCE_RO) {
1796 	}
1797 	wake_up_all(&ci->i_cap_wq);
1798 	return 0;
1799 }
1800 
1801 static void wake_up_session_caps(struct ceph_mds_session *session, int ev)
1802 {
1803 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1804 	ceph_iterate_session_caps(session, wake_up_session_cb,
1805 				  (void *)(unsigned long)ev);
1806 }
1807 
1808 /*
1809  * Send periodic message to MDS renewing all currently held caps.  The
1810  * ack will reset the expiration for all caps from this session.
1811  *
1812  * caller holds s_mutex
1813  */
1814 static int send_renew_caps(struct ceph_mds_client *mdsc,
1815 			   struct ceph_mds_session *session)
1816 {
1817 	struct ceph_msg *msg;
1818 	int state;
1819 
1820 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1821 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1822 		pr_info("mds%d caps stale\n", session->s_mds);
1823 	session->s_renew_requested = jiffies;
1824 
1825 	/* do not try to renew caps until a recovering mds has reconnected
1826 	 * with its clients. */
1827 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1828 	if (state < CEPH_MDS_STATE_RECONNECT) {
1829 		dout("send_renew_caps ignoring mds%d (%s)\n",
1830 		     session->s_mds, ceph_mds_state_name(state));
1831 		return 0;
1832 	}
1833 
1834 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1835 		ceph_mds_state_name(state));
1836 	msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1837 				      ++session->s_renew_seq);
1838 	if (!msg)
1839 		return -ENOMEM;
1840 	ceph_con_send(&session->s_con, msg);
1841 	return 0;
1842 }
1843 
1844 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1845 			     struct ceph_mds_session *session, u64 seq)
1846 {
1847 	struct ceph_msg *msg;
1848 
1849 	dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1850 	     session->s_mds, ceph_session_state_name(session->s_state), seq);
1851 	msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1852 	if (!msg)
1853 		return -ENOMEM;
1854 	ceph_con_send(&session->s_con, msg);
1855 	return 0;
1856 }
1857 
1858 
1859 /*
1860  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1861  *
1862  * Called under session->s_mutex
1863  */
1864 static void renewed_caps(struct ceph_mds_client *mdsc,
1865 			 struct ceph_mds_session *session, int is_renew)
1866 {
1867 	int was_stale;
1868 	int wake = 0;
1869 
1870 	spin_lock(&session->s_cap_lock);
1871 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1872 
1873 	session->s_cap_ttl = session->s_renew_requested +
1874 		mdsc->mdsmap->m_session_timeout*HZ;
1875 
1876 	if (was_stale) {
1877 		if (time_before(jiffies, session->s_cap_ttl)) {
1878 			pr_info("mds%d caps renewed\n", session->s_mds);
1879 			wake = 1;
1880 		} else {
1881 			pr_info("mds%d caps still stale\n", session->s_mds);
1882 		}
1883 	}
1884 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1885 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1886 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1887 	spin_unlock(&session->s_cap_lock);
1888 
1889 	if (wake)
1890 		wake_up_session_caps(session, RENEWCAPS);
1891 }
1892 
1893 /*
1894  * send a session close request
1895  */
1896 static int request_close_session(struct ceph_mds_session *session)
1897 {
1898 	struct ceph_msg *msg;
1899 
1900 	dout("request_close_session mds%d state %s seq %lld\n",
1901 	     session->s_mds, ceph_session_state_name(session->s_state),
1902 	     session->s_seq);
1903 	msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE,
1904 				      session->s_seq);
1905 	if (!msg)
1906 		return -ENOMEM;
1907 	ceph_con_send(&session->s_con, msg);
1908 	return 1;
1909 }
1910 
1911 /*
1912  * Called with s_mutex held.
1913  */
1914 static int __close_session(struct ceph_mds_client *mdsc,
1915 			 struct ceph_mds_session *session)
1916 {
1917 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1918 		return 0;
1919 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1920 	return request_close_session(session);
1921 }
1922 
1923 static bool drop_negative_children(struct dentry *dentry)
1924 {
1925 	struct dentry *child;
1926 	bool all_negative = true;
1927 
1928 	if (!d_is_dir(dentry))
1929 		goto out;
1930 
1931 	spin_lock(&dentry->d_lock);
1932 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
1933 		if (d_really_is_positive(child)) {
1934 			all_negative = false;
1935 			break;
1936 		}
1937 	}
1938 	spin_unlock(&dentry->d_lock);
1939 
1940 	if (all_negative)
1941 		shrink_dcache_parent(dentry);
1942 out:
1943 	return all_negative;
1944 }
1945 
1946 /*
1947  * Trim old(er) caps.
1948  *
1949  * Because we can't cache an inode without one or more caps, we do
1950  * this indirectly: if a cap is unused, we prune its aliases, at which
1951  * point the inode will hopefully get dropped to.
1952  *
1953  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1954  * memory pressure from the MDS, though, so it needn't be perfect.
1955  */
1956 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1957 {
1958 	int *remaining = arg;
1959 	struct ceph_inode_info *ci = ceph_inode(inode);
1960 	int used, wanted, oissued, mine;
1961 
1962 	if (*remaining <= 0)
1963 		return -1;
1964 
1965 	spin_lock(&ci->i_ceph_lock);
1966 	mine = cap->issued | cap->implemented;
1967 	used = __ceph_caps_used(ci);
1968 	wanted = __ceph_caps_file_wanted(ci);
1969 	oissued = __ceph_caps_issued_other(ci, cap);
1970 
1971 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1972 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1973 	     ceph_cap_string(used), ceph_cap_string(wanted));
1974 	if (cap == ci->i_auth_cap) {
1975 		if (ci->i_dirty_caps || ci->i_flushing_caps ||
1976 		    !list_empty(&ci->i_cap_snaps))
1977 			goto out;
1978 		if ((used | wanted) & CEPH_CAP_ANY_WR)
1979 			goto out;
1980 		/* Note: it's possible that i_filelock_ref becomes non-zero
1981 		 * after dropping auth caps. It doesn't hurt because reply
1982 		 * of lock mds request will re-add auth caps. */
1983 		if (atomic_read(&ci->i_filelock_ref) > 0)
1984 			goto out;
1985 	}
1986 	/* The inode has cached pages, but it's no longer used.
1987 	 * we can safely drop it */
1988 	if (S_ISREG(inode->i_mode) &&
1989 	    wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1990 	    !(oissued & CEPH_CAP_FILE_CACHE)) {
1991 	  used = 0;
1992 	  oissued = 0;
1993 	}
1994 	if ((used | wanted) & ~oissued & mine)
1995 		goto out;   /* we need these caps */
1996 
1997 	if (oissued) {
1998 		/* we aren't the only cap.. just remove us */
1999 		ceph_remove_cap(cap, true);
2000 		(*remaining)--;
2001 	} else {
2002 		struct dentry *dentry;
2003 		/* try dropping referring dentries */
2004 		spin_unlock(&ci->i_ceph_lock);
2005 		dentry = d_find_any_alias(inode);
2006 		if (dentry && drop_negative_children(dentry)) {
2007 			int count;
2008 			dput(dentry);
2009 			d_prune_aliases(inode);
2010 			count = atomic_read(&inode->i_count);
2011 			if (count == 1)
2012 				(*remaining)--;
2013 			dout("trim_caps_cb %p cap %p pruned, count now %d\n",
2014 			     inode, cap, count);
2015 		} else {
2016 			dput(dentry);
2017 		}
2018 		return 0;
2019 	}
2020 
2021 out:
2022 	spin_unlock(&ci->i_ceph_lock);
2023 	return 0;
2024 }
2025 
2026 /*
2027  * Trim session cap count down to some max number.
2028  */
2029 int ceph_trim_caps(struct ceph_mds_client *mdsc,
2030 		   struct ceph_mds_session *session,
2031 		   int max_caps)
2032 {
2033 	int trim_caps = session->s_nr_caps - max_caps;
2034 
2035 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
2036 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
2037 	if (trim_caps > 0) {
2038 		int remaining = trim_caps;
2039 
2040 		ceph_iterate_session_caps(session, trim_caps_cb, &remaining);
2041 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
2042 		     session->s_mds, session->s_nr_caps, max_caps,
2043 			trim_caps - remaining);
2044 	}
2045 
2046 	ceph_flush_cap_releases(mdsc, session);
2047 	return 0;
2048 }
2049 
2050 static int check_caps_flush(struct ceph_mds_client *mdsc,
2051 			    u64 want_flush_tid)
2052 {
2053 	int ret = 1;
2054 
2055 	spin_lock(&mdsc->cap_dirty_lock);
2056 	if (!list_empty(&mdsc->cap_flush_list)) {
2057 		struct ceph_cap_flush *cf =
2058 			list_first_entry(&mdsc->cap_flush_list,
2059 					 struct ceph_cap_flush, g_list);
2060 		if (cf->tid <= want_flush_tid) {
2061 			dout("check_caps_flush still flushing tid "
2062 			     "%llu <= %llu\n", cf->tid, want_flush_tid);
2063 			ret = 0;
2064 		}
2065 	}
2066 	spin_unlock(&mdsc->cap_dirty_lock);
2067 	return ret;
2068 }
2069 
2070 /*
2071  * flush all dirty inode data to disk.
2072  *
2073  * returns true if we've flushed through want_flush_tid
2074  */
2075 static void wait_caps_flush(struct ceph_mds_client *mdsc,
2076 			    u64 want_flush_tid)
2077 {
2078 	dout("check_caps_flush want %llu\n", want_flush_tid);
2079 
2080 	wait_event(mdsc->cap_flushing_wq,
2081 		   check_caps_flush(mdsc, want_flush_tid));
2082 
2083 	dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
2084 }
2085 
2086 /*
2087  * called under s_mutex
2088  */
2089 static void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
2090 				   struct ceph_mds_session *session)
2091 {
2092 	struct ceph_msg *msg = NULL;
2093 	struct ceph_mds_cap_release *head;
2094 	struct ceph_mds_cap_item *item;
2095 	struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc;
2096 	struct ceph_cap *cap;
2097 	LIST_HEAD(tmp_list);
2098 	int num_cap_releases;
2099 	__le32	barrier, *cap_barrier;
2100 
2101 	down_read(&osdc->lock);
2102 	barrier = cpu_to_le32(osdc->epoch_barrier);
2103 	up_read(&osdc->lock);
2104 
2105 	spin_lock(&session->s_cap_lock);
2106 again:
2107 	list_splice_init(&session->s_cap_releases, &tmp_list);
2108 	num_cap_releases = session->s_num_cap_releases;
2109 	session->s_num_cap_releases = 0;
2110 	spin_unlock(&session->s_cap_lock);
2111 
2112 	while (!list_empty(&tmp_list)) {
2113 		if (!msg) {
2114 			msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
2115 					PAGE_SIZE, GFP_NOFS, false);
2116 			if (!msg)
2117 				goto out_err;
2118 			head = msg->front.iov_base;
2119 			head->num = cpu_to_le32(0);
2120 			msg->front.iov_len = sizeof(*head);
2121 
2122 			msg->hdr.version = cpu_to_le16(2);
2123 			msg->hdr.compat_version = cpu_to_le16(1);
2124 		}
2125 
2126 		cap = list_first_entry(&tmp_list, struct ceph_cap,
2127 					session_caps);
2128 		list_del(&cap->session_caps);
2129 		num_cap_releases--;
2130 
2131 		head = msg->front.iov_base;
2132 		put_unaligned_le32(get_unaligned_le32(&head->num) + 1,
2133 				   &head->num);
2134 		item = msg->front.iov_base + msg->front.iov_len;
2135 		item->ino = cpu_to_le64(cap->cap_ino);
2136 		item->cap_id = cpu_to_le64(cap->cap_id);
2137 		item->migrate_seq = cpu_to_le32(cap->mseq);
2138 		item->seq = cpu_to_le32(cap->issue_seq);
2139 		msg->front.iov_len += sizeof(*item);
2140 
2141 		ceph_put_cap(mdsc, cap);
2142 
2143 		if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
2144 			// Append cap_barrier field
2145 			cap_barrier = msg->front.iov_base + msg->front.iov_len;
2146 			*cap_barrier = barrier;
2147 			msg->front.iov_len += sizeof(*cap_barrier);
2148 
2149 			msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2150 			dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
2151 			ceph_con_send(&session->s_con, msg);
2152 			msg = NULL;
2153 		}
2154 	}
2155 
2156 	BUG_ON(num_cap_releases != 0);
2157 
2158 	spin_lock(&session->s_cap_lock);
2159 	if (!list_empty(&session->s_cap_releases))
2160 		goto again;
2161 	spin_unlock(&session->s_cap_lock);
2162 
2163 	if (msg) {
2164 		// Append cap_barrier field
2165 		cap_barrier = msg->front.iov_base + msg->front.iov_len;
2166 		*cap_barrier = barrier;
2167 		msg->front.iov_len += sizeof(*cap_barrier);
2168 
2169 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2170 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
2171 		ceph_con_send(&session->s_con, msg);
2172 	}
2173 	return;
2174 out_err:
2175 	pr_err("send_cap_releases mds%d, failed to allocate message\n",
2176 		session->s_mds);
2177 	spin_lock(&session->s_cap_lock);
2178 	list_splice(&tmp_list, &session->s_cap_releases);
2179 	session->s_num_cap_releases += num_cap_releases;
2180 	spin_unlock(&session->s_cap_lock);
2181 }
2182 
2183 static void ceph_cap_release_work(struct work_struct *work)
2184 {
2185 	struct ceph_mds_session *session =
2186 		container_of(work, struct ceph_mds_session, s_cap_release_work);
2187 
2188 	mutex_lock(&session->s_mutex);
2189 	if (session->s_state == CEPH_MDS_SESSION_OPEN ||
2190 	    session->s_state == CEPH_MDS_SESSION_HUNG)
2191 		ceph_send_cap_releases(session->s_mdsc, session);
2192 	mutex_unlock(&session->s_mutex);
2193 	ceph_put_mds_session(session);
2194 }
2195 
2196 void ceph_flush_cap_releases(struct ceph_mds_client *mdsc,
2197 		             struct ceph_mds_session *session)
2198 {
2199 	if (mdsc->stopping)
2200 		return;
2201 
2202 	ceph_get_mds_session(session);
2203 	if (queue_work(mdsc->fsc->cap_wq,
2204 		       &session->s_cap_release_work)) {
2205 		dout("cap release work queued\n");
2206 	} else {
2207 		ceph_put_mds_session(session);
2208 		dout("failed to queue cap release work\n");
2209 	}
2210 }
2211 
2212 /*
2213  * caller holds session->s_cap_lock
2214  */
2215 void __ceph_queue_cap_release(struct ceph_mds_session *session,
2216 			      struct ceph_cap *cap)
2217 {
2218 	list_add_tail(&cap->session_caps, &session->s_cap_releases);
2219 	session->s_num_cap_releases++;
2220 
2221 	if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE))
2222 		ceph_flush_cap_releases(session->s_mdsc, session);
2223 }
2224 
2225 static void ceph_cap_reclaim_work(struct work_struct *work)
2226 {
2227 	struct ceph_mds_client *mdsc =
2228 		container_of(work, struct ceph_mds_client, cap_reclaim_work);
2229 	int ret = ceph_trim_dentries(mdsc);
2230 	if (ret == -EAGAIN)
2231 		ceph_queue_cap_reclaim_work(mdsc);
2232 }
2233 
2234 void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc)
2235 {
2236 	if (mdsc->stopping)
2237 		return;
2238 
2239         if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) {
2240                 dout("caps reclaim work queued\n");
2241         } else {
2242                 dout("failed to queue caps release work\n");
2243         }
2244 }
2245 
2246 void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr)
2247 {
2248 	int val;
2249 	if (!nr)
2250 		return;
2251 	val = atomic_add_return(nr, &mdsc->cap_reclaim_pending);
2252 	if ((val % CEPH_CAPS_PER_RELEASE) < nr) {
2253 		atomic_set(&mdsc->cap_reclaim_pending, 0);
2254 		ceph_queue_cap_reclaim_work(mdsc);
2255 	}
2256 }
2257 
2258 /*
2259  * requests
2260  */
2261 
2262 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
2263 				    struct inode *dir)
2264 {
2265 	struct ceph_inode_info *ci = ceph_inode(dir);
2266 	struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
2267 	struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
2268 	size_t size = sizeof(struct ceph_mds_reply_dir_entry);
2269 	unsigned int num_entries;
2270 	int order;
2271 
2272 	spin_lock(&ci->i_ceph_lock);
2273 	num_entries = ci->i_files + ci->i_subdirs;
2274 	spin_unlock(&ci->i_ceph_lock);
2275 	num_entries = max(num_entries, 1U);
2276 	num_entries = min(num_entries, opt->max_readdir);
2277 
2278 	order = get_order(size * num_entries);
2279 	while (order >= 0) {
2280 		rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
2281 							     __GFP_NOWARN |
2282 							     __GFP_ZERO,
2283 							     order);
2284 		if (rinfo->dir_entries)
2285 			break;
2286 		order--;
2287 	}
2288 	if (!rinfo->dir_entries)
2289 		return -ENOMEM;
2290 
2291 	num_entries = (PAGE_SIZE << order) / size;
2292 	num_entries = min(num_entries, opt->max_readdir);
2293 
2294 	rinfo->dir_buf_size = PAGE_SIZE << order;
2295 	req->r_num_caps = num_entries + 1;
2296 	req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
2297 	req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
2298 	return 0;
2299 }
2300 
2301 /*
2302  * Create an mds request.
2303  */
2304 struct ceph_mds_request *
2305 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
2306 {
2307 	struct ceph_mds_request *req;
2308 
2309 	req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS);
2310 	if (!req)
2311 		return ERR_PTR(-ENOMEM);
2312 
2313 	mutex_init(&req->r_fill_mutex);
2314 	req->r_mdsc = mdsc;
2315 	req->r_started = jiffies;
2316 	req->r_start_latency = ktime_get();
2317 	req->r_resend_mds = -1;
2318 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
2319 	INIT_LIST_HEAD(&req->r_unsafe_target_item);
2320 	req->r_fmode = -1;
2321 	kref_init(&req->r_kref);
2322 	RB_CLEAR_NODE(&req->r_node);
2323 	INIT_LIST_HEAD(&req->r_wait);
2324 	init_completion(&req->r_completion);
2325 	init_completion(&req->r_safe_completion);
2326 	INIT_LIST_HEAD(&req->r_unsafe_item);
2327 
2328 	ktime_get_coarse_real_ts64(&req->r_stamp);
2329 
2330 	req->r_op = op;
2331 	req->r_direct_mode = mode;
2332 	return req;
2333 }
2334 
2335 /*
2336  * return oldest (lowest) request, tid in request tree, 0 if none.
2337  *
2338  * called under mdsc->mutex.
2339  */
2340 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
2341 {
2342 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
2343 		return NULL;
2344 	return rb_entry(rb_first(&mdsc->request_tree),
2345 			struct ceph_mds_request, r_node);
2346 }
2347 
2348 static inline  u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
2349 {
2350 	return mdsc->oldest_tid;
2351 }
2352 
2353 /*
2354  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
2355  * on build_path_from_dentry in fs/cifs/dir.c.
2356  *
2357  * If @stop_on_nosnap, generate path relative to the first non-snapped
2358  * inode.
2359  *
2360  * Encode hidden .snap dirs as a double /, i.e.
2361  *   foo/.snap/bar -> foo//bar
2362  */
2363 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *pbase,
2364 			   int stop_on_nosnap)
2365 {
2366 	struct dentry *temp;
2367 	char *path;
2368 	int pos;
2369 	unsigned seq;
2370 	u64 base;
2371 
2372 	if (!dentry)
2373 		return ERR_PTR(-EINVAL);
2374 
2375 	path = __getname();
2376 	if (!path)
2377 		return ERR_PTR(-ENOMEM);
2378 retry:
2379 	pos = PATH_MAX - 1;
2380 	path[pos] = '\0';
2381 
2382 	seq = read_seqbegin(&rename_lock);
2383 	rcu_read_lock();
2384 	temp = dentry;
2385 	for (;;) {
2386 		struct inode *inode;
2387 
2388 		spin_lock(&temp->d_lock);
2389 		inode = d_inode(temp);
2390 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
2391 			dout("build_path path+%d: %p SNAPDIR\n",
2392 			     pos, temp);
2393 		} else if (stop_on_nosnap && inode && dentry != temp &&
2394 			   ceph_snap(inode) == CEPH_NOSNAP) {
2395 			spin_unlock(&temp->d_lock);
2396 			pos++; /* get rid of any prepended '/' */
2397 			break;
2398 		} else {
2399 			pos -= temp->d_name.len;
2400 			if (pos < 0) {
2401 				spin_unlock(&temp->d_lock);
2402 				break;
2403 			}
2404 			memcpy(path + pos, temp->d_name.name, temp->d_name.len);
2405 		}
2406 		spin_unlock(&temp->d_lock);
2407 		temp = READ_ONCE(temp->d_parent);
2408 
2409 		/* Are we at the root? */
2410 		if (IS_ROOT(temp))
2411 			break;
2412 
2413 		/* Are we out of buffer? */
2414 		if (--pos < 0)
2415 			break;
2416 
2417 		path[pos] = '/';
2418 	}
2419 	base = ceph_ino(d_inode(temp));
2420 	rcu_read_unlock();
2421 
2422 	if (read_seqretry(&rename_lock, seq))
2423 		goto retry;
2424 
2425 	if (pos < 0) {
2426 		/*
2427 		 * A rename didn't occur, but somehow we didn't end up where
2428 		 * we thought we would. Throw a warning and try again.
2429 		 */
2430 		pr_warn("build_path did not end path lookup where "
2431 			"expected, pos is %d\n", pos);
2432 		goto retry;
2433 	}
2434 
2435 	*pbase = base;
2436 	*plen = PATH_MAX - 1 - pos;
2437 	dout("build_path on %p %d built %llx '%.*s'\n",
2438 	     dentry, d_count(dentry), base, *plen, path + pos);
2439 	return path + pos;
2440 }
2441 
2442 static int build_dentry_path(struct dentry *dentry, struct inode *dir,
2443 			     const char **ppath, int *ppathlen, u64 *pino,
2444 			     bool *pfreepath, bool parent_locked)
2445 {
2446 	char *path;
2447 
2448 	rcu_read_lock();
2449 	if (!dir)
2450 		dir = d_inode_rcu(dentry->d_parent);
2451 	if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP) {
2452 		*pino = ceph_ino(dir);
2453 		rcu_read_unlock();
2454 		*ppath = dentry->d_name.name;
2455 		*ppathlen = dentry->d_name.len;
2456 		return 0;
2457 	}
2458 	rcu_read_unlock();
2459 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
2460 	if (IS_ERR(path))
2461 		return PTR_ERR(path);
2462 	*ppath = path;
2463 	*pfreepath = true;
2464 	return 0;
2465 }
2466 
2467 static int build_inode_path(struct inode *inode,
2468 			    const char **ppath, int *ppathlen, u64 *pino,
2469 			    bool *pfreepath)
2470 {
2471 	struct dentry *dentry;
2472 	char *path;
2473 
2474 	if (ceph_snap(inode) == CEPH_NOSNAP) {
2475 		*pino = ceph_ino(inode);
2476 		*ppathlen = 0;
2477 		return 0;
2478 	}
2479 	dentry = d_find_alias(inode);
2480 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
2481 	dput(dentry);
2482 	if (IS_ERR(path))
2483 		return PTR_ERR(path);
2484 	*ppath = path;
2485 	*pfreepath = true;
2486 	return 0;
2487 }
2488 
2489 /*
2490  * request arguments may be specified via an inode *, a dentry *, or
2491  * an explicit ino+path.
2492  */
2493 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
2494 				  struct inode *rdiri, const char *rpath,
2495 				  u64 rino, const char **ppath, int *pathlen,
2496 				  u64 *ino, bool *freepath, bool parent_locked)
2497 {
2498 	int r = 0;
2499 
2500 	if (rinode) {
2501 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
2502 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
2503 		     ceph_snap(rinode));
2504 	} else if (rdentry) {
2505 		r = build_dentry_path(rdentry, rdiri, ppath, pathlen, ino,
2506 					freepath, parent_locked);
2507 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
2508 		     *ppath);
2509 	} else if (rpath || rino) {
2510 		*ino = rino;
2511 		*ppath = rpath;
2512 		*pathlen = rpath ? strlen(rpath) : 0;
2513 		dout(" path %.*s\n", *pathlen, rpath);
2514 	}
2515 
2516 	return r;
2517 }
2518 
2519 static void encode_timestamp_and_gids(void **p,
2520 				      const struct ceph_mds_request *req)
2521 {
2522 	struct ceph_timespec ts;
2523 	int i;
2524 
2525 	ceph_encode_timespec64(&ts, &req->r_stamp);
2526 	ceph_encode_copy(p, &ts, sizeof(ts));
2527 
2528 	/* gid_list */
2529 	ceph_encode_32(p, req->r_cred->group_info->ngroups);
2530 	for (i = 0; i < req->r_cred->group_info->ngroups; i++)
2531 		ceph_encode_64(p, from_kgid(&init_user_ns,
2532 					    req->r_cred->group_info->gid[i]));
2533 }
2534 
2535 /*
2536  * called under mdsc->mutex
2537  */
2538 static struct ceph_msg *create_request_message(struct ceph_mds_session *session,
2539 					       struct ceph_mds_request *req,
2540 					       bool drop_cap_releases)
2541 {
2542 	int mds = session->s_mds;
2543 	struct ceph_mds_client *mdsc = session->s_mdsc;
2544 	struct ceph_msg *msg;
2545 	struct ceph_mds_request_head_old *head;
2546 	const char *path1 = NULL;
2547 	const char *path2 = NULL;
2548 	u64 ino1 = 0, ino2 = 0;
2549 	int pathlen1 = 0, pathlen2 = 0;
2550 	bool freepath1 = false, freepath2 = false;
2551 	int len;
2552 	u16 releases;
2553 	void *p, *end;
2554 	int ret;
2555 	bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME);
2556 
2557 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
2558 			      req->r_parent, req->r_path1, req->r_ino1.ino,
2559 			      &path1, &pathlen1, &ino1, &freepath1,
2560 			      test_bit(CEPH_MDS_R_PARENT_LOCKED,
2561 					&req->r_req_flags));
2562 	if (ret < 0) {
2563 		msg = ERR_PTR(ret);
2564 		goto out;
2565 	}
2566 
2567 	/* If r_old_dentry is set, then assume that its parent is locked */
2568 	ret = set_request_path_attr(NULL, req->r_old_dentry,
2569 			      req->r_old_dentry_dir,
2570 			      req->r_path2, req->r_ino2.ino,
2571 			      &path2, &pathlen2, &ino2, &freepath2, true);
2572 	if (ret < 0) {
2573 		msg = ERR_PTR(ret);
2574 		goto out_free1;
2575 	}
2576 
2577 	len = legacy ? sizeof(*head) : sizeof(struct ceph_mds_request_head);
2578 	len += pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
2579 		sizeof(struct ceph_timespec);
2580 	len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups);
2581 
2582 	/* calculate (max) length for cap releases */
2583 	len += sizeof(struct ceph_mds_request_release) *
2584 		(!!req->r_inode_drop + !!req->r_dentry_drop +
2585 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
2586 
2587 	if (req->r_dentry_drop)
2588 		len += pathlen1;
2589 	if (req->r_old_dentry_drop)
2590 		len += pathlen2;
2591 
2592 	msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false);
2593 	if (!msg) {
2594 		msg = ERR_PTR(-ENOMEM);
2595 		goto out_free2;
2596 	}
2597 
2598 	msg->hdr.tid = cpu_to_le64(req->r_tid);
2599 
2600 	/*
2601 	 * The old ceph_mds_request_head didn't contain a version field, and
2602 	 * one was added when we moved the message version from 3->4.
2603 	 */
2604 	if (legacy) {
2605 		msg->hdr.version = cpu_to_le16(3);
2606 		head = msg->front.iov_base;
2607 		p = msg->front.iov_base + sizeof(*head);
2608 	} else {
2609 		struct ceph_mds_request_head *new_head = msg->front.iov_base;
2610 
2611 		msg->hdr.version = cpu_to_le16(4);
2612 		new_head->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION);
2613 		head = (struct ceph_mds_request_head_old *)&new_head->oldest_client_tid;
2614 		p = msg->front.iov_base + sizeof(*new_head);
2615 	}
2616 
2617 	end = msg->front.iov_base + msg->front.iov_len;
2618 
2619 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
2620 	head->op = cpu_to_le32(req->r_op);
2621 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns,
2622 						 req->r_cred->fsuid));
2623 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns,
2624 						 req->r_cred->fsgid));
2625 	head->ino = cpu_to_le64(req->r_deleg_ino);
2626 	head->args = req->r_args;
2627 
2628 	ceph_encode_filepath(&p, end, ino1, path1);
2629 	ceph_encode_filepath(&p, end, ino2, path2);
2630 
2631 	/* make note of release offset, in case we need to replay */
2632 	req->r_request_release_offset = p - msg->front.iov_base;
2633 
2634 	/* cap releases */
2635 	releases = 0;
2636 	if (req->r_inode_drop)
2637 		releases += ceph_encode_inode_release(&p,
2638 		      req->r_inode ? req->r_inode : d_inode(req->r_dentry),
2639 		      mds, req->r_inode_drop, req->r_inode_unless,
2640 		      req->r_op == CEPH_MDS_OP_READDIR);
2641 	if (req->r_dentry_drop)
2642 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
2643 				req->r_parent, mds, req->r_dentry_drop,
2644 				req->r_dentry_unless);
2645 	if (req->r_old_dentry_drop)
2646 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
2647 				req->r_old_dentry_dir, mds,
2648 				req->r_old_dentry_drop,
2649 				req->r_old_dentry_unless);
2650 	if (req->r_old_inode_drop)
2651 		releases += ceph_encode_inode_release(&p,
2652 		      d_inode(req->r_old_dentry),
2653 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
2654 
2655 	if (drop_cap_releases) {
2656 		releases = 0;
2657 		p = msg->front.iov_base + req->r_request_release_offset;
2658 	}
2659 
2660 	head->num_releases = cpu_to_le16(releases);
2661 
2662 	encode_timestamp_and_gids(&p, req);
2663 
2664 	if (WARN_ON_ONCE(p > end)) {
2665 		ceph_msg_put(msg);
2666 		msg = ERR_PTR(-ERANGE);
2667 		goto out_free2;
2668 	}
2669 
2670 	msg->front.iov_len = p - msg->front.iov_base;
2671 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2672 
2673 	if (req->r_pagelist) {
2674 		struct ceph_pagelist *pagelist = req->r_pagelist;
2675 		ceph_msg_data_add_pagelist(msg, pagelist);
2676 		msg->hdr.data_len = cpu_to_le32(pagelist->length);
2677 	} else {
2678 		msg->hdr.data_len = 0;
2679 	}
2680 
2681 	msg->hdr.data_off = cpu_to_le16(0);
2682 
2683 out_free2:
2684 	if (freepath2)
2685 		ceph_mdsc_free_path((char *)path2, pathlen2);
2686 out_free1:
2687 	if (freepath1)
2688 		ceph_mdsc_free_path((char *)path1, pathlen1);
2689 out:
2690 	return msg;
2691 }
2692 
2693 /*
2694  * called under mdsc->mutex if error, under no mutex if
2695  * success.
2696  */
2697 static void complete_request(struct ceph_mds_client *mdsc,
2698 			     struct ceph_mds_request *req)
2699 {
2700 	req->r_end_latency = ktime_get();
2701 
2702 	if (req->r_callback)
2703 		req->r_callback(mdsc, req);
2704 	complete_all(&req->r_completion);
2705 }
2706 
2707 static struct ceph_mds_request_head_old *
2708 find_old_request_head(void *p, u64 features)
2709 {
2710 	bool legacy = !(features & CEPH_FEATURE_FS_BTIME);
2711 	struct ceph_mds_request_head *new_head;
2712 
2713 	if (legacy)
2714 		return (struct ceph_mds_request_head_old *)p;
2715 	new_head = (struct ceph_mds_request_head *)p;
2716 	return (struct ceph_mds_request_head_old *)&new_head->oldest_client_tid;
2717 }
2718 
2719 /*
2720  * called under mdsc->mutex
2721  */
2722 static int __prepare_send_request(struct ceph_mds_session *session,
2723 				  struct ceph_mds_request *req,
2724 				  bool drop_cap_releases)
2725 {
2726 	int mds = session->s_mds;
2727 	struct ceph_mds_client *mdsc = session->s_mdsc;
2728 	struct ceph_mds_request_head_old *rhead;
2729 	struct ceph_msg *msg;
2730 	int flags = 0, max_retry;
2731 
2732 	/*
2733 	 * The type of 'r_attempts' in kernel 'ceph_mds_request'
2734 	 * is 'int', while in 'ceph_mds_request_head' the type of
2735 	 * 'num_retry' is '__u8'. So in case the request retries
2736 	 *  exceeding 256 times, the MDS will receive a incorrect
2737 	 *  retry seq.
2738 	 *
2739 	 * In this case it's ususally a bug in MDS and continue
2740 	 * retrying the request makes no sense.
2741 	 *
2742 	 * In future this could be fixed in ceph code, so avoid
2743 	 * using the hardcode here.
2744 	 */
2745 	max_retry = sizeof_field(struct ceph_mds_request_head, num_retry);
2746 	max_retry = 1 << (max_retry * BITS_PER_BYTE);
2747 	if (req->r_attempts >= max_retry) {
2748 		pr_warn_ratelimited("%s request tid %llu seq overflow\n",
2749 				    __func__, req->r_tid);
2750 		return -EMULTIHOP;
2751 	}
2752 
2753 	req->r_attempts++;
2754 	if (req->r_inode) {
2755 		struct ceph_cap *cap =
2756 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2757 
2758 		if (cap)
2759 			req->r_sent_on_mseq = cap->mseq;
2760 		else
2761 			req->r_sent_on_mseq = -1;
2762 	}
2763 	dout("%s %p tid %lld %s (attempt %d)\n", __func__, req,
2764 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2765 
2766 	if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2767 		void *p;
2768 
2769 		/*
2770 		 * Replay.  Do not regenerate message (and rebuild
2771 		 * paths, etc.); just use the original message.
2772 		 * Rebuilding paths will break for renames because
2773 		 * d_move mangles the src name.
2774 		 */
2775 		msg = req->r_request;
2776 		rhead = find_old_request_head(msg->front.iov_base,
2777 					      session->s_con.peer_features);
2778 
2779 		flags = le32_to_cpu(rhead->flags);
2780 		flags |= CEPH_MDS_FLAG_REPLAY;
2781 		rhead->flags = cpu_to_le32(flags);
2782 
2783 		if (req->r_target_inode)
2784 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2785 
2786 		rhead->num_retry = req->r_attempts - 1;
2787 
2788 		/* remove cap/dentry releases from message */
2789 		rhead->num_releases = 0;
2790 
2791 		p = msg->front.iov_base + req->r_request_release_offset;
2792 		encode_timestamp_and_gids(&p, req);
2793 
2794 		msg->front.iov_len = p - msg->front.iov_base;
2795 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2796 		return 0;
2797 	}
2798 
2799 	if (req->r_request) {
2800 		ceph_msg_put(req->r_request);
2801 		req->r_request = NULL;
2802 	}
2803 	msg = create_request_message(session, req, drop_cap_releases);
2804 	if (IS_ERR(msg)) {
2805 		req->r_err = PTR_ERR(msg);
2806 		return PTR_ERR(msg);
2807 	}
2808 	req->r_request = msg;
2809 
2810 	rhead = find_old_request_head(msg->front.iov_base,
2811 				      session->s_con.peer_features);
2812 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2813 	if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2814 		flags |= CEPH_MDS_FLAG_REPLAY;
2815 	if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags))
2816 		flags |= CEPH_MDS_FLAG_ASYNC;
2817 	if (req->r_parent)
2818 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2819 	rhead->flags = cpu_to_le32(flags);
2820 	rhead->num_fwd = req->r_num_fwd;
2821 	rhead->num_retry = req->r_attempts - 1;
2822 
2823 	dout(" r_parent = %p\n", req->r_parent);
2824 	return 0;
2825 }
2826 
2827 /*
2828  * called under mdsc->mutex
2829  */
2830 static int __send_request(struct ceph_mds_session *session,
2831 			  struct ceph_mds_request *req,
2832 			  bool drop_cap_releases)
2833 {
2834 	int err;
2835 
2836 	err = __prepare_send_request(session, req, drop_cap_releases);
2837 	if (!err) {
2838 		ceph_msg_get(req->r_request);
2839 		ceph_con_send(&session->s_con, req->r_request);
2840 	}
2841 
2842 	return err;
2843 }
2844 
2845 /*
2846  * send request, or put it on the appropriate wait list.
2847  */
2848 static void __do_request(struct ceph_mds_client *mdsc,
2849 			struct ceph_mds_request *req)
2850 {
2851 	struct ceph_mds_session *session = NULL;
2852 	int mds = -1;
2853 	int err = 0;
2854 	bool random;
2855 
2856 	if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
2857 		if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags))
2858 			__unregister_request(mdsc, req);
2859 		return;
2860 	}
2861 
2862 	if (req->r_timeout &&
2863 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2864 		dout("do_request timed out\n");
2865 		err = -ETIMEDOUT;
2866 		goto finish;
2867 	}
2868 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2869 		dout("do_request forced umount\n");
2870 		err = -EIO;
2871 		goto finish;
2872 	}
2873 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) {
2874 		if (mdsc->mdsmap_err) {
2875 			err = mdsc->mdsmap_err;
2876 			dout("do_request mdsmap err %d\n", err);
2877 			goto finish;
2878 		}
2879 		if (mdsc->mdsmap->m_epoch == 0) {
2880 			dout("do_request no mdsmap, waiting for map\n");
2881 			list_add(&req->r_wait, &mdsc->waiting_for_map);
2882 			return;
2883 		}
2884 		if (!(mdsc->fsc->mount_options->flags &
2885 		      CEPH_MOUNT_OPT_MOUNTWAIT) &&
2886 		    !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) {
2887 			err = -EHOSTUNREACH;
2888 			goto finish;
2889 		}
2890 	}
2891 
2892 	put_request_session(req);
2893 
2894 	mds = __choose_mds(mdsc, req, &random);
2895 	if (mds < 0 ||
2896 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2897 		if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) {
2898 			err = -EJUKEBOX;
2899 			goto finish;
2900 		}
2901 		dout("do_request no mds or not active, waiting for map\n");
2902 		list_add(&req->r_wait, &mdsc->waiting_for_map);
2903 		return;
2904 	}
2905 
2906 	/* get, open session */
2907 	session = __ceph_lookup_mds_session(mdsc, mds);
2908 	if (!session) {
2909 		session = register_session(mdsc, mds);
2910 		if (IS_ERR(session)) {
2911 			err = PTR_ERR(session);
2912 			goto finish;
2913 		}
2914 	}
2915 	req->r_session = ceph_get_mds_session(session);
2916 
2917 	dout("do_request mds%d session %p state %s\n", mds, session,
2918 	     ceph_session_state_name(session->s_state));
2919 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2920 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
2921 		/*
2922 		 * We cannot queue async requests since the caps and delegated
2923 		 * inodes are bound to the session. Just return -EJUKEBOX and
2924 		 * let the caller retry a sync request in that case.
2925 		 */
2926 		if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) {
2927 			err = -EJUKEBOX;
2928 			goto out_session;
2929 		}
2930 
2931 		/*
2932 		 * If the session has been REJECTED, then return a hard error,
2933 		 * unless it's a CLEANRECOVER mount, in which case we'll queue
2934 		 * it to the mdsc queue.
2935 		 */
2936 		if (session->s_state == CEPH_MDS_SESSION_REJECTED) {
2937 			if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER))
2938 				list_add(&req->r_wait, &mdsc->waiting_for_map);
2939 			else
2940 				err = -EACCES;
2941 			goto out_session;
2942 		}
2943 
2944 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
2945 		    session->s_state == CEPH_MDS_SESSION_CLOSING) {
2946 			err = __open_session(mdsc, session);
2947 			if (err)
2948 				goto out_session;
2949 			/* retry the same mds later */
2950 			if (random)
2951 				req->r_resend_mds = mds;
2952 		}
2953 		list_add(&req->r_wait, &session->s_waiting);
2954 		goto out_session;
2955 	}
2956 
2957 	/* send request */
2958 	req->r_resend_mds = -1;   /* forget any previous mds hint */
2959 
2960 	if (req->r_request_started == 0)   /* note request start time */
2961 		req->r_request_started = jiffies;
2962 
2963 	/*
2964 	 * For async create we will choose the auth MDS of frag in parent
2965 	 * directory to send the request and ususally this works fine, but
2966 	 * if the migrated the dirtory to another MDS before it could handle
2967 	 * it the request will be forwarded.
2968 	 *
2969 	 * And then the auth cap will be changed.
2970 	 */
2971 	if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && req->r_num_fwd) {
2972 		struct ceph_dentry_info *di = ceph_dentry(req->r_dentry);
2973 		struct ceph_inode_info *ci;
2974 		struct ceph_cap *cap;
2975 
2976 		/*
2977 		 * The request maybe handled very fast and the new inode
2978 		 * hasn't been linked to the dentry yet. We need to wait
2979 		 * for the ceph_finish_async_create(), which shouldn't be
2980 		 * stuck too long or fail in thoery, to finish when forwarding
2981 		 * the request.
2982 		 */
2983 		if (!d_inode(req->r_dentry)) {
2984 			err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_CREATE_BIT,
2985 					  TASK_KILLABLE);
2986 			if (err) {
2987 				mutex_lock(&req->r_fill_mutex);
2988 				set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
2989 				mutex_unlock(&req->r_fill_mutex);
2990 				goto out_session;
2991 			}
2992 		}
2993 
2994 		ci = ceph_inode(d_inode(req->r_dentry));
2995 
2996 		spin_lock(&ci->i_ceph_lock);
2997 		cap = ci->i_auth_cap;
2998 		if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE && mds != cap->mds) {
2999 			dout("do_request session changed for auth cap %d -> %d\n",
3000 			     cap->session->s_mds, session->s_mds);
3001 
3002 			/* Remove the auth cap from old session */
3003 			spin_lock(&cap->session->s_cap_lock);
3004 			cap->session->s_nr_caps--;
3005 			list_del_init(&cap->session_caps);
3006 			spin_unlock(&cap->session->s_cap_lock);
3007 
3008 			/* Add the auth cap to the new session */
3009 			cap->mds = mds;
3010 			cap->session = session;
3011 			spin_lock(&session->s_cap_lock);
3012 			session->s_nr_caps++;
3013 			list_add_tail(&cap->session_caps, &session->s_caps);
3014 			spin_unlock(&session->s_cap_lock);
3015 
3016 			change_auth_cap_ses(ci, session);
3017 		}
3018 		spin_unlock(&ci->i_ceph_lock);
3019 	}
3020 
3021 	err = __send_request(session, req, false);
3022 
3023 out_session:
3024 	ceph_put_mds_session(session);
3025 finish:
3026 	if (err) {
3027 		dout("__do_request early error %d\n", err);
3028 		req->r_err = err;
3029 		complete_request(mdsc, req);
3030 		__unregister_request(mdsc, req);
3031 	}
3032 	return;
3033 }
3034 
3035 /*
3036  * called under mdsc->mutex
3037  */
3038 static void __wake_requests(struct ceph_mds_client *mdsc,
3039 			    struct list_head *head)
3040 {
3041 	struct ceph_mds_request *req;
3042 	LIST_HEAD(tmp_list);
3043 
3044 	list_splice_init(head, &tmp_list);
3045 
3046 	while (!list_empty(&tmp_list)) {
3047 		req = list_entry(tmp_list.next,
3048 				 struct ceph_mds_request, r_wait);
3049 		list_del_init(&req->r_wait);
3050 		dout(" wake request %p tid %llu\n", req, req->r_tid);
3051 		__do_request(mdsc, req);
3052 	}
3053 }
3054 
3055 /*
3056  * Wake up threads with requests pending for @mds, so that they can
3057  * resubmit their requests to a possibly different mds.
3058  */
3059 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
3060 {
3061 	struct ceph_mds_request *req;
3062 	struct rb_node *p = rb_first(&mdsc->request_tree);
3063 
3064 	dout("kick_requests mds%d\n", mds);
3065 	while (p) {
3066 		req = rb_entry(p, struct ceph_mds_request, r_node);
3067 		p = rb_next(p);
3068 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
3069 			continue;
3070 		if (req->r_attempts > 0)
3071 			continue; /* only new requests */
3072 		if (req->r_session &&
3073 		    req->r_session->s_mds == mds) {
3074 			dout(" kicking tid %llu\n", req->r_tid);
3075 			list_del_init(&req->r_wait);
3076 			__do_request(mdsc, req);
3077 		}
3078 	}
3079 }
3080 
3081 int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir,
3082 			      struct ceph_mds_request *req)
3083 {
3084 	int err = 0;
3085 
3086 	/* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */
3087 	if (req->r_inode)
3088 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
3089 	if (req->r_parent) {
3090 		struct ceph_inode_info *ci = ceph_inode(req->r_parent);
3091 		int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ?
3092 			    CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD;
3093 		spin_lock(&ci->i_ceph_lock);
3094 		ceph_take_cap_refs(ci, CEPH_CAP_PIN, false);
3095 		__ceph_touch_fmode(ci, mdsc, fmode);
3096 		spin_unlock(&ci->i_ceph_lock);
3097 	}
3098 	if (req->r_old_dentry_dir)
3099 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
3100 				  CEPH_CAP_PIN);
3101 
3102 	if (req->r_inode) {
3103 		err = ceph_wait_on_async_create(req->r_inode);
3104 		if (err) {
3105 			dout("%s: wait for async create returned: %d\n",
3106 			     __func__, err);
3107 			return err;
3108 		}
3109 	}
3110 
3111 	if (!err && req->r_old_inode) {
3112 		err = ceph_wait_on_async_create(req->r_old_inode);
3113 		if (err) {
3114 			dout("%s: wait for async create returned: %d\n",
3115 			     __func__, err);
3116 			return err;
3117 		}
3118 	}
3119 
3120 	dout("submit_request on %p for inode %p\n", req, dir);
3121 	mutex_lock(&mdsc->mutex);
3122 	__register_request(mdsc, req, dir);
3123 	__do_request(mdsc, req);
3124 	err = req->r_err;
3125 	mutex_unlock(&mdsc->mutex);
3126 	return err;
3127 }
3128 
3129 int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc,
3130 			   struct ceph_mds_request *req,
3131 			   ceph_mds_request_wait_callback_t wait_func)
3132 {
3133 	int err;
3134 
3135 	/* wait */
3136 	dout("do_request waiting\n");
3137 	if (wait_func) {
3138 		err = wait_func(mdsc, req);
3139 	} else {
3140 		long timeleft = wait_for_completion_killable_timeout(
3141 					&req->r_completion,
3142 					ceph_timeout_jiffies(req->r_timeout));
3143 		if (timeleft > 0)
3144 			err = 0;
3145 		else if (!timeleft)
3146 			err = -ETIMEDOUT;  /* timed out */
3147 		else
3148 			err = timeleft;  /* killed */
3149 	}
3150 	dout("do_request waited, got %d\n", err);
3151 	mutex_lock(&mdsc->mutex);
3152 
3153 	/* only abort if we didn't race with a real reply */
3154 	if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
3155 		err = le32_to_cpu(req->r_reply_info.head->result);
3156 	} else if (err < 0) {
3157 		dout("aborted request %lld with %d\n", req->r_tid, err);
3158 
3159 		/*
3160 		 * ensure we aren't running concurrently with
3161 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
3162 		 * rely on locks (dir mutex) held by our caller.
3163 		 */
3164 		mutex_lock(&req->r_fill_mutex);
3165 		req->r_err = err;
3166 		set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
3167 		mutex_unlock(&req->r_fill_mutex);
3168 
3169 		if (req->r_parent &&
3170 		    (req->r_op & CEPH_MDS_OP_WRITE))
3171 			ceph_invalidate_dir_request(req);
3172 	} else {
3173 		err = req->r_err;
3174 	}
3175 
3176 	mutex_unlock(&mdsc->mutex);
3177 	return err;
3178 }
3179 
3180 /*
3181  * Synchrously perform an mds request.  Take care of all of the
3182  * session setup, forwarding, retry details.
3183  */
3184 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
3185 			 struct inode *dir,
3186 			 struct ceph_mds_request *req)
3187 {
3188 	int err;
3189 
3190 	dout("do_request on %p\n", req);
3191 
3192 	/* issue */
3193 	err = ceph_mdsc_submit_request(mdsc, dir, req);
3194 	if (!err)
3195 		err = ceph_mdsc_wait_request(mdsc, req, NULL);
3196 	dout("do_request %p done, result %d\n", req, err);
3197 	return err;
3198 }
3199 
3200 /*
3201  * Invalidate dir's completeness, dentry lease state on an aborted MDS
3202  * namespace request.
3203  */
3204 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
3205 {
3206 	struct inode *dir = req->r_parent;
3207 	struct inode *old_dir = req->r_old_dentry_dir;
3208 
3209 	dout("invalidate_dir_request %p %p (complete, lease(s))\n", dir, old_dir);
3210 
3211 	ceph_dir_clear_complete(dir);
3212 	if (old_dir)
3213 		ceph_dir_clear_complete(old_dir);
3214 	if (req->r_dentry)
3215 		ceph_invalidate_dentry_lease(req->r_dentry);
3216 	if (req->r_old_dentry)
3217 		ceph_invalidate_dentry_lease(req->r_old_dentry);
3218 }
3219 
3220 /*
3221  * Handle mds reply.
3222  *
3223  * We take the session mutex and parse and process the reply immediately.
3224  * This preserves the logical ordering of replies, capabilities, etc., sent
3225  * by the MDS as they are applied to our local cache.
3226  */
3227 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
3228 {
3229 	struct ceph_mds_client *mdsc = session->s_mdsc;
3230 	struct ceph_mds_request *req;
3231 	struct ceph_mds_reply_head *head = msg->front.iov_base;
3232 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
3233 	struct ceph_snap_realm *realm;
3234 	u64 tid;
3235 	int err, result;
3236 	int mds = session->s_mds;
3237 
3238 	if (msg->front.iov_len < sizeof(*head)) {
3239 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
3240 		ceph_msg_dump(msg);
3241 		return;
3242 	}
3243 
3244 	/* get request, session */
3245 	tid = le64_to_cpu(msg->hdr.tid);
3246 	mutex_lock(&mdsc->mutex);
3247 	req = lookup_get_request(mdsc, tid);
3248 	if (!req) {
3249 		dout("handle_reply on unknown tid %llu\n", tid);
3250 		mutex_unlock(&mdsc->mutex);
3251 		return;
3252 	}
3253 	dout("handle_reply %p\n", req);
3254 
3255 	/* correct session? */
3256 	if (req->r_session != session) {
3257 		pr_err("mdsc_handle_reply got %llu on session mds%d"
3258 		       " not mds%d\n", tid, session->s_mds,
3259 		       req->r_session ? req->r_session->s_mds : -1);
3260 		mutex_unlock(&mdsc->mutex);
3261 		goto out;
3262 	}
3263 
3264 	/* dup? */
3265 	if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) ||
3266 	    (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) {
3267 		pr_warn("got a dup %s reply on %llu from mds%d\n",
3268 			   head->safe ? "safe" : "unsafe", tid, mds);
3269 		mutex_unlock(&mdsc->mutex);
3270 		goto out;
3271 	}
3272 	if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) {
3273 		pr_warn("got unsafe after safe on %llu from mds%d\n",
3274 			   tid, mds);
3275 		mutex_unlock(&mdsc->mutex);
3276 		goto out;
3277 	}
3278 
3279 	result = le32_to_cpu(head->result);
3280 
3281 	if (head->safe) {
3282 		set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags);
3283 		__unregister_request(mdsc, req);
3284 
3285 		/* last request during umount? */
3286 		if (mdsc->stopping && !__get_oldest_req(mdsc))
3287 			complete_all(&mdsc->safe_umount_waiters);
3288 
3289 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
3290 			/*
3291 			 * We already handled the unsafe response, now do the
3292 			 * cleanup.  No need to examine the response; the MDS
3293 			 * doesn't include any result info in the safe
3294 			 * response.  And even if it did, there is nothing
3295 			 * useful we could do with a revised return value.
3296 			 */
3297 			dout("got safe reply %llu, mds%d\n", tid, mds);
3298 
3299 			mutex_unlock(&mdsc->mutex);
3300 			goto out;
3301 		}
3302 	} else {
3303 		set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags);
3304 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
3305 	}
3306 
3307 	dout("handle_reply tid %lld result %d\n", tid, result);
3308 	rinfo = &req->r_reply_info;
3309 	if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features))
3310 		err = parse_reply_info(session, msg, rinfo, (u64)-1);
3311 	else
3312 		err = parse_reply_info(session, msg, rinfo, session->s_con.peer_features);
3313 	mutex_unlock(&mdsc->mutex);
3314 
3315 	/* Must find target inode outside of mutexes to avoid deadlocks */
3316 	if ((err >= 0) && rinfo->head->is_target) {
3317 		struct inode *in;
3318 		struct ceph_vino tvino = {
3319 			.ino  = le64_to_cpu(rinfo->targeti.in->ino),
3320 			.snap = le64_to_cpu(rinfo->targeti.in->snapid)
3321 		};
3322 
3323 		in = ceph_get_inode(mdsc->fsc->sb, tvino);
3324 		if (IS_ERR(in)) {
3325 			err = PTR_ERR(in);
3326 			mutex_lock(&session->s_mutex);
3327 			goto out_err;
3328 		}
3329 		req->r_target_inode = in;
3330 	}
3331 
3332 	mutex_lock(&session->s_mutex);
3333 	if (err < 0) {
3334 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
3335 		ceph_msg_dump(msg);
3336 		goto out_err;
3337 	}
3338 
3339 	/* snap trace */
3340 	realm = NULL;
3341 	if (rinfo->snapblob_len) {
3342 		down_write(&mdsc->snap_rwsem);
3343 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
3344 				rinfo->snapblob + rinfo->snapblob_len,
3345 				le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
3346 				&realm);
3347 		downgrade_write(&mdsc->snap_rwsem);
3348 	} else {
3349 		down_read(&mdsc->snap_rwsem);
3350 	}
3351 
3352 	/* insert trace into our cache */
3353 	mutex_lock(&req->r_fill_mutex);
3354 	current->journal_info = req;
3355 	err = ceph_fill_trace(mdsc->fsc->sb, req);
3356 	if (err == 0) {
3357 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
3358 				    req->r_op == CEPH_MDS_OP_LSSNAP))
3359 			ceph_readdir_prepopulate(req, req->r_session);
3360 	}
3361 	current->journal_info = NULL;
3362 	mutex_unlock(&req->r_fill_mutex);
3363 
3364 	up_read(&mdsc->snap_rwsem);
3365 	if (realm)
3366 		ceph_put_snap_realm(mdsc, realm);
3367 
3368 	if (err == 0) {
3369 		if (req->r_target_inode &&
3370 		    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
3371 			struct ceph_inode_info *ci =
3372 				ceph_inode(req->r_target_inode);
3373 			spin_lock(&ci->i_unsafe_lock);
3374 			list_add_tail(&req->r_unsafe_target_item,
3375 				      &ci->i_unsafe_iops);
3376 			spin_unlock(&ci->i_unsafe_lock);
3377 		}
3378 
3379 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
3380 	}
3381 out_err:
3382 	mutex_lock(&mdsc->mutex);
3383 	if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
3384 		if (err) {
3385 			req->r_err = err;
3386 		} else {
3387 			req->r_reply =  ceph_msg_get(msg);
3388 			set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags);
3389 		}
3390 	} else {
3391 		dout("reply arrived after request %lld was aborted\n", tid);
3392 	}
3393 	mutex_unlock(&mdsc->mutex);
3394 
3395 	mutex_unlock(&session->s_mutex);
3396 
3397 	/* kick calling process */
3398 	complete_request(mdsc, req);
3399 
3400 	ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency,
3401 				     req->r_end_latency, err);
3402 out:
3403 	ceph_mdsc_put_request(req);
3404 	return;
3405 }
3406 
3407 
3408 
3409 /*
3410  * handle mds notification that our request has been forwarded.
3411  */
3412 static void handle_forward(struct ceph_mds_client *mdsc,
3413 			   struct ceph_mds_session *session,
3414 			   struct ceph_msg *msg)
3415 {
3416 	struct ceph_mds_request *req;
3417 	u64 tid = le64_to_cpu(msg->hdr.tid);
3418 	u32 next_mds;
3419 	u32 fwd_seq;
3420 	int err = -EINVAL;
3421 	void *p = msg->front.iov_base;
3422 	void *end = p + msg->front.iov_len;
3423 	bool aborted = false;
3424 
3425 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
3426 	next_mds = ceph_decode_32(&p);
3427 	fwd_seq = ceph_decode_32(&p);
3428 
3429 	mutex_lock(&mdsc->mutex);
3430 	req = lookup_get_request(mdsc, tid);
3431 	if (!req) {
3432 		mutex_unlock(&mdsc->mutex);
3433 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
3434 		return;  /* dup reply? */
3435 	}
3436 
3437 	if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
3438 		dout("forward tid %llu aborted, unregistering\n", tid);
3439 		__unregister_request(mdsc, req);
3440 	} else if (fwd_seq <= req->r_num_fwd) {
3441 		/*
3442 		 * The type of 'num_fwd' in ceph 'MClientRequestForward'
3443 		 * is 'int32_t', while in 'ceph_mds_request_head' the
3444 		 * type is '__u8'. So in case the request bounces between
3445 		 * MDSes exceeding 256 times, the client will get stuck.
3446 		 *
3447 		 * In this case it's ususally a bug in MDS and continue
3448 		 * bouncing the request makes no sense.
3449 		 *
3450 		 * In future this could be fixed in ceph code, so avoid
3451 		 * using the hardcode here.
3452 		 */
3453 		int max = sizeof_field(struct ceph_mds_request_head, num_fwd);
3454 		max = 1 << (max * BITS_PER_BYTE);
3455 		if (req->r_num_fwd >= max) {
3456 			mutex_lock(&req->r_fill_mutex);
3457 			req->r_err = -EMULTIHOP;
3458 			set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
3459 			mutex_unlock(&req->r_fill_mutex);
3460 			aborted = true;
3461 			pr_warn_ratelimited("forward tid %llu seq overflow\n",
3462 					    tid);
3463 		} else {
3464 			dout("forward tid %llu to mds%d - old seq %d <= %d\n",
3465 			     tid, next_mds, req->r_num_fwd, fwd_seq);
3466 		}
3467 	} else {
3468 		/* resend. forward race not possible; mds would drop */
3469 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
3470 		BUG_ON(req->r_err);
3471 		BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags));
3472 		req->r_attempts = 0;
3473 		req->r_num_fwd = fwd_seq;
3474 		req->r_resend_mds = next_mds;
3475 		put_request_session(req);
3476 		__do_request(mdsc, req);
3477 	}
3478 	mutex_unlock(&mdsc->mutex);
3479 
3480 	/* kick calling process */
3481 	if (aborted)
3482 		complete_request(mdsc, req);
3483 	ceph_mdsc_put_request(req);
3484 	return;
3485 
3486 bad:
3487 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
3488 }
3489 
3490 static int __decode_session_metadata(void **p, void *end,
3491 				     bool *blocklisted)
3492 {
3493 	/* map<string,string> */
3494 	u32 n;
3495 	bool err_str;
3496 	ceph_decode_32_safe(p, end, n, bad);
3497 	while (n-- > 0) {
3498 		u32 len;
3499 		ceph_decode_32_safe(p, end, len, bad);
3500 		ceph_decode_need(p, end, len, bad);
3501 		err_str = !strncmp(*p, "error_string", len);
3502 		*p += len;
3503 		ceph_decode_32_safe(p, end, len, bad);
3504 		ceph_decode_need(p, end, len, bad);
3505 		/*
3506 		 * Match "blocklisted (blacklisted)" from newer MDSes,
3507 		 * or "blacklisted" from older MDSes.
3508 		 */
3509 		if (err_str && strnstr(*p, "blacklisted", len))
3510 			*blocklisted = true;
3511 		*p += len;
3512 	}
3513 	return 0;
3514 bad:
3515 	return -1;
3516 }
3517 
3518 /*
3519  * handle a mds session control message
3520  */
3521 static void handle_session(struct ceph_mds_session *session,
3522 			   struct ceph_msg *msg)
3523 {
3524 	struct ceph_mds_client *mdsc = session->s_mdsc;
3525 	int mds = session->s_mds;
3526 	int msg_version = le16_to_cpu(msg->hdr.version);
3527 	void *p = msg->front.iov_base;
3528 	void *end = p + msg->front.iov_len;
3529 	struct ceph_mds_session_head *h;
3530 	u32 op;
3531 	u64 seq, features = 0;
3532 	int wake = 0;
3533 	bool blocklisted = false;
3534 
3535 	/* decode */
3536 	ceph_decode_need(&p, end, sizeof(*h), bad);
3537 	h = p;
3538 	p += sizeof(*h);
3539 
3540 	op = le32_to_cpu(h->op);
3541 	seq = le64_to_cpu(h->seq);
3542 
3543 	if (msg_version >= 3) {
3544 		u32 len;
3545 		/* version >= 2 and < 5, decode metadata, skip otherwise
3546 		 * as it's handled via flags.
3547 		 */
3548 		if (msg_version >= 5)
3549 			ceph_decode_skip_map(&p, end, string, string, bad);
3550 		else if (__decode_session_metadata(&p, end, &blocklisted) < 0)
3551 			goto bad;
3552 
3553 		/* version >= 3, feature bits */
3554 		ceph_decode_32_safe(&p, end, len, bad);
3555 		if (len) {
3556 			ceph_decode_64_safe(&p, end, features, bad);
3557 			p += len - sizeof(features);
3558 		}
3559 	}
3560 
3561 	if (msg_version >= 5) {
3562 		u32 flags, len;
3563 
3564 		/* version >= 4 */
3565 		ceph_decode_skip_16(&p, end, bad); /* struct_v, struct_cv */
3566 		ceph_decode_32_safe(&p, end, len, bad); /* len */
3567 		ceph_decode_skip_n(&p, end, len, bad); /* metric_spec */
3568 
3569 		/* version >= 5, flags   */
3570 		ceph_decode_32_safe(&p, end, flags, bad);
3571 		if (flags & CEPH_SESSION_BLOCKLISTED) {
3572 			pr_warn("mds%d session blocklisted\n", session->s_mds);
3573 			blocklisted = true;
3574 		}
3575 	}
3576 
3577 	mutex_lock(&mdsc->mutex);
3578 	if (op == CEPH_SESSION_CLOSE) {
3579 		ceph_get_mds_session(session);
3580 		__unregister_session(mdsc, session);
3581 	}
3582 	/* FIXME: this ttl calculation is generous */
3583 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
3584 	mutex_unlock(&mdsc->mutex);
3585 
3586 	mutex_lock(&session->s_mutex);
3587 
3588 	dout("handle_session mds%d %s %p state %s seq %llu\n",
3589 	     mds, ceph_session_op_name(op), session,
3590 	     ceph_session_state_name(session->s_state), seq);
3591 
3592 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
3593 		session->s_state = CEPH_MDS_SESSION_OPEN;
3594 		pr_info("mds%d came back\n", session->s_mds);
3595 	}
3596 
3597 	switch (op) {
3598 	case CEPH_SESSION_OPEN:
3599 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
3600 			pr_info("mds%d reconnect success\n", session->s_mds);
3601 
3602 		if (session->s_state == CEPH_MDS_SESSION_OPEN) {
3603 			pr_notice("mds%d is already opened\n", session->s_mds);
3604 		} else {
3605 			session->s_state = CEPH_MDS_SESSION_OPEN;
3606 			session->s_features = features;
3607 			renewed_caps(mdsc, session, 0);
3608 			if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT,
3609 				     &session->s_features))
3610 				metric_schedule_delayed(&mdsc->metric);
3611 		}
3612 
3613 		/*
3614 		 * The connection maybe broken and the session in client
3615 		 * side has been reinitialized, need to update the seq
3616 		 * anyway.
3617 		 */
3618 		if (!session->s_seq && seq)
3619 			session->s_seq = seq;
3620 
3621 		wake = 1;
3622 		if (mdsc->stopping)
3623 			__close_session(mdsc, session);
3624 		break;
3625 
3626 	case CEPH_SESSION_RENEWCAPS:
3627 		if (session->s_renew_seq == seq)
3628 			renewed_caps(mdsc, session, 1);
3629 		break;
3630 
3631 	case CEPH_SESSION_CLOSE:
3632 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
3633 			pr_info("mds%d reconnect denied\n", session->s_mds);
3634 		session->s_state = CEPH_MDS_SESSION_CLOSED;
3635 		cleanup_session_requests(mdsc, session);
3636 		remove_session_caps(session);
3637 		wake = 2; /* for good measure */
3638 		wake_up_all(&mdsc->session_close_wq);
3639 		break;
3640 
3641 	case CEPH_SESSION_STALE:
3642 		pr_info("mds%d caps went stale, renewing\n",
3643 			session->s_mds);
3644 		atomic_inc(&session->s_cap_gen);
3645 		session->s_cap_ttl = jiffies - 1;
3646 		send_renew_caps(mdsc, session);
3647 		break;
3648 
3649 	case CEPH_SESSION_RECALL_STATE:
3650 		ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
3651 		break;
3652 
3653 	case CEPH_SESSION_FLUSHMSG:
3654 		send_flushmsg_ack(mdsc, session, seq);
3655 		break;
3656 
3657 	case CEPH_SESSION_FORCE_RO:
3658 		dout("force_session_readonly %p\n", session);
3659 		spin_lock(&session->s_cap_lock);
3660 		session->s_readonly = true;
3661 		spin_unlock(&session->s_cap_lock);
3662 		wake_up_session_caps(session, FORCE_RO);
3663 		break;
3664 
3665 	case CEPH_SESSION_REJECT:
3666 		WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING);
3667 		pr_info("mds%d rejected session\n", session->s_mds);
3668 		session->s_state = CEPH_MDS_SESSION_REJECTED;
3669 		cleanup_session_requests(mdsc, session);
3670 		remove_session_caps(session);
3671 		if (blocklisted)
3672 			mdsc->fsc->blocklisted = true;
3673 		wake = 2; /* for good measure */
3674 		break;
3675 
3676 	default:
3677 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
3678 		WARN_ON(1);
3679 	}
3680 
3681 	mutex_unlock(&session->s_mutex);
3682 	if (wake) {
3683 		mutex_lock(&mdsc->mutex);
3684 		__wake_requests(mdsc, &session->s_waiting);
3685 		if (wake == 2)
3686 			kick_requests(mdsc, mds);
3687 		mutex_unlock(&mdsc->mutex);
3688 	}
3689 	if (op == CEPH_SESSION_CLOSE)
3690 		ceph_put_mds_session(session);
3691 	return;
3692 
3693 bad:
3694 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
3695 	       (int)msg->front.iov_len);
3696 	ceph_msg_dump(msg);
3697 	return;
3698 }
3699 
3700 void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req)
3701 {
3702 	int dcaps;
3703 
3704 	dcaps = xchg(&req->r_dir_caps, 0);
3705 	if (dcaps) {
3706 		dout("releasing r_dir_caps=%s\n", ceph_cap_string(dcaps));
3707 		ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps);
3708 	}
3709 }
3710 
3711 void ceph_mdsc_release_dir_caps_no_check(struct ceph_mds_request *req)
3712 {
3713 	int dcaps;
3714 
3715 	dcaps = xchg(&req->r_dir_caps, 0);
3716 	if (dcaps) {
3717 		dout("releasing r_dir_caps=%s\n", ceph_cap_string(dcaps));
3718 		ceph_put_cap_refs_no_check_caps(ceph_inode(req->r_parent),
3719 						dcaps);
3720 	}
3721 }
3722 
3723 /*
3724  * called under session->mutex.
3725  */
3726 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
3727 				   struct ceph_mds_session *session)
3728 {
3729 	struct ceph_mds_request *req, *nreq;
3730 	struct rb_node *p;
3731 
3732 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
3733 
3734 	mutex_lock(&mdsc->mutex);
3735 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item)
3736 		__send_request(session, req, true);
3737 
3738 	/*
3739 	 * also re-send old requests when MDS enters reconnect stage. So that MDS
3740 	 * can process completed request in clientreplay stage.
3741 	 */
3742 	p = rb_first(&mdsc->request_tree);
3743 	while (p) {
3744 		req = rb_entry(p, struct ceph_mds_request, r_node);
3745 		p = rb_next(p);
3746 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
3747 			continue;
3748 		if (req->r_attempts == 0)
3749 			continue; /* only old requests */
3750 		if (!req->r_session)
3751 			continue;
3752 		if (req->r_session->s_mds != session->s_mds)
3753 			continue;
3754 
3755 		ceph_mdsc_release_dir_caps_no_check(req);
3756 
3757 		__send_request(session, req, true);
3758 	}
3759 	mutex_unlock(&mdsc->mutex);
3760 }
3761 
3762 static int send_reconnect_partial(struct ceph_reconnect_state *recon_state)
3763 {
3764 	struct ceph_msg *reply;
3765 	struct ceph_pagelist *_pagelist;
3766 	struct page *page;
3767 	__le32 *addr;
3768 	int err = -ENOMEM;
3769 
3770 	if (!recon_state->allow_multi)
3771 		return -ENOSPC;
3772 
3773 	/* can't handle message that contains both caps and realm */
3774 	BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms);
3775 
3776 	/* pre-allocate new pagelist */
3777 	_pagelist = ceph_pagelist_alloc(GFP_NOFS);
3778 	if (!_pagelist)
3779 		return -ENOMEM;
3780 
3781 	reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false);
3782 	if (!reply)
3783 		goto fail_msg;
3784 
3785 	/* placeholder for nr_caps */
3786 	err = ceph_pagelist_encode_32(_pagelist, 0);
3787 	if (err < 0)
3788 		goto fail;
3789 
3790 	if (recon_state->nr_caps) {
3791 		/* currently encoding caps */
3792 		err = ceph_pagelist_encode_32(recon_state->pagelist, 0);
3793 		if (err)
3794 			goto fail;
3795 	} else {
3796 		/* placeholder for nr_realms (currently encoding relams) */
3797 		err = ceph_pagelist_encode_32(_pagelist, 0);
3798 		if (err < 0)
3799 			goto fail;
3800 	}
3801 
3802 	err = ceph_pagelist_encode_8(recon_state->pagelist, 1);
3803 	if (err)
3804 		goto fail;
3805 
3806 	page = list_first_entry(&recon_state->pagelist->head, struct page, lru);
3807 	addr = kmap_atomic(page);
3808 	if (recon_state->nr_caps) {
3809 		/* currently encoding caps */
3810 		*addr = cpu_to_le32(recon_state->nr_caps);
3811 	} else {
3812 		/* currently encoding relams */
3813 		*(addr + 1) = cpu_to_le32(recon_state->nr_realms);
3814 	}
3815 	kunmap_atomic(addr);
3816 
3817 	reply->hdr.version = cpu_to_le16(5);
3818 	reply->hdr.compat_version = cpu_to_le16(4);
3819 
3820 	reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length);
3821 	ceph_msg_data_add_pagelist(reply, recon_state->pagelist);
3822 
3823 	ceph_con_send(&recon_state->session->s_con, reply);
3824 	ceph_pagelist_release(recon_state->pagelist);
3825 
3826 	recon_state->pagelist = _pagelist;
3827 	recon_state->nr_caps = 0;
3828 	recon_state->nr_realms = 0;
3829 	recon_state->msg_version = 5;
3830 	return 0;
3831 fail:
3832 	ceph_msg_put(reply);
3833 fail_msg:
3834 	ceph_pagelist_release(_pagelist);
3835 	return err;
3836 }
3837 
3838 static struct dentry* d_find_primary(struct inode *inode)
3839 {
3840 	struct dentry *alias, *dn = NULL;
3841 
3842 	if (hlist_empty(&inode->i_dentry))
3843 		return NULL;
3844 
3845 	spin_lock(&inode->i_lock);
3846 	if (hlist_empty(&inode->i_dentry))
3847 		goto out_unlock;
3848 
3849 	if (S_ISDIR(inode->i_mode)) {
3850 		alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
3851 		if (!IS_ROOT(alias))
3852 			dn = dget(alias);
3853 		goto out_unlock;
3854 	}
3855 
3856 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
3857 		spin_lock(&alias->d_lock);
3858 		if (!d_unhashed(alias) &&
3859 		    (ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) {
3860 			dn = dget_dlock(alias);
3861 		}
3862 		spin_unlock(&alias->d_lock);
3863 		if (dn)
3864 			break;
3865 	}
3866 out_unlock:
3867 	spin_unlock(&inode->i_lock);
3868 	return dn;
3869 }
3870 
3871 /*
3872  * Encode information about a cap for a reconnect with the MDS.
3873  */
3874 static int reconnect_caps_cb(struct inode *inode, struct ceph_cap *cap,
3875 			  void *arg)
3876 {
3877 	union {
3878 		struct ceph_mds_cap_reconnect v2;
3879 		struct ceph_mds_cap_reconnect_v1 v1;
3880 	} rec;
3881 	struct ceph_inode_info *ci = cap->ci;
3882 	struct ceph_reconnect_state *recon_state = arg;
3883 	struct ceph_pagelist *pagelist = recon_state->pagelist;
3884 	struct dentry *dentry;
3885 	char *path;
3886 	int pathlen = 0, err;
3887 	u64 pathbase;
3888 	u64 snap_follows;
3889 
3890 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
3891 	     inode, ceph_vinop(inode), cap, cap->cap_id,
3892 	     ceph_cap_string(cap->issued));
3893 
3894 	dentry = d_find_primary(inode);
3895 	if (dentry) {
3896 		/* set pathbase to parent dir when msg_version >= 2 */
3897 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase,
3898 					    recon_state->msg_version >= 2);
3899 		dput(dentry);
3900 		if (IS_ERR(path)) {
3901 			err = PTR_ERR(path);
3902 			goto out_err;
3903 		}
3904 	} else {
3905 		path = NULL;
3906 		pathbase = 0;
3907 	}
3908 
3909 	spin_lock(&ci->i_ceph_lock);
3910 	cap->seq = 0;        /* reset cap seq */
3911 	cap->issue_seq = 0;  /* and issue_seq */
3912 	cap->mseq = 0;       /* and migrate_seq */
3913 	cap->cap_gen = atomic_read(&cap->session->s_cap_gen);
3914 
3915 	/* These are lost when the session goes away */
3916 	if (S_ISDIR(inode->i_mode)) {
3917 		if (cap->issued & CEPH_CAP_DIR_CREATE) {
3918 			ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns));
3919 			memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout));
3920 		}
3921 		cap->issued &= ~CEPH_CAP_ANY_DIR_OPS;
3922 	}
3923 
3924 	if (recon_state->msg_version >= 2) {
3925 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
3926 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
3927 		rec.v2.issued = cpu_to_le32(cap->issued);
3928 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
3929 		rec.v2.pathbase = cpu_to_le64(pathbase);
3930 		rec.v2.flock_len = (__force __le32)
3931 			((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1);
3932 	} else {
3933 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
3934 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
3935 		rec.v1.issued = cpu_to_le32(cap->issued);
3936 		rec.v1.size = cpu_to_le64(i_size_read(inode));
3937 		ceph_encode_timespec64(&rec.v1.mtime, &inode->i_mtime);
3938 		ceph_encode_timespec64(&rec.v1.atime, &inode->i_atime);
3939 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
3940 		rec.v1.pathbase = cpu_to_le64(pathbase);
3941 	}
3942 
3943 	if (list_empty(&ci->i_cap_snaps)) {
3944 		snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0;
3945 	} else {
3946 		struct ceph_cap_snap *capsnap =
3947 			list_first_entry(&ci->i_cap_snaps,
3948 					 struct ceph_cap_snap, ci_item);
3949 		snap_follows = capsnap->follows;
3950 	}
3951 	spin_unlock(&ci->i_ceph_lock);
3952 
3953 	if (recon_state->msg_version >= 2) {
3954 		int num_fcntl_locks, num_flock_locks;
3955 		struct ceph_filelock *flocks = NULL;
3956 		size_t struct_len, total_len = sizeof(u64);
3957 		u8 struct_v = 0;
3958 
3959 encode_again:
3960 		if (rec.v2.flock_len) {
3961 			ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
3962 		} else {
3963 			num_fcntl_locks = 0;
3964 			num_flock_locks = 0;
3965 		}
3966 		if (num_fcntl_locks + num_flock_locks > 0) {
3967 			flocks = kmalloc_array(num_fcntl_locks + num_flock_locks,
3968 					       sizeof(struct ceph_filelock),
3969 					       GFP_NOFS);
3970 			if (!flocks) {
3971 				err = -ENOMEM;
3972 				goto out_err;
3973 			}
3974 			err = ceph_encode_locks_to_buffer(inode, flocks,
3975 							  num_fcntl_locks,
3976 							  num_flock_locks);
3977 			if (err) {
3978 				kfree(flocks);
3979 				flocks = NULL;
3980 				if (err == -ENOSPC)
3981 					goto encode_again;
3982 				goto out_err;
3983 			}
3984 		} else {
3985 			kfree(flocks);
3986 			flocks = NULL;
3987 		}
3988 
3989 		if (recon_state->msg_version >= 3) {
3990 			/* version, compat_version and struct_len */
3991 			total_len += 2 * sizeof(u8) + sizeof(u32);
3992 			struct_v = 2;
3993 		}
3994 		/*
3995 		 * number of encoded locks is stable, so copy to pagelist
3996 		 */
3997 		struct_len = 2 * sizeof(u32) +
3998 			    (num_fcntl_locks + num_flock_locks) *
3999 			    sizeof(struct ceph_filelock);
4000 		rec.v2.flock_len = cpu_to_le32(struct_len);
4001 
4002 		struct_len += sizeof(u32) + pathlen + sizeof(rec.v2);
4003 
4004 		if (struct_v >= 2)
4005 			struct_len += sizeof(u64); /* snap_follows */
4006 
4007 		total_len += struct_len;
4008 
4009 		if (pagelist->length + total_len > RECONNECT_MAX_SIZE) {
4010 			err = send_reconnect_partial(recon_state);
4011 			if (err)
4012 				goto out_freeflocks;
4013 			pagelist = recon_state->pagelist;
4014 		}
4015 
4016 		err = ceph_pagelist_reserve(pagelist, total_len);
4017 		if (err)
4018 			goto out_freeflocks;
4019 
4020 		ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
4021 		if (recon_state->msg_version >= 3) {
4022 			ceph_pagelist_encode_8(pagelist, struct_v);
4023 			ceph_pagelist_encode_8(pagelist, 1);
4024 			ceph_pagelist_encode_32(pagelist, struct_len);
4025 		}
4026 		ceph_pagelist_encode_string(pagelist, path, pathlen);
4027 		ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2));
4028 		ceph_locks_to_pagelist(flocks, pagelist,
4029 				       num_fcntl_locks, num_flock_locks);
4030 		if (struct_v >= 2)
4031 			ceph_pagelist_encode_64(pagelist, snap_follows);
4032 out_freeflocks:
4033 		kfree(flocks);
4034 	} else {
4035 		err = ceph_pagelist_reserve(pagelist,
4036 					    sizeof(u64) + sizeof(u32) +
4037 					    pathlen + sizeof(rec.v1));
4038 		if (err)
4039 			goto out_err;
4040 
4041 		ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
4042 		ceph_pagelist_encode_string(pagelist, path, pathlen);
4043 		ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1));
4044 	}
4045 
4046 out_err:
4047 	ceph_mdsc_free_path(path, pathlen);
4048 	if (!err)
4049 		recon_state->nr_caps++;
4050 	return err;
4051 }
4052 
4053 static int encode_snap_realms(struct ceph_mds_client *mdsc,
4054 			      struct ceph_reconnect_state *recon_state)
4055 {
4056 	struct rb_node *p;
4057 	struct ceph_pagelist *pagelist = recon_state->pagelist;
4058 	int err = 0;
4059 
4060 	if (recon_state->msg_version >= 4) {
4061 		err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms);
4062 		if (err < 0)
4063 			goto fail;
4064 	}
4065 
4066 	/*
4067 	 * snaprealms.  we provide mds with the ino, seq (version), and
4068 	 * parent for all of our realms.  If the mds has any newer info,
4069 	 * it will tell us.
4070 	 */
4071 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
4072 		struct ceph_snap_realm *realm =
4073 		       rb_entry(p, struct ceph_snap_realm, node);
4074 		struct ceph_mds_snaprealm_reconnect sr_rec;
4075 
4076 		if (recon_state->msg_version >= 4) {
4077 			size_t need = sizeof(u8) * 2 + sizeof(u32) +
4078 				      sizeof(sr_rec);
4079 
4080 			if (pagelist->length + need > RECONNECT_MAX_SIZE) {
4081 				err = send_reconnect_partial(recon_state);
4082 				if (err)
4083 					goto fail;
4084 				pagelist = recon_state->pagelist;
4085 			}
4086 
4087 			err = ceph_pagelist_reserve(pagelist, need);
4088 			if (err)
4089 				goto fail;
4090 
4091 			ceph_pagelist_encode_8(pagelist, 1);
4092 			ceph_pagelist_encode_8(pagelist, 1);
4093 			ceph_pagelist_encode_32(pagelist, sizeof(sr_rec));
4094 		}
4095 
4096 		dout(" adding snap realm %llx seq %lld parent %llx\n",
4097 		     realm->ino, realm->seq, realm->parent_ino);
4098 		sr_rec.ino = cpu_to_le64(realm->ino);
4099 		sr_rec.seq = cpu_to_le64(realm->seq);
4100 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
4101 
4102 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
4103 		if (err)
4104 			goto fail;
4105 
4106 		recon_state->nr_realms++;
4107 	}
4108 fail:
4109 	return err;
4110 }
4111 
4112 
4113 /*
4114  * If an MDS fails and recovers, clients need to reconnect in order to
4115  * reestablish shared state.  This includes all caps issued through
4116  * this session _and_ the snap_realm hierarchy.  Because it's not
4117  * clear which snap realms the mds cares about, we send everything we
4118  * know about.. that ensures we'll then get any new info the
4119  * recovering MDS might have.
4120  *
4121  * This is a relatively heavyweight operation, but it's rare.
4122  */
4123 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
4124 			       struct ceph_mds_session *session)
4125 {
4126 	struct ceph_msg *reply;
4127 	int mds = session->s_mds;
4128 	int err = -ENOMEM;
4129 	struct ceph_reconnect_state recon_state = {
4130 		.session = session,
4131 	};
4132 	LIST_HEAD(dispose);
4133 
4134 	pr_info("mds%d reconnect start\n", mds);
4135 
4136 	recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS);
4137 	if (!recon_state.pagelist)
4138 		goto fail_nopagelist;
4139 
4140 	reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false);
4141 	if (!reply)
4142 		goto fail_nomsg;
4143 
4144 	xa_destroy(&session->s_delegated_inos);
4145 
4146 	mutex_lock(&session->s_mutex);
4147 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
4148 	session->s_seq = 0;
4149 
4150 	dout("session %p state %s\n", session,
4151 	     ceph_session_state_name(session->s_state));
4152 
4153 	atomic_inc(&session->s_cap_gen);
4154 
4155 	spin_lock(&session->s_cap_lock);
4156 	/* don't know if session is readonly */
4157 	session->s_readonly = 0;
4158 	/*
4159 	 * notify __ceph_remove_cap() that we are composing cap reconnect.
4160 	 * If a cap get released before being added to the cap reconnect,
4161 	 * __ceph_remove_cap() should skip queuing cap release.
4162 	 */
4163 	session->s_cap_reconnect = 1;
4164 	/* drop old cap expires; we're about to reestablish that state */
4165 	detach_cap_releases(session, &dispose);
4166 	spin_unlock(&session->s_cap_lock);
4167 	dispose_cap_releases(mdsc, &dispose);
4168 
4169 	/* trim unused caps to reduce MDS's cache rejoin time */
4170 	if (mdsc->fsc->sb->s_root)
4171 		shrink_dcache_parent(mdsc->fsc->sb->s_root);
4172 
4173 	ceph_con_close(&session->s_con);
4174 	ceph_con_open(&session->s_con,
4175 		      CEPH_ENTITY_TYPE_MDS, mds,
4176 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
4177 
4178 	/* replay unsafe requests */
4179 	replay_unsafe_requests(mdsc, session);
4180 
4181 	ceph_early_kick_flushing_caps(mdsc, session);
4182 
4183 	down_read(&mdsc->snap_rwsem);
4184 
4185 	/* placeholder for nr_caps */
4186 	err = ceph_pagelist_encode_32(recon_state.pagelist, 0);
4187 	if (err)
4188 		goto fail;
4189 
4190 	if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) {
4191 		recon_state.msg_version = 3;
4192 		recon_state.allow_multi = true;
4193 	} else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) {
4194 		recon_state.msg_version = 3;
4195 	} else {
4196 		recon_state.msg_version = 2;
4197 	}
4198 	/* trsaverse this session's caps */
4199 	err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state);
4200 
4201 	spin_lock(&session->s_cap_lock);
4202 	session->s_cap_reconnect = 0;
4203 	spin_unlock(&session->s_cap_lock);
4204 
4205 	if (err < 0)
4206 		goto fail;
4207 
4208 	/* check if all realms can be encoded into current message */
4209 	if (mdsc->num_snap_realms) {
4210 		size_t total_len =
4211 			recon_state.pagelist->length +
4212 			mdsc->num_snap_realms *
4213 			sizeof(struct ceph_mds_snaprealm_reconnect);
4214 		if (recon_state.msg_version >= 4) {
4215 			/* number of realms */
4216 			total_len += sizeof(u32);
4217 			/* version, compat_version and struct_len */
4218 			total_len += mdsc->num_snap_realms *
4219 				     (2 * sizeof(u8) + sizeof(u32));
4220 		}
4221 		if (total_len > RECONNECT_MAX_SIZE) {
4222 			if (!recon_state.allow_multi) {
4223 				err = -ENOSPC;
4224 				goto fail;
4225 			}
4226 			if (recon_state.nr_caps) {
4227 				err = send_reconnect_partial(&recon_state);
4228 				if (err)
4229 					goto fail;
4230 			}
4231 			recon_state.msg_version = 5;
4232 		}
4233 	}
4234 
4235 	err = encode_snap_realms(mdsc, &recon_state);
4236 	if (err < 0)
4237 		goto fail;
4238 
4239 	if (recon_state.msg_version >= 5) {
4240 		err = ceph_pagelist_encode_8(recon_state.pagelist, 0);
4241 		if (err < 0)
4242 			goto fail;
4243 	}
4244 
4245 	if (recon_state.nr_caps || recon_state.nr_realms) {
4246 		struct page *page =
4247 			list_first_entry(&recon_state.pagelist->head,
4248 					struct page, lru);
4249 		__le32 *addr = kmap_atomic(page);
4250 		if (recon_state.nr_caps) {
4251 			WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms);
4252 			*addr = cpu_to_le32(recon_state.nr_caps);
4253 		} else if (recon_state.msg_version >= 4) {
4254 			*(addr + 1) = cpu_to_le32(recon_state.nr_realms);
4255 		}
4256 		kunmap_atomic(addr);
4257 	}
4258 
4259 	reply->hdr.version = cpu_to_le16(recon_state.msg_version);
4260 	if (recon_state.msg_version >= 4)
4261 		reply->hdr.compat_version = cpu_to_le16(4);
4262 
4263 	reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length);
4264 	ceph_msg_data_add_pagelist(reply, recon_state.pagelist);
4265 
4266 	ceph_con_send(&session->s_con, reply);
4267 
4268 	mutex_unlock(&session->s_mutex);
4269 
4270 	mutex_lock(&mdsc->mutex);
4271 	__wake_requests(mdsc, &session->s_waiting);
4272 	mutex_unlock(&mdsc->mutex);
4273 
4274 	up_read(&mdsc->snap_rwsem);
4275 	ceph_pagelist_release(recon_state.pagelist);
4276 	return;
4277 
4278 fail:
4279 	ceph_msg_put(reply);
4280 	up_read(&mdsc->snap_rwsem);
4281 	mutex_unlock(&session->s_mutex);
4282 fail_nomsg:
4283 	ceph_pagelist_release(recon_state.pagelist);
4284 fail_nopagelist:
4285 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
4286 	return;
4287 }
4288 
4289 
4290 /*
4291  * compare old and new mdsmaps, kicking requests
4292  * and closing out old connections as necessary
4293  *
4294  * called under mdsc->mutex.
4295  */
4296 static void check_new_map(struct ceph_mds_client *mdsc,
4297 			  struct ceph_mdsmap *newmap,
4298 			  struct ceph_mdsmap *oldmap)
4299 {
4300 	int i, j, err;
4301 	int oldstate, newstate;
4302 	struct ceph_mds_session *s;
4303 	unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0};
4304 
4305 	dout("check_new_map new %u old %u\n",
4306 	     newmap->m_epoch, oldmap->m_epoch);
4307 
4308 	if (newmap->m_info) {
4309 		for (i = 0; i < newmap->possible_max_rank; i++) {
4310 			for (j = 0; j < newmap->m_info[i].num_export_targets; j++)
4311 				set_bit(newmap->m_info[i].export_targets[j], targets);
4312 		}
4313 	}
4314 
4315 	for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) {
4316 		if (!mdsc->sessions[i])
4317 			continue;
4318 		s = mdsc->sessions[i];
4319 		oldstate = ceph_mdsmap_get_state(oldmap, i);
4320 		newstate = ceph_mdsmap_get_state(newmap, i);
4321 
4322 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
4323 		     i, ceph_mds_state_name(oldstate),
4324 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
4325 		     ceph_mds_state_name(newstate),
4326 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
4327 		     ceph_session_state_name(s->s_state));
4328 
4329 		if (i >= newmap->possible_max_rank) {
4330 			/* force close session for stopped mds */
4331 			ceph_get_mds_session(s);
4332 			__unregister_session(mdsc, s);
4333 			__wake_requests(mdsc, &s->s_waiting);
4334 			mutex_unlock(&mdsc->mutex);
4335 
4336 			mutex_lock(&s->s_mutex);
4337 			cleanup_session_requests(mdsc, s);
4338 			remove_session_caps(s);
4339 			mutex_unlock(&s->s_mutex);
4340 
4341 			ceph_put_mds_session(s);
4342 
4343 			mutex_lock(&mdsc->mutex);
4344 			kick_requests(mdsc, i);
4345 			continue;
4346 		}
4347 
4348 		if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
4349 			   ceph_mdsmap_get_addr(newmap, i),
4350 			   sizeof(struct ceph_entity_addr))) {
4351 			/* just close it */
4352 			mutex_unlock(&mdsc->mutex);
4353 			mutex_lock(&s->s_mutex);
4354 			mutex_lock(&mdsc->mutex);
4355 			ceph_con_close(&s->s_con);
4356 			mutex_unlock(&s->s_mutex);
4357 			s->s_state = CEPH_MDS_SESSION_RESTARTING;
4358 		} else if (oldstate == newstate) {
4359 			continue;  /* nothing new with this mds */
4360 		}
4361 
4362 		/*
4363 		 * send reconnect?
4364 		 */
4365 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
4366 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
4367 			mutex_unlock(&mdsc->mutex);
4368 			clear_bit(i, targets);
4369 			send_mds_reconnect(mdsc, s);
4370 			mutex_lock(&mdsc->mutex);
4371 		}
4372 
4373 		/*
4374 		 * kick request on any mds that has gone active.
4375 		 */
4376 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
4377 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
4378 			if (oldstate != CEPH_MDS_STATE_CREATING &&
4379 			    oldstate != CEPH_MDS_STATE_STARTING)
4380 				pr_info("mds%d recovery completed\n", s->s_mds);
4381 			kick_requests(mdsc, i);
4382 			mutex_unlock(&mdsc->mutex);
4383 			mutex_lock(&s->s_mutex);
4384 			mutex_lock(&mdsc->mutex);
4385 			ceph_kick_flushing_caps(mdsc, s);
4386 			mutex_unlock(&s->s_mutex);
4387 			wake_up_session_caps(s, RECONNECT);
4388 		}
4389 	}
4390 
4391 	/*
4392 	 * Only open and reconnect sessions that don't exist yet.
4393 	 */
4394 	for (i = 0; i < newmap->possible_max_rank; i++) {
4395 		/*
4396 		 * In case the import MDS is crashed just after
4397 		 * the EImportStart journal is flushed, so when
4398 		 * a standby MDS takes over it and is replaying
4399 		 * the EImportStart journal the new MDS daemon
4400 		 * will wait the client to reconnect it, but the
4401 		 * client may never register/open the session yet.
4402 		 *
4403 		 * Will try to reconnect that MDS daemon if the
4404 		 * rank number is in the export targets array and
4405 		 * is the up:reconnect state.
4406 		 */
4407 		newstate = ceph_mdsmap_get_state(newmap, i);
4408 		if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT)
4409 			continue;
4410 
4411 		/*
4412 		 * The session maybe registered and opened by some
4413 		 * requests which were choosing random MDSes during
4414 		 * the mdsc->mutex's unlock/lock gap below in rare
4415 		 * case. But the related MDS daemon will just queue
4416 		 * that requests and be still waiting for the client's
4417 		 * reconnection request in up:reconnect state.
4418 		 */
4419 		s = __ceph_lookup_mds_session(mdsc, i);
4420 		if (likely(!s)) {
4421 			s = __open_export_target_session(mdsc, i);
4422 			if (IS_ERR(s)) {
4423 				err = PTR_ERR(s);
4424 				pr_err("failed to open export target session, err %d\n",
4425 				       err);
4426 				continue;
4427 			}
4428 		}
4429 		dout("send reconnect to export target mds.%d\n", i);
4430 		mutex_unlock(&mdsc->mutex);
4431 		send_mds_reconnect(mdsc, s);
4432 		ceph_put_mds_session(s);
4433 		mutex_lock(&mdsc->mutex);
4434 	}
4435 
4436 	for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) {
4437 		s = mdsc->sessions[i];
4438 		if (!s)
4439 			continue;
4440 		if (!ceph_mdsmap_is_laggy(newmap, i))
4441 			continue;
4442 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
4443 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
4444 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
4445 			dout(" connecting to export targets of laggy mds%d\n",
4446 			     i);
4447 			__open_export_target_sessions(mdsc, s);
4448 		}
4449 	}
4450 }
4451 
4452 
4453 
4454 /*
4455  * leases
4456  */
4457 
4458 /*
4459  * caller must hold session s_mutex, dentry->d_lock
4460  */
4461 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
4462 {
4463 	struct ceph_dentry_info *di = ceph_dentry(dentry);
4464 
4465 	ceph_put_mds_session(di->lease_session);
4466 	di->lease_session = NULL;
4467 }
4468 
4469 static void handle_lease(struct ceph_mds_client *mdsc,
4470 			 struct ceph_mds_session *session,
4471 			 struct ceph_msg *msg)
4472 {
4473 	struct super_block *sb = mdsc->fsc->sb;
4474 	struct inode *inode;
4475 	struct dentry *parent, *dentry;
4476 	struct ceph_dentry_info *di;
4477 	int mds = session->s_mds;
4478 	struct ceph_mds_lease *h = msg->front.iov_base;
4479 	u32 seq;
4480 	struct ceph_vino vino;
4481 	struct qstr dname;
4482 	int release = 0;
4483 
4484 	dout("handle_lease from mds%d\n", mds);
4485 
4486 	/* decode */
4487 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
4488 		goto bad;
4489 	vino.ino = le64_to_cpu(h->ino);
4490 	vino.snap = CEPH_NOSNAP;
4491 	seq = le32_to_cpu(h->seq);
4492 	dname.len = get_unaligned_le32(h + 1);
4493 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len)
4494 		goto bad;
4495 	dname.name = (void *)(h + 1) + sizeof(u32);
4496 
4497 	/* lookup inode */
4498 	inode = ceph_find_inode(sb, vino);
4499 	dout("handle_lease %s, ino %llx %p %.*s\n",
4500 	     ceph_lease_op_name(h->action), vino.ino, inode,
4501 	     dname.len, dname.name);
4502 
4503 	mutex_lock(&session->s_mutex);
4504 	inc_session_sequence(session);
4505 
4506 	if (!inode) {
4507 		dout("handle_lease no inode %llx\n", vino.ino);
4508 		goto release;
4509 	}
4510 
4511 	/* dentry */
4512 	parent = d_find_alias(inode);
4513 	if (!parent) {
4514 		dout("no parent dentry on inode %p\n", inode);
4515 		WARN_ON(1);
4516 		goto release;  /* hrm... */
4517 	}
4518 	dname.hash = full_name_hash(parent, dname.name, dname.len);
4519 	dentry = d_lookup(parent, &dname);
4520 	dput(parent);
4521 	if (!dentry)
4522 		goto release;
4523 
4524 	spin_lock(&dentry->d_lock);
4525 	di = ceph_dentry(dentry);
4526 	switch (h->action) {
4527 	case CEPH_MDS_LEASE_REVOKE:
4528 		if (di->lease_session == session) {
4529 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
4530 				h->seq = cpu_to_le32(di->lease_seq);
4531 			__ceph_mdsc_drop_dentry_lease(dentry);
4532 		}
4533 		release = 1;
4534 		break;
4535 
4536 	case CEPH_MDS_LEASE_RENEW:
4537 		if (di->lease_session == session &&
4538 		    di->lease_gen == atomic_read(&session->s_cap_gen) &&
4539 		    di->lease_renew_from &&
4540 		    di->lease_renew_after == 0) {
4541 			unsigned long duration =
4542 				msecs_to_jiffies(le32_to_cpu(h->duration_ms));
4543 
4544 			di->lease_seq = seq;
4545 			di->time = di->lease_renew_from + duration;
4546 			di->lease_renew_after = di->lease_renew_from +
4547 				(duration >> 1);
4548 			di->lease_renew_from = 0;
4549 		}
4550 		break;
4551 	}
4552 	spin_unlock(&dentry->d_lock);
4553 	dput(dentry);
4554 
4555 	if (!release)
4556 		goto out;
4557 
4558 release:
4559 	/* let's just reuse the same message */
4560 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
4561 	ceph_msg_get(msg);
4562 	ceph_con_send(&session->s_con, msg);
4563 
4564 out:
4565 	mutex_unlock(&session->s_mutex);
4566 	iput(inode);
4567 	return;
4568 
4569 bad:
4570 	pr_err("corrupt lease message\n");
4571 	ceph_msg_dump(msg);
4572 }
4573 
4574 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
4575 			      struct dentry *dentry, char action,
4576 			      u32 seq)
4577 {
4578 	struct ceph_msg *msg;
4579 	struct ceph_mds_lease *lease;
4580 	struct inode *dir;
4581 	int len = sizeof(*lease) + sizeof(u32) + NAME_MAX;
4582 
4583 	dout("lease_send_msg identry %p %s to mds%d\n",
4584 	     dentry, ceph_lease_op_name(action), session->s_mds);
4585 
4586 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
4587 	if (!msg)
4588 		return;
4589 	lease = msg->front.iov_base;
4590 	lease->action = action;
4591 	lease->seq = cpu_to_le32(seq);
4592 
4593 	spin_lock(&dentry->d_lock);
4594 	dir = d_inode(dentry->d_parent);
4595 	lease->ino = cpu_to_le64(ceph_ino(dir));
4596 	lease->first = lease->last = cpu_to_le64(ceph_snap(dir));
4597 
4598 	put_unaligned_le32(dentry->d_name.len, lease + 1);
4599 	memcpy((void *)(lease + 1) + 4,
4600 	       dentry->d_name.name, dentry->d_name.len);
4601 	spin_unlock(&dentry->d_lock);
4602 
4603 	ceph_con_send(&session->s_con, msg);
4604 }
4605 
4606 /*
4607  * lock unlock the session, to wait ongoing session activities
4608  */
4609 static void lock_unlock_session(struct ceph_mds_session *s)
4610 {
4611 	mutex_lock(&s->s_mutex);
4612 	mutex_unlock(&s->s_mutex);
4613 }
4614 
4615 static void maybe_recover_session(struct ceph_mds_client *mdsc)
4616 {
4617 	struct ceph_fs_client *fsc = mdsc->fsc;
4618 
4619 	if (!ceph_test_mount_opt(fsc, CLEANRECOVER))
4620 		return;
4621 
4622 	if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED)
4623 		return;
4624 
4625 	if (!READ_ONCE(fsc->blocklisted))
4626 		return;
4627 
4628 	pr_info("auto reconnect after blocklisted\n");
4629 	ceph_force_reconnect(fsc->sb);
4630 }
4631 
4632 bool check_session_state(struct ceph_mds_session *s)
4633 {
4634 	switch (s->s_state) {
4635 	case CEPH_MDS_SESSION_OPEN:
4636 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
4637 			s->s_state = CEPH_MDS_SESSION_HUNG;
4638 			pr_info("mds%d hung\n", s->s_mds);
4639 		}
4640 		break;
4641 	case CEPH_MDS_SESSION_CLOSING:
4642 	case CEPH_MDS_SESSION_NEW:
4643 	case CEPH_MDS_SESSION_RESTARTING:
4644 	case CEPH_MDS_SESSION_CLOSED:
4645 	case CEPH_MDS_SESSION_REJECTED:
4646 		return false;
4647 	}
4648 
4649 	return true;
4650 }
4651 
4652 /*
4653  * If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply,
4654  * then we need to retransmit that request.
4655  */
4656 void inc_session_sequence(struct ceph_mds_session *s)
4657 {
4658 	lockdep_assert_held(&s->s_mutex);
4659 
4660 	s->s_seq++;
4661 
4662 	if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
4663 		int ret;
4664 
4665 		dout("resending session close request for mds%d\n", s->s_mds);
4666 		ret = request_close_session(s);
4667 		if (ret < 0)
4668 			pr_err("unable to close session to mds%d: %d\n",
4669 			       s->s_mds, ret);
4670 	}
4671 }
4672 
4673 /*
4674  * delayed work -- periodically trim expired leases, renew caps with mds.  If
4675  * the @delay parameter is set to 0 or if it's more than 5 secs, the default
4676  * workqueue delay value of 5 secs will be used.
4677  */
4678 static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay)
4679 {
4680 	unsigned long max_delay = HZ * 5;
4681 
4682 	/* 5 secs default delay */
4683 	if (!delay || (delay > max_delay))
4684 		delay = max_delay;
4685 	schedule_delayed_work(&mdsc->delayed_work,
4686 			      round_jiffies_relative(delay));
4687 }
4688 
4689 static void delayed_work(struct work_struct *work)
4690 {
4691 	struct ceph_mds_client *mdsc =
4692 		container_of(work, struct ceph_mds_client, delayed_work.work);
4693 	unsigned long delay;
4694 	int renew_interval;
4695 	int renew_caps;
4696 	int i;
4697 
4698 	dout("mdsc delayed_work\n");
4699 
4700 	if (mdsc->stopping)
4701 		return;
4702 
4703 	mutex_lock(&mdsc->mutex);
4704 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
4705 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
4706 				   mdsc->last_renew_caps);
4707 	if (renew_caps)
4708 		mdsc->last_renew_caps = jiffies;
4709 
4710 	for (i = 0; i < mdsc->max_sessions; i++) {
4711 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
4712 		if (!s)
4713 			continue;
4714 
4715 		if (!check_session_state(s)) {
4716 			ceph_put_mds_session(s);
4717 			continue;
4718 		}
4719 		mutex_unlock(&mdsc->mutex);
4720 
4721 		mutex_lock(&s->s_mutex);
4722 		if (renew_caps)
4723 			send_renew_caps(mdsc, s);
4724 		else
4725 			ceph_con_keepalive(&s->s_con);
4726 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
4727 		    s->s_state == CEPH_MDS_SESSION_HUNG)
4728 			ceph_send_cap_releases(mdsc, s);
4729 		mutex_unlock(&s->s_mutex);
4730 		ceph_put_mds_session(s);
4731 
4732 		mutex_lock(&mdsc->mutex);
4733 	}
4734 	mutex_unlock(&mdsc->mutex);
4735 
4736 	delay = ceph_check_delayed_caps(mdsc);
4737 
4738 	ceph_queue_cap_reclaim_work(mdsc);
4739 
4740 	ceph_trim_snapid_map(mdsc);
4741 
4742 	maybe_recover_session(mdsc);
4743 
4744 	schedule_delayed(mdsc, delay);
4745 }
4746 
4747 int ceph_mdsc_init(struct ceph_fs_client *fsc)
4748 
4749 {
4750 	struct ceph_mds_client *mdsc;
4751 	int err;
4752 
4753 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
4754 	if (!mdsc)
4755 		return -ENOMEM;
4756 	mdsc->fsc = fsc;
4757 	mutex_init(&mdsc->mutex);
4758 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
4759 	if (!mdsc->mdsmap) {
4760 		err = -ENOMEM;
4761 		goto err_mdsc;
4762 	}
4763 
4764 	init_completion(&mdsc->safe_umount_waiters);
4765 	init_waitqueue_head(&mdsc->session_close_wq);
4766 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
4767 	mdsc->quotarealms_inodes = RB_ROOT;
4768 	mutex_init(&mdsc->quotarealms_inodes_mutex);
4769 	init_rwsem(&mdsc->snap_rwsem);
4770 	mdsc->snap_realms = RB_ROOT;
4771 	INIT_LIST_HEAD(&mdsc->snap_empty);
4772 	spin_lock_init(&mdsc->snap_empty_lock);
4773 	mdsc->request_tree = RB_ROOT;
4774 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
4775 	mdsc->last_renew_caps = jiffies;
4776 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
4777 	INIT_LIST_HEAD(&mdsc->cap_wait_list);
4778 	spin_lock_init(&mdsc->cap_delay_lock);
4779 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
4780 	spin_lock_init(&mdsc->snap_flush_lock);
4781 	mdsc->last_cap_flush_tid = 1;
4782 	INIT_LIST_HEAD(&mdsc->cap_flush_list);
4783 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
4784 	spin_lock_init(&mdsc->cap_dirty_lock);
4785 	init_waitqueue_head(&mdsc->cap_flushing_wq);
4786 	INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work);
4787 	err = ceph_metric_init(&mdsc->metric);
4788 	if (err)
4789 		goto err_mdsmap;
4790 
4791 	spin_lock_init(&mdsc->dentry_list_lock);
4792 	INIT_LIST_HEAD(&mdsc->dentry_leases);
4793 	INIT_LIST_HEAD(&mdsc->dentry_dir_leases);
4794 
4795 	ceph_caps_init(mdsc);
4796 	ceph_adjust_caps_max_min(mdsc, fsc->mount_options);
4797 
4798 	spin_lock_init(&mdsc->snapid_map_lock);
4799 	mdsc->snapid_map_tree = RB_ROOT;
4800 	INIT_LIST_HEAD(&mdsc->snapid_map_lru);
4801 
4802 	init_rwsem(&mdsc->pool_perm_rwsem);
4803 	mdsc->pool_perm_tree = RB_ROOT;
4804 
4805 	strscpy(mdsc->nodename, utsname()->nodename,
4806 		sizeof(mdsc->nodename));
4807 
4808 	fsc->mdsc = mdsc;
4809 	return 0;
4810 
4811 err_mdsmap:
4812 	kfree(mdsc->mdsmap);
4813 err_mdsc:
4814 	kfree(mdsc);
4815 	return err;
4816 }
4817 
4818 /*
4819  * Wait for safe replies on open mds requests.  If we time out, drop
4820  * all requests from the tree to avoid dangling dentry refs.
4821  */
4822 static void wait_requests(struct ceph_mds_client *mdsc)
4823 {
4824 	struct ceph_options *opts = mdsc->fsc->client->options;
4825 	struct ceph_mds_request *req;
4826 
4827 	mutex_lock(&mdsc->mutex);
4828 	if (__get_oldest_req(mdsc)) {
4829 		mutex_unlock(&mdsc->mutex);
4830 
4831 		dout("wait_requests waiting for requests\n");
4832 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
4833 				    ceph_timeout_jiffies(opts->mount_timeout));
4834 
4835 		/* tear down remaining requests */
4836 		mutex_lock(&mdsc->mutex);
4837 		while ((req = __get_oldest_req(mdsc))) {
4838 			dout("wait_requests timed out on tid %llu\n",
4839 			     req->r_tid);
4840 			list_del_init(&req->r_wait);
4841 			__unregister_request(mdsc, req);
4842 		}
4843 	}
4844 	mutex_unlock(&mdsc->mutex);
4845 	dout("wait_requests done\n");
4846 }
4847 
4848 void send_flush_mdlog(struct ceph_mds_session *s)
4849 {
4850 	struct ceph_msg *msg;
4851 
4852 	/*
4853 	 * Pre-luminous MDS crashes when it sees an unknown session request
4854 	 */
4855 	if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS))
4856 		return;
4857 
4858 	mutex_lock(&s->s_mutex);
4859 	dout("request mdlog flush to mds%d (%s)s seq %lld\n", s->s_mds,
4860 	     ceph_session_state_name(s->s_state), s->s_seq);
4861 	msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG,
4862 				      s->s_seq);
4863 	if (!msg) {
4864 		pr_err("failed to request mdlog flush to mds%d (%s) seq %lld\n",
4865 		       s->s_mds, ceph_session_state_name(s->s_state), s->s_seq);
4866 	} else {
4867 		ceph_con_send(&s->s_con, msg);
4868 	}
4869 	mutex_unlock(&s->s_mutex);
4870 }
4871 
4872 /*
4873  * called before mount is ro, and before dentries are torn down.
4874  * (hmm, does this still race with new lookups?)
4875  */
4876 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
4877 {
4878 	dout("pre_umount\n");
4879 	mdsc->stopping = 1;
4880 
4881 	ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true);
4882 	ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false);
4883 	ceph_flush_dirty_caps(mdsc);
4884 	wait_requests(mdsc);
4885 
4886 	/*
4887 	 * wait for reply handlers to drop their request refs and
4888 	 * their inode/dcache refs
4889 	 */
4890 	ceph_msgr_flush();
4891 
4892 	ceph_cleanup_quotarealms_inodes(mdsc);
4893 }
4894 
4895 /*
4896  * flush the mdlog and wait for all write mds requests to flush.
4897  */
4898 static void flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client *mdsc,
4899 						 u64 want_tid)
4900 {
4901 	struct ceph_mds_request *req = NULL, *nextreq;
4902 	struct ceph_mds_session *last_session = NULL;
4903 	struct rb_node *n;
4904 
4905 	mutex_lock(&mdsc->mutex);
4906 	dout("%s want %lld\n", __func__, want_tid);
4907 restart:
4908 	req = __get_oldest_req(mdsc);
4909 	while (req && req->r_tid <= want_tid) {
4910 		/* find next request */
4911 		n = rb_next(&req->r_node);
4912 		if (n)
4913 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
4914 		else
4915 			nextreq = NULL;
4916 		if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
4917 		    (req->r_op & CEPH_MDS_OP_WRITE)) {
4918 			struct ceph_mds_session *s = req->r_session;
4919 
4920 			if (!s) {
4921 				req = nextreq;
4922 				continue;
4923 			}
4924 
4925 			/* write op */
4926 			ceph_mdsc_get_request(req);
4927 			if (nextreq)
4928 				ceph_mdsc_get_request(nextreq);
4929 			s = ceph_get_mds_session(s);
4930 			mutex_unlock(&mdsc->mutex);
4931 
4932 			/* send flush mdlog request to MDS */
4933 			if (last_session != s) {
4934 				send_flush_mdlog(s);
4935 				ceph_put_mds_session(last_session);
4936 				last_session = s;
4937 			} else {
4938 				ceph_put_mds_session(s);
4939 			}
4940 			dout("%s wait on %llu (want %llu)\n", __func__,
4941 			     req->r_tid, want_tid);
4942 			wait_for_completion(&req->r_safe_completion);
4943 
4944 			mutex_lock(&mdsc->mutex);
4945 			ceph_mdsc_put_request(req);
4946 			if (!nextreq)
4947 				break;  /* next dne before, so we're done! */
4948 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
4949 				/* next request was removed from tree */
4950 				ceph_mdsc_put_request(nextreq);
4951 				goto restart;
4952 			}
4953 			ceph_mdsc_put_request(nextreq);  /* won't go away */
4954 		}
4955 		req = nextreq;
4956 	}
4957 	mutex_unlock(&mdsc->mutex);
4958 	ceph_put_mds_session(last_session);
4959 	dout("%s done\n", __func__);
4960 }
4961 
4962 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
4963 {
4964 	u64 want_tid, want_flush;
4965 
4966 	if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN)
4967 		return;
4968 
4969 	dout("sync\n");
4970 	mutex_lock(&mdsc->mutex);
4971 	want_tid = mdsc->last_tid;
4972 	mutex_unlock(&mdsc->mutex);
4973 
4974 	ceph_flush_dirty_caps(mdsc);
4975 	spin_lock(&mdsc->cap_dirty_lock);
4976 	want_flush = mdsc->last_cap_flush_tid;
4977 	if (!list_empty(&mdsc->cap_flush_list)) {
4978 		struct ceph_cap_flush *cf =
4979 			list_last_entry(&mdsc->cap_flush_list,
4980 					struct ceph_cap_flush, g_list);
4981 		cf->wake = true;
4982 	}
4983 	spin_unlock(&mdsc->cap_dirty_lock);
4984 
4985 	dout("sync want tid %lld flush_seq %lld\n",
4986 	     want_tid, want_flush);
4987 
4988 	flush_mdlog_and_wait_mdsc_unsafe_requests(mdsc, want_tid);
4989 	wait_caps_flush(mdsc, want_flush);
4990 }
4991 
4992 /*
4993  * true if all sessions are closed, or we force unmount
4994  */
4995 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped)
4996 {
4997 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
4998 		return true;
4999 	return atomic_read(&mdsc->num_sessions) <= skipped;
5000 }
5001 
5002 /*
5003  * called after sb is ro.
5004  */
5005 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
5006 {
5007 	struct ceph_options *opts = mdsc->fsc->client->options;
5008 	struct ceph_mds_session *session;
5009 	int i;
5010 	int skipped = 0;
5011 
5012 	dout("close_sessions\n");
5013 
5014 	/* close sessions */
5015 	mutex_lock(&mdsc->mutex);
5016 	for (i = 0; i < mdsc->max_sessions; i++) {
5017 		session = __ceph_lookup_mds_session(mdsc, i);
5018 		if (!session)
5019 			continue;
5020 		mutex_unlock(&mdsc->mutex);
5021 		mutex_lock(&session->s_mutex);
5022 		if (__close_session(mdsc, session) <= 0)
5023 			skipped++;
5024 		mutex_unlock(&session->s_mutex);
5025 		ceph_put_mds_session(session);
5026 		mutex_lock(&mdsc->mutex);
5027 	}
5028 	mutex_unlock(&mdsc->mutex);
5029 
5030 	dout("waiting for sessions to close\n");
5031 	wait_event_timeout(mdsc->session_close_wq,
5032 			   done_closing_sessions(mdsc, skipped),
5033 			   ceph_timeout_jiffies(opts->mount_timeout));
5034 
5035 	/* tear down remaining sessions */
5036 	mutex_lock(&mdsc->mutex);
5037 	for (i = 0; i < mdsc->max_sessions; i++) {
5038 		if (mdsc->sessions[i]) {
5039 			session = ceph_get_mds_session(mdsc->sessions[i]);
5040 			__unregister_session(mdsc, session);
5041 			mutex_unlock(&mdsc->mutex);
5042 			mutex_lock(&session->s_mutex);
5043 			remove_session_caps(session);
5044 			mutex_unlock(&session->s_mutex);
5045 			ceph_put_mds_session(session);
5046 			mutex_lock(&mdsc->mutex);
5047 		}
5048 	}
5049 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
5050 	mutex_unlock(&mdsc->mutex);
5051 
5052 	ceph_cleanup_snapid_map(mdsc);
5053 	ceph_cleanup_global_and_empty_realms(mdsc);
5054 
5055 	cancel_work_sync(&mdsc->cap_reclaim_work);
5056 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
5057 
5058 	dout("stopped\n");
5059 }
5060 
5061 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
5062 {
5063 	struct ceph_mds_session *session;
5064 	int mds;
5065 
5066 	dout("force umount\n");
5067 
5068 	mutex_lock(&mdsc->mutex);
5069 	for (mds = 0; mds < mdsc->max_sessions; mds++) {
5070 		session = __ceph_lookup_mds_session(mdsc, mds);
5071 		if (!session)
5072 			continue;
5073 
5074 		if (session->s_state == CEPH_MDS_SESSION_REJECTED)
5075 			__unregister_session(mdsc, session);
5076 		__wake_requests(mdsc, &session->s_waiting);
5077 		mutex_unlock(&mdsc->mutex);
5078 
5079 		mutex_lock(&session->s_mutex);
5080 		__close_session(mdsc, session);
5081 		if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
5082 			cleanup_session_requests(mdsc, session);
5083 			remove_session_caps(session);
5084 		}
5085 		mutex_unlock(&session->s_mutex);
5086 		ceph_put_mds_session(session);
5087 
5088 		mutex_lock(&mdsc->mutex);
5089 		kick_requests(mdsc, mds);
5090 	}
5091 	__wake_requests(mdsc, &mdsc->waiting_for_map);
5092 	mutex_unlock(&mdsc->mutex);
5093 }
5094 
5095 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
5096 {
5097 	dout("stop\n");
5098 	/*
5099 	 * Make sure the delayed work stopped before releasing
5100 	 * the resources.
5101 	 *
5102 	 * Because the cancel_delayed_work_sync() will only
5103 	 * guarantee that the work finishes executing. But the
5104 	 * delayed work will re-arm itself again after that.
5105 	 */
5106 	flush_delayed_work(&mdsc->delayed_work);
5107 
5108 	if (mdsc->mdsmap)
5109 		ceph_mdsmap_destroy(mdsc->mdsmap);
5110 	kfree(mdsc->sessions);
5111 	ceph_caps_finalize(mdsc);
5112 	ceph_pool_perm_destroy(mdsc);
5113 }
5114 
5115 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
5116 {
5117 	struct ceph_mds_client *mdsc = fsc->mdsc;
5118 	dout("mdsc_destroy %p\n", mdsc);
5119 
5120 	if (!mdsc)
5121 		return;
5122 
5123 	/* flush out any connection work with references to us */
5124 	ceph_msgr_flush();
5125 
5126 	ceph_mdsc_stop(mdsc);
5127 
5128 	ceph_metric_destroy(&mdsc->metric);
5129 
5130 	fsc->mdsc = NULL;
5131 	kfree(mdsc);
5132 	dout("mdsc_destroy %p done\n", mdsc);
5133 }
5134 
5135 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
5136 {
5137 	struct ceph_fs_client *fsc = mdsc->fsc;
5138 	const char *mds_namespace = fsc->mount_options->mds_namespace;
5139 	void *p = msg->front.iov_base;
5140 	void *end = p + msg->front.iov_len;
5141 	u32 epoch;
5142 	u32 num_fs;
5143 	u32 mount_fscid = (u32)-1;
5144 	int err = -EINVAL;
5145 
5146 	ceph_decode_need(&p, end, sizeof(u32), bad);
5147 	epoch = ceph_decode_32(&p);
5148 
5149 	dout("handle_fsmap epoch %u\n", epoch);
5150 
5151 	/* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */
5152 	ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad);
5153 
5154 	ceph_decode_32_safe(&p, end, num_fs, bad);
5155 	while (num_fs-- > 0) {
5156 		void *info_p, *info_end;
5157 		u32 info_len;
5158 		u32 fscid, namelen;
5159 
5160 		ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
5161 		p += 2;		// info_v, info_cv
5162 		info_len = ceph_decode_32(&p);
5163 		ceph_decode_need(&p, end, info_len, bad);
5164 		info_p = p;
5165 		info_end = p + info_len;
5166 		p = info_end;
5167 
5168 		ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad);
5169 		fscid = ceph_decode_32(&info_p);
5170 		namelen = ceph_decode_32(&info_p);
5171 		ceph_decode_need(&info_p, info_end, namelen, bad);
5172 
5173 		if (mds_namespace &&
5174 		    strlen(mds_namespace) == namelen &&
5175 		    !strncmp(mds_namespace, (char *)info_p, namelen)) {
5176 			mount_fscid = fscid;
5177 			break;
5178 		}
5179 	}
5180 
5181 	ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch);
5182 	if (mount_fscid != (u32)-1) {
5183 		fsc->client->monc.fs_cluster_id = mount_fscid;
5184 		ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP,
5185 				   0, true);
5186 		ceph_monc_renew_subs(&fsc->client->monc);
5187 	} else {
5188 		err = -ENOENT;
5189 		goto err_out;
5190 	}
5191 	return;
5192 
5193 bad:
5194 	pr_err("error decoding fsmap %d. Shutting down mount.\n", err);
5195 	ceph_umount_begin(mdsc->fsc->sb);
5196 err_out:
5197 	mutex_lock(&mdsc->mutex);
5198 	mdsc->mdsmap_err = err;
5199 	__wake_requests(mdsc, &mdsc->waiting_for_map);
5200 	mutex_unlock(&mdsc->mutex);
5201 }
5202 
5203 /*
5204  * handle mds map update.
5205  */
5206 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
5207 {
5208 	u32 epoch;
5209 	u32 maplen;
5210 	void *p = msg->front.iov_base;
5211 	void *end = p + msg->front.iov_len;
5212 	struct ceph_mdsmap *newmap, *oldmap;
5213 	struct ceph_fsid fsid;
5214 	int err = -EINVAL;
5215 
5216 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
5217 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
5218 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
5219 		return;
5220 	epoch = ceph_decode_32(&p);
5221 	maplen = ceph_decode_32(&p);
5222 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
5223 
5224 	/* do we need it? */
5225 	mutex_lock(&mdsc->mutex);
5226 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
5227 		dout("handle_map epoch %u <= our %u\n",
5228 		     epoch, mdsc->mdsmap->m_epoch);
5229 		mutex_unlock(&mdsc->mutex);
5230 		return;
5231 	}
5232 
5233 	newmap = ceph_mdsmap_decode(&p, end, ceph_msgr2(mdsc->fsc->client));
5234 	if (IS_ERR(newmap)) {
5235 		err = PTR_ERR(newmap);
5236 		goto bad_unlock;
5237 	}
5238 
5239 	/* swap into place */
5240 	if (mdsc->mdsmap) {
5241 		oldmap = mdsc->mdsmap;
5242 		mdsc->mdsmap = newmap;
5243 		check_new_map(mdsc, newmap, oldmap);
5244 		ceph_mdsmap_destroy(oldmap);
5245 	} else {
5246 		mdsc->mdsmap = newmap;  /* first mds map */
5247 	}
5248 	mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size,
5249 					MAX_LFS_FILESIZE);
5250 
5251 	__wake_requests(mdsc, &mdsc->waiting_for_map);
5252 	ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
5253 			  mdsc->mdsmap->m_epoch);
5254 
5255 	mutex_unlock(&mdsc->mutex);
5256 	schedule_delayed(mdsc, 0);
5257 	return;
5258 
5259 bad_unlock:
5260 	mutex_unlock(&mdsc->mutex);
5261 bad:
5262 	pr_err("error decoding mdsmap %d. Shutting down mount.\n", err);
5263 	ceph_umount_begin(mdsc->fsc->sb);
5264 	return;
5265 }
5266 
5267 static struct ceph_connection *mds_get_con(struct ceph_connection *con)
5268 {
5269 	struct ceph_mds_session *s = con->private;
5270 
5271 	if (ceph_get_mds_session(s))
5272 		return con;
5273 	return NULL;
5274 }
5275 
5276 static void mds_put_con(struct ceph_connection *con)
5277 {
5278 	struct ceph_mds_session *s = con->private;
5279 
5280 	ceph_put_mds_session(s);
5281 }
5282 
5283 /*
5284  * if the client is unresponsive for long enough, the mds will kill
5285  * the session entirely.
5286  */
5287 static void mds_peer_reset(struct ceph_connection *con)
5288 {
5289 	struct ceph_mds_session *s = con->private;
5290 	struct ceph_mds_client *mdsc = s->s_mdsc;
5291 
5292 	pr_warn("mds%d closed our session\n", s->s_mds);
5293 	send_mds_reconnect(mdsc, s);
5294 }
5295 
5296 static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg)
5297 {
5298 	struct ceph_mds_session *s = con->private;
5299 	struct ceph_mds_client *mdsc = s->s_mdsc;
5300 	int type = le16_to_cpu(msg->hdr.type);
5301 
5302 	mutex_lock(&mdsc->mutex);
5303 	if (__verify_registered_session(mdsc, s) < 0) {
5304 		mutex_unlock(&mdsc->mutex);
5305 		goto out;
5306 	}
5307 	mutex_unlock(&mdsc->mutex);
5308 
5309 	switch (type) {
5310 	case CEPH_MSG_MDS_MAP:
5311 		ceph_mdsc_handle_mdsmap(mdsc, msg);
5312 		break;
5313 	case CEPH_MSG_FS_MAP_USER:
5314 		ceph_mdsc_handle_fsmap(mdsc, msg);
5315 		break;
5316 	case CEPH_MSG_CLIENT_SESSION:
5317 		handle_session(s, msg);
5318 		break;
5319 	case CEPH_MSG_CLIENT_REPLY:
5320 		handle_reply(s, msg);
5321 		break;
5322 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
5323 		handle_forward(mdsc, s, msg);
5324 		break;
5325 	case CEPH_MSG_CLIENT_CAPS:
5326 		ceph_handle_caps(s, msg);
5327 		break;
5328 	case CEPH_MSG_CLIENT_SNAP:
5329 		ceph_handle_snap(mdsc, s, msg);
5330 		break;
5331 	case CEPH_MSG_CLIENT_LEASE:
5332 		handle_lease(mdsc, s, msg);
5333 		break;
5334 	case CEPH_MSG_CLIENT_QUOTA:
5335 		ceph_handle_quota(mdsc, s, msg);
5336 		break;
5337 
5338 	default:
5339 		pr_err("received unknown message type %d %s\n", type,
5340 		       ceph_msg_type_name(type));
5341 	}
5342 out:
5343 	ceph_msg_put(msg);
5344 }
5345 
5346 /*
5347  * authentication
5348  */
5349 
5350 /*
5351  * Note: returned pointer is the address of a structure that's
5352  * managed separately.  Caller must *not* attempt to free it.
5353  */
5354 static struct ceph_auth_handshake *
5355 mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new)
5356 {
5357 	struct ceph_mds_session *s = con->private;
5358 	struct ceph_mds_client *mdsc = s->s_mdsc;
5359 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
5360 	struct ceph_auth_handshake *auth = &s->s_auth;
5361 	int ret;
5362 
5363 	ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS,
5364 					 force_new, proto, NULL, NULL);
5365 	if (ret)
5366 		return ERR_PTR(ret);
5367 
5368 	return auth;
5369 }
5370 
5371 static int mds_add_authorizer_challenge(struct ceph_connection *con,
5372 				    void *challenge_buf, int challenge_buf_len)
5373 {
5374 	struct ceph_mds_session *s = con->private;
5375 	struct ceph_mds_client *mdsc = s->s_mdsc;
5376 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
5377 
5378 	return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer,
5379 					    challenge_buf, challenge_buf_len);
5380 }
5381 
5382 static int mds_verify_authorizer_reply(struct ceph_connection *con)
5383 {
5384 	struct ceph_mds_session *s = con->private;
5385 	struct ceph_mds_client *mdsc = s->s_mdsc;
5386 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
5387 	struct ceph_auth_handshake *auth = &s->s_auth;
5388 
5389 	return ceph_auth_verify_authorizer_reply(ac, auth->authorizer,
5390 		auth->authorizer_reply_buf, auth->authorizer_reply_buf_len,
5391 		NULL, NULL, NULL, NULL);
5392 }
5393 
5394 static int mds_invalidate_authorizer(struct ceph_connection *con)
5395 {
5396 	struct ceph_mds_session *s = con->private;
5397 	struct ceph_mds_client *mdsc = s->s_mdsc;
5398 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
5399 
5400 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
5401 
5402 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
5403 }
5404 
5405 static int mds_get_auth_request(struct ceph_connection *con,
5406 				void *buf, int *buf_len,
5407 				void **authorizer, int *authorizer_len)
5408 {
5409 	struct ceph_mds_session *s = con->private;
5410 	struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
5411 	struct ceph_auth_handshake *auth = &s->s_auth;
5412 	int ret;
5413 
5414 	ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS,
5415 				       buf, buf_len);
5416 	if (ret)
5417 		return ret;
5418 
5419 	*authorizer = auth->authorizer_buf;
5420 	*authorizer_len = auth->authorizer_buf_len;
5421 	return 0;
5422 }
5423 
5424 static int mds_handle_auth_reply_more(struct ceph_connection *con,
5425 				      void *reply, int reply_len,
5426 				      void *buf, int *buf_len,
5427 				      void **authorizer, int *authorizer_len)
5428 {
5429 	struct ceph_mds_session *s = con->private;
5430 	struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
5431 	struct ceph_auth_handshake *auth = &s->s_auth;
5432 	int ret;
5433 
5434 	ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len,
5435 					      buf, buf_len);
5436 	if (ret)
5437 		return ret;
5438 
5439 	*authorizer = auth->authorizer_buf;
5440 	*authorizer_len = auth->authorizer_buf_len;
5441 	return 0;
5442 }
5443 
5444 static int mds_handle_auth_done(struct ceph_connection *con,
5445 				u64 global_id, void *reply, int reply_len,
5446 				u8 *session_key, int *session_key_len,
5447 				u8 *con_secret, int *con_secret_len)
5448 {
5449 	struct ceph_mds_session *s = con->private;
5450 	struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
5451 	struct ceph_auth_handshake *auth = &s->s_auth;
5452 
5453 	return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len,
5454 					       session_key, session_key_len,
5455 					       con_secret, con_secret_len);
5456 }
5457 
5458 static int mds_handle_auth_bad_method(struct ceph_connection *con,
5459 				      int used_proto, int result,
5460 				      const int *allowed_protos, int proto_cnt,
5461 				      const int *allowed_modes, int mode_cnt)
5462 {
5463 	struct ceph_mds_session *s = con->private;
5464 	struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc;
5465 	int ret;
5466 
5467 	if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS,
5468 					    used_proto, result,
5469 					    allowed_protos, proto_cnt,
5470 					    allowed_modes, mode_cnt)) {
5471 		ret = ceph_monc_validate_auth(monc);
5472 		if (ret)
5473 			return ret;
5474 	}
5475 
5476 	return -EACCES;
5477 }
5478 
5479 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
5480 				struct ceph_msg_header *hdr, int *skip)
5481 {
5482 	struct ceph_msg *msg;
5483 	int type = (int) le16_to_cpu(hdr->type);
5484 	int front_len = (int) le32_to_cpu(hdr->front_len);
5485 
5486 	if (con->in_msg)
5487 		return con->in_msg;
5488 
5489 	*skip = 0;
5490 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
5491 	if (!msg) {
5492 		pr_err("unable to allocate msg type %d len %d\n",
5493 		       type, front_len);
5494 		return NULL;
5495 	}
5496 
5497 	return msg;
5498 }
5499 
5500 static int mds_sign_message(struct ceph_msg *msg)
5501 {
5502        struct ceph_mds_session *s = msg->con->private;
5503        struct ceph_auth_handshake *auth = &s->s_auth;
5504 
5505        return ceph_auth_sign_message(auth, msg);
5506 }
5507 
5508 static int mds_check_message_signature(struct ceph_msg *msg)
5509 {
5510        struct ceph_mds_session *s = msg->con->private;
5511        struct ceph_auth_handshake *auth = &s->s_auth;
5512 
5513        return ceph_auth_check_message_signature(auth, msg);
5514 }
5515 
5516 static const struct ceph_connection_operations mds_con_ops = {
5517 	.get = mds_get_con,
5518 	.put = mds_put_con,
5519 	.alloc_msg = mds_alloc_msg,
5520 	.dispatch = mds_dispatch,
5521 	.peer_reset = mds_peer_reset,
5522 	.get_authorizer = mds_get_authorizer,
5523 	.add_authorizer_challenge = mds_add_authorizer_challenge,
5524 	.verify_authorizer_reply = mds_verify_authorizer_reply,
5525 	.invalidate_authorizer = mds_invalidate_authorizer,
5526 	.sign_message = mds_sign_message,
5527 	.check_message_signature = mds_check_message_signature,
5528 	.get_auth_request = mds_get_auth_request,
5529 	.handle_auth_reply_more = mds_handle_auth_reply_more,
5530 	.handle_auth_done = mds_handle_auth_done,
5531 	.handle_auth_bad_method = mds_handle_auth_bad_method,
5532 };
5533 
5534 /* eof */
5535