xref: /openbmc/linux/fs/ceph/mds_client.c (revision 5104d265)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9 
10 #include "super.h"
11 #include "mds_client.h"
12 
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
19 
20 /*
21  * A cluster of MDS (metadata server) daemons is responsible for
22  * managing the file system namespace (the directory hierarchy and
23  * inodes) and for coordinating shared access to storage.  Metadata is
24  * partitioning hierarchically across a number of servers, and that
25  * partition varies over time as the cluster adjusts the distribution
26  * in order to balance load.
27  *
28  * The MDS client is primarily responsible to managing synchronous
29  * metadata requests for operations like open, unlink, and so forth.
30  * If there is a MDS failure, we find out about it when we (possibly
31  * request and) receive a new MDS map, and can resubmit affected
32  * requests.
33  *
34  * For the most part, though, we take advantage of a lossless
35  * communications channel to the MDS, and do not need to worry about
36  * timing out or resubmitting requests.
37  *
38  * We maintain a stateful "session" with each MDS we interact with.
39  * Within each session, we sent periodic heartbeat messages to ensure
40  * any capabilities or leases we have been issues remain valid.  If
41  * the session times out and goes stale, our leases and capabilities
42  * are no longer valid.
43  */
44 
45 struct ceph_reconnect_state {
46 	struct ceph_pagelist *pagelist;
47 	bool flock;
48 };
49 
50 static void __wake_requests(struct ceph_mds_client *mdsc,
51 			    struct list_head *head);
52 
53 static const struct ceph_connection_operations mds_con_ops;
54 
55 
56 /*
57  * mds reply parsing
58  */
59 
60 /*
61  * parse individual inode info
62  */
63 static int parse_reply_info_in(void **p, void *end,
64 			       struct ceph_mds_reply_info_in *info,
65 			       int features)
66 {
67 	int err = -EIO;
68 
69 	info->in = *p;
70 	*p += sizeof(struct ceph_mds_reply_inode) +
71 		sizeof(*info->in->fragtree.splits) *
72 		le32_to_cpu(info->in->fragtree.nsplits);
73 
74 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
75 	ceph_decode_need(p, end, info->symlink_len, bad);
76 	info->symlink = *p;
77 	*p += info->symlink_len;
78 
79 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
80 		ceph_decode_copy_safe(p, end, &info->dir_layout,
81 				      sizeof(info->dir_layout), bad);
82 	else
83 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
84 
85 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
86 	ceph_decode_need(p, end, info->xattr_len, bad);
87 	info->xattr_data = *p;
88 	*p += info->xattr_len;
89 	return 0;
90 bad:
91 	return err;
92 }
93 
94 /*
95  * parse a normal reply, which may contain a (dir+)dentry and/or a
96  * target inode.
97  */
98 static int parse_reply_info_trace(void **p, void *end,
99 				  struct ceph_mds_reply_info_parsed *info,
100 				  int features)
101 {
102 	int err;
103 
104 	if (info->head->is_dentry) {
105 		err = parse_reply_info_in(p, end, &info->diri, features);
106 		if (err < 0)
107 			goto out_bad;
108 
109 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
110 			goto bad;
111 		info->dirfrag = *p;
112 		*p += sizeof(*info->dirfrag) +
113 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
114 		if (unlikely(*p > end))
115 			goto bad;
116 
117 		ceph_decode_32_safe(p, end, info->dname_len, bad);
118 		ceph_decode_need(p, end, info->dname_len, bad);
119 		info->dname = *p;
120 		*p += info->dname_len;
121 		info->dlease = *p;
122 		*p += sizeof(*info->dlease);
123 	}
124 
125 	if (info->head->is_target) {
126 		err = parse_reply_info_in(p, end, &info->targeti, features);
127 		if (err < 0)
128 			goto out_bad;
129 	}
130 
131 	if (unlikely(*p != end))
132 		goto bad;
133 	return 0;
134 
135 bad:
136 	err = -EIO;
137 out_bad:
138 	pr_err("problem parsing mds trace %d\n", err);
139 	return err;
140 }
141 
142 /*
143  * parse readdir results
144  */
145 static int parse_reply_info_dir(void **p, void *end,
146 				struct ceph_mds_reply_info_parsed *info,
147 				int features)
148 {
149 	u32 num, i = 0;
150 	int err;
151 
152 	info->dir_dir = *p;
153 	if (*p + sizeof(*info->dir_dir) > end)
154 		goto bad;
155 	*p += sizeof(*info->dir_dir) +
156 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
157 	if (*p > end)
158 		goto bad;
159 
160 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
161 	num = ceph_decode_32(p);
162 	info->dir_end = ceph_decode_8(p);
163 	info->dir_complete = ceph_decode_8(p);
164 	if (num == 0)
165 		goto done;
166 
167 	/* alloc large array */
168 	info->dir_nr = num;
169 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
170 			       sizeof(*info->dir_dname) +
171 			       sizeof(*info->dir_dname_len) +
172 			       sizeof(*info->dir_dlease),
173 			       GFP_NOFS);
174 	if (info->dir_in == NULL) {
175 		err = -ENOMEM;
176 		goto out_bad;
177 	}
178 	info->dir_dname = (void *)(info->dir_in + num);
179 	info->dir_dname_len = (void *)(info->dir_dname + num);
180 	info->dir_dlease = (void *)(info->dir_dname_len + num);
181 
182 	while (num) {
183 		/* dentry */
184 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
185 		info->dir_dname_len[i] = ceph_decode_32(p);
186 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
187 		info->dir_dname[i] = *p;
188 		*p += info->dir_dname_len[i];
189 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
190 		     info->dir_dname[i]);
191 		info->dir_dlease[i] = *p;
192 		*p += sizeof(struct ceph_mds_reply_lease);
193 
194 		/* inode */
195 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
196 		if (err < 0)
197 			goto out_bad;
198 		i++;
199 		num--;
200 	}
201 
202 done:
203 	if (*p != end)
204 		goto bad;
205 	return 0;
206 
207 bad:
208 	err = -EIO;
209 out_bad:
210 	pr_err("problem parsing dir contents %d\n", err);
211 	return err;
212 }
213 
214 /*
215  * parse fcntl F_GETLK results
216  */
217 static int parse_reply_info_filelock(void **p, void *end,
218 				     struct ceph_mds_reply_info_parsed *info,
219 				     int features)
220 {
221 	if (*p + sizeof(*info->filelock_reply) > end)
222 		goto bad;
223 
224 	info->filelock_reply = *p;
225 	*p += sizeof(*info->filelock_reply);
226 
227 	if (unlikely(*p != end))
228 		goto bad;
229 	return 0;
230 
231 bad:
232 	return -EIO;
233 }
234 
235 /*
236  * parse create results
237  */
238 static int parse_reply_info_create(void **p, void *end,
239 				  struct ceph_mds_reply_info_parsed *info,
240 				  int features)
241 {
242 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
243 		if (*p == end) {
244 			info->has_create_ino = false;
245 		} else {
246 			info->has_create_ino = true;
247 			info->ino = ceph_decode_64(p);
248 		}
249 	}
250 
251 	if (unlikely(*p != end))
252 		goto bad;
253 	return 0;
254 
255 bad:
256 	return -EIO;
257 }
258 
259 /*
260  * parse extra results
261  */
262 static int parse_reply_info_extra(void **p, void *end,
263 				  struct ceph_mds_reply_info_parsed *info,
264 				  int features)
265 {
266 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
267 		return parse_reply_info_filelock(p, end, info, features);
268 	else if (info->head->op == CEPH_MDS_OP_READDIR ||
269 		 info->head->op == CEPH_MDS_OP_LSSNAP)
270 		return parse_reply_info_dir(p, end, info, features);
271 	else if (info->head->op == CEPH_MDS_OP_CREATE)
272 		return parse_reply_info_create(p, end, info, features);
273 	else
274 		return -EIO;
275 }
276 
277 /*
278  * parse entire mds reply
279  */
280 static int parse_reply_info(struct ceph_msg *msg,
281 			    struct ceph_mds_reply_info_parsed *info,
282 			    int features)
283 {
284 	void *p, *end;
285 	u32 len;
286 	int err;
287 
288 	info->head = msg->front.iov_base;
289 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
290 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
291 
292 	/* trace */
293 	ceph_decode_32_safe(&p, end, len, bad);
294 	if (len > 0) {
295 		ceph_decode_need(&p, end, len, bad);
296 		err = parse_reply_info_trace(&p, p+len, info, features);
297 		if (err < 0)
298 			goto out_bad;
299 	}
300 
301 	/* extra */
302 	ceph_decode_32_safe(&p, end, len, bad);
303 	if (len > 0) {
304 		ceph_decode_need(&p, end, len, bad);
305 		err = parse_reply_info_extra(&p, p+len, info, features);
306 		if (err < 0)
307 			goto out_bad;
308 	}
309 
310 	/* snap blob */
311 	ceph_decode_32_safe(&p, end, len, bad);
312 	info->snapblob_len = len;
313 	info->snapblob = p;
314 	p += len;
315 
316 	if (p != end)
317 		goto bad;
318 	return 0;
319 
320 bad:
321 	err = -EIO;
322 out_bad:
323 	pr_err("mds parse_reply err %d\n", err);
324 	return err;
325 }
326 
327 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
328 {
329 	kfree(info->dir_in);
330 }
331 
332 
333 /*
334  * sessions
335  */
336 static const char *session_state_name(int s)
337 {
338 	switch (s) {
339 	case CEPH_MDS_SESSION_NEW: return "new";
340 	case CEPH_MDS_SESSION_OPENING: return "opening";
341 	case CEPH_MDS_SESSION_OPEN: return "open";
342 	case CEPH_MDS_SESSION_HUNG: return "hung";
343 	case CEPH_MDS_SESSION_CLOSING: return "closing";
344 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
345 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
346 	default: return "???";
347 	}
348 }
349 
350 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
351 {
352 	if (atomic_inc_not_zero(&s->s_ref)) {
353 		dout("mdsc get_session %p %d -> %d\n", s,
354 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
355 		return s;
356 	} else {
357 		dout("mdsc get_session %p 0 -- FAIL", s);
358 		return NULL;
359 	}
360 }
361 
362 void ceph_put_mds_session(struct ceph_mds_session *s)
363 {
364 	dout("mdsc put_session %p %d -> %d\n", s,
365 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
366 	if (atomic_dec_and_test(&s->s_ref)) {
367 		if (s->s_auth.authorizer)
368 			ceph_auth_destroy_authorizer(
369 				s->s_mdsc->fsc->client->monc.auth,
370 				s->s_auth.authorizer);
371 		kfree(s);
372 	}
373 }
374 
375 /*
376  * called under mdsc->mutex
377  */
378 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
379 						   int mds)
380 {
381 	struct ceph_mds_session *session;
382 
383 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
384 		return NULL;
385 	session = mdsc->sessions[mds];
386 	dout("lookup_mds_session %p %d\n", session,
387 	     atomic_read(&session->s_ref));
388 	get_session(session);
389 	return session;
390 }
391 
392 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
393 {
394 	if (mds >= mdsc->max_sessions)
395 		return false;
396 	return mdsc->sessions[mds];
397 }
398 
399 static int __verify_registered_session(struct ceph_mds_client *mdsc,
400 				       struct ceph_mds_session *s)
401 {
402 	if (s->s_mds >= mdsc->max_sessions ||
403 	    mdsc->sessions[s->s_mds] != s)
404 		return -ENOENT;
405 	return 0;
406 }
407 
408 /*
409  * create+register a new session for given mds.
410  * called under mdsc->mutex.
411  */
412 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
413 						 int mds)
414 {
415 	struct ceph_mds_session *s;
416 
417 	s = kzalloc(sizeof(*s), GFP_NOFS);
418 	if (!s)
419 		return ERR_PTR(-ENOMEM);
420 	s->s_mdsc = mdsc;
421 	s->s_mds = mds;
422 	s->s_state = CEPH_MDS_SESSION_NEW;
423 	s->s_ttl = 0;
424 	s->s_seq = 0;
425 	mutex_init(&s->s_mutex);
426 
427 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
428 
429 	spin_lock_init(&s->s_gen_ttl_lock);
430 	s->s_cap_gen = 0;
431 	s->s_cap_ttl = jiffies - 1;
432 
433 	spin_lock_init(&s->s_cap_lock);
434 	s->s_renew_requested = 0;
435 	s->s_renew_seq = 0;
436 	INIT_LIST_HEAD(&s->s_caps);
437 	s->s_nr_caps = 0;
438 	s->s_trim_caps = 0;
439 	atomic_set(&s->s_ref, 1);
440 	INIT_LIST_HEAD(&s->s_waiting);
441 	INIT_LIST_HEAD(&s->s_unsafe);
442 	s->s_num_cap_releases = 0;
443 	s->s_cap_iterator = NULL;
444 	INIT_LIST_HEAD(&s->s_cap_releases);
445 	INIT_LIST_HEAD(&s->s_cap_releases_done);
446 	INIT_LIST_HEAD(&s->s_cap_flushing);
447 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
448 
449 	dout("register_session mds%d\n", mds);
450 	if (mds >= mdsc->max_sessions) {
451 		int newmax = 1 << get_count_order(mds+1);
452 		struct ceph_mds_session **sa;
453 
454 		dout("register_session realloc to %d\n", newmax);
455 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
456 		if (sa == NULL)
457 			goto fail_realloc;
458 		if (mdsc->sessions) {
459 			memcpy(sa, mdsc->sessions,
460 			       mdsc->max_sessions * sizeof(void *));
461 			kfree(mdsc->sessions);
462 		}
463 		mdsc->sessions = sa;
464 		mdsc->max_sessions = newmax;
465 	}
466 	mdsc->sessions[mds] = s;
467 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
468 
469 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
470 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
471 
472 	return s;
473 
474 fail_realloc:
475 	kfree(s);
476 	return ERR_PTR(-ENOMEM);
477 }
478 
479 /*
480  * called under mdsc->mutex
481  */
482 static void __unregister_session(struct ceph_mds_client *mdsc,
483 			       struct ceph_mds_session *s)
484 {
485 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
486 	BUG_ON(mdsc->sessions[s->s_mds] != s);
487 	mdsc->sessions[s->s_mds] = NULL;
488 	ceph_con_close(&s->s_con);
489 	ceph_put_mds_session(s);
490 }
491 
492 /*
493  * drop session refs in request.
494  *
495  * should be last request ref, or hold mdsc->mutex
496  */
497 static void put_request_session(struct ceph_mds_request *req)
498 {
499 	if (req->r_session) {
500 		ceph_put_mds_session(req->r_session);
501 		req->r_session = NULL;
502 	}
503 }
504 
505 void ceph_mdsc_release_request(struct kref *kref)
506 {
507 	struct ceph_mds_request *req = container_of(kref,
508 						    struct ceph_mds_request,
509 						    r_kref);
510 	if (req->r_request)
511 		ceph_msg_put(req->r_request);
512 	if (req->r_reply) {
513 		ceph_msg_put(req->r_reply);
514 		destroy_reply_info(&req->r_reply_info);
515 	}
516 	if (req->r_inode) {
517 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
518 		iput(req->r_inode);
519 	}
520 	if (req->r_locked_dir)
521 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
522 	if (req->r_target_inode)
523 		iput(req->r_target_inode);
524 	if (req->r_dentry)
525 		dput(req->r_dentry);
526 	if (req->r_old_dentry) {
527 		/*
528 		 * track (and drop pins for) r_old_dentry_dir
529 		 * separately, since r_old_dentry's d_parent may have
530 		 * changed between the dir mutex being dropped and
531 		 * this request being freed.
532 		 */
533 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
534 				  CEPH_CAP_PIN);
535 		dput(req->r_old_dentry);
536 		iput(req->r_old_dentry_dir);
537 	}
538 	kfree(req->r_path1);
539 	kfree(req->r_path2);
540 	put_request_session(req);
541 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
542 	kfree(req);
543 }
544 
545 /*
546  * lookup session, bump ref if found.
547  *
548  * called under mdsc->mutex.
549  */
550 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
551 					     u64 tid)
552 {
553 	struct ceph_mds_request *req;
554 	struct rb_node *n = mdsc->request_tree.rb_node;
555 
556 	while (n) {
557 		req = rb_entry(n, struct ceph_mds_request, r_node);
558 		if (tid < req->r_tid)
559 			n = n->rb_left;
560 		else if (tid > req->r_tid)
561 			n = n->rb_right;
562 		else {
563 			ceph_mdsc_get_request(req);
564 			return req;
565 		}
566 	}
567 	return NULL;
568 }
569 
570 static void __insert_request(struct ceph_mds_client *mdsc,
571 			     struct ceph_mds_request *new)
572 {
573 	struct rb_node **p = &mdsc->request_tree.rb_node;
574 	struct rb_node *parent = NULL;
575 	struct ceph_mds_request *req = NULL;
576 
577 	while (*p) {
578 		parent = *p;
579 		req = rb_entry(parent, struct ceph_mds_request, r_node);
580 		if (new->r_tid < req->r_tid)
581 			p = &(*p)->rb_left;
582 		else if (new->r_tid > req->r_tid)
583 			p = &(*p)->rb_right;
584 		else
585 			BUG();
586 	}
587 
588 	rb_link_node(&new->r_node, parent, p);
589 	rb_insert_color(&new->r_node, &mdsc->request_tree);
590 }
591 
592 /*
593  * Register an in-flight request, and assign a tid.  Link to directory
594  * are modifying (if any).
595  *
596  * Called under mdsc->mutex.
597  */
598 static void __register_request(struct ceph_mds_client *mdsc,
599 			       struct ceph_mds_request *req,
600 			       struct inode *dir)
601 {
602 	req->r_tid = ++mdsc->last_tid;
603 	if (req->r_num_caps)
604 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
605 				  req->r_num_caps);
606 	dout("__register_request %p tid %lld\n", req, req->r_tid);
607 	ceph_mdsc_get_request(req);
608 	__insert_request(mdsc, req);
609 
610 	req->r_uid = current_fsuid();
611 	req->r_gid = current_fsgid();
612 
613 	if (dir) {
614 		struct ceph_inode_info *ci = ceph_inode(dir);
615 
616 		ihold(dir);
617 		spin_lock(&ci->i_unsafe_lock);
618 		req->r_unsafe_dir = dir;
619 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
620 		spin_unlock(&ci->i_unsafe_lock);
621 	}
622 }
623 
624 static void __unregister_request(struct ceph_mds_client *mdsc,
625 				 struct ceph_mds_request *req)
626 {
627 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
628 	rb_erase(&req->r_node, &mdsc->request_tree);
629 	RB_CLEAR_NODE(&req->r_node);
630 
631 	if (req->r_unsafe_dir) {
632 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
633 
634 		spin_lock(&ci->i_unsafe_lock);
635 		list_del_init(&req->r_unsafe_dir_item);
636 		spin_unlock(&ci->i_unsafe_lock);
637 
638 		iput(req->r_unsafe_dir);
639 		req->r_unsafe_dir = NULL;
640 	}
641 
642 	ceph_mdsc_put_request(req);
643 }
644 
645 /*
646  * Choose mds to send request to next.  If there is a hint set in the
647  * request (e.g., due to a prior forward hint from the mds), use that.
648  * Otherwise, consult frag tree and/or caps to identify the
649  * appropriate mds.  If all else fails, choose randomly.
650  *
651  * Called under mdsc->mutex.
652  */
653 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
654 {
655 	/*
656 	 * we don't need to worry about protecting the d_parent access
657 	 * here because we never renaming inside the snapped namespace
658 	 * except to resplice to another snapdir, and either the old or new
659 	 * result is a valid result.
660 	 */
661 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
662 		dentry = dentry->d_parent;
663 	return dentry;
664 }
665 
666 static int __choose_mds(struct ceph_mds_client *mdsc,
667 			struct ceph_mds_request *req)
668 {
669 	struct inode *inode;
670 	struct ceph_inode_info *ci;
671 	struct ceph_cap *cap;
672 	int mode = req->r_direct_mode;
673 	int mds = -1;
674 	u32 hash = req->r_direct_hash;
675 	bool is_hash = req->r_direct_is_hash;
676 
677 	/*
678 	 * is there a specific mds we should try?  ignore hint if we have
679 	 * no session and the mds is not up (active or recovering).
680 	 */
681 	if (req->r_resend_mds >= 0 &&
682 	    (__have_session(mdsc, req->r_resend_mds) ||
683 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
684 		dout("choose_mds using resend_mds mds%d\n",
685 		     req->r_resend_mds);
686 		return req->r_resend_mds;
687 	}
688 
689 	if (mode == USE_RANDOM_MDS)
690 		goto random;
691 
692 	inode = NULL;
693 	if (req->r_inode) {
694 		inode = req->r_inode;
695 	} else if (req->r_dentry) {
696 		/* ignore race with rename; old or new d_parent is okay */
697 		struct dentry *parent = req->r_dentry->d_parent;
698 		struct inode *dir = parent->d_inode;
699 
700 		if (dir->i_sb != mdsc->fsc->sb) {
701 			/* not this fs! */
702 			inode = req->r_dentry->d_inode;
703 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
704 			/* direct snapped/virtual snapdir requests
705 			 * based on parent dir inode */
706 			struct dentry *dn = get_nonsnap_parent(parent);
707 			inode = dn->d_inode;
708 			dout("__choose_mds using nonsnap parent %p\n", inode);
709 		} else if (req->r_dentry->d_inode) {
710 			/* dentry target */
711 			inode = req->r_dentry->d_inode;
712 		} else {
713 			/* dir + name */
714 			inode = dir;
715 			hash = ceph_dentry_hash(dir, req->r_dentry);
716 			is_hash = true;
717 		}
718 	}
719 
720 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
721 	     (int)hash, mode);
722 	if (!inode)
723 		goto random;
724 	ci = ceph_inode(inode);
725 
726 	if (is_hash && S_ISDIR(inode->i_mode)) {
727 		struct ceph_inode_frag frag;
728 		int found;
729 
730 		ceph_choose_frag(ci, hash, &frag, &found);
731 		if (found) {
732 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
733 				u8 r;
734 
735 				/* choose a random replica */
736 				get_random_bytes(&r, 1);
737 				r %= frag.ndist;
738 				mds = frag.dist[r];
739 				dout("choose_mds %p %llx.%llx "
740 				     "frag %u mds%d (%d/%d)\n",
741 				     inode, ceph_vinop(inode),
742 				     frag.frag, mds,
743 				     (int)r, frag.ndist);
744 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
745 				    CEPH_MDS_STATE_ACTIVE)
746 					return mds;
747 			}
748 
749 			/* since this file/dir wasn't known to be
750 			 * replicated, then we want to look for the
751 			 * authoritative mds. */
752 			mode = USE_AUTH_MDS;
753 			if (frag.mds >= 0) {
754 				/* choose auth mds */
755 				mds = frag.mds;
756 				dout("choose_mds %p %llx.%llx "
757 				     "frag %u mds%d (auth)\n",
758 				     inode, ceph_vinop(inode), frag.frag, mds);
759 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
760 				    CEPH_MDS_STATE_ACTIVE)
761 					return mds;
762 			}
763 		}
764 	}
765 
766 	spin_lock(&ci->i_ceph_lock);
767 	cap = NULL;
768 	if (mode == USE_AUTH_MDS)
769 		cap = ci->i_auth_cap;
770 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
771 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
772 	if (!cap) {
773 		spin_unlock(&ci->i_ceph_lock);
774 		goto random;
775 	}
776 	mds = cap->session->s_mds;
777 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
778 	     inode, ceph_vinop(inode), mds,
779 	     cap == ci->i_auth_cap ? "auth " : "", cap);
780 	spin_unlock(&ci->i_ceph_lock);
781 	return mds;
782 
783 random:
784 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
785 	dout("choose_mds chose random mds%d\n", mds);
786 	return mds;
787 }
788 
789 
790 /*
791  * session messages
792  */
793 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
794 {
795 	struct ceph_msg *msg;
796 	struct ceph_mds_session_head *h;
797 
798 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
799 			   false);
800 	if (!msg) {
801 		pr_err("create_session_msg ENOMEM creating msg\n");
802 		return NULL;
803 	}
804 	h = msg->front.iov_base;
805 	h->op = cpu_to_le32(op);
806 	h->seq = cpu_to_le64(seq);
807 	return msg;
808 }
809 
810 /*
811  * send session open request.
812  *
813  * called under mdsc->mutex
814  */
815 static int __open_session(struct ceph_mds_client *mdsc,
816 			  struct ceph_mds_session *session)
817 {
818 	struct ceph_msg *msg;
819 	int mstate;
820 	int mds = session->s_mds;
821 
822 	/* wait for mds to go active? */
823 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
824 	dout("open_session to mds%d (%s)\n", mds,
825 	     ceph_mds_state_name(mstate));
826 	session->s_state = CEPH_MDS_SESSION_OPENING;
827 	session->s_renew_requested = jiffies;
828 
829 	/* send connect message */
830 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
831 	if (!msg)
832 		return -ENOMEM;
833 	ceph_con_send(&session->s_con, msg);
834 	return 0;
835 }
836 
837 /*
838  * open sessions for any export targets for the given mds
839  *
840  * called under mdsc->mutex
841  */
842 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
843 					  struct ceph_mds_session *session)
844 {
845 	struct ceph_mds_info *mi;
846 	struct ceph_mds_session *ts;
847 	int i, mds = session->s_mds;
848 	int target;
849 
850 	if (mds >= mdsc->mdsmap->m_max_mds)
851 		return;
852 	mi = &mdsc->mdsmap->m_info[mds];
853 	dout("open_export_target_sessions for mds%d (%d targets)\n",
854 	     session->s_mds, mi->num_export_targets);
855 
856 	for (i = 0; i < mi->num_export_targets; i++) {
857 		target = mi->export_targets[i];
858 		ts = __ceph_lookup_mds_session(mdsc, target);
859 		if (!ts) {
860 			ts = register_session(mdsc, target);
861 			if (IS_ERR(ts))
862 				return;
863 		}
864 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
865 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
866 			__open_session(mdsc, session);
867 		else
868 			dout(" mds%d target mds%d %p is %s\n", session->s_mds,
869 			     i, ts, session_state_name(ts->s_state));
870 		ceph_put_mds_session(ts);
871 	}
872 }
873 
874 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
875 					   struct ceph_mds_session *session)
876 {
877 	mutex_lock(&mdsc->mutex);
878 	__open_export_target_sessions(mdsc, session);
879 	mutex_unlock(&mdsc->mutex);
880 }
881 
882 /*
883  * session caps
884  */
885 
886 /*
887  * Free preallocated cap messages assigned to this session
888  */
889 static void cleanup_cap_releases(struct ceph_mds_session *session)
890 {
891 	struct ceph_msg *msg;
892 
893 	spin_lock(&session->s_cap_lock);
894 	while (!list_empty(&session->s_cap_releases)) {
895 		msg = list_first_entry(&session->s_cap_releases,
896 				       struct ceph_msg, list_head);
897 		list_del_init(&msg->list_head);
898 		ceph_msg_put(msg);
899 	}
900 	while (!list_empty(&session->s_cap_releases_done)) {
901 		msg = list_first_entry(&session->s_cap_releases_done,
902 				       struct ceph_msg, list_head);
903 		list_del_init(&msg->list_head);
904 		ceph_msg_put(msg);
905 	}
906 	spin_unlock(&session->s_cap_lock);
907 }
908 
909 /*
910  * Helper to safely iterate over all caps associated with a session, with
911  * special care taken to handle a racing __ceph_remove_cap().
912  *
913  * Caller must hold session s_mutex.
914  */
915 static int iterate_session_caps(struct ceph_mds_session *session,
916 				 int (*cb)(struct inode *, struct ceph_cap *,
917 					    void *), void *arg)
918 {
919 	struct list_head *p;
920 	struct ceph_cap *cap;
921 	struct inode *inode, *last_inode = NULL;
922 	struct ceph_cap *old_cap = NULL;
923 	int ret;
924 
925 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
926 	spin_lock(&session->s_cap_lock);
927 	p = session->s_caps.next;
928 	while (p != &session->s_caps) {
929 		cap = list_entry(p, struct ceph_cap, session_caps);
930 		inode = igrab(&cap->ci->vfs_inode);
931 		if (!inode) {
932 			p = p->next;
933 			continue;
934 		}
935 		session->s_cap_iterator = cap;
936 		spin_unlock(&session->s_cap_lock);
937 
938 		if (last_inode) {
939 			iput(last_inode);
940 			last_inode = NULL;
941 		}
942 		if (old_cap) {
943 			ceph_put_cap(session->s_mdsc, old_cap);
944 			old_cap = NULL;
945 		}
946 
947 		ret = cb(inode, cap, arg);
948 		last_inode = inode;
949 
950 		spin_lock(&session->s_cap_lock);
951 		p = p->next;
952 		if (cap->ci == NULL) {
953 			dout("iterate_session_caps  finishing cap %p removal\n",
954 			     cap);
955 			BUG_ON(cap->session != session);
956 			list_del_init(&cap->session_caps);
957 			session->s_nr_caps--;
958 			cap->session = NULL;
959 			old_cap = cap;  /* put_cap it w/o locks held */
960 		}
961 		if (ret < 0)
962 			goto out;
963 	}
964 	ret = 0;
965 out:
966 	session->s_cap_iterator = NULL;
967 	spin_unlock(&session->s_cap_lock);
968 
969 	if (last_inode)
970 		iput(last_inode);
971 	if (old_cap)
972 		ceph_put_cap(session->s_mdsc, old_cap);
973 
974 	return ret;
975 }
976 
977 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
978 				  void *arg)
979 {
980 	struct ceph_inode_info *ci = ceph_inode(inode);
981 	int drop = 0;
982 
983 	dout("removing cap %p, ci is %p, inode is %p\n",
984 	     cap, ci, &ci->vfs_inode);
985 	spin_lock(&ci->i_ceph_lock);
986 	__ceph_remove_cap(cap);
987 	if (!__ceph_is_any_real_caps(ci)) {
988 		struct ceph_mds_client *mdsc =
989 			ceph_sb_to_client(inode->i_sb)->mdsc;
990 
991 		spin_lock(&mdsc->cap_dirty_lock);
992 		if (!list_empty(&ci->i_dirty_item)) {
993 			pr_info(" dropping dirty %s state for %p %lld\n",
994 				ceph_cap_string(ci->i_dirty_caps),
995 				inode, ceph_ino(inode));
996 			ci->i_dirty_caps = 0;
997 			list_del_init(&ci->i_dirty_item);
998 			drop = 1;
999 		}
1000 		if (!list_empty(&ci->i_flushing_item)) {
1001 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1002 				ceph_cap_string(ci->i_flushing_caps),
1003 				inode, ceph_ino(inode));
1004 			ci->i_flushing_caps = 0;
1005 			list_del_init(&ci->i_flushing_item);
1006 			mdsc->num_cap_flushing--;
1007 			drop = 1;
1008 		}
1009 		if (drop && ci->i_wrbuffer_ref) {
1010 			pr_info(" dropping dirty data for %p %lld\n",
1011 				inode, ceph_ino(inode));
1012 			ci->i_wrbuffer_ref = 0;
1013 			ci->i_wrbuffer_ref_head = 0;
1014 			drop++;
1015 		}
1016 		spin_unlock(&mdsc->cap_dirty_lock);
1017 	}
1018 	spin_unlock(&ci->i_ceph_lock);
1019 	while (drop--)
1020 		iput(inode);
1021 	return 0;
1022 }
1023 
1024 /*
1025  * caller must hold session s_mutex
1026  */
1027 static void remove_session_caps(struct ceph_mds_session *session)
1028 {
1029 	dout("remove_session_caps on %p\n", session);
1030 	iterate_session_caps(session, remove_session_caps_cb, NULL);
1031 	BUG_ON(session->s_nr_caps > 0);
1032 	BUG_ON(!list_empty(&session->s_cap_flushing));
1033 	cleanup_cap_releases(session);
1034 }
1035 
1036 /*
1037  * wake up any threads waiting on this session's caps.  if the cap is
1038  * old (didn't get renewed on the client reconnect), remove it now.
1039  *
1040  * caller must hold s_mutex.
1041  */
1042 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1043 			      void *arg)
1044 {
1045 	struct ceph_inode_info *ci = ceph_inode(inode);
1046 
1047 	wake_up_all(&ci->i_cap_wq);
1048 	if (arg) {
1049 		spin_lock(&ci->i_ceph_lock);
1050 		ci->i_wanted_max_size = 0;
1051 		ci->i_requested_max_size = 0;
1052 		spin_unlock(&ci->i_ceph_lock);
1053 	}
1054 	return 0;
1055 }
1056 
1057 static void wake_up_session_caps(struct ceph_mds_session *session,
1058 				 int reconnect)
1059 {
1060 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1061 	iterate_session_caps(session, wake_up_session_cb,
1062 			     (void *)(unsigned long)reconnect);
1063 }
1064 
1065 /*
1066  * Send periodic message to MDS renewing all currently held caps.  The
1067  * ack will reset the expiration for all caps from this session.
1068  *
1069  * caller holds s_mutex
1070  */
1071 static int send_renew_caps(struct ceph_mds_client *mdsc,
1072 			   struct ceph_mds_session *session)
1073 {
1074 	struct ceph_msg *msg;
1075 	int state;
1076 
1077 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1078 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1079 		pr_info("mds%d caps stale\n", session->s_mds);
1080 	session->s_renew_requested = jiffies;
1081 
1082 	/* do not try to renew caps until a recovering mds has reconnected
1083 	 * with its clients. */
1084 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1085 	if (state < CEPH_MDS_STATE_RECONNECT) {
1086 		dout("send_renew_caps ignoring mds%d (%s)\n",
1087 		     session->s_mds, ceph_mds_state_name(state));
1088 		return 0;
1089 	}
1090 
1091 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1092 		ceph_mds_state_name(state));
1093 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1094 				 ++session->s_renew_seq);
1095 	if (!msg)
1096 		return -ENOMEM;
1097 	ceph_con_send(&session->s_con, msg);
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1103  *
1104  * Called under session->s_mutex
1105  */
1106 static void renewed_caps(struct ceph_mds_client *mdsc,
1107 			 struct ceph_mds_session *session, int is_renew)
1108 {
1109 	int was_stale;
1110 	int wake = 0;
1111 
1112 	spin_lock(&session->s_cap_lock);
1113 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1114 
1115 	session->s_cap_ttl = session->s_renew_requested +
1116 		mdsc->mdsmap->m_session_timeout*HZ;
1117 
1118 	if (was_stale) {
1119 		if (time_before(jiffies, session->s_cap_ttl)) {
1120 			pr_info("mds%d caps renewed\n", session->s_mds);
1121 			wake = 1;
1122 		} else {
1123 			pr_info("mds%d caps still stale\n", session->s_mds);
1124 		}
1125 	}
1126 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1127 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1128 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1129 	spin_unlock(&session->s_cap_lock);
1130 
1131 	if (wake)
1132 		wake_up_session_caps(session, 0);
1133 }
1134 
1135 /*
1136  * send a session close request
1137  */
1138 static int request_close_session(struct ceph_mds_client *mdsc,
1139 				 struct ceph_mds_session *session)
1140 {
1141 	struct ceph_msg *msg;
1142 
1143 	dout("request_close_session mds%d state %s seq %lld\n",
1144 	     session->s_mds, session_state_name(session->s_state),
1145 	     session->s_seq);
1146 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1147 	if (!msg)
1148 		return -ENOMEM;
1149 	ceph_con_send(&session->s_con, msg);
1150 	return 0;
1151 }
1152 
1153 /*
1154  * Called with s_mutex held.
1155  */
1156 static int __close_session(struct ceph_mds_client *mdsc,
1157 			 struct ceph_mds_session *session)
1158 {
1159 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1160 		return 0;
1161 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1162 	return request_close_session(mdsc, session);
1163 }
1164 
1165 /*
1166  * Trim old(er) caps.
1167  *
1168  * Because we can't cache an inode without one or more caps, we do
1169  * this indirectly: if a cap is unused, we prune its aliases, at which
1170  * point the inode will hopefully get dropped to.
1171  *
1172  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1173  * memory pressure from the MDS, though, so it needn't be perfect.
1174  */
1175 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1176 {
1177 	struct ceph_mds_session *session = arg;
1178 	struct ceph_inode_info *ci = ceph_inode(inode);
1179 	int used, oissued, mine;
1180 
1181 	if (session->s_trim_caps <= 0)
1182 		return -1;
1183 
1184 	spin_lock(&ci->i_ceph_lock);
1185 	mine = cap->issued | cap->implemented;
1186 	used = __ceph_caps_used(ci);
1187 	oissued = __ceph_caps_issued_other(ci, cap);
1188 
1189 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1190 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1191 	     ceph_cap_string(used));
1192 	if (ci->i_dirty_caps)
1193 		goto out;   /* dirty caps */
1194 	if ((used & ~oissued) & mine)
1195 		goto out;   /* we need these caps */
1196 
1197 	session->s_trim_caps--;
1198 	if (oissued) {
1199 		/* we aren't the only cap.. just remove us */
1200 		__queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1201 				    cap->mseq, cap->issue_seq);
1202 		__ceph_remove_cap(cap);
1203 	} else {
1204 		/* try to drop referring dentries */
1205 		spin_unlock(&ci->i_ceph_lock);
1206 		d_prune_aliases(inode);
1207 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1208 		     inode, cap, atomic_read(&inode->i_count));
1209 		return 0;
1210 	}
1211 
1212 out:
1213 	spin_unlock(&ci->i_ceph_lock);
1214 	return 0;
1215 }
1216 
1217 /*
1218  * Trim session cap count down to some max number.
1219  */
1220 static int trim_caps(struct ceph_mds_client *mdsc,
1221 		     struct ceph_mds_session *session,
1222 		     int max_caps)
1223 {
1224 	int trim_caps = session->s_nr_caps - max_caps;
1225 
1226 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1227 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1228 	if (trim_caps > 0) {
1229 		session->s_trim_caps = trim_caps;
1230 		iterate_session_caps(session, trim_caps_cb, session);
1231 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1232 		     session->s_mds, session->s_nr_caps, max_caps,
1233 			trim_caps - session->s_trim_caps);
1234 		session->s_trim_caps = 0;
1235 	}
1236 	return 0;
1237 }
1238 
1239 /*
1240  * Allocate cap_release messages.  If there is a partially full message
1241  * in the queue, try to allocate enough to cover it's remainder, so that
1242  * we can send it immediately.
1243  *
1244  * Called under s_mutex.
1245  */
1246 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1247 			  struct ceph_mds_session *session)
1248 {
1249 	struct ceph_msg *msg, *partial = NULL;
1250 	struct ceph_mds_cap_release *head;
1251 	int err = -ENOMEM;
1252 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1253 	int num;
1254 
1255 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1256 	     extra);
1257 
1258 	spin_lock(&session->s_cap_lock);
1259 
1260 	if (!list_empty(&session->s_cap_releases)) {
1261 		msg = list_first_entry(&session->s_cap_releases,
1262 				       struct ceph_msg,
1263 				 list_head);
1264 		head = msg->front.iov_base;
1265 		num = le32_to_cpu(head->num);
1266 		if (num) {
1267 			dout(" partial %p with (%d/%d)\n", msg, num,
1268 			     (int)CEPH_CAPS_PER_RELEASE);
1269 			extra += CEPH_CAPS_PER_RELEASE - num;
1270 			partial = msg;
1271 		}
1272 	}
1273 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1274 		spin_unlock(&session->s_cap_lock);
1275 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1276 				   GFP_NOFS, false);
1277 		if (!msg)
1278 			goto out_unlocked;
1279 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1280 		     (int)msg->front.iov_len);
1281 		head = msg->front.iov_base;
1282 		head->num = cpu_to_le32(0);
1283 		msg->front.iov_len = sizeof(*head);
1284 		spin_lock(&session->s_cap_lock);
1285 		list_add(&msg->list_head, &session->s_cap_releases);
1286 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1287 	}
1288 
1289 	if (partial) {
1290 		head = partial->front.iov_base;
1291 		num = le32_to_cpu(head->num);
1292 		dout(" queueing partial %p with %d/%d\n", partial, num,
1293 		     (int)CEPH_CAPS_PER_RELEASE);
1294 		list_move_tail(&partial->list_head,
1295 			       &session->s_cap_releases_done);
1296 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1297 	}
1298 	err = 0;
1299 	spin_unlock(&session->s_cap_lock);
1300 out_unlocked:
1301 	return err;
1302 }
1303 
1304 /*
1305  * flush all dirty inode data to disk.
1306  *
1307  * returns true if we've flushed through want_flush_seq
1308  */
1309 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1310 {
1311 	int mds, ret = 1;
1312 
1313 	dout("check_cap_flush want %lld\n", want_flush_seq);
1314 	mutex_lock(&mdsc->mutex);
1315 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1316 		struct ceph_mds_session *session = mdsc->sessions[mds];
1317 
1318 		if (!session)
1319 			continue;
1320 		get_session(session);
1321 		mutex_unlock(&mdsc->mutex);
1322 
1323 		mutex_lock(&session->s_mutex);
1324 		if (!list_empty(&session->s_cap_flushing)) {
1325 			struct ceph_inode_info *ci =
1326 				list_entry(session->s_cap_flushing.next,
1327 					   struct ceph_inode_info,
1328 					   i_flushing_item);
1329 			struct inode *inode = &ci->vfs_inode;
1330 
1331 			spin_lock(&ci->i_ceph_lock);
1332 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1333 				dout("check_cap_flush still flushing %p "
1334 				     "seq %lld <= %lld to mds%d\n", inode,
1335 				     ci->i_cap_flush_seq, want_flush_seq,
1336 				     session->s_mds);
1337 				ret = 0;
1338 			}
1339 			spin_unlock(&ci->i_ceph_lock);
1340 		}
1341 		mutex_unlock(&session->s_mutex);
1342 		ceph_put_mds_session(session);
1343 
1344 		if (!ret)
1345 			return ret;
1346 		mutex_lock(&mdsc->mutex);
1347 	}
1348 
1349 	mutex_unlock(&mdsc->mutex);
1350 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1351 	return ret;
1352 }
1353 
1354 /*
1355  * called under s_mutex
1356  */
1357 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1358 			    struct ceph_mds_session *session)
1359 {
1360 	struct ceph_msg *msg;
1361 
1362 	dout("send_cap_releases mds%d\n", session->s_mds);
1363 	spin_lock(&session->s_cap_lock);
1364 	while (!list_empty(&session->s_cap_releases_done)) {
1365 		msg = list_first_entry(&session->s_cap_releases_done,
1366 				 struct ceph_msg, list_head);
1367 		list_del_init(&msg->list_head);
1368 		spin_unlock(&session->s_cap_lock);
1369 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1370 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1371 		ceph_con_send(&session->s_con, msg);
1372 		spin_lock(&session->s_cap_lock);
1373 	}
1374 	spin_unlock(&session->s_cap_lock);
1375 }
1376 
1377 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1378 				 struct ceph_mds_session *session)
1379 {
1380 	struct ceph_msg *msg;
1381 	struct ceph_mds_cap_release *head;
1382 	unsigned num;
1383 
1384 	dout("discard_cap_releases mds%d\n", session->s_mds);
1385 	spin_lock(&session->s_cap_lock);
1386 
1387 	/* zero out the in-progress message */
1388 	msg = list_first_entry(&session->s_cap_releases,
1389 			       struct ceph_msg, list_head);
1390 	head = msg->front.iov_base;
1391 	num = le32_to_cpu(head->num);
1392 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1393 	head->num = cpu_to_le32(0);
1394 	msg->front.iov_len = sizeof(*head);
1395 	session->s_num_cap_releases += num;
1396 
1397 	/* requeue completed messages */
1398 	while (!list_empty(&session->s_cap_releases_done)) {
1399 		msg = list_first_entry(&session->s_cap_releases_done,
1400 				 struct ceph_msg, list_head);
1401 		list_del_init(&msg->list_head);
1402 
1403 		head = msg->front.iov_base;
1404 		num = le32_to_cpu(head->num);
1405 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1406 		     num);
1407 		session->s_num_cap_releases += num;
1408 		head->num = cpu_to_le32(0);
1409 		msg->front.iov_len = sizeof(*head);
1410 		list_add(&msg->list_head, &session->s_cap_releases);
1411 	}
1412 
1413 	spin_unlock(&session->s_cap_lock);
1414 }
1415 
1416 /*
1417  * requests
1418  */
1419 
1420 /*
1421  * Create an mds request.
1422  */
1423 struct ceph_mds_request *
1424 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1425 {
1426 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1427 
1428 	if (!req)
1429 		return ERR_PTR(-ENOMEM);
1430 
1431 	mutex_init(&req->r_fill_mutex);
1432 	req->r_mdsc = mdsc;
1433 	req->r_started = jiffies;
1434 	req->r_resend_mds = -1;
1435 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1436 	req->r_fmode = -1;
1437 	kref_init(&req->r_kref);
1438 	INIT_LIST_HEAD(&req->r_wait);
1439 	init_completion(&req->r_completion);
1440 	init_completion(&req->r_safe_completion);
1441 	INIT_LIST_HEAD(&req->r_unsafe_item);
1442 
1443 	req->r_op = op;
1444 	req->r_direct_mode = mode;
1445 	return req;
1446 }
1447 
1448 /*
1449  * return oldest (lowest) request, tid in request tree, 0 if none.
1450  *
1451  * called under mdsc->mutex.
1452  */
1453 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1454 {
1455 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1456 		return NULL;
1457 	return rb_entry(rb_first(&mdsc->request_tree),
1458 			struct ceph_mds_request, r_node);
1459 }
1460 
1461 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1462 {
1463 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1464 
1465 	if (req)
1466 		return req->r_tid;
1467 	return 0;
1468 }
1469 
1470 /*
1471  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1472  * on build_path_from_dentry in fs/cifs/dir.c.
1473  *
1474  * If @stop_on_nosnap, generate path relative to the first non-snapped
1475  * inode.
1476  *
1477  * Encode hidden .snap dirs as a double /, i.e.
1478  *   foo/.snap/bar -> foo//bar
1479  */
1480 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1481 			   int stop_on_nosnap)
1482 {
1483 	struct dentry *temp;
1484 	char *path;
1485 	int len, pos;
1486 	unsigned seq;
1487 
1488 	if (dentry == NULL)
1489 		return ERR_PTR(-EINVAL);
1490 
1491 retry:
1492 	len = 0;
1493 	seq = read_seqbegin(&rename_lock);
1494 	rcu_read_lock();
1495 	for (temp = dentry; !IS_ROOT(temp);) {
1496 		struct inode *inode = temp->d_inode;
1497 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1498 			len++;  /* slash only */
1499 		else if (stop_on_nosnap && inode &&
1500 			 ceph_snap(inode) == CEPH_NOSNAP)
1501 			break;
1502 		else
1503 			len += 1 + temp->d_name.len;
1504 		temp = temp->d_parent;
1505 	}
1506 	rcu_read_unlock();
1507 	if (len)
1508 		len--;  /* no leading '/' */
1509 
1510 	path = kmalloc(len+1, GFP_NOFS);
1511 	if (path == NULL)
1512 		return ERR_PTR(-ENOMEM);
1513 	pos = len;
1514 	path[pos] = 0;	/* trailing null */
1515 	rcu_read_lock();
1516 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1517 		struct inode *inode;
1518 
1519 		spin_lock(&temp->d_lock);
1520 		inode = temp->d_inode;
1521 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1522 			dout("build_path path+%d: %p SNAPDIR\n",
1523 			     pos, temp);
1524 		} else if (stop_on_nosnap && inode &&
1525 			   ceph_snap(inode) == CEPH_NOSNAP) {
1526 			spin_unlock(&temp->d_lock);
1527 			break;
1528 		} else {
1529 			pos -= temp->d_name.len;
1530 			if (pos < 0) {
1531 				spin_unlock(&temp->d_lock);
1532 				break;
1533 			}
1534 			strncpy(path + pos, temp->d_name.name,
1535 				temp->d_name.len);
1536 		}
1537 		spin_unlock(&temp->d_lock);
1538 		if (pos)
1539 			path[--pos] = '/';
1540 		temp = temp->d_parent;
1541 	}
1542 	rcu_read_unlock();
1543 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1544 		pr_err("build_path did not end path lookup where "
1545 		       "expected, namelen is %d, pos is %d\n", len, pos);
1546 		/* presumably this is only possible if racing with a
1547 		   rename of one of the parent directories (we can not
1548 		   lock the dentries above us to prevent this, but
1549 		   retrying should be harmless) */
1550 		kfree(path);
1551 		goto retry;
1552 	}
1553 
1554 	*base = ceph_ino(temp->d_inode);
1555 	*plen = len;
1556 	dout("build_path on %p %d built %llx '%.*s'\n",
1557 	     dentry, d_count(dentry), *base, len, path);
1558 	return path;
1559 }
1560 
1561 static int build_dentry_path(struct dentry *dentry,
1562 			     const char **ppath, int *ppathlen, u64 *pino,
1563 			     int *pfreepath)
1564 {
1565 	char *path;
1566 
1567 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1568 		*pino = ceph_ino(dentry->d_parent->d_inode);
1569 		*ppath = dentry->d_name.name;
1570 		*ppathlen = dentry->d_name.len;
1571 		return 0;
1572 	}
1573 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1574 	if (IS_ERR(path))
1575 		return PTR_ERR(path);
1576 	*ppath = path;
1577 	*pfreepath = 1;
1578 	return 0;
1579 }
1580 
1581 static int build_inode_path(struct inode *inode,
1582 			    const char **ppath, int *ppathlen, u64 *pino,
1583 			    int *pfreepath)
1584 {
1585 	struct dentry *dentry;
1586 	char *path;
1587 
1588 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1589 		*pino = ceph_ino(inode);
1590 		*ppathlen = 0;
1591 		return 0;
1592 	}
1593 	dentry = d_find_alias(inode);
1594 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1595 	dput(dentry);
1596 	if (IS_ERR(path))
1597 		return PTR_ERR(path);
1598 	*ppath = path;
1599 	*pfreepath = 1;
1600 	return 0;
1601 }
1602 
1603 /*
1604  * request arguments may be specified via an inode *, a dentry *, or
1605  * an explicit ino+path.
1606  */
1607 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1608 				  const char *rpath, u64 rino,
1609 				  const char **ppath, int *pathlen,
1610 				  u64 *ino, int *freepath)
1611 {
1612 	int r = 0;
1613 
1614 	if (rinode) {
1615 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1616 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1617 		     ceph_snap(rinode));
1618 	} else if (rdentry) {
1619 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1620 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1621 		     *ppath);
1622 	} else if (rpath || rino) {
1623 		*ino = rino;
1624 		*ppath = rpath;
1625 		*pathlen = rpath ? strlen(rpath) : 0;
1626 		dout(" path %.*s\n", *pathlen, rpath);
1627 	}
1628 
1629 	return r;
1630 }
1631 
1632 /*
1633  * called under mdsc->mutex
1634  */
1635 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1636 					       struct ceph_mds_request *req,
1637 					       int mds)
1638 {
1639 	struct ceph_msg *msg;
1640 	struct ceph_mds_request_head *head;
1641 	const char *path1 = NULL;
1642 	const char *path2 = NULL;
1643 	u64 ino1 = 0, ino2 = 0;
1644 	int pathlen1 = 0, pathlen2 = 0;
1645 	int freepath1 = 0, freepath2 = 0;
1646 	int len;
1647 	u16 releases;
1648 	void *p, *end;
1649 	int ret;
1650 
1651 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1652 			      req->r_path1, req->r_ino1.ino,
1653 			      &path1, &pathlen1, &ino1, &freepath1);
1654 	if (ret < 0) {
1655 		msg = ERR_PTR(ret);
1656 		goto out;
1657 	}
1658 
1659 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1660 			      req->r_path2, req->r_ino2.ino,
1661 			      &path2, &pathlen2, &ino2, &freepath2);
1662 	if (ret < 0) {
1663 		msg = ERR_PTR(ret);
1664 		goto out_free1;
1665 	}
1666 
1667 	len = sizeof(*head) +
1668 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1669 
1670 	/* calculate (max) length for cap releases */
1671 	len += sizeof(struct ceph_mds_request_release) *
1672 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1673 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1674 	if (req->r_dentry_drop)
1675 		len += req->r_dentry->d_name.len;
1676 	if (req->r_old_dentry_drop)
1677 		len += req->r_old_dentry->d_name.len;
1678 
1679 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1680 	if (!msg) {
1681 		msg = ERR_PTR(-ENOMEM);
1682 		goto out_free2;
1683 	}
1684 
1685 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1686 
1687 	head = msg->front.iov_base;
1688 	p = msg->front.iov_base + sizeof(*head);
1689 	end = msg->front.iov_base + msg->front.iov_len;
1690 
1691 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1692 	head->op = cpu_to_le32(req->r_op);
1693 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1694 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1695 	head->args = req->r_args;
1696 
1697 	ceph_encode_filepath(&p, end, ino1, path1);
1698 	ceph_encode_filepath(&p, end, ino2, path2);
1699 
1700 	/* make note of release offset, in case we need to replay */
1701 	req->r_request_release_offset = p - msg->front.iov_base;
1702 
1703 	/* cap releases */
1704 	releases = 0;
1705 	if (req->r_inode_drop)
1706 		releases += ceph_encode_inode_release(&p,
1707 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1708 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1709 	if (req->r_dentry_drop)
1710 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1711 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1712 	if (req->r_old_dentry_drop)
1713 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1714 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1715 	if (req->r_old_inode_drop)
1716 		releases += ceph_encode_inode_release(&p,
1717 		      req->r_old_dentry->d_inode,
1718 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1719 	head->num_releases = cpu_to_le16(releases);
1720 
1721 	BUG_ON(p > end);
1722 	msg->front.iov_len = p - msg->front.iov_base;
1723 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1724 
1725 	if (req->r_data_len) {
1726 		/* outbound data set only by ceph_sync_setxattr() */
1727 		BUG_ON(!req->r_pages);
1728 		ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
1729 	}
1730 
1731 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1732 	msg->hdr.data_off = cpu_to_le16(0);
1733 
1734 out_free2:
1735 	if (freepath2)
1736 		kfree((char *)path2);
1737 out_free1:
1738 	if (freepath1)
1739 		kfree((char *)path1);
1740 out:
1741 	return msg;
1742 }
1743 
1744 /*
1745  * called under mdsc->mutex if error, under no mutex if
1746  * success.
1747  */
1748 static void complete_request(struct ceph_mds_client *mdsc,
1749 			     struct ceph_mds_request *req)
1750 {
1751 	if (req->r_callback)
1752 		req->r_callback(mdsc, req);
1753 	else
1754 		complete_all(&req->r_completion);
1755 }
1756 
1757 /*
1758  * called under mdsc->mutex
1759  */
1760 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1761 				  struct ceph_mds_request *req,
1762 				  int mds)
1763 {
1764 	struct ceph_mds_request_head *rhead;
1765 	struct ceph_msg *msg;
1766 	int flags = 0;
1767 
1768 	req->r_attempts++;
1769 	if (req->r_inode) {
1770 		struct ceph_cap *cap =
1771 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1772 
1773 		if (cap)
1774 			req->r_sent_on_mseq = cap->mseq;
1775 		else
1776 			req->r_sent_on_mseq = -1;
1777 	}
1778 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1779 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1780 
1781 	if (req->r_got_unsafe) {
1782 		/*
1783 		 * Replay.  Do not regenerate message (and rebuild
1784 		 * paths, etc.); just use the original message.
1785 		 * Rebuilding paths will break for renames because
1786 		 * d_move mangles the src name.
1787 		 */
1788 		msg = req->r_request;
1789 		rhead = msg->front.iov_base;
1790 
1791 		flags = le32_to_cpu(rhead->flags);
1792 		flags |= CEPH_MDS_FLAG_REPLAY;
1793 		rhead->flags = cpu_to_le32(flags);
1794 
1795 		if (req->r_target_inode)
1796 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1797 
1798 		rhead->num_retry = req->r_attempts - 1;
1799 
1800 		/* remove cap/dentry releases from message */
1801 		rhead->num_releases = 0;
1802 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1803 		msg->front.iov_len = req->r_request_release_offset;
1804 		return 0;
1805 	}
1806 
1807 	if (req->r_request) {
1808 		ceph_msg_put(req->r_request);
1809 		req->r_request = NULL;
1810 	}
1811 	msg = create_request_message(mdsc, req, mds);
1812 	if (IS_ERR(msg)) {
1813 		req->r_err = PTR_ERR(msg);
1814 		complete_request(mdsc, req);
1815 		return PTR_ERR(msg);
1816 	}
1817 	req->r_request = msg;
1818 
1819 	rhead = msg->front.iov_base;
1820 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1821 	if (req->r_got_unsafe)
1822 		flags |= CEPH_MDS_FLAG_REPLAY;
1823 	if (req->r_locked_dir)
1824 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1825 	rhead->flags = cpu_to_le32(flags);
1826 	rhead->num_fwd = req->r_num_fwd;
1827 	rhead->num_retry = req->r_attempts - 1;
1828 	rhead->ino = 0;
1829 
1830 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1831 	return 0;
1832 }
1833 
1834 /*
1835  * send request, or put it on the appropriate wait list.
1836  */
1837 static int __do_request(struct ceph_mds_client *mdsc,
1838 			struct ceph_mds_request *req)
1839 {
1840 	struct ceph_mds_session *session = NULL;
1841 	int mds = -1;
1842 	int err = -EAGAIN;
1843 
1844 	if (req->r_err || req->r_got_result)
1845 		goto out;
1846 
1847 	if (req->r_timeout &&
1848 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1849 		dout("do_request timed out\n");
1850 		err = -EIO;
1851 		goto finish;
1852 	}
1853 
1854 	put_request_session(req);
1855 
1856 	mds = __choose_mds(mdsc, req);
1857 	if (mds < 0 ||
1858 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1859 		dout("do_request no mds or not active, waiting for map\n");
1860 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1861 		goto out;
1862 	}
1863 
1864 	/* get, open session */
1865 	session = __ceph_lookup_mds_session(mdsc, mds);
1866 	if (!session) {
1867 		session = register_session(mdsc, mds);
1868 		if (IS_ERR(session)) {
1869 			err = PTR_ERR(session);
1870 			goto finish;
1871 		}
1872 	}
1873 	req->r_session = get_session(session);
1874 
1875 	dout("do_request mds%d session %p state %s\n", mds, session,
1876 	     session_state_name(session->s_state));
1877 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1878 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1879 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1880 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1881 			__open_session(mdsc, session);
1882 		list_add(&req->r_wait, &session->s_waiting);
1883 		goto out_session;
1884 	}
1885 
1886 	/* send request */
1887 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1888 
1889 	if (req->r_request_started == 0)   /* note request start time */
1890 		req->r_request_started = jiffies;
1891 
1892 	err = __prepare_send_request(mdsc, req, mds);
1893 	if (!err) {
1894 		ceph_msg_get(req->r_request);
1895 		ceph_con_send(&session->s_con, req->r_request);
1896 	}
1897 
1898 out_session:
1899 	ceph_put_mds_session(session);
1900 out:
1901 	return err;
1902 
1903 finish:
1904 	req->r_err = err;
1905 	complete_request(mdsc, req);
1906 	goto out;
1907 }
1908 
1909 /*
1910  * called under mdsc->mutex
1911  */
1912 static void __wake_requests(struct ceph_mds_client *mdsc,
1913 			    struct list_head *head)
1914 {
1915 	struct ceph_mds_request *req;
1916 	LIST_HEAD(tmp_list);
1917 
1918 	list_splice_init(head, &tmp_list);
1919 
1920 	while (!list_empty(&tmp_list)) {
1921 		req = list_entry(tmp_list.next,
1922 				 struct ceph_mds_request, r_wait);
1923 		list_del_init(&req->r_wait);
1924 		dout(" wake request %p tid %llu\n", req, req->r_tid);
1925 		__do_request(mdsc, req);
1926 	}
1927 }
1928 
1929 /*
1930  * Wake up threads with requests pending for @mds, so that they can
1931  * resubmit their requests to a possibly different mds.
1932  */
1933 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1934 {
1935 	struct ceph_mds_request *req;
1936 	struct rb_node *p;
1937 
1938 	dout("kick_requests mds%d\n", mds);
1939 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1940 		req = rb_entry(p, struct ceph_mds_request, r_node);
1941 		if (req->r_got_unsafe)
1942 			continue;
1943 		if (req->r_session &&
1944 		    req->r_session->s_mds == mds) {
1945 			dout(" kicking tid %llu\n", req->r_tid);
1946 			__do_request(mdsc, req);
1947 		}
1948 	}
1949 }
1950 
1951 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1952 			      struct ceph_mds_request *req)
1953 {
1954 	dout("submit_request on %p\n", req);
1955 	mutex_lock(&mdsc->mutex);
1956 	__register_request(mdsc, req, NULL);
1957 	__do_request(mdsc, req);
1958 	mutex_unlock(&mdsc->mutex);
1959 }
1960 
1961 /*
1962  * Synchrously perform an mds request.  Take care of all of the
1963  * session setup, forwarding, retry details.
1964  */
1965 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1966 			 struct inode *dir,
1967 			 struct ceph_mds_request *req)
1968 {
1969 	int err;
1970 
1971 	dout("do_request on %p\n", req);
1972 
1973 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1974 	if (req->r_inode)
1975 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1976 	if (req->r_locked_dir)
1977 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1978 	if (req->r_old_dentry)
1979 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1980 				  CEPH_CAP_PIN);
1981 
1982 	/* issue */
1983 	mutex_lock(&mdsc->mutex);
1984 	__register_request(mdsc, req, dir);
1985 	__do_request(mdsc, req);
1986 
1987 	if (req->r_err) {
1988 		err = req->r_err;
1989 		__unregister_request(mdsc, req);
1990 		dout("do_request early error %d\n", err);
1991 		goto out;
1992 	}
1993 
1994 	/* wait */
1995 	mutex_unlock(&mdsc->mutex);
1996 	dout("do_request waiting\n");
1997 	if (req->r_timeout) {
1998 		err = (long)wait_for_completion_killable_timeout(
1999 			&req->r_completion, req->r_timeout);
2000 		if (err == 0)
2001 			err = -EIO;
2002 	} else {
2003 		err = wait_for_completion_killable(&req->r_completion);
2004 	}
2005 	dout("do_request waited, got %d\n", err);
2006 	mutex_lock(&mdsc->mutex);
2007 
2008 	/* only abort if we didn't race with a real reply */
2009 	if (req->r_got_result) {
2010 		err = le32_to_cpu(req->r_reply_info.head->result);
2011 	} else if (err < 0) {
2012 		dout("aborted request %lld with %d\n", req->r_tid, err);
2013 
2014 		/*
2015 		 * ensure we aren't running concurrently with
2016 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2017 		 * rely on locks (dir mutex) held by our caller.
2018 		 */
2019 		mutex_lock(&req->r_fill_mutex);
2020 		req->r_err = err;
2021 		req->r_aborted = true;
2022 		mutex_unlock(&req->r_fill_mutex);
2023 
2024 		if (req->r_locked_dir &&
2025 		    (req->r_op & CEPH_MDS_OP_WRITE))
2026 			ceph_invalidate_dir_request(req);
2027 	} else {
2028 		err = req->r_err;
2029 	}
2030 
2031 out:
2032 	mutex_unlock(&mdsc->mutex);
2033 	dout("do_request %p done, result %d\n", req, err);
2034 	return err;
2035 }
2036 
2037 /*
2038  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2039  * namespace request.
2040  */
2041 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2042 {
2043 	struct inode *inode = req->r_locked_dir;
2044 
2045 	dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2046 
2047 	ceph_dir_clear_complete(inode);
2048 	if (req->r_dentry)
2049 		ceph_invalidate_dentry_lease(req->r_dentry);
2050 	if (req->r_old_dentry)
2051 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2052 }
2053 
2054 /*
2055  * Handle mds reply.
2056  *
2057  * We take the session mutex and parse and process the reply immediately.
2058  * This preserves the logical ordering of replies, capabilities, etc., sent
2059  * by the MDS as they are applied to our local cache.
2060  */
2061 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2062 {
2063 	struct ceph_mds_client *mdsc = session->s_mdsc;
2064 	struct ceph_mds_request *req;
2065 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2066 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2067 	u64 tid;
2068 	int err, result;
2069 	int mds = session->s_mds;
2070 
2071 	if (msg->front.iov_len < sizeof(*head)) {
2072 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2073 		ceph_msg_dump(msg);
2074 		return;
2075 	}
2076 
2077 	/* get request, session */
2078 	tid = le64_to_cpu(msg->hdr.tid);
2079 	mutex_lock(&mdsc->mutex);
2080 	req = __lookup_request(mdsc, tid);
2081 	if (!req) {
2082 		dout("handle_reply on unknown tid %llu\n", tid);
2083 		mutex_unlock(&mdsc->mutex);
2084 		return;
2085 	}
2086 	dout("handle_reply %p\n", req);
2087 
2088 	/* correct session? */
2089 	if (req->r_session != session) {
2090 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2091 		       " not mds%d\n", tid, session->s_mds,
2092 		       req->r_session ? req->r_session->s_mds : -1);
2093 		mutex_unlock(&mdsc->mutex);
2094 		goto out;
2095 	}
2096 
2097 	/* dup? */
2098 	if ((req->r_got_unsafe && !head->safe) ||
2099 	    (req->r_got_safe && head->safe)) {
2100 		pr_warning("got a dup %s reply on %llu from mds%d\n",
2101 			   head->safe ? "safe" : "unsafe", tid, mds);
2102 		mutex_unlock(&mdsc->mutex);
2103 		goto out;
2104 	}
2105 	if (req->r_got_safe && !head->safe) {
2106 		pr_warning("got unsafe after safe on %llu from mds%d\n",
2107 			   tid, mds);
2108 		mutex_unlock(&mdsc->mutex);
2109 		goto out;
2110 	}
2111 
2112 	result = le32_to_cpu(head->result);
2113 
2114 	/*
2115 	 * Handle an ESTALE
2116 	 * if we're not talking to the authority, send to them
2117 	 * if the authority has changed while we weren't looking,
2118 	 * send to new authority
2119 	 * Otherwise we just have to return an ESTALE
2120 	 */
2121 	if (result == -ESTALE) {
2122 		dout("got ESTALE on request %llu", req->r_tid);
2123 		if (!req->r_inode) {
2124 			/* do nothing; not an authority problem */
2125 		} else if (req->r_direct_mode != USE_AUTH_MDS) {
2126 			dout("not using auth, setting for that now");
2127 			req->r_direct_mode = USE_AUTH_MDS;
2128 			__do_request(mdsc, req);
2129 			mutex_unlock(&mdsc->mutex);
2130 			goto out;
2131 		} else  {
2132 			struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2133 			struct ceph_cap *cap = NULL;
2134 
2135 			if (req->r_session)
2136 				cap = ceph_get_cap_for_mds(ci,
2137 						   req->r_session->s_mds);
2138 
2139 			dout("already using auth");
2140 			if ((!cap || cap != ci->i_auth_cap) ||
2141 			    (cap->mseq != req->r_sent_on_mseq)) {
2142 				dout("but cap changed, so resending");
2143 				__do_request(mdsc, req);
2144 				mutex_unlock(&mdsc->mutex);
2145 				goto out;
2146 			}
2147 		}
2148 		dout("have to return ESTALE on request %llu", req->r_tid);
2149 	}
2150 
2151 
2152 	if (head->safe) {
2153 		req->r_got_safe = true;
2154 		__unregister_request(mdsc, req);
2155 		complete_all(&req->r_safe_completion);
2156 
2157 		if (req->r_got_unsafe) {
2158 			/*
2159 			 * We already handled the unsafe response, now do the
2160 			 * cleanup.  No need to examine the response; the MDS
2161 			 * doesn't include any result info in the safe
2162 			 * response.  And even if it did, there is nothing
2163 			 * useful we could do with a revised return value.
2164 			 */
2165 			dout("got safe reply %llu, mds%d\n", tid, mds);
2166 			list_del_init(&req->r_unsafe_item);
2167 
2168 			/* last unsafe request during umount? */
2169 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2170 				complete_all(&mdsc->safe_umount_waiters);
2171 			mutex_unlock(&mdsc->mutex);
2172 			goto out;
2173 		}
2174 	} else {
2175 		req->r_got_unsafe = true;
2176 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2177 	}
2178 
2179 	dout("handle_reply tid %lld result %d\n", tid, result);
2180 	rinfo = &req->r_reply_info;
2181 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2182 	mutex_unlock(&mdsc->mutex);
2183 
2184 	mutex_lock(&session->s_mutex);
2185 	if (err < 0) {
2186 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2187 		ceph_msg_dump(msg);
2188 		goto out_err;
2189 	}
2190 
2191 	/* snap trace */
2192 	if (rinfo->snapblob_len) {
2193 		down_write(&mdsc->snap_rwsem);
2194 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2195 			       rinfo->snapblob + rinfo->snapblob_len,
2196 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2197 		downgrade_write(&mdsc->snap_rwsem);
2198 	} else {
2199 		down_read(&mdsc->snap_rwsem);
2200 	}
2201 
2202 	/* insert trace into our cache */
2203 	mutex_lock(&req->r_fill_mutex);
2204 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2205 	if (err == 0) {
2206 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2207 				    req->r_op == CEPH_MDS_OP_LSSNAP) &&
2208 		    rinfo->dir_nr)
2209 			ceph_readdir_prepopulate(req, req->r_session);
2210 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2211 	}
2212 	mutex_unlock(&req->r_fill_mutex);
2213 
2214 	up_read(&mdsc->snap_rwsem);
2215 out_err:
2216 	mutex_lock(&mdsc->mutex);
2217 	if (!req->r_aborted) {
2218 		if (err) {
2219 			req->r_err = err;
2220 		} else {
2221 			req->r_reply = msg;
2222 			ceph_msg_get(msg);
2223 			req->r_got_result = true;
2224 		}
2225 	} else {
2226 		dout("reply arrived after request %lld was aborted\n", tid);
2227 	}
2228 	mutex_unlock(&mdsc->mutex);
2229 
2230 	ceph_add_cap_releases(mdsc, req->r_session);
2231 	mutex_unlock(&session->s_mutex);
2232 
2233 	/* kick calling process */
2234 	complete_request(mdsc, req);
2235 out:
2236 	ceph_mdsc_put_request(req);
2237 	return;
2238 }
2239 
2240 
2241 
2242 /*
2243  * handle mds notification that our request has been forwarded.
2244  */
2245 static void handle_forward(struct ceph_mds_client *mdsc,
2246 			   struct ceph_mds_session *session,
2247 			   struct ceph_msg *msg)
2248 {
2249 	struct ceph_mds_request *req;
2250 	u64 tid = le64_to_cpu(msg->hdr.tid);
2251 	u32 next_mds;
2252 	u32 fwd_seq;
2253 	int err = -EINVAL;
2254 	void *p = msg->front.iov_base;
2255 	void *end = p + msg->front.iov_len;
2256 
2257 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2258 	next_mds = ceph_decode_32(&p);
2259 	fwd_seq = ceph_decode_32(&p);
2260 
2261 	mutex_lock(&mdsc->mutex);
2262 	req = __lookup_request(mdsc, tid);
2263 	if (!req) {
2264 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2265 		goto out;  /* dup reply? */
2266 	}
2267 
2268 	if (req->r_aborted) {
2269 		dout("forward tid %llu aborted, unregistering\n", tid);
2270 		__unregister_request(mdsc, req);
2271 	} else if (fwd_seq <= req->r_num_fwd) {
2272 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2273 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2274 	} else {
2275 		/* resend. forward race not possible; mds would drop */
2276 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2277 		BUG_ON(req->r_err);
2278 		BUG_ON(req->r_got_result);
2279 		req->r_num_fwd = fwd_seq;
2280 		req->r_resend_mds = next_mds;
2281 		put_request_session(req);
2282 		__do_request(mdsc, req);
2283 	}
2284 	ceph_mdsc_put_request(req);
2285 out:
2286 	mutex_unlock(&mdsc->mutex);
2287 	return;
2288 
2289 bad:
2290 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2291 }
2292 
2293 /*
2294  * handle a mds session control message
2295  */
2296 static void handle_session(struct ceph_mds_session *session,
2297 			   struct ceph_msg *msg)
2298 {
2299 	struct ceph_mds_client *mdsc = session->s_mdsc;
2300 	u32 op;
2301 	u64 seq;
2302 	int mds = session->s_mds;
2303 	struct ceph_mds_session_head *h = msg->front.iov_base;
2304 	int wake = 0;
2305 
2306 	/* decode */
2307 	if (msg->front.iov_len != sizeof(*h))
2308 		goto bad;
2309 	op = le32_to_cpu(h->op);
2310 	seq = le64_to_cpu(h->seq);
2311 
2312 	mutex_lock(&mdsc->mutex);
2313 	if (op == CEPH_SESSION_CLOSE)
2314 		__unregister_session(mdsc, session);
2315 	/* FIXME: this ttl calculation is generous */
2316 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2317 	mutex_unlock(&mdsc->mutex);
2318 
2319 	mutex_lock(&session->s_mutex);
2320 
2321 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2322 	     mds, ceph_session_op_name(op), session,
2323 	     session_state_name(session->s_state), seq);
2324 
2325 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2326 		session->s_state = CEPH_MDS_SESSION_OPEN;
2327 		pr_info("mds%d came back\n", session->s_mds);
2328 	}
2329 
2330 	switch (op) {
2331 	case CEPH_SESSION_OPEN:
2332 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2333 			pr_info("mds%d reconnect success\n", session->s_mds);
2334 		session->s_state = CEPH_MDS_SESSION_OPEN;
2335 		renewed_caps(mdsc, session, 0);
2336 		wake = 1;
2337 		if (mdsc->stopping)
2338 			__close_session(mdsc, session);
2339 		break;
2340 
2341 	case CEPH_SESSION_RENEWCAPS:
2342 		if (session->s_renew_seq == seq)
2343 			renewed_caps(mdsc, session, 1);
2344 		break;
2345 
2346 	case CEPH_SESSION_CLOSE:
2347 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2348 			pr_info("mds%d reconnect denied\n", session->s_mds);
2349 		remove_session_caps(session);
2350 		wake = 1; /* for good measure */
2351 		wake_up_all(&mdsc->session_close_wq);
2352 		kick_requests(mdsc, mds);
2353 		break;
2354 
2355 	case CEPH_SESSION_STALE:
2356 		pr_info("mds%d caps went stale, renewing\n",
2357 			session->s_mds);
2358 		spin_lock(&session->s_gen_ttl_lock);
2359 		session->s_cap_gen++;
2360 		session->s_cap_ttl = jiffies - 1;
2361 		spin_unlock(&session->s_gen_ttl_lock);
2362 		send_renew_caps(mdsc, session);
2363 		break;
2364 
2365 	case CEPH_SESSION_RECALL_STATE:
2366 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2367 		break;
2368 
2369 	default:
2370 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2371 		WARN_ON(1);
2372 	}
2373 
2374 	mutex_unlock(&session->s_mutex);
2375 	if (wake) {
2376 		mutex_lock(&mdsc->mutex);
2377 		__wake_requests(mdsc, &session->s_waiting);
2378 		mutex_unlock(&mdsc->mutex);
2379 	}
2380 	return;
2381 
2382 bad:
2383 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2384 	       (int)msg->front.iov_len);
2385 	ceph_msg_dump(msg);
2386 	return;
2387 }
2388 
2389 
2390 /*
2391  * called under session->mutex.
2392  */
2393 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2394 				   struct ceph_mds_session *session)
2395 {
2396 	struct ceph_mds_request *req, *nreq;
2397 	int err;
2398 
2399 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2400 
2401 	mutex_lock(&mdsc->mutex);
2402 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2403 		err = __prepare_send_request(mdsc, req, session->s_mds);
2404 		if (!err) {
2405 			ceph_msg_get(req->r_request);
2406 			ceph_con_send(&session->s_con, req->r_request);
2407 		}
2408 	}
2409 	mutex_unlock(&mdsc->mutex);
2410 }
2411 
2412 /*
2413  * Encode information about a cap for a reconnect with the MDS.
2414  */
2415 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2416 			  void *arg)
2417 {
2418 	union {
2419 		struct ceph_mds_cap_reconnect v2;
2420 		struct ceph_mds_cap_reconnect_v1 v1;
2421 	} rec;
2422 	size_t reclen;
2423 	struct ceph_inode_info *ci;
2424 	struct ceph_reconnect_state *recon_state = arg;
2425 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2426 	char *path;
2427 	int pathlen, err;
2428 	u64 pathbase;
2429 	struct dentry *dentry;
2430 
2431 	ci = cap->ci;
2432 
2433 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2434 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2435 	     ceph_cap_string(cap->issued));
2436 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2437 	if (err)
2438 		return err;
2439 
2440 	dentry = d_find_alias(inode);
2441 	if (dentry) {
2442 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2443 		if (IS_ERR(path)) {
2444 			err = PTR_ERR(path);
2445 			goto out_dput;
2446 		}
2447 	} else {
2448 		path = NULL;
2449 		pathlen = 0;
2450 	}
2451 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2452 	if (err)
2453 		goto out_free;
2454 
2455 	spin_lock(&ci->i_ceph_lock);
2456 	cap->seq = 0;        /* reset cap seq */
2457 	cap->issue_seq = 0;  /* and issue_seq */
2458 	cap->mseq = 0;       /* and migrate_seq */
2459 
2460 	if (recon_state->flock) {
2461 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2462 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2463 		rec.v2.issued = cpu_to_le32(cap->issued);
2464 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2465 		rec.v2.pathbase = cpu_to_le64(pathbase);
2466 		rec.v2.flock_len = 0;
2467 		reclen = sizeof(rec.v2);
2468 	} else {
2469 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2470 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2471 		rec.v1.issued = cpu_to_le32(cap->issued);
2472 		rec.v1.size = cpu_to_le64(inode->i_size);
2473 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2474 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2475 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2476 		rec.v1.pathbase = cpu_to_le64(pathbase);
2477 		reclen = sizeof(rec.v1);
2478 	}
2479 	spin_unlock(&ci->i_ceph_lock);
2480 
2481 	if (recon_state->flock) {
2482 		int num_fcntl_locks, num_flock_locks;
2483 		struct ceph_filelock *flocks;
2484 
2485 encode_again:
2486 		spin_lock(&inode->i_lock);
2487 		ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2488 		spin_unlock(&inode->i_lock);
2489 		flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2490 				 sizeof(struct ceph_filelock), GFP_NOFS);
2491 		if (!flocks) {
2492 			err = -ENOMEM;
2493 			goto out_free;
2494 		}
2495 		spin_lock(&inode->i_lock);
2496 		err = ceph_encode_locks_to_buffer(inode, flocks,
2497 						  num_fcntl_locks,
2498 						  num_flock_locks);
2499 		spin_unlock(&inode->i_lock);
2500 		if (err) {
2501 			kfree(flocks);
2502 			if (err == -ENOSPC)
2503 				goto encode_again;
2504 			goto out_free;
2505 		}
2506 		/*
2507 		 * number of encoded locks is stable, so copy to pagelist
2508 		 */
2509 		rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2510 				    (num_fcntl_locks+num_flock_locks) *
2511 				    sizeof(struct ceph_filelock));
2512 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2513 		if (!err)
2514 			err = ceph_locks_to_pagelist(flocks, pagelist,
2515 						     num_fcntl_locks,
2516 						     num_flock_locks);
2517 		kfree(flocks);
2518 	} else {
2519 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2520 	}
2521 out_free:
2522 	kfree(path);
2523 out_dput:
2524 	dput(dentry);
2525 	return err;
2526 }
2527 
2528 
2529 /*
2530  * If an MDS fails and recovers, clients need to reconnect in order to
2531  * reestablish shared state.  This includes all caps issued through
2532  * this session _and_ the snap_realm hierarchy.  Because it's not
2533  * clear which snap realms the mds cares about, we send everything we
2534  * know about.. that ensures we'll then get any new info the
2535  * recovering MDS might have.
2536  *
2537  * This is a relatively heavyweight operation, but it's rare.
2538  *
2539  * called with mdsc->mutex held.
2540  */
2541 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2542 			       struct ceph_mds_session *session)
2543 {
2544 	struct ceph_msg *reply;
2545 	struct rb_node *p;
2546 	int mds = session->s_mds;
2547 	int err = -ENOMEM;
2548 	struct ceph_pagelist *pagelist;
2549 	struct ceph_reconnect_state recon_state;
2550 
2551 	pr_info("mds%d reconnect start\n", mds);
2552 
2553 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2554 	if (!pagelist)
2555 		goto fail_nopagelist;
2556 	ceph_pagelist_init(pagelist);
2557 
2558 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2559 	if (!reply)
2560 		goto fail_nomsg;
2561 
2562 	mutex_lock(&session->s_mutex);
2563 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2564 	session->s_seq = 0;
2565 
2566 	ceph_con_close(&session->s_con);
2567 	ceph_con_open(&session->s_con,
2568 		      CEPH_ENTITY_TYPE_MDS, mds,
2569 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2570 
2571 	/* replay unsafe requests */
2572 	replay_unsafe_requests(mdsc, session);
2573 
2574 	down_read(&mdsc->snap_rwsem);
2575 
2576 	dout("session %p state %s\n", session,
2577 	     session_state_name(session->s_state));
2578 
2579 	/* drop old cap expires; we're about to reestablish that state */
2580 	discard_cap_releases(mdsc, session);
2581 
2582 	/* traverse this session's caps */
2583 	err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2584 	if (err)
2585 		goto fail;
2586 
2587 	recon_state.pagelist = pagelist;
2588 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2589 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2590 	if (err < 0)
2591 		goto fail;
2592 
2593 	/*
2594 	 * snaprealms.  we provide mds with the ino, seq (version), and
2595 	 * parent for all of our realms.  If the mds has any newer info,
2596 	 * it will tell us.
2597 	 */
2598 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2599 		struct ceph_snap_realm *realm =
2600 			rb_entry(p, struct ceph_snap_realm, node);
2601 		struct ceph_mds_snaprealm_reconnect sr_rec;
2602 
2603 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2604 		     realm->ino, realm->seq, realm->parent_ino);
2605 		sr_rec.ino = cpu_to_le64(realm->ino);
2606 		sr_rec.seq = cpu_to_le64(realm->seq);
2607 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2608 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2609 		if (err)
2610 			goto fail;
2611 	}
2612 
2613 	if (recon_state.flock)
2614 		reply->hdr.version = cpu_to_le16(2);
2615 	if (pagelist->length) {
2616 		/* set up outbound data if we have any */
2617 		reply->hdr.data_len = cpu_to_le32(pagelist->length);
2618 		ceph_msg_data_add_pagelist(reply, pagelist);
2619 	}
2620 	ceph_con_send(&session->s_con, reply);
2621 
2622 	mutex_unlock(&session->s_mutex);
2623 
2624 	mutex_lock(&mdsc->mutex);
2625 	__wake_requests(mdsc, &session->s_waiting);
2626 	mutex_unlock(&mdsc->mutex);
2627 
2628 	up_read(&mdsc->snap_rwsem);
2629 	return;
2630 
2631 fail:
2632 	ceph_msg_put(reply);
2633 	up_read(&mdsc->snap_rwsem);
2634 	mutex_unlock(&session->s_mutex);
2635 fail_nomsg:
2636 	ceph_pagelist_release(pagelist);
2637 	kfree(pagelist);
2638 fail_nopagelist:
2639 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2640 	return;
2641 }
2642 
2643 
2644 /*
2645  * compare old and new mdsmaps, kicking requests
2646  * and closing out old connections as necessary
2647  *
2648  * called under mdsc->mutex.
2649  */
2650 static void check_new_map(struct ceph_mds_client *mdsc,
2651 			  struct ceph_mdsmap *newmap,
2652 			  struct ceph_mdsmap *oldmap)
2653 {
2654 	int i;
2655 	int oldstate, newstate;
2656 	struct ceph_mds_session *s;
2657 
2658 	dout("check_new_map new %u old %u\n",
2659 	     newmap->m_epoch, oldmap->m_epoch);
2660 
2661 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2662 		if (mdsc->sessions[i] == NULL)
2663 			continue;
2664 		s = mdsc->sessions[i];
2665 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2666 		newstate = ceph_mdsmap_get_state(newmap, i);
2667 
2668 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2669 		     i, ceph_mds_state_name(oldstate),
2670 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2671 		     ceph_mds_state_name(newstate),
2672 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2673 		     session_state_name(s->s_state));
2674 
2675 		if (i >= newmap->m_max_mds ||
2676 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
2677 			   ceph_mdsmap_get_addr(newmap, i),
2678 			   sizeof(struct ceph_entity_addr))) {
2679 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2680 				/* the session never opened, just close it
2681 				 * out now */
2682 				__wake_requests(mdsc, &s->s_waiting);
2683 				__unregister_session(mdsc, s);
2684 			} else {
2685 				/* just close it */
2686 				mutex_unlock(&mdsc->mutex);
2687 				mutex_lock(&s->s_mutex);
2688 				mutex_lock(&mdsc->mutex);
2689 				ceph_con_close(&s->s_con);
2690 				mutex_unlock(&s->s_mutex);
2691 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2692 			}
2693 
2694 			/* kick any requests waiting on the recovering mds */
2695 			kick_requests(mdsc, i);
2696 		} else if (oldstate == newstate) {
2697 			continue;  /* nothing new with this mds */
2698 		}
2699 
2700 		/*
2701 		 * send reconnect?
2702 		 */
2703 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2704 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2705 			mutex_unlock(&mdsc->mutex);
2706 			send_mds_reconnect(mdsc, s);
2707 			mutex_lock(&mdsc->mutex);
2708 		}
2709 
2710 		/*
2711 		 * kick request on any mds that has gone active.
2712 		 */
2713 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2714 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2715 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2716 			    oldstate != CEPH_MDS_STATE_STARTING)
2717 				pr_info("mds%d recovery completed\n", s->s_mds);
2718 			kick_requests(mdsc, i);
2719 			ceph_kick_flushing_caps(mdsc, s);
2720 			wake_up_session_caps(s, 1);
2721 		}
2722 	}
2723 
2724 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2725 		s = mdsc->sessions[i];
2726 		if (!s)
2727 			continue;
2728 		if (!ceph_mdsmap_is_laggy(newmap, i))
2729 			continue;
2730 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2731 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2732 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2733 			dout(" connecting to export targets of laggy mds%d\n",
2734 			     i);
2735 			__open_export_target_sessions(mdsc, s);
2736 		}
2737 	}
2738 }
2739 
2740 
2741 
2742 /*
2743  * leases
2744  */
2745 
2746 /*
2747  * caller must hold session s_mutex, dentry->d_lock
2748  */
2749 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2750 {
2751 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2752 
2753 	ceph_put_mds_session(di->lease_session);
2754 	di->lease_session = NULL;
2755 }
2756 
2757 static void handle_lease(struct ceph_mds_client *mdsc,
2758 			 struct ceph_mds_session *session,
2759 			 struct ceph_msg *msg)
2760 {
2761 	struct super_block *sb = mdsc->fsc->sb;
2762 	struct inode *inode;
2763 	struct dentry *parent, *dentry;
2764 	struct ceph_dentry_info *di;
2765 	int mds = session->s_mds;
2766 	struct ceph_mds_lease *h = msg->front.iov_base;
2767 	u32 seq;
2768 	struct ceph_vino vino;
2769 	struct qstr dname;
2770 	int release = 0;
2771 
2772 	dout("handle_lease from mds%d\n", mds);
2773 
2774 	/* decode */
2775 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2776 		goto bad;
2777 	vino.ino = le64_to_cpu(h->ino);
2778 	vino.snap = CEPH_NOSNAP;
2779 	seq = le32_to_cpu(h->seq);
2780 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2781 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2782 	if (dname.len != get_unaligned_le32(h+1))
2783 		goto bad;
2784 
2785 	mutex_lock(&session->s_mutex);
2786 	session->s_seq++;
2787 
2788 	/* lookup inode */
2789 	inode = ceph_find_inode(sb, vino);
2790 	dout("handle_lease %s, ino %llx %p %.*s\n",
2791 	     ceph_lease_op_name(h->action), vino.ino, inode,
2792 	     dname.len, dname.name);
2793 	if (inode == NULL) {
2794 		dout("handle_lease no inode %llx\n", vino.ino);
2795 		goto release;
2796 	}
2797 
2798 	/* dentry */
2799 	parent = d_find_alias(inode);
2800 	if (!parent) {
2801 		dout("no parent dentry on inode %p\n", inode);
2802 		WARN_ON(1);
2803 		goto release;  /* hrm... */
2804 	}
2805 	dname.hash = full_name_hash(dname.name, dname.len);
2806 	dentry = d_lookup(parent, &dname);
2807 	dput(parent);
2808 	if (!dentry)
2809 		goto release;
2810 
2811 	spin_lock(&dentry->d_lock);
2812 	di = ceph_dentry(dentry);
2813 	switch (h->action) {
2814 	case CEPH_MDS_LEASE_REVOKE:
2815 		if (di->lease_session == session) {
2816 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2817 				h->seq = cpu_to_le32(di->lease_seq);
2818 			__ceph_mdsc_drop_dentry_lease(dentry);
2819 		}
2820 		release = 1;
2821 		break;
2822 
2823 	case CEPH_MDS_LEASE_RENEW:
2824 		if (di->lease_session == session &&
2825 		    di->lease_gen == session->s_cap_gen &&
2826 		    di->lease_renew_from &&
2827 		    di->lease_renew_after == 0) {
2828 			unsigned long duration =
2829 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2830 
2831 			di->lease_seq = seq;
2832 			dentry->d_time = di->lease_renew_from + duration;
2833 			di->lease_renew_after = di->lease_renew_from +
2834 				(duration >> 1);
2835 			di->lease_renew_from = 0;
2836 		}
2837 		break;
2838 	}
2839 	spin_unlock(&dentry->d_lock);
2840 	dput(dentry);
2841 
2842 	if (!release)
2843 		goto out;
2844 
2845 release:
2846 	/* let's just reuse the same message */
2847 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2848 	ceph_msg_get(msg);
2849 	ceph_con_send(&session->s_con, msg);
2850 
2851 out:
2852 	iput(inode);
2853 	mutex_unlock(&session->s_mutex);
2854 	return;
2855 
2856 bad:
2857 	pr_err("corrupt lease message\n");
2858 	ceph_msg_dump(msg);
2859 }
2860 
2861 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2862 			      struct inode *inode,
2863 			      struct dentry *dentry, char action,
2864 			      u32 seq)
2865 {
2866 	struct ceph_msg *msg;
2867 	struct ceph_mds_lease *lease;
2868 	int len = sizeof(*lease) + sizeof(u32);
2869 	int dnamelen = 0;
2870 
2871 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2872 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2873 	dnamelen = dentry->d_name.len;
2874 	len += dnamelen;
2875 
2876 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2877 	if (!msg)
2878 		return;
2879 	lease = msg->front.iov_base;
2880 	lease->action = action;
2881 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2882 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2883 	lease->seq = cpu_to_le32(seq);
2884 	put_unaligned_le32(dnamelen, lease + 1);
2885 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2886 
2887 	/*
2888 	 * if this is a preemptive lease RELEASE, no need to
2889 	 * flush request stream, since the actual request will
2890 	 * soon follow.
2891 	 */
2892 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2893 
2894 	ceph_con_send(&session->s_con, msg);
2895 }
2896 
2897 /*
2898  * Preemptively release a lease we expect to invalidate anyway.
2899  * Pass @inode always, @dentry is optional.
2900  */
2901 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2902 			     struct dentry *dentry)
2903 {
2904 	struct ceph_dentry_info *di;
2905 	struct ceph_mds_session *session;
2906 	u32 seq;
2907 
2908 	BUG_ON(inode == NULL);
2909 	BUG_ON(dentry == NULL);
2910 
2911 	/* is dentry lease valid? */
2912 	spin_lock(&dentry->d_lock);
2913 	di = ceph_dentry(dentry);
2914 	if (!di || !di->lease_session ||
2915 	    di->lease_session->s_mds < 0 ||
2916 	    di->lease_gen != di->lease_session->s_cap_gen ||
2917 	    !time_before(jiffies, dentry->d_time)) {
2918 		dout("lease_release inode %p dentry %p -- "
2919 		     "no lease\n",
2920 		     inode, dentry);
2921 		spin_unlock(&dentry->d_lock);
2922 		return;
2923 	}
2924 
2925 	/* we do have a lease on this dentry; note mds and seq */
2926 	session = ceph_get_mds_session(di->lease_session);
2927 	seq = di->lease_seq;
2928 	__ceph_mdsc_drop_dentry_lease(dentry);
2929 	spin_unlock(&dentry->d_lock);
2930 
2931 	dout("lease_release inode %p dentry %p to mds%d\n",
2932 	     inode, dentry, session->s_mds);
2933 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2934 				 CEPH_MDS_LEASE_RELEASE, seq);
2935 	ceph_put_mds_session(session);
2936 }
2937 
2938 /*
2939  * drop all leases (and dentry refs) in preparation for umount
2940  */
2941 static void drop_leases(struct ceph_mds_client *mdsc)
2942 {
2943 	int i;
2944 
2945 	dout("drop_leases\n");
2946 	mutex_lock(&mdsc->mutex);
2947 	for (i = 0; i < mdsc->max_sessions; i++) {
2948 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2949 		if (!s)
2950 			continue;
2951 		mutex_unlock(&mdsc->mutex);
2952 		mutex_lock(&s->s_mutex);
2953 		mutex_unlock(&s->s_mutex);
2954 		ceph_put_mds_session(s);
2955 		mutex_lock(&mdsc->mutex);
2956 	}
2957 	mutex_unlock(&mdsc->mutex);
2958 }
2959 
2960 
2961 
2962 /*
2963  * delayed work -- periodically trim expired leases, renew caps with mds
2964  */
2965 static void schedule_delayed(struct ceph_mds_client *mdsc)
2966 {
2967 	int delay = 5;
2968 	unsigned hz = round_jiffies_relative(HZ * delay);
2969 	schedule_delayed_work(&mdsc->delayed_work, hz);
2970 }
2971 
2972 static void delayed_work(struct work_struct *work)
2973 {
2974 	int i;
2975 	struct ceph_mds_client *mdsc =
2976 		container_of(work, struct ceph_mds_client, delayed_work.work);
2977 	int renew_interval;
2978 	int renew_caps;
2979 
2980 	dout("mdsc delayed_work\n");
2981 	ceph_check_delayed_caps(mdsc);
2982 
2983 	mutex_lock(&mdsc->mutex);
2984 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2985 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2986 				   mdsc->last_renew_caps);
2987 	if (renew_caps)
2988 		mdsc->last_renew_caps = jiffies;
2989 
2990 	for (i = 0; i < mdsc->max_sessions; i++) {
2991 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2992 		if (s == NULL)
2993 			continue;
2994 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2995 			dout("resending session close request for mds%d\n",
2996 			     s->s_mds);
2997 			request_close_session(mdsc, s);
2998 			ceph_put_mds_session(s);
2999 			continue;
3000 		}
3001 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3002 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3003 				s->s_state = CEPH_MDS_SESSION_HUNG;
3004 				pr_info("mds%d hung\n", s->s_mds);
3005 			}
3006 		}
3007 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3008 			/* this mds is failed or recovering, just wait */
3009 			ceph_put_mds_session(s);
3010 			continue;
3011 		}
3012 		mutex_unlock(&mdsc->mutex);
3013 
3014 		mutex_lock(&s->s_mutex);
3015 		if (renew_caps)
3016 			send_renew_caps(mdsc, s);
3017 		else
3018 			ceph_con_keepalive(&s->s_con);
3019 		ceph_add_cap_releases(mdsc, s);
3020 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3021 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3022 			ceph_send_cap_releases(mdsc, s);
3023 		mutex_unlock(&s->s_mutex);
3024 		ceph_put_mds_session(s);
3025 
3026 		mutex_lock(&mdsc->mutex);
3027 	}
3028 	mutex_unlock(&mdsc->mutex);
3029 
3030 	schedule_delayed(mdsc);
3031 }
3032 
3033 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3034 
3035 {
3036 	struct ceph_mds_client *mdsc;
3037 
3038 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3039 	if (!mdsc)
3040 		return -ENOMEM;
3041 	mdsc->fsc = fsc;
3042 	fsc->mdsc = mdsc;
3043 	mutex_init(&mdsc->mutex);
3044 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3045 	if (mdsc->mdsmap == NULL) {
3046 		kfree(mdsc);
3047 		return -ENOMEM;
3048 	}
3049 
3050 	init_completion(&mdsc->safe_umount_waiters);
3051 	init_waitqueue_head(&mdsc->session_close_wq);
3052 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3053 	mdsc->sessions = NULL;
3054 	mdsc->max_sessions = 0;
3055 	mdsc->stopping = 0;
3056 	init_rwsem(&mdsc->snap_rwsem);
3057 	mdsc->snap_realms = RB_ROOT;
3058 	INIT_LIST_HEAD(&mdsc->snap_empty);
3059 	spin_lock_init(&mdsc->snap_empty_lock);
3060 	mdsc->last_tid = 0;
3061 	mdsc->request_tree = RB_ROOT;
3062 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3063 	mdsc->last_renew_caps = jiffies;
3064 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3065 	spin_lock_init(&mdsc->cap_delay_lock);
3066 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3067 	spin_lock_init(&mdsc->snap_flush_lock);
3068 	mdsc->cap_flush_seq = 0;
3069 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3070 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3071 	mdsc->num_cap_flushing = 0;
3072 	spin_lock_init(&mdsc->cap_dirty_lock);
3073 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3074 	spin_lock_init(&mdsc->dentry_lru_lock);
3075 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3076 
3077 	ceph_caps_init(mdsc);
3078 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3079 
3080 	return 0;
3081 }
3082 
3083 /*
3084  * Wait for safe replies on open mds requests.  If we time out, drop
3085  * all requests from the tree to avoid dangling dentry refs.
3086  */
3087 static void wait_requests(struct ceph_mds_client *mdsc)
3088 {
3089 	struct ceph_mds_request *req;
3090 	struct ceph_fs_client *fsc = mdsc->fsc;
3091 
3092 	mutex_lock(&mdsc->mutex);
3093 	if (__get_oldest_req(mdsc)) {
3094 		mutex_unlock(&mdsc->mutex);
3095 
3096 		dout("wait_requests waiting for requests\n");
3097 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3098 				    fsc->client->options->mount_timeout * HZ);
3099 
3100 		/* tear down remaining requests */
3101 		mutex_lock(&mdsc->mutex);
3102 		while ((req = __get_oldest_req(mdsc))) {
3103 			dout("wait_requests timed out on tid %llu\n",
3104 			     req->r_tid);
3105 			__unregister_request(mdsc, req);
3106 		}
3107 	}
3108 	mutex_unlock(&mdsc->mutex);
3109 	dout("wait_requests done\n");
3110 }
3111 
3112 /*
3113  * called before mount is ro, and before dentries are torn down.
3114  * (hmm, does this still race with new lookups?)
3115  */
3116 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3117 {
3118 	dout("pre_umount\n");
3119 	mdsc->stopping = 1;
3120 
3121 	drop_leases(mdsc);
3122 	ceph_flush_dirty_caps(mdsc);
3123 	wait_requests(mdsc);
3124 
3125 	/*
3126 	 * wait for reply handlers to drop their request refs and
3127 	 * their inode/dcache refs
3128 	 */
3129 	ceph_msgr_flush();
3130 }
3131 
3132 /*
3133  * wait for all write mds requests to flush.
3134  */
3135 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3136 {
3137 	struct ceph_mds_request *req = NULL, *nextreq;
3138 	struct rb_node *n;
3139 
3140 	mutex_lock(&mdsc->mutex);
3141 	dout("wait_unsafe_requests want %lld\n", want_tid);
3142 restart:
3143 	req = __get_oldest_req(mdsc);
3144 	while (req && req->r_tid <= want_tid) {
3145 		/* find next request */
3146 		n = rb_next(&req->r_node);
3147 		if (n)
3148 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3149 		else
3150 			nextreq = NULL;
3151 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3152 			/* write op */
3153 			ceph_mdsc_get_request(req);
3154 			if (nextreq)
3155 				ceph_mdsc_get_request(nextreq);
3156 			mutex_unlock(&mdsc->mutex);
3157 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3158 			     req->r_tid, want_tid);
3159 			wait_for_completion(&req->r_safe_completion);
3160 			mutex_lock(&mdsc->mutex);
3161 			ceph_mdsc_put_request(req);
3162 			if (!nextreq)
3163 				break;  /* next dne before, so we're done! */
3164 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3165 				/* next request was removed from tree */
3166 				ceph_mdsc_put_request(nextreq);
3167 				goto restart;
3168 			}
3169 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3170 		}
3171 		req = nextreq;
3172 	}
3173 	mutex_unlock(&mdsc->mutex);
3174 	dout("wait_unsafe_requests done\n");
3175 }
3176 
3177 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3178 {
3179 	u64 want_tid, want_flush;
3180 
3181 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3182 		return;
3183 
3184 	dout("sync\n");
3185 	mutex_lock(&mdsc->mutex);
3186 	want_tid = mdsc->last_tid;
3187 	want_flush = mdsc->cap_flush_seq;
3188 	mutex_unlock(&mdsc->mutex);
3189 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3190 
3191 	ceph_flush_dirty_caps(mdsc);
3192 
3193 	wait_unsafe_requests(mdsc, want_tid);
3194 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3195 }
3196 
3197 /*
3198  * true if all sessions are closed, or we force unmount
3199  */
3200 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3201 {
3202 	int i, n = 0;
3203 
3204 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3205 		return true;
3206 
3207 	mutex_lock(&mdsc->mutex);
3208 	for (i = 0; i < mdsc->max_sessions; i++)
3209 		if (mdsc->sessions[i])
3210 			n++;
3211 	mutex_unlock(&mdsc->mutex);
3212 	return n == 0;
3213 }
3214 
3215 /*
3216  * called after sb is ro.
3217  */
3218 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3219 {
3220 	struct ceph_mds_session *session;
3221 	int i;
3222 	struct ceph_fs_client *fsc = mdsc->fsc;
3223 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3224 
3225 	dout("close_sessions\n");
3226 
3227 	/* close sessions */
3228 	mutex_lock(&mdsc->mutex);
3229 	for (i = 0; i < mdsc->max_sessions; i++) {
3230 		session = __ceph_lookup_mds_session(mdsc, i);
3231 		if (!session)
3232 			continue;
3233 		mutex_unlock(&mdsc->mutex);
3234 		mutex_lock(&session->s_mutex);
3235 		__close_session(mdsc, session);
3236 		mutex_unlock(&session->s_mutex);
3237 		ceph_put_mds_session(session);
3238 		mutex_lock(&mdsc->mutex);
3239 	}
3240 	mutex_unlock(&mdsc->mutex);
3241 
3242 	dout("waiting for sessions to close\n");
3243 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3244 			   timeout);
3245 
3246 	/* tear down remaining sessions */
3247 	mutex_lock(&mdsc->mutex);
3248 	for (i = 0; i < mdsc->max_sessions; i++) {
3249 		if (mdsc->sessions[i]) {
3250 			session = get_session(mdsc->sessions[i]);
3251 			__unregister_session(mdsc, session);
3252 			mutex_unlock(&mdsc->mutex);
3253 			mutex_lock(&session->s_mutex);
3254 			remove_session_caps(session);
3255 			mutex_unlock(&session->s_mutex);
3256 			ceph_put_mds_session(session);
3257 			mutex_lock(&mdsc->mutex);
3258 		}
3259 	}
3260 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3261 	mutex_unlock(&mdsc->mutex);
3262 
3263 	ceph_cleanup_empty_realms(mdsc);
3264 
3265 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3266 
3267 	dout("stopped\n");
3268 }
3269 
3270 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3271 {
3272 	dout("stop\n");
3273 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3274 	if (mdsc->mdsmap)
3275 		ceph_mdsmap_destroy(mdsc->mdsmap);
3276 	kfree(mdsc->sessions);
3277 	ceph_caps_finalize(mdsc);
3278 }
3279 
3280 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3281 {
3282 	struct ceph_mds_client *mdsc = fsc->mdsc;
3283 
3284 	dout("mdsc_destroy %p\n", mdsc);
3285 	ceph_mdsc_stop(mdsc);
3286 
3287 	/* flush out any connection work with references to us */
3288 	ceph_msgr_flush();
3289 
3290 	fsc->mdsc = NULL;
3291 	kfree(mdsc);
3292 	dout("mdsc_destroy %p done\n", mdsc);
3293 }
3294 
3295 
3296 /*
3297  * handle mds map update.
3298  */
3299 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3300 {
3301 	u32 epoch;
3302 	u32 maplen;
3303 	void *p = msg->front.iov_base;
3304 	void *end = p + msg->front.iov_len;
3305 	struct ceph_mdsmap *newmap, *oldmap;
3306 	struct ceph_fsid fsid;
3307 	int err = -EINVAL;
3308 
3309 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3310 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3311 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3312 		return;
3313 	epoch = ceph_decode_32(&p);
3314 	maplen = ceph_decode_32(&p);
3315 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3316 
3317 	/* do we need it? */
3318 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3319 	mutex_lock(&mdsc->mutex);
3320 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3321 		dout("handle_map epoch %u <= our %u\n",
3322 		     epoch, mdsc->mdsmap->m_epoch);
3323 		mutex_unlock(&mdsc->mutex);
3324 		return;
3325 	}
3326 
3327 	newmap = ceph_mdsmap_decode(&p, end);
3328 	if (IS_ERR(newmap)) {
3329 		err = PTR_ERR(newmap);
3330 		goto bad_unlock;
3331 	}
3332 
3333 	/* swap into place */
3334 	if (mdsc->mdsmap) {
3335 		oldmap = mdsc->mdsmap;
3336 		mdsc->mdsmap = newmap;
3337 		check_new_map(mdsc, newmap, oldmap);
3338 		ceph_mdsmap_destroy(oldmap);
3339 	} else {
3340 		mdsc->mdsmap = newmap;  /* first mds map */
3341 	}
3342 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3343 
3344 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3345 
3346 	mutex_unlock(&mdsc->mutex);
3347 	schedule_delayed(mdsc);
3348 	return;
3349 
3350 bad_unlock:
3351 	mutex_unlock(&mdsc->mutex);
3352 bad:
3353 	pr_err("error decoding mdsmap %d\n", err);
3354 	return;
3355 }
3356 
3357 static struct ceph_connection *con_get(struct ceph_connection *con)
3358 {
3359 	struct ceph_mds_session *s = con->private;
3360 
3361 	if (get_session(s)) {
3362 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3363 		return con;
3364 	}
3365 	dout("mdsc con_get %p FAIL\n", s);
3366 	return NULL;
3367 }
3368 
3369 static void con_put(struct ceph_connection *con)
3370 {
3371 	struct ceph_mds_session *s = con->private;
3372 
3373 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3374 	ceph_put_mds_session(s);
3375 }
3376 
3377 /*
3378  * if the client is unresponsive for long enough, the mds will kill
3379  * the session entirely.
3380  */
3381 static void peer_reset(struct ceph_connection *con)
3382 {
3383 	struct ceph_mds_session *s = con->private;
3384 	struct ceph_mds_client *mdsc = s->s_mdsc;
3385 
3386 	pr_warning("mds%d closed our session\n", s->s_mds);
3387 	send_mds_reconnect(mdsc, s);
3388 }
3389 
3390 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3391 {
3392 	struct ceph_mds_session *s = con->private;
3393 	struct ceph_mds_client *mdsc = s->s_mdsc;
3394 	int type = le16_to_cpu(msg->hdr.type);
3395 
3396 	mutex_lock(&mdsc->mutex);
3397 	if (__verify_registered_session(mdsc, s) < 0) {
3398 		mutex_unlock(&mdsc->mutex);
3399 		goto out;
3400 	}
3401 	mutex_unlock(&mdsc->mutex);
3402 
3403 	switch (type) {
3404 	case CEPH_MSG_MDS_MAP:
3405 		ceph_mdsc_handle_map(mdsc, msg);
3406 		break;
3407 	case CEPH_MSG_CLIENT_SESSION:
3408 		handle_session(s, msg);
3409 		break;
3410 	case CEPH_MSG_CLIENT_REPLY:
3411 		handle_reply(s, msg);
3412 		break;
3413 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3414 		handle_forward(mdsc, s, msg);
3415 		break;
3416 	case CEPH_MSG_CLIENT_CAPS:
3417 		ceph_handle_caps(s, msg);
3418 		break;
3419 	case CEPH_MSG_CLIENT_SNAP:
3420 		ceph_handle_snap(mdsc, s, msg);
3421 		break;
3422 	case CEPH_MSG_CLIENT_LEASE:
3423 		handle_lease(mdsc, s, msg);
3424 		break;
3425 
3426 	default:
3427 		pr_err("received unknown message type %d %s\n", type,
3428 		       ceph_msg_type_name(type));
3429 	}
3430 out:
3431 	ceph_msg_put(msg);
3432 }
3433 
3434 /*
3435  * authentication
3436  */
3437 
3438 /*
3439  * Note: returned pointer is the address of a structure that's
3440  * managed separately.  Caller must *not* attempt to free it.
3441  */
3442 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3443 					int *proto, int force_new)
3444 {
3445 	struct ceph_mds_session *s = con->private;
3446 	struct ceph_mds_client *mdsc = s->s_mdsc;
3447 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3448 	struct ceph_auth_handshake *auth = &s->s_auth;
3449 
3450 	if (force_new && auth->authorizer) {
3451 		ceph_auth_destroy_authorizer(ac, auth->authorizer);
3452 		auth->authorizer = NULL;
3453 	}
3454 	if (!auth->authorizer) {
3455 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3456 						      auth);
3457 		if (ret)
3458 			return ERR_PTR(ret);
3459 	} else {
3460 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3461 						      auth);
3462 		if (ret)
3463 			return ERR_PTR(ret);
3464 	}
3465 	*proto = ac->protocol;
3466 
3467 	return auth;
3468 }
3469 
3470 
3471 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3472 {
3473 	struct ceph_mds_session *s = con->private;
3474 	struct ceph_mds_client *mdsc = s->s_mdsc;
3475 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3476 
3477 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3478 }
3479 
3480 static int invalidate_authorizer(struct ceph_connection *con)
3481 {
3482 	struct ceph_mds_session *s = con->private;
3483 	struct ceph_mds_client *mdsc = s->s_mdsc;
3484 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3485 
3486 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3487 
3488 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3489 }
3490 
3491 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3492 				struct ceph_msg_header *hdr, int *skip)
3493 {
3494 	struct ceph_msg *msg;
3495 	int type = (int) le16_to_cpu(hdr->type);
3496 	int front_len = (int) le32_to_cpu(hdr->front_len);
3497 
3498 	if (con->in_msg)
3499 		return con->in_msg;
3500 
3501 	*skip = 0;
3502 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3503 	if (!msg) {
3504 		pr_err("unable to allocate msg type %d len %d\n",
3505 		       type, front_len);
3506 		return NULL;
3507 	}
3508 
3509 	return msg;
3510 }
3511 
3512 static const struct ceph_connection_operations mds_con_ops = {
3513 	.get = con_get,
3514 	.put = con_put,
3515 	.dispatch = dispatch,
3516 	.get_authorizer = get_authorizer,
3517 	.verify_authorizer_reply = verify_authorizer_reply,
3518 	.invalidate_authorizer = invalidate_authorizer,
3519 	.peer_reset = peer_reset,
3520 	.alloc_msg = mds_alloc_msg,
3521 };
3522 
3523 /* eof */
3524