xref: /openbmc/linux/fs/ceph/mds_client.c (revision 63dc02bd)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9 
10 #include "super.h"
11 #include "mds_client.h"
12 
13 #include <linux/ceph/messenger.h>
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/pagelist.h>
16 #include <linux/ceph/auth.h>
17 #include <linux/ceph/debugfs.h>
18 
19 /*
20  * A cluster of MDS (metadata server) daemons is responsible for
21  * managing the file system namespace (the directory hierarchy and
22  * inodes) and for coordinating shared access to storage.  Metadata is
23  * partitioning hierarchically across a number of servers, and that
24  * partition varies over time as the cluster adjusts the distribution
25  * in order to balance load.
26  *
27  * The MDS client is primarily responsible to managing synchronous
28  * metadata requests for operations like open, unlink, and so forth.
29  * If there is a MDS failure, we find out about it when we (possibly
30  * request and) receive a new MDS map, and can resubmit affected
31  * requests.
32  *
33  * For the most part, though, we take advantage of a lossless
34  * communications channel to the MDS, and do not need to worry about
35  * timing out or resubmitting requests.
36  *
37  * We maintain a stateful "session" with each MDS we interact with.
38  * Within each session, we sent periodic heartbeat messages to ensure
39  * any capabilities or leases we have been issues remain valid.  If
40  * the session times out and goes stale, our leases and capabilities
41  * are no longer valid.
42  */
43 
44 struct ceph_reconnect_state {
45 	struct ceph_pagelist *pagelist;
46 	bool flock;
47 };
48 
49 static void __wake_requests(struct ceph_mds_client *mdsc,
50 			    struct list_head *head);
51 
52 static const struct ceph_connection_operations mds_con_ops;
53 
54 
55 /*
56  * mds reply parsing
57  */
58 
59 /*
60  * parse individual inode info
61  */
62 static int parse_reply_info_in(void **p, void *end,
63 			       struct ceph_mds_reply_info_in *info,
64 			       int features)
65 {
66 	int err = -EIO;
67 
68 	info->in = *p;
69 	*p += sizeof(struct ceph_mds_reply_inode) +
70 		sizeof(*info->in->fragtree.splits) *
71 		le32_to_cpu(info->in->fragtree.nsplits);
72 
73 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
74 	ceph_decode_need(p, end, info->symlink_len, bad);
75 	info->symlink = *p;
76 	*p += info->symlink_len;
77 
78 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
79 		ceph_decode_copy_safe(p, end, &info->dir_layout,
80 				      sizeof(info->dir_layout), bad);
81 	else
82 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
83 
84 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
85 	ceph_decode_need(p, end, info->xattr_len, bad);
86 	info->xattr_data = *p;
87 	*p += info->xattr_len;
88 	return 0;
89 bad:
90 	return err;
91 }
92 
93 /*
94  * parse a normal reply, which may contain a (dir+)dentry and/or a
95  * target inode.
96  */
97 static int parse_reply_info_trace(void **p, void *end,
98 				  struct ceph_mds_reply_info_parsed *info,
99 				  int features)
100 {
101 	int err;
102 
103 	if (info->head->is_dentry) {
104 		err = parse_reply_info_in(p, end, &info->diri, features);
105 		if (err < 0)
106 			goto out_bad;
107 
108 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
109 			goto bad;
110 		info->dirfrag = *p;
111 		*p += sizeof(*info->dirfrag) +
112 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
113 		if (unlikely(*p > end))
114 			goto bad;
115 
116 		ceph_decode_32_safe(p, end, info->dname_len, bad);
117 		ceph_decode_need(p, end, info->dname_len, bad);
118 		info->dname = *p;
119 		*p += info->dname_len;
120 		info->dlease = *p;
121 		*p += sizeof(*info->dlease);
122 	}
123 
124 	if (info->head->is_target) {
125 		err = parse_reply_info_in(p, end, &info->targeti, features);
126 		if (err < 0)
127 			goto out_bad;
128 	}
129 
130 	if (unlikely(*p != end))
131 		goto bad;
132 	return 0;
133 
134 bad:
135 	err = -EIO;
136 out_bad:
137 	pr_err("problem parsing mds trace %d\n", err);
138 	return err;
139 }
140 
141 /*
142  * parse readdir results
143  */
144 static int parse_reply_info_dir(void **p, void *end,
145 				struct ceph_mds_reply_info_parsed *info,
146 				int features)
147 {
148 	u32 num, i = 0;
149 	int err;
150 
151 	info->dir_dir = *p;
152 	if (*p + sizeof(*info->dir_dir) > end)
153 		goto bad;
154 	*p += sizeof(*info->dir_dir) +
155 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
156 	if (*p > end)
157 		goto bad;
158 
159 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
160 	num = ceph_decode_32(p);
161 	info->dir_end = ceph_decode_8(p);
162 	info->dir_complete = ceph_decode_8(p);
163 	if (num == 0)
164 		goto done;
165 
166 	/* alloc large array */
167 	info->dir_nr = num;
168 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
169 			       sizeof(*info->dir_dname) +
170 			       sizeof(*info->dir_dname_len) +
171 			       sizeof(*info->dir_dlease),
172 			       GFP_NOFS);
173 	if (info->dir_in == NULL) {
174 		err = -ENOMEM;
175 		goto out_bad;
176 	}
177 	info->dir_dname = (void *)(info->dir_in + num);
178 	info->dir_dname_len = (void *)(info->dir_dname + num);
179 	info->dir_dlease = (void *)(info->dir_dname_len + num);
180 
181 	while (num) {
182 		/* dentry */
183 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
184 		info->dir_dname_len[i] = ceph_decode_32(p);
185 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
186 		info->dir_dname[i] = *p;
187 		*p += info->dir_dname_len[i];
188 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
189 		     info->dir_dname[i]);
190 		info->dir_dlease[i] = *p;
191 		*p += sizeof(struct ceph_mds_reply_lease);
192 
193 		/* inode */
194 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
195 		if (err < 0)
196 			goto out_bad;
197 		i++;
198 		num--;
199 	}
200 
201 done:
202 	if (*p != end)
203 		goto bad;
204 	return 0;
205 
206 bad:
207 	err = -EIO;
208 out_bad:
209 	pr_err("problem parsing dir contents %d\n", err);
210 	return err;
211 }
212 
213 /*
214  * parse fcntl F_GETLK results
215  */
216 static int parse_reply_info_filelock(void **p, void *end,
217 				     struct ceph_mds_reply_info_parsed *info,
218 				     int features)
219 {
220 	if (*p + sizeof(*info->filelock_reply) > end)
221 		goto bad;
222 
223 	info->filelock_reply = *p;
224 	*p += sizeof(*info->filelock_reply);
225 
226 	if (unlikely(*p != end))
227 		goto bad;
228 	return 0;
229 
230 bad:
231 	return -EIO;
232 }
233 
234 /*
235  * parse extra results
236  */
237 static int parse_reply_info_extra(void **p, void *end,
238 				  struct ceph_mds_reply_info_parsed *info,
239 				  int features)
240 {
241 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
242 		return parse_reply_info_filelock(p, end, info, features);
243 	else
244 		return parse_reply_info_dir(p, end, info, features);
245 }
246 
247 /*
248  * parse entire mds reply
249  */
250 static int parse_reply_info(struct ceph_msg *msg,
251 			    struct ceph_mds_reply_info_parsed *info,
252 			    int features)
253 {
254 	void *p, *end;
255 	u32 len;
256 	int err;
257 
258 	info->head = msg->front.iov_base;
259 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
260 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
261 
262 	/* trace */
263 	ceph_decode_32_safe(&p, end, len, bad);
264 	if (len > 0) {
265 		ceph_decode_need(&p, end, len, bad);
266 		err = parse_reply_info_trace(&p, p+len, info, features);
267 		if (err < 0)
268 			goto out_bad;
269 	}
270 
271 	/* extra */
272 	ceph_decode_32_safe(&p, end, len, bad);
273 	if (len > 0) {
274 		ceph_decode_need(&p, end, len, bad);
275 		err = parse_reply_info_extra(&p, p+len, info, features);
276 		if (err < 0)
277 			goto out_bad;
278 	}
279 
280 	/* snap blob */
281 	ceph_decode_32_safe(&p, end, len, bad);
282 	info->snapblob_len = len;
283 	info->snapblob = p;
284 	p += len;
285 
286 	if (p != end)
287 		goto bad;
288 	return 0;
289 
290 bad:
291 	err = -EIO;
292 out_bad:
293 	pr_err("mds parse_reply err %d\n", err);
294 	return err;
295 }
296 
297 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
298 {
299 	kfree(info->dir_in);
300 }
301 
302 
303 /*
304  * sessions
305  */
306 static const char *session_state_name(int s)
307 {
308 	switch (s) {
309 	case CEPH_MDS_SESSION_NEW: return "new";
310 	case CEPH_MDS_SESSION_OPENING: return "opening";
311 	case CEPH_MDS_SESSION_OPEN: return "open";
312 	case CEPH_MDS_SESSION_HUNG: return "hung";
313 	case CEPH_MDS_SESSION_CLOSING: return "closing";
314 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
315 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
316 	default: return "???";
317 	}
318 }
319 
320 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
321 {
322 	if (atomic_inc_not_zero(&s->s_ref)) {
323 		dout("mdsc get_session %p %d -> %d\n", s,
324 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
325 		return s;
326 	} else {
327 		dout("mdsc get_session %p 0 -- FAIL", s);
328 		return NULL;
329 	}
330 }
331 
332 void ceph_put_mds_session(struct ceph_mds_session *s)
333 {
334 	dout("mdsc put_session %p %d -> %d\n", s,
335 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
336 	if (atomic_dec_and_test(&s->s_ref)) {
337 		if (s->s_authorizer)
338 		     s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer(
339 			     s->s_mdsc->fsc->client->monc.auth,
340 			     s->s_authorizer);
341 		kfree(s);
342 	}
343 }
344 
345 /*
346  * called under mdsc->mutex
347  */
348 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
349 						   int mds)
350 {
351 	struct ceph_mds_session *session;
352 
353 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
354 		return NULL;
355 	session = mdsc->sessions[mds];
356 	dout("lookup_mds_session %p %d\n", session,
357 	     atomic_read(&session->s_ref));
358 	get_session(session);
359 	return session;
360 }
361 
362 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
363 {
364 	if (mds >= mdsc->max_sessions)
365 		return false;
366 	return mdsc->sessions[mds];
367 }
368 
369 static int __verify_registered_session(struct ceph_mds_client *mdsc,
370 				       struct ceph_mds_session *s)
371 {
372 	if (s->s_mds >= mdsc->max_sessions ||
373 	    mdsc->sessions[s->s_mds] != s)
374 		return -ENOENT;
375 	return 0;
376 }
377 
378 /*
379  * create+register a new session for given mds.
380  * called under mdsc->mutex.
381  */
382 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
383 						 int mds)
384 {
385 	struct ceph_mds_session *s;
386 
387 	s = kzalloc(sizeof(*s), GFP_NOFS);
388 	if (!s)
389 		return ERR_PTR(-ENOMEM);
390 	s->s_mdsc = mdsc;
391 	s->s_mds = mds;
392 	s->s_state = CEPH_MDS_SESSION_NEW;
393 	s->s_ttl = 0;
394 	s->s_seq = 0;
395 	mutex_init(&s->s_mutex);
396 
397 	ceph_con_init(mdsc->fsc->client->msgr, &s->s_con);
398 	s->s_con.private = s;
399 	s->s_con.ops = &mds_con_ops;
400 	s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
401 	s->s_con.peer_name.num = cpu_to_le64(mds);
402 
403 	spin_lock_init(&s->s_gen_ttl_lock);
404 	s->s_cap_gen = 0;
405 	s->s_cap_ttl = jiffies - 1;
406 
407 	spin_lock_init(&s->s_cap_lock);
408 	s->s_renew_requested = 0;
409 	s->s_renew_seq = 0;
410 	INIT_LIST_HEAD(&s->s_caps);
411 	s->s_nr_caps = 0;
412 	s->s_trim_caps = 0;
413 	atomic_set(&s->s_ref, 1);
414 	INIT_LIST_HEAD(&s->s_waiting);
415 	INIT_LIST_HEAD(&s->s_unsafe);
416 	s->s_num_cap_releases = 0;
417 	s->s_cap_iterator = NULL;
418 	INIT_LIST_HEAD(&s->s_cap_releases);
419 	INIT_LIST_HEAD(&s->s_cap_releases_done);
420 	INIT_LIST_HEAD(&s->s_cap_flushing);
421 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
422 
423 	dout("register_session mds%d\n", mds);
424 	if (mds >= mdsc->max_sessions) {
425 		int newmax = 1 << get_count_order(mds+1);
426 		struct ceph_mds_session **sa;
427 
428 		dout("register_session realloc to %d\n", newmax);
429 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
430 		if (sa == NULL)
431 			goto fail_realloc;
432 		if (mdsc->sessions) {
433 			memcpy(sa, mdsc->sessions,
434 			       mdsc->max_sessions * sizeof(void *));
435 			kfree(mdsc->sessions);
436 		}
437 		mdsc->sessions = sa;
438 		mdsc->max_sessions = newmax;
439 	}
440 	mdsc->sessions[mds] = s;
441 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
442 
443 	ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
444 
445 	return s;
446 
447 fail_realloc:
448 	kfree(s);
449 	return ERR_PTR(-ENOMEM);
450 }
451 
452 /*
453  * called under mdsc->mutex
454  */
455 static void __unregister_session(struct ceph_mds_client *mdsc,
456 			       struct ceph_mds_session *s)
457 {
458 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
459 	BUG_ON(mdsc->sessions[s->s_mds] != s);
460 	mdsc->sessions[s->s_mds] = NULL;
461 	ceph_con_close(&s->s_con);
462 	ceph_put_mds_session(s);
463 }
464 
465 /*
466  * drop session refs in request.
467  *
468  * should be last request ref, or hold mdsc->mutex
469  */
470 static void put_request_session(struct ceph_mds_request *req)
471 {
472 	if (req->r_session) {
473 		ceph_put_mds_session(req->r_session);
474 		req->r_session = NULL;
475 	}
476 }
477 
478 void ceph_mdsc_release_request(struct kref *kref)
479 {
480 	struct ceph_mds_request *req = container_of(kref,
481 						    struct ceph_mds_request,
482 						    r_kref);
483 	if (req->r_request)
484 		ceph_msg_put(req->r_request);
485 	if (req->r_reply) {
486 		ceph_msg_put(req->r_reply);
487 		destroy_reply_info(&req->r_reply_info);
488 	}
489 	if (req->r_inode) {
490 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
491 		iput(req->r_inode);
492 	}
493 	if (req->r_locked_dir)
494 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
495 	if (req->r_target_inode)
496 		iput(req->r_target_inode);
497 	if (req->r_dentry)
498 		dput(req->r_dentry);
499 	if (req->r_old_dentry) {
500 		/*
501 		 * track (and drop pins for) r_old_dentry_dir
502 		 * separately, since r_old_dentry's d_parent may have
503 		 * changed between the dir mutex being dropped and
504 		 * this request being freed.
505 		 */
506 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
507 				  CEPH_CAP_PIN);
508 		dput(req->r_old_dentry);
509 		iput(req->r_old_dentry_dir);
510 	}
511 	kfree(req->r_path1);
512 	kfree(req->r_path2);
513 	put_request_session(req);
514 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
515 	kfree(req);
516 }
517 
518 /*
519  * lookup session, bump ref if found.
520  *
521  * called under mdsc->mutex.
522  */
523 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
524 					     u64 tid)
525 {
526 	struct ceph_mds_request *req;
527 	struct rb_node *n = mdsc->request_tree.rb_node;
528 
529 	while (n) {
530 		req = rb_entry(n, struct ceph_mds_request, r_node);
531 		if (tid < req->r_tid)
532 			n = n->rb_left;
533 		else if (tid > req->r_tid)
534 			n = n->rb_right;
535 		else {
536 			ceph_mdsc_get_request(req);
537 			return req;
538 		}
539 	}
540 	return NULL;
541 }
542 
543 static void __insert_request(struct ceph_mds_client *mdsc,
544 			     struct ceph_mds_request *new)
545 {
546 	struct rb_node **p = &mdsc->request_tree.rb_node;
547 	struct rb_node *parent = NULL;
548 	struct ceph_mds_request *req = NULL;
549 
550 	while (*p) {
551 		parent = *p;
552 		req = rb_entry(parent, struct ceph_mds_request, r_node);
553 		if (new->r_tid < req->r_tid)
554 			p = &(*p)->rb_left;
555 		else if (new->r_tid > req->r_tid)
556 			p = &(*p)->rb_right;
557 		else
558 			BUG();
559 	}
560 
561 	rb_link_node(&new->r_node, parent, p);
562 	rb_insert_color(&new->r_node, &mdsc->request_tree);
563 }
564 
565 /*
566  * Register an in-flight request, and assign a tid.  Link to directory
567  * are modifying (if any).
568  *
569  * Called under mdsc->mutex.
570  */
571 static void __register_request(struct ceph_mds_client *mdsc,
572 			       struct ceph_mds_request *req,
573 			       struct inode *dir)
574 {
575 	req->r_tid = ++mdsc->last_tid;
576 	if (req->r_num_caps)
577 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
578 				  req->r_num_caps);
579 	dout("__register_request %p tid %lld\n", req, req->r_tid);
580 	ceph_mdsc_get_request(req);
581 	__insert_request(mdsc, req);
582 
583 	req->r_uid = current_fsuid();
584 	req->r_gid = current_fsgid();
585 
586 	if (dir) {
587 		struct ceph_inode_info *ci = ceph_inode(dir);
588 
589 		ihold(dir);
590 		spin_lock(&ci->i_unsafe_lock);
591 		req->r_unsafe_dir = dir;
592 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
593 		spin_unlock(&ci->i_unsafe_lock);
594 	}
595 }
596 
597 static void __unregister_request(struct ceph_mds_client *mdsc,
598 				 struct ceph_mds_request *req)
599 {
600 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
601 	rb_erase(&req->r_node, &mdsc->request_tree);
602 	RB_CLEAR_NODE(&req->r_node);
603 
604 	if (req->r_unsafe_dir) {
605 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
606 
607 		spin_lock(&ci->i_unsafe_lock);
608 		list_del_init(&req->r_unsafe_dir_item);
609 		spin_unlock(&ci->i_unsafe_lock);
610 
611 		iput(req->r_unsafe_dir);
612 		req->r_unsafe_dir = NULL;
613 	}
614 
615 	ceph_mdsc_put_request(req);
616 }
617 
618 /*
619  * Choose mds to send request to next.  If there is a hint set in the
620  * request (e.g., due to a prior forward hint from the mds), use that.
621  * Otherwise, consult frag tree and/or caps to identify the
622  * appropriate mds.  If all else fails, choose randomly.
623  *
624  * Called under mdsc->mutex.
625  */
626 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
627 {
628 	/*
629 	 * we don't need to worry about protecting the d_parent access
630 	 * here because we never renaming inside the snapped namespace
631 	 * except to resplice to another snapdir, and either the old or new
632 	 * result is a valid result.
633 	 */
634 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
635 		dentry = dentry->d_parent;
636 	return dentry;
637 }
638 
639 static int __choose_mds(struct ceph_mds_client *mdsc,
640 			struct ceph_mds_request *req)
641 {
642 	struct inode *inode;
643 	struct ceph_inode_info *ci;
644 	struct ceph_cap *cap;
645 	int mode = req->r_direct_mode;
646 	int mds = -1;
647 	u32 hash = req->r_direct_hash;
648 	bool is_hash = req->r_direct_is_hash;
649 
650 	/*
651 	 * is there a specific mds we should try?  ignore hint if we have
652 	 * no session and the mds is not up (active or recovering).
653 	 */
654 	if (req->r_resend_mds >= 0 &&
655 	    (__have_session(mdsc, req->r_resend_mds) ||
656 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
657 		dout("choose_mds using resend_mds mds%d\n",
658 		     req->r_resend_mds);
659 		return req->r_resend_mds;
660 	}
661 
662 	if (mode == USE_RANDOM_MDS)
663 		goto random;
664 
665 	inode = NULL;
666 	if (req->r_inode) {
667 		inode = req->r_inode;
668 	} else if (req->r_dentry) {
669 		/* ignore race with rename; old or new d_parent is okay */
670 		struct dentry *parent = req->r_dentry->d_parent;
671 		struct inode *dir = parent->d_inode;
672 
673 		if (dir->i_sb != mdsc->fsc->sb) {
674 			/* not this fs! */
675 			inode = req->r_dentry->d_inode;
676 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
677 			/* direct snapped/virtual snapdir requests
678 			 * based on parent dir inode */
679 			struct dentry *dn = get_nonsnap_parent(parent);
680 			inode = dn->d_inode;
681 			dout("__choose_mds using nonsnap parent %p\n", inode);
682 		} else if (req->r_dentry->d_inode) {
683 			/* dentry target */
684 			inode = req->r_dentry->d_inode;
685 		} else {
686 			/* dir + name */
687 			inode = dir;
688 			hash = ceph_dentry_hash(dir, req->r_dentry);
689 			is_hash = true;
690 		}
691 	}
692 
693 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
694 	     (int)hash, mode);
695 	if (!inode)
696 		goto random;
697 	ci = ceph_inode(inode);
698 
699 	if (is_hash && S_ISDIR(inode->i_mode)) {
700 		struct ceph_inode_frag frag;
701 		int found;
702 
703 		ceph_choose_frag(ci, hash, &frag, &found);
704 		if (found) {
705 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
706 				u8 r;
707 
708 				/* choose a random replica */
709 				get_random_bytes(&r, 1);
710 				r %= frag.ndist;
711 				mds = frag.dist[r];
712 				dout("choose_mds %p %llx.%llx "
713 				     "frag %u mds%d (%d/%d)\n",
714 				     inode, ceph_vinop(inode),
715 				     frag.frag, mds,
716 				     (int)r, frag.ndist);
717 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
718 				    CEPH_MDS_STATE_ACTIVE)
719 					return mds;
720 			}
721 
722 			/* since this file/dir wasn't known to be
723 			 * replicated, then we want to look for the
724 			 * authoritative mds. */
725 			mode = USE_AUTH_MDS;
726 			if (frag.mds >= 0) {
727 				/* choose auth mds */
728 				mds = frag.mds;
729 				dout("choose_mds %p %llx.%llx "
730 				     "frag %u mds%d (auth)\n",
731 				     inode, ceph_vinop(inode), frag.frag, mds);
732 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
733 				    CEPH_MDS_STATE_ACTIVE)
734 					return mds;
735 			}
736 		}
737 	}
738 
739 	spin_lock(&ci->i_ceph_lock);
740 	cap = NULL;
741 	if (mode == USE_AUTH_MDS)
742 		cap = ci->i_auth_cap;
743 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
744 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
745 	if (!cap) {
746 		spin_unlock(&ci->i_ceph_lock);
747 		goto random;
748 	}
749 	mds = cap->session->s_mds;
750 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
751 	     inode, ceph_vinop(inode), mds,
752 	     cap == ci->i_auth_cap ? "auth " : "", cap);
753 	spin_unlock(&ci->i_ceph_lock);
754 	return mds;
755 
756 random:
757 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
758 	dout("choose_mds chose random mds%d\n", mds);
759 	return mds;
760 }
761 
762 
763 /*
764  * session messages
765  */
766 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
767 {
768 	struct ceph_msg *msg;
769 	struct ceph_mds_session_head *h;
770 
771 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
772 			   false);
773 	if (!msg) {
774 		pr_err("create_session_msg ENOMEM creating msg\n");
775 		return NULL;
776 	}
777 	h = msg->front.iov_base;
778 	h->op = cpu_to_le32(op);
779 	h->seq = cpu_to_le64(seq);
780 	return msg;
781 }
782 
783 /*
784  * send session open request.
785  *
786  * called under mdsc->mutex
787  */
788 static int __open_session(struct ceph_mds_client *mdsc,
789 			  struct ceph_mds_session *session)
790 {
791 	struct ceph_msg *msg;
792 	int mstate;
793 	int mds = session->s_mds;
794 
795 	/* wait for mds to go active? */
796 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
797 	dout("open_session to mds%d (%s)\n", mds,
798 	     ceph_mds_state_name(mstate));
799 	session->s_state = CEPH_MDS_SESSION_OPENING;
800 	session->s_renew_requested = jiffies;
801 
802 	/* send connect message */
803 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
804 	if (!msg)
805 		return -ENOMEM;
806 	ceph_con_send(&session->s_con, msg);
807 	return 0;
808 }
809 
810 /*
811  * open sessions for any export targets for the given mds
812  *
813  * called under mdsc->mutex
814  */
815 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
816 					  struct ceph_mds_session *session)
817 {
818 	struct ceph_mds_info *mi;
819 	struct ceph_mds_session *ts;
820 	int i, mds = session->s_mds;
821 	int target;
822 
823 	if (mds >= mdsc->mdsmap->m_max_mds)
824 		return;
825 	mi = &mdsc->mdsmap->m_info[mds];
826 	dout("open_export_target_sessions for mds%d (%d targets)\n",
827 	     session->s_mds, mi->num_export_targets);
828 
829 	for (i = 0; i < mi->num_export_targets; i++) {
830 		target = mi->export_targets[i];
831 		ts = __ceph_lookup_mds_session(mdsc, target);
832 		if (!ts) {
833 			ts = register_session(mdsc, target);
834 			if (IS_ERR(ts))
835 				return;
836 		}
837 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
838 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
839 			__open_session(mdsc, session);
840 		else
841 			dout(" mds%d target mds%d %p is %s\n", session->s_mds,
842 			     i, ts, session_state_name(ts->s_state));
843 		ceph_put_mds_session(ts);
844 	}
845 }
846 
847 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
848 					   struct ceph_mds_session *session)
849 {
850 	mutex_lock(&mdsc->mutex);
851 	__open_export_target_sessions(mdsc, session);
852 	mutex_unlock(&mdsc->mutex);
853 }
854 
855 /*
856  * session caps
857  */
858 
859 /*
860  * Free preallocated cap messages assigned to this session
861  */
862 static void cleanup_cap_releases(struct ceph_mds_session *session)
863 {
864 	struct ceph_msg *msg;
865 
866 	spin_lock(&session->s_cap_lock);
867 	while (!list_empty(&session->s_cap_releases)) {
868 		msg = list_first_entry(&session->s_cap_releases,
869 				       struct ceph_msg, list_head);
870 		list_del_init(&msg->list_head);
871 		ceph_msg_put(msg);
872 	}
873 	while (!list_empty(&session->s_cap_releases_done)) {
874 		msg = list_first_entry(&session->s_cap_releases_done,
875 				       struct ceph_msg, list_head);
876 		list_del_init(&msg->list_head);
877 		ceph_msg_put(msg);
878 	}
879 	spin_unlock(&session->s_cap_lock);
880 }
881 
882 /*
883  * Helper to safely iterate over all caps associated with a session, with
884  * special care taken to handle a racing __ceph_remove_cap().
885  *
886  * Caller must hold session s_mutex.
887  */
888 static int iterate_session_caps(struct ceph_mds_session *session,
889 				 int (*cb)(struct inode *, struct ceph_cap *,
890 					    void *), void *arg)
891 {
892 	struct list_head *p;
893 	struct ceph_cap *cap;
894 	struct inode *inode, *last_inode = NULL;
895 	struct ceph_cap *old_cap = NULL;
896 	int ret;
897 
898 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
899 	spin_lock(&session->s_cap_lock);
900 	p = session->s_caps.next;
901 	while (p != &session->s_caps) {
902 		cap = list_entry(p, struct ceph_cap, session_caps);
903 		inode = igrab(&cap->ci->vfs_inode);
904 		if (!inode) {
905 			p = p->next;
906 			continue;
907 		}
908 		session->s_cap_iterator = cap;
909 		spin_unlock(&session->s_cap_lock);
910 
911 		if (last_inode) {
912 			iput(last_inode);
913 			last_inode = NULL;
914 		}
915 		if (old_cap) {
916 			ceph_put_cap(session->s_mdsc, old_cap);
917 			old_cap = NULL;
918 		}
919 
920 		ret = cb(inode, cap, arg);
921 		last_inode = inode;
922 
923 		spin_lock(&session->s_cap_lock);
924 		p = p->next;
925 		if (cap->ci == NULL) {
926 			dout("iterate_session_caps  finishing cap %p removal\n",
927 			     cap);
928 			BUG_ON(cap->session != session);
929 			list_del_init(&cap->session_caps);
930 			session->s_nr_caps--;
931 			cap->session = NULL;
932 			old_cap = cap;  /* put_cap it w/o locks held */
933 		}
934 		if (ret < 0)
935 			goto out;
936 	}
937 	ret = 0;
938 out:
939 	session->s_cap_iterator = NULL;
940 	spin_unlock(&session->s_cap_lock);
941 
942 	if (last_inode)
943 		iput(last_inode);
944 	if (old_cap)
945 		ceph_put_cap(session->s_mdsc, old_cap);
946 
947 	return ret;
948 }
949 
950 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
951 				  void *arg)
952 {
953 	struct ceph_inode_info *ci = ceph_inode(inode);
954 	int drop = 0;
955 
956 	dout("removing cap %p, ci is %p, inode is %p\n",
957 	     cap, ci, &ci->vfs_inode);
958 	spin_lock(&ci->i_ceph_lock);
959 	__ceph_remove_cap(cap);
960 	if (!__ceph_is_any_real_caps(ci)) {
961 		struct ceph_mds_client *mdsc =
962 			ceph_sb_to_client(inode->i_sb)->mdsc;
963 
964 		spin_lock(&mdsc->cap_dirty_lock);
965 		if (!list_empty(&ci->i_dirty_item)) {
966 			pr_info(" dropping dirty %s state for %p %lld\n",
967 				ceph_cap_string(ci->i_dirty_caps),
968 				inode, ceph_ino(inode));
969 			ci->i_dirty_caps = 0;
970 			list_del_init(&ci->i_dirty_item);
971 			drop = 1;
972 		}
973 		if (!list_empty(&ci->i_flushing_item)) {
974 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
975 				ceph_cap_string(ci->i_flushing_caps),
976 				inode, ceph_ino(inode));
977 			ci->i_flushing_caps = 0;
978 			list_del_init(&ci->i_flushing_item);
979 			mdsc->num_cap_flushing--;
980 			drop = 1;
981 		}
982 		if (drop && ci->i_wrbuffer_ref) {
983 			pr_info(" dropping dirty data for %p %lld\n",
984 				inode, ceph_ino(inode));
985 			ci->i_wrbuffer_ref = 0;
986 			ci->i_wrbuffer_ref_head = 0;
987 			drop++;
988 		}
989 		spin_unlock(&mdsc->cap_dirty_lock);
990 	}
991 	spin_unlock(&ci->i_ceph_lock);
992 	while (drop--)
993 		iput(inode);
994 	return 0;
995 }
996 
997 /*
998  * caller must hold session s_mutex
999  */
1000 static void remove_session_caps(struct ceph_mds_session *session)
1001 {
1002 	dout("remove_session_caps on %p\n", session);
1003 	iterate_session_caps(session, remove_session_caps_cb, NULL);
1004 	BUG_ON(session->s_nr_caps > 0);
1005 	BUG_ON(!list_empty(&session->s_cap_flushing));
1006 	cleanup_cap_releases(session);
1007 }
1008 
1009 /*
1010  * wake up any threads waiting on this session's caps.  if the cap is
1011  * old (didn't get renewed on the client reconnect), remove it now.
1012  *
1013  * caller must hold s_mutex.
1014  */
1015 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1016 			      void *arg)
1017 {
1018 	struct ceph_inode_info *ci = ceph_inode(inode);
1019 
1020 	wake_up_all(&ci->i_cap_wq);
1021 	if (arg) {
1022 		spin_lock(&ci->i_ceph_lock);
1023 		ci->i_wanted_max_size = 0;
1024 		ci->i_requested_max_size = 0;
1025 		spin_unlock(&ci->i_ceph_lock);
1026 	}
1027 	return 0;
1028 }
1029 
1030 static void wake_up_session_caps(struct ceph_mds_session *session,
1031 				 int reconnect)
1032 {
1033 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1034 	iterate_session_caps(session, wake_up_session_cb,
1035 			     (void *)(unsigned long)reconnect);
1036 }
1037 
1038 /*
1039  * Send periodic message to MDS renewing all currently held caps.  The
1040  * ack will reset the expiration for all caps from this session.
1041  *
1042  * caller holds s_mutex
1043  */
1044 static int send_renew_caps(struct ceph_mds_client *mdsc,
1045 			   struct ceph_mds_session *session)
1046 {
1047 	struct ceph_msg *msg;
1048 	int state;
1049 
1050 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1051 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1052 		pr_info("mds%d caps stale\n", session->s_mds);
1053 	session->s_renew_requested = jiffies;
1054 
1055 	/* do not try to renew caps until a recovering mds has reconnected
1056 	 * with its clients. */
1057 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1058 	if (state < CEPH_MDS_STATE_RECONNECT) {
1059 		dout("send_renew_caps ignoring mds%d (%s)\n",
1060 		     session->s_mds, ceph_mds_state_name(state));
1061 		return 0;
1062 	}
1063 
1064 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1065 		ceph_mds_state_name(state));
1066 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1067 				 ++session->s_renew_seq);
1068 	if (!msg)
1069 		return -ENOMEM;
1070 	ceph_con_send(&session->s_con, msg);
1071 	return 0;
1072 }
1073 
1074 /*
1075  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1076  *
1077  * Called under session->s_mutex
1078  */
1079 static void renewed_caps(struct ceph_mds_client *mdsc,
1080 			 struct ceph_mds_session *session, int is_renew)
1081 {
1082 	int was_stale;
1083 	int wake = 0;
1084 
1085 	spin_lock(&session->s_cap_lock);
1086 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1087 
1088 	session->s_cap_ttl = session->s_renew_requested +
1089 		mdsc->mdsmap->m_session_timeout*HZ;
1090 
1091 	if (was_stale) {
1092 		if (time_before(jiffies, session->s_cap_ttl)) {
1093 			pr_info("mds%d caps renewed\n", session->s_mds);
1094 			wake = 1;
1095 		} else {
1096 			pr_info("mds%d caps still stale\n", session->s_mds);
1097 		}
1098 	}
1099 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1100 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1101 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1102 	spin_unlock(&session->s_cap_lock);
1103 
1104 	if (wake)
1105 		wake_up_session_caps(session, 0);
1106 }
1107 
1108 /*
1109  * send a session close request
1110  */
1111 static int request_close_session(struct ceph_mds_client *mdsc,
1112 				 struct ceph_mds_session *session)
1113 {
1114 	struct ceph_msg *msg;
1115 
1116 	dout("request_close_session mds%d state %s seq %lld\n",
1117 	     session->s_mds, session_state_name(session->s_state),
1118 	     session->s_seq);
1119 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1120 	if (!msg)
1121 		return -ENOMEM;
1122 	ceph_con_send(&session->s_con, msg);
1123 	return 0;
1124 }
1125 
1126 /*
1127  * Called with s_mutex held.
1128  */
1129 static int __close_session(struct ceph_mds_client *mdsc,
1130 			 struct ceph_mds_session *session)
1131 {
1132 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1133 		return 0;
1134 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1135 	return request_close_session(mdsc, session);
1136 }
1137 
1138 /*
1139  * Trim old(er) caps.
1140  *
1141  * Because we can't cache an inode without one or more caps, we do
1142  * this indirectly: if a cap is unused, we prune its aliases, at which
1143  * point the inode will hopefully get dropped to.
1144  *
1145  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1146  * memory pressure from the MDS, though, so it needn't be perfect.
1147  */
1148 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1149 {
1150 	struct ceph_mds_session *session = arg;
1151 	struct ceph_inode_info *ci = ceph_inode(inode);
1152 	int used, oissued, mine;
1153 
1154 	if (session->s_trim_caps <= 0)
1155 		return -1;
1156 
1157 	spin_lock(&ci->i_ceph_lock);
1158 	mine = cap->issued | cap->implemented;
1159 	used = __ceph_caps_used(ci);
1160 	oissued = __ceph_caps_issued_other(ci, cap);
1161 
1162 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1163 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1164 	     ceph_cap_string(used));
1165 	if (ci->i_dirty_caps)
1166 		goto out;   /* dirty caps */
1167 	if ((used & ~oissued) & mine)
1168 		goto out;   /* we need these caps */
1169 
1170 	session->s_trim_caps--;
1171 	if (oissued) {
1172 		/* we aren't the only cap.. just remove us */
1173 		__ceph_remove_cap(cap);
1174 	} else {
1175 		/* try to drop referring dentries */
1176 		spin_unlock(&ci->i_ceph_lock);
1177 		d_prune_aliases(inode);
1178 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1179 		     inode, cap, atomic_read(&inode->i_count));
1180 		return 0;
1181 	}
1182 
1183 out:
1184 	spin_unlock(&ci->i_ceph_lock);
1185 	return 0;
1186 }
1187 
1188 /*
1189  * Trim session cap count down to some max number.
1190  */
1191 static int trim_caps(struct ceph_mds_client *mdsc,
1192 		     struct ceph_mds_session *session,
1193 		     int max_caps)
1194 {
1195 	int trim_caps = session->s_nr_caps - max_caps;
1196 
1197 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1198 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1199 	if (trim_caps > 0) {
1200 		session->s_trim_caps = trim_caps;
1201 		iterate_session_caps(session, trim_caps_cb, session);
1202 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1203 		     session->s_mds, session->s_nr_caps, max_caps,
1204 			trim_caps - session->s_trim_caps);
1205 		session->s_trim_caps = 0;
1206 	}
1207 	return 0;
1208 }
1209 
1210 /*
1211  * Allocate cap_release messages.  If there is a partially full message
1212  * in the queue, try to allocate enough to cover it's remainder, so that
1213  * we can send it immediately.
1214  *
1215  * Called under s_mutex.
1216  */
1217 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1218 			  struct ceph_mds_session *session)
1219 {
1220 	struct ceph_msg *msg, *partial = NULL;
1221 	struct ceph_mds_cap_release *head;
1222 	int err = -ENOMEM;
1223 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1224 	int num;
1225 
1226 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1227 	     extra);
1228 
1229 	spin_lock(&session->s_cap_lock);
1230 
1231 	if (!list_empty(&session->s_cap_releases)) {
1232 		msg = list_first_entry(&session->s_cap_releases,
1233 				       struct ceph_msg,
1234 				 list_head);
1235 		head = msg->front.iov_base;
1236 		num = le32_to_cpu(head->num);
1237 		if (num) {
1238 			dout(" partial %p with (%d/%d)\n", msg, num,
1239 			     (int)CEPH_CAPS_PER_RELEASE);
1240 			extra += CEPH_CAPS_PER_RELEASE - num;
1241 			partial = msg;
1242 		}
1243 	}
1244 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1245 		spin_unlock(&session->s_cap_lock);
1246 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1247 				   GFP_NOFS, false);
1248 		if (!msg)
1249 			goto out_unlocked;
1250 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1251 		     (int)msg->front.iov_len);
1252 		head = msg->front.iov_base;
1253 		head->num = cpu_to_le32(0);
1254 		msg->front.iov_len = sizeof(*head);
1255 		spin_lock(&session->s_cap_lock);
1256 		list_add(&msg->list_head, &session->s_cap_releases);
1257 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1258 	}
1259 
1260 	if (partial) {
1261 		head = partial->front.iov_base;
1262 		num = le32_to_cpu(head->num);
1263 		dout(" queueing partial %p with %d/%d\n", partial, num,
1264 		     (int)CEPH_CAPS_PER_RELEASE);
1265 		list_move_tail(&partial->list_head,
1266 			       &session->s_cap_releases_done);
1267 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1268 	}
1269 	err = 0;
1270 	spin_unlock(&session->s_cap_lock);
1271 out_unlocked:
1272 	return err;
1273 }
1274 
1275 /*
1276  * flush all dirty inode data to disk.
1277  *
1278  * returns true if we've flushed through want_flush_seq
1279  */
1280 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1281 {
1282 	int mds, ret = 1;
1283 
1284 	dout("check_cap_flush want %lld\n", want_flush_seq);
1285 	mutex_lock(&mdsc->mutex);
1286 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1287 		struct ceph_mds_session *session = mdsc->sessions[mds];
1288 
1289 		if (!session)
1290 			continue;
1291 		get_session(session);
1292 		mutex_unlock(&mdsc->mutex);
1293 
1294 		mutex_lock(&session->s_mutex);
1295 		if (!list_empty(&session->s_cap_flushing)) {
1296 			struct ceph_inode_info *ci =
1297 				list_entry(session->s_cap_flushing.next,
1298 					   struct ceph_inode_info,
1299 					   i_flushing_item);
1300 			struct inode *inode = &ci->vfs_inode;
1301 
1302 			spin_lock(&ci->i_ceph_lock);
1303 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1304 				dout("check_cap_flush still flushing %p "
1305 				     "seq %lld <= %lld to mds%d\n", inode,
1306 				     ci->i_cap_flush_seq, want_flush_seq,
1307 				     session->s_mds);
1308 				ret = 0;
1309 			}
1310 			spin_unlock(&ci->i_ceph_lock);
1311 		}
1312 		mutex_unlock(&session->s_mutex);
1313 		ceph_put_mds_session(session);
1314 
1315 		if (!ret)
1316 			return ret;
1317 		mutex_lock(&mdsc->mutex);
1318 	}
1319 
1320 	mutex_unlock(&mdsc->mutex);
1321 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1322 	return ret;
1323 }
1324 
1325 /*
1326  * called under s_mutex
1327  */
1328 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1329 			    struct ceph_mds_session *session)
1330 {
1331 	struct ceph_msg *msg;
1332 
1333 	dout("send_cap_releases mds%d\n", session->s_mds);
1334 	spin_lock(&session->s_cap_lock);
1335 	while (!list_empty(&session->s_cap_releases_done)) {
1336 		msg = list_first_entry(&session->s_cap_releases_done,
1337 				 struct ceph_msg, list_head);
1338 		list_del_init(&msg->list_head);
1339 		spin_unlock(&session->s_cap_lock);
1340 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1341 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1342 		ceph_con_send(&session->s_con, msg);
1343 		spin_lock(&session->s_cap_lock);
1344 	}
1345 	spin_unlock(&session->s_cap_lock);
1346 }
1347 
1348 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1349 				 struct ceph_mds_session *session)
1350 {
1351 	struct ceph_msg *msg;
1352 	struct ceph_mds_cap_release *head;
1353 	unsigned num;
1354 
1355 	dout("discard_cap_releases mds%d\n", session->s_mds);
1356 	spin_lock(&session->s_cap_lock);
1357 
1358 	/* zero out the in-progress message */
1359 	msg = list_first_entry(&session->s_cap_releases,
1360 			       struct ceph_msg, list_head);
1361 	head = msg->front.iov_base;
1362 	num = le32_to_cpu(head->num);
1363 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1364 	head->num = cpu_to_le32(0);
1365 	session->s_num_cap_releases += num;
1366 
1367 	/* requeue completed messages */
1368 	while (!list_empty(&session->s_cap_releases_done)) {
1369 		msg = list_first_entry(&session->s_cap_releases_done,
1370 				 struct ceph_msg, list_head);
1371 		list_del_init(&msg->list_head);
1372 
1373 		head = msg->front.iov_base;
1374 		num = le32_to_cpu(head->num);
1375 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1376 		     num);
1377 		session->s_num_cap_releases += num;
1378 		head->num = cpu_to_le32(0);
1379 		msg->front.iov_len = sizeof(*head);
1380 		list_add(&msg->list_head, &session->s_cap_releases);
1381 	}
1382 
1383 	spin_unlock(&session->s_cap_lock);
1384 }
1385 
1386 /*
1387  * requests
1388  */
1389 
1390 /*
1391  * Create an mds request.
1392  */
1393 struct ceph_mds_request *
1394 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1395 {
1396 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1397 
1398 	if (!req)
1399 		return ERR_PTR(-ENOMEM);
1400 
1401 	mutex_init(&req->r_fill_mutex);
1402 	req->r_mdsc = mdsc;
1403 	req->r_started = jiffies;
1404 	req->r_resend_mds = -1;
1405 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1406 	req->r_fmode = -1;
1407 	kref_init(&req->r_kref);
1408 	INIT_LIST_HEAD(&req->r_wait);
1409 	init_completion(&req->r_completion);
1410 	init_completion(&req->r_safe_completion);
1411 	INIT_LIST_HEAD(&req->r_unsafe_item);
1412 
1413 	req->r_op = op;
1414 	req->r_direct_mode = mode;
1415 	return req;
1416 }
1417 
1418 /*
1419  * return oldest (lowest) request, tid in request tree, 0 if none.
1420  *
1421  * called under mdsc->mutex.
1422  */
1423 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1424 {
1425 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1426 		return NULL;
1427 	return rb_entry(rb_first(&mdsc->request_tree),
1428 			struct ceph_mds_request, r_node);
1429 }
1430 
1431 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1432 {
1433 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1434 
1435 	if (req)
1436 		return req->r_tid;
1437 	return 0;
1438 }
1439 
1440 /*
1441  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1442  * on build_path_from_dentry in fs/cifs/dir.c.
1443  *
1444  * If @stop_on_nosnap, generate path relative to the first non-snapped
1445  * inode.
1446  *
1447  * Encode hidden .snap dirs as a double /, i.e.
1448  *   foo/.snap/bar -> foo//bar
1449  */
1450 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1451 			   int stop_on_nosnap)
1452 {
1453 	struct dentry *temp;
1454 	char *path;
1455 	int len, pos;
1456 	unsigned seq;
1457 
1458 	if (dentry == NULL)
1459 		return ERR_PTR(-EINVAL);
1460 
1461 retry:
1462 	len = 0;
1463 	seq = read_seqbegin(&rename_lock);
1464 	rcu_read_lock();
1465 	for (temp = dentry; !IS_ROOT(temp);) {
1466 		struct inode *inode = temp->d_inode;
1467 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1468 			len++;  /* slash only */
1469 		else if (stop_on_nosnap && inode &&
1470 			 ceph_snap(inode) == CEPH_NOSNAP)
1471 			break;
1472 		else
1473 			len += 1 + temp->d_name.len;
1474 		temp = temp->d_parent;
1475 		if (temp == NULL) {
1476 			rcu_read_unlock();
1477 			pr_err("build_path corrupt dentry %p\n", dentry);
1478 			return ERR_PTR(-EINVAL);
1479 		}
1480 	}
1481 	rcu_read_unlock();
1482 	if (len)
1483 		len--;  /* no leading '/' */
1484 
1485 	path = kmalloc(len+1, GFP_NOFS);
1486 	if (path == NULL)
1487 		return ERR_PTR(-ENOMEM);
1488 	pos = len;
1489 	path[pos] = 0;	/* trailing null */
1490 	rcu_read_lock();
1491 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1492 		struct inode *inode;
1493 
1494 		spin_lock(&temp->d_lock);
1495 		inode = temp->d_inode;
1496 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1497 			dout("build_path path+%d: %p SNAPDIR\n",
1498 			     pos, temp);
1499 		} else if (stop_on_nosnap && inode &&
1500 			   ceph_snap(inode) == CEPH_NOSNAP) {
1501 			spin_unlock(&temp->d_lock);
1502 			break;
1503 		} else {
1504 			pos -= temp->d_name.len;
1505 			if (pos < 0) {
1506 				spin_unlock(&temp->d_lock);
1507 				break;
1508 			}
1509 			strncpy(path + pos, temp->d_name.name,
1510 				temp->d_name.len);
1511 		}
1512 		spin_unlock(&temp->d_lock);
1513 		if (pos)
1514 			path[--pos] = '/';
1515 		temp = temp->d_parent;
1516 		if (temp == NULL) {
1517 			rcu_read_unlock();
1518 			pr_err("build_path corrupt dentry\n");
1519 			kfree(path);
1520 			return ERR_PTR(-EINVAL);
1521 		}
1522 	}
1523 	rcu_read_unlock();
1524 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1525 		pr_err("build_path did not end path lookup where "
1526 		       "expected, namelen is %d, pos is %d\n", len, pos);
1527 		/* presumably this is only possible if racing with a
1528 		   rename of one of the parent directories (we can not
1529 		   lock the dentries above us to prevent this, but
1530 		   retrying should be harmless) */
1531 		kfree(path);
1532 		goto retry;
1533 	}
1534 
1535 	*base = ceph_ino(temp->d_inode);
1536 	*plen = len;
1537 	dout("build_path on %p %d built %llx '%.*s'\n",
1538 	     dentry, dentry->d_count, *base, len, path);
1539 	return path;
1540 }
1541 
1542 static int build_dentry_path(struct dentry *dentry,
1543 			     const char **ppath, int *ppathlen, u64 *pino,
1544 			     int *pfreepath)
1545 {
1546 	char *path;
1547 
1548 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1549 		*pino = ceph_ino(dentry->d_parent->d_inode);
1550 		*ppath = dentry->d_name.name;
1551 		*ppathlen = dentry->d_name.len;
1552 		return 0;
1553 	}
1554 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1555 	if (IS_ERR(path))
1556 		return PTR_ERR(path);
1557 	*ppath = path;
1558 	*pfreepath = 1;
1559 	return 0;
1560 }
1561 
1562 static int build_inode_path(struct inode *inode,
1563 			    const char **ppath, int *ppathlen, u64 *pino,
1564 			    int *pfreepath)
1565 {
1566 	struct dentry *dentry;
1567 	char *path;
1568 
1569 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1570 		*pino = ceph_ino(inode);
1571 		*ppathlen = 0;
1572 		return 0;
1573 	}
1574 	dentry = d_find_alias(inode);
1575 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1576 	dput(dentry);
1577 	if (IS_ERR(path))
1578 		return PTR_ERR(path);
1579 	*ppath = path;
1580 	*pfreepath = 1;
1581 	return 0;
1582 }
1583 
1584 /*
1585  * request arguments may be specified via an inode *, a dentry *, or
1586  * an explicit ino+path.
1587  */
1588 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1589 				  const char *rpath, u64 rino,
1590 				  const char **ppath, int *pathlen,
1591 				  u64 *ino, int *freepath)
1592 {
1593 	int r = 0;
1594 
1595 	if (rinode) {
1596 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1597 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1598 		     ceph_snap(rinode));
1599 	} else if (rdentry) {
1600 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1601 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1602 		     *ppath);
1603 	} else if (rpath || rino) {
1604 		*ino = rino;
1605 		*ppath = rpath;
1606 		*pathlen = strlen(rpath);
1607 		dout(" path %.*s\n", *pathlen, rpath);
1608 	}
1609 
1610 	return r;
1611 }
1612 
1613 /*
1614  * called under mdsc->mutex
1615  */
1616 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1617 					       struct ceph_mds_request *req,
1618 					       int mds)
1619 {
1620 	struct ceph_msg *msg;
1621 	struct ceph_mds_request_head *head;
1622 	const char *path1 = NULL;
1623 	const char *path2 = NULL;
1624 	u64 ino1 = 0, ino2 = 0;
1625 	int pathlen1 = 0, pathlen2 = 0;
1626 	int freepath1 = 0, freepath2 = 0;
1627 	int len;
1628 	u16 releases;
1629 	void *p, *end;
1630 	int ret;
1631 
1632 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1633 			      req->r_path1, req->r_ino1.ino,
1634 			      &path1, &pathlen1, &ino1, &freepath1);
1635 	if (ret < 0) {
1636 		msg = ERR_PTR(ret);
1637 		goto out;
1638 	}
1639 
1640 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1641 			      req->r_path2, req->r_ino2.ino,
1642 			      &path2, &pathlen2, &ino2, &freepath2);
1643 	if (ret < 0) {
1644 		msg = ERR_PTR(ret);
1645 		goto out_free1;
1646 	}
1647 
1648 	len = sizeof(*head) +
1649 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1650 
1651 	/* calculate (max) length for cap releases */
1652 	len += sizeof(struct ceph_mds_request_release) *
1653 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1654 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1655 	if (req->r_dentry_drop)
1656 		len += req->r_dentry->d_name.len;
1657 	if (req->r_old_dentry_drop)
1658 		len += req->r_old_dentry->d_name.len;
1659 
1660 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1661 	if (!msg) {
1662 		msg = ERR_PTR(-ENOMEM);
1663 		goto out_free2;
1664 	}
1665 
1666 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1667 
1668 	head = msg->front.iov_base;
1669 	p = msg->front.iov_base + sizeof(*head);
1670 	end = msg->front.iov_base + msg->front.iov_len;
1671 
1672 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1673 	head->op = cpu_to_le32(req->r_op);
1674 	head->caller_uid = cpu_to_le32(req->r_uid);
1675 	head->caller_gid = cpu_to_le32(req->r_gid);
1676 	head->args = req->r_args;
1677 
1678 	ceph_encode_filepath(&p, end, ino1, path1);
1679 	ceph_encode_filepath(&p, end, ino2, path2);
1680 
1681 	/* make note of release offset, in case we need to replay */
1682 	req->r_request_release_offset = p - msg->front.iov_base;
1683 
1684 	/* cap releases */
1685 	releases = 0;
1686 	if (req->r_inode_drop)
1687 		releases += ceph_encode_inode_release(&p,
1688 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1689 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1690 	if (req->r_dentry_drop)
1691 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1692 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1693 	if (req->r_old_dentry_drop)
1694 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1695 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1696 	if (req->r_old_inode_drop)
1697 		releases += ceph_encode_inode_release(&p,
1698 		      req->r_old_dentry->d_inode,
1699 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1700 	head->num_releases = cpu_to_le16(releases);
1701 
1702 	BUG_ON(p > end);
1703 	msg->front.iov_len = p - msg->front.iov_base;
1704 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1705 
1706 	msg->pages = req->r_pages;
1707 	msg->nr_pages = req->r_num_pages;
1708 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1709 	msg->hdr.data_off = cpu_to_le16(0);
1710 
1711 out_free2:
1712 	if (freepath2)
1713 		kfree((char *)path2);
1714 out_free1:
1715 	if (freepath1)
1716 		kfree((char *)path1);
1717 out:
1718 	return msg;
1719 }
1720 
1721 /*
1722  * called under mdsc->mutex if error, under no mutex if
1723  * success.
1724  */
1725 static void complete_request(struct ceph_mds_client *mdsc,
1726 			     struct ceph_mds_request *req)
1727 {
1728 	if (req->r_callback)
1729 		req->r_callback(mdsc, req);
1730 	else
1731 		complete_all(&req->r_completion);
1732 }
1733 
1734 /*
1735  * called under mdsc->mutex
1736  */
1737 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1738 				  struct ceph_mds_request *req,
1739 				  int mds)
1740 {
1741 	struct ceph_mds_request_head *rhead;
1742 	struct ceph_msg *msg;
1743 	int flags = 0;
1744 
1745 	req->r_attempts++;
1746 	if (req->r_inode) {
1747 		struct ceph_cap *cap =
1748 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1749 
1750 		if (cap)
1751 			req->r_sent_on_mseq = cap->mseq;
1752 		else
1753 			req->r_sent_on_mseq = -1;
1754 	}
1755 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1756 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1757 
1758 	if (req->r_got_unsafe) {
1759 		/*
1760 		 * Replay.  Do not regenerate message (and rebuild
1761 		 * paths, etc.); just use the original message.
1762 		 * Rebuilding paths will break for renames because
1763 		 * d_move mangles the src name.
1764 		 */
1765 		msg = req->r_request;
1766 		rhead = msg->front.iov_base;
1767 
1768 		flags = le32_to_cpu(rhead->flags);
1769 		flags |= CEPH_MDS_FLAG_REPLAY;
1770 		rhead->flags = cpu_to_le32(flags);
1771 
1772 		if (req->r_target_inode)
1773 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1774 
1775 		rhead->num_retry = req->r_attempts - 1;
1776 
1777 		/* remove cap/dentry releases from message */
1778 		rhead->num_releases = 0;
1779 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1780 		msg->front.iov_len = req->r_request_release_offset;
1781 		return 0;
1782 	}
1783 
1784 	if (req->r_request) {
1785 		ceph_msg_put(req->r_request);
1786 		req->r_request = NULL;
1787 	}
1788 	msg = create_request_message(mdsc, req, mds);
1789 	if (IS_ERR(msg)) {
1790 		req->r_err = PTR_ERR(msg);
1791 		complete_request(mdsc, req);
1792 		return PTR_ERR(msg);
1793 	}
1794 	req->r_request = msg;
1795 
1796 	rhead = msg->front.iov_base;
1797 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1798 	if (req->r_got_unsafe)
1799 		flags |= CEPH_MDS_FLAG_REPLAY;
1800 	if (req->r_locked_dir)
1801 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1802 	rhead->flags = cpu_to_le32(flags);
1803 	rhead->num_fwd = req->r_num_fwd;
1804 	rhead->num_retry = req->r_attempts - 1;
1805 	rhead->ino = 0;
1806 
1807 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1808 	return 0;
1809 }
1810 
1811 /*
1812  * send request, or put it on the appropriate wait list.
1813  */
1814 static int __do_request(struct ceph_mds_client *mdsc,
1815 			struct ceph_mds_request *req)
1816 {
1817 	struct ceph_mds_session *session = NULL;
1818 	int mds = -1;
1819 	int err = -EAGAIN;
1820 
1821 	if (req->r_err || req->r_got_result)
1822 		goto out;
1823 
1824 	if (req->r_timeout &&
1825 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1826 		dout("do_request timed out\n");
1827 		err = -EIO;
1828 		goto finish;
1829 	}
1830 
1831 	put_request_session(req);
1832 
1833 	mds = __choose_mds(mdsc, req);
1834 	if (mds < 0 ||
1835 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1836 		dout("do_request no mds or not active, waiting for map\n");
1837 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1838 		goto out;
1839 	}
1840 
1841 	/* get, open session */
1842 	session = __ceph_lookup_mds_session(mdsc, mds);
1843 	if (!session) {
1844 		session = register_session(mdsc, mds);
1845 		if (IS_ERR(session)) {
1846 			err = PTR_ERR(session);
1847 			goto finish;
1848 		}
1849 	}
1850 	req->r_session = get_session(session);
1851 
1852 	dout("do_request mds%d session %p state %s\n", mds, session,
1853 	     session_state_name(session->s_state));
1854 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1855 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1856 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1857 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1858 			__open_session(mdsc, session);
1859 		list_add(&req->r_wait, &session->s_waiting);
1860 		goto out_session;
1861 	}
1862 
1863 	/* send request */
1864 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1865 
1866 	if (req->r_request_started == 0)   /* note request start time */
1867 		req->r_request_started = jiffies;
1868 
1869 	err = __prepare_send_request(mdsc, req, mds);
1870 	if (!err) {
1871 		ceph_msg_get(req->r_request);
1872 		ceph_con_send(&session->s_con, req->r_request);
1873 	}
1874 
1875 out_session:
1876 	ceph_put_mds_session(session);
1877 out:
1878 	return err;
1879 
1880 finish:
1881 	req->r_err = err;
1882 	complete_request(mdsc, req);
1883 	goto out;
1884 }
1885 
1886 /*
1887  * called under mdsc->mutex
1888  */
1889 static void __wake_requests(struct ceph_mds_client *mdsc,
1890 			    struct list_head *head)
1891 {
1892 	struct ceph_mds_request *req, *nreq;
1893 
1894 	list_for_each_entry_safe(req, nreq, head, r_wait) {
1895 		list_del_init(&req->r_wait);
1896 		__do_request(mdsc, req);
1897 	}
1898 }
1899 
1900 /*
1901  * Wake up threads with requests pending for @mds, so that they can
1902  * resubmit their requests to a possibly different mds.
1903  */
1904 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1905 {
1906 	struct ceph_mds_request *req;
1907 	struct rb_node *p;
1908 
1909 	dout("kick_requests mds%d\n", mds);
1910 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1911 		req = rb_entry(p, struct ceph_mds_request, r_node);
1912 		if (req->r_got_unsafe)
1913 			continue;
1914 		if (req->r_session &&
1915 		    req->r_session->s_mds == mds) {
1916 			dout(" kicking tid %llu\n", req->r_tid);
1917 			__do_request(mdsc, req);
1918 		}
1919 	}
1920 }
1921 
1922 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1923 			      struct ceph_mds_request *req)
1924 {
1925 	dout("submit_request on %p\n", req);
1926 	mutex_lock(&mdsc->mutex);
1927 	__register_request(mdsc, req, NULL);
1928 	__do_request(mdsc, req);
1929 	mutex_unlock(&mdsc->mutex);
1930 }
1931 
1932 /*
1933  * Synchrously perform an mds request.  Take care of all of the
1934  * session setup, forwarding, retry details.
1935  */
1936 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1937 			 struct inode *dir,
1938 			 struct ceph_mds_request *req)
1939 {
1940 	int err;
1941 
1942 	dout("do_request on %p\n", req);
1943 
1944 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1945 	if (req->r_inode)
1946 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1947 	if (req->r_locked_dir)
1948 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1949 	if (req->r_old_dentry)
1950 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1951 				  CEPH_CAP_PIN);
1952 
1953 	/* issue */
1954 	mutex_lock(&mdsc->mutex);
1955 	__register_request(mdsc, req, dir);
1956 	__do_request(mdsc, req);
1957 
1958 	if (req->r_err) {
1959 		err = req->r_err;
1960 		__unregister_request(mdsc, req);
1961 		dout("do_request early error %d\n", err);
1962 		goto out;
1963 	}
1964 
1965 	/* wait */
1966 	mutex_unlock(&mdsc->mutex);
1967 	dout("do_request waiting\n");
1968 	if (req->r_timeout) {
1969 		err = (long)wait_for_completion_killable_timeout(
1970 			&req->r_completion, req->r_timeout);
1971 		if (err == 0)
1972 			err = -EIO;
1973 	} else {
1974 		err = wait_for_completion_killable(&req->r_completion);
1975 	}
1976 	dout("do_request waited, got %d\n", err);
1977 	mutex_lock(&mdsc->mutex);
1978 
1979 	/* only abort if we didn't race with a real reply */
1980 	if (req->r_got_result) {
1981 		err = le32_to_cpu(req->r_reply_info.head->result);
1982 	} else if (err < 0) {
1983 		dout("aborted request %lld with %d\n", req->r_tid, err);
1984 
1985 		/*
1986 		 * ensure we aren't running concurrently with
1987 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
1988 		 * rely on locks (dir mutex) held by our caller.
1989 		 */
1990 		mutex_lock(&req->r_fill_mutex);
1991 		req->r_err = err;
1992 		req->r_aborted = true;
1993 		mutex_unlock(&req->r_fill_mutex);
1994 
1995 		if (req->r_locked_dir &&
1996 		    (req->r_op & CEPH_MDS_OP_WRITE))
1997 			ceph_invalidate_dir_request(req);
1998 	} else {
1999 		err = req->r_err;
2000 	}
2001 
2002 out:
2003 	mutex_unlock(&mdsc->mutex);
2004 	dout("do_request %p done, result %d\n", req, err);
2005 	return err;
2006 }
2007 
2008 /*
2009  * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS
2010  * namespace request.
2011  */
2012 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2013 {
2014 	struct inode *inode = req->r_locked_dir;
2015 	struct ceph_inode_info *ci = ceph_inode(inode);
2016 
2017 	dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode);
2018 	spin_lock(&ci->i_ceph_lock);
2019 	ceph_dir_clear_complete(inode);
2020 	ci->i_release_count++;
2021 	spin_unlock(&ci->i_ceph_lock);
2022 
2023 	if (req->r_dentry)
2024 		ceph_invalidate_dentry_lease(req->r_dentry);
2025 	if (req->r_old_dentry)
2026 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2027 }
2028 
2029 /*
2030  * Handle mds reply.
2031  *
2032  * We take the session mutex and parse and process the reply immediately.
2033  * This preserves the logical ordering of replies, capabilities, etc., sent
2034  * by the MDS as they are applied to our local cache.
2035  */
2036 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2037 {
2038 	struct ceph_mds_client *mdsc = session->s_mdsc;
2039 	struct ceph_mds_request *req;
2040 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2041 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2042 	u64 tid;
2043 	int err, result;
2044 	int mds = session->s_mds;
2045 
2046 	if (msg->front.iov_len < sizeof(*head)) {
2047 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2048 		ceph_msg_dump(msg);
2049 		return;
2050 	}
2051 
2052 	/* get request, session */
2053 	tid = le64_to_cpu(msg->hdr.tid);
2054 	mutex_lock(&mdsc->mutex);
2055 	req = __lookup_request(mdsc, tid);
2056 	if (!req) {
2057 		dout("handle_reply on unknown tid %llu\n", tid);
2058 		mutex_unlock(&mdsc->mutex);
2059 		return;
2060 	}
2061 	dout("handle_reply %p\n", req);
2062 
2063 	/* correct session? */
2064 	if (req->r_session != session) {
2065 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2066 		       " not mds%d\n", tid, session->s_mds,
2067 		       req->r_session ? req->r_session->s_mds : -1);
2068 		mutex_unlock(&mdsc->mutex);
2069 		goto out;
2070 	}
2071 
2072 	/* dup? */
2073 	if ((req->r_got_unsafe && !head->safe) ||
2074 	    (req->r_got_safe && head->safe)) {
2075 		pr_warning("got a dup %s reply on %llu from mds%d\n",
2076 			   head->safe ? "safe" : "unsafe", tid, mds);
2077 		mutex_unlock(&mdsc->mutex);
2078 		goto out;
2079 	}
2080 	if (req->r_got_safe && !head->safe) {
2081 		pr_warning("got unsafe after safe on %llu from mds%d\n",
2082 			   tid, mds);
2083 		mutex_unlock(&mdsc->mutex);
2084 		goto out;
2085 	}
2086 
2087 	result = le32_to_cpu(head->result);
2088 
2089 	/*
2090 	 * Handle an ESTALE
2091 	 * if we're not talking to the authority, send to them
2092 	 * if the authority has changed while we weren't looking,
2093 	 * send to new authority
2094 	 * Otherwise we just have to return an ESTALE
2095 	 */
2096 	if (result == -ESTALE) {
2097 		dout("got ESTALE on request %llu", req->r_tid);
2098 		if (!req->r_inode) {
2099 			/* do nothing; not an authority problem */
2100 		} else if (req->r_direct_mode != USE_AUTH_MDS) {
2101 			dout("not using auth, setting for that now");
2102 			req->r_direct_mode = USE_AUTH_MDS;
2103 			__do_request(mdsc, req);
2104 			mutex_unlock(&mdsc->mutex);
2105 			goto out;
2106 		} else  {
2107 			struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2108 			struct ceph_cap *cap = NULL;
2109 
2110 			if (req->r_session)
2111 				cap = ceph_get_cap_for_mds(ci,
2112 						   req->r_session->s_mds);
2113 
2114 			dout("already using auth");
2115 			if ((!cap || cap != ci->i_auth_cap) ||
2116 			    (cap->mseq != req->r_sent_on_mseq)) {
2117 				dout("but cap changed, so resending");
2118 				__do_request(mdsc, req);
2119 				mutex_unlock(&mdsc->mutex);
2120 				goto out;
2121 			}
2122 		}
2123 		dout("have to return ESTALE on request %llu", req->r_tid);
2124 	}
2125 
2126 
2127 	if (head->safe) {
2128 		req->r_got_safe = true;
2129 		__unregister_request(mdsc, req);
2130 		complete_all(&req->r_safe_completion);
2131 
2132 		if (req->r_got_unsafe) {
2133 			/*
2134 			 * We already handled the unsafe response, now do the
2135 			 * cleanup.  No need to examine the response; the MDS
2136 			 * doesn't include any result info in the safe
2137 			 * response.  And even if it did, there is nothing
2138 			 * useful we could do with a revised return value.
2139 			 */
2140 			dout("got safe reply %llu, mds%d\n", tid, mds);
2141 			list_del_init(&req->r_unsafe_item);
2142 
2143 			/* last unsafe request during umount? */
2144 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2145 				complete_all(&mdsc->safe_umount_waiters);
2146 			mutex_unlock(&mdsc->mutex);
2147 			goto out;
2148 		}
2149 	} else {
2150 		req->r_got_unsafe = true;
2151 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2152 	}
2153 
2154 	dout("handle_reply tid %lld result %d\n", tid, result);
2155 	rinfo = &req->r_reply_info;
2156 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2157 	mutex_unlock(&mdsc->mutex);
2158 
2159 	mutex_lock(&session->s_mutex);
2160 	if (err < 0) {
2161 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2162 		ceph_msg_dump(msg);
2163 		goto out_err;
2164 	}
2165 
2166 	/* snap trace */
2167 	if (rinfo->snapblob_len) {
2168 		down_write(&mdsc->snap_rwsem);
2169 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2170 			       rinfo->snapblob + rinfo->snapblob_len,
2171 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2172 		downgrade_write(&mdsc->snap_rwsem);
2173 	} else {
2174 		down_read(&mdsc->snap_rwsem);
2175 	}
2176 
2177 	/* insert trace into our cache */
2178 	mutex_lock(&req->r_fill_mutex);
2179 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2180 	if (err == 0) {
2181 		if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK &&
2182 		    rinfo->dir_nr)
2183 			ceph_readdir_prepopulate(req, req->r_session);
2184 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2185 	}
2186 	mutex_unlock(&req->r_fill_mutex);
2187 
2188 	up_read(&mdsc->snap_rwsem);
2189 out_err:
2190 	mutex_lock(&mdsc->mutex);
2191 	if (!req->r_aborted) {
2192 		if (err) {
2193 			req->r_err = err;
2194 		} else {
2195 			req->r_reply = msg;
2196 			ceph_msg_get(msg);
2197 			req->r_got_result = true;
2198 		}
2199 	} else {
2200 		dout("reply arrived after request %lld was aborted\n", tid);
2201 	}
2202 	mutex_unlock(&mdsc->mutex);
2203 
2204 	ceph_add_cap_releases(mdsc, req->r_session);
2205 	mutex_unlock(&session->s_mutex);
2206 
2207 	/* kick calling process */
2208 	complete_request(mdsc, req);
2209 out:
2210 	ceph_mdsc_put_request(req);
2211 	return;
2212 }
2213 
2214 
2215 
2216 /*
2217  * handle mds notification that our request has been forwarded.
2218  */
2219 static void handle_forward(struct ceph_mds_client *mdsc,
2220 			   struct ceph_mds_session *session,
2221 			   struct ceph_msg *msg)
2222 {
2223 	struct ceph_mds_request *req;
2224 	u64 tid = le64_to_cpu(msg->hdr.tid);
2225 	u32 next_mds;
2226 	u32 fwd_seq;
2227 	int err = -EINVAL;
2228 	void *p = msg->front.iov_base;
2229 	void *end = p + msg->front.iov_len;
2230 
2231 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2232 	next_mds = ceph_decode_32(&p);
2233 	fwd_seq = ceph_decode_32(&p);
2234 
2235 	mutex_lock(&mdsc->mutex);
2236 	req = __lookup_request(mdsc, tid);
2237 	if (!req) {
2238 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2239 		goto out;  /* dup reply? */
2240 	}
2241 
2242 	if (req->r_aborted) {
2243 		dout("forward tid %llu aborted, unregistering\n", tid);
2244 		__unregister_request(mdsc, req);
2245 	} else if (fwd_seq <= req->r_num_fwd) {
2246 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2247 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2248 	} else {
2249 		/* resend. forward race not possible; mds would drop */
2250 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2251 		BUG_ON(req->r_err);
2252 		BUG_ON(req->r_got_result);
2253 		req->r_num_fwd = fwd_seq;
2254 		req->r_resend_mds = next_mds;
2255 		put_request_session(req);
2256 		__do_request(mdsc, req);
2257 	}
2258 	ceph_mdsc_put_request(req);
2259 out:
2260 	mutex_unlock(&mdsc->mutex);
2261 	return;
2262 
2263 bad:
2264 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2265 }
2266 
2267 /*
2268  * handle a mds session control message
2269  */
2270 static void handle_session(struct ceph_mds_session *session,
2271 			   struct ceph_msg *msg)
2272 {
2273 	struct ceph_mds_client *mdsc = session->s_mdsc;
2274 	u32 op;
2275 	u64 seq;
2276 	int mds = session->s_mds;
2277 	struct ceph_mds_session_head *h = msg->front.iov_base;
2278 	int wake = 0;
2279 
2280 	/* decode */
2281 	if (msg->front.iov_len != sizeof(*h))
2282 		goto bad;
2283 	op = le32_to_cpu(h->op);
2284 	seq = le64_to_cpu(h->seq);
2285 
2286 	mutex_lock(&mdsc->mutex);
2287 	if (op == CEPH_SESSION_CLOSE)
2288 		__unregister_session(mdsc, session);
2289 	/* FIXME: this ttl calculation is generous */
2290 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2291 	mutex_unlock(&mdsc->mutex);
2292 
2293 	mutex_lock(&session->s_mutex);
2294 
2295 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2296 	     mds, ceph_session_op_name(op), session,
2297 	     session_state_name(session->s_state), seq);
2298 
2299 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2300 		session->s_state = CEPH_MDS_SESSION_OPEN;
2301 		pr_info("mds%d came back\n", session->s_mds);
2302 	}
2303 
2304 	switch (op) {
2305 	case CEPH_SESSION_OPEN:
2306 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2307 			pr_info("mds%d reconnect success\n", session->s_mds);
2308 		session->s_state = CEPH_MDS_SESSION_OPEN;
2309 		renewed_caps(mdsc, session, 0);
2310 		wake = 1;
2311 		if (mdsc->stopping)
2312 			__close_session(mdsc, session);
2313 		break;
2314 
2315 	case CEPH_SESSION_RENEWCAPS:
2316 		if (session->s_renew_seq == seq)
2317 			renewed_caps(mdsc, session, 1);
2318 		break;
2319 
2320 	case CEPH_SESSION_CLOSE:
2321 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2322 			pr_info("mds%d reconnect denied\n", session->s_mds);
2323 		remove_session_caps(session);
2324 		wake = 1; /* for good measure */
2325 		wake_up_all(&mdsc->session_close_wq);
2326 		kick_requests(mdsc, mds);
2327 		break;
2328 
2329 	case CEPH_SESSION_STALE:
2330 		pr_info("mds%d caps went stale, renewing\n",
2331 			session->s_mds);
2332 		spin_lock(&session->s_gen_ttl_lock);
2333 		session->s_cap_gen++;
2334 		session->s_cap_ttl = jiffies - 1;
2335 		spin_unlock(&session->s_gen_ttl_lock);
2336 		send_renew_caps(mdsc, session);
2337 		break;
2338 
2339 	case CEPH_SESSION_RECALL_STATE:
2340 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2341 		break;
2342 
2343 	default:
2344 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2345 		WARN_ON(1);
2346 	}
2347 
2348 	mutex_unlock(&session->s_mutex);
2349 	if (wake) {
2350 		mutex_lock(&mdsc->mutex);
2351 		__wake_requests(mdsc, &session->s_waiting);
2352 		mutex_unlock(&mdsc->mutex);
2353 	}
2354 	return;
2355 
2356 bad:
2357 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2358 	       (int)msg->front.iov_len);
2359 	ceph_msg_dump(msg);
2360 	return;
2361 }
2362 
2363 
2364 /*
2365  * called under session->mutex.
2366  */
2367 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2368 				   struct ceph_mds_session *session)
2369 {
2370 	struct ceph_mds_request *req, *nreq;
2371 	int err;
2372 
2373 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2374 
2375 	mutex_lock(&mdsc->mutex);
2376 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2377 		err = __prepare_send_request(mdsc, req, session->s_mds);
2378 		if (!err) {
2379 			ceph_msg_get(req->r_request);
2380 			ceph_con_send(&session->s_con, req->r_request);
2381 		}
2382 	}
2383 	mutex_unlock(&mdsc->mutex);
2384 }
2385 
2386 /*
2387  * Encode information about a cap for a reconnect with the MDS.
2388  */
2389 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2390 			  void *arg)
2391 {
2392 	union {
2393 		struct ceph_mds_cap_reconnect v2;
2394 		struct ceph_mds_cap_reconnect_v1 v1;
2395 	} rec;
2396 	size_t reclen;
2397 	struct ceph_inode_info *ci;
2398 	struct ceph_reconnect_state *recon_state = arg;
2399 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2400 	char *path;
2401 	int pathlen, err;
2402 	u64 pathbase;
2403 	struct dentry *dentry;
2404 
2405 	ci = cap->ci;
2406 
2407 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2408 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2409 	     ceph_cap_string(cap->issued));
2410 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2411 	if (err)
2412 		return err;
2413 
2414 	dentry = d_find_alias(inode);
2415 	if (dentry) {
2416 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2417 		if (IS_ERR(path)) {
2418 			err = PTR_ERR(path);
2419 			goto out_dput;
2420 		}
2421 	} else {
2422 		path = NULL;
2423 		pathlen = 0;
2424 	}
2425 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2426 	if (err)
2427 		goto out_free;
2428 
2429 	spin_lock(&ci->i_ceph_lock);
2430 	cap->seq = 0;        /* reset cap seq */
2431 	cap->issue_seq = 0;  /* and issue_seq */
2432 
2433 	if (recon_state->flock) {
2434 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2435 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2436 		rec.v2.issued = cpu_to_le32(cap->issued);
2437 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2438 		rec.v2.pathbase = cpu_to_le64(pathbase);
2439 		rec.v2.flock_len = 0;
2440 		reclen = sizeof(rec.v2);
2441 	} else {
2442 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2443 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2444 		rec.v1.issued = cpu_to_le32(cap->issued);
2445 		rec.v1.size = cpu_to_le64(inode->i_size);
2446 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2447 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2448 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2449 		rec.v1.pathbase = cpu_to_le64(pathbase);
2450 		reclen = sizeof(rec.v1);
2451 	}
2452 	spin_unlock(&ci->i_ceph_lock);
2453 
2454 	if (recon_state->flock) {
2455 		int num_fcntl_locks, num_flock_locks;
2456 		struct ceph_pagelist_cursor trunc_point;
2457 
2458 		ceph_pagelist_set_cursor(pagelist, &trunc_point);
2459 		do {
2460 			lock_flocks();
2461 			ceph_count_locks(inode, &num_fcntl_locks,
2462 					 &num_flock_locks);
2463 			rec.v2.flock_len = (2*sizeof(u32) +
2464 					    (num_fcntl_locks+num_flock_locks) *
2465 					    sizeof(struct ceph_filelock));
2466 			unlock_flocks();
2467 
2468 			/* pre-alloc pagelist */
2469 			ceph_pagelist_truncate(pagelist, &trunc_point);
2470 			err = ceph_pagelist_append(pagelist, &rec, reclen);
2471 			if (!err)
2472 				err = ceph_pagelist_reserve(pagelist,
2473 							    rec.v2.flock_len);
2474 
2475 			/* encode locks */
2476 			if (!err) {
2477 				lock_flocks();
2478 				err = ceph_encode_locks(inode,
2479 							pagelist,
2480 							num_fcntl_locks,
2481 							num_flock_locks);
2482 				unlock_flocks();
2483 			}
2484 		} while (err == -ENOSPC);
2485 	} else {
2486 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2487 	}
2488 
2489 out_free:
2490 	kfree(path);
2491 out_dput:
2492 	dput(dentry);
2493 	return err;
2494 }
2495 
2496 
2497 /*
2498  * If an MDS fails and recovers, clients need to reconnect in order to
2499  * reestablish shared state.  This includes all caps issued through
2500  * this session _and_ the snap_realm hierarchy.  Because it's not
2501  * clear which snap realms the mds cares about, we send everything we
2502  * know about.. that ensures we'll then get any new info the
2503  * recovering MDS might have.
2504  *
2505  * This is a relatively heavyweight operation, but it's rare.
2506  *
2507  * called with mdsc->mutex held.
2508  */
2509 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2510 			       struct ceph_mds_session *session)
2511 {
2512 	struct ceph_msg *reply;
2513 	struct rb_node *p;
2514 	int mds = session->s_mds;
2515 	int err = -ENOMEM;
2516 	struct ceph_pagelist *pagelist;
2517 	struct ceph_reconnect_state recon_state;
2518 
2519 	pr_info("mds%d reconnect start\n", mds);
2520 
2521 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2522 	if (!pagelist)
2523 		goto fail_nopagelist;
2524 	ceph_pagelist_init(pagelist);
2525 
2526 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2527 	if (!reply)
2528 		goto fail_nomsg;
2529 
2530 	mutex_lock(&session->s_mutex);
2531 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2532 	session->s_seq = 0;
2533 
2534 	ceph_con_open(&session->s_con,
2535 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2536 
2537 	/* replay unsafe requests */
2538 	replay_unsafe_requests(mdsc, session);
2539 
2540 	down_read(&mdsc->snap_rwsem);
2541 
2542 	dout("session %p state %s\n", session,
2543 	     session_state_name(session->s_state));
2544 
2545 	/* drop old cap expires; we're about to reestablish that state */
2546 	discard_cap_releases(mdsc, session);
2547 
2548 	/* traverse this session's caps */
2549 	err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2550 	if (err)
2551 		goto fail;
2552 
2553 	recon_state.pagelist = pagelist;
2554 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2555 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2556 	if (err < 0)
2557 		goto fail;
2558 
2559 	/*
2560 	 * snaprealms.  we provide mds with the ino, seq (version), and
2561 	 * parent for all of our realms.  If the mds has any newer info,
2562 	 * it will tell us.
2563 	 */
2564 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2565 		struct ceph_snap_realm *realm =
2566 			rb_entry(p, struct ceph_snap_realm, node);
2567 		struct ceph_mds_snaprealm_reconnect sr_rec;
2568 
2569 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2570 		     realm->ino, realm->seq, realm->parent_ino);
2571 		sr_rec.ino = cpu_to_le64(realm->ino);
2572 		sr_rec.seq = cpu_to_le64(realm->seq);
2573 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2574 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2575 		if (err)
2576 			goto fail;
2577 	}
2578 
2579 	reply->pagelist = pagelist;
2580 	if (recon_state.flock)
2581 		reply->hdr.version = cpu_to_le16(2);
2582 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2583 	reply->nr_pages = calc_pages_for(0, pagelist->length);
2584 	ceph_con_send(&session->s_con, reply);
2585 
2586 	mutex_unlock(&session->s_mutex);
2587 
2588 	mutex_lock(&mdsc->mutex);
2589 	__wake_requests(mdsc, &session->s_waiting);
2590 	mutex_unlock(&mdsc->mutex);
2591 
2592 	up_read(&mdsc->snap_rwsem);
2593 	return;
2594 
2595 fail:
2596 	ceph_msg_put(reply);
2597 	up_read(&mdsc->snap_rwsem);
2598 	mutex_unlock(&session->s_mutex);
2599 fail_nomsg:
2600 	ceph_pagelist_release(pagelist);
2601 	kfree(pagelist);
2602 fail_nopagelist:
2603 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2604 	return;
2605 }
2606 
2607 
2608 /*
2609  * compare old and new mdsmaps, kicking requests
2610  * and closing out old connections as necessary
2611  *
2612  * called under mdsc->mutex.
2613  */
2614 static void check_new_map(struct ceph_mds_client *mdsc,
2615 			  struct ceph_mdsmap *newmap,
2616 			  struct ceph_mdsmap *oldmap)
2617 {
2618 	int i;
2619 	int oldstate, newstate;
2620 	struct ceph_mds_session *s;
2621 
2622 	dout("check_new_map new %u old %u\n",
2623 	     newmap->m_epoch, oldmap->m_epoch);
2624 
2625 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2626 		if (mdsc->sessions[i] == NULL)
2627 			continue;
2628 		s = mdsc->sessions[i];
2629 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2630 		newstate = ceph_mdsmap_get_state(newmap, i);
2631 
2632 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2633 		     i, ceph_mds_state_name(oldstate),
2634 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2635 		     ceph_mds_state_name(newstate),
2636 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2637 		     session_state_name(s->s_state));
2638 
2639 		if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2640 			   ceph_mdsmap_get_addr(newmap, i),
2641 			   sizeof(struct ceph_entity_addr))) {
2642 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2643 				/* the session never opened, just close it
2644 				 * out now */
2645 				__wake_requests(mdsc, &s->s_waiting);
2646 				__unregister_session(mdsc, s);
2647 			} else {
2648 				/* just close it */
2649 				mutex_unlock(&mdsc->mutex);
2650 				mutex_lock(&s->s_mutex);
2651 				mutex_lock(&mdsc->mutex);
2652 				ceph_con_close(&s->s_con);
2653 				mutex_unlock(&s->s_mutex);
2654 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2655 			}
2656 
2657 			/* kick any requests waiting on the recovering mds */
2658 			kick_requests(mdsc, i);
2659 		} else if (oldstate == newstate) {
2660 			continue;  /* nothing new with this mds */
2661 		}
2662 
2663 		/*
2664 		 * send reconnect?
2665 		 */
2666 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2667 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2668 			mutex_unlock(&mdsc->mutex);
2669 			send_mds_reconnect(mdsc, s);
2670 			mutex_lock(&mdsc->mutex);
2671 		}
2672 
2673 		/*
2674 		 * kick request on any mds that has gone active.
2675 		 */
2676 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2677 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2678 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2679 			    oldstate != CEPH_MDS_STATE_STARTING)
2680 				pr_info("mds%d recovery completed\n", s->s_mds);
2681 			kick_requests(mdsc, i);
2682 			ceph_kick_flushing_caps(mdsc, s);
2683 			wake_up_session_caps(s, 1);
2684 		}
2685 	}
2686 
2687 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2688 		s = mdsc->sessions[i];
2689 		if (!s)
2690 			continue;
2691 		if (!ceph_mdsmap_is_laggy(newmap, i))
2692 			continue;
2693 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2694 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2695 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2696 			dout(" connecting to export targets of laggy mds%d\n",
2697 			     i);
2698 			__open_export_target_sessions(mdsc, s);
2699 		}
2700 	}
2701 }
2702 
2703 
2704 
2705 /*
2706  * leases
2707  */
2708 
2709 /*
2710  * caller must hold session s_mutex, dentry->d_lock
2711  */
2712 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2713 {
2714 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2715 
2716 	ceph_put_mds_session(di->lease_session);
2717 	di->lease_session = NULL;
2718 }
2719 
2720 static void handle_lease(struct ceph_mds_client *mdsc,
2721 			 struct ceph_mds_session *session,
2722 			 struct ceph_msg *msg)
2723 {
2724 	struct super_block *sb = mdsc->fsc->sb;
2725 	struct inode *inode;
2726 	struct dentry *parent, *dentry;
2727 	struct ceph_dentry_info *di;
2728 	int mds = session->s_mds;
2729 	struct ceph_mds_lease *h = msg->front.iov_base;
2730 	u32 seq;
2731 	struct ceph_vino vino;
2732 	struct qstr dname;
2733 	int release = 0;
2734 
2735 	dout("handle_lease from mds%d\n", mds);
2736 
2737 	/* decode */
2738 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2739 		goto bad;
2740 	vino.ino = le64_to_cpu(h->ino);
2741 	vino.snap = CEPH_NOSNAP;
2742 	seq = le32_to_cpu(h->seq);
2743 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2744 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2745 	if (dname.len != get_unaligned_le32(h+1))
2746 		goto bad;
2747 
2748 	mutex_lock(&session->s_mutex);
2749 	session->s_seq++;
2750 
2751 	/* lookup inode */
2752 	inode = ceph_find_inode(sb, vino);
2753 	dout("handle_lease %s, ino %llx %p %.*s\n",
2754 	     ceph_lease_op_name(h->action), vino.ino, inode,
2755 	     dname.len, dname.name);
2756 	if (inode == NULL) {
2757 		dout("handle_lease no inode %llx\n", vino.ino);
2758 		goto release;
2759 	}
2760 
2761 	/* dentry */
2762 	parent = d_find_alias(inode);
2763 	if (!parent) {
2764 		dout("no parent dentry on inode %p\n", inode);
2765 		WARN_ON(1);
2766 		goto release;  /* hrm... */
2767 	}
2768 	dname.hash = full_name_hash(dname.name, dname.len);
2769 	dentry = d_lookup(parent, &dname);
2770 	dput(parent);
2771 	if (!dentry)
2772 		goto release;
2773 
2774 	spin_lock(&dentry->d_lock);
2775 	di = ceph_dentry(dentry);
2776 	switch (h->action) {
2777 	case CEPH_MDS_LEASE_REVOKE:
2778 		if (di->lease_session == session) {
2779 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2780 				h->seq = cpu_to_le32(di->lease_seq);
2781 			__ceph_mdsc_drop_dentry_lease(dentry);
2782 		}
2783 		release = 1;
2784 		break;
2785 
2786 	case CEPH_MDS_LEASE_RENEW:
2787 		if (di->lease_session == session &&
2788 		    di->lease_gen == session->s_cap_gen &&
2789 		    di->lease_renew_from &&
2790 		    di->lease_renew_after == 0) {
2791 			unsigned long duration =
2792 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2793 
2794 			di->lease_seq = seq;
2795 			dentry->d_time = di->lease_renew_from + duration;
2796 			di->lease_renew_after = di->lease_renew_from +
2797 				(duration >> 1);
2798 			di->lease_renew_from = 0;
2799 		}
2800 		break;
2801 	}
2802 	spin_unlock(&dentry->d_lock);
2803 	dput(dentry);
2804 
2805 	if (!release)
2806 		goto out;
2807 
2808 release:
2809 	/* let's just reuse the same message */
2810 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2811 	ceph_msg_get(msg);
2812 	ceph_con_send(&session->s_con, msg);
2813 
2814 out:
2815 	iput(inode);
2816 	mutex_unlock(&session->s_mutex);
2817 	return;
2818 
2819 bad:
2820 	pr_err("corrupt lease message\n");
2821 	ceph_msg_dump(msg);
2822 }
2823 
2824 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2825 			      struct inode *inode,
2826 			      struct dentry *dentry, char action,
2827 			      u32 seq)
2828 {
2829 	struct ceph_msg *msg;
2830 	struct ceph_mds_lease *lease;
2831 	int len = sizeof(*lease) + sizeof(u32);
2832 	int dnamelen = 0;
2833 
2834 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2835 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2836 	dnamelen = dentry->d_name.len;
2837 	len += dnamelen;
2838 
2839 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2840 	if (!msg)
2841 		return;
2842 	lease = msg->front.iov_base;
2843 	lease->action = action;
2844 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2845 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2846 	lease->seq = cpu_to_le32(seq);
2847 	put_unaligned_le32(dnamelen, lease + 1);
2848 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2849 
2850 	/*
2851 	 * if this is a preemptive lease RELEASE, no need to
2852 	 * flush request stream, since the actual request will
2853 	 * soon follow.
2854 	 */
2855 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2856 
2857 	ceph_con_send(&session->s_con, msg);
2858 }
2859 
2860 /*
2861  * Preemptively release a lease we expect to invalidate anyway.
2862  * Pass @inode always, @dentry is optional.
2863  */
2864 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2865 			     struct dentry *dentry)
2866 {
2867 	struct ceph_dentry_info *di;
2868 	struct ceph_mds_session *session;
2869 	u32 seq;
2870 
2871 	BUG_ON(inode == NULL);
2872 	BUG_ON(dentry == NULL);
2873 
2874 	/* is dentry lease valid? */
2875 	spin_lock(&dentry->d_lock);
2876 	di = ceph_dentry(dentry);
2877 	if (!di || !di->lease_session ||
2878 	    di->lease_session->s_mds < 0 ||
2879 	    di->lease_gen != di->lease_session->s_cap_gen ||
2880 	    !time_before(jiffies, dentry->d_time)) {
2881 		dout("lease_release inode %p dentry %p -- "
2882 		     "no lease\n",
2883 		     inode, dentry);
2884 		spin_unlock(&dentry->d_lock);
2885 		return;
2886 	}
2887 
2888 	/* we do have a lease on this dentry; note mds and seq */
2889 	session = ceph_get_mds_session(di->lease_session);
2890 	seq = di->lease_seq;
2891 	__ceph_mdsc_drop_dentry_lease(dentry);
2892 	spin_unlock(&dentry->d_lock);
2893 
2894 	dout("lease_release inode %p dentry %p to mds%d\n",
2895 	     inode, dentry, session->s_mds);
2896 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2897 				 CEPH_MDS_LEASE_RELEASE, seq);
2898 	ceph_put_mds_session(session);
2899 }
2900 
2901 /*
2902  * drop all leases (and dentry refs) in preparation for umount
2903  */
2904 static void drop_leases(struct ceph_mds_client *mdsc)
2905 {
2906 	int i;
2907 
2908 	dout("drop_leases\n");
2909 	mutex_lock(&mdsc->mutex);
2910 	for (i = 0; i < mdsc->max_sessions; i++) {
2911 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2912 		if (!s)
2913 			continue;
2914 		mutex_unlock(&mdsc->mutex);
2915 		mutex_lock(&s->s_mutex);
2916 		mutex_unlock(&s->s_mutex);
2917 		ceph_put_mds_session(s);
2918 		mutex_lock(&mdsc->mutex);
2919 	}
2920 	mutex_unlock(&mdsc->mutex);
2921 }
2922 
2923 
2924 
2925 /*
2926  * delayed work -- periodically trim expired leases, renew caps with mds
2927  */
2928 static void schedule_delayed(struct ceph_mds_client *mdsc)
2929 {
2930 	int delay = 5;
2931 	unsigned hz = round_jiffies_relative(HZ * delay);
2932 	schedule_delayed_work(&mdsc->delayed_work, hz);
2933 }
2934 
2935 static void delayed_work(struct work_struct *work)
2936 {
2937 	int i;
2938 	struct ceph_mds_client *mdsc =
2939 		container_of(work, struct ceph_mds_client, delayed_work.work);
2940 	int renew_interval;
2941 	int renew_caps;
2942 
2943 	dout("mdsc delayed_work\n");
2944 	ceph_check_delayed_caps(mdsc);
2945 
2946 	mutex_lock(&mdsc->mutex);
2947 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2948 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2949 				   mdsc->last_renew_caps);
2950 	if (renew_caps)
2951 		mdsc->last_renew_caps = jiffies;
2952 
2953 	for (i = 0; i < mdsc->max_sessions; i++) {
2954 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2955 		if (s == NULL)
2956 			continue;
2957 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2958 			dout("resending session close request for mds%d\n",
2959 			     s->s_mds);
2960 			request_close_session(mdsc, s);
2961 			ceph_put_mds_session(s);
2962 			continue;
2963 		}
2964 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2965 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2966 				s->s_state = CEPH_MDS_SESSION_HUNG;
2967 				pr_info("mds%d hung\n", s->s_mds);
2968 			}
2969 		}
2970 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2971 			/* this mds is failed or recovering, just wait */
2972 			ceph_put_mds_session(s);
2973 			continue;
2974 		}
2975 		mutex_unlock(&mdsc->mutex);
2976 
2977 		mutex_lock(&s->s_mutex);
2978 		if (renew_caps)
2979 			send_renew_caps(mdsc, s);
2980 		else
2981 			ceph_con_keepalive(&s->s_con);
2982 		ceph_add_cap_releases(mdsc, s);
2983 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2984 		    s->s_state == CEPH_MDS_SESSION_HUNG)
2985 			ceph_send_cap_releases(mdsc, s);
2986 		mutex_unlock(&s->s_mutex);
2987 		ceph_put_mds_session(s);
2988 
2989 		mutex_lock(&mdsc->mutex);
2990 	}
2991 	mutex_unlock(&mdsc->mutex);
2992 
2993 	schedule_delayed(mdsc);
2994 }
2995 
2996 int ceph_mdsc_init(struct ceph_fs_client *fsc)
2997 
2998 {
2999 	struct ceph_mds_client *mdsc;
3000 
3001 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3002 	if (!mdsc)
3003 		return -ENOMEM;
3004 	mdsc->fsc = fsc;
3005 	fsc->mdsc = mdsc;
3006 	mutex_init(&mdsc->mutex);
3007 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3008 	if (mdsc->mdsmap == NULL)
3009 		return -ENOMEM;
3010 
3011 	init_completion(&mdsc->safe_umount_waiters);
3012 	init_waitqueue_head(&mdsc->session_close_wq);
3013 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3014 	mdsc->sessions = NULL;
3015 	mdsc->max_sessions = 0;
3016 	mdsc->stopping = 0;
3017 	init_rwsem(&mdsc->snap_rwsem);
3018 	mdsc->snap_realms = RB_ROOT;
3019 	INIT_LIST_HEAD(&mdsc->snap_empty);
3020 	spin_lock_init(&mdsc->snap_empty_lock);
3021 	mdsc->last_tid = 0;
3022 	mdsc->request_tree = RB_ROOT;
3023 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3024 	mdsc->last_renew_caps = jiffies;
3025 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3026 	spin_lock_init(&mdsc->cap_delay_lock);
3027 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3028 	spin_lock_init(&mdsc->snap_flush_lock);
3029 	mdsc->cap_flush_seq = 0;
3030 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3031 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3032 	mdsc->num_cap_flushing = 0;
3033 	spin_lock_init(&mdsc->cap_dirty_lock);
3034 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3035 	spin_lock_init(&mdsc->dentry_lru_lock);
3036 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3037 
3038 	ceph_caps_init(mdsc);
3039 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3040 
3041 	return 0;
3042 }
3043 
3044 /*
3045  * Wait for safe replies on open mds requests.  If we time out, drop
3046  * all requests from the tree to avoid dangling dentry refs.
3047  */
3048 static void wait_requests(struct ceph_mds_client *mdsc)
3049 {
3050 	struct ceph_mds_request *req;
3051 	struct ceph_fs_client *fsc = mdsc->fsc;
3052 
3053 	mutex_lock(&mdsc->mutex);
3054 	if (__get_oldest_req(mdsc)) {
3055 		mutex_unlock(&mdsc->mutex);
3056 
3057 		dout("wait_requests waiting for requests\n");
3058 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3059 				    fsc->client->options->mount_timeout * HZ);
3060 
3061 		/* tear down remaining requests */
3062 		mutex_lock(&mdsc->mutex);
3063 		while ((req = __get_oldest_req(mdsc))) {
3064 			dout("wait_requests timed out on tid %llu\n",
3065 			     req->r_tid);
3066 			__unregister_request(mdsc, req);
3067 		}
3068 	}
3069 	mutex_unlock(&mdsc->mutex);
3070 	dout("wait_requests done\n");
3071 }
3072 
3073 /*
3074  * called before mount is ro, and before dentries are torn down.
3075  * (hmm, does this still race with new lookups?)
3076  */
3077 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3078 {
3079 	dout("pre_umount\n");
3080 	mdsc->stopping = 1;
3081 
3082 	drop_leases(mdsc);
3083 	ceph_flush_dirty_caps(mdsc);
3084 	wait_requests(mdsc);
3085 
3086 	/*
3087 	 * wait for reply handlers to drop their request refs and
3088 	 * their inode/dcache refs
3089 	 */
3090 	ceph_msgr_flush();
3091 }
3092 
3093 /*
3094  * wait for all write mds requests to flush.
3095  */
3096 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3097 {
3098 	struct ceph_mds_request *req = NULL, *nextreq;
3099 	struct rb_node *n;
3100 
3101 	mutex_lock(&mdsc->mutex);
3102 	dout("wait_unsafe_requests want %lld\n", want_tid);
3103 restart:
3104 	req = __get_oldest_req(mdsc);
3105 	while (req && req->r_tid <= want_tid) {
3106 		/* find next request */
3107 		n = rb_next(&req->r_node);
3108 		if (n)
3109 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3110 		else
3111 			nextreq = NULL;
3112 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3113 			/* write op */
3114 			ceph_mdsc_get_request(req);
3115 			if (nextreq)
3116 				ceph_mdsc_get_request(nextreq);
3117 			mutex_unlock(&mdsc->mutex);
3118 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3119 			     req->r_tid, want_tid);
3120 			wait_for_completion(&req->r_safe_completion);
3121 			mutex_lock(&mdsc->mutex);
3122 			ceph_mdsc_put_request(req);
3123 			if (!nextreq)
3124 				break;  /* next dne before, so we're done! */
3125 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3126 				/* next request was removed from tree */
3127 				ceph_mdsc_put_request(nextreq);
3128 				goto restart;
3129 			}
3130 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3131 		}
3132 		req = nextreq;
3133 	}
3134 	mutex_unlock(&mdsc->mutex);
3135 	dout("wait_unsafe_requests done\n");
3136 }
3137 
3138 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3139 {
3140 	u64 want_tid, want_flush;
3141 
3142 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3143 		return;
3144 
3145 	dout("sync\n");
3146 	mutex_lock(&mdsc->mutex);
3147 	want_tid = mdsc->last_tid;
3148 	want_flush = mdsc->cap_flush_seq;
3149 	mutex_unlock(&mdsc->mutex);
3150 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3151 
3152 	ceph_flush_dirty_caps(mdsc);
3153 
3154 	wait_unsafe_requests(mdsc, want_tid);
3155 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3156 }
3157 
3158 /*
3159  * true if all sessions are closed, or we force unmount
3160  */
3161 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3162 {
3163 	int i, n = 0;
3164 
3165 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3166 		return true;
3167 
3168 	mutex_lock(&mdsc->mutex);
3169 	for (i = 0; i < mdsc->max_sessions; i++)
3170 		if (mdsc->sessions[i])
3171 			n++;
3172 	mutex_unlock(&mdsc->mutex);
3173 	return n == 0;
3174 }
3175 
3176 /*
3177  * called after sb is ro.
3178  */
3179 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3180 {
3181 	struct ceph_mds_session *session;
3182 	int i;
3183 	struct ceph_fs_client *fsc = mdsc->fsc;
3184 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3185 
3186 	dout("close_sessions\n");
3187 
3188 	/* close sessions */
3189 	mutex_lock(&mdsc->mutex);
3190 	for (i = 0; i < mdsc->max_sessions; i++) {
3191 		session = __ceph_lookup_mds_session(mdsc, i);
3192 		if (!session)
3193 			continue;
3194 		mutex_unlock(&mdsc->mutex);
3195 		mutex_lock(&session->s_mutex);
3196 		__close_session(mdsc, session);
3197 		mutex_unlock(&session->s_mutex);
3198 		ceph_put_mds_session(session);
3199 		mutex_lock(&mdsc->mutex);
3200 	}
3201 	mutex_unlock(&mdsc->mutex);
3202 
3203 	dout("waiting for sessions to close\n");
3204 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3205 			   timeout);
3206 
3207 	/* tear down remaining sessions */
3208 	mutex_lock(&mdsc->mutex);
3209 	for (i = 0; i < mdsc->max_sessions; i++) {
3210 		if (mdsc->sessions[i]) {
3211 			session = get_session(mdsc->sessions[i]);
3212 			__unregister_session(mdsc, session);
3213 			mutex_unlock(&mdsc->mutex);
3214 			mutex_lock(&session->s_mutex);
3215 			remove_session_caps(session);
3216 			mutex_unlock(&session->s_mutex);
3217 			ceph_put_mds_session(session);
3218 			mutex_lock(&mdsc->mutex);
3219 		}
3220 	}
3221 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3222 	mutex_unlock(&mdsc->mutex);
3223 
3224 	ceph_cleanup_empty_realms(mdsc);
3225 
3226 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3227 
3228 	dout("stopped\n");
3229 }
3230 
3231 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3232 {
3233 	dout("stop\n");
3234 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3235 	if (mdsc->mdsmap)
3236 		ceph_mdsmap_destroy(mdsc->mdsmap);
3237 	kfree(mdsc->sessions);
3238 	ceph_caps_finalize(mdsc);
3239 }
3240 
3241 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3242 {
3243 	struct ceph_mds_client *mdsc = fsc->mdsc;
3244 
3245 	dout("mdsc_destroy %p\n", mdsc);
3246 	ceph_mdsc_stop(mdsc);
3247 
3248 	/* flush out any connection work with references to us */
3249 	ceph_msgr_flush();
3250 
3251 	fsc->mdsc = NULL;
3252 	kfree(mdsc);
3253 	dout("mdsc_destroy %p done\n", mdsc);
3254 }
3255 
3256 
3257 /*
3258  * handle mds map update.
3259  */
3260 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3261 {
3262 	u32 epoch;
3263 	u32 maplen;
3264 	void *p = msg->front.iov_base;
3265 	void *end = p + msg->front.iov_len;
3266 	struct ceph_mdsmap *newmap, *oldmap;
3267 	struct ceph_fsid fsid;
3268 	int err = -EINVAL;
3269 
3270 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3271 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3272 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3273 		return;
3274 	epoch = ceph_decode_32(&p);
3275 	maplen = ceph_decode_32(&p);
3276 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3277 
3278 	/* do we need it? */
3279 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3280 	mutex_lock(&mdsc->mutex);
3281 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3282 		dout("handle_map epoch %u <= our %u\n",
3283 		     epoch, mdsc->mdsmap->m_epoch);
3284 		mutex_unlock(&mdsc->mutex);
3285 		return;
3286 	}
3287 
3288 	newmap = ceph_mdsmap_decode(&p, end);
3289 	if (IS_ERR(newmap)) {
3290 		err = PTR_ERR(newmap);
3291 		goto bad_unlock;
3292 	}
3293 
3294 	/* swap into place */
3295 	if (mdsc->mdsmap) {
3296 		oldmap = mdsc->mdsmap;
3297 		mdsc->mdsmap = newmap;
3298 		check_new_map(mdsc, newmap, oldmap);
3299 		ceph_mdsmap_destroy(oldmap);
3300 	} else {
3301 		mdsc->mdsmap = newmap;  /* first mds map */
3302 	}
3303 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3304 
3305 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3306 
3307 	mutex_unlock(&mdsc->mutex);
3308 	schedule_delayed(mdsc);
3309 	return;
3310 
3311 bad_unlock:
3312 	mutex_unlock(&mdsc->mutex);
3313 bad:
3314 	pr_err("error decoding mdsmap %d\n", err);
3315 	return;
3316 }
3317 
3318 static struct ceph_connection *con_get(struct ceph_connection *con)
3319 {
3320 	struct ceph_mds_session *s = con->private;
3321 
3322 	if (get_session(s)) {
3323 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3324 		return con;
3325 	}
3326 	dout("mdsc con_get %p FAIL\n", s);
3327 	return NULL;
3328 }
3329 
3330 static void con_put(struct ceph_connection *con)
3331 {
3332 	struct ceph_mds_session *s = con->private;
3333 
3334 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3335 	ceph_put_mds_session(s);
3336 }
3337 
3338 /*
3339  * if the client is unresponsive for long enough, the mds will kill
3340  * the session entirely.
3341  */
3342 static void peer_reset(struct ceph_connection *con)
3343 {
3344 	struct ceph_mds_session *s = con->private;
3345 	struct ceph_mds_client *mdsc = s->s_mdsc;
3346 
3347 	pr_warning("mds%d closed our session\n", s->s_mds);
3348 	send_mds_reconnect(mdsc, s);
3349 }
3350 
3351 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3352 {
3353 	struct ceph_mds_session *s = con->private;
3354 	struct ceph_mds_client *mdsc = s->s_mdsc;
3355 	int type = le16_to_cpu(msg->hdr.type);
3356 
3357 	mutex_lock(&mdsc->mutex);
3358 	if (__verify_registered_session(mdsc, s) < 0) {
3359 		mutex_unlock(&mdsc->mutex);
3360 		goto out;
3361 	}
3362 	mutex_unlock(&mdsc->mutex);
3363 
3364 	switch (type) {
3365 	case CEPH_MSG_MDS_MAP:
3366 		ceph_mdsc_handle_map(mdsc, msg);
3367 		break;
3368 	case CEPH_MSG_CLIENT_SESSION:
3369 		handle_session(s, msg);
3370 		break;
3371 	case CEPH_MSG_CLIENT_REPLY:
3372 		handle_reply(s, msg);
3373 		break;
3374 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3375 		handle_forward(mdsc, s, msg);
3376 		break;
3377 	case CEPH_MSG_CLIENT_CAPS:
3378 		ceph_handle_caps(s, msg);
3379 		break;
3380 	case CEPH_MSG_CLIENT_SNAP:
3381 		ceph_handle_snap(mdsc, s, msg);
3382 		break;
3383 	case CEPH_MSG_CLIENT_LEASE:
3384 		handle_lease(mdsc, s, msg);
3385 		break;
3386 
3387 	default:
3388 		pr_err("received unknown message type %d %s\n", type,
3389 		       ceph_msg_type_name(type));
3390 	}
3391 out:
3392 	ceph_msg_put(msg);
3393 }
3394 
3395 /*
3396  * authentication
3397  */
3398 static int get_authorizer(struct ceph_connection *con,
3399 			  void **buf, int *len, int *proto,
3400 			  void **reply_buf, int *reply_len, int force_new)
3401 {
3402 	struct ceph_mds_session *s = con->private;
3403 	struct ceph_mds_client *mdsc = s->s_mdsc;
3404 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3405 	int ret = 0;
3406 
3407 	if (force_new && s->s_authorizer) {
3408 		ac->ops->destroy_authorizer(ac, s->s_authorizer);
3409 		s->s_authorizer = NULL;
3410 	}
3411 	if (s->s_authorizer == NULL) {
3412 		if (ac->ops->create_authorizer) {
3413 			ret = ac->ops->create_authorizer(
3414 				ac, CEPH_ENTITY_TYPE_MDS,
3415 				&s->s_authorizer,
3416 				&s->s_authorizer_buf,
3417 				&s->s_authorizer_buf_len,
3418 				&s->s_authorizer_reply_buf,
3419 				&s->s_authorizer_reply_buf_len);
3420 			if (ret)
3421 				return ret;
3422 		}
3423 	}
3424 
3425 	*proto = ac->protocol;
3426 	*buf = s->s_authorizer_buf;
3427 	*len = s->s_authorizer_buf_len;
3428 	*reply_buf = s->s_authorizer_reply_buf;
3429 	*reply_len = s->s_authorizer_reply_buf_len;
3430 	return 0;
3431 }
3432 
3433 
3434 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3435 {
3436 	struct ceph_mds_session *s = con->private;
3437 	struct ceph_mds_client *mdsc = s->s_mdsc;
3438 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3439 
3440 	return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3441 }
3442 
3443 static int invalidate_authorizer(struct ceph_connection *con)
3444 {
3445 	struct ceph_mds_session *s = con->private;
3446 	struct ceph_mds_client *mdsc = s->s_mdsc;
3447 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3448 
3449 	if (ac->ops->invalidate_authorizer)
3450 		ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3451 
3452 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3453 }
3454 
3455 static const struct ceph_connection_operations mds_con_ops = {
3456 	.get = con_get,
3457 	.put = con_put,
3458 	.dispatch = dispatch,
3459 	.get_authorizer = get_authorizer,
3460 	.verify_authorizer_reply = verify_authorizer_reply,
3461 	.invalidate_authorizer = invalidate_authorizer,
3462 	.peer_reset = peer_reset,
3463 };
3464 
3465 /* eof */
3466