xref: /openbmc/linux/fs/ceph/mds_client.c (revision 5b4cb650)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/fs.h>
5 #include <linux/wait.h>
6 #include <linux/slab.h>
7 #include <linux/gfp.h>
8 #include <linux/sched.h>
9 #include <linux/debugfs.h>
10 #include <linux/seq_file.h>
11 #include <linux/ratelimit.h>
12 
13 #include "super.h"
14 #include "mds_client.h"
15 
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
22 
23 /*
24  * A cluster of MDS (metadata server) daemons is responsible for
25  * managing the file system namespace (the directory hierarchy and
26  * inodes) and for coordinating shared access to storage.  Metadata is
27  * partitioning hierarchically across a number of servers, and that
28  * partition varies over time as the cluster adjusts the distribution
29  * in order to balance load.
30  *
31  * The MDS client is primarily responsible to managing synchronous
32  * metadata requests for operations like open, unlink, and so forth.
33  * If there is a MDS failure, we find out about it when we (possibly
34  * request and) receive a new MDS map, and can resubmit affected
35  * requests.
36  *
37  * For the most part, though, we take advantage of a lossless
38  * communications channel to the MDS, and do not need to worry about
39  * timing out or resubmitting requests.
40  *
41  * We maintain a stateful "session" with each MDS we interact with.
42  * Within each session, we sent periodic heartbeat messages to ensure
43  * any capabilities or leases we have been issues remain valid.  If
44  * the session times out and goes stale, our leases and capabilities
45  * are no longer valid.
46  */
47 
48 struct ceph_reconnect_state {
49 	int nr_caps;
50 	struct ceph_pagelist *pagelist;
51 	unsigned msg_version;
52 };
53 
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 			    struct list_head *head);
56 
57 static const struct ceph_connection_operations mds_con_ops;
58 
59 
60 /*
61  * mds reply parsing
62  */
63 
64 /*
65  * parse individual inode info
66  */
67 static int parse_reply_info_in(void **p, void *end,
68 			       struct ceph_mds_reply_info_in *info,
69 			       u64 features)
70 {
71 	int err = -EIO;
72 
73 	info->in = *p;
74 	*p += sizeof(struct ceph_mds_reply_inode) +
75 		sizeof(*info->in->fragtree.splits) *
76 		le32_to_cpu(info->in->fragtree.nsplits);
77 
78 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 	ceph_decode_need(p, end, info->symlink_len, bad);
80 	info->symlink = *p;
81 	*p += info->symlink_len;
82 
83 	ceph_decode_copy_safe(p, end, &info->dir_layout,
84 			      sizeof(info->dir_layout), bad);
85 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
86 	ceph_decode_need(p, end, info->xattr_len, bad);
87 	info->xattr_data = *p;
88 	*p += info->xattr_len;
89 
90 	if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
91 		ceph_decode_64_safe(p, end, info->inline_version, bad);
92 		ceph_decode_32_safe(p, end, info->inline_len, bad);
93 		ceph_decode_need(p, end, info->inline_len, bad);
94 		info->inline_data = *p;
95 		*p += info->inline_len;
96 	} else
97 		info->inline_version = CEPH_INLINE_NONE;
98 
99 	if (features & CEPH_FEATURE_MDS_QUOTA) {
100 		u8 struct_v, struct_compat;
101 		u32 struct_len;
102 
103 		/*
104 		 * both struct_v and struct_compat are expected to be >= 1
105 		 */
106 		ceph_decode_8_safe(p, end, struct_v, bad);
107 		ceph_decode_8_safe(p, end, struct_compat, bad);
108 		if (!struct_v || !struct_compat)
109 			goto bad;
110 		ceph_decode_32_safe(p, end, struct_len, bad);
111 		ceph_decode_need(p, end, struct_len, bad);
112 		ceph_decode_64_safe(p, end, info->max_bytes, bad);
113 		ceph_decode_64_safe(p, end, info->max_files, bad);
114 	} else {
115 		info->max_bytes = 0;
116 		info->max_files = 0;
117 	}
118 
119 	info->pool_ns_len = 0;
120 	info->pool_ns_data = NULL;
121 	if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
122 		ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
123 		if (info->pool_ns_len > 0) {
124 			ceph_decode_need(p, end, info->pool_ns_len, bad);
125 			info->pool_ns_data = *p;
126 			*p += info->pool_ns_len;
127 		}
128 	}
129 
130 	return 0;
131 bad:
132 	return err;
133 }
134 
135 /*
136  * parse a normal reply, which may contain a (dir+)dentry and/or a
137  * target inode.
138  */
139 static int parse_reply_info_trace(void **p, void *end,
140 				  struct ceph_mds_reply_info_parsed *info,
141 				  u64 features)
142 {
143 	int err;
144 
145 	if (info->head->is_dentry) {
146 		err = parse_reply_info_in(p, end, &info->diri, features);
147 		if (err < 0)
148 			goto out_bad;
149 
150 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
151 			goto bad;
152 		info->dirfrag = *p;
153 		*p += sizeof(*info->dirfrag) +
154 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
155 		if (unlikely(*p > end))
156 			goto bad;
157 
158 		ceph_decode_32_safe(p, end, info->dname_len, bad);
159 		ceph_decode_need(p, end, info->dname_len, bad);
160 		info->dname = *p;
161 		*p += info->dname_len;
162 		info->dlease = *p;
163 		*p += sizeof(*info->dlease);
164 	}
165 
166 	if (info->head->is_target) {
167 		err = parse_reply_info_in(p, end, &info->targeti, features);
168 		if (err < 0)
169 			goto out_bad;
170 	}
171 
172 	if (unlikely(*p != end))
173 		goto bad;
174 	return 0;
175 
176 bad:
177 	err = -EIO;
178 out_bad:
179 	pr_err("problem parsing mds trace %d\n", err);
180 	return err;
181 }
182 
183 /*
184  * parse readdir results
185  */
186 static int parse_reply_info_dir(void **p, void *end,
187 				struct ceph_mds_reply_info_parsed *info,
188 				u64 features)
189 {
190 	u32 num, i = 0;
191 	int err;
192 
193 	info->dir_dir = *p;
194 	if (*p + sizeof(*info->dir_dir) > end)
195 		goto bad;
196 	*p += sizeof(*info->dir_dir) +
197 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
198 	if (*p > end)
199 		goto bad;
200 
201 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
202 	num = ceph_decode_32(p);
203 	{
204 		u16 flags = ceph_decode_16(p);
205 		info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
206 		info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
207 		info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
208 		info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH);
209 	}
210 	if (num == 0)
211 		goto done;
212 
213 	BUG_ON(!info->dir_entries);
214 	if ((unsigned long)(info->dir_entries + num) >
215 	    (unsigned long)info->dir_entries + info->dir_buf_size) {
216 		pr_err("dir contents are larger than expected\n");
217 		WARN_ON(1);
218 		goto bad;
219 	}
220 
221 	info->dir_nr = num;
222 	while (num) {
223 		struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
224 		/* dentry */
225 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
226 		rde->name_len = ceph_decode_32(p);
227 		ceph_decode_need(p, end, rde->name_len, bad);
228 		rde->name = *p;
229 		*p += rde->name_len;
230 		dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name);
231 		rde->lease = *p;
232 		*p += sizeof(struct ceph_mds_reply_lease);
233 
234 		/* inode */
235 		err = parse_reply_info_in(p, end, &rde->inode, features);
236 		if (err < 0)
237 			goto out_bad;
238 		/* ceph_readdir_prepopulate() will update it */
239 		rde->offset = 0;
240 		i++;
241 		num--;
242 	}
243 
244 done:
245 	if (*p != end)
246 		goto bad;
247 	return 0;
248 
249 bad:
250 	err = -EIO;
251 out_bad:
252 	pr_err("problem parsing dir contents %d\n", err);
253 	return err;
254 }
255 
256 /*
257  * parse fcntl F_GETLK results
258  */
259 static int parse_reply_info_filelock(void **p, void *end,
260 				     struct ceph_mds_reply_info_parsed *info,
261 				     u64 features)
262 {
263 	if (*p + sizeof(*info->filelock_reply) > end)
264 		goto bad;
265 
266 	info->filelock_reply = *p;
267 	*p += sizeof(*info->filelock_reply);
268 
269 	if (unlikely(*p != end))
270 		goto bad;
271 	return 0;
272 
273 bad:
274 	return -EIO;
275 }
276 
277 /*
278  * parse create results
279  */
280 static int parse_reply_info_create(void **p, void *end,
281 				  struct ceph_mds_reply_info_parsed *info,
282 				  u64 features)
283 {
284 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
285 		if (*p == end) {
286 			info->has_create_ino = false;
287 		} else {
288 			info->has_create_ino = true;
289 			info->ino = ceph_decode_64(p);
290 		}
291 	}
292 
293 	if (unlikely(*p != end))
294 		goto bad;
295 	return 0;
296 
297 bad:
298 	return -EIO;
299 }
300 
301 /*
302  * parse extra results
303  */
304 static int parse_reply_info_extra(void **p, void *end,
305 				  struct ceph_mds_reply_info_parsed *info,
306 				  u64 features)
307 {
308 	u32 op = le32_to_cpu(info->head->op);
309 
310 	if (op == CEPH_MDS_OP_GETFILELOCK)
311 		return parse_reply_info_filelock(p, end, info, features);
312 	else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP)
313 		return parse_reply_info_dir(p, end, info, features);
314 	else if (op == CEPH_MDS_OP_CREATE)
315 		return parse_reply_info_create(p, end, info, features);
316 	else
317 		return -EIO;
318 }
319 
320 /*
321  * parse entire mds reply
322  */
323 static int parse_reply_info(struct ceph_msg *msg,
324 			    struct ceph_mds_reply_info_parsed *info,
325 			    u64 features)
326 {
327 	void *p, *end;
328 	u32 len;
329 	int err;
330 
331 	info->head = msg->front.iov_base;
332 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
333 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
334 
335 	/* trace */
336 	ceph_decode_32_safe(&p, end, len, bad);
337 	if (len > 0) {
338 		ceph_decode_need(&p, end, len, bad);
339 		err = parse_reply_info_trace(&p, p+len, info, features);
340 		if (err < 0)
341 			goto out_bad;
342 	}
343 
344 	/* extra */
345 	ceph_decode_32_safe(&p, end, len, bad);
346 	if (len > 0) {
347 		ceph_decode_need(&p, end, len, bad);
348 		err = parse_reply_info_extra(&p, p+len, info, features);
349 		if (err < 0)
350 			goto out_bad;
351 	}
352 
353 	/* snap blob */
354 	ceph_decode_32_safe(&p, end, len, bad);
355 	info->snapblob_len = len;
356 	info->snapblob = p;
357 	p += len;
358 
359 	if (p != end)
360 		goto bad;
361 	return 0;
362 
363 bad:
364 	err = -EIO;
365 out_bad:
366 	pr_err("mds parse_reply err %d\n", err);
367 	return err;
368 }
369 
370 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
371 {
372 	if (!info->dir_entries)
373 		return;
374 	free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
375 }
376 
377 
378 /*
379  * sessions
380  */
381 const char *ceph_session_state_name(int s)
382 {
383 	switch (s) {
384 	case CEPH_MDS_SESSION_NEW: return "new";
385 	case CEPH_MDS_SESSION_OPENING: return "opening";
386 	case CEPH_MDS_SESSION_OPEN: return "open";
387 	case CEPH_MDS_SESSION_HUNG: return "hung";
388 	case CEPH_MDS_SESSION_CLOSING: return "closing";
389 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
390 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
391 	case CEPH_MDS_SESSION_REJECTED: return "rejected";
392 	default: return "???";
393 	}
394 }
395 
396 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
397 {
398 	if (refcount_inc_not_zero(&s->s_ref)) {
399 		dout("mdsc get_session %p %d -> %d\n", s,
400 		     refcount_read(&s->s_ref)-1, refcount_read(&s->s_ref));
401 		return s;
402 	} else {
403 		dout("mdsc get_session %p 0 -- FAIL\n", s);
404 		return NULL;
405 	}
406 }
407 
408 void ceph_put_mds_session(struct ceph_mds_session *s)
409 {
410 	dout("mdsc put_session %p %d -> %d\n", s,
411 	     refcount_read(&s->s_ref), refcount_read(&s->s_ref)-1);
412 	if (refcount_dec_and_test(&s->s_ref)) {
413 		if (s->s_auth.authorizer)
414 			ceph_auth_destroy_authorizer(s->s_auth.authorizer);
415 		kfree(s);
416 	}
417 }
418 
419 /*
420  * called under mdsc->mutex
421  */
422 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
423 						   int mds)
424 {
425 	struct ceph_mds_session *session;
426 
427 	if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
428 		return NULL;
429 	session = mdsc->sessions[mds];
430 	dout("lookup_mds_session %p %d\n", session,
431 	     refcount_read(&session->s_ref));
432 	get_session(session);
433 	return session;
434 }
435 
436 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
437 {
438 	if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
439 		return false;
440 	else
441 		return true;
442 }
443 
444 static int __verify_registered_session(struct ceph_mds_client *mdsc,
445 				       struct ceph_mds_session *s)
446 {
447 	if (s->s_mds >= mdsc->max_sessions ||
448 	    mdsc->sessions[s->s_mds] != s)
449 		return -ENOENT;
450 	return 0;
451 }
452 
453 /*
454  * create+register a new session for given mds.
455  * called under mdsc->mutex.
456  */
457 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
458 						 int mds)
459 {
460 	struct ceph_mds_session *s;
461 
462 	if (mds >= mdsc->mdsmap->m_num_mds)
463 		return ERR_PTR(-EINVAL);
464 
465 	s = kzalloc(sizeof(*s), GFP_NOFS);
466 	if (!s)
467 		return ERR_PTR(-ENOMEM);
468 
469 	if (mds >= mdsc->max_sessions) {
470 		int newmax = 1 << get_count_order(mds + 1);
471 		struct ceph_mds_session **sa;
472 
473 		dout("%s: realloc to %d\n", __func__, newmax);
474 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
475 		if (!sa)
476 			goto fail_realloc;
477 		if (mdsc->sessions) {
478 			memcpy(sa, mdsc->sessions,
479 			       mdsc->max_sessions * sizeof(void *));
480 			kfree(mdsc->sessions);
481 		}
482 		mdsc->sessions = sa;
483 		mdsc->max_sessions = newmax;
484 	}
485 
486 	dout("%s: mds%d\n", __func__, mds);
487 	s->s_mdsc = mdsc;
488 	s->s_mds = mds;
489 	s->s_state = CEPH_MDS_SESSION_NEW;
490 	s->s_ttl = 0;
491 	s->s_seq = 0;
492 	mutex_init(&s->s_mutex);
493 
494 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
495 
496 	spin_lock_init(&s->s_gen_ttl_lock);
497 	s->s_cap_gen = 0;
498 	s->s_cap_ttl = jiffies - 1;
499 
500 	spin_lock_init(&s->s_cap_lock);
501 	s->s_renew_requested = 0;
502 	s->s_renew_seq = 0;
503 	INIT_LIST_HEAD(&s->s_caps);
504 	s->s_nr_caps = 0;
505 	s->s_trim_caps = 0;
506 	refcount_set(&s->s_ref, 1);
507 	INIT_LIST_HEAD(&s->s_waiting);
508 	INIT_LIST_HEAD(&s->s_unsafe);
509 	s->s_num_cap_releases = 0;
510 	s->s_cap_reconnect = 0;
511 	s->s_cap_iterator = NULL;
512 	INIT_LIST_HEAD(&s->s_cap_releases);
513 	INIT_LIST_HEAD(&s->s_cap_flushing);
514 
515 	mdsc->sessions[mds] = s;
516 	atomic_inc(&mdsc->num_sessions);
517 	refcount_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
518 
519 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
520 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
521 
522 	return s;
523 
524 fail_realloc:
525 	kfree(s);
526 	return ERR_PTR(-ENOMEM);
527 }
528 
529 /*
530  * called under mdsc->mutex
531  */
532 static void __unregister_session(struct ceph_mds_client *mdsc,
533 			       struct ceph_mds_session *s)
534 {
535 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
536 	BUG_ON(mdsc->sessions[s->s_mds] != s);
537 	mdsc->sessions[s->s_mds] = NULL;
538 	ceph_con_close(&s->s_con);
539 	ceph_put_mds_session(s);
540 	atomic_dec(&mdsc->num_sessions);
541 }
542 
543 /*
544  * drop session refs in request.
545  *
546  * should be last request ref, or hold mdsc->mutex
547  */
548 static void put_request_session(struct ceph_mds_request *req)
549 {
550 	if (req->r_session) {
551 		ceph_put_mds_session(req->r_session);
552 		req->r_session = NULL;
553 	}
554 }
555 
556 void ceph_mdsc_release_request(struct kref *kref)
557 {
558 	struct ceph_mds_request *req = container_of(kref,
559 						    struct ceph_mds_request,
560 						    r_kref);
561 	destroy_reply_info(&req->r_reply_info);
562 	if (req->r_request)
563 		ceph_msg_put(req->r_request);
564 	if (req->r_reply)
565 		ceph_msg_put(req->r_reply);
566 	if (req->r_inode) {
567 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
568 		iput(req->r_inode);
569 	}
570 	if (req->r_parent)
571 		ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
572 	iput(req->r_target_inode);
573 	if (req->r_dentry)
574 		dput(req->r_dentry);
575 	if (req->r_old_dentry)
576 		dput(req->r_old_dentry);
577 	if (req->r_old_dentry_dir) {
578 		/*
579 		 * track (and drop pins for) r_old_dentry_dir
580 		 * separately, since r_old_dentry's d_parent may have
581 		 * changed between the dir mutex being dropped and
582 		 * this request being freed.
583 		 */
584 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
585 				  CEPH_CAP_PIN);
586 		iput(req->r_old_dentry_dir);
587 	}
588 	kfree(req->r_path1);
589 	kfree(req->r_path2);
590 	if (req->r_pagelist)
591 		ceph_pagelist_release(req->r_pagelist);
592 	put_request_session(req);
593 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
594 	kfree(req);
595 }
596 
597 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
598 
599 /*
600  * lookup session, bump ref if found.
601  *
602  * called under mdsc->mutex.
603  */
604 static struct ceph_mds_request *
605 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
606 {
607 	struct ceph_mds_request *req;
608 
609 	req = lookup_request(&mdsc->request_tree, tid);
610 	if (req)
611 		ceph_mdsc_get_request(req);
612 
613 	return req;
614 }
615 
616 /*
617  * Register an in-flight request, and assign a tid.  Link to directory
618  * are modifying (if any).
619  *
620  * Called under mdsc->mutex.
621  */
622 static void __register_request(struct ceph_mds_client *mdsc,
623 			       struct ceph_mds_request *req,
624 			       struct inode *dir)
625 {
626 	int ret = 0;
627 
628 	req->r_tid = ++mdsc->last_tid;
629 	if (req->r_num_caps) {
630 		ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation,
631 					req->r_num_caps);
632 		if (ret < 0) {
633 			pr_err("__register_request %p "
634 			       "failed to reserve caps: %d\n", req, ret);
635 			/* set req->r_err to fail early from __do_request */
636 			req->r_err = ret;
637 			return;
638 		}
639 	}
640 	dout("__register_request %p tid %lld\n", req, req->r_tid);
641 	ceph_mdsc_get_request(req);
642 	insert_request(&mdsc->request_tree, req);
643 
644 	req->r_uid = current_fsuid();
645 	req->r_gid = current_fsgid();
646 
647 	if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
648 		mdsc->oldest_tid = req->r_tid;
649 
650 	if (dir) {
651 		ihold(dir);
652 		req->r_unsafe_dir = dir;
653 	}
654 }
655 
656 static void __unregister_request(struct ceph_mds_client *mdsc,
657 				 struct ceph_mds_request *req)
658 {
659 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
660 
661 	/* Never leave an unregistered request on an unsafe list! */
662 	list_del_init(&req->r_unsafe_item);
663 
664 	if (req->r_tid == mdsc->oldest_tid) {
665 		struct rb_node *p = rb_next(&req->r_node);
666 		mdsc->oldest_tid = 0;
667 		while (p) {
668 			struct ceph_mds_request *next_req =
669 				rb_entry(p, struct ceph_mds_request, r_node);
670 			if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
671 				mdsc->oldest_tid = next_req->r_tid;
672 				break;
673 			}
674 			p = rb_next(p);
675 		}
676 	}
677 
678 	erase_request(&mdsc->request_tree, req);
679 
680 	if (req->r_unsafe_dir  &&
681 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
682 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
683 		spin_lock(&ci->i_unsafe_lock);
684 		list_del_init(&req->r_unsafe_dir_item);
685 		spin_unlock(&ci->i_unsafe_lock);
686 	}
687 	if (req->r_target_inode &&
688 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
689 		struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
690 		spin_lock(&ci->i_unsafe_lock);
691 		list_del_init(&req->r_unsafe_target_item);
692 		spin_unlock(&ci->i_unsafe_lock);
693 	}
694 
695 	if (req->r_unsafe_dir) {
696 		iput(req->r_unsafe_dir);
697 		req->r_unsafe_dir = NULL;
698 	}
699 
700 	complete_all(&req->r_safe_completion);
701 
702 	ceph_mdsc_put_request(req);
703 }
704 
705 /*
706  * Walk back up the dentry tree until we hit a dentry representing a
707  * non-snapshot inode. We do this using the rcu_read_lock (which must be held
708  * when calling this) to ensure that the objects won't disappear while we're
709  * working with them. Once we hit a candidate dentry, we attempt to take a
710  * reference to it, and return that as the result.
711  */
712 static struct inode *get_nonsnap_parent(struct dentry *dentry)
713 {
714 	struct inode *inode = NULL;
715 
716 	while (dentry && !IS_ROOT(dentry)) {
717 		inode = d_inode_rcu(dentry);
718 		if (!inode || ceph_snap(inode) == CEPH_NOSNAP)
719 			break;
720 		dentry = dentry->d_parent;
721 	}
722 	if (inode)
723 		inode = igrab(inode);
724 	return inode;
725 }
726 
727 /*
728  * Choose mds to send request to next.  If there is a hint set in the
729  * request (e.g., due to a prior forward hint from the mds), use that.
730  * Otherwise, consult frag tree and/or caps to identify the
731  * appropriate mds.  If all else fails, choose randomly.
732  *
733  * Called under mdsc->mutex.
734  */
735 static int __choose_mds(struct ceph_mds_client *mdsc,
736 			struct ceph_mds_request *req)
737 {
738 	struct inode *inode;
739 	struct ceph_inode_info *ci;
740 	struct ceph_cap *cap;
741 	int mode = req->r_direct_mode;
742 	int mds = -1;
743 	u32 hash = req->r_direct_hash;
744 	bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags);
745 
746 	/*
747 	 * is there a specific mds we should try?  ignore hint if we have
748 	 * no session and the mds is not up (active or recovering).
749 	 */
750 	if (req->r_resend_mds >= 0 &&
751 	    (__have_session(mdsc, req->r_resend_mds) ||
752 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
753 		dout("choose_mds using resend_mds mds%d\n",
754 		     req->r_resend_mds);
755 		return req->r_resend_mds;
756 	}
757 
758 	if (mode == USE_RANDOM_MDS)
759 		goto random;
760 
761 	inode = NULL;
762 	if (req->r_inode) {
763 		if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) {
764 			inode = req->r_inode;
765 			ihold(inode);
766 		} else {
767 			/* req->r_dentry is non-null for LSSNAP request */
768 			rcu_read_lock();
769 			inode = get_nonsnap_parent(req->r_dentry);
770 			rcu_read_unlock();
771 			dout("__choose_mds using snapdir's parent %p\n", inode);
772 		}
773 	} else if (req->r_dentry) {
774 		/* ignore race with rename; old or new d_parent is okay */
775 		struct dentry *parent;
776 		struct inode *dir;
777 
778 		rcu_read_lock();
779 		parent = req->r_dentry->d_parent;
780 		dir = req->r_parent ? : d_inode_rcu(parent);
781 
782 		if (!dir || dir->i_sb != mdsc->fsc->sb) {
783 			/*  not this fs or parent went negative */
784 			inode = d_inode(req->r_dentry);
785 			if (inode)
786 				ihold(inode);
787 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
788 			/* direct snapped/virtual snapdir requests
789 			 * based on parent dir inode */
790 			inode = get_nonsnap_parent(parent);
791 			dout("__choose_mds using nonsnap parent %p\n", inode);
792 		} else {
793 			/* dentry target */
794 			inode = d_inode(req->r_dentry);
795 			if (!inode || mode == USE_AUTH_MDS) {
796 				/* dir + name */
797 				inode = igrab(dir);
798 				hash = ceph_dentry_hash(dir, req->r_dentry);
799 				is_hash = true;
800 			} else {
801 				ihold(inode);
802 			}
803 		}
804 		rcu_read_unlock();
805 	}
806 
807 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
808 	     (int)hash, mode);
809 	if (!inode)
810 		goto random;
811 	ci = ceph_inode(inode);
812 
813 	if (is_hash && S_ISDIR(inode->i_mode)) {
814 		struct ceph_inode_frag frag;
815 		int found;
816 
817 		ceph_choose_frag(ci, hash, &frag, &found);
818 		if (found) {
819 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
820 				u8 r;
821 
822 				/* choose a random replica */
823 				get_random_bytes(&r, 1);
824 				r %= frag.ndist;
825 				mds = frag.dist[r];
826 				dout("choose_mds %p %llx.%llx "
827 				     "frag %u mds%d (%d/%d)\n",
828 				     inode, ceph_vinop(inode),
829 				     frag.frag, mds,
830 				     (int)r, frag.ndist);
831 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
832 				    CEPH_MDS_STATE_ACTIVE)
833 					goto out;
834 			}
835 
836 			/* since this file/dir wasn't known to be
837 			 * replicated, then we want to look for the
838 			 * authoritative mds. */
839 			mode = USE_AUTH_MDS;
840 			if (frag.mds >= 0) {
841 				/* choose auth mds */
842 				mds = frag.mds;
843 				dout("choose_mds %p %llx.%llx "
844 				     "frag %u mds%d (auth)\n",
845 				     inode, ceph_vinop(inode), frag.frag, mds);
846 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
847 				    CEPH_MDS_STATE_ACTIVE)
848 					goto out;
849 			}
850 		}
851 	}
852 
853 	spin_lock(&ci->i_ceph_lock);
854 	cap = NULL;
855 	if (mode == USE_AUTH_MDS)
856 		cap = ci->i_auth_cap;
857 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
858 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
859 	if (!cap) {
860 		spin_unlock(&ci->i_ceph_lock);
861 		iput(inode);
862 		goto random;
863 	}
864 	mds = cap->session->s_mds;
865 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
866 	     inode, ceph_vinop(inode), mds,
867 	     cap == ci->i_auth_cap ? "auth " : "", cap);
868 	spin_unlock(&ci->i_ceph_lock);
869 out:
870 	iput(inode);
871 	return mds;
872 
873 random:
874 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
875 	dout("choose_mds chose random mds%d\n", mds);
876 	return mds;
877 }
878 
879 
880 /*
881  * session messages
882  */
883 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
884 {
885 	struct ceph_msg *msg;
886 	struct ceph_mds_session_head *h;
887 
888 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
889 			   false);
890 	if (!msg) {
891 		pr_err("create_session_msg ENOMEM creating msg\n");
892 		return NULL;
893 	}
894 	h = msg->front.iov_base;
895 	h->op = cpu_to_le32(op);
896 	h->seq = cpu_to_le64(seq);
897 
898 	return msg;
899 }
900 
901 static void encode_supported_features(void **p, void *end)
902 {
903 	static const unsigned char bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED;
904 	static const size_t count = ARRAY_SIZE(bits);
905 
906 	if (count > 0) {
907 		size_t i;
908 		size_t size = ((size_t)bits[count - 1] + 64) / 64 * 8;
909 
910 		BUG_ON(*p + 4 + size > end);
911 		ceph_encode_32(p, size);
912 		memset(*p, 0, size);
913 		for (i = 0; i < count; i++)
914 			((unsigned char*)(*p))[i / 8] |= 1 << (bits[i] % 8);
915 		*p += size;
916 	} else {
917 		BUG_ON(*p + 4 > end);
918 		ceph_encode_32(p, 0);
919 	}
920 }
921 
922 /*
923  * session message, specialization for CEPH_SESSION_REQUEST_OPEN
924  * to include additional client metadata fields.
925  */
926 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
927 {
928 	struct ceph_msg *msg;
929 	struct ceph_mds_session_head *h;
930 	int i = -1;
931 	int extra_bytes = 0;
932 	int metadata_key_count = 0;
933 	struct ceph_options *opt = mdsc->fsc->client->options;
934 	struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
935 	void *p, *end;
936 
937 	const char* metadata[][2] = {
938 		{"hostname", mdsc->nodename},
939 		{"kernel_version", init_utsname()->release},
940 		{"entity_id", opt->name ? : ""},
941 		{"root", fsopt->server_path ? : "/"},
942 		{NULL, NULL}
943 	};
944 
945 	/* Calculate serialized length of metadata */
946 	extra_bytes = 4;  /* map length */
947 	for (i = 0; metadata[i][0]; ++i) {
948 		extra_bytes += 8 + strlen(metadata[i][0]) +
949 			strlen(metadata[i][1]);
950 		metadata_key_count++;
951 	}
952 	/* supported feature */
953 	extra_bytes += 4 + 8;
954 
955 	/* Allocate the message */
956 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes,
957 			   GFP_NOFS, false);
958 	if (!msg) {
959 		pr_err("create_session_msg ENOMEM creating msg\n");
960 		return NULL;
961 	}
962 	p = msg->front.iov_base;
963 	end = p + msg->front.iov_len;
964 
965 	h = p;
966 	h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
967 	h->seq = cpu_to_le64(seq);
968 
969 	/*
970 	 * Serialize client metadata into waiting buffer space, using
971 	 * the format that userspace expects for map<string, string>
972 	 *
973 	 * ClientSession messages with metadata are v2
974 	 */
975 	msg->hdr.version = cpu_to_le16(3);
976 	msg->hdr.compat_version = cpu_to_le16(1);
977 
978 	/* The write pointer, following the session_head structure */
979 	p += sizeof(*h);
980 
981 	/* Number of entries in the map */
982 	ceph_encode_32(&p, metadata_key_count);
983 
984 	/* Two length-prefixed strings for each entry in the map */
985 	for (i = 0; metadata[i][0]; ++i) {
986 		size_t const key_len = strlen(metadata[i][0]);
987 		size_t const val_len = strlen(metadata[i][1]);
988 
989 		ceph_encode_32(&p, key_len);
990 		memcpy(p, metadata[i][0], key_len);
991 		p += key_len;
992 		ceph_encode_32(&p, val_len);
993 		memcpy(p, metadata[i][1], val_len);
994 		p += val_len;
995 	}
996 
997 	encode_supported_features(&p, end);
998 	msg->front.iov_len = p - msg->front.iov_base;
999 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1000 
1001 	return msg;
1002 }
1003 
1004 /*
1005  * send session open request.
1006  *
1007  * called under mdsc->mutex
1008  */
1009 static int __open_session(struct ceph_mds_client *mdsc,
1010 			  struct ceph_mds_session *session)
1011 {
1012 	struct ceph_msg *msg;
1013 	int mstate;
1014 	int mds = session->s_mds;
1015 
1016 	/* wait for mds to go active? */
1017 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
1018 	dout("open_session to mds%d (%s)\n", mds,
1019 	     ceph_mds_state_name(mstate));
1020 	session->s_state = CEPH_MDS_SESSION_OPENING;
1021 	session->s_renew_requested = jiffies;
1022 
1023 	/* send connect message */
1024 	msg = create_session_open_msg(mdsc, session->s_seq);
1025 	if (!msg)
1026 		return -ENOMEM;
1027 	ceph_con_send(&session->s_con, msg);
1028 	return 0;
1029 }
1030 
1031 /*
1032  * open sessions for any export targets for the given mds
1033  *
1034  * called under mdsc->mutex
1035  */
1036 static struct ceph_mds_session *
1037 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
1038 {
1039 	struct ceph_mds_session *session;
1040 
1041 	session = __ceph_lookup_mds_session(mdsc, target);
1042 	if (!session) {
1043 		session = register_session(mdsc, target);
1044 		if (IS_ERR(session))
1045 			return session;
1046 	}
1047 	if (session->s_state == CEPH_MDS_SESSION_NEW ||
1048 	    session->s_state == CEPH_MDS_SESSION_CLOSING)
1049 		__open_session(mdsc, session);
1050 
1051 	return session;
1052 }
1053 
1054 struct ceph_mds_session *
1055 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
1056 {
1057 	struct ceph_mds_session *session;
1058 
1059 	dout("open_export_target_session to mds%d\n", target);
1060 
1061 	mutex_lock(&mdsc->mutex);
1062 	session = __open_export_target_session(mdsc, target);
1063 	mutex_unlock(&mdsc->mutex);
1064 
1065 	return session;
1066 }
1067 
1068 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
1069 					  struct ceph_mds_session *session)
1070 {
1071 	struct ceph_mds_info *mi;
1072 	struct ceph_mds_session *ts;
1073 	int i, mds = session->s_mds;
1074 
1075 	if (mds >= mdsc->mdsmap->m_num_mds)
1076 		return;
1077 
1078 	mi = &mdsc->mdsmap->m_info[mds];
1079 	dout("open_export_target_sessions for mds%d (%d targets)\n",
1080 	     session->s_mds, mi->num_export_targets);
1081 
1082 	for (i = 0; i < mi->num_export_targets; i++) {
1083 		ts = __open_export_target_session(mdsc, mi->export_targets[i]);
1084 		if (!IS_ERR(ts))
1085 			ceph_put_mds_session(ts);
1086 	}
1087 }
1088 
1089 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
1090 					   struct ceph_mds_session *session)
1091 {
1092 	mutex_lock(&mdsc->mutex);
1093 	__open_export_target_sessions(mdsc, session);
1094 	mutex_unlock(&mdsc->mutex);
1095 }
1096 
1097 /*
1098  * session caps
1099  */
1100 
1101 static void detach_cap_releases(struct ceph_mds_session *session,
1102 				struct list_head *target)
1103 {
1104 	lockdep_assert_held(&session->s_cap_lock);
1105 
1106 	list_splice_init(&session->s_cap_releases, target);
1107 	session->s_num_cap_releases = 0;
1108 	dout("dispose_cap_releases mds%d\n", session->s_mds);
1109 }
1110 
1111 static void dispose_cap_releases(struct ceph_mds_client *mdsc,
1112 				 struct list_head *dispose)
1113 {
1114 	while (!list_empty(dispose)) {
1115 		struct ceph_cap *cap;
1116 		/* zero out the in-progress message */
1117 		cap = list_first_entry(dispose, struct ceph_cap, session_caps);
1118 		list_del(&cap->session_caps);
1119 		ceph_put_cap(mdsc, cap);
1120 	}
1121 }
1122 
1123 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1124 				     struct ceph_mds_session *session)
1125 {
1126 	struct ceph_mds_request *req;
1127 	struct rb_node *p;
1128 
1129 	dout("cleanup_session_requests mds%d\n", session->s_mds);
1130 	mutex_lock(&mdsc->mutex);
1131 	while (!list_empty(&session->s_unsafe)) {
1132 		req = list_first_entry(&session->s_unsafe,
1133 				       struct ceph_mds_request, r_unsafe_item);
1134 		pr_warn_ratelimited(" dropping unsafe request %llu\n",
1135 				    req->r_tid);
1136 		__unregister_request(mdsc, req);
1137 	}
1138 	/* zero r_attempts, so kick_requests() will re-send requests */
1139 	p = rb_first(&mdsc->request_tree);
1140 	while (p) {
1141 		req = rb_entry(p, struct ceph_mds_request, r_node);
1142 		p = rb_next(p);
1143 		if (req->r_session &&
1144 		    req->r_session->s_mds == session->s_mds)
1145 			req->r_attempts = 0;
1146 	}
1147 	mutex_unlock(&mdsc->mutex);
1148 }
1149 
1150 /*
1151  * Helper to safely iterate over all caps associated with a session, with
1152  * special care taken to handle a racing __ceph_remove_cap().
1153  *
1154  * Caller must hold session s_mutex.
1155  */
1156 static int iterate_session_caps(struct ceph_mds_session *session,
1157 				 int (*cb)(struct inode *, struct ceph_cap *,
1158 					    void *), void *arg)
1159 {
1160 	struct list_head *p;
1161 	struct ceph_cap *cap;
1162 	struct inode *inode, *last_inode = NULL;
1163 	struct ceph_cap *old_cap = NULL;
1164 	int ret;
1165 
1166 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1167 	spin_lock(&session->s_cap_lock);
1168 	p = session->s_caps.next;
1169 	while (p != &session->s_caps) {
1170 		cap = list_entry(p, struct ceph_cap, session_caps);
1171 		inode = igrab(&cap->ci->vfs_inode);
1172 		if (!inode) {
1173 			p = p->next;
1174 			continue;
1175 		}
1176 		session->s_cap_iterator = cap;
1177 		spin_unlock(&session->s_cap_lock);
1178 
1179 		if (last_inode) {
1180 			iput(last_inode);
1181 			last_inode = NULL;
1182 		}
1183 		if (old_cap) {
1184 			ceph_put_cap(session->s_mdsc, old_cap);
1185 			old_cap = NULL;
1186 		}
1187 
1188 		ret = cb(inode, cap, arg);
1189 		last_inode = inode;
1190 
1191 		spin_lock(&session->s_cap_lock);
1192 		p = p->next;
1193 		if (!cap->ci) {
1194 			dout("iterate_session_caps  finishing cap %p removal\n",
1195 			     cap);
1196 			BUG_ON(cap->session != session);
1197 			cap->session = NULL;
1198 			list_del_init(&cap->session_caps);
1199 			session->s_nr_caps--;
1200 			if (cap->queue_release) {
1201 				list_add_tail(&cap->session_caps,
1202 					      &session->s_cap_releases);
1203 				session->s_num_cap_releases++;
1204 			} else {
1205 				old_cap = cap;  /* put_cap it w/o locks held */
1206 			}
1207 		}
1208 		if (ret < 0)
1209 			goto out;
1210 	}
1211 	ret = 0;
1212 out:
1213 	session->s_cap_iterator = NULL;
1214 	spin_unlock(&session->s_cap_lock);
1215 
1216 	iput(last_inode);
1217 	if (old_cap)
1218 		ceph_put_cap(session->s_mdsc, old_cap);
1219 
1220 	return ret;
1221 }
1222 
1223 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1224 				  void *arg)
1225 {
1226 	struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg;
1227 	struct ceph_inode_info *ci = ceph_inode(inode);
1228 	LIST_HEAD(to_remove);
1229 	bool drop = false;
1230 	bool invalidate = false;
1231 
1232 	dout("removing cap %p, ci is %p, inode is %p\n",
1233 	     cap, ci, &ci->vfs_inode);
1234 	spin_lock(&ci->i_ceph_lock);
1235 	__ceph_remove_cap(cap, false);
1236 	if (!ci->i_auth_cap) {
1237 		struct ceph_cap_flush *cf;
1238 		struct ceph_mds_client *mdsc = fsc->mdsc;
1239 
1240 		ci->i_ceph_flags |= CEPH_I_CAP_DROPPED;
1241 
1242 		if (ci->i_wrbuffer_ref > 0 &&
1243 		    READ_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
1244 			invalidate = true;
1245 
1246 		while (!list_empty(&ci->i_cap_flush_list)) {
1247 			cf = list_first_entry(&ci->i_cap_flush_list,
1248 					      struct ceph_cap_flush, i_list);
1249 			list_move(&cf->i_list, &to_remove);
1250 		}
1251 
1252 		spin_lock(&mdsc->cap_dirty_lock);
1253 
1254 		list_for_each_entry(cf, &to_remove, i_list)
1255 			list_del(&cf->g_list);
1256 
1257 		if (!list_empty(&ci->i_dirty_item)) {
1258 			pr_warn_ratelimited(
1259 				" dropping dirty %s state for %p %lld\n",
1260 				ceph_cap_string(ci->i_dirty_caps),
1261 				inode, ceph_ino(inode));
1262 			ci->i_dirty_caps = 0;
1263 			list_del_init(&ci->i_dirty_item);
1264 			drop = true;
1265 		}
1266 		if (!list_empty(&ci->i_flushing_item)) {
1267 			pr_warn_ratelimited(
1268 				" dropping dirty+flushing %s state for %p %lld\n",
1269 				ceph_cap_string(ci->i_flushing_caps),
1270 				inode, ceph_ino(inode));
1271 			ci->i_flushing_caps = 0;
1272 			list_del_init(&ci->i_flushing_item);
1273 			mdsc->num_cap_flushing--;
1274 			drop = true;
1275 		}
1276 		spin_unlock(&mdsc->cap_dirty_lock);
1277 
1278 		if (atomic_read(&ci->i_filelock_ref) > 0) {
1279 			/* make further file lock syscall return -EIO */
1280 			ci->i_ceph_flags |= CEPH_I_ERROR_FILELOCK;
1281 			pr_warn_ratelimited(" dropping file locks for %p %lld\n",
1282 					    inode, ceph_ino(inode));
1283 		}
1284 
1285 		if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1286 			list_add(&ci->i_prealloc_cap_flush->i_list, &to_remove);
1287 			ci->i_prealloc_cap_flush = NULL;
1288 		}
1289 	}
1290 	spin_unlock(&ci->i_ceph_lock);
1291 	while (!list_empty(&to_remove)) {
1292 		struct ceph_cap_flush *cf;
1293 		cf = list_first_entry(&to_remove,
1294 				      struct ceph_cap_flush, i_list);
1295 		list_del(&cf->i_list);
1296 		ceph_free_cap_flush(cf);
1297 	}
1298 
1299 	wake_up_all(&ci->i_cap_wq);
1300 	if (invalidate)
1301 		ceph_queue_invalidate(inode);
1302 	if (drop)
1303 		iput(inode);
1304 	return 0;
1305 }
1306 
1307 /*
1308  * caller must hold session s_mutex
1309  */
1310 static void remove_session_caps(struct ceph_mds_session *session)
1311 {
1312 	struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1313 	struct super_block *sb = fsc->sb;
1314 	LIST_HEAD(dispose);
1315 
1316 	dout("remove_session_caps on %p\n", session);
1317 	iterate_session_caps(session, remove_session_caps_cb, fsc);
1318 
1319 	wake_up_all(&fsc->mdsc->cap_flushing_wq);
1320 
1321 	spin_lock(&session->s_cap_lock);
1322 	if (session->s_nr_caps > 0) {
1323 		struct inode *inode;
1324 		struct ceph_cap *cap, *prev = NULL;
1325 		struct ceph_vino vino;
1326 		/*
1327 		 * iterate_session_caps() skips inodes that are being
1328 		 * deleted, we need to wait until deletions are complete.
1329 		 * __wait_on_freeing_inode() is designed for the job,
1330 		 * but it is not exported, so use lookup inode function
1331 		 * to access it.
1332 		 */
1333 		while (!list_empty(&session->s_caps)) {
1334 			cap = list_entry(session->s_caps.next,
1335 					 struct ceph_cap, session_caps);
1336 			if (cap == prev)
1337 				break;
1338 			prev = cap;
1339 			vino = cap->ci->i_vino;
1340 			spin_unlock(&session->s_cap_lock);
1341 
1342 			inode = ceph_find_inode(sb, vino);
1343 			iput(inode);
1344 
1345 			spin_lock(&session->s_cap_lock);
1346 		}
1347 	}
1348 
1349 	// drop cap expires and unlock s_cap_lock
1350 	detach_cap_releases(session, &dispose);
1351 
1352 	BUG_ON(session->s_nr_caps > 0);
1353 	BUG_ON(!list_empty(&session->s_cap_flushing));
1354 	spin_unlock(&session->s_cap_lock);
1355 	dispose_cap_releases(session->s_mdsc, &dispose);
1356 }
1357 
1358 /*
1359  * wake up any threads waiting on this session's caps.  if the cap is
1360  * old (didn't get renewed on the client reconnect), remove it now.
1361  *
1362  * caller must hold s_mutex.
1363  */
1364 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1365 			      void *arg)
1366 {
1367 	struct ceph_inode_info *ci = ceph_inode(inode);
1368 
1369 	if (arg) {
1370 		spin_lock(&ci->i_ceph_lock);
1371 		ci->i_wanted_max_size = 0;
1372 		ci->i_requested_max_size = 0;
1373 		spin_unlock(&ci->i_ceph_lock);
1374 	}
1375 	wake_up_all(&ci->i_cap_wq);
1376 	return 0;
1377 }
1378 
1379 static void wake_up_session_caps(struct ceph_mds_session *session,
1380 				 int reconnect)
1381 {
1382 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1383 	iterate_session_caps(session, wake_up_session_cb,
1384 			     (void *)(unsigned long)reconnect);
1385 }
1386 
1387 /*
1388  * Send periodic message to MDS renewing all currently held caps.  The
1389  * ack will reset the expiration for all caps from this session.
1390  *
1391  * caller holds s_mutex
1392  */
1393 static int send_renew_caps(struct ceph_mds_client *mdsc,
1394 			   struct ceph_mds_session *session)
1395 {
1396 	struct ceph_msg *msg;
1397 	int state;
1398 
1399 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1400 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1401 		pr_info("mds%d caps stale\n", session->s_mds);
1402 	session->s_renew_requested = jiffies;
1403 
1404 	/* do not try to renew caps until a recovering mds has reconnected
1405 	 * with its clients. */
1406 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1407 	if (state < CEPH_MDS_STATE_RECONNECT) {
1408 		dout("send_renew_caps ignoring mds%d (%s)\n",
1409 		     session->s_mds, ceph_mds_state_name(state));
1410 		return 0;
1411 	}
1412 
1413 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1414 		ceph_mds_state_name(state));
1415 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1416 				 ++session->s_renew_seq);
1417 	if (!msg)
1418 		return -ENOMEM;
1419 	ceph_con_send(&session->s_con, msg);
1420 	return 0;
1421 }
1422 
1423 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1424 			     struct ceph_mds_session *session, u64 seq)
1425 {
1426 	struct ceph_msg *msg;
1427 
1428 	dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1429 	     session->s_mds, ceph_session_state_name(session->s_state), seq);
1430 	msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1431 	if (!msg)
1432 		return -ENOMEM;
1433 	ceph_con_send(&session->s_con, msg);
1434 	return 0;
1435 }
1436 
1437 
1438 /*
1439  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1440  *
1441  * Called under session->s_mutex
1442  */
1443 static void renewed_caps(struct ceph_mds_client *mdsc,
1444 			 struct ceph_mds_session *session, int is_renew)
1445 {
1446 	int was_stale;
1447 	int wake = 0;
1448 
1449 	spin_lock(&session->s_cap_lock);
1450 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1451 
1452 	session->s_cap_ttl = session->s_renew_requested +
1453 		mdsc->mdsmap->m_session_timeout*HZ;
1454 
1455 	if (was_stale) {
1456 		if (time_before(jiffies, session->s_cap_ttl)) {
1457 			pr_info("mds%d caps renewed\n", session->s_mds);
1458 			wake = 1;
1459 		} else {
1460 			pr_info("mds%d caps still stale\n", session->s_mds);
1461 		}
1462 	}
1463 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1464 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1465 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1466 	spin_unlock(&session->s_cap_lock);
1467 
1468 	if (wake)
1469 		wake_up_session_caps(session, 0);
1470 }
1471 
1472 /*
1473  * send a session close request
1474  */
1475 static int request_close_session(struct ceph_mds_client *mdsc,
1476 				 struct ceph_mds_session *session)
1477 {
1478 	struct ceph_msg *msg;
1479 
1480 	dout("request_close_session mds%d state %s seq %lld\n",
1481 	     session->s_mds, ceph_session_state_name(session->s_state),
1482 	     session->s_seq);
1483 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1484 	if (!msg)
1485 		return -ENOMEM;
1486 	ceph_con_send(&session->s_con, msg);
1487 	return 1;
1488 }
1489 
1490 /*
1491  * Called with s_mutex held.
1492  */
1493 static int __close_session(struct ceph_mds_client *mdsc,
1494 			 struct ceph_mds_session *session)
1495 {
1496 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1497 		return 0;
1498 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1499 	return request_close_session(mdsc, session);
1500 }
1501 
1502 static bool drop_negative_children(struct dentry *dentry)
1503 {
1504 	struct dentry *child;
1505 	bool all_negative = true;
1506 
1507 	if (!d_is_dir(dentry))
1508 		goto out;
1509 
1510 	spin_lock(&dentry->d_lock);
1511 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
1512 		if (d_really_is_positive(child)) {
1513 			all_negative = false;
1514 			break;
1515 		}
1516 	}
1517 	spin_unlock(&dentry->d_lock);
1518 
1519 	if (all_negative)
1520 		shrink_dcache_parent(dentry);
1521 out:
1522 	return all_negative;
1523 }
1524 
1525 /*
1526  * Trim old(er) caps.
1527  *
1528  * Because we can't cache an inode without one or more caps, we do
1529  * this indirectly: if a cap is unused, we prune its aliases, at which
1530  * point the inode will hopefully get dropped to.
1531  *
1532  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1533  * memory pressure from the MDS, though, so it needn't be perfect.
1534  */
1535 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1536 {
1537 	struct ceph_mds_session *session = arg;
1538 	struct ceph_inode_info *ci = ceph_inode(inode);
1539 	int used, wanted, oissued, mine;
1540 
1541 	if (session->s_trim_caps <= 0)
1542 		return -1;
1543 
1544 	spin_lock(&ci->i_ceph_lock);
1545 	mine = cap->issued | cap->implemented;
1546 	used = __ceph_caps_used(ci);
1547 	wanted = __ceph_caps_file_wanted(ci);
1548 	oissued = __ceph_caps_issued_other(ci, cap);
1549 
1550 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1551 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1552 	     ceph_cap_string(used), ceph_cap_string(wanted));
1553 	if (cap == ci->i_auth_cap) {
1554 		if (ci->i_dirty_caps || ci->i_flushing_caps ||
1555 		    !list_empty(&ci->i_cap_snaps))
1556 			goto out;
1557 		if ((used | wanted) & CEPH_CAP_ANY_WR)
1558 			goto out;
1559 		/* Note: it's possible that i_filelock_ref becomes non-zero
1560 		 * after dropping auth caps. It doesn't hurt because reply
1561 		 * of lock mds request will re-add auth caps. */
1562 		if (atomic_read(&ci->i_filelock_ref) > 0)
1563 			goto out;
1564 	}
1565 	/* The inode has cached pages, but it's no longer used.
1566 	 * we can safely drop it */
1567 	if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1568 	    !(oissued & CEPH_CAP_FILE_CACHE)) {
1569 	  used = 0;
1570 	  oissued = 0;
1571 	}
1572 	if ((used | wanted) & ~oissued & mine)
1573 		goto out;   /* we need these caps */
1574 
1575 	if (oissued) {
1576 		/* we aren't the only cap.. just remove us */
1577 		__ceph_remove_cap(cap, true);
1578 		session->s_trim_caps--;
1579 	} else {
1580 		struct dentry *dentry;
1581 		/* try dropping referring dentries */
1582 		spin_unlock(&ci->i_ceph_lock);
1583 		dentry = d_find_any_alias(inode);
1584 		if (dentry && drop_negative_children(dentry)) {
1585 			int count;
1586 			dput(dentry);
1587 			d_prune_aliases(inode);
1588 			count = atomic_read(&inode->i_count);
1589 			if (count == 1)
1590 				session->s_trim_caps--;
1591 			dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1592 			     inode, cap, count);
1593 		} else {
1594 			dput(dentry);
1595 		}
1596 		return 0;
1597 	}
1598 
1599 out:
1600 	spin_unlock(&ci->i_ceph_lock);
1601 	return 0;
1602 }
1603 
1604 /*
1605  * Trim session cap count down to some max number.
1606  */
1607 int ceph_trim_caps(struct ceph_mds_client *mdsc,
1608 		   struct ceph_mds_session *session,
1609 		   int max_caps)
1610 {
1611 	int trim_caps = session->s_nr_caps - max_caps;
1612 
1613 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1614 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1615 	if (trim_caps > 0) {
1616 		session->s_trim_caps = trim_caps;
1617 		iterate_session_caps(session, trim_caps_cb, session);
1618 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1619 		     session->s_mds, session->s_nr_caps, max_caps,
1620 			trim_caps - session->s_trim_caps);
1621 		session->s_trim_caps = 0;
1622 	}
1623 
1624 	ceph_send_cap_releases(mdsc, session);
1625 	return 0;
1626 }
1627 
1628 static int check_caps_flush(struct ceph_mds_client *mdsc,
1629 			    u64 want_flush_tid)
1630 {
1631 	int ret = 1;
1632 
1633 	spin_lock(&mdsc->cap_dirty_lock);
1634 	if (!list_empty(&mdsc->cap_flush_list)) {
1635 		struct ceph_cap_flush *cf =
1636 			list_first_entry(&mdsc->cap_flush_list,
1637 					 struct ceph_cap_flush, g_list);
1638 		if (cf->tid <= want_flush_tid) {
1639 			dout("check_caps_flush still flushing tid "
1640 			     "%llu <= %llu\n", cf->tid, want_flush_tid);
1641 			ret = 0;
1642 		}
1643 	}
1644 	spin_unlock(&mdsc->cap_dirty_lock);
1645 	return ret;
1646 }
1647 
1648 /*
1649  * flush all dirty inode data to disk.
1650  *
1651  * returns true if we've flushed through want_flush_tid
1652  */
1653 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1654 			    u64 want_flush_tid)
1655 {
1656 	dout("check_caps_flush want %llu\n", want_flush_tid);
1657 
1658 	wait_event(mdsc->cap_flushing_wq,
1659 		   check_caps_flush(mdsc, want_flush_tid));
1660 
1661 	dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1662 }
1663 
1664 /*
1665  * called under s_mutex
1666  */
1667 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1668 			    struct ceph_mds_session *session)
1669 {
1670 	struct ceph_msg *msg = NULL;
1671 	struct ceph_mds_cap_release *head;
1672 	struct ceph_mds_cap_item *item;
1673 	struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc;
1674 	struct ceph_cap *cap;
1675 	LIST_HEAD(tmp_list);
1676 	int num_cap_releases;
1677 	__le32	barrier, *cap_barrier;
1678 
1679 	down_read(&osdc->lock);
1680 	barrier = cpu_to_le32(osdc->epoch_barrier);
1681 	up_read(&osdc->lock);
1682 
1683 	spin_lock(&session->s_cap_lock);
1684 again:
1685 	list_splice_init(&session->s_cap_releases, &tmp_list);
1686 	num_cap_releases = session->s_num_cap_releases;
1687 	session->s_num_cap_releases = 0;
1688 	spin_unlock(&session->s_cap_lock);
1689 
1690 	while (!list_empty(&tmp_list)) {
1691 		if (!msg) {
1692 			msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1693 					PAGE_SIZE, GFP_NOFS, false);
1694 			if (!msg)
1695 				goto out_err;
1696 			head = msg->front.iov_base;
1697 			head->num = cpu_to_le32(0);
1698 			msg->front.iov_len = sizeof(*head);
1699 
1700 			msg->hdr.version = cpu_to_le16(2);
1701 			msg->hdr.compat_version = cpu_to_le16(1);
1702 		}
1703 
1704 		cap = list_first_entry(&tmp_list, struct ceph_cap,
1705 					session_caps);
1706 		list_del(&cap->session_caps);
1707 		num_cap_releases--;
1708 
1709 		head = msg->front.iov_base;
1710 		le32_add_cpu(&head->num, 1);
1711 		item = msg->front.iov_base + msg->front.iov_len;
1712 		item->ino = cpu_to_le64(cap->cap_ino);
1713 		item->cap_id = cpu_to_le64(cap->cap_id);
1714 		item->migrate_seq = cpu_to_le32(cap->mseq);
1715 		item->seq = cpu_to_le32(cap->issue_seq);
1716 		msg->front.iov_len += sizeof(*item);
1717 
1718 		ceph_put_cap(mdsc, cap);
1719 
1720 		if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1721 			// Append cap_barrier field
1722 			cap_barrier = msg->front.iov_base + msg->front.iov_len;
1723 			*cap_barrier = barrier;
1724 			msg->front.iov_len += sizeof(*cap_barrier);
1725 
1726 			msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1727 			dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1728 			ceph_con_send(&session->s_con, msg);
1729 			msg = NULL;
1730 		}
1731 	}
1732 
1733 	BUG_ON(num_cap_releases != 0);
1734 
1735 	spin_lock(&session->s_cap_lock);
1736 	if (!list_empty(&session->s_cap_releases))
1737 		goto again;
1738 	spin_unlock(&session->s_cap_lock);
1739 
1740 	if (msg) {
1741 		// Append cap_barrier field
1742 		cap_barrier = msg->front.iov_base + msg->front.iov_len;
1743 		*cap_barrier = barrier;
1744 		msg->front.iov_len += sizeof(*cap_barrier);
1745 
1746 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1747 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1748 		ceph_con_send(&session->s_con, msg);
1749 	}
1750 	return;
1751 out_err:
1752 	pr_err("send_cap_releases mds%d, failed to allocate message\n",
1753 		session->s_mds);
1754 	spin_lock(&session->s_cap_lock);
1755 	list_splice(&tmp_list, &session->s_cap_releases);
1756 	session->s_num_cap_releases += num_cap_releases;
1757 	spin_unlock(&session->s_cap_lock);
1758 }
1759 
1760 /*
1761  * requests
1762  */
1763 
1764 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1765 				    struct inode *dir)
1766 {
1767 	struct ceph_inode_info *ci = ceph_inode(dir);
1768 	struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1769 	struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1770 	size_t size = sizeof(struct ceph_mds_reply_dir_entry);
1771 	int order, num_entries;
1772 
1773 	spin_lock(&ci->i_ceph_lock);
1774 	num_entries = ci->i_files + ci->i_subdirs;
1775 	spin_unlock(&ci->i_ceph_lock);
1776 	num_entries = max(num_entries, 1);
1777 	num_entries = min(num_entries, opt->max_readdir);
1778 
1779 	order = get_order(size * num_entries);
1780 	while (order >= 0) {
1781 		rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
1782 							     __GFP_NOWARN,
1783 							     order);
1784 		if (rinfo->dir_entries)
1785 			break;
1786 		order--;
1787 	}
1788 	if (!rinfo->dir_entries)
1789 		return -ENOMEM;
1790 
1791 	num_entries = (PAGE_SIZE << order) / size;
1792 	num_entries = min(num_entries, opt->max_readdir);
1793 
1794 	rinfo->dir_buf_size = PAGE_SIZE << order;
1795 	req->r_num_caps = num_entries + 1;
1796 	req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1797 	req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1798 	return 0;
1799 }
1800 
1801 /*
1802  * Create an mds request.
1803  */
1804 struct ceph_mds_request *
1805 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1806 {
1807 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1808 	struct timespec64 ts;
1809 
1810 	if (!req)
1811 		return ERR_PTR(-ENOMEM);
1812 
1813 	mutex_init(&req->r_fill_mutex);
1814 	req->r_mdsc = mdsc;
1815 	req->r_started = jiffies;
1816 	req->r_resend_mds = -1;
1817 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1818 	INIT_LIST_HEAD(&req->r_unsafe_target_item);
1819 	req->r_fmode = -1;
1820 	kref_init(&req->r_kref);
1821 	RB_CLEAR_NODE(&req->r_node);
1822 	INIT_LIST_HEAD(&req->r_wait);
1823 	init_completion(&req->r_completion);
1824 	init_completion(&req->r_safe_completion);
1825 	INIT_LIST_HEAD(&req->r_unsafe_item);
1826 
1827 	ktime_get_coarse_real_ts64(&ts);
1828 	req->r_stamp = timespec64_trunc(ts, mdsc->fsc->sb->s_time_gran);
1829 
1830 	req->r_op = op;
1831 	req->r_direct_mode = mode;
1832 	return req;
1833 }
1834 
1835 /*
1836  * return oldest (lowest) request, tid in request tree, 0 if none.
1837  *
1838  * called under mdsc->mutex.
1839  */
1840 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1841 {
1842 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1843 		return NULL;
1844 	return rb_entry(rb_first(&mdsc->request_tree),
1845 			struct ceph_mds_request, r_node);
1846 }
1847 
1848 static inline  u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1849 {
1850 	return mdsc->oldest_tid;
1851 }
1852 
1853 /*
1854  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1855  * on build_path_from_dentry in fs/cifs/dir.c.
1856  *
1857  * If @stop_on_nosnap, generate path relative to the first non-snapped
1858  * inode.
1859  *
1860  * Encode hidden .snap dirs as a double /, i.e.
1861  *   foo/.snap/bar -> foo//bar
1862  */
1863 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1864 			   int stop_on_nosnap)
1865 {
1866 	struct dentry *temp;
1867 	char *path;
1868 	int len, pos;
1869 	unsigned seq;
1870 
1871 	if (!dentry)
1872 		return ERR_PTR(-EINVAL);
1873 
1874 retry:
1875 	len = 0;
1876 	seq = read_seqbegin(&rename_lock);
1877 	rcu_read_lock();
1878 	for (temp = dentry; !IS_ROOT(temp);) {
1879 		struct inode *inode = d_inode(temp);
1880 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1881 			len++;  /* slash only */
1882 		else if (stop_on_nosnap && inode &&
1883 			 ceph_snap(inode) == CEPH_NOSNAP)
1884 			break;
1885 		else
1886 			len += 1 + temp->d_name.len;
1887 		temp = temp->d_parent;
1888 	}
1889 	rcu_read_unlock();
1890 	if (len)
1891 		len--;  /* no leading '/' */
1892 
1893 	path = kmalloc(len+1, GFP_NOFS);
1894 	if (!path)
1895 		return ERR_PTR(-ENOMEM);
1896 	pos = len;
1897 	path[pos] = 0;	/* trailing null */
1898 	rcu_read_lock();
1899 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1900 		struct inode *inode;
1901 
1902 		spin_lock(&temp->d_lock);
1903 		inode = d_inode(temp);
1904 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1905 			dout("build_path path+%d: %p SNAPDIR\n",
1906 			     pos, temp);
1907 		} else if (stop_on_nosnap && inode &&
1908 			   ceph_snap(inode) == CEPH_NOSNAP) {
1909 			spin_unlock(&temp->d_lock);
1910 			break;
1911 		} else {
1912 			pos -= temp->d_name.len;
1913 			if (pos < 0) {
1914 				spin_unlock(&temp->d_lock);
1915 				break;
1916 			}
1917 			strncpy(path + pos, temp->d_name.name,
1918 				temp->d_name.len);
1919 		}
1920 		spin_unlock(&temp->d_lock);
1921 		if (pos)
1922 			path[--pos] = '/';
1923 		temp = temp->d_parent;
1924 	}
1925 	rcu_read_unlock();
1926 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1927 		pr_err("build_path did not end path lookup where "
1928 		       "expected, namelen is %d, pos is %d\n", len, pos);
1929 		/* presumably this is only possible if racing with a
1930 		   rename of one of the parent directories (we can not
1931 		   lock the dentries above us to prevent this, but
1932 		   retrying should be harmless) */
1933 		kfree(path);
1934 		goto retry;
1935 	}
1936 
1937 	*base = ceph_ino(d_inode(temp));
1938 	*plen = len;
1939 	dout("build_path on %p %d built %llx '%.*s'\n",
1940 	     dentry, d_count(dentry), *base, len, path);
1941 	return path;
1942 }
1943 
1944 static int build_dentry_path(struct dentry *dentry, struct inode *dir,
1945 			     const char **ppath, int *ppathlen, u64 *pino,
1946 			     int *pfreepath)
1947 {
1948 	char *path;
1949 
1950 	rcu_read_lock();
1951 	if (!dir)
1952 		dir = d_inode_rcu(dentry->d_parent);
1953 	if (dir && ceph_snap(dir) == CEPH_NOSNAP) {
1954 		*pino = ceph_ino(dir);
1955 		rcu_read_unlock();
1956 		*ppath = dentry->d_name.name;
1957 		*ppathlen = dentry->d_name.len;
1958 		return 0;
1959 	}
1960 	rcu_read_unlock();
1961 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1962 	if (IS_ERR(path))
1963 		return PTR_ERR(path);
1964 	*ppath = path;
1965 	*pfreepath = 1;
1966 	return 0;
1967 }
1968 
1969 static int build_inode_path(struct inode *inode,
1970 			    const char **ppath, int *ppathlen, u64 *pino,
1971 			    int *pfreepath)
1972 {
1973 	struct dentry *dentry;
1974 	char *path;
1975 
1976 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1977 		*pino = ceph_ino(inode);
1978 		*ppathlen = 0;
1979 		return 0;
1980 	}
1981 	dentry = d_find_alias(inode);
1982 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1983 	dput(dentry);
1984 	if (IS_ERR(path))
1985 		return PTR_ERR(path);
1986 	*ppath = path;
1987 	*pfreepath = 1;
1988 	return 0;
1989 }
1990 
1991 /*
1992  * request arguments may be specified via an inode *, a dentry *, or
1993  * an explicit ino+path.
1994  */
1995 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1996 				  struct inode *rdiri, const char *rpath,
1997 				  u64 rino, const char **ppath, int *pathlen,
1998 				  u64 *ino, int *freepath)
1999 {
2000 	int r = 0;
2001 
2002 	if (rinode) {
2003 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
2004 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
2005 		     ceph_snap(rinode));
2006 	} else if (rdentry) {
2007 		r = build_dentry_path(rdentry, rdiri, ppath, pathlen, ino,
2008 					freepath);
2009 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
2010 		     *ppath);
2011 	} else if (rpath || rino) {
2012 		*ino = rino;
2013 		*ppath = rpath;
2014 		*pathlen = rpath ? strlen(rpath) : 0;
2015 		dout(" path %.*s\n", *pathlen, rpath);
2016 	}
2017 
2018 	return r;
2019 }
2020 
2021 /*
2022  * called under mdsc->mutex
2023  */
2024 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
2025 					       struct ceph_mds_request *req,
2026 					       int mds, bool drop_cap_releases)
2027 {
2028 	struct ceph_msg *msg;
2029 	struct ceph_mds_request_head *head;
2030 	const char *path1 = NULL;
2031 	const char *path2 = NULL;
2032 	u64 ino1 = 0, ino2 = 0;
2033 	int pathlen1 = 0, pathlen2 = 0;
2034 	int freepath1 = 0, freepath2 = 0;
2035 	int len;
2036 	u16 releases;
2037 	void *p, *end;
2038 	int ret;
2039 
2040 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
2041 			      req->r_parent, req->r_path1, req->r_ino1.ino,
2042 			      &path1, &pathlen1, &ino1, &freepath1);
2043 	if (ret < 0) {
2044 		msg = ERR_PTR(ret);
2045 		goto out;
2046 	}
2047 
2048 	ret = set_request_path_attr(NULL, req->r_old_dentry,
2049 			      req->r_old_dentry_dir,
2050 			      req->r_path2, req->r_ino2.ino,
2051 			      &path2, &pathlen2, &ino2, &freepath2);
2052 	if (ret < 0) {
2053 		msg = ERR_PTR(ret);
2054 		goto out_free1;
2055 	}
2056 
2057 	len = sizeof(*head) +
2058 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
2059 		sizeof(struct ceph_timespec);
2060 
2061 	/* calculate (max) length for cap releases */
2062 	len += sizeof(struct ceph_mds_request_release) *
2063 		(!!req->r_inode_drop + !!req->r_dentry_drop +
2064 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
2065 	if (req->r_dentry_drop)
2066 		len += req->r_dentry->d_name.len;
2067 	if (req->r_old_dentry_drop)
2068 		len += req->r_old_dentry->d_name.len;
2069 
2070 	msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false);
2071 	if (!msg) {
2072 		msg = ERR_PTR(-ENOMEM);
2073 		goto out_free2;
2074 	}
2075 
2076 	msg->hdr.version = cpu_to_le16(2);
2077 	msg->hdr.tid = cpu_to_le64(req->r_tid);
2078 
2079 	head = msg->front.iov_base;
2080 	p = msg->front.iov_base + sizeof(*head);
2081 	end = msg->front.iov_base + msg->front.iov_len;
2082 
2083 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
2084 	head->op = cpu_to_le32(req->r_op);
2085 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
2086 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
2087 	head->args = req->r_args;
2088 
2089 	ceph_encode_filepath(&p, end, ino1, path1);
2090 	ceph_encode_filepath(&p, end, ino2, path2);
2091 
2092 	/* make note of release offset, in case we need to replay */
2093 	req->r_request_release_offset = p - msg->front.iov_base;
2094 
2095 	/* cap releases */
2096 	releases = 0;
2097 	if (req->r_inode_drop)
2098 		releases += ceph_encode_inode_release(&p,
2099 		      req->r_inode ? req->r_inode : d_inode(req->r_dentry),
2100 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
2101 	if (req->r_dentry_drop)
2102 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
2103 				req->r_parent, mds, req->r_dentry_drop,
2104 				req->r_dentry_unless);
2105 	if (req->r_old_dentry_drop)
2106 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
2107 				req->r_old_dentry_dir, mds,
2108 				req->r_old_dentry_drop,
2109 				req->r_old_dentry_unless);
2110 	if (req->r_old_inode_drop)
2111 		releases += ceph_encode_inode_release(&p,
2112 		      d_inode(req->r_old_dentry),
2113 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
2114 
2115 	if (drop_cap_releases) {
2116 		releases = 0;
2117 		p = msg->front.iov_base + req->r_request_release_offset;
2118 	}
2119 
2120 	head->num_releases = cpu_to_le16(releases);
2121 
2122 	/* time stamp */
2123 	{
2124 		struct ceph_timespec ts;
2125 		ceph_encode_timespec64(&ts, &req->r_stamp);
2126 		ceph_encode_copy(&p, &ts, sizeof(ts));
2127 	}
2128 
2129 	BUG_ON(p > end);
2130 	msg->front.iov_len = p - msg->front.iov_base;
2131 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2132 
2133 	if (req->r_pagelist) {
2134 		struct ceph_pagelist *pagelist = req->r_pagelist;
2135 		ceph_msg_data_add_pagelist(msg, pagelist);
2136 		msg->hdr.data_len = cpu_to_le32(pagelist->length);
2137 	} else {
2138 		msg->hdr.data_len = 0;
2139 	}
2140 
2141 	msg->hdr.data_off = cpu_to_le16(0);
2142 
2143 out_free2:
2144 	if (freepath2)
2145 		kfree((char *)path2);
2146 out_free1:
2147 	if (freepath1)
2148 		kfree((char *)path1);
2149 out:
2150 	return msg;
2151 }
2152 
2153 /*
2154  * called under mdsc->mutex if error, under no mutex if
2155  * success.
2156  */
2157 static void complete_request(struct ceph_mds_client *mdsc,
2158 			     struct ceph_mds_request *req)
2159 {
2160 	if (req->r_callback)
2161 		req->r_callback(mdsc, req);
2162 	else
2163 		complete_all(&req->r_completion);
2164 }
2165 
2166 /*
2167  * called under mdsc->mutex
2168  */
2169 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2170 				  struct ceph_mds_request *req,
2171 				  int mds, bool drop_cap_releases)
2172 {
2173 	struct ceph_mds_request_head *rhead;
2174 	struct ceph_msg *msg;
2175 	int flags = 0;
2176 
2177 	req->r_attempts++;
2178 	if (req->r_inode) {
2179 		struct ceph_cap *cap =
2180 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2181 
2182 		if (cap)
2183 			req->r_sent_on_mseq = cap->mseq;
2184 		else
2185 			req->r_sent_on_mseq = -1;
2186 	}
2187 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2188 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2189 
2190 	if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2191 		void *p;
2192 		/*
2193 		 * Replay.  Do not regenerate message (and rebuild
2194 		 * paths, etc.); just use the original message.
2195 		 * Rebuilding paths will break for renames because
2196 		 * d_move mangles the src name.
2197 		 */
2198 		msg = req->r_request;
2199 		rhead = msg->front.iov_base;
2200 
2201 		flags = le32_to_cpu(rhead->flags);
2202 		flags |= CEPH_MDS_FLAG_REPLAY;
2203 		rhead->flags = cpu_to_le32(flags);
2204 
2205 		if (req->r_target_inode)
2206 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2207 
2208 		rhead->num_retry = req->r_attempts - 1;
2209 
2210 		/* remove cap/dentry releases from message */
2211 		rhead->num_releases = 0;
2212 
2213 		/* time stamp */
2214 		p = msg->front.iov_base + req->r_request_release_offset;
2215 		{
2216 			struct ceph_timespec ts;
2217 			ceph_encode_timespec64(&ts, &req->r_stamp);
2218 			ceph_encode_copy(&p, &ts, sizeof(ts));
2219 		}
2220 
2221 		msg->front.iov_len = p - msg->front.iov_base;
2222 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2223 		return 0;
2224 	}
2225 
2226 	if (req->r_request) {
2227 		ceph_msg_put(req->r_request);
2228 		req->r_request = NULL;
2229 	}
2230 	msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2231 	if (IS_ERR(msg)) {
2232 		req->r_err = PTR_ERR(msg);
2233 		return PTR_ERR(msg);
2234 	}
2235 	req->r_request = msg;
2236 
2237 	rhead = msg->front.iov_base;
2238 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2239 	if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2240 		flags |= CEPH_MDS_FLAG_REPLAY;
2241 	if (req->r_parent)
2242 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2243 	rhead->flags = cpu_to_le32(flags);
2244 	rhead->num_fwd = req->r_num_fwd;
2245 	rhead->num_retry = req->r_attempts - 1;
2246 	rhead->ino = 0;
2247 
2248 	dout(" r_parent = %p\n", req->r_parent);
2249 	return 0;
2250 }
2251 
2252 /*
2253  * send request, or put it on the appropriate wait list.
2254  */
2255 static void __do_request(struct ceph_mds_client *mdsc,
2256 			struct ceph_mds_request *req)
2257 {
2258 	struct ceph_mds_session *session = NULL;
2259 	int mds = -1;
2260 	int err = 0;
2261 
2262 	if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
2263 		if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags))
2264 			__unregister_request(mdsc, req);
2265 		return;
2266 	}
2267 
2268 	if (req->r_timeout &&
2269 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2270 		dout("do_request timed out\n");
2271 		err = -EIO;
2272 		goto finish;
2273 	}
2274 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2275 		dout("do_request forced umount\n");
2276 		err = -EIO;
2277 		goto finish;
2278 	}
2279 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) {
2280 		if (mdsc->mdsmap_err) {
2281 			err = mdsc->mdsmap_err;
2282 			dout("do_request mdsmap err %d\n", err);
2283 			goto finish;
2284 		}
2285 		if (mdsc->mdsmap->m_epoch == 0) {
2286 			dout("do_request no mdsmap, waiting for map\n");
2287 			list_add(&req->r_wait, &mdsc->waiting_for_map);
2288 			return;
2289 		}
2290 		if (!(mdsc->fsc->mount_options->flags &
2291 		      CEPH_MOUNT_OPT_MOUNTWAIT) &&
2292 		    !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) {
2293 			err = -ENOENT;
2294 			pr_info("probably no mds server is up\n");
2295 			goto finish;
2296 		}
2297 	}
2298 
2299 	put_request_session(req);
2300 
2301 	mds = __choose_mds(mdsc, req);
2302 	if (mds < 0 ||
2303 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2304 		dout("do_request no mds or not active, waiting for map\n");
2305 		list_add(&req->r_wait, &mdsc->waiting_for_map);
2306 		return;
2307 	}
2308 
2309 	/* get, open session */
2310 	session = __ceph_lookup_mds_session(mdsc, mds);
2311 	if (!session) {
2312 		session = register_session(mdsc, mds);
2313 		if (IS_ERR(session)) {
2314 			err = PTR_ERR(session);
2315 			goto finish;
2316 		}
2317 	}
2318 	req->r_session = get_session(session);
2319 
2320 	dout("do_request mds%d session %p state %s\n", mds, session,
2321 	     ceph_session_state_name(session->s_state));
2322 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2323 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
2324 		if (session->s_state == CEPH_MDS_SESSION_REJECTED) {
2325 			err = -EACCES;
2326 			goto out_session;
2327 		}
2328 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
2329 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
2330 			__open_session(mdsc, session);
2331 		list_add(&req->r_wait, &session->s_waiting);
2332 		goto out_session;
2333 	}
2334 
2335 	/* send request */
2336 	req->r_resend_mds = -1;   /* forget any previous mds hint */
2337 
2338 	if (req->r_request_started == 0)   /* note request start time */
2339 		req->r_request_started = jiffies;
2340 
2341 	err = __prepare_send_request(mdsc, req, mds, false);
2342 	if (!err) {
2343 		ceph_msg_get(req->r_request);
2344 		ceph_con_send(&session->s_con, req->r_request);
2345 	}
2346 
2347 out_session:
2348 	ceph_put_mds_session(session);
2349 finish:
2350 	if (err) {
2351 		dout("__do_request early error %d\n", err);
2352 		req->r_err = err;
2353 		complete_request(mdsc, req);
2354 		__unregister_request(mdsc, req);
2355 	}
2356 	return;
2357 }
2358 
2359 /*
2360  * called under mdsc->mutex
2361  */
2362 static void __wake_requests(struct ceph_mds_client *mdsc,
2363 			    struct list_head *head)
2364 {
2365 	struct ceph_mds_request *req;
2366 	LIST_HEAD(tmp_list);
2367 
2368 	list_splice_init(head, &tmp_list);
2369 
2370 	while (!list_empty(&tmp_list)) {
2371 		req = list_entry(tmp_list.next,
2372 				 struct ceph_mds_request, r_wait);
2373 		list_del_init(&req->r_wait);
2374 		dout(" wake request %p tid %llu\n", req, req->r_tid);
2375 		__do_request(mdsc, req);
2376 	}
2377 }
2378 
2379 /*
2380  * Wake up threads with requests pending for @mds, so that they can
2381  * resubmit their requests to a possibly different mds.
2382  */
2383 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2384 {
2385 	struct ceph_mds_request *req;
2386 	struct rb_node *p = rb_first(&mdsc->request_tree);
2387 
2388 	dout("kick_requests mds%d\n", mds);
2389 	while (p) {
2390 		req = rb_entry(p, struct ceph_mds_request, r_node);
2391 		p = rb_next(p);
2392 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2393 			continue;
2394 		if (req->r_attempts > 0)
2395 			continue; /* only new requests */
2396 		if (req->r_session &&
2397 		    req->r_session->s_mds == mds) {
2398 			dout(" kicking tid %llu\n", req->r_tid);
2399 			list_del_init(&req->r_wait);
2400 			__do_request(mdsc, req);
2401 		}
2402 	}
2403 }
2404 
2405 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2406 			      struct ceph_mds_request *req)
2407 {
2408 	dout("submit_request on %p\n", req);
2409 	mutex_lock(&mdsc->mutex);
2410 	__register_request(mdsc, req, NULL);
2411 	__do_request(mdsc, req);
2412 	mutex_unlock(&mdsc->mutex);
2413 }
2414 
2415 /*
2416  * Synchrously perform an mds request.  Take care of all of the
2417  * session setup, forwarding, retry details.
2418  */
2419 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2420 			 struct inode *dir,
2421 			 struct ceph_mds_request *req)
2422 {
2423 	int err;
2424 
2425 	dout("do_request on %p\n", req);
2426 
2427 	/* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */
2428 	if (req->r_inode)
2429 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2430 	if (req->r_parent)
2431 		ceph_get_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
2432 	if (req->r_old_dentry_dir)
2433 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2434 				  CEPH_CAP_PIN);
2435 
2436 	/* issue */
2437 	mutex_lock(&mdsc->mutex);
2438 	__register_request(mdsc, req, dir);
2439 	__do_request(mdsc, req);
2440 
2441 	if (req->r_err) {
2442 		err = req->r_err;
2443 		goto out;
2444 	}
2445 
2446 	/* wait */
2447 	mutex_unlock(&mdsc->mutex);
2448 	dout("do_request waiting\n");
2449 	if (!req->r_timeout && req->r_wait_for_completion) {
2450 		err = req->r_wait_for_completion(mdsc, req);
2451 	} else {
2452 		long timeleft = wait_for_completion_killable_timeout(
2453 					&req->r_completion,
2454 					ceph_timeout_jiffies(req->r_timeout));
2455 		if (timeleft > 0)
2456 			err = 0;
2457 		else if (!timeleft)
2458 			err = -EIO;  /* timed out */
2459 		else
2460 			err = timeleft;  /* killed */
2461 	}
2462 	dout("do_request waited, got %d\n", err);
2463 	mutex_lock(&mdsc->mutex);
2464 
2465 	/* only abort if we didn't race with a real reply */
2466 	if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
2467 		err = le32_to_cpu(req->r_reply_info.head->result);
2468 	} else if (err < 0) {
2469 		dout("aborted request %lld with %d\n", req->r_tid, err);
2470 
2471 		/*
2472 		 * ensure we aren't running concurrently with
2473 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2474 		 * rely on locks (dir mutex) held by our caller.
2475 		 */
2476 		mutex_lock(&req->r_fill_mutex);
2477 		req->r_err = err;
2478 		set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
2479 		mutex_unlock(&req->r_fill_mutex);
2480 
2481 		if (req->r_parent &&
2482 		    (req->r_op & CEPH_MDS_OP_WRITE))
2483 			ceph_invalidate_dir_request(req);
2484 	} else {
2485 		err = req->r_err;
2486 	}
2487 
2488 out:
2489 	mutex_unlock(&mdsc->mutex);
2490 	dout("do_request %p done, result %d\n", req, err);
2491 	return err;
2492 }
2493 
2494 /*
2495  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2496  * namespace request.
2497  */
2498 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2499 {
2500 	struct inode *dir = req->r_parent;
2501 	struct inode *old_dir = req->r_old_dentry_dir;
2502 
2503 	dout("invalidate_dir_request %p %p (complete, lease(s))\n", dir, old_dir);
2504 
2505 	ceph_dir_clear_complete(dir);
2506 	if (old_dir)
2507 		ceph_dir_clear_complete(old_dir);
2508 	if (req->r_dentry)
2509 		ceph_invalidate_dentry_lease(req->r_dentry);
2510 	if (req->r_old_dentry)
2511 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2512 }
2513 
2514 /*
2515  * Handle mds reply.
2516  *
2517  * We take the session mutex and parse and process the reply immediately.
2518  * This preserves the logical ordering of replies, capabilities, etc., sent
2519  * by the MDS as they are applied to our local cache.
2520  */
2521 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2522 {
2523 	struct ceph_mds_client *mdsc = session->s_mdsc;
2524 	struct ceph_mds_request *req;
2525 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2526 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2527 	struct ceph_snap_realm *realm;
2528 	u64 tid;
2529 	int err, result;
2530 	int mds = session->s_mds;
2531 
2532 	if (msg->front.iov_len < sizeof(*head)) {
2533 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2534 		ceph_msg_dump(msg);
2535 		return;
2536 	}
2537 
2538 	/* get request, session */
2539 	tid = le64_to_cpu(msg->hdr.tid);
2540 	mutex_lock(&mdsc->mutex);
2541 	req = lookup_get_request(mdsc, tid);
2542 	if (!req) {
2543 		dout("handle_reply on unknown tid %llu\n", tid);
2544 		mutex_unlock(&mdsc->mutex);
2545 		return;
2546 	}
2547 	dout("handle_reply %p\n", req);
2548 
2549 	/* correct session? */
2550 	if (req->r_session != session) {
2551 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2552 		       " not mds%d\n", tid, session->s_mds,
2553 		       req->r_session ? req->r_session->s_mds : -1);
2554 		mutex_unlock(&mdsc->mutex);
2555 		goto out;
2556 	}
2557 
2558 	/* dup? */
2559 	if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) ||
2560 	    (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) {
2561 		pr_warn("got a dup %s reply on %llu from mds%d\n",
2562 			   head->safe ? "safe" : "unsafe", tid, mds);
2563 		mutex_unlock(&mdsc->mutex);
2564 		goto out;
2565 	}
2566 	if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) {
2567 		pr_warn("got unsafe after safe on %llu from mds%d\n",
2568 			   tid, mds);
2569 		mutex_unlock(&mdsc->mutex);
2570 		goto out;
2571 	}
2572 
2573 	result = le32_to_cpu(head->result);
2574 
2575 	/*
2576 	 * Handle an ESTALE
2577 	 * if we're not talking to the authority, send to them
2578 	 * if the authority has changed while we weren't looking,
2579 	 * send to new authority
2580 	 * Otherwise we just have to return an ESTALE
2581 	 */
2582 	if (result == -ESTALE) {
2583 		dout("got ESTALE on request %llu\n", req->r_tid);
2584 		req->r_resend_mds = -1;
2585 		if (req->r_direct_mode != USE_AUTH_MDS) {
2586 			dout("not using auth, setting for that now\n");
2587 			req->r_direct_mode = USE_AUTH_MDS;
2588 			__do_request(mdsc, req);
2589 			mutex_unlock(&mdsc->mutex);
2590 			goto out;
2591 		} else  {
2592 			int mds = __choose_mds(mdsc, req);
2593 			if (mds >= 0 && mds != req->r_session->s_mds) {
2594 				dout("but auth changed, so resending\n");
2595 				__do_request(mdsc, req);
2596 				mutex_unlock(&mdsc->mutex);
2597 				goto out;
2598 			}
2599 		}
2600 		dout("have to return ESTALE on request %llu\n", req->r_tid);
2601 	}
2602 
2603 
2604 	if (head->safe) {
2605 		set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags);
2606 		__unregister_request(mdsc, req);
2607 
2608 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2609 			/*
2610 			 * We already handled the unsafe response, now do the
2611 			 * cleanup.  No need to examine the response; the MDS
2612 			 * doesn't include any result info in the safe
2613 			 * response.  And even if it did, there is nothing
2614 			 * useful we could do with a revised return value.
2615 			 */
2616 			dout("got safe reply %llu, mds%d\n", tid, mds);
2617 
2618 			/* last unsafe request during umount? */
2619 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2620 				complete_all(&mdsc->safe_umount_waiters);
2621 			mutex_unlock(&mdsc->mutex);
2622 			goto out;
2623 		}
2624 	} else {
2625 		set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags);
2626 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2627 		if (req->r_unsafe_dir) {
2628 			struct ceph_inode_info *ci =
2629 					ceph_inode(req->r_unsafe_dir);
2630 			spin_lock(&ci->i_unsafe_lock);
2631 			list_add_tail(&req->r_unsafe_dir_item,
2632 				      &ci->i_unsafe_dirops);
2633 			spin_unlock(&ci->i_unsafe_lock);
2634 		}
2635 	}
2636 
2637 	dout("handle_reply tid %lld result %d\n", tid, result);
2638 	rinfo = &req->r_reply_info;
2639 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2640 	mutex_unlock(&mdsc->mutex);
2641 
2642 	mutex_lock(&session->s_mutex);
2643 	if (err < 0) {
2644 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2645 		ceph_msg_dump(msg);
2646 		goto out_err;
2647 	}
2648 
2649 	/* snap trace */
2650 	realm = NULL;
2651 	if (rinfo->snapblob_len) {
2652 		down_write(&mdsc->snap_rwsem);
2653 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2654 				rinfo->snapblob + rinfo->snapblob_len,
2655 				le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2656 				&realm);
2657 		downgrade_write(&mdsc->snap_rwsem);
2658 	} else {
2659 		down_read(&mdsc->snap_rwsem);
2660 	}
2661 
2662 	/* insert trace into our cache */
2663 	mutex_lock(&req->r_fill_mutex);
2664 	current->journal_info = req;
2665 	err = ceph_fill_trace(mdsc->fsc->sb, req);
2666 	if (err == 0) {
2667 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2668 				    req->r_op == CEPH_MDS_OP_LSSNAP))
2669 			ceph_readdir_prepopulate(req, req->r_session);
2670 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2671 	}
2672 	current->journal_info = NULL;
2673 	mutex_unlock(&req->r_fill_mutex);
2674 
2675 	up_read(&mdsc->snap_rwsem);
2676 	if (realm)
2677 		ceph_put_snap_realm(mdsc, realm);
2678 
2679 	if (err == 0 && req->r_target_inode &&
2680 	    test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
2681 		struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2682 		spin_lock(&ci->i_unsafe_lock);
2683 		list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2684 		spin_unlock(&ci->i_unsafe_lock);
2685 	}
2686 out_err:
2687 	mutex_lock(&mdsc->mutex);
2688 	if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
2689 		if (err) {
2690 			req->r_err = err;
2691 		} else {
2692 			req->r_reply =  ceph_msg_get(msg);
2693 			set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags);
2694 		}
2695 	} else {
2696 		dout("reply arrived after request %lld was aborted\n", tid);
2697 	}
2698 	mutex_unlock(&mdsc->mutex);
2699 
2700 	mutex_unlock(&session->s_mutex);
2701 
2702 	/* kick calling process */
2703 	complete_request(mdsc, req);
2704 out:
2705 	ceph_mdsc_put_request(req);
2706 	return;
2707 }
2708 
2709 
2710 
2711 /*
2712  * handle mds notification that our request has been forwarded.
2713  */
2714 static void handle_forward(struct ceph_mds_client *mdsc,
2715 			   struct ceph_mds_session *session,
2716 			   struct ceph_msg *msg)
2717 {
2718 	struct ceph_mds_request *req;
2719 	u64 tid = le64_to_cpu(msg->hdr.tid);
2720 	u32 next_mds;
2721 	u32 fwd_seq;
2722 	int err = -EINVAL;
2723 	void *p = msg->front.iov_base;
2724 	void *end = p + msg->front.iov_len;
2725 
2726 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2727 	next_mds = ceph_decode_32(&p);
2728 	fwd_seq = ceph_decode_32(&p);
2729 
2730 	mutex_lock(&mdsc->mutex);
2731 	req = lookup_get_request(mdsc, tid);
2732 	if (!req) {
2733 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2734 		goto out;  /* dup reply? */
2735 	}
2736 
2737 	if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
2738 		dout("forward tid %llu aborted, unregistering\n", tid);
2739 		__unregister_request(mdsc, req);
2740 	} else if (fwd_seq <= req->r_num_fwd) {
2741 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2742 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2743 	} else {
2744 		/* resend. forward race not possible; mds would drop */
2745 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2746 		BUG_ON(req->r_err);
2747 		BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags));
2748 		req->r_attempts = 0;
2749 		req->r_num_fwd = fwd_seq;
2750 		req->r_resend_mds = next_mds;
2751 		put_request_session(req);
2752 		__do_request(mdsc, req);
2753 	}
2754 	ceph_mdsc_put_request(req);
2755 out:
2756 	mutex_unlock(&mdsc->mutex);
2757 	return;
2758 
2759 bad:
2760 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2761 }
2762 
2763 /*
2764  * handle a mds session control message
2765  */
2766 static void handle_session(struct ceph_mds_session *session,
2767 			   struct ceph_msg *msg)
2768 {
2769 	struct ceph_mds_client *mdsc = session->s_mdsc;
2770 	u32 op;
2771 	u64 seq;
2772 	int mds = session->s_mds;
2773 	struct ceph_mds_session_head *h = msg->front.iov_base;
2774 	int wake = 0;
2775 
2776 	/* decode */
2777 	if (msg->front.iov_len < sizeof(*h))
2778 		goto bad;
2779 	op = le32_to_cpu(h->op);
2780 	seq = le64_to_cpu(h->seq);
2781 
2782 	mutex_lock(&mdsc->mutex);
2783 	if (op == CEPH_SESSION_CLOSE) {
2784 		get_session(session);
2785 		__unregister_session(mdsc, session);
2786 	}
2787 	/* FIXME: this ttl calculation is generous */
2788 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2789 	mutex_unlock(&mdsc->mutex);
2790 
2791 	mutex_lock(&session->s_mutex);
2792 
2793 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2794 	     mds, ceph_session_op_name(op), session,
2795 	     ceph_session_state_name(session->s_state), seq);
2796 
2797 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2798 		session->s_state = CEPH_MDS_SESSION_OPEN;
2799 		pr_info("mds%d came back\n", session->s_mds);
2800 	}
2801 
2802 	switch (op) {
2803 	case CEPH_SESSION_OPEN:
2804 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2805 			pr_info("mds%d reconnect success\n", session->s_mds);
2806 		session->s_state = CEPH_MDS_SESSION_OPEN;
2807 		renewed_caps(mdsc, session, 0);
2808 		wake = 1;
2809 		if (mdsc->stopping)
2810 			__close_session(mdsc, session);
2811 		break;
2812 
2813 	case CEPH_SESSION_RENEWCAPS:
2814 		if (session->s_renew_seq == seq)
2815 			renewed_caps(mdsc, session, 1);
2816 		break;
2817 
2818 	case CEPH_SESSION_CLOSE:
2819 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2820 			pr_info("mds%d reconnect denied\n", session->s_mds);
2821 		cleanup_session_requests(mdsc, session);
2822 		remove_session_caps(session);
2823 		wake = 2; /* for good measure */
2824 		wake_up_all(&mdsc->session_close_wq);
2825 		break;
2826 
2827 	case CEPH_SESSION_STALE:
2828 		pr_info("mds%d caps went stale, renewing\n",
2829 			session->s_mds);
2830 		spin_lock(&session->s_gen_ttl_lock);
2831 		session->s_cap_gen++;
2832 		session->s_cap_ttl = jiffies - 1;
2833 		spin_unlock(&session->s_gen_ttl_lock);
2834 		send_renew_caps(mdsc, session);
2835 		break;
2836 
2837 	case CEPH_SESSION_RECALL_STATE:
2838 		ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2839 		break;
2840 
2841 	case CEPH_SESSION_FLUSHMSG:
2842 		send_flushmsg_ack(mdsc, session, seq);
2843 		break;
2844 
2845 	case CEPH_SESSION_FORCE_RO:
2846 		dout("force_session_readonly %p\n", session);
2847 		spin_lock(&session->s_cap_lock);
2848 		session->s_readonly = true;
2849 		spin_unlock(&session->s_cap_lock);
2850 		wake_up_session_caps(session, 0);
2851 		break;
2852 
2853 	case CEPH_SESSION_REJECT:
2854 		WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING);
2855 		pr_info("mds%d rejected session\n", session->s_mds);
2856 		session->s_state = CEPH_MDS_SESSION_REJECTED;
2857 		cleanup_session_requests(mdsc, session);
2858 		remove_session_caps(session);
2859 		wake = 2; /* for good measure */
2860 		break;
2861 
2862 	default:
2863 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2864 		WARN_ON(1);
2865 	}
2866 
2867 	mutex_unlock(&session->s_mutex);
2868 	if (wake) {
2869 		mutex_lock(&mdsc->mutex);
2870 		__wake_requests(mdsc, &session->s_waiting);
2871 		if (wake == 2)
2872 			kick_requests(mdsc, mds);
2873 		mutex_unlock(&mdsc->mutex);
2874 	}
2875 	if (op == CEPH_SESSION_CLOSE)
2876 		ceph_put_mds_session(session);
2877 	return;
2878 
2879 bad:
2880 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2881 	       (int)msg->front.iov_len);
2882 	ceph_msg_dump(msg);
2883 	return;
2884 }
2885 
2886 
2887 /*
2888  * called under session->mutex.
2889  */
2890 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2891 				   struct ceph_mds_session *session)
2892 {
2893 	struct ceph_mds_request *req, *nreq;
2894 	struct rb_node *p;
2895 	int err;
2896 
2897 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2898 
2899 	mutex_lock(&mdsc->mutex);
2900 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2901 		err = __prepare_send_request(mdsc, req, session->s_mds, true);
2902 		if (!err) {
2903 			ceph_msg_get(req->r_request);
2904 			ceph_con_send(&session->s_con, req->r_request);
2905 		}
2906 	}
2907 
2908 	/*
2909 	 * also re-send old requests when MDS enters reconnect stage. So that MDS
2910 	 * can process completed request in clientreplay stage.
2911 	 */
2912 	p = rb_first(&mdsc->request_tree);
2913 	while (p) {
2914 		req = rb_entry(p, struct ceph_mds_request, r_node);
2915 		p = rb_next(p);
2916 		if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
2917 			continue;
2918 		if (req->r_attempts == 0)
2919 			continue; /* only old requests */
2920 		if (req->r_session &&
2921 		    req->r_session->s_mds == session->s_mds) {
2922 			err = __prepare_send_request(mdsc, req,
2923 						     session->s_mds, true);
2924 			if (!err) {
2925 				ceph_msg_get(req->r_request);
2926 				ceph_con_send(&session->s_con, req->r_request);
2927 			}
2928 		}
2929 	}
2930 	mutex_unlock(&mdsc->mutex);
2931 }
2932 
2933 /*
2934  * Encode information about a cap for a reconnect with the MDS.
2935  */
2936 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2937 			  void *arg)
2938 {
2939 	union {
2940 		struct ceph_mds_cap_reconnect v2;
2941 		struct ceph_mds_cap_reconnect_v1 v1;
2942 	} rec;
2943 	struct ceph_inode_info *ci = cap->ci;
2944 	struct ceph_reconnect_state *recon_state = arg;
2945 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2946 	char *path;
2947 	int pathlen, err;
2948 	u64 pathbase;
2949 	u64 snap_follows;
2950 	struct dentry *dentry;
2951 
2952 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2953 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2954 	     ceph_cap_string(cap->issued));
2955 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2956 	if (err)
2957 		return err;
2958 
2959 	dentry = d_find_alias(inode);
2960 	if (dentry) {
2961 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2962 		if (IS_ERR(path)) {
2963 			err = PTR_ERR(path);
2964 			goto out_dput;
2965 		}
2966 	} else {
2967 		path = NULL;
2968 		pathlen = 0;
2969 		pathbase = 0;
2970 	}
2971 
2972 	spin_lock(&ci->i_ceph_lock);
2973 	cap->seq = 0;        /* reset cap seq */
2974 	cap->issue_seq = 0;  /* and issue_seq */
2975 	cap->mseq = 0;       /* and migrate_seq */
2976 	cap->cap_gen = cap->session->s_cap_gen;
2977 
2978 	if (recon_state->msg_version >= 2) {
2979 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2980 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2981 		rec.v2.issued = cpu_to_le32(cap->issued);
2982 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2983 		rec.v2.pathbase = cpu_to_le64(pathbase);
2984 		rec.v2.flock_len = (__force __le32)
2985 			((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1);
2986 	} else {
2987 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2988 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2989 		rec.v1.issued = cpu_to_le32(cap->issued);
2990 		rec.v1.size = cpu_to_le64(inode->i_size);
2991 		ceph_encode_timespec64(&rec.v1.mtime, &inode->i_mtime);
2992 		ceph_encode_timespec64(&rec.v1.atime, &inode->i_atime);
2993 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2994 		rec.v1.pathbase = cpu_to_le64(pathbase);
2995 	}
2996 
2997 	if (list_empty(&ci->i_cap_snaps)) {
2998 		snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0;
2999 	} else {
3000 		struct ceph_cap_snap *capsnap =
3001 			list_first_entry(&ci->i_cap_snaps,
3002 					 struct ceph_cap_snap, ci_item);
3003 		snap_follows = capsnap->follows;
3004 	}
3005 	spin_unlock(&ci->i_ceph_lock);
3006 
3007 	if (recon_state->msg_version >= 2) {
3008 		int num_fcntl_locks, num_flock_locks;
3009 		struct ceph_filelock *flocks = NULL;
3010 		size_t struct_len, total_len = 0;
3011 		u8 struct_v = 0;
3012 
3013 encode_again:
3014 		if (rec.v2.flock_len) {
3015 			ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
3016 		} else {
3017 			num_fcntl_locks = 0;
3018 			num_flock_locks = 0;
3019 		}
3020 		if (num_fcntl_locks + num_flock_locks > 0) {
3021 			flocks = kmalloc_array(num_fcntl_locks + num_flock_locks,
3022 					       sizeof(struct ceph_filelock),
3023 					       GFP_NOFS);
3024 			if (!flocks) {
3025 				err = -ENOMEM;
3026 				goto out_free;
3027 			}
3028 			err = ceph_encode_locks_to_buffer(inode, flocks,
3029 							  num_fcntl_locks,
3030 							  num_flock_locks);
3031 			if (err) {
3032 				kfree(flocks);
3033 				flocks = NULL;
3034 				if (err == -ENOSPC)
3035 					goto encode_again;
3036 				goto out_free;
3037 			}
3038 		} else {
3039 			kfree(flocks);
3040 			flocks = NULL;
3041 		}
3042 
3043 		if (recon_state->msg_version >= 3) {
3044 			/* version, compat_version and struct_len */
3045 			total_len = 2 * sizeof(u8) + sizeof(u32);
3046 			struct_v = 2;
3047 		}
3048 		/*
3049 		 * number of encoded locks is stable, so copy to pagelist
3050 		 */
3051 		struct_len = 2 * sizeof(u32) +
3052 			    (num_fcntl_locks + num_flock_locks) *
3053 			    sizeof(struct ceph_filelock);
3054 		rec.v2.flock_len = cpu_to_le32(struct_len);
3055 
3056 		struct_len += sizeof(rec.v2);
3057 		struct_len += sizeof(u32) + pathlen;
3058 
3059 		if (struct_v >= 2)
3060 			struct_len += sizeof(u64); /* snap_follows */
3061 
3062 		total_len += struct_len;
3063 		err = ceph_pagelist_reserve(pagelist, total_len);
3064 
3065 		if (!err) {
3066 			if (recon_state->msg_version >= 3) {
3067 				ceph_pagelist_encode_8(pagelist, struct_v);
3068 				ceph_pagelist_encode_8(pagelist, 1);
3069 				ceph_pagelist_encode_32(pagelist, struct_len);
3070 			}
3071 			ceph_pagelist_encode_string(pagelist, path, pathlen);
3072 			ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2));
3073 			ceph_locks_to_pagelist(flocks, pagelist,
3074 					       num_fcntl_locks,
3075 					       num_flock_locks);
3076 			if (struct_v >= 2)
3077 				ceph_pagelist_encode_64(pagelist, snap_follows);
3078 		}
3079 		kfree(flocks);
3080 	} else {
3081 		size_t size = sizeof(u32) + pathlen + sizeof(rec.v1);
3082 		err = ceph_pagelist_reserve(pagelist, size);
3083 		if (!err) {
3084 			ceph_pagelist_encode_string(pagelist, path, pathlen);
3085 			ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1));
3086 		}
3087 	}
3088 
3089 	recon_state->nr_caps++;
3090 out_free:
3091 	kfree(path);
3092 out_dput:
3093 	dput(dentry);
3094 	return err;
3095 }
3096 
3097 
3098 /*
3099  * If an MDS fails and recovers, clients need to reconnect in order to
3100  * reestablish shared state.  This includes all caps issued through
3101  * this session _and_ the snap_realm hierarchy.  Because it's not
3102  * clear which snap realms the mds cares about, we send everything we
3103  * know about.. that ensures we'll then get any new info the
3104  * recovering MDS might have.
3105  *
3106  * This is a relatively heavyweight operation, but it's rare.
3107  *
3108  * called with mdsc->mutex held.
3109  */
3110 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
3111 			       struct ceph_mds_session *session)
3112 {
3113 	struct ceph_msg *reply;
3114 	struct rb_node *p;
3115 	int mds = session->s_mds;
3116 	int err = -ENOMEM;
3117 	int s_nr_caps;
3118 	struct ceph_pagelist *pagelist;
3119 	struct ceph_reconnect_state recon_state;
3120 	LIST_HEAD(dispose);
3121 
3122 	pr_info("mds%d reconnect start\n", mds);
3123 
3124 	pagelist = ceph_pagelist_alloc(GFP_NOFS);
3125 	if (!pagelist)
3126 		goto fail_nopagelist;
3127 
3128 	reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false);
3129 	if (!reply)
3130 		goto fail_nomsg;
3131 
3132 	mutex_lock(&session->s_mutex);
3133 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
3134 	session->s_seq = 0;
3135 
3136 	dout("session %p state %s\n", session,
3137 	     ceph_session_state_name(session->s_state));
3138 
3139 	spin_lock(&session->s_gen_ttl_lock);
3140 	session->s_cap_gen++;
3141 	spin_unlock(&session->s_gen_ttl_lock);
3142 
3143 	spin_lock(&session->s_cap_lock);
3144 	/* don't know if session is readonly */
3145 	session->s_readonly = 0;
3146 	/*
3147 	 * notify __ceph_remove_cap() that we are composing cap reconnect.
3148 	 * If a cap get released before being added to the cap reconnect,
3149 	 * __ceph_remove_cap() should skip queuing cap release.
3150 	 */
3151 	session->s_cap_reconnect = 1;
3152 	/* drop old cap expires; we're about to reestablish that state */
3153 	detach_cap_releases(session, &dispose);
3154 	spin_unlock(&session->s_cap_lock);
3155 	dispose_cap_releases(mdsc, &dispose);
3156 
3157 	/* trim unused caps to reduce MDS's cache rejoin time */
3158 	if (mdsc->fsc->sb->s_root)
3159 		shrink_dcache_parent(mdsc->fsc->sb->s_root);
3160 
3161 	ceph_con_close(&session->s_con);
3162 	ceph_con_open(&session->s_con,
3163 		      CEPH_ENTITY_TYPE_MDS, mds,
3164 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
3165 
3166 	/* replay unsafe requests */
3167 	replay_unsafe_requests(mdsc, session);
3168 
3169 	down_read(&mdsc->snap_rwsem);
3170 
3171 	/* traverse this session's caps */
3172 	s_nr_caps = session->s_nr_caps;
3173 	err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
3174 	if (err)
3175 		goto fail;
3176 
3177 	recon_state.nr_caps = 0;
3178 	recon_state.pagelist = pagelist;
3179 	if (session->s_con.peer_features & CEPH_FEATURE_MDSENC)
3180 		recon_state.msg_version = 3;
3181 	else
3182 		recon_state.msg_version = 2;
3183 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
3184 	if (err < 0)
3185 		goto fail;
3186 
3187 	spin_lock(&session->s_cap_lock);
3188 	session->s_cap_reconnect = 0;
3189 	spin_unlock(&session->s_cap_lock);
3190 
3191 	/*
3192 	 * snaprealms.  we provide mds with the ino, seq (version), and
3193 	 * parent for all of our realms.  If the mds has any newer info,
3194 	 * it will tell us.
3195 	 */
3196 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
3197 		struct ceph_snap_realm *realm =
3198 			rb_entry(p, struct ceph_snap_realm, node);
3199 		struct ceph_mds_snaprealm_reconnect sr_rec;
3200 
3201 		dout(" adding snap realm %llx seq %lld parent %llx\n",
3202 		     realm->ino, realm->seq, realm->parent_ino);
3203 		sr_rec.ino = cpu_to_le64(realm->ino);
3204 		sr_rec.seq = cpu_to_le64(realm->seq);
3205 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
3206 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
3207 		if (err)
3208 			goto fail;
3209 	}
3210 
3211 	reply->hdr.version = cpu_to_le16(recon_state.msg_version);
3212 
3213 	/* raced with cap release? */
3214 	if (s_nr_caps != recon_state.nr_caps) {
3215 		struct page *page = list_first_entry(&pagelist->head,
3216 						     struct page, lru);
3217 		__le32 *addr = kmap_atomic(page);
3218 		*addr = cpu_to_le32(recon_state.nr_caps);
3219 		kunmap_atomic(addr);
3220 	}
3221 
3222 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
3223 	ceph_msg_data_add_pagelist(reply, pagelist);
3224 
3225 	ceph_early_kick_flushing_caps(mdsc, session);
3226 
3227 	ceph_con_send(&session->s_con, reply);
3228 
3229 	mutex_unlock(&session->s_mutex);
3230 
3231 	mutex_lock(&mdsc->mutex);
3232 	__wake_requests(mdsc, &session->s_waiting);
3233 	mutex_unlock(&mdsc->mutex);
3234 
3235 	up_read(&mdsc->snap_rwsem);
3236 	ceph_pagelist_release(pagelist);
3237 	return;
3238 
3239 fail:
3240 	ceph_msg_put(reply);
3241 	up_read(&mdsc->snap_rwsem);
3242 	mutex_unlock(&session->s_mutex);
3243 fail_nomsg:
3244 	ceph_pagelist_release(pagelist);
3245 fail_nopagelist:
3246 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3247 	return;
3248 }
3249 
3250 
3251 /*
3252  * compare old and new mdsmaps, kicking requests
3253  * and closing out old connections as necessary
3254  *
3255  * called under mdsc->mutex.
3256  */
3257 static void check_new_map(struct ceph_mds_client *mdsc,
3258 			  struct ceph_mdsmap *newmap,
3259 			  struct ceph_mdsmap *oldmap)
3260 {
3261 	int i;
3262 	int oldstate, newstate;
3263 	struct ceph_mds_session *s;
3264 
3265 	dout("check_new_map new %u old %u\n",
3266 	     newmap->m_epoch, oldmap->m_epoch);
3267 
3268 	for (i = 0; i < oldmap->m_num_mds && i < mdsc->max_sessions; i++) {
3269 		if (!mdsc->sessions[i])
3270 			continue;
3271 		s = mdsc->sessions[i];
3272 		oldstate = ceph_mdsmap_get_state(oldmap, i);
3273 		newstate = ceph_mdsmap_get_state(newmap, i);
3274 
3275 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3276 		     i, ceph_mds_state_name(oldstate),
3277 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3278 		     ceph_mds_state_name(newstate),
3279 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3280 		     ceph_session_state_name(s->s_state));
3281 
3282 		if (i >= newmap->m_num_mds ||
3283 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
3284 			   ceph_mdsmap_get_addr(newmap, i),
3285 			   sizeof(struct ceph_entity_addr))) {
3286 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3287 				/* the session never opened, just close it
3288 				 * out now */
3289 				get_session(s);
3290 				__unregister_session(mdsc, s);
3291 				__wake_requests(mdsc, &s->s_waiting);
3292 				ceph_put_mds_session(s);
3293 			} else if (i >= newmap->m_num_mds) {
3294 				/* force close session for stopped mds */
3295 				get_session(s);
3296 				__unregister_session(mdsc, s);
3297 				__wake_requests(mdsc, &s->s_waiting);
3298 				kick_requests(mdsc, i);
3299 				mutex_unlock(&mdsc->mutex);
3300 
3301 				mutex_lock(&s->s_mutex);
3302 				cleanup_session_requests(mdsc, s);
3303 				remove_session_caps(s);
3304 				mutex_unlock(&s->s_mutex);
3305 
3306 				ceph_put_mds_session(s);
3307 
3308 				mutex_lock(&mdsc->mutex);
3309 			} else {
3310 				/* just close it */
3311 				mutex_unlock(&mdsc->mutex);
3312 				mutex_lock(&s->s_mutex);
3313 				mutex_lock(&mdsc->mutex);
3314 				ceph_con_close(&s->s_con);
3315 				mutex_unlock(&s->s_mutex);
3316 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
3317 			}
3318 		} else if (oldstate == newstate) {
3319 			continue;  /* nothing new with this mds */
3320 		}
3321 
3322 		/*
3323 		 * send reconnect?
3324 		 */
3325 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3326 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
3327 			mutex_unlock(&mdsc->mutex);
3328 			send_mds_reconnect(mdsc, s);
3329 			mutex_lock(&mdsc->mutex);
3330 		}
3331 
3332 		/*
3333 		 * kick request on any mds that has gone active.
3334 		 */
3335 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3336 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
3337 			if (oldstate != CEPH_MDS_STATE_CREATING &&
3338 			    oldstate != CEPH_MDS_STATE_STARTING)
3339 				pr_info("mds%d recovery completed\n", s->s_mds);
3340 			kick_requests(mdsc, i);
3341 			ceph_kick_flushing_caps(mdsc, s);
3342 			wake_up_session_caps(s, 1);
3343 		}
3344 	}
3345 
3346 	for (i = 0; i < newmap->m_num_mds && i < mdsc->max_sessions; i++) {
3347 		s = mdsc->sessions[i];
3348 		if (!s)
3349 			continue;
3350 		if (!ceph_mdsmap_is_laggy(newmap, i))
3351 			continue;
3352 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3353 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
3354 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
3355 			dout(" connecting to export targets of laggy mds%d\n",
3356 			     i);
3357 			__open_export_target_sessions(mdsc, s);
3358 		}
3359 	}
3360 }
3361 
3362 
3363 
3364 /*
3365  * leases
3366  */
3367 
3368 /*
3369  * caller must hold session s_mutex, dentry->d_lock
3370  */
3371 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3372 {
3373 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3374 
3375 	ceph_put_mds_session(di->lease_session);
3376 	di->lease_session = NULL;
3377 }
3378 
3379 static void handle_lease(struct ceph_mds_client *mdsc,
3380 			 struct ceph_mds_session *session,
3381 			 struct ceph_msg *msg)
3382 {
3383 	struct super_block *sb = mdsc->fsc->sb;
3384 	struct inode *inode;
3385 	struct dentry *parent, *dentry;
3386 	struct ceph_dentry_info *di;
3387 	int mds = session->s_mds;
3388 	struct ceph_mds_lease *h = msg->front.iov_base;
3389 	u32 seq;
3390 	struct ceph_vino vino;
3391 	struct qstr dname;
3392 	int release = 0;
3393 
3394 	dout("handle_lease from mds%d\n", mds);
3395 
3396 	/* decode */
3397 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3398 		goto bad;
3399 	vino.ino = le64_to_cpu(h->ino);
3400 	vino.snap = CEPH_NOSNAP;
3401 	seq = le32_to_cpu(h->seq);
3402 	dname.len = get_unaligned_le32(h + 1);
3403 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len)
3404 		goto bad;
3405 	dname.name = (void *)(h + 1) + sizeof(u32);
3406 
3407 	/* lookup inode */
3408 	inode = ceph_find_inode(sb, vino);
3409 	dout("handle_lease %s, ino %llx %p %.*s\n",
3410 	     ceph_lease_op_name(h->action), vino.ino, inode,
3411 	     dname.len, dname.name);
3412 
3413 	mutex_lock(&session->s_mutex);
3414 	session->s_seq++;
3415 
3416 	if (!inode) {
3417 		dout("handle_lease no inode %llx\n", vino.ino);
3418 		goto release;
3419 	}
3420 
3421 	/* dentry */
3422 	parent = d_find_alias(inode);
3423 	if (!parent) {
3424 		dout("no parent dentry on inode %p\n", inode);
3425 		WARN_ON(1);
3426 		goto release;  /* hrm... */
3427 	}
3428 	dname.hash = full_name_hash(parent, dname.name, dname.len);
3429 	dentry = d_lookup(parent, &dname);
3430 	dput(parent);
3431 	if (!dentry)
3432 		goto release;
3433 
3434 	spin_lock(&dentry->d_lock);
3435 	di = ceph_dentry(dentry);
3436 	switch (h->action) {
3437 	case CEPH_MDS_LEASE_REVOKE:
3438 		if (di->lease_session == session) {
3439 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3440 				h->seq = cpu_to_le32(di->lease_seq);
3441 			__ceph_mdsc_drop_dentry_lease(dentry);
3442 		}
3443 		release = 1;
3444 		break;
3445 
3446 	case CEPH_MDS_LEASE_RENEW:
3447 		if (di->lease_session == session &&
3448 		    di->lease_gen == session->s_cap_gen &&
3449 		    di->lease_renew_from &&
3450 		    di->lease_renew_after == 0) {
3451 			unsigned long duration =
3452 				msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3453 
3454 			di->lease_seq = seq;
3455 			di->time = di->lease_renew_from + duration;
3456 			di->lease_renew_after = di->lease_renew_from +
3457 				(duration >> 1);
3458 			di->lease_renew_from = 0;
3459 		}
3460 		break;
3461 	}
3462 	spin_unlock(&dentry->d_lock);
3463 	dput(dentry);
3464 
3465 	if (!release)
3466 		goto out;
3467 
3468 release:
3469 	/* let's just reuse the same message */
3470 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3471 	ceph_msg_get(msg);
3472 	ceph_con_send(&session->s_con, msg);
3473 
3474 out:
3475 	iput(inode);
3476 	mutex_unlock(&session->s_mutex);
3477 	return;
3478 
3479 bad:
3480 	pr_err("corrupt lease message\n");
3481 	ceph_msg_dump(msg);
3482 }
3483 
3484 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3485 			      struct inode *inode,
3486 			      struct dentry *dentry, char action,
3487 			      u32 seq)
3488 {
3489 	struct ceph_msg *msg;
3490 	struct ceph_mds_lease *lease;
3491 	int len = sizeof(*lease) + sizeof(u32);
3492 	int dnamelen = 0;
3493 
3494 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3495 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
3496 	dnamelen = dentry->d_name.len;
3497 	len += dnamelen;
3498 
3499 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3500 	if (!msg)
3501 		return;
3502 	lease = msg->front.iov_base;
3503 	lease->action = action;
3504 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3505 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3506 	lease->seq = cpu_to_le32(seq);
3507 	put_unaligned_le32(dnamelen, lease + 1);
3508 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3509 
3510 	/*
3511 	 * if this is a preemptive lease RELEASE, no need to
3512 	 * flush request stream, since the actual request will
3513 	 * soon follow.
3514 	 */
3515 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3516 
3517 	ceph_con_send(&session->s_con, msg);
3518 }
3519 
3520 /*
3521  * lock unlock sessions, to wait ongoing session activities
3522  */
3523 static void lock_unlock_sessions(struct ceph_mds_client *mdsc)
3524 {
3525 	int i;
3526 
3527 	mutex_lock(&mdsc->mutex);
3528 	for (i = 0; i < mdsc->max_sessions; i++) {
3529 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3530 		if (!s)
3531 			continue;
3532 		mutex_unlock(&mdsc->mutex);
3533 		mutex_lock(&s->s_mutex);
3534 		mutex_unlock(&s->s_mutex);
3535 		ceph_put_mds_session(s);
3536 		mutex_lock(&mdsc->mutex);
3537 	}
3538 	mutex_unlock(&mdsc->mutex);
3539 }
3540 
3541 
3542 
3543 /*
3544  * delayed work -- periodically trim expired leases, renew caps with mds
3545  */
3546 static void schedule_delayed(struct ceph_mds_client *mdsc)
3547 {
3548 	int delay = 5;
3549 	unsigned hz = round_jiffies_relative(HZ * delay);
3550 	schedule_delayed_work(&mdsc->delayed_work, hz);
3551 }
3552 
3553 static void delayed_work(struct work_struct *work)
3554 {
3555 	int i;
3556 	struct ceph_mds_client *mdsc =
3557 		container_of(work, struct ceph_mds_client, delayed_work.work);
3558 	int renew_interval;
3559 	int renew_caps;
3560 
3561 	dout("mdsc delayed_work\n");
3562 	ceph_check_delayed_caps(mdsc);
3563 
3564 	mutex_lock(&mdsc->mutex);
3565 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3566 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3567 				   mdsc->last_renew_caps);
3568 	if (renew_caps)
3569 		mdsc->last_renew_caps = jiffies;
3570 
3571 	for (i = 0; i < mdsc->max_sessions; i++) {
3572 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3573 		if (!s)
3574 			continue;
3575 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3576 			dout("resending session close request for mds%d\n",
3577 			     s->s_mds);
3578 			request_close_session(mdsc, s);
3579 			ceph_put_mds_session(s);
3580 			continue;
3581 		}
3582 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3583 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3584 				s->s_state = CEPH_MDS_SESSION_HUNG;
3585 				pr_info("mds%d hung\n", s->s_mds);
3586 			}
3587 		}
3588 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3589 			/* this mds is failed or recovering, just wait */
3590 			ceph_put_mds_session(s);
3591 			continue;
3592 		}
3593 		mutex_unlock(&mdsc->mutex);
3594 
3595 		mutex_lock(&s->s_mutex);
3596 		if (renew_caps)
3597 			send_renew_caps(mdsc, s);
3598 		else
3599 			ceph_con_keepalive(&s->s_con);
3600 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3601 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3602 			ceph_send_cap_releases(mdsc, s);
3603 		mutex_unlock(&s->s_mutex);
3604 		ceph_put_mds_session(s);
3605 
3606 		mutex_lock(&mdsc->mutex);
3607 	}
3608 	mutex_unlock(&mdsc->mutex);
3609 
3610 	schedule_delayed(mdsc);
3611 }
3612 
3613 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3614 
3615 {
3616 	struct ceph_mds_client *mdsc;
3617 
3618 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3619 	if (!mdsc)
3620 		return -ENOMEM;
3621 	mdsc->fsc = fsc;
3622 	mutex_init(&mdsc->mutex);
3623 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3624 	if (!mdsc->mdsmap) {
3625 		kfree(mdsc);
3626 		return -ENOMEM;
3627 	}
3628 
3629 	fsc->mdsc = mdsc;
3630 	init_completion(&mdsc->safe_umount_waiters);
3631 	init_waitqueue_head(&mdsc->session_close_wq);
3632 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3633 	mdsc->sessions = NULL;
3634 	atomic_set(&mdsc->num_sessions, 0);
3635 	mdsc->max_sessions = 0;
3636 	mdsc->stopping = 0;
3637 	atomic64_set(&mdsc->quotarealms_count, 0);
3638 	mdsc->last_snap_seq = 0;
3639 	init_rwsem(&mdsc->snap_rwsem);
3640 	mdsc->snap_realms = RB_ROOT;
3641 	INIT_LIST_HEAD(&mdsc->snap_empty);
3642 	spin_lock_init(&mdsc->snap_empty_lock);
3643 	mdsc->last_tid = 0;
3644 	mdsc->oldest_tid = 0;
3645 	mdsc->request_tree = RB_ROOT;
3646 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3647 	mdsc->last_renew_caps = jiffies;
3648 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3649 	spin_lock_init(&mdsc->cap_delay_lock);
3650 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3651 	spin_lock_init(&mdsc->snap_flush_lock);
3652 	mdsc->last_cap_flush_tid = 1;
3653 	INIT_LIST_HEAD(&mdsc->cap_flush_list);
3654 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3655 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3656 	mdsc->num_cap_flushing = 0;
3657 	spin_lock_init(&mdsc->cap_dirty_lock);
3658 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3659 	spin_lock_init(&mdsc->dentry_lru_lock);
3660 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3661 
3662 	ceph_caps_init(mdsc);
3663 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3664 
3665 	init_rwsem(&mdsc->pool_perm_rwsem);
3666 	mdsc->pool_perm_tree = RB_ROOT;
3667 
3668 	strscpy(mdsc->nodename, utsname()->nodename,
3669 		sizeof(mdsc->nodename));
3670 	return 0;
3671 }
3672 
3673 /*
3674  * Wait for safe replies on open mds requests.  If we time out, drop
3675  * all requests from the tree to avoid dangling dentry refs.
3676  */
3677 static void wait_requests(struct ceph_mds_client *mdsc)
3678 {
3679 	struct ceph_options *opts = mdsc->fsc->client->options;
3680 	struct ceph_mds_request *req;
3681 
3682 	mutex_lock(&mdsc->mutex);
3683 	if (__get_oldest_req(mdsc)) {
3684 		mutex_unlock(&mdsc->mutex);
3685 
3686 		dout("wait_requests waiting for requests\n");
3687 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3688 				    ceph_timeout_jiffies(opts->mount_timeout));
3689 
3690 		/* tear down remaining requests */
3691 		mutex_lock(&mdsc->mutex);
3692 		while ((req = __get_oldest_req(mdsc))) {
3693 			dout("wait_requests timed out on tid %llu\n",
3694 			     req->r_tid);
3695 			__unregister_request(mdsc, req);
3696 		}
3697 	}
3698 	mutex_unlock(&mdsc->mutex);
3699 	dout("wait_requests done\n");
3700 }
3701 
3702 /*
3703  * called before mount is ro, and before dentries are torn down.
3704  * (hmm, does this still race with new lookups?)
3705  */
3706 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3707 {
3708 	dout("pre_umount\n");
3709 	mdsc->stopping = 1;
3710 
3711 	lock_unlock_sessions(mdsc);
3712 	ceph_flush_dirty_caps(mdsc);
3713 	wait_requests(mdsc);
3714 
3715 	/*
3716 	 * wait for reply handlers to drop their request refs and
3717 	 * their inode/dcache refs
3718 	 */
3719 	ceph_msgr_flush();
3720 }
3721 
3722 /*
3723  * wait for all write mds requests to flush.
3724  */
3725 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3726 {
3727 	struct ceph_mds_request *req = NULL, *nextreq;
3728 	struct rb_node *n;
3729 
3730 	mutex_lock(&mdsc->mutex);
3731 	dout("wait_unsafe_requests want %lld\n", want_tid);
3732 restart:
3733 	req = __get_oldest_req(mdsc);
3734 	while (req && req->r_tid <= want_tid) {
3735 		/* find next request */
3736 		n = rb_next(&req->r_node);
3737 		if (n)
3738 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3739 		else
3740 			nextreq = NULL;
3741 		if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3742 		    (req->r_op & CEPH_MDS_OP_WRITE)) {
3743 			/* write op */
3744 			ceph_mdsc_get_request(req);
3745 			if (nextreq)
3746 				ceph_mdsc_get_request(nextreq);
3747 			mutex_unlock(&mdsc->mutex);
3748 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3749 			     req->r_tid, want_tid);
3750 			wait_for_completion(&req->r_safe_completion);
3751 			mutex_lock(&mdsc->mutex);
3752 			ceph_mdsc_put_request(req);
3753 			if (!nextreq)
3754 				break;  /* next dne before, so we're done! */
3755 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3756 				/* next request was removed from tree */
3757 				ceph_mdsc_put_request(nextreq);
3758 				goto restart;
3759 			}
3760 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3761 		}
3762 		req = nextreq;
3763 	}
3764 	mutex_unlock(&mdsc->mutex);
3765 	dout("wait_unsafe_requests done\n");
3766 }
3767 
3768 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3769 {
3770 	u64 want_tid, want_flush;
3771 
3772 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3773 		return;
3774 
3775 	dout("sync\n");
3776 	mutex_lock(&mdsc->mutex);
3777 	want_tid = mdsc->last_tid;
3778 	mutex_unlock(&mdsc->mutex);
3779 
3780 	ceph_flush_dirty_caps(mdsc);
3781 	spin_lock(&mdsc->cap_dirty_lock);
3782 	want_flush = mdsc->last_cap_flush_tid;
3783 	if (!list_empty(&mdsc->cap_flush_list)) {
3784 		struct ceph_cap_flush *cf =
3785 			list_last_entry(&mdsc->cap_flush_list,
3786 					struct ceph_cap_flush, g_list);
3787 		cf->wake = true;
3788 	}
3789 	spin_unlock(&mdsc->cap_dirty_lock);
3790 
3791 	dout("sync want tid %lld flush_seq %lld\n",
3792 	     want_tid, want_flush);
3793 
3794 	wait_unsafe_requests(mdsc, want_tid);
3795 	wait_caps_flush(mdsc, want_flush);
3796 }
3797 
3798 /*
3799  * true if all sessions are closed, or we force unmount
3800  */
3801 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped)
3802 {
3803 	if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3804 		return true;
3805 	return atomic_read(&mdsc->num_sessions) <= skipped;
3806 }
3807 
3808 /*
3809  * called after sb is ro.
3810  */
3811 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3812 {
3813 	struct ceph_options *opts = mdsc->fsc->client->options;
3814 	struct ceph_mds_session *session;
3815 	int i;
3816 	int skipped = 0;
3817 
3818 	dout("close_sessions\n");
3819 
3820 	/* close sessions */
3821 	mutex_lock(&mdsc->mutex);
3822 	for (i = 0; i < mdsc->max_sessions; i++) {
3823 		session = __ceph_lookup_mds_session(mdsc, i);
3824 		if (!session)
3825 			continue;
3826 		mutex_unlock(&mdsc->mutex);
3827 		mutex_lock(&session->s_mutex);
3828 		if (__close_session(mdsc, session) <= 0)
3829 			skipped++;
3830 		mutex_unlock(&session->s_mutex);
3831 		ceph_put_mds_session(session);
3832 		mutex_lock(&mdsc->mutex);
3833 	}
3834 	mutex_unlock(&mdsc->mutex);
3835 
3836 	dout("waiting for sessions to close\n");
3837 	wait_event_timeout(mdsc->session_close_wq,
3838 			   done_closing_sessions(mdsc, skipped),
3839 			   ceph_timeout_jiffies(opts->mount_timeout));
3840 
3841 	/* tear down remaining sessions */
3842 	mutex_lock(&mdsc->mutex);
3843 	for (i = 0; i < mdsc->max_sessions; i++) {
3844 		if (mdsc->sessions[i]) {
3845 			session = get_session(mdsc->sessions[i]);
3846 			__unregister_session(mdsc, session);
3847 			mutex_unlock(&mdsc->mutex);
3848 			mutex_lock(&session->s_mutex);
3849 			remove_session_caps(session);
3850 			mutex_unlock(&session->s_mutex);
3851 			ceph_put_mds_session(session);
3852 			mutex_lock(&mdsc->mutex);
3853 		}
3854 	}
3855 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3856 	mutex_unlock(&mdsc->mutex);
3857 
3858 	ceph_cleanup_empty_realms(mdsc);
3859 
3860 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3861 
3862 	dout("stopped\n");
3863 }
3864 
3865 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3866 {
3867 	struct ceph_mds_session *session;
3868 	int mds;
3869 
3870 	dout("force umount\n");
3871 
3872 	mutex_lock(&mdsc->mutex);
3873 	for (mds = 0; mds < mdsc->max_sessions; mds++) {
3874 		session = __ceph_lookup_mds_session(mdsc, mds);
3875 		if (!session)
3876 			continue;
3877 		mutex_unlock(&mdsc->mutex);
3878 		mutex_lock(&session->s_mutex);
3879 		__close_session(mdsc, session);
3880 		if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3881 			cleanup_session_requests(mdsc, session);
3882 			remove_session_caps(session);
3883 		}
3884 		mutex_unlock(&session->s_mutex);
3885 		ceph_put_mds_session(session);
3886 		mutex_lock(&mdsc->mutex);
3887 		kick_requests(mdsc, mds);
3888 	}
3889 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3890 	mutex_unlock(&mdsc->mutex);
3891 }
3892 
3893 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3894 {
3895 	dout("stop\n");
3896 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3897 	if (mdsc->mdsmap)
3898 		ceph_mdsmap_destroy(mdsc->mdsmap);
3899 	kfree(mdsc->sessions);
3900 	ceph_caps_finalize(mdsc);
3901 	ceph_pool_perm_destroy(mdsc);
3902 }
3903 
3904 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3905 {
3906 	struct ceph_mds_client *mdsc = fsc->mdsc;
3907 	dout("mdsc_destroy %p\n", mdsc);
3908 
3909 	if (!mdsc)
3910 		return;
3911 
3912 	/* flush out any connection work with references to us */
3913 	ceph_msgr_flush();
3914 
3915 	ceph_mdsc_stop(mdsc);
3916 
3917 	fsc->mdsc = NULL;
3918 	kfree(mdsc);
3919 	dout("mdsc_destroy %p done\n", mdsc);
3920 }
3921 
3922 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3923 {
3924 	struct ceph_fs_client *fsc = mdsc->fsc;
3925 	const char *mds_namespace = fsc->mount_options->mds_namespace;
3926 	void *p = msg->front.iov_base;
3927 	void *end = p + msg->front.iov_len;
3928 	u32 epoch;
3929 	u32 map_len;
3930 	u32 num_fs;
3931 	u32 mount_fscid = (u32)-1;
3932 	u8 struct_v, struct_cv;
3933 	int err = -EINVAL;
3934 
3935 	ceph_decode_need(&p, end, sizeof(u32), bad);
3936 	epoch = ceph_decode_32(&p);
3937 
3938 	dout("handle_fsmap epoch %u\n", epoch);
3939 
3940 	ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3941 	struct_v = ceph_decode_8(&p);
3942 	struct_cv = ceph_decode_8(&p);
3943 	map_len = ceph_decode_32(&p);
3944 
3945 	ceph_decode_need(&p, end, sizeof(u32) * 3, bad);
3946 	p += sizeof(u32) * 2; /* skip epoch and legacy_client_fscid */
3947 
3948 	num_fs = ceph_decode_32(&p);
3949 	while (num_fs-- > 0) {
3950 		void *info_p, *info_end;
3951 		u32 info_len;
3952 		u8 info_v, info_cv;
3953 		u32 fscid, namelen;
3954 
3955 		ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3956 		info_v = ceph_decode_8(&p);
3957 		info_cv = ceph_decode_8(&p);
3958 		info_len = ceph_decode_32(&p);
3959 		ceph_decode_need(&p, end, info_len, bad);
3960 		info_p = p;
3961 		info_end = p + info_len;
3962 		p = info_end;
3963 
3964 		ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad);
3965 		fscid = ceph_decode_32(&info_p);
3966 		namelen = ceph_decode_32(&info_p);
3967 		ceph_decode_need(&info_p, info_end, namelen, bad);
3968 
3969 		if (mds_namespace &&
3970 		    strlen(mds_namespace) == namelen &&
3971 		    !strncmp(mds_namespace, (char *)info_p, namelen)) {
3972 			mount_fscid = fscid;
3973 			break;
3974 		}
3975 	}
3976 
3977 	ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch);
3978 	if (mount_fscid != (u32)-1) {
3979 		fsc->client->monc.fs_cluster_id = mount_fscid;
3980 		ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP,
3981 				   0, true);
3982 		ceph_monc_renew_subs(&fsc->client->monc);
3983 	} else {
3984 		err = -ENOENT;
3985 		goto err_out;
3986 	}
3987 	return;
3988 
3989 bad:
3990 	pr_err("error decoding fsmap\n");
3991 err_out:
3992 	mutex_lock(&mdsc->mutex);
3993 	mdsc->mdsmap_err = err;
3994 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3995 	mutex_unlock(&mdsc->mutex);
3996 }
3997 
3998 /*
3999  * handle mds map update.
4000  */
4001 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
4002 {
4003 	u32 epoch;
4004 	u32 maplen;
4005 	void *p = msg->front.iov_base;
4006 	void *end = p + msg->front.iov_len;
4007 	struct ceph_mdsmap *newmap, *oldmap;
4008 	struct ceph_fsid fsid;
4009 	int err = -EINVAL;
4010 
4011 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
4012 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
4013 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
4014 		return;
4015 	epoch = ceph_decode_32(&p);
4016 	maplen = ceph_decode_32(&p);
4017 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
4018 
4019 	/* do we need it? */
4020 	mutex_lock(&mdsc->mutex);
4021 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
4022 		dout("handle_map epoch %u <= our %u\n",
4023 		     epoch, mdsc->mdsmap->m_epoch);
4024 		mutex_unlock(&mdsc->mutex);
4025 		return;
4026 	}
4027 
4028 	newmap = ceph_mdsmap_decode(&p, end);
4029 	if (IS_ERR(newmap)) {
4030 		err = PTR_ERR(newmap);
4031 		goto bad_unlock;
4032 	}
4033 
4034 	/* swap into place */
4035 	if (mdsc->mdsmap) {
4036 		oldmap = mdsc->mdsmap;
4037 		mdsc->mdsmap = newmap;
4038 		check_new_map(mdsc, newmap, oldmap);
4039 		ceph_mdsmap_destroy(oldmap);
4040 	} else {
4041 		mdsc->mdsmap = newmap;  /* first mds map */
4042 	}
4043 	mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size,
4044 					MAX_LFS_FILESIZE);
4045 
4046 	__wake_requests(mdsc, &mdsc->waiting_for_map);
4047 	ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
4048 			  mdsc->mdsmap->m_epoch);
4049 
4050 	mutex_unlock(&mdsc->mutex);
4051 	schedule_delayed(mdsc);
4052 	return;
4053 
4054 bad_unlock:
4055 	mutex_unlock(&mdsc->mutex);
4056 bad:
4057 	pr_err("error decoding mdsmap %d\n", err);
4058 	return;
4059 }
4060 
4061 static struct ceph_connection *con_get(struct ceph_connection *con)
4062 {
4063 	struct ceph_mds_session *s = con->private;
4064 
4065 	if (get_session(s)) {
4066 		dout("mdsc con_get %p ok (%d)\n", s, refcount_read(&s->s_ref));
4067 		return con;
4068 	}
4069 	dout("mdsc con_get %p FAIL\n", s);
4070 	return NULL;
4071 }
4072 
4073 static void con_put(struct ceph_connection *con)
4074 {
4075 	struct ceph_mds_session *s = con->private;
4076 
4077 	dout("mdsc con_put %p (%d)\n", s, refcount_read(&s->s_ref) - 1);
4078 	ceph_put_mds_session(s);
4079 }
4080 
4081 /*
4082  * if the client is unresponsive for long enough, the mds will kill
4083  * the session entirely.
4084  */
4085 static void peer_reset(struct ceph_connection *con)
4086 {
4087 	struct ceph_mds_session *s = con->private;
4088 	struct ceph_mds_client *mdsc = s->s_mdsc;
4089 
4090 	pr_warn("mds%d closed our session\n", s->s_mds);
4091 	send_mds_reconnect(mdsc, s);
4092 }
4093 
4094 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
4095 {
4096 	struct ceph_mds_session *s = con->private;
4097 	struct ceph_mds_client *mdsc = s->s_mdsc;
4098 	int type = le16_to_cpu(msg->hdr.type);
4099 
4100 	mutex_lock(&mdsc->mutex);
4101 	if (__verify_registered_session(mdsc, s) < 0) {
4102 		mutex_unlock(&mdsc->mutex);
4103 		goto out;
4104 	}
4105 	mutex_unlock(&mdsc->mutex);
4106 
4107 	switch (type) {
4108 	case CEPH_MSG_MDS_MAP:
4109 		ceph_mdsc_handle_mdsmap(mdsc, msg);
4110 		break;
4111 	case CEPH_MSG_FS_MAP_USER:
4112 		ceph_mdsc_handle_fsmap(mdsc, msg);
4113 		break;
4114 	case CEPH_MSG_CLIENT_SESSION:
4115 		handle_session(s, msg);
4116 		break;
4117 	case CEPH_MSG_CLIENT_REPLY:
4118 		handle_reply(s, msg);
4119 		break;
4120 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
4121 		handle_forward(mdsc, s, msg);
4122 		break;
4123 	case CEPH_MSG_CLIENT_CAPS:
4124 		ceph_handle_caps(s, msg);
4125 		break;
4126 	case CEPH_MSG_CLIENT_SNAP:
4127 		ceph_handle_snap(mdsc, s, msg);
4128 		break;
4129 	case CEPH_MSG_CLIENT_LEASE:
4130 		handle_lease(mdsc, s, msg);
4131 		break;
4132 	case CEPH_MSG_CLIENT_QUOTA:
4133 		ceph_handle_quota(mdsc, s, msg);
4134 		break;
4135 
4136 	default:
4137 		pr_err("received unknown message type %d %s\n", type,
4138 		       ceph_msg_type_name(type));
4139 	}
4140 out:
4141 	ceph_msg_put(msg);
4142 }
4143 
4144 /*
4145  * authentication
4146  */
4147 
4148 /*
4149  * Note: returned pointer is the address of a structure that's
4150  * managed separately.  Caller must *not* attempt to free it.
4151  */
4152 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
4153 					int *proto, int force_new)
4154 {
4155 	struct ceph_mds_session *s = con->private;
4156 	struct ceph_mds_client *mdsc = s->s_mdsc;
4157 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4158 	struct ceph_auth_handshake *auth = &s->s_auth;
4159 
4160 	if (force_new && auth->authorizer) {
4161 		ceph_auth_destroy_authorizer(auth->authorizer);
4162 		auth->authorizer = NULL;
4163 	}
4164 	if (!auth->authorizer) {
4165 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
4166 						      auth);
4167 		if (ret)
4168 			return ERR_PTR(ret);
4169 	} else {
4170 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
4171 						      auth);
4172 		if (ret)
4173 			return ERR_PTR(ret);
4174 	}
4175 	*proto = ac->protocol;
4176 
4177 	return auth;
4178 }
4179 
4180 static int add_authorizer_challenge(struct ceph_connection *con,
4181 				    void *challenge_buf, int challenge_buf_len)
4182 {
4183 	struct ceph_mds_session *s = con->private;
4184 	struct ceph_mds_client *mdsc = s->s_mdsc;
4185 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4186 
4187 	return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer,
4188 					    challenge_buf, challenge_buf_len);
4189 }
4190 
4191 static int verify_authorizer_reply(struct ceph_connection *con)
4192 {
4193 	struct ceph_mds_session *s = con->private;
4194 	struct ceph_mds_client *mdsc = s->s_mdsc;
4195 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4196 
4197 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer);
4198 }
4199 
4200 static int invalidate_authorizer(struct ceph_connection *con)
4201 {
4202 	struct ceph_mds_session *s = con->private;
4203 	struct ceph_mds_client *mdsc = s->s_mdsc;
4204 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
4205 
4206 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
4207 
4208 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
4209 }
4210 
4211 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
4212 				struct ceph_msg_header *hdr, int *skip)
4213 {
4214 	struct ceph_msg *msg;
4215 	int type = (int) le16_to_cpu(hdr->type);
4216 	int front_len = (int) le32_to_cpu(hdr->front_len);
4217 
4218 	if (con->in_msg)
4219 		return con->in_msg;
4220 
4221 	*skip = 0;
4222 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
4223 	if (!msg) {
4224 		pr_err("unable to allocate msg type %d len %d\n",
4225 		       type, front_len);
4226 		return NULL;
4227 	}
4228 
4229 	return msg;
4230 }
4231 
4232 static int mds_sign_message(struct ceph_msg *msg)
4233 {
4234        struct ceph_mds_session *s = msg->con->private;
4235        struct ceph_auth_handshake *auth = &s->s_auth;
4236 
4237        return ceph_auth_sign_message(auth, msg);
4238 }
4239 
4240 static int mds_check_message_signature(struct ceph_msg *msg)
4241 {
4242        struct ceph_mds_session *s = msg->con->private;
4243        struct ceph_auth_handshake *auth = &s->s_auth;
4244 
4245        return ceph_auth_check_message_signature(auth, msg);
4246 }
4247 
4248 static const struct ceph_connection_operations mds_con_ops = {
4249 	.get = con_get,
4250 	.put = con_put,
4251 	.dispatch = dispatch,
4252 	.get_authorizer = get_authorizer,
4253 	.add_authorizer_challenge = add_authorizer_challenge,
4254 	.verify_authorizer_reply = verify_authorizer_reply,
4255 	.invalidate_authorizer = invalidate_authorizer,
4256 	.peer_reset = peer_reset,
4257 	.alloc_msg = mds_alloc_msg,
4258 	.sign_message = mds_sign_message,
4259 	.check_message_signature = mds_check_message_signature,
4260 };
4261 
4262 /* eof */
4263