1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/sched.h> 7 #include <linux/debugfs.h> 8 #include <linux/seq_file.h> 9 10 #include "super.h" 11 #include "mds_client.h" 12 13 #include <linux/ceph/ceph_features.h> 14 #include <linux/ceph/messenger.h> 15 #include <linux/ceph/decode.h> 16 #include <linux/ceph/pagelist.h> 17 #include <linux/ceph/auth.h> 18 #include <linux/ceph/debugfs.h> 19 20 /* 21 * A cluster of MDS (metadata server) daemons is responsible for 22 * managing the file system namespace (the directory hierarchy and 23 * inodes) and for coordinating shared access to storage. Metadata is 24 * partitioning hierarchically across a number of servers, and that 25 * partition varies over time as the cluster adjusts the distribution 26 * in order to balance load. 27 * 28 * The MDS client is primarily responsible to managing synchronous 29 * metadata requests for operations like open, unlink, and so forth. 30 * If there is a MDS failure, we find out about it when we (possibly 31 * request and) receive a new MDS map, and can resubmit affected 32 * requests. 33 * 34 * For the most part, though, we take advantage of a lossless 35 * communications channel to the MDS, and do not need to worry about 36 * timing out or resubmitting requests. 37 * 38 * We maintain a stateful "session" with each MDS we interact with. 39 * Within each session, we sent periodic heartbeat messages to ensure 40 * any capabilities or leases we have been issues remain valid. If 41 * the session times out and goes stale, our leases and capabilities 42 * are no longer valid. 43 */ 44 45 struct ceph_reconnect_state { 46 struct ceph_pagelist *pagelist; 47 bool flock; 48 }; 49 50 static void __wake_requests(struct ceph_mds_client *mdsc, 51 struct list_head *head); 52 53 static const struct ceph_connection_operations mds_con_ops; 54 55 56 /* 57 * mds reply parsing 58 */ 59 60 /* 61 * parse individual inode info 62 */ 63 static int parse_reply_info_in(void **p, void *end, 64 struct ceph_mds_reply_info_in *info, 65 int features) 66 { 67 int err = -EIO; 68 69 info->in = *p; 70 *p += sizeof(struct ceph_mds_reply_inode) + 71 sizeof(*info->in->fragtree.splits) * 72 le32_to_cpu(info->in->fragtree.nsplits); 73 74 ceph_decode_32_safe(p, end, info->symlink_len, bad); 75 ceph_decode_need(p, end, info->symlink_len, bad); 76 info->symlink = *p; 77 *p += info->symlink_len; 78 79 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 80 ceph_decode_copy_safe(p, end, &info->dir_layout, 81 sizeof(info->dir_layout), bad); 82 else 83 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 84 85 ceph_decode_32_safe(p, end, info->xattr_len, bad); 86 ceph_decode_need(p, end, info->xattr_len, bad); 87 info->xattr_data = *p; 88 *p += info->xattr_len; 89 return 0; 90 bad: 91 return err; 92 } 93 94 /* 95 * parse a normal reply, which may contain a (dir+)dentry and/or a 96 * target inode. 97 */ 98 static int parse_reply_info_trace(void **p, void *end, 99 struct ceph_mds_reply_info_parsed *info, 100 int features) 101 { 102 int err; 103 104 if (info->head->is_dentry) { 105 err = parse_reply_info_in(p, end, &info->diri, features); 106 if (err < 0) 107 goto out_bad; 108 109 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 110 goto bad; 111 info->dirfrag = *p; 112 *p += sizeof(*info->dirfrag) + 113 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 114 if (unlikely(*p > end)) 115 goto bad; 116 117 ceph_decode_32_safe(p, end, info->dname_len, bad); 118 ceph_decode_need(p, end, info->dname_len, bad); 119 info->dname = *p; 120 *p += info->dname_len; 121 info->dlease = *p; 122 *p += sizeof(*info->dlease); 123 } 124 125 if (info->head->is_target) { 126 err = parse_reply_info_in(p, end, &info->targeti, features); 127 if (err < 0) 128 goto out_bad; 129 } 130 131 if (unlikely(*p != end)) 132 goto bad; 133 return 0; 134 135 bad: 136 err = -EIO; 137 out_bad: 138 pr_err("problem parsing mds trace %d\n", err); 139 return err; 140 } 141 142 /* 143 * parse readdir results 144 */ 145 static int parse_reply_info_dir(void **p, void *end, 146 struct ceph_mds_reply_info_parsed *info, 147 int features) 148 { 149 u32 num, i = 0; 150 int err; 151 152 info->dir_dir = *p; 153 if (*p + sizeof(*info->dir_dir) > end) 154 goto bad; 155 *p += sizeof(*info->dir_dir) + 156 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 157 if (*p > end) 158 goto bad; 159 160 ceph_decode_need(p, end, sizeof(num) + 2, bad); 161 num = ceph_decode_32(p); 162 info->dir_end = ceph_decode_8(p); 163 info->dir_complete = ceph_decode_8(p); 164 if (num == 0) 165 goto done; 166 167 /* alloc large array */ 168 info->dir_nr = num; 169 info->dir_in = kcalloc(num, sizeof(*info->dir_in) + 170 sizeof(*info->dir_dname) + 171 sizeof(*info->dir_dname_len) + 172 sizeof(*info->dir_dlease), 173 GFP_NOFS); 174 if (info->dir_in == NULL) { 175 err = -ENOMEM; 176 goto out_bad; 177 } 178 info->dir_dname = (void *)(info->dir_in + num); 179 info->dir_dname_len = (void *)(info->dir_dname + num); 180 info->dir_dlease = (void *)(info->dir_dname_len + num); 181 182 while (num) { 183 /* dentry */ 184 ceph_decode_need(p, end, sizeof(u32)*2, bad); 185 info->dir_dname_len[i] = ceph_decode_32(p); 186 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 187 info->dir_dname[i] = *p; 188 *p += info->dir_dname_len[i]; 189 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 190 info->dir_dname[i]); 191 info->dir_dlease[i] = *p; 192 *p += sizeof(struct ceph_mds_reply_lease); 193 194 /* inode */ 195 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 196 if (err < 0) 197 goto out_bad; 198 i++; 199 num--; 200 } 201 202 done: 203 if (*p != end) 204 goto bad; 205 return 0; 206 207 bad: 208 err = -EIO; 209 out_bad: 210 pr_err("problem parsing dir contents %d\n", err); 211 return err; 212 } 213 214 /* 215 * parse fcntl F_GETLK results 216 */ 217 static int parse_reply_info_filelock(void **p, void *end, 218 struct ceph_mds_reply_info_parsed *info, 219 int features) 220 { 221 if (*p + sizeof(*info->filelock_reply) > end) 222 goto bad; 223 224 info->filelock_reply = *p; 225 *p += sizeof(*info->filelock_reply); 226 227 if (unlikely(*p != end)) 228 goto bad; 229 return 0; 230 231 bad: 232 return -EIO; 233 } 234 235 /* 236 * parse create results 237 */ 238 static int parse_reply_info_create(void **p, void *end, 239 struct ceph_mds_reply_info_parsed *info, 240 int features) 241 { 242 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) { 243 if (*p == end) { 244 info->has_create_ino = false; 245 } else { 246 info->has_create_ino = true; 247 info->ino = ceph_decode_64(p); 248 } 249 } 250 251 if (unlikely(*p != end)) 252 goto bad; 253 return 0; 254 255 bad: 256 return -EIO; 257 } 258 259 /* 260 * parse extra results 261 */ 262 static int parse_reply_info_extra(void **p, void *end, 263 struct ceph_mds_reply_info_parsed *info, 264 int features) 265 { 266 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 267 return parse_reply_info_filelock(p, end, info, features); 268 else if (info->head->op == CEPH_MDS_OP_READDIR || 269 info->head->op == CEPH_MDS_OP_LSSNAP) 270 return parse_reply_info_dir(p, end, info, features); 271 else if (info->head->op == CEPH_MDS_OP_CREATE) 272 return parse_reply_info_create(p, end, info, features); 273 else 274 return -EIO; 275 } 276 277 /* 278 * parse entire mds reply 279 */ 280 static int parse_reply_info(struct ceph_msg *msg, 281 struct ceph_mds_reply_info_parsed *info, 282 int features) 283 { 284 void *p, *end; 285 u32 len; 286 int err; 287 288 info->head = msg->front.iov_base; 289 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 290 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 291 292 /* trace */ 293 ceph_decode_32_safe(&p, end, len, bad); 294 if (len > 0) { 295 ceph_decode_need(&p, end, len, bad); 296 err = parse_reply_info_trace(&p, p+len, info, features); 297 if (err < 0) 298 goto out_bad; 299 } 300 301 /* extra */ 302 ceph_decode_32_safe(&p, end, len, bad); 303 if (len > 0) { 304 ceph_decode_need(&p, end, len, bad); 305 err = parse_reply_info_extra(&p, p+len, info, features); 306 if (err < 0) 307 goto out_bad; 308 } 309 310 /* snap blob */ 311 ceph_decode_32_safe(&p, end, len, bad); 312 info->snapblob_len = len; 313 info->snapblob = p; 314 p += len; 315 316 if (p != end) 317 goto bad; 318 return 0; 319 320 bad: 321 err = -EIO; 322 out_bad: 323 pr_err("mds parse_reply err %d\n", err); 324 return err; 325 } 326 327 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 328 { 329 kfree(info->dir_in); 330 } 331 332 333 /* 334 * sessions 335 */ 336 static const char *session_state_name(int s) 337 { 338 switch (s) { 339 case CEPH_MDS_SESSION_NEW: return "new"; 340 case CEPH_MDS_SESSION_OPENING: return "opening"; 341 case CEPH_MDS_SESSION_OPEN: return "open"; 342 case CEPH_MDS_SESSION_HUNG: return "hung"; 343 case CEPH_MDS_SESSION_CLOSING: return "closing"; 344 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 345 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 346 default: return "???"; 347 } 348 } 349 350 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 351 { 352 if (atomic_inc_not_zero(&s->s_ref)) { 353 dout("mdsc get_session %p %d -> %d\n", s, 354 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 355 return s; 356 } else { 357 dout("mdsc get_session %p 0 -- FAIL", s); 358 return NULL; 359 } 360 } 361 362 void ceph_put_mds_session(struct ceph_mds_session *s) 363 { 364 dout("mdsc put_session %p %d -> %d\n", s, 365 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 366 if (atomic_dec_and_test(&s->s_ref)) { 367 if (s->s_auth.authorizer) 368 ceph_auth_destroy_authorizer( 369 s->s_mdsc->fsc->client->monc.auth, 370 s->s_auth.authorizer); 371 kfree(s); 372 } 373 } 374 375 /* 376 * called under mdsc->mutex 377 */ 378 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 379 int mds) 380 { 381 struct ceph_mds_session *session; 382 383 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 384 return NULL; 385 session = mdsc->sessions[mds]; 386 dout("lookup_mds_session %p %d\n", session, 387 atomic_read(&session->s_ref)); 388 get_session(session); 389 return session; 390 } 391 392 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 393 { 394 if (mds >= mdsc->max_sessions) 395 return false; 396 return mdsc->sessions[mds]; 397 } 398 399 static int __verify_registered_session(struct ceph_mds_client *mdsc, 400 struct ceph_mds_session *s) 401 { 402 if (s->s_mds >= mdsc->max_sessions || 403 mdsc->sessions[s->s_mds] != s) 404 return -ENOENT; 405 return 0; 406 } 407 408 /* 409 * create+register a new session for given mds. 410 * called under mdsc->mutex. 411 */ 412 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 413 int mds) 414 { 415 struct ceph_mds_session *s; 416 417 s = kzalloc(sizeof(*s), GFP_NOFS); 418 if (!s) 419 return ERR_PTR(-ENOMEM); 420 s->s_mdsc = mdsc; 421 s->s_mds = mds; 422 s->s_state = CEPH_MDS_SESSION_NEW; 423 s->s_ttl = 0; 424 s->s_seq = 0; 425 mutex_init(&s->s_mutex); 426 427 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 428 429 spin_lock_init(&s->s_gen_ttl_lock); 430 s->s_cap_gen = 0; 431 s->s_cap_ttl = jiffies - 1; 432 433 spin_lock_init(&s->s_cap_lock); 434 s->s_renew_requested = 0; 435 s->s_renew_seq = 0; 436 INIT_LIST_HEAD(&s->s_caps); 437 s->s_nr_caps = 0; 438 s->s_trim_caps = 0; 439 atomic_set(&s->s_ref, 1); 440 INIT_LIST_HEAD(&s->s_waiting); 441 INIT_LIST_HEAD(&s->s_unsafe); 442 s->s_num_cap_releases = 0; 443 s->s_cap_iterator = NULL; 444 INIT_LIST_HEAD(&s->s_cap_releases); 445 INIT_LIST_HEAD(&s->s_cap_releases_done); 446 INIT_LIST_HEAD(&s->s_cap_flushing); 447 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 448 449 dout("register_session mds%d\n", mds); 450 if (mds >= mdsc->max_sessions) { 451 int newmax = 1 << get_count_order(mds+1); 452 struct ceph_mds_session **sa; 453 454 dout("register_session realloc to %d\n", newmax); 455 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 456 if (sa == NULL) 457 goto fail_realloc; 458 if (mdsc->sessions) { 459 memcpy(sa, mdsc->sessions, 460 mdsc->max_sessions * sizeof(void *)); 461 kfree(mdsc->sessions); 462 } 463 mdsc->sessions = sa; 464 mdsc->max_sessions = newmax; 465 } 466 mdsc->sessions[mds] = s; 467 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 468 469 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 470 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 471 472 return s; 473 474 fail_realloc: 475 kfree(s); 476 return ERR_PTR(-ENOMEM); 477 } 478 479 /* 480 * called under mdsc->mutex 481 */ 482 static void __unregister_session(struct ceph_mds_client *mdsc, 483 struct ceph_mds_session *s) 484 { 485 dout("__unregister_session mds%d %p\n", s->s_mds, s); 486 BUG_ON(mdsc->sessions[s->s_mds] != s); 487 mdsc->sessions[s->s_mds] = NULL; 488 ceph_con_close(&s->s_con); 489 ceph_put_mds_session(s); 490 } 491 492 /* 493 * drop session refs in request. 494 * 495 * should be last request ref, or hold mdsc->mutex 496 */ 497 static void put_request_session(struct ceph_mds_request *req) 498 { 499 if (req->r_session) { 500 ceph_put_mds_session(req->r_session); 501 req->r_session = NULL; 502 } 503 } 504 505 void ceph_mdsc_release_request(struct kref *kref) 506 { 507 struct ceph_mds_request *req = container_of(kref, 508 struct ceph_mds_request, 509 r_kref); 510 if (req->r_request) 511 ceph_msg_put(req->r_request); 512 if (req->r_reply) { 513 ceph_msg_put(req->r_reply); 514 destroy_reply_info(&req->r_reply_info); 515 } 516 if (req->r_inode) { 517 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 518 iput(req->r_inode); 519 } 520 if (req->r_locked_dir) 521 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 522 if (req->r_target_inode) 523 iput(req->r_target_inode); 524 if (req->r_dentry) 525 dput(req->r_dentry); 526 if (req->r_old_dentry) { 527 /* 528 * track (and drop pins for) r_old_dentry_dir 529 * separately, since r_old_dentry's d_parent may have 530 * changed between the dir mutex being dropped and 531 * this request being freed. 532 */ 533 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 534 CEPH_CAP_PIN); 535 dput(req->r_old_dentry); 536 iput(req->r_old_dentry_dir); 537 } 538 kfree(req->r_path1); 539 kfree(req->r_path2); 540 put_request_session(req); 541 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 542 kfree(req); 543 } 544 545 /* 546 * lookup session, bump ref if found. 547 * 548 * called under mdsc->mutex. 549 */ 550 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 551 u64 tid) 552 { 553 struct ceph_mds_request *req; 554 struct rb_node *n = mdsc->request_tree.rb_node; 555 556 while (n) { 557 req = rb_entry(n, struct ceph_mds_request, r_node); 558 if (tid < req->r_tid) 559 n = n->rb_left; 560 else if (tid > req->r_tid) 561 n = n->rb_right; 562 else { 563 ceph_mdsc_get_request(req); 564 return req; 565 } 566 } 567 return NULL; 568 } 569 570 static void __insert_request(struct ceph_mds_client *mdsc, 571 struct ceph_mds_request *new) 572 { 573 struct rb_node **p = &mdsc->request_tree.rb_node; 574 struct rb_node *parent = NULL; 575 struct ceph_mds_request *req = NULL; 576 577 while (*p) { 578 parent = *p; 579 req = rb_entry(parent, struct ceph_mds_request, r_node); 580 if (new->r_tid < req->r_tid) 581 p = &(*p)->rb_left; 582 else if (new->r_tid > req->r_tid) 583 p = &(*p)->rb_right; 584 else 585 BUG(); 586 } 587 588 rb_link_node(&new->r_node, parent, p); 589 rb_insert_color(&new->r_node, &mdsc->request_tree); 590 } 591 592 /* 593 * Register an in-flight request, and assign a tid. Link to directory 594 * are modifying (if any). 595 * 596 * Called under mdsc->mutex. 597 */ 598 static void __register_request(struct ceph_mds_client *mdsc, 599 struct ceph_mds_request *req, 600 struct inode *dir) 601 { 602 req->r_tid = ++mdsc->last_tid; 603 if (req->r_num_caps) 604 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 605 req->r_num_caps); 606 dout("__register_request %p tid %lld\n", req, req->r_tid); 607 ceph_mdsc_get_request(req); 608 __insert_request(mdsc, req); 609 610 req->r_uid = current_fsuid(); 611 req->r_gid = current_fsgid(); 612 613 if (dir) { 614 struct ceph_inode_info *ci = ceph_inode(dir); 615 616 ihold(dir); 617 spin_lock(&ci->i_unsafe_lock); 618 req->r_unsafe_dir = dir; 619 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 620 spin_unlock(&ci->i_unsafe_lock); 621 } 622 } 623 624 static void __unregister_request(struct ceph_mds_client *mdsc, 625 struct ceph_mds_request *req) 626 { 627 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 628 rb_erase(&req->r_node, &mdsc->request_tree); 629 RB_CLEAR_NODE(&req->r_node); 630 631 if (req->r_unsafe_dir) { 632 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 633 634 spin_lock(&ci->i_unsafe_lock); 635 list_del_init(&req->r_unsafe_dir_item); 636 spin_unlock(&ci->i_unsafe_lock); 637 638 iput(req->r_unsafe_dir); 639 req->r_unsafe_dir = NULL; 640 } 641 642 ceph_mdsc_put_request(req); 643 } 644 645 /* 646 * Choose mds to send request to next. If there is a hint set in the 647 * request (e.g., due to a prior forward hint from the mds), use that. 648 * Otherwise, consult frag tree and/or caps to identify the 649 * appropriate mds. If all else fails, choose randomly. 650 * 651 * Called under mdsc->mutex. 652 */ 653 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 654 { 655 /* 656 * we don't need to worry about protecting the d_parent access 657 * here because we never renaming inside the snapped namespace 658 * except to resplice to another snapdir, and either the old or new 659 * result is a valid result. 660 */ 661 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP) 662 dentry = dentry->d_parent; 663 return dentry; 664 } 665 666 static int __choose_mds(struct ceph_mds_client *mdsc, 667 struct ceph_mds_request *req) 668 { 669 struct inode *inode; 670 struct ceph_inode_info *ci; 671 struct ceph_cap *cap; 672 int mode = req->r_direct_mode; 673 int mds = -1; 674 u32 hash = req->r_direct_hash; 675 bool is_hash = req->r_direct_is_hash; 676 677 /* 678 * is there a specific mds we should try? ignore hint if we have 679 * no session and the mds is not up (active or recovering). 680 */ 681 if (req->r_resend_mds >= 0 && 682 (__have_session(mdsc, req->r_resend_mds) || 683 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 684 dout("choose_mds using resend_mds mds%d\n", 685 req->r_resend_mds); 686 return req->r_resend_mds; 687 } 688 689 if (mode == USE_RANDOM_MDS) 690 goto random; 691 692 inode = NULL; 693 if (req->r_inode) { 694 inode = req->r_inode; 695 } else if (req->r_dentry) { 696 /* ignore race with rename; old or new d_parent is okay */ 697 struct dentry *parent = req->r_dentry->d_parent; 698 struct inode *dir = parent->d_inode; 699 700 if (dir->i_sb != mdsc->fsc->sb) { 701 /* not this fs! */ 702 inode = req->r_dentry->d_inode; 703 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 704 /* direct snapped/virtual snapdir requests 705 * based on parent dir inode */ 706 struct dentry *dn = get_nonsnap_parent(parent); 707 inode = dn->d_inode; 708 dout("__choose_mds using nonsnap parent %p\n", inode); 709 } else if (req->r_dentry->d_inode) { 710 /* dentry target */ 711 inode = req->r_dentry->d_inode; 712 } else { 713 /* dir + name */ 714 inode = dir; 715 hash = ceph_dentry_hash(dir, req->r_dentry); 716 is_hash = true; 717 } 718 } 719 720 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 721 (int)hash, mode); 722 if (!inode) 723 goto random; 724 ci = ceph_inode(inode); 725 726 if (is_hash && S_ISDIR(inode->i_mode)) { 727 struct ceph_inode_frag frag; 728 int found; 729 730 ceph_choose_frag(ci, hash, &frag, &found); 731 if (found) { 732 if (mode == USE_ANY_MDS && frag.ndist > 0) { 733 u8 r; 734 735 /* choose a random replica */ 736 get_random_bytes(&r, 1); 737 r %= frag.ndist; 738 mds = frag.dist[r]; 739 dout("choose_mds %p %llx.%llx " 740 "frag %u mds%d (%d/%d)\n", 741 inode, ceph_vinop(inode), 742 frag.frag, mds, 743 (int)r, frag.ndist); 744 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 745 CEPH_MDS_STATE_ACTIVE) 746 return mds; 747 } 748 749 /* since this file/dir wasn't known to be 750 * replicated, then we want to look for the 751 * authoritative mds. */ 752 mode = USE_AUTH_MDS; 753 if (frag.mds >= 0) { 754 /* choose auth mds */ 755 mds = frag.mds; 756 dout("choose_mds %p %llx.%llx " 757 "frag %u mds%d (auth)\n", 758 inode, ceph_vinop(inode), frag.frag, mds); 759 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 760 CEPH_MDS_STATE_ACTIVE) 761 return mds; 762 } 763 } 764 } 765 766 spin_lock(&ci->i_ceph_lock); 767 cap = NULL; 768 if (mode == USE_AUTH_MDS) 769 cap = ci->i_auth_cap; 770 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 771 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 772 if (!cap) { 773 spin_unlock(&ci->i_ceph_lock); 774 goto random; 775 } 776 mds = cap->session->s_mds; 777 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 778 inode, ceph_vinop(inode), mds, 779 cap == ci->i_auth_cap ? "auth " : "", cap); 780 spin_unlock(&ci->i_ceph_lock); 781 return mds; 782 783 random: 784 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 785 dout("choose_mds chose random mds%d\n", mds); 786 return mds; 787 } 788 789 790 /* 791 * session messages 792 */ 793 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 794 { 795 struct ceph_msg *msg; 796 struct ceph_mds_session_head *h; 797 798 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 799 false); 800 if (!msg) { 801 pr_err("create_session_msg ENOMEM creating msg\n"); 802 return NULL; 803 } 804 h = msg->front.iov_base; 805 h->op = cpu_to_le32(op); 806 h->seq = cpu_to_le64(seq); 807 return msg; 808 } 809 810 /* 811 * send session open request. 812 * 813 * called under mdsc->mutex 814 */ 815 static int __open_session(struct ceph_mds_client *mdsc, 816 struct ceph_mds_session *session) 817 { 818 struct ceph_msg *msg; 819 int mstate; 820 int mds = session->s_mds; 821 822 /* wait for mds to go active? */ 823 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 824 dout("open_session to mds%d (%s)\n", mds, 825 ceph_mds_state_name(mstate)); 826 session->s_state = CEPH_MDS_SESSION_OPENING; 827 session->s_renew_requested = jiffies; 828 829 /* send connect message */ 830 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq); 831 if (!msg) 832 return -ENOMEM; 833 ceph_con_send(&session->s_con, msg); 834 return 0; 835 } 836 837 /* 838 * open sessions for any export targets for the given mds 839 * 840 * called under mdsc->mutex 841 */ 842 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 843 struct ceph_mds_session *session) 844 { 845 struct ceph_mds_info *mi; 846 struct ceph_mds_session *ts; 847 int i, mds = session->s_mds; 848 int target; 849 850 if (mds >= mdsc->mdsmap->m_max_mds) 851 return; 852 mi = &mdsc->mdsmap->m_info[mds]; 853 dout("open_export_target_sessions for mds%d (%d targets)\n", 854 session->s_mds, mi->num_export_targets); 855 856 for (i = 0; i < mi->num_export_targets; i++) { 857 target = mi->export_targets[i]; 858 ts = __ceph_lookup_mds_session(mdsc, target); 859 if (!ts) { 860 ts = register_session(mdsc, target); 861 if (IS_ERR(ts)) 862 return; 863 } 864 if (session->s_state == CEPH_MDS_SESSION_NEW || 865 session->s_state == CEPH_MDS_SESSION_CLOSING) 866 __open_session(mdsc, session); 867 else 868 dout(" mds%d target mds%d %p is %s\n", session->s_mds, 869 i, ts, session_state_name(ts->s_state)); 870 ceph_put_mds_session(ts); 871 } 872 } 873 874 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 875 struct ceph_mds_session *session) 876 { 877 mutex_lock(&mdsc->mutex); 878 __open_export_target_sessions(mdsc, session); 879 mutex_unlock(&mdsc->mutex); 880 } 881 882 /* 883 * session caps 884 */ 885 886 /* 887 * Free preallocated cap messages assigned to this session 888 */ 889 static void cleanup_cap_releases(struct ceph_mds_session *session) 890 { 891 struct ceph_msg *msg; 892 893 spin_lock(&session->s_cap_lock); 894 while (!list_empty(&session->s_cap_releases)) { 895 msg = list_first_entry(&session->s_cap_releases, 896 struct ceph_msg, list_head); 897 list_del_init(&msg->list_head); 898 ceph_msg_put(msg); 899 } 900 while (!list_empty(&session->s_cap_releases_done)) { 901 msg = list_first_entry(&session->s_cap_releases_done, 902 struct ceph_msg, list_head); 903 list_del_init(&msg->list_head); 904 ceph_msg_put(msg); 905 } 906 spin_unlock(&session->s_cap_lock); 907 } 908 909 /* 910 * Helper to safely iterate over all caps associated with a session, with 911 * special care taken to handle a racing __ceph_remove_cap(). 912 * 913 * Caller must hold session s_mutex. 914 */ 915 static int iterate_session_caps(struct ceph_mds_session *session, 916 int (*cb)(struct inode *, struct ceph_cap *, 917 void *), void *arg) 918 { 919 struct list_head *p; 920 struct ceph_cap *cap; 921 struct inode *inode, *last_inode = NULL; 922 struct ceph_cap *old_cap = NULL; 923 int ret; 924 925 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 926 spin_lock(&session->s_cap_lock); 927 p = session->s_caps.next; 928 while (p != &session->s_caps) { 929 cap = list_entry(p, struct ceph_cap, session_caps); 930 inode = igrab(&cap->ci->vfs_inode); 931 if (!inode) { 932 p = p->next; 933 continue; 934 } 935 session->s_cap_iterator = cap; 936 spin_unlock(&session->s_cap_lock); 937 938 if (last_inode) { 939 iput(last_inode); 940 last_inode = NULL; 941 } 942 if (old_cap) { 943 ceph_put_cap(session->s_mdsc, old_cap); 944 old_cap = NULL; 945 } 946 947 ret = cb(inode, cap, arg); 948 last_inode = inode; 949 950 spin_lock(&session->s_cap_lock); 951 p = p->next; 952 if (cap->ci == NULL) { 953 dout("iterate_session_caps finishing cap %p removal\n", 954 cap); 955 BUG_ON(cap->session != session); 956 list_del_init(&cap->session_caps); 957 session->s_nr_caps--; 958 cap->session = NULL; 959 old_cap = cap; /* put_cap it w/o locks held */ 960 } 961 if (ret < 0) 962 goto out; 963 } 964 ret = 0; 965 out: 966 session->s_cap_iterator = NULL; 967 spin_unlock(&session->s_cap_lock); 968 969 if (last_inode) 970 iput(last_inode); 971 if (old_cap) 972 ceph_put_cap(session->s_mdsc, old_cap); 973 974 return ret; 975 } 976 977 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 978 void *arg) 979 { 980 struct ceph_inode_info *ci = ceph_inode(inode); 981 int drop = 0; 982 983 dout("removing cap %p, ci is %p, inode is %p\n", 984 cap, ci, &ci->vfs_inode); 985 spin_lock(&ci->i_ceph_lock); 986 __ceph_remove_cap(cap); 987 if (!__ceph_is_any_real_caps(ci)) { 988 struct ceph_mds_client *mdsc = 989 ceph_sb_to_client(inode->i_sb)->mdsc; 990 991 spin_lock(&mdsc->cap_dirty_lock); 992 if (!list_empty(&ci->i_dirty_item)) { 993 pr_info(" dropping dirty %s state for %p %lld\n", 994 ceph_cap_string(ci->i_dirty_caps), 995 inode, ceph_ino(inode)); 996 ci->i_dirty_caps = 0; 997 list_del_init(&ci->i_dirty_item); 998 drop = 1; 999 } 1000 if (!list_empty(&ci->i_flushing_item)) { 1001 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 1002 ceph_cap_string(ci->i_flushing_caps), 1003 inode, ceph_ino(inode)); 1004 ci->i_flushing_caps = 0; 1005 list_del_init(&ci->i_flushing_item); 1006 mdsc->num_cap_flushing--; 1007 drop = 1; 1008 } 1009 if (drop && ci->i_wrbuffer_ref) { 1010 pr_info(" dropping dirty data for %p %lld\n", 1011 inode, ceph_ino(inode)); 1012 ci->i_wrbuffer_ref = 0; 1013 ci->i_wrbuffer_ref_head = 0; 1014 drop++; 1015 } 1016 spin_unlock(&mdsc->cap_dirty_lock); 1017 } 1018 spin_unlock(&ci->i_ceph_lock); 1019 while (drop--) 1020 iput(inode); 1021 return 0; 1022 } 1023 1024 /* 1025 * caller must hold session s_mutex 1026 */ 1027 static void remove_session_caps(struct ceph_mds_session *session) 1028 { 1029 dout("remove_session_caps on %p\n", session); 1030 iterate_session_caps(session, remove_session_caps_cb, NULL); 1031 BUG_ON(session->s_nr_caps > 0); 1032 BUG_ON(!list_empty(&session->s_cap_flushing)); 1033 cleanup_cap_releases(session); 1034 } 1035 1036 /* 1037 * wake up any threads waiting on this session's caps. if the cap is 1038 * old (didn't get renewed on the client reconnect), remove it now. 1039 * 1040 * caller must hold s_mutex. 1041 */ 1042 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1043 void *arg) 1044 { 1045 struct ceph_inode_info *ci = ceph_inode(inode); 1046 1047 wake_up_all(&ci->i_cap_wq); 1048 if (arg) { 1049 spin_lock(&ci->i_ceph_lock); 1050 ci->i_wanted_max_size = 0; 1051 ci->i_requested_max_size = 0; 1052 spin_unlock(&ci->i_ceph_lock); 1053 } 1054 return 0; 1055 } 1056 1057 static void wake_up_session_caps(struct ceph_mds_session *session, 1058 int reconnect) 1059 { 1060 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1061 iterate_session_caps(session, wake_up_session_cb, 1062 (void *)(unsigned long)reconnect); 1063 } 1064 1065 /* 1066 * Send periodic message to MDS renewing all currently held caps. The 1067 * ack will reset the expiration for all caps from this session. 1068 * 1069 * caller holds s_mutex 1070 */ 1071 static int send_renew_caps(struct ceph_mds_client *mdsc, 1072 struct ceph_mds_session *session) 1073 { 1074 struct ceph_msg *msg; 1075 int state; 1076 1077 if (time_after_eq(jiffies, session->s_cap_ttl) && 1078 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1079 pr_info("mds%d caps stale\n", session->s_mds); 1080 session->s_renew_requested = jiffies; 1081 1082 /* do not try to renew caps until a recovering mds has reconnected 1083 * with its clients. */ 1084 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1085 if (state < CEPH_MDS_STATE_RECONNECT) { 1086 dout("send_renew_caps ignoring mds%d (%s)\n", 1087 session->s_mds, ceph_mds_state_name(state)); 1088 return 0; 1089 } 1090 1091 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1092 ceph_mds_state_name(state)); 1093 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1094 ++session->s_renew_seq); 1095 if (!msg) 1096 return -ENOMEM; 1097 ceph_con_send(&session->s_con, msg); 1098 return 0; 1099 } 1100 1101 /* 1102 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1103 * 1104 * Called under session->s_mutex 1105 */ 1106 static void renewed_caps(struct ceph_mds_client *mdsc, 1107 struct ceph_mds_session *session, int is_renew) 1108 { 1109 int was_stale; 1110 int wake = 0; 1111 1112 spin_lock(&session->s_cap_lock); 1113 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1114 1115 session->s_cap_ttl = session->s_renew_requested + 1116 mdsc->mdsmap->m_session_timeout*HZ; 1117 1118 if (was_stale) { 1119 if (time_before(jiffies, session->s_cap_ttl)) { 1120 pr_info("mds%d caps renewed\n", session->s_mds); 1121 wake = 1; 1122 } else { 1123 pr_info("mds%d caps still stale\n", session->s_mds); 1124 } 1125 } 1126 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1127 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1128 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1129 spin_unlock(&session->s_cap_lock); 1130 1131 if (wake) 1132 wake_up_session_caps(session, 0); 1133 } 1134 1135 /* 1136 * send a session close request 1137 */ 1138 static int request_close_session(struct ceph_mds_client *mdsc, 1139 struct ceph_mds_session *session) 1140 { 1141 struct ceph_msg *msg; 1142 1143 dout("request_close_session mds%d state %s seq %lld\n", 1144 session->s_mds, session_state_name(session->s_state), 1145 session->s_seq); 1146 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1147 if (!msg) 1148 return -ENOMEM; 1149 ceph_con_send(&session->s_con, msg); 1150 return 0; 1151 } 1152 1153 /* 1154 * Called with s_mutex held. 1155 */ 1156 static int __close_session(struct ceph_mds_client *mdsc, 1157 struct ceph_mds_session *session) 1158 { 1159 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1160 return 0; 1161 session->s_state = CEPH_MDS_SESSION_CLOSING; 1162 return request_close_session(mdsc, session); 1163 } 1164 1165 /* 1166 * Trim old(er) caps. 1167 * 1168 * Because we can't cache an inode without one or more caps, we do 1169 * this indirectly: if a cap is unused, we prune its aliases, at which 1170 * point the inode will hopefully get dropped to. 1171 * 1172 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1173 * memory pressure from the MDS, though, so it needn't be perfect. 1174 */ 1175 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1176 { 1177 struct ceph_mds_session *session = arg; 1178 struct ceph_inode_info *ci = ceph_inode(inode); 1179 int used, oissued, mine; 1180 1181 if (session->s_trim_caps <= 0) 1182 return -1; 1183 1184 spin_lock(&ci->i_ceph_lock); 1185 mine = cap->issued | cap->implemented; 1186 used = __ceph_caps_used(ci); 1187 oissued = __ceph_caps_issued_other(ci, cap); 1188 1189 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n", 1190 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1191 ceph_cap_string(used)); 1192 if (ci->i_dirty_caps) 1193 goto out; /* dirty caps */ 1194 if ((used & ~oissued) & mine) 1195 goto out; /* we need these caps */ 1196 1197 session->s_trim_caps--; 1198 if (oissued) { 1199 /* we aren't the only cap.. just remove us */ 1200 __queue_cap_release(session, ceph_ino(inode), cap->cap_id, 1201 cap->mseq, cap->issue_seq); 1202 __ceph_remove_cap(cap); 1203 } else { 1204 /* try to drop referring dentries */ 1205 spin_unlock(&ci->i_ceph_lock); 1206 d_prune_aliases(inode); 1207 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1208 inode, cap, atomic_read(&inode->i_count)); 1209 return 0; 1210 } 1211 1212 out: 1213 spin_unlock(&ci->i_ceph_lock); 1214 return 0; 1215 } 1216 1217 /* 1218 * Trim session cap count down to some max number. 1219 */ 1220 static int trim_caps(struct ceph_mds_client *mdsc, 1221 struct ceph_mds_session *session, 1222 int max_caps) 1223 { 1224 int trim_caps = session->s_nr_caps - max_caps; 1225 1226 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1227 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1228 if (trim_caps > 0) { 1229 session->s_trim_caps = trim_caps; 1230 iterate_session_caps(session, trim_caps_cb, session); 1231 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1232 session->s_mds, session->s_nr_caps, max_caps, 1233 trim_caps - session->s_trim_caps); 1234 session->s_trim_caps = 0; 1235 } 1236 return 0; 1237 } 1238 1239 /* 1240 * Allocate cap_release messages. If there is a partially full message 1241 * in the queue, try to allocate enough to cover it's remainder, so that 1242 * we can send it immediately. 1243 * 1244 * Called under s_mutex. 1245 */ 1246 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1247 struct ceph_mds_session *session) 1248 { 1249 struct ceph_msg *msg, *partial = NULL; 1250 struct ceph_mds_cap_release *head; 1251 int err = -ENOMEM; 1252 int extra = mdsc->fsc->mount_options->cap_release_safety; 1253 int num; 1254 1255 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1256 extra); 1257 1258 spin_lock(&session->s_cap_lock); 1259 1260 if (!list_empty(&session->s_cap_releases)) { 1261 msg = list_first_entry(&session->s_cap_releases, 1262 struct ceph_msg, 1263 list_head); 1264 head = msg->front.iov_base; 1265 num = le32_to_cpu(head->num); 1266 if (num) { 1267 dout(" partial %p with (%d/%d)\n", msg, num, 1268 (int)CEPH_CAPS_PER_RELEASE); 1269 extra += CEPH_CAPS_PER_RELEASE - num; 1270 partial = msg; 1271 } 1272 } 1273 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1274 spin_unlock(&session->s_cap_lock); 1275 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1276 GFP_NOFS, false); 1277 if (!msg) 1278 goto out_unlocked; 1279 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1280 (int)msg->front.iov_len); 1281 head = msg->front.iov_base; 1282 head->num = cpu_to_le32(0); 1283 msg->front.iov_len = sizeof(*head); 1284 spin_lock(&session->s_cap_lock); 1285 list_add(&msg->list_head, &session->s_cap_releases); 1286 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1287 } 1288 1289 if (partial) { 1290 head = partial->front.iov_base; 1291 num = le32_to_cpu(head->num); 1292 dout(" queueing partial %p with %d/%d\n", partial, num, 1293 (int)CEPH_CAPS_PER_RELEASE); 1294 list_move_tail(&partial->list_head, 1295 &session->s_cap_releases_done); 1296 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1297 } 1298 err = 0; 1299 spin_unlock(&session->s_cap_lock); 1300 out_unlocked: 1301 return err; 1302 } 1303 1304 /* 1305 * flush all dirty inode data to disk. 1306 * 1307 * returns true if we've flushed through want_flush_seq 1308 */ 1309 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1310 { 1311 int mds, ret = 1; 1312 1313 dout("check_cap_flush want %lld\n", want_flush_seq); 1314 mutex_lock(&mdsc->mutex); 1315 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1316 struct ceph_mds_session *session = mdsc->sessions[mds]; 1317 1318 if (!session) 1319 continue; 1320 get_session(session); 1321 mutex_unlock(&mdsc->mutex); 1322 1323 mutex_lock(&session->s_mutex); 1324 if (!list_empty(&session->s_cap_flushing)) { 1325 struct ceph_inode_info *ci = 1326 list_entry(session->s_cap_flushing.next, 1327 struct ceph_inode_info, 1328 i_flushing_item); 1329 struct inode *inode = &ci->vfs_inode; 1330 1331 spin_lock(&ci->i_ceph_lock); 1332 if (ci->i_cap_flush_seq <= want_flush_seq) { 1333 dout("check_cap_flush still flushing %p " 1334 "seq %lld <= %lld to mds%d\n", inode, 1335 ci->i_cap_flush_seq, want_flush_seq, 1336 session->s_mds); 1337 ret = 0; 1338 } 1339 spin_unlock(&ci->i_ceph_lock); 1340 } 1341 mutex_unlock(&session->s_mutex); 1342 ceph_put_mds_session(session); 1343 1344 if (!ret) 1345 return ret; 1346 mutex_lock(&mdsc->mutex); 1347 } 1348 1349 mutex_unlock(&mdsc->mutex); 1350 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1351 return ret; 1352 } 1353 1354 /* 1355 * called under s_mutex 1356 */ 1357 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1358 struct ceph_mds_session *session) 1359 { 1360 struct ceph_msg *msg; 1361 1362 dout("send_cap_releases mds%d\n", session->s_mds); 1363 spin_lock(&session->s_cap_lock); 1364 while (!list_empty(&session->s_cap_releases_done)) { 1365 msg = list_first_entry(&session->s_cap_releases_done, 1366 struct ceph_msg, list_head); 1367 list_del_init(&msg->list_head); 1368 spin_unlock(&session->s_cap_lock); 1369 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1370 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1371 ceph_con_send(&session->s_con, msg); 1372 spin_lock(&session->s_cap_lock); 1373 } 1374 spin_unlock(&session->s_cap_lock); 1375 } 1376 1377 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1378 struct ceph_mds_session *session) 1379 { 1380 struct ceph_msg *msg; 1381 struct ceph_mds_cap_release *head; 1382 unsigned num; 1383 1384 dout("discard_cap_releases mds%d\n", session->s_mds); 1385 spin_lock(&session->s_cap_lock); 1386 1387 /* zero out the in-progress message */ 1388 msg = list_first_entry(&session->s_cap_releases, 1389 struct ceph_msg, list_head); 1390 head = msg->front.iov_base; 1391 num = le32_to_cpu(head->num); 1392 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num); 1393 head->num = cpu_to_le32(0); 1394 msg->front.iov_len = sizeof(*head); 1395 session->s_num_cap_releases += num; 1396 1397 /* requeue completed messages */ 1398 while (!list_empty(&session->s_cap_releases_done)) { 1399 msg = list_first_entry(&session->s_cap_releases_done, 1400 struct ceph_msg, list_head); 1401 list_del_init(&msg->list_head); 1402 1403 head = msg->front.iov_base; 1404 num = le32_to_cpu(head->num); 1405 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1406 num); 1407 session->s_num_cap_releases += num; 1408 head->num = cpu_to_le32(0); 1409 msg->front.iov_len = sizeof(*head); 1410 list_add(&msg->list_head, &session->s_cap_releases); 1411 } 1412 1413 spin_unlock(&session->s_cap_lock); 1414 } 1415 1416 /* 1417 * requests 1418 */ 1419 1420 /* 1421 * Create an mds request. 1422 */ 1423 struct ceph_mds_request * 1424 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1425 { 1426 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1427 1428 if (!req) 1429 return ERR_PTR(-ENOMEM); 1430 1431 mutex_init(&req->r_fill_mutex); 1432 req->r_mdsc = mdsc; 1433 req->r_started = jiffies; 1434 req->r_resend_mds = -1; 1435 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1436 req->r_fmode = -1; 1437 kref_init(&req->r_kref); 1438 INIT_LIST_HEAD(&req->r_wait); 1439 init_completion(&req->r_completion); 1440 init_completion(&req->r_safe_completion); 1441 INIT_LIST_HEAD(&req->r_unsafe_item); 1442 1443 req->r_op = op; 1444 req->r_direct_mode = mode; 1445 return req; 1446 } 1447 1448 /* 1449 * return oldest (lowest) request, tid in request tree, 0 if none. 1450 * 1451 * called under mdsc->mutex. 1452 */ 1453 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1454 { 1455 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1456 return NULL; 1457 return rb_entry(rb_first(&mdsc->request_tree), 1458 struct ceph_mds_request, r_node); 1459 } 1460 1461 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1462 { 1463 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1464 1465 if (req) 1466 return req->r_tid; 1467 return 0; 1468 } 1469 1470 /* 1471 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1472 * on build_path_from_dentry in fs/cifs/dir.c. 1473 * 1474 * If @stop_on_nosnap, generate path relative to the first non-snapped 1475 * inode. 1476 * 1477 * Encode hidden .snap dirs as a double /, i.e. 1478 * foo/.snap/bar -> foo//bar 1479 */ 1480 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1481 int stop_on_nosnap) 1482 { 1483 struct dentry *temp; 1484 char *path; 1485 int len, pos; 1486 unsigned seq; 1487 1488 if (dentry == NULL) 1489 return ERR_PTR(-EINVAL); 1490 1491 retry: 1492 len = 0; 1493 seq = read_seqbegin(&rename_lock); 1494 rcu_read_lock(); 1495 for (temp = dentry; !IS_ROOT(temp);) { 1496 struct inode *inode = temp->d_inode; 1497 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1498 len++; /* slash only */ 1499 else if (stop_on_nosnap && inode && 1500 ceph_snap(inode) == CEPH_NOSNAP) 1501 break; 1502 else 1503 len += 1 + temp->d_name.len; 1504 temp = temp->d_parent; 1505 } 1506 rcu_read_unlock(); 1507 if (len) 1508 len--; /* no leading '/' */ 1509 1510 path = kmalloc(len+1, GFP_NOFS); 1511 if (path == NULL) 1512 return ERR_PTR(-ENOMEM); 1513 pos = len; 1514 path[pos] = 0; /* trailing null */ 1515 rcu_read_lock(); 1516 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1517 struct inode *inode; 1518 1519 spin_lock(&temp->d_lock); 1520 inode = temp->d_inode; 1521 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1522 dout("build_path path+%d: %p SNAPDIR\n", 1523 pos, temp); 1524 } else if (stop_on_nosnap && inode && 1525 ceph_snap(inode) == CEPH_NOSNAP) { 1526 spin_unlock(&temp->d_lock); 1527 break; 1528 } else { 1529 pos -= temp->d_name.len; 1530 if (pos < 0) { 1531 spin_unlock(&temp->d_lock); 1532 break; 1533 } 1534 strncpy(path + pos, temp->d_name.name, 1535 temp->d_name.len); 1536 } 1537 spin_unlock(&temp->d_lock); 1538 if (pos) 1539 path[--pos] = '/'; 1540 temp = temp->d_parent; 1541 } 1542 rcu_read_unlock(); 1543 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1544 pr_err("build_path did not end path lookup where " 1545 "expected, namelen is %d, pos is %d\n", len, pos); 1546 /* presumably this is only possible if racing with a 1547 rename of one of the parent directories (we can not 1548 lock the dentries above us to prevent this, but 1549 retrying should be harmless) */ 1550 kfree(path); 1551 goto retry; 1552 } 1553 1554 *base = ceph_ino(temp->d_inode); 1555 *plen = len; 1556 dout("build_path on %p %d built %llx '%.*s'\n", 1557 dentry, d_count(dentry), *base, len, path); 1558 return path; 1559 } 1560 1561 static int build_dentry_path(struct dentry *dentry, 1562 const char **ppath, int *ppathlen, u64 *pino, 1563 int *pfreepath) 1564 { 1565 char *path; 1566 1567 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1568 *pino = ceph_ino(dentry->d_parent->d_inode); 1569 *ppath = dentry->d_name.name; 1570 *ppathlen = dentry->d_name.len; 1571 return 0; 1572 } 1573 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1574 if (IS_ERR(path)) 1575 return PTR_ERR(path); 1576 *ppath = path; 1577 *pfreepath = 1; 1578 return 0; 1579 } 1580 1581 static int build_inode_path(struct inode *inode, 1582 const char **ppath, int *ppathlen, u64 *pino, 1583 int *pfreepath) 1584 { 1585 struct dentry *dentry; 1586 char *path; 1587 1588 if (ceph_snap(inode) == CEPH_NOSNAP) { 1589 *pino = ceph_ino(inode); 1590 *ppathlen = 0; 1591 return 0; 1592 } 1593 dentry = d_find_alias(inode); 1594 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1595 dput(dentry); 1596 if (IS_ERR(path)) 1597 return PTR_ERR(path); 1598 *ppath = path; 1599 *pfreepath = 1; 1600 return 0; 1601 } 1602 1603 /* 1604 * request arguments may be specified via an inode *, a dentry *, or 1605 * an explicit ino+path. 1606 */ 1607 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1608 const char *rpath, u64 rino, 1609 const char **ppath, int *pathlen, 1610 u64 *ino, int *freepath) 1611 { 1612 int r = 0; 1613 1614 if (rinode) { 1615 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1616 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1617 ceph_snap(rinode)); 1618 } else if (rdentry) { 1619 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1620 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1621 *ppath); 1622 } else if (rpath || rino) { 1623 *ino = rino; 1624 *ppath = rpath; 1625 *pathlen = rpath ? strlen(rpath) : 0; 1626 dout(" path %.*s\n", *pathlen, rpath); 1627 } 1628 1629 return r; 1630 } 1631 1632 /* 1633 * called under mdsc->mutex 1634 */ 1635 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1636 struct ceph_mds_request *req, 1637 int mds) 1638 { 1639 struct ceph_msg *msg; 1640 struct ceph_mds_request_head *head; 1641 const char *path1 = NULL; 1642 const char *path2 = NULL; 1643 u64 ino1 = 0, ino2 = 0; 1644 int pathlen1 = 0, pathlen2 = 0; 1645 int freepath1 = 0, freepath2 = 0; 1646 int len; 1647 u16 releases; 1648 void *p, *end; 1649 int ret; 1650 1651 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1652 req->r_path1, req->r_ino1.ino, 1653 &path1, &pathlen1, &ino1, &freepath1); 1654 if (ret < 0) { 1655 msg = ERR_PTR(ret); 1656 goto out; 1657 } 1658 1659 ret = set_request_path_attr(NULL, req->r_old_dentry, 1660 req->r_path2, req->r_ino2.ino, 1661 &path2, &pathlen2, &ino2, &freepath2); 1662 if (ret < 0) { 1663 msg = ERR_PTR(ret); 1664 goto out_free1; 1665 } 1666 1667 len = sizeof(*head) + 1668 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)); 1669 1670 /* calculate (max) length for cap releases */ 1671 len += sizeof(struct ceph_mds_request_release) * 1672 (!!req->r_inode_drop + !!req->r_dentry_drop + 1673 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1674 if (req->r_dentry_drop) 1675 len += req->r_dentry->d_name.len; 1676 if (req->r_old_dentry_drop) 1677 len += req->r_old_dentry->d_name.len; 1678 1679 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1680 if (!msg) { 1681 msg = ERR_PTR(-ENOMEM); 1682 goto out_free2; 1683 } 1684 1685 msg->hdr.tid = cpu_to_le64(req->r_tid); 1686 1687 head = msg->front.iov_base; 1688 p = msg->front.iov_base + sizeof(*head); 1689 end = msg->front.iov_base + msg->front.iov_len; 1690 1691 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1692 head->op = cpu_to_le32(req->r_op); 1693 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); 1694 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); 1695 head->args = req->r_args; 1696 1697 ceph_encode_filepath(&p, end, ino1, path1); 1698 ceph_encode_filepath(&p, end, ino2, path2); 1699 1700 /* make note of release offset, in case we need to replay */ 1701 req->r_request_release_offset = p - msg->front.iov_base; 1702 1703 /* cap releases */ 1704 releases = 0; 1705 if (req->r_inode_drop) 1706 releases += ceph_encode_inode_release(&p, 1707 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1708 mds, req->r_inode_drop, req->r_inode_unless, 0); 1709 if (req->r_dentry_drop) 1710 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1711 mds, req->r_dentry_drop, req->r_dentry_unless); 1712 if (req->r_old_dentry_drop) 1713 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1714 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1715 if (req->r_old_inode_drop) 1716 releases += ceph_encode_inode_release(&p, 1717 req->r_old_dentry->d_inode, 1718 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1719 head->num_releases = cpu_to_le16(releases); 1720 1721 BUG_ON(p > end); 1722 msg->front.iov_len = p - msg->front.iov_base; 1723 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1724 1725 if (req->r_data_len) { 1726 /* outbound data set only by ceph_sync_setxattr() */ 1727 BUG_ON(!req->r_pages); 1728 ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0); 1729 } 1730 1731 msg->hdr.data_len = cpu_to_le32(req->r_data_len); 1732 msg->hdr.data_off = cpu_to_le16(0); 1733 1734 out_free2: 1735 if (freepath2) 1736 kfree((char *)path2); 1737 out_free1: 1738 if (freepath1) 1739 kfree((char *)path1); 1740 out: 1741 return msg; 1742 } 1743 1744 /* 1745 * called under mdsc->mutex if error, under no mutex if 1746 * success. 1747 */ 1748 static void complete_request(struct ceph_mds_client *mdsc, 1749 struct ceph_mds_request *req) 1750 { 1751 if (req->r_callback) 1752 req->r_callback(mdsc, req); 1753 else 1754 complete_all(&req->r_completion); 1755 } 1756 1757 /* 1758 * called under mdsc->mutex 1759 */ 1760 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1761 struct ceph_mds_request *req, 1762 int mds) 1763 { 1764 struct ceph_mds_request_head *rhead; 1765 struct ceph_msg *msg; 1766 int flags = 0; 1767 1768 req->r_attempts++; 1769 if (req->r_inode) { 1770 struct ceph_cap *cap = 1771 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 1772 1773 if (cap) 1774 req->r_sent_on_mseq = cap->mseq; 1775 else 1776 req->r_sent_on_mseq = -1; 1777 } 1778 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1779 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1780 1781 if (req->r_got_unsafe) { 1782 /* 1783 * Replay. Do not regenerate message (and rebuild 1784 * paths, etc.); just use the original message. 1785 * Rebuilding paths will break for renames because 1786 * d_move mangles the src name. 1787 */ 1788 msg = req->r_request; 1789 rhead = msg->front.iov_base; 1790 1791 flags = le32_to_cpu(rhead->flags); 1792 flags |= CEPH_MDS_FLAG_REPLAY; 1793 rhead->flags = cpu_to_le32(flags); 1794 1795 if (req->r_target_inode) 1796 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 1797 1798 rhead->num_retry = req->r_attempts - 1; 1799 1800 /* remove cap/dentry releases from message */ 1801 rhead->num_releases = 0; 1802 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset); 1803 msg->front.iov_len = req->r_request_release_offset; 1804 return 0; 1805 } 1806 1807 if (req->r_request) { 1808 ceph_msg_put(req->r_request); 1809 req->r_request = NULL; 1810 } 1811 msg = create_request_message(mdsc, req, mds); 1812 if (IS_ERR(msg)) { 1813 req->r_err = PTR_ERR(msg); 1814 complete_request(mdsc, req); 1815 return PTR_ERR(msg); 1816 } 1817 req->r_request = msg; 1818 1819 rhead = msg->front.iov_base; 1820 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 1821 if (req->r_got_unsafe) 1822 flags |= CEPH_MDS_FLAG_REPLAY; 1823 if (req->r_locked_dir) 1824 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 1825 rhead->flags = cpu_to_le32(flags); 1826 rhead->num_fwd = req->r_num_fwd; 1827 rhead->num_retry = req->r_attempts - 1; 1828 rhead->ino = 0; 1829 1830 dout(" r_locked_dir = %p\n", req->r_locked_dir); 1831 return 0; 1832 } 1833 1834 /* 1835 * send request, or put it on the appropriate wait list. 1836 */ 1837 static int __do_request(struct ceph_mds_client *mdsc, 1838 struct ceph_mds_request *req) 1839 { 1840 struct ceph_mds_session *session = NULL; 1841 int mds = -1; 1842 int err = -EAGAIN; 1843 1844 if (req->r_err || req->r_got_result) 1845 goto out; 1846 1847 if (req->r_timeout && 1848 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 1849 dout("do_request timed out\n"); 1850 err = -EIO; 1851 goto finish; 1852 } 1853 1854 put_request_session(req); 1855 1856 mds = __choose_mds(mdsc, req); 1857 if (mds < 0 || 1858 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 1859 dout("do_request no mds or not active, waiting for map\n"); 1860 list_add(&req->r_wait, &mdsc->waiting_for_map); 1861 goto out; 1862 } 1863 1864 /* get, open session */ 1865 session = __ceph_lookup_mds_session(mdsc, mds); 1866 if (!session) { 1867 session = register_session(mdsc, mds); 1868 if (IS_ERR(session)) { 1869 err = PTR_ERR(session); 1870 goto finish; 1871 } 1872 } 1873 req->r_session = get_session(session); 1874 1875 dout("do_request mds%d session %p state %s\n", mds, session, 1876 session_state_name(session->s_state)); 1877 if (session->s_state != CEPH_MDS_SESSION_OPEN && 1878 session->s_state != CEPH_MDS_SESSION_HUNG) { 1879 if (session->s_state == CEPH_MDS_SESSION_NEW || 1880 session->s_state == CEPH_MDS_SESSION_CLOSING) 1881 __open_session(mdsc, session); 1882 list_add(&req->r_wait, &session->s_waiting); 1883 goto out_session; 1884 } 1885 1886 /* send request */ 1887 req->r_resend_mds = -1; /* forget any previous mds hint */ 1888 1889 if (req->r_request_started == 0) /* note request start time */ 1890 req->r_request_started = jiffies; 1891 1892 err = __prepare_send_request(mdsc, req, mds); 1893 if (!err) { 1894 ceph_msg_get(req->r_request); 1895 ceph_con_send(&session->s_con, req->r_request); 1896 } 1897 1898 out_session: 1899 ceph_put_mds_session(session); 1900 out: 1901 return err; 1902 1903 finish: 1904 req->r_err = err; 1905 complete_request(mdsc, req); 1906 goto out; 1907 } 1908 1909 /* 1910 * called under mdsc->mutex 1911 */ 1912 static void __wake_requests(struct ceph_mds_client *mdsc, 1913 struct list_head *head) 1914 { 1915 struct ceph_mds_request *req; 1916 LIST_HEAD(tmp_list); 1917 1918 list_splice_init(head, &tmp_list); 1919 1920 while (!list_empty(&tmp_list)) { 1921 req = list_entry(tmp_list.next, 1922 struct ceph_mds_request, r_wait); 1923 list_del_init(&req->r_wait); 1924 dout(" wake request %p tid %llu\n", req, req->r_tid); 1925 __do_request(mdsc, req); 1926 } 1927 } 1928 1929 /* 1930 * Wake up threads with requests pending for @mds, so that they can 1931 * resubmit their requests to a possibly different mds. 1932 */ 1933 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 1934 { 1935 struct ceph_mds_request *req; 1936 struct rb_node *p; 1937 1938 dout("kick_requests mds%d\n", mds); 1939 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) { 1940 req = rb_entry(p, struct ceph_mds_request, r_node); 1941 if (req->r_got_unsafe) 1942 continue; 1943 if (req->r_session && 1944 req->r_session->s_mds == mds) { 1945 dout(" kicking tid %llu\n", req->r_tid); 1946 __do_request(mdsc, req); 1947 } 1948 } 1949 } 1950 1951 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 1952 struct ceph_mds_request *req) 1953 { 1954 dout("submit_request on %p\n", req); 1955 mutex_lock(&mdsc->mutex); 1956 __register_request(mdsc, req, NULL); 1957 __do_request(mdsc, req); 1958 mutex_unlock(&mdsc->mutex); 1959 } 1960 1961 /* 1962 * Synchrously perform an mds request. Take care of all of the 1963 * session setup, forwarding, retry details. 1964 */ 1965 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 1966 struct inode *dir, 1967 struct ceph_mds_request *req) 1968 { 1969 int err; 1970 1971 dout("do_request on %p\n", req); 1972 1973 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 1974 if (req->r_inode) 1975 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1976 if (req->r_locked_dir) 1977 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 1978 if (req->r_old_dentry) 1979 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 1980 CEPH_CAP_PIN); 1981 1982 /* issue */ 1983 mutex_lock(&mdsc->mutex); 1984 __register_request(mdsc, req, dir); 1985 __do_request(mdsc, req); 1986 1987 if (req->r_err) { 1988 err = req->r_err; 1989 __unregister_request(mdsc, req); 1990 dout("do_request early error %d\n", err); 1991 goto out; 1992 } 1993 1994 /* wait */ 1995 mutex_unlock(&mdsc->mutex); 1996 dout("do_request waiting\n"); 1997 if (req->r_timeout) { 1998 err = (long)wait_for_completion_killable_timeout( 1999 &req->r_completion, req->r_timeout); 2000 if (err == 0) 2001 err = -EIO; 2002 } else { 2003 err = wait_for_completion_killable(&req->r_completion); 2004 } 2005 dout("do_request waited, got %d\n", err); 2006 mutex_lock(&mdsc->mutex); 2007 2008 /* only abort if we didn't race with a real reply */ 2009 if (req->r_got_result) { 2010 err = le32_to_cpu(req->r_reply_info.head->result); 2011 } else if (err < 0) { 2012 dout("aborted request %lld with %d\n", req->r_tid, err); 2013 2014 /* 2015 * ensure we aren't running concurrently with 2016 * ceph_fill_trace or ceph_readdir_prepopulate, which 2017 * rely on locks (dir mutex) held by our caller. 2018 */ 2019 mutex_lock(&req->r_fill_mutex); 2020 req->r_err = err; 2021 req->r_aborted = true; 2022 mutex_unlock(&req->r_fill_mutex); 2023 2024 if (req->r_locked_dir && 2025 (req->r_op & CEPH_MDS_OP_WRITE)) 2026 ceph_invalidate_dir_request(req); 2027 } else { 2028 err = req->r_err; 2029 } 2030 2031 out: 2032 mutex_unlock(&mdsc->mutex); 2033 dout("do_request %p done, result %d\n", req, err); 2034 return err; 2035 } 2036 2037 /* 2038 * Invalidate dir's completeness, dentry lease state on an aborted MDS 2039 * namespace request. 2040 */ 2041 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2042 { 2043 struct inode *inode = req->r_locked_dir; 2044 2045 dout("invalidate_dir_request %p (complete, lease(s))\n", inode); 2046 2047 ceph_dir_clear_complete(inode); 2048 if (req->r_dentry) 2049 ceph_invalidate_dentry_lease(req->r_dentry); 2050 if (req->r_old_dentry) 2051 ceph_invalidate_dentry_lease(req->r_old_dentry); 2052 } 2053 2054 /* 2055 * Handle mds reply. 2056 * 2057 * We take the session mutex and parse and process the reply immediately. 2058 * This preserves the logical ordering of replies, capabilities, etc., sent 2059 * by the MDS as they are applied to our local cache. 2060 */ 2061 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2062 { 2063 struct ceph_mds_client *mdsc = session->s_mdsc; 2064 struct ceph_mds_request *req; 2065 struct ceph_mds_reply_head *head = msg->front.iov_base; 2066 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2067 u64 tid; 2068 int err, result; 2069 int mds = session->s_mds; 2070 2071 if (msg->front.iov_len < sizeof(*head)) { 2072 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2073 ceph_msg_dump(msg); 2074 return; 2075 } 2076 2077 /* get request, session */ 2078 tid = le64_to_cpu(msg->hdr.tid); 2079 mutex_lock(&mdsc->mutex); 2080 req = __lookup_request(mdsc, tid); 2081 if (!req) { 2082 dout("handle_reply on unknown tid %llu\n", tid); 2083 mutex_unlock(&mdsc->mutex); 2084 return; 2085 } 2086 dout("handle_reply %p\n", req); 2087 2088 /* correct session? */ 2089 if (req->r_session != session) { 2090 pr_err("mdsc_handle_reply got %llu on session mds%d" 2091 " not mds%d\n", tid, session->s_mds, 2092 req->r_session ? req->r_session->s_mds : -1); 2093 mutex_unlock(&mdsc->mutex); 2094 goto out; 2095 } 2096 2097 /* dup? */ 2098 if ((req->r_got_unsafe && !head->safe) || 2099 (req->r_got_safe && head->safe)) { 2100 pr_warning("got a dup %s reply on %llu from mds%d\n", 2101 head->safe ? "safe" : "unsafe", tid, mds); 2102 mutex_unlock(&mdsc->mutex); 2103 goto out; 2104 } 2105 if (req->r_got_safe && !head->safe) { 2106 pr_warning("got unsafe after safe on %llu from mds%d\n", 2107 tid, mds); 2108 mutex_unlock(&mdsc->mutex); 2109 goto out; 2110 } 2111 2112 result = le32_to_cpu(head->result); 2113 2114 /* 2115 * Handle an ESTALE 2116 * if we're not talking to the authority, send to them 2117 * if the authority has changed while we weren't looking, 2118 * send to new authority 2119 * Otherwise we just have to return an ESTALE 2120 */ 2121 if (result == -ESTALE) { 2122 dout("got ESTALE on request %llu", req->r_tid); 2123 if (!req->r_inode) { 2124 /* do nothing; not an authority problem */ 2125 } else if (req->r_direct_mode != USE_AUTH_MDS) { 2126 dout("not using auth, setting for that now"); 2127 req->r_direct_mode = USE_AUTH_MDS; 2128 __do_request(mdsc, req); 2129 mutex_unlock(&mdsc->mutex); 2130 goto out; 2131 } else { 2132 struct ceph_inode_info *ci = ceph_inode(req->r_inode); 2133 struct ceph_cap *cap = NULL; 2134 2135 if (req->r_session) 2136 cap = ceph_get_cap_for_mds(ci, 2137 req->r_session->s_mds); 2138 2139 dout("already using auth"); 2140 if ((!cap || cap != ci->i_auth_cap) || 2141 (cap->mseq != req->r_sent_on_mseq)) { 2142 dout("but cap changed, so resending"); 2143 __do_request(mdsc, req); 2144 mutex_unlock(&mdsc->mutex); 2145 goto out; 2146 } 2147 } 2148 dout("have to return ESTALE on request %llu", req->r_tid); 2149 } 2150 2151 2152 if (head->safe) { 2153 req->r_got_safe = true; 2154 __unregister_request(mdsc, req); 2155 complete_all(&req->r_safe_completion); 2156 2157 if (req->r_got_unsafe) { 2158 /* 2159 * We already handled the unsafe response, now do the 2160 * cleanup. No need to examine the response; the MDS 2161 * doesn't include any result info in the safe 2162 * response. And even if it did, there is nothing 2163 * useful we could do with a revised return value. 2164 */ 2165 dout("got safe reply %llu, mds%d\n", tid, mds); 2166 list_del_init(&req->r_unsafe_item); 2167 2168 /* last unsafe request during umount? */ 2169 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2170 complete_all(&mdsc->safe_umount_waiters); 2171 mutex_unlock(&mdsc->mutex); 2172 goto out; 2173 } 2174 } else { 2175 req->r_got_unsafe = true; 2176 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2177 } 2178 2179 dout("handle_reply tid %lld result %d\n", tid, result); 2180 rinfo = &req->r_reply_info; 2181 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2182 mutex_unlock(&mdsc->mutex); 2183 2184 mutex_lock(&session->s_mutex); 2185 if (err < 0) { 2186 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2187 ceph_msg_dump(msg); 2188 goto out_err; 2189 } 2190 2191 /* snap trace */ 2192 if (rinfo->snapblob_len) { 2193 down_write(&mdsc->snap_rwsem); 2194 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2195 rinfo->snapblob + rinfo->snapblob_len, 2196 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 2197 downgrade_write(&mdsc->snap_rwsem); 2198 } else { 2199 down_read(&mdsc->snap_rwsem); 2200 } 2201 2202 /* insert trace into our cache */ 2203 mutex_lock(&req->r_fill_mutex); 2204 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2205 if (err == 0) { 2206 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 2207 req->r_op == CEPH_MDS_OP_LSSNAP) && 2208 rinfo->dir_nr) 2209 ceph_readdir_prepopulate(req, req->r_session); 2210 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2211 } 2212 mutex_unlock(&req->r_fill_mutex); 2213 2214 up_read(&mdsc->snap_rwsem); 2215 out_err: 2216 mutex_lock(&mdsc->mutex); 2217 if (!req->r_aborted) { 2218 if (err) { 2219 req->r_err = err; 2220 } else { 2221 req->r_reply = msg; 2222 ceph_msg_get(msg); 2223 req->r_got_result = true; 2224 } 2225 } else { 2226 dout("reply arrived after request %lld was aborted\n", tid); 2227 } 2228 mutex_unlock(&mdsc->mutex); 2229 2230 ceph_add_cap_releases(mdsc, req->r_session); 2231 mutex_unlock(&session->s_mutex); 2232 2233 /* kick calling process */ 2234 complete_request(mdsc, req); 2235 out: 2236 ceph_mdsc_put_request(req); 2237 return; 2238 } 2239 2240 2241 2242 /* 2243 * handle mds notification that our request has been forwarded. 2244 */ 2245 static void handle_forward(struct ceph_mds_client *mdsc, 2246 struct ceph_mds_session *session, 2247 struct ceph_msg *msg) 2248 { 2249 struct ceph_mds_request *req; 2250 u64 tid = le64_to_cpu(msg->hdr.tid); 2251 u32 next_mds; 2252 u32 fwd_seq; 2253 int err = -EINVAL; 2254 void *p = msg->front.iov_base; 2255 void *end = p + msg->front.iov_len; 2256 2257 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2258 next_mds = ceph_decode_32(&p); 2259 fwd_seq = ceph_decode_32(&p); 2260 2261 mutex_lock(&mdsc->mutex); 2262 req = __lookup_request(mdsc, tid); 2263 if (!req) { 2264 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2265 goto out; /* dup reply? */ 2266 } 2267 2268 if (req->r_aborted) { 2269 dout("forward tid %llu aborted, unregistering\n", tid); 2270 __unregister_request(mdsc, req); 2271 } else if (fwd_seq <= req->r_num_fwd) { 2272 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2273 tid, next_mds, req->r_num_fwd, fwd_seq); 2274 } else { 2275 /* resend. forward race not possible; mds would drop */ 2276 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2277 BUG_ON(req->r_err); 2278 BUG_ON(req->r_got_result); 2279 req->r_num_fwd = fwd_seq; 2280 req->r_resend_mds = next_mds; 2281 put_request_session(req); 2282 __do_request(mdsc, req); 2283 } 2284 ceph_mdsc_put_request(req); 2285 out: 2286 mutex_unlock(&mdsc->mutex); 2287 return; 2288 2289 bad: 2290 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2291 } 2292 2293 /* 2294 * handle a mds session control message 2295 */ 2296 static void handle_session(struct ceph_mds_session *session, 2297 struct ceph_msg *msg) 2298 { 2299 struct ceph_mds_client *mdsc = session->s_mdsc; 2300 u32 op; 2301 u64 seq; 2302 int mds = session->s_mds; 2303 struct ceph_mds_session_head *h = msg->front.iov_base; 2304 int wake = 0; 2305 2306 /* decode */ 2307 if (msg->front.iov_len != sizeof(*h)) 2308 goto bad; 2309 op = le32_to_cpu(h->op); 2310 seq = le64_to_cpu(h->seq); 2311 2312 mutex_lock(&mdsc->mutex); 2313 if (op == CEPH_SESSION_CLOSE) 2314 __unregister_session(mdsc, session); 2315 /* FIXME: this ttl calculation is generous */ 2316 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2317 mutex_unlock(&mdsc->mutex); 2318 2319 mutex_lock(&session->s_mutex); 2320 2321 dout("handle_session mds%d %s %p state %s seq %llu\n", 2322 mds, ceph_session_op_name(op), session, 2323 session_state_name(session->s_state), seq); 2324 2325 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2326 session->s_state = CEPH_MDS_SESSION_OPEN; 2327 pr_info("mds%d came back\n", session->s_mds); 2328 } 2329 2330 switch (op) { 2331 case CEPH_SESSION_OPEN: 2332 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2333 pr_info("mds%d reconnect success\n", session->s_mds); 2334 session->s_state = CEPH_MDS_SESSION_OPEN; 2335 renewed_caps(mdsc, session, 0); 2336 wake = 1; 2337 if (mdsc->stopping) 2338 __close_session(mdsc, session); 2339 break; 2340 2341 case CEPH_SESSION_RENEWCAPS: 2342 if (session->s_renew_seq == seq) 2343 renewed_caps(mdsc, session, 1); 2344 break; 2345 2346 case CEPH_SESSION_CLOSE: 2347 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2348 pr_info("mds%d reconnect denied\n", session->s_mds); 2349 remove_session_caps(session); 2350 wake = 1; /* for good measure */ 2351 wake_up_all(&mdsc->session_close_wq); 2352 kick_requests(mdsc, mds); 2353 break; 2354 2355 case CEPH_SESSION_STALE: 2356 pr_info("mds%d caps went stale, renewing\n", 2357 session->s_mds); 2358 spin_lock(&session->s_gen_ttl_lock); 2359 session->s_cap_gen++; 2360 session->s_cap_ttl = jiffies - 1; 2361 spin_unlock(&session->s_gen_ttl_lock); 2362 send_renew_caps(mdsc, session); 2363 break; 2364 2365 case CEPH_SESSION_RECALL_STATE: 2366 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2367 break; 2368 2369 default: 2370 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2371 WARN_ON(1); 2372 } 2373 2374 mutex_unlock(&session->s_mutex); 2375 if (wake) { 2376 mutex_lock(&mdsc->mutex); 2377 __wake_requests(mdsc, &session->s_waiting); 2378 mutex_unlock(&mdsc->mutex); 2379 } 2380 return; 2381 2382 bad: 2383 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2384 (int)msg->front.iov_len); 2385 ceph_msg_dump(msg); 2386 return; 2387 } 2388 2389 2390 /* 2391 * called under session->mutex. 2392 */ 2393 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2394 struct ceph_mds_session *session) 2395 { 2396 struct ceph_mds_request *req, *nreq; 2397 int err; 2398 2399 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2400 2401 mutex_lock(&mdsc->mutex); 2402 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2403 err = __prepare_send_request(mdsc, req, session->s_mds); 2404 if (!err) { 2405 ceph_msg_get(req->r_request); 2406 ceph_con_send(&session->s_con, req->r_request); 2407 } 2408 } 2409 mutex_unlock(&mdsc->mutex); 2410 } 2411 2412 /* 2413 * Encode information about a cap for a reconnect with the MDS. 2414 */ 2415 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2416 void *arg) 2417 { 2418 union { 2419 struct ceph_mds_cap_reconnect v2; 2420 struct ceph_mds_cap_reconnect_v1 v1; 2421 } rec; 2422 size_t reclen; 2423 struct ceph_inode_info *ci; 2424 struct ceph_reconnect_state *recon_state = arg; 2425 struct ceph_pagelist *pagelist = recon_state->pagelist; 2426 char *path; 2427 int pathlen, err; 2428 u64 pathbase; 2429 struct dentry *dentry; 2430 2431 ci = cap->ci; 2432 2433 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2434 inode, ceph_vinop(inode), cap, cap->cap_id, 2435 ceph_cap_string(cap->issued)); 2436 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2437 if (err) 2438 return err; 2439 2440 dentry = d_find_alias(inode); 2441 if (dentry) { 2442 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2443 if (IS_ERR(path)) { 2444 err = PTR_ERR(path); 2445 goto out_dput; 2446 } 2447 } else { 2448 path = NULL; 2449 pathlen = 0; 2450 } 2451 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2452 if (err) 2453 goto out_free; 2454 2455 spin_lock(&ci->i_ceph_lock); 2456 cap->seq = 0; /* reset cap seq */ 2457 cap->issue_seq = 0; /* and issue_seq */ 2458 cap->mseq = 0; /* and migrate_seq */ 2459 2460 if (recon_state->flock) { 2461 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2462 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2463 rec.v2.issued = cpu_to_le32(cap->issued); 2464 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2465 rec.v2.pathbase = cpu_to_le64(pathbase); 2466 rec.v2.flock_len = 0; 2467 reclen = sizeof(rec.v2); 2468 } else { 2469 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2470 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2471 rec.v1.issued = cpu_to_le32(cap->issued); 2472 rec.v1.size = cpu_to_le64(inode->i_size); 2473 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2474 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2475 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2476 rec.v1.pathbase = cpu_to_le64(pathbase); 2477 reclen = sizeof(rec.v1); 2478 } 2479 spin_unlock(&ci->i_ceph_lock); 2480 2481 if (recon_state->flock) { 2482 int num_fcntl_locks, num_flock_locks; 2483 struct ceph_filelock *flocks; 2484 2485 encode_again: 2486 spin_lock(&inode->i_lock); 2487 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 2488 spin_unlock(&inode->i_lock); 2489 flocks = kmalloc((num_fcntl_locks+num_flock_locks) * 2490 sizeof(struct ceph_filelock), GFP_NOFS); 2491 if (!flocks) { 2492 err = -ENOMEM; 2493 goto out_free; 2494 } 2495 spin_lock(&inode->i_lock); 2496 err = ceph_encode_locks_to_buffer(inode, flocks, 2497 num_fcntl_locks, 2498 num_flock_locks); 2499 spin_unlock(&inode->i_lock); 2500 if (err) { 2501 kfree(flocks); 2502 if (err == -ENOSPC) 2503 goto encode_again; 2504 goto out_free; 2505 } 2506 /* 2507 * number of encoded locks is stable, so copy to pagelist 2508 */ 2509 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) + 2510 (num_fcntl_locks+num_flock_locks) * 2511 sizeof(struct ceph_filelock)); 2512 err = ceph_pagelist_append(pagelist, &rec, reclen); 2513 if (!err) 2514 err = ceph_locks_to_pagelist(flocks, pagelist, 2515 num_fcntl_locks, 2516 num_flock_locks); 2517 kfree(flocks); 2518 } else { 2519 err = ceph_pagelist_append(pagelist, &rec, reclen); 2520 } 2521 out_free: 2522 kfree(path); 2523 out_dput: 2524 dput(dentry); 2525 return err; 2526 } 2527 2528 2529 /* 2530 * If an MDS fails and recovers, clients need to reconnect in order to 2531 * reestablish shared state. This includes all caps issued through 2532 * this session _and_ the snap_realm hierarchy. Because it's not 2533 * clear which snap realms the mds cares about, we send everything we 2534 * know about.. that ensures we'll then get any new info the 2535 * recovering MDS might have. 2536 * 2537 * This is a relatively heavyweight operation, but it's rare. 2538 * 2539 * called with mdsc->mutex held. 2540 */ 2541 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2542 struct ceph_mds_session *session) 2543 { 2544 struct ceph_msg *reply; 2545 struct rb_node *p; 2546 int mds = session->s_mds; 2547 int err = -ENOMEM; 2548 struct ceph_pagelist *pagelist; 2549 struct ceph_reconnect_state recon_state; 2550 2551 pr_info("mds%d reconnect start\n", mds); 2552 2553 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2554 if (!pagelist) 2555 goto fail_nopagelist; 2556 ceph_pagelist_init(pagelist); 2557 2558 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2559 if (!reply) 2560 goto fail_nomsg; 2561 2562 mutex_lock(&session->s_mutex); 2563 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2564 session->s_seq = 0; 2565 2566 ceph_con_close(&session->s_con); 2567 ceph_con_open(&session->s_con, 2568 CEPH_ENTITY_TYPE_MDS, mds, 2569 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2570 2571 /* replay unsafe requests */ 2572 replay_unsafe_requests(mdsc, session); 2573 2574 down_read(&mdsc->snap_rwsem); 2575 2576 dout("session %p state %s\n", session, 2577 session_state_name(session->s_state)); 2578 2579 /* drop old cap expires; we're about to reestablish that state */ 2580 discard_cap_releases(mdsc, session); 2581 2582 /* traverse this session's caps */ 2583 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps); 2584 if (err) 2585 goto fail; 2586 2587 recon_state.pagelist = pagelist; 2588 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2589 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2590 if (err < 0) 2591 goto fail; 2592 2593 /* 2594 * snaprealms. we provide mds with the ino, seq (version), and 2595 * parent for all of our realms. If the mds has any newer info, 2596 * it will tell us. 2597 */ 2598 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2599 struct ceph_snap_realm *realm = 2600 rb_entry(p, struct ceph_snap_realm, node); 2601 struct ceph_mds_snaprealm_reconnect sr_rec; 2602 2603 dout(" adding snap realm %llx seq %lld parent %llx\n", 2604 realm->ino, realm->seq, realm->parent_ino); 2605 sr_rec.ino = cpu_to_le64(realm->ino); 2606 sr_rec.seq = cpu_to_le64(realm->seq); 2607 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2608 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2609 if (err) 2610 goto fail; 2611 } 2612 2613 if (recon_state.flock) 2614 reply->hdr.version = cpu_to_le16(2); 2615 if (pagelist->length) { 2616 /* set up outbound data if we have any */ 2617 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2618 ceph_msg_data_add_pagelist(reply, pagelist); 2619 } 2620 ceph_con_send(&session->s_con, reply); 2621 2622 mutex_unlock(&session->s_mutex); 2623 2624 mutex_lock(&mdsc->mutex); 2625 __wake_requests(mdsc, &session->s_waiting); 2626 mutex_unlock(&mdsc->mutex); 2627 2628 up_read(&mdsc->snap_rwsem); 2629 return; 2630 2631 fail: 2632 ceph_msg_put(reply); 2633 up_read(&mdsc->snap_rwsem); 2634 mutex_unlock(&session->s_mutex); 2635 fail_nomsg: 2636 ceph_pagelist_release(pagelist); 2637 kfree(pagelist); 2638 fail_nopagelist: 2639 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2640 return; 2641 } 2642 2643 2644 /* 2645 * compare old and new mdsmaps, kicking requests 2646 * and closing out old connections as necessary 2647 * 2648 * called under mdsc->mutex. 2649 */ 2650 static void check_new_map(struct ceph_mds_client *mdsc, 2651 struct ceph_mdsmap *newmap, 2652 struct ceph_mdsmap *oldmap) 2653 { 2654 int i; 2655 int oldstate, newstate; 2656 struct ceph_mds_session *s; 2657 2658 dout("check_new_map new %u old %u\n", 2659 newmap->m_epoch, oldmap->m_epoch); 2660 2661 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2662 if (mdsc->sessions[i] == NULL) 2663 continue; 2664 s = mdsc->sessions[i]; 2665 oldstate = ceph_mdsmap_get_state(oldmap, i); 2666 newstate = ceph_mdsmap_get_state(newmap, i); 2667 2668 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 2669 i, ceph_mds_state_name(oldstate), 2670 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 2671 ceph_mds_state_name(newstate), 2672 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 2673 session_state_name(s->s_state)); 2674 2675 if (i >= newmap->m_max_mds || 2676 memcmp(ceph_mdsmap_get_addr(oldmap, i), 2677 ceph_mdsmap_get_addr(newmap, i), 2678 sizeof(struct ceph_entity_addr))) { 2679 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2680 /* the session never opened, just close it 2681 * out now */ 2682 __wake_requests(mdsc, &s->s_waiting); 2683 __unregister_session(mdsc, s); 2684 } else { 2685 /* just close it */ 2686 mutex_unlock(&mdsc->mutex); 2687 mutex_lock(&s->s_mutex); 2688 mutex_lock(&mdsc->mutex); 2689 ceph_con_close(&s->s_con); 2690 mutex_unlock(&s->s_mutex); 2691 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2692 } 2693 2694 /* kick any requests waiting on the recovering mds */ 2695 kick_requests(mdsc, i); 2696 } else if (oldstate == newstate) { 2697 continue; /* nothing new with this mds */ 2698 } 2699 2700 /* 2701 * send reconnect? 2702 */ 2703 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2704 newstate >= CEPH_MDS_STATE_RECONNECT) { 2705 mutex_unlock(&mdsc->mutex); 2706 send_mds_reconnect(mdsc, s); 2707 mutex_lock(&mdsc->mutex); 2708 } 2709 2710 /* 2711 * kick request on any mds that has gone active. 2712 */ 2713 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2714 newstate >= CEPH_MDS_STATE_ACTIVE) { 2715 if (oldstate != CEPH_MDS_STATE_CREATING && 2716 oldstate != CEPH_MDS_STATE_STARTING) 2717 pr_info("mds%d recovery completed\n", s->s_mds); 2718 kick_requests(mdsc, i); 2719 ceph_kick_flushing_caps(mdsc, s); 2720 wake_up_session_caps(s, 1); 2721 } 2722 } 2723 2724 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 2725 s = mdsc->sessions[i]; 2726 if (!s) 2727 continue; 2728 if (!ceph_mdsmap_is_laggy(newmap, i)) 2729 continue; 2730 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2731 s->s_state == CEPH_MDS_SESSION_HUNG || 2732 s->s_state == CEPH_MDS_SESSION_CLOSING) { 2733 dout(" connecting to export targets of laggy mds%d\n", 2734 i); 2735 __open_export_target_sessions(mdsc, s); 2736 } 2737 } 2738 } 2739 2740 2741 2742 /* 2743 * leases 2744 */ 2745 2746 /* 2747 * caller must hold session s_mutex, dentry->d_lock 2748 */ 2749 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2750 { 2751 struct ceph_dentry_info *di = ceph_dentry(dentry); 2752 2753 ceph_put_mds_session(di->lease_session); 2754 di->lease_session = NULL; 2755 } 2756 2757 static void handle_lease(struct ceph_mds_client *mdsc, 2758 struct ceph_mds_session *session, 2759 struct ceph_msg *msg) 2760 { 2761 struct super_block *sb = mdsc->fsc->sb; 2762 struct inode *inode; 2763 struct dentry *parent, *dentry; 2764 struct ceph_dentry_info *di; 2765 int mds = session->s_mds; 2766 struct ceph_mds_lease *h = msg->front.iov_base; 2767 u32 seq; 2768 struct ceph_vino vino; 2769 struct qstr dname; 2770 int release = 0; 2771 2772 dout("handle_lease from mds%d\n", mds); 2773 2774 /* decode */ 2775 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 2776 goto bad; 2777 vino.ino = le64_to_cpu(h->ino); 2778 vino.snap = CEPH_NOSNAP; 2779 seq = le32_to_cpu(h->seq); 2780 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 2781 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 2782 if (dname.len != get_unaligned_le32(h+1)) 2783 goto bad; 2784 2785 mutex_lock(&session->s_mutex); 2786 session->s_seq++; 2787 2788 /* lookup inode */ 2789 inode = ceph_find_inode(sb, vino); 2790 dout("handle_lease %s, ino %llx %p %.*s\n", 2791 ceph_lease_op_name(h->action), vino.ino, inode, 2792 dname.len, dname.name); 2793 if (inode == NULL) { 2794 dout("handle_lease no inode %llx\n", vino.ino); 2795 goto release; 2796 } 2797 2798 /* dentry */ 2799 parent = d_find_alias(inode); 2800 if (!parent) { 2801 dout("no parent dentry on inode %p\n", inode); 2802 WARN_ON(1); 2803 goto release; /* hrm... */ 2804 } 2805 dname.hash = full_name_hash(dname.name, dname.len); 2806 dentry = d_lookup(parent, &dname); 2807 dput(parent); 2808 if (!dentry) 2809 goto release; 2810 2811 spin_lock(&dentry->d_lock); 2812 di = ceph_dentry(dentry); 2813 switch (h->action) { 2814 case CEPH_MDS_LEASE_REVOKE: 2815 if (di->lease_session == session) { 2816 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 2817 h->seq = cpu_to_le32(di->lease_seq); 2818 __ceph_mdsc_drop_dentry_lease(dentry); 2819 } 2820 release = 1; 2821 break; 2822 2823 case CEPH_MDS_LEASE_RENEW: 2824 if (di->lease_session == session && 2825 di->lease_gen == session->s_cap_gen && 2826 di->lease_renew_from && 2827 di->lease_renew_after == 0) { 2828 unsigned long duration = 2829 le32_to_cpu(h->duration_ms) * HZ / 1000; 2830 2831 di->lease_seq = seq; 2832 dentry->d_time = di->lease_renew_from + duration; 2833 di->lease_renew_after = di->lease_renew_from + 2834 (duration >> 1); 2835 di->lease_renew_from = 0; 2836 } 2837 break; 2838 } 2839 spin_unlock(&dentry->d_lock); 2840 dput(dentry); 2841 2842 if (!release) 2843 goto out; 2844 2845 release: 2846 /* let's just reuse the same message */ 2847 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 2848 ceph_msg_get(msg); 2849 ceph_con_send(&session->s_con, msg); 2850 2851 out: 2852 iput(inode); 2853 mutex_unlock(&session->s_mutex); 2854 return; 2855 2856 bad: 2857 pr_err("corrupt lease message\n"); 2858 ceph_msg_dump(msg); 2859 } 2860 2861 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 2862 struct inode *inode, 2863 struct dentry *dentry, char action, 2864 u32 seq) 2865 { 2866 struct ceph_msg *msg; 2867 struct ceph_mds_lease *lease; 2868 int len = sizeof(*lease) + sizeof(u32); 2869 int dnamelen = 0; 2870 2871 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 2872 inode, dentry, ceph_lease_op_name(action), session->s_mds); 2873 dnamelen = dentry->d_name.len; 2874 len += dnamelen; 2875 2876 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 2877 if (!msg) 2878 return; 2879 lease = msg->front.iov_base; 2880 lease->action = action; 2881 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 2882 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 2883 lease->seq = cpu_to_le32(seq); 2884 put_unaligned_le32(dnamelen, lease + 1); 2885 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 2886 2887 /* 2888 * if this is a preemptive lease RELEASE, no need to 2889 * flush request stream, since the actual request will 2890 * soon follow. 2891 */ 2892 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 2893 2894 ceph_con_send(&session->s_con, msg); 2895 } 2896 2897 /* 2898 * Preemptively release a lease we expect to invalidate anyway. 2899 * Pass @inode always, @dentry is optional. 2900 */ 2901 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 2902 struct dentry *dentry) 2903 { 2904 struct ceph_dentry_info *di; 2905 struct ceph_mds_session *session; 2906 u32 seq; 2907 2908 BUG_ON(inode == NULL); 2909 BUG_ON(dentry == NULL); 2910 2911 /* is dentry lease valid? */ 2912 spin_lock(&dentry->d_lock); 2913 di = ceph_dentry(dentry); 2914 if (!di || !di->lease_session || 2915 di->lease_session->s_mds < 0 || 2916 di->lease_gen != di->lease_session->s_cap_gen || 2917 !time_before(jiffies, dentry->d_time)) { 2918 dout("lease_release inode %p dentry %p -- " 2919 "no lease\n", 2920 inode, dentry); 2921 spin_unlock(&dentry->d_lock); 2922 return; 2923 } 2924 2925 /* we do have a lease on this dentry; note mds and seq */ 2926 session = ceph_get_mds_session(di->lease_session); 2927 seq = di->lease_seq; 2928 __ceph_mdsc_drop_dentry_lease(dentry); 2929 spin_unlock(&dentry->d_lock); 2930 2931 dout("lease_release inode %p dentry %p to mds%d\n", 2932 inode, dentry, session->s_mds); 2933 ceph_mdsc_lease_send_msg(session, inode, dentry, 2934 CEPH_MDS_LEASE_RELEASE, seq); 2935 ceph_put_mds_session(session); 2936 } 2937 2938 /* 2939 * drop all leases (and dentry refs) in preparation for umount 2940 */ 2941 static void drop_leases(struct ceph_mds_client *mdsc) 2942 { 2943 int i; 2944 2945 dout("drop_leases\n"); 2946 mutex_lock(&mdsc->mutex); 2947 for (i = 0; i < mdsc->max_sessions; i++) { 2948 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2949 if (!s) 2950 continue; 2951 mutex_unlock(&mdsc->mutex); 2952 mutex_lock(&s->s_mutex); 2953 mutex_unlock(&s->s_mutex); 2954 ceph_put_mds_session(s); 2955 mutex_lock(&mdsc->mutex); 2956 } 2957 mutex_unlock(&mdsc->mutex); 2958 } 2959 2960 2961 2962 /* 2963 * delayed work -- periodically trim expired leases, renew caps with mds 2964 */ 2965 static void schedule_delayed(struct ceph_mds_client *mdsc) 2966 { 2967 int delay = 5; 2968 unsigned hz = round_jiffies_relative(HZ * delay); 2969 schedule_delayed_work(&mdsc->delayed_work, hz); 2970 } 2971 2972 static void delayed_work(struct work_struct *work) 2973 { 2974 int i; 2975 struct ceph_mds_client *mdsc = 2976 container_of(work, struct ceph_mds_client, delayed_work.work); 2977 int renew_interval; 2978 int renew_caps; 2979 2980 dout("mdsc delayed_work\n"); 2981 ceph_check_delayed_caps(mdsc); 2982 2983 mutex_lock(&mdsc->mutex); 2984 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 2985 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 2986 mdsc->last_renew_caps); 2987 if (renew_caps) 2988 mdsc->last_renew_caps = jiffies; 2989 2990 for (i = 0; i < mdsc->max_sessions; i++) { 2991 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2992 if (s == NULL) 2993 continue; 2994 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 2995 dout("resending session close request for mds%d\n", 2996 s->s_mds); 2997 request_close_session(mdsc, s); 2998 ceph_put_mds_session(s); 2999 continue; 3000 } 3001 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 3002 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 3003 s->s_state = CEPH_MDS_SESSION_HUNG; 3004 pr_info("mds%d hung\n", s->s_mds); 3005 } 3006 } 3007 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 3008 /* this mds is failed or recovering, just wait */ 3009 ceph_put_mds_session(s); 3010 continue; 3011 } 3012 mutex_unlock(&mdsc->mutex); 3013 3014 mutex_lock(&s->s_mutex); 3015 if (renew_caps) 3016 send_renew_caps(mdsc, s); 3017 else 3018 ceph_con_keepalive(&s->s_con); 3019 ceph_add_cap_releases(mdsc, s); 3020 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3021 s->s_state == CEPH_MDS_SESSION_HUNG) 3022 ceph_send_cap_releases(mdsc, s); 3023 mutex_unlock(&s->s_mutex); 3024 ceph_put_mds_session(s); 3025 3026 mutex_lock(&mdsc->mutex); 3027 } 3028 mutex_unlock(&mdsc->mutex); 3029 3030 schedule_delayed(mdsc); 3031 } 3032 3033 int ceph_mdsc_init(struct ceph_fs_client *fsc) 3034 3035 { 3036 struct ceph_mds_client *mdsc; 3037 3038 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 3039 if (!mdsc) 3040 return -ENOMEM; 3041 mdsc->fsc = fsc; 3042 fsc->mdsc = mdsc; 3043 mutex_init(&mdsc->mutex); 3044 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3045 if (mdsc->mdsmap == NULL) { 3046 kfree(mdsc); 3047 return -ENOMEM; 3048 } 3049 3050 init_completion(&mdsc->safe_umount_waiters); 3051 init_waitqueue_head(&mdsc->session_close_wq); 3052 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3053 mdsc->sessions = NULL; 3054 mdsc->max_sessions = 0; 3055 mdsc->stopping = 0; 3056 init_rwsem(&mdsc->snap_rwsem); 3057 mdsc->snap_realms = RB_ROOT; 3058 INIT_LIST_HEAD(&mdsc->snap_empty); 3059 spin_lock_init(&mdsc->snap_empty_lock); 3060 mdsc->last_tid = 0; 3061 mdsc->request_tree = RB_ROOT; 3062 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3063 mdsc->last_renew_caps = jiffies; 3064 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3065 spin_lock_init(&mdsc->cap_delay_lock); 3066 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3067 spin_lock_init(&mdsc->snap_flush_lock); 3068 mdsc->cap_flush_seq = 0; 3069 INIT_LIST_HEAD(&mdsc->cap_dirty); 3070 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3071 mdsc->num_cap_flushing = 0; 3072 spin_lock_init(&mdsc->cap_dirty_lock); 3073 init_waitqueue_head(&mdsc->cap_flushing_wq); 3074 spin_lock_init(&mdsc->dentry_lru_lock); 3075 INIT_LIST_HEAD(&mdsc->dentry_lru); 3076 3077 ceph_caps_init(mdsc); 3078 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3079 3080 return 0; 3081 } 3082 3083 /* 3084 * Wait for safe replies on open mds requests. If we time out, drop 3085 * all requests from the tree to avoid dangling dentry refs. 3086 */ 3087 static void wait_requests(struct ceph_mds_client *mdsc) 3088 { 3089 struct ceph_mds_request *req; 3090 struct ceph_fs_client *fsc = mdsc->fsc; 3091 3092 mutex_lock(&mdsc->mutex); 3093 if (__get_oldest_req(mdsc)) { 3094 mutex_unlock(&mdsc->mutex); 3095 3096 dout("wait_requests waiting for requests\n"); 3097 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3098 fsc->client->options->mount_timeout * HZ); 3099 3100 /* tear down remaining requests */ 3101 mutex_lock(&mdsc->mutex); 3102 while ((req = __get_oldest_req(mdsc))) { 3103 dout("wait_requests timed out on tid %llu\n", 3104 req->r_tid); 3105 __unregister_request(mdsc, req); 3106 } 3107 } 3108 mutex_unlock(&mdsc->mutex); 3109 dout("wait_requests done\n"); 3110 } 3111 3112 /* 3113 * called before mount is ro, and before dentries are torn down. 3114 * (hmm, does this still race with new lookups?) 3115 */ 3116 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3117 { 3118 dout("pre_umount\n"); 3119 mdsc->stopping = 1; 3120 3121 drop_leases(mdsc); 3122 ceph_flush_dirty_caps(mdsc); 3123 wait_requests(mdsc); 3124 3125 /* 3126 * wait for reply handlers to drop their request refs and 3127 * their inode/dcache refs 3128 */ 3129 ceph_msgr_flush(); 3130 } 3131 3132 /* 3133 * wait for all write mds requests to flush. 3134 */ 3135 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3136 { 3137 struct ceph_mds_request *req = NULL, *nextreq; 3138 struct rb_node *n; 3139 3140 mutex_lock(&mdsc->mutex); 3141 dout("wait_unsafe_requests want %lld\n", want_tid); 3142 restart: 3143 req = __get_oldest_req(mdsc); 3144 while (req && req->r_tid <= want_tid) { 3145 /* find next request */ 3146 n = rb_next(&req->r_node); 3147 if (n) 3148 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3149 else 3150 nextreq = NULL; 3151 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3152 /* write op */ 3153 ceph_mdsc_get_request(req); 3154 if (nextreq) 3155 ceph_mdsc_get_request(nextreq); 3156 mutex_unlock(&mdsc->mutex); 3157 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3158 req->r_tid, want_tid); 3159 wait_for_completion(&req->r_safe_completion); 3160 mutex_lock(&mdsc->mutex); 3161 ceph_mdsc_put_request(req); 3162 if (!nextreq) 3163 break; /* next dne before, so we're done! */ 3164 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3165 /* next request was removed from tree */ 3166 ceph_mdsc_put_request(nextreq); 3167 goto restart; 3168 } 3169 ceph_mdsc_put_request(nextreq); /* won't go away */ 3170 } 3171 req = nextreq; 3172 } 3173 mutex_unlock(&mdsc->mutex); 3174 dout("wait_unsafe_requests done\n"); 3175 } 3176 3177 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3178 { 3179 u64 want_tid, want_flush; 3180 3181 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3182 return; 3183 3184 dout("sync\n"); 3185 mutex_lock(&mdsc->mutex); 3186 want_tid = mdsc->last_tid; 3187 want_flush = mdsc->cap_flush_seq; 3188 mutex_unlock(&mdsc->mutex); 3189 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3190 3191 ceph_flush_dirty_caps(mdsc); 3192 3193 wait_unsafe_requests(mdsc, want_tid); 3194 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 3195 } 3196 3197 /* 3198 * true if all sessions are closed, or we force unmount 3199 */ 3200 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3201 { 3202 int i, n = 0; 3203 3204 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3205 return true; 3206 3207 mutex_lock(&mdsc->mutex); 3208 for (i = 0; i < mdsc->max_sessions; i++) 3209 if (mdsc->sessions[i]) 3210 n++; 3211 mutex_unlock(&mdsc->mutex); 3212 return n == 0; 3213 } 3214 3215 /* 3216 * called after sb is ro. 3217 */ 3218 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3219 { 3220 struct ceph_mds_session *session; 3221 int i; 3222 struct ceph_fs_client *fsc = mdsc->fsc; 3223 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3224 3225 dout("close_sessions\n"); 3226 3227 /* close sessions */ 3228 mutex_lock(&mdsc->mutex); 3229 for (i = 0; i < mdsc->max_sessions; i++) { 3230 session = __ceph_lookup_mds_session(mdsc, i); 3231 if (!session) 3232 continue; 3233 mutex_unlock(&mdsc->mutex); 3234 mutex_lock(&session->s_mutex); 3235 __close_session(mdsc, session); 3236 mutex_unlock(&session->s_mutex); 3237 ceph_put_mds_session(session); 3238 mutex_lock(&mdsc->mutex); 3239 } 3240 mutex_unlock(&mdsc->mutex); 3241 3242 dout("waiting for sessions to close\n"); 3243 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3244 timeout); 3245 3246 /* tear down remaining sessions */ 3247 mutex_lock(&mdsc->mutex); 3248 for (i = 0; i < mdsc->max_sessions; i++) { 3249 if (mdsc->sessions[i]) { 3250 session = get_session(mdsc->sessions[i]); 3251 __unregister_session(mdsc, session); 3252 mutex_unlock(&mdsc->mutex); 3253 mutex_lock(&session->s_mutex); 3254 remove_session_caps(session); 3255 mutex_unlock(&session->s_mutex); 3256 ceph_put_mds_session(session); 3257 mutex_lock(&mdsc->mutex); 3258 } 3259 } 3260 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3261 mutex_unlock(&mdsc->mutex); 3262 3263 ceph_cleanup_empty_realms(mdsc); 3264 3265 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3266 3267 dout("stopped\n"); 3268 } 3269 3270 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3271 { 3272 dout("stop\n"); 3273 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3274 if (mdsc->mdsmap) 3275 ceph_mdsmap_destroy(mdsc->mdsmap); 3276 kfree(mdsc->sessions); 3277 ceph_caps_finalize(mdsc); 3278 } 3279 3280 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3281 { 3282 struct ceph_mds_client *mdsc = fsc->mdsc; 3283 3284 dout("mdsc_destroy %p\n", mdsc); 3285 ceph_mdsc_stop(mdsc); 3286 3287 /* flush out any connection work with references to us */ 3288 ceph_msgr_flush(); 3289 3290 fsc->mdsc = NULL; 3291 kfree(mdsc); 3292 dout("mdsc_destroy %p done\n", mdsc); 3293 } 3294 3295 3296 /* 3297 * handle mds map update. 3298 */ 3299 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3300 { 3301 u32 epoch; 3302 u32 maplen; 3303 void *p = msg->front.iov_base; 3304 void *end = p + msg->front.iov_len; 3305 struct ceph_mdsmap *newmap, *oldmap; 3306 struct ceph_fsid fsid; 3307 int err = -EINVAL; 3308 3309 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3310 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3311 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3312 return; 3313 epoch = ceph_decode_32(&p); 3314 maplen = ceph_decode_32(&p); 3315 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3316 3317 /* do we need it? */ 3318 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3319 mutex_lock(&mdsc->mutex); 3320 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3321 dout("handle_map epoch %u <= our %u\n", 3322 epoch, mdsc->mdsmap->m_epoch); 3323 mutex_unlock(&mdsc->mutex); 3324 return; 3325 } 3326 3327 newmap = ceph_mdsmap_decode(&p, end); 3328 if (IS_ERR(newmap)) { 3329 err = PTR_ERR(newmap); 3330 goto bad_unlock; 3331 } 3332 3333 /* swap into place */ 3334 if (mdsc->mdsmap) { 3335 oldmap = mdsc->mdsmap; 3336 mdsc->mdsmap = newmap; 3337 check_new_map(mdsc, newmap, oldmap); 3338 ceph_mdsmap_destroy(oldmap); 3339 } else { 3340 mdsc->mdsmap = newmap; /* first mds map */ 3341 } 3342 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3343 3344 __wake_requests(mdsc, &mdsc->waiting_for_map); 3345 3346 mutex_unlock(&mdsc->mutex); 3347 schedule_delayed(mdsc); 3348 return; 3349 3350 bad_unlock: 3351 mutex_unlock(&mdsc->mutex); 3352 bad: 3353 pr_err("error decoding mdsmap %d\n", err); 3354 return; 3355 } 3356 3357 static struct ceph_connection *con_get(struct ceph_connection *con) 3358 { 3359 struct ceph_mds_session *s = con->private; 3360 3361 if (get_session(s)) { 3362 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3363 return con; 3364 } 3365 dout("mdsc con_get %p FAIL\n", s); 3366 return NULL; 3367 } 3368 3369 static void con_put(struct ceph_connection *con) 3370 { 3371 struct ceph_mds_session *s = con->private; 3372 3373 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3374 ceph_put_mds_session(s); 3375 } 3376 3377 /* 3378 * if the client is unresponsive for long enough, the mds will kill 3379 * the session entirely. 3380 */ 3381 static void peer_reset(struct ceph_connection *con) 3382 { 3383 struct ceph_mds_session *s = con->private; 3384 struct ceph_mds_client *mdsc = s->s_mdsc; 3385 3386 pr_warning("mds%d closed our session\n", s->s_mds); 3387 send_mds_reconnect(mdsc, s); 3388 } 3389 3390 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3391 { 3392 struct ceph_mds_session *s = con->private; 3393 struct ceph_mds_client *mdsc = s->s_mdsc; 3394 int type = le16_to_cpu(msg->hdr.type); 3395 3396 mutex_lock(&mdsc->mutex); 3397 if (__verify_registered_session(mdsc, s) < 0) { 3398 mutex_unlock(&mdsc->mutex); 3399 goto out; 3400 } 3401 mutex_unlock(&mdsc->mutex); 3402 3403 switch (type) { 3404 case CEPH_MSG_MDS_MAP: 3405 ceph_mdsc_handle_map(mdsc, msg); 3406 break; 3407 case CEPH_MSG_CLIENT_SESSION: 3408 handle_session(s, msg); 3409 break; 3410 case CEPH_MSG_CLIENT_REPLY: 3411 handle_reply(s, msg); 3412 break; 3413 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3414 handle_forward(mdsc, s, msg); 3415 break; 3416 case CEPH_MSG_CLIENT_CAPS: 3417 ceph_handle_caps(s, msg); 3418 break; 3419 case CEPH_MSG_CLIENT_SNAP: 3420 ceph_handle_snap(mdsc, s, msg); 3421 break; 3422 case CEPH_MSG_CLIENT_LEASE: 3423 handle_lease(mdsc, s, msg); 3424 break; 3425 3426 default: 3427 pr_err("received unknown message type %d %s\n", type, 3428 ceph_msg_type_name(type)); 3429 } 3430 out: 3431 ceph_msg_put(msg); 3432 } 3433 3434 /* 3435 * authentication 3436 */ 3437 3438 /* 3439 * Note: returned pointer is the address of a structure that's 3440 * managed separately. Caller must *not* attempt to free it. 3441 */ 3442 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 3443 int *proto, int force_new) 3444 { 3445 struct ceph_mds_session *s = con->private; 3446 struct ceph_mds_client *mdsc = s->s_mdsc; 3447 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3448 struct ceph_auth_handshake *auth = &s->s_auth; 3449 3450 if (force_new && auth->authorizer) { 3451 ceph_auth_destroy_authorizer(ac, auth->authorizer); 3452 auth->authorizer = NULL; 3453 } 3454 if (!auth->authorizer) { 3455 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3456 auth); 3457 if (ret) 3458 return ERR_PTR(ret); 3459 } else { 3460 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3461 auth); 3462 if (ret) 3463 return ERR_PTR(ret); 3464 } 3465 *proto = ac->protocol; 3466 3467 return auth; 3468 } 3469 3470 3471 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3472 { 3473 struct ceph_mds_session *s = con->private; 3474 struct ceph_mds_client *mdsc = s->s_mdsc; 3475 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3476 3477 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len); 3478 } 3479 3480 static int invalidate_authorizer(struct ceph_connection *con) 3481 { 3482 struct ceph_mds_session *s = con->private; 3483 struct ceph_mds_client *mdsc = s->s_mdsc; 3484 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3485 3486 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3487 3488 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3489 } 3490 3491 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 3492 struct ceph_msg_header *hdr, int *skip) 3493 { 3494 struct ceph_msg *msg; 3495 int type = (int) le16_to_cpu(hdr->type); 3496 int front_len = (int) le32_to_cpu(hdr->front_len); 3497 3498 if (con->in_msg) 3499 return con->in_msg; 3500 3501 *skip = 0; 3502 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 3503 if (!msg) { 3504 pr_err("unable to allocate msg type %d len %d\n", 3505 type, front_len); 3506 return NULL; 3507 } 3508 3509 return msg; 3510 } 3511 3512 static const struct ceph_connection_operations mds_con_ops = { 3513 .get = con_get, 3514 .put = con_put, 3515 .dispatch = dispatch, 3516 .get_authorizer = get_authorizer, 3517 .verify_authorizer_reply = verify_authorizer_reply, 3518 .invalidate_authorizer = invalidate_authorizer, 3519 .peer_reset = peer_reset, 3520 .alloc_msg = mds_alloc_msg, 3521 }; 3522 3523 /* eof */ 3524