xref: /openbmc/linux/fs/ceph/mds_client.c (revision 4949009e)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/gfp.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 
12 #include "super.h"
13 #include "mds_client.h"
14 
15 #include <linux/ceph/ceph_features.h>
16 #include <linux/ceph/messenger.h>
17 #include <linux/ceph/decode.h>
18 #include <linux/ceph/pagelist.h>
19 #include <linux/ceph/auth.h>
20 #include <linux/ceph/debugfs.h>
21 
22 /*
23  * A cluster of MDS (metadata server) daemons is responsible for
24  * managing the file system namespace (the directory hierarchy and
25  * inodes) and for coordinating shared access to storage.  Metadata is
26  * partitioning hierarchically across a number of servers, and that
27  * partition varies over time as the cluster adjusts the distribution
28  * in order to balance load.
29  *
30  * The MDS client is primarily responsible to managing synchronous
31  * metadata requests for operations like open, unlink, and so forth.
32  * If there is a MDS failure, we find out about it when we (possibly
33  * request and) receive a new MDS map, and can resubmit affected
34  * requests.
35  *
36  * For the most part, though, we take advantage of a lossless
37  * communications channel to the MDS, and do not need to worry about
38  * timing out or resubmitting requests.
39  *
40  * We maintain a stateful "session" with each MDS we interact with.
41  * Within each session, we sent periodic heartbeat messages to ensure
42  * any capabilities or leases we have been issues remain valid.  If
43  * the session times out and goes stale, our leases and capabilities
44  * are no longer valid.
45  */
46 
47 struct ceph_reconnect_state {
48 	int nr_caps;
49 	struct ceph_pagelist *pagelist;
50 	bool flock;
51 };
52 
53 static void __wake_requests(struct ceph_mds_client *mdsc,
54 			    struct list_head *head);
55 
56 static const struct ceph_connection_operations mds_con_ops;
57 
58 
59 /*
60  * mds reply parsing
61  */
62 
63 /*
64  * parse individual inode info
65  */
66 static int parse_reply_info_in(void **p, void *end,
67 			       struct ceph_mds_reply_info_in *info,
68 			       u64 features)
69 {
70 	int err = -EIO;
71 
72 	info->in = *p;
73 	*p += sizeof(struct ceph_mds_reply_inode) +
74 		sizeof(*info->in->fragtree.splits) *
75 		le32_to_cpu(info->in->fragtree.nsplits);
76 
77 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
78 	ceph_decode_need(p, end, info->symlink_len, bad);
79 	info->symlink = *p;
80 	*p += info->symlink_len;
81 
82 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
83 		ceph_decode_copy_safe(p, end, &info->dir_layout,
84 				      sizeof(info->dir_layout), bad);
85 	else
86 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
87 
88 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
89 	ceph_decode_need(p, end, info->xattr_len, bad);
90 	info->xattr_data = *p;
91 	*p += info->xattr_len;
92 
93 	if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
94 		ceph_decode_64_safe(p, end, info->inline_version, bad);
95 		ceph_decode_32_safe(p, end, info->inline_len, bad);
96 		ceph_decode_need(p, end, info->inline_len, bad);
97 		info->inline_data = *p;
98 		*p += info->inline_len;
99 	} else
100 		info->inline_version = CEPH_INLINE_NONE;
101 
102 	return 0;
103 bad:
104 	return err;
105 }
106 
107 /*
108  * parse a normal reply, which may contain a (dir+)dentry and/or a
109  * target inode.
110  */
111 static int parse_reply_info_trace(void **p, void *end,
112 				  struct ceph_mds_reply_info_parsed *info,
113 				  u64 features)
114 {
115 	int err;
116 
117 	if (info->head->is_dentry) {
118 		err = parse_reply_info_in(p, end, &info->diri, features);
119 		if (err < 0)
120 			goto out_bad;
121 
122 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
123 			goto bad;
124 		info->dirfrag = *p;
125 		*p += sizeof(*info->dirfrag) +
126 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
127 		if (unlikely(*p > end))
128 			goto bad;
129 
130 		ceph_decode_32_safe(p, end, info->dname_len, bad);
131 		ceph_decode_need(p, end, info->dname_len, bad);
132 		info->dname = *p;
133 		*p += info->dname_len;
134 		info->dlease = *p;
135 		*p += sizeof(*info->dlease);
136 	}
137 
138 	if (info->head->is_target) {
139 		err = parse_reply_info_in(p, end, &info->targeti, features);
140 		if (err < 0)
141 			goto out_bad;
142 	}
143 
144 	if (unlikely(*p != end))
145 		goto bad;
146 	return 0;
147 
148 bad:
149 	err = -EIO;
150 out_bad:
151 	pr_err("problem parsing mds trace %d\n", err);
152 	return err;
153 }
154 
155 /*
156  * parse readdir results
157  */
158 static int parse_reply_info_dir(void **p, void *end,
159 				struct ceph_mds_reply_info_parsed *info,
160 				u64 features)
161 {
162 	u32 num, i = 0;
163 	int err;
164 
165 	info->dir_dir = *p;
166 	if (*p + sizeof(*info->dir_dir) > end)
167 		goto bad;
168 	*p += sizeof(*info->dir_dir) +
169 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
170 	if (*p > end)
171 		goto bad;
172 
173 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
174 	num = ceph_decode_32(p);
175 	info->dir_end = ceph_decode_8(p);
176 	info->dir_complete = ceph_decode_8(p);
177 	if (num == 0)
178 		goto done;
179 
180 	BUG_ON(!info->dir_in);
181 	info->dir_dname = (void *)(info->dir_in + num);
182 	info->dir_dname_len = (void *)(info->dir_dname + num);
183 	info->dir_dlease = (void *)(info->dir_dname_len + num);
184 	if ((unsigned long)(info->dir_dlease + num) >
185 	    (unsigned long)info->dir_in + info->dir_buf_size) {
186 		pr_err("dir contents are larger than expected\n");
187 		WARN_ON(1);
188 		goto bad;
189 	}
190 
191 	info->dir_nr = num;
192 	while (num) {
193 		/* dentry */
194 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
195 		info->dir_dname_len[i] = ceph_decode_32(p);
196 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
197 		info->dir_dname[i] = *p;
198 		*p += info->dir_dname_len[i];
199 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
200 		     info->dir_dname[i]);
201 		info->dir_dlease[i] = *p;
202 		*p += sizeof(struct ceph_mds_reply_lease);
203 
204 		/* inode */
205 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
206 		if (err < 0)
207 			goto out_bad;
208 		i++;
209 		num--;
210 	}
211 
212 done:
213 	if (*p != end)
214 		goto bad;
215 	return 0;
216 
217 bad:
218 	err = -EIO;
219 out_bad:
220 	pr_err("problem parsing dir contents %d\n", err);
221 	return err;
222 }
223 
224 /*
225  * parse fcntl F_GETLK results
226  */
227 static int parse_reply_info_filelock(void **p, void *end,
228 				     struct ceph_mds_reply_info_parsed *info,
229 				     u64 features)
230 {
231 	if (*p + sizeof(*info->filelock_reply) > end)
232 		goto bad;
233 
234 	info->filelock_reply = *p;
235 	*p += sizeof(*info->filelock_reply);
236 
237 	if (unlikely(*p != end))
238 		goto bad;
239 	return 0;
240 
241 bad:
242 	return -EIO;
243 }
244 
245 /*
246  * parse create results
247  */
248 static int parse_reply_info_create(void **p, void *end,
249 				  struct ceph_mds_reply_info_parsed *info,
250 				  u64 features)
251 {
252 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
253 		if (*p == end) {
254 			info->has_create_ino = false;
255 		} else {
256 			info->has_create_ino = true;
257 			info->ino = ceph_decode_64(p);
258 		}
259 	}
260 
261 	if (unlikely(*p != end))
262 		goto bad;
263 	return 0;
264 
265 bad:
266 	return -EIO;
267 }
268 
269 /*
270  * parse extra results
271  */
272 static int parse_reply_info_extra(void **p, void *end,
273 				  struct ceph_mds_reply_info_parsed *info,
274 				  u64 features)
275 {
276 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
277 		return parse_reply_info_filelock(p, end, info, features);
278 	else if (info->head->op == CEPH_MDS_OP_READDIR ||
279 		 info->head->op == CEPH_MDS_OP_LSSNAP)
280 		return parse_reply_info_dir(p, end, info, features);
281 	else if (info->head->op == CEPH_MDS_OP_CREATE)
282 		return parse_reply_info_create(p, end, info, features);
283 	else
284 		return -EIO;
285 }
286 
287 /*
288  * parse entire mds reply
289  */
290 static int parse_reply_info(struct ceph_msg *msg,
291 			    struct ceph_mds_reply_info_parsed *info,
292 			    u64 features)
293 {
294 	void *p, *end;
295 	u32 len;
296 	int err;
297 
298 	info->head = msg->front.iov_base;
299 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
300 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
301 
302 	/* trace */
303 	ceph_decode_32_safe(&p, end, len, bad);
304 	if (len > 0) {
305 		ceph_decode_need(&p, end, len, bad);
306 		err = parse_reply_info_trace(&p, p+len, info, features);
307 		if (err < 0)
308 			goto out_bad;
309 	}
310 
311 	/* extra */
312 	ceph_decode_32_safe(&p, end, len, bad);
313 	if (len > 0) {
314 		ceph_decode_need(&p, end, len, bad);
315 		err = parse_reply_info_extra(&p, p+len, info, features);
316 		if (err < 0)
317 			goto out_bad;
318 	}
319 
320 	/* snap blob */
321 	ceph_decode_32_safe(&p, end, len, bad);
322 	info->snapblob_len = len;
323 	info->snapblob = p;
324 	p += len;
325 
326 	if (p != end)
327 		goto bad;
328 	return 0;
329 
330 bad:
331 	err = -EIO;
332 out_bad:
333 	pr_err("mds parse_reply err %d\n", err);
334 	return err;
335 }
336 
337 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
338 {
339 	if (!info->dir_in)
340 		return;
341 	free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size));
342 }
343 
344 
345 /*
346  * sessions
347  */
348 const char *ceph_session_state_name(int s)
349 {
350 	switch (s) {
351 	case CEPH_MDS_SESSION_NEW: return "new";
352 	case CEPH_MDS_SESSION_OPENING: return "opening";
353 	case CEPH_MDS_SESSION_OPEN: return "open";
354 	case CEPH_MDS_SESSION_HUNG: return "hung";
355 	case CEPH_MDS_SESSION_CLOSING: return "closing";
356 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
357 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
358 	default: return "???";
359 	}
360 }
361 
362 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
363 {
364 	if (atomic_inc_not_zero(&s->s_ref)) {
365 		dout("mdsc get_session %p %d -> %d\n", s,
366 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
367 		return s;
368 	} else {
369 		dout("mdsc get_session %p 0 -- FAIL", s);
370 		return NULL;
371 	}
372 }
373 
374 void ceph_put_mds_session(struct ceph_mds_session *s)
375 {
376 	dout("mdsc put_session %p %d -> %d\n", s,
377 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
378 	if (atomic_dec_and_test(&s->s_ref)) {
379 		if (s->s_auth.authorizer)
380 			ceph_auth_destroy_authorizer(
381 				s->s_mdsc->fsc->client->monc.auth,
382 				s->s_auth.authorizer);
383 		kfree(s);
384 	}
385 }
386 
387 /*
388  * called under mdsc->mutex
389  */
390 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
391 						   int mds)
392 {
393 	struct ceph_mds_session *session;
394 
395 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
396 		return NULL;
397 	session = mdsc->sessions[mds];
398 	dout("lookup_mds_session %p %d\n", session,
399 	     atomic_read(&session->s_ref));
400 	get_session(session);
401 	return session;
402 }
403 
404 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
405 {
406 	if (mds >= mdsc->max_sessions)
407 		return false;
408 	return mdsc->sessions[mds];
409 }
410 
411 static int __verify_registered_session(struct ceph_mds_client *mdsc,
412 				       struct ceph_mds_session *s)
413 {
414 	if (s->s_mds >= mdsc->max_sessions ||
415 	    mdsc->sessions[s->s_mds] != s)
416 		return -ENOENT;
417 	return 0;
418 }
419 
420 /*
421  * create+register a new session for given mds.
422  * called under mdsc->mutex.
423  */
424 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
425 						 int mds)
426 {
427 	struct ceph_mds_session *s;
428 
429 	if (mds >= mdsc->mdsmap->m_max_mds)
430 		return ERR_PTR(-EINVAL);
431 
432 	s = kzalloc(sizeof(*s), GFP_NOFS);
433 	if (!s)
434 		return ERR_PTR(-ENOMEM);
435 	s->s_mdsc = mdsc;
436 	s->s_mds = mds;
437 	s->s_state = CEPH_MDS_SESSION_NEW;
438 	s->s_ttl = 0;
439 	s->s_seq = 0;
440 	mutex_init(&s->s_mutex);
441 
442 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
443 
444 	spin_lock_init(&s->s_gen_ttl_lock);
445 	s->s_cap_gen = 0;
446 	s->s_cap_ttl = jiffies - 1;
447 
448 	spin_lock_init(&s->s_cap_lock);
449 	s->s_renew_requested = 0;
450 	s->s_renew_seq = 0;
451 	INIT_LIST_HEAD(&s->s_caps);
452 	s->s_nr_caps = 0;
453 	s->s_trim_caps = 0;
454 	atomic_set(&s->s_ref, 1);
455 	INIT_LIST_HEAD(&s->s_waiting);
456 	INIT_LIST_HEAD(&s->s_unsafe);
457 	s->s_num_cap_releases = 0;
458 	s->s_cap_reconnect = 0;
459 	s->s_cap_iterator = NULL;
460 	INIT_LIST_HEAD(&s->s_cap_releases);
461 	INIT_LIST_HEAD(&s->s_cap_releases_done);
462 	INIT_LIST_HEAD(&s->s_cap_flushing);
463 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
464 
465 	dout("register_session mds%d\n", mds);
466 	if (mds >= mdsc->max_sessions) {
467 		int newmax = 1 << get_count_order(mds+1);
468 		struct ceph_mds_session **sa;
469 
470 		dout("register_session realloc to %d\n", newmax);
471 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
472 		if (sa == NULL)
473 			goto fail_realloc;
474 		if (mdsc->sessions) {
475 			memcpy(sa, mdsc->sessions,
476 			       mdsc->max_sessions * sizeof(void *));
477 			kfree(mdsc->sessions);
478 		}
479 		mdsc->sessions = sa;
480 		mdsc->max_sessions = newmax;
481 	}
482 	mdsc->sessions[mds] = s;
483 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
484 
485 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
486 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
487 
488 	return s;
489 
490 fail_realloc:
491 	kfree(s);
492 	return ERR_PTR(-ENOMEM);
493 }
494 
495 /*
496  * called under mdsc->mutex
497  */
498 static void __unregister_session(struct ceph_mds_client *mdsc,
499 			       struct ceph_mds_session *s)
500 {
501 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
502 	BUG_ON(mdsc->sessions[s->s_mds] != s);
503 	mdsc->sessions[s->s_mds] = NULL;
504 	ceph_con_close(&s->s_con);
505 	ceph_put_mds_session(s);
506 }
507 
508 /*
509  * drop session refs in request.
510  *
511  * should be last request ref, or hold mdsc->mutex
512  */
513 static void put_request_session(struct ceph_mds_request *req)
514 {
515 	if (req->r_session) {
516 		ceph_put_mds_session(req->r_session);
517 		req->r_session = NULL;
518 	}
519 }
520 
521 void ceph_mdsc_release_request(struct kref *kref)
522 {
523 	struct ceph_mds_request *req = container_of(kref,
524 						    struct ceph_mds_request,
525 						    r_kref);
526 	destroy_reply_info(&req->r_reply_info);
527 	if (req->r_request)
528 		ceph_msg_put(req->r_request);
529 	if (req->r_reply)
530 		ceph_msg_put(req->r_reply);
531 	if (req->r_inode) {
532 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
533 		iput(req->r_inode);
534 	}
535 	if (req->r_locked_dir)
536 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
537 	iput(req->r_target_inode);
538 	if (req->r_dentry)
539 		dput(req->r_dentry);
540 	if (req->r_old_dentry)
541 		dput(req->r_old_dentry);
542 	if (req->r_old_dentry_dir) {
543 		/*
544 		 * track (and drop pins for) r_old_dentry_dir
545 		 * separately, since r_old_dentry's d_parent may have
546 		 * changed between the dir mutex being dropped and
547 		 * this request being freed.
548 		 */
549 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
550 				  CEPH_CAP_PIN);
551 		iput(req->r_old_dentry_dir);
552 	}
553 	kfree(req->r_path1);
554 	kfree(req->r_path2);
555 	if (req->r_pagelist)
556 		ceph_pagelist_release(req->r_pagelist);
557 	put_request_session(req);
558 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
559 	kfree(req);
560 }
561 
562 /*
563  * lookup session, bump ref if found.
564  *
565  * called under mdsc->mutex.
566  */
567 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
568 					     u64 tid)
569 {
570 	struct ceph_mds_request *req;
571 	struct rb_node *n = mdsc->request_tree.rb_node;
572 
573 	while (n) {
574 		req = rb_entry(n, struct ceph_mds_request, r_node);
575 		if (tid < req->r_tid)
576 			n = n->rb_left;
577 		else if (tid > req->r_tid)
578 			n = n->rb_right;
579 		else {
580 			ceph_mdsc_get_request(req);
581 			return req;
582 		}
583 	}
584 	return NULL;
585 }
586 
587 static void __insert_request(struct ceph_mds_client *mdsc,
588 			     struct ceph_mds_request *new)
589 {
590 	struct rb_node **p = &mdsc->request_tree.rb_node;
591 	struct rb_node *parent = NULL;
592 	struct ceph_mds_request *req = NULL;
593 
594 	while (*p) {
595 		parent = *p;
596 		req = rb_entry(parent, struct ceph_mds_request, r_node);
597 		if (new->r_tid < req->r_tid)
598 			p = &(*p)->rb_left;
599 		else if (new->r_tid > req->r_tid)
600 			p = &(*p)->rb_right;
601 		else
602 			BUG();
603 	}
604 
605 	rb_link_node(&new->r_node, parent, p);
606 	rb_insert_color(&new->r_node, &mdsc->request_tree);
607 }
608 
609 /*
610  * Register an in-flight request, and assign a tid.  Link to directory
611  * are modifying (if any).
612  *
613  * Called under mdsc->mutex.
614  */
615 static void __register_request(struct ceph_mds_client *mdsc,
616 			       struct ceph_mds_request *req,
617 			       struct inode *dir)
618 {
619 	req->r_tid = ++mdsc->last_tid;
620 	if (req->r_num_caps)
621 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
622 				  req->r_num_caps);
623 	dout("__register_request %p tid %lld\n", req, req->r_tid);
624 	ceph_mdsc_get_request(req);
625 	__insert_request(mdsc, req);
626 
627 	req->r_uid = current_fsuid();
628 	req->r_gid = current_fsgid();
629 
630 	if (dir) {
631 		struct ceph_inode_info *ci = ceph_inode(dir);
632 
633 		ihold(dir);
634 		spin_lock(&ci->i_unsafe_lock);
635 		req->r_unsafe_dir = dir;
636 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
637 		spin_unlock(&ci->i_unsafe_lock);
638 	}
639 }
640 
641 static void __unregister_request(struct ceph_mds_client *mdsc,
642 				 struct ceph_mds_request *req)
643 {
644 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
645 	rb_erase(&req->r_node, &mdsc->request_tree);
646 	RB_CLEAR_NODE(&req->r_node);
647 
648 	if (req->r_unsafe_dir) {
649 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
650 
651 		spin_lock(&ci->i_unsafe_lock);
652 		list_del_init(&req->r_unsafe_dir_item);
653 		spin_unlock(&ci->i_unsafe_lock);
654 
655 		iput(req->r_unsafe_dir);
656 		req->r_unsafe_dir = NULL;
657 	}
658 
659 	complete_all(&req->r_safe_completion);
660 
661 	ceph_mdsc_put_request(req);
662 }
663 
664 /*
665  * Choose mds to send request to next.  If there is a hint set in the
666  * request (e.g., due to a prior forward hint from the mds), use that.
667  * Otherwise, consult frag tree and/or caps to identify the
668  * appropriate mds.  If all else fails, choose randomly.
669  *
670  * Called under mdsc->mutex.
671  */
672 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
673 {
674 	/*
675 	 * we don't need to worry about protecting the d_parent access
676 	 * here because we never renaming inside the snapped namespace
677 	 * except to resplice to another snapdir, and either the old or new
678 	 * result is a valid result.
679 	 */
680 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
681 		dentry = dentry->d_parent;
682 	return dentry;
683 }
684 
685 static int __choose_mds(struct ceph_mds_client *mdsc,
686 			struct ceph_mds_request *req)
687 {
688 	struct inode *inode;
689 	struct ceph_inode_info *ci;
690 	struct ceph_cap *cap;
691 	int mode = req->r_direct_mode;
692 	int mds = -1;
693 	u32 hash = req->r_direct_hash;
694 	bool is_hash = req->r_direct_is_hash;
695 
696 	/*
697 	 * is there a specific mds we should try?  ignore hint if we have
698 	 * no session and the mds is not up (active or recovering).
699 	 */
700 	if (req->r_resend_mds >= 0 &&
701 	    (__have_session(mdsc, req->r_resend_mds) ||
702 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
703 		dout("choose_mds using resend_mds mds%d\n",
704 		     req->r_resend_mds);
705 		return req->r_resend_mds;
706 	}
707 
708 	if (mode == USE_RANDOM_MDS)
709 		goto random;
710 
711 	inode = NULL;
712 	if (req->r_inode) {
713 		inode = req->r_inode;
714 	} else if (req->r_dentry) {
715 		/* ignore race with rename; old or new d_parent is okay */
716 		struct dentry *parent = req->r_dentry->d_parent;
717 		struct inode *dir = parent->d_inode;
718 
719 		if (dir->i_sb != mdsc->fsc->sb) {
720 			/* not this fs! */
721 			inode = req->r_dentry->d_inode;
722 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
723 			/* direct snapped/virtual snapdir requests
724 			 * based on parent dir inode */
725 			struct dentry *dn = get_nonsnap_parent(parent);
726 			inode = dn->d_inode;
727 			dout("__choose_mds using nonsnap parent %p\n", inode);
728 		} else {
729 			/* dentry target */
730 			inode = req->r_dentry->d_inode;
731 			if (!inode || mode == USE_AUTH_MDS) {
732 				/* dir + name */
733 				inode = dir;
734 				hash = ceph_dentry_hash(dir, req->r_dentry);
735 				is_hash = true;
736 			}
737 		}
738 	}
739 
740 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
741 	     (int)hash, mode);
742 	if (!inode)
743 		goto random;
744 	ci = ceph_inode(inode);
745 
746 	if (is_hash && S_ISDIR(inode->i_mode)) {
747 		struct ceph_inode_frag frag;
748 		int found;
749 
750 		ceph_choose_frag(ci, hash, &frag, &found);
751 		if (found) {
752 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
753 				u8 r;
754 
755 				/* choose a random replica */
756 				get_random_bytes(&r, 1);
757 				r %= frag.ndist;
758 				mds = frag.dist[r];
759 				dout("choose_mds %p %llx.%llx "
760 				     "frag %u mds%d (%d/%d)\n",
761 				     inode, ceph_vinop(inode),
762 				     frag.frag, mds,
763 				     (int)r, frag.ndist);
764 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
765 				    CEPH_MDS_STATE_ACTIVE)
766 					return mds;
767 			}
768 
769 			/* since this file/dir wasn't known to be
770 			 * replicated, then we want to look for the
771 			 * authoritative mds. */
772 			mode = USE_AUTH_MDS;
773 			if (frag.mds >= 0) {
774 				/* choose auth mds */
775 				mds = frag.mds;
776 				dout("choose_mds %p %llx.%llx "
777 				     "frag %u mds%d (auth)\n",
778 				     inode, ceph_vinop(inode), frag.frag, mds);
779 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
780 				    CEPH_MDS_STATE_ACTIVE)
781 					return mds;
782 			}
783 		}
784 	}
785 
786 	spin_lock(&ci->i_ceph_lock);
787 	cap = NULL;
788 	if (mode == USE_AUTH_MDS)
789 		cap = ci->i_auth_cap;
790 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
791 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
792 	if (!cap) {
793 		spin_unlock(&ci->i_ceph_lock);
794 		goto random;
795 	}
796 	mds = cap->session->s_mds;
797 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
798 	     inode, ceph_vinop(inode), mds,
799 	     cap == ci->i_auth_cap ? "auth " : "", cap);
800 	spin_unlock(&ci->i_ceph_lock);
801 	return mds;
802 
803 random:
804 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
805 	dout("choose_mds chose random mds%d\n", mds);
806 	return mds;
807 }
808 
809 
810 /*
811  * session messages
812  */
813 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
814 {
815 	struct ceph_msg *msg;
816 	struct ceph_mds_session_head *h;
817 
818 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
819 			   false);
820 	if (!msg) {
821 		pr_err("create_session_msg ENOMEM creating msg\n");
822 		return NULL;
823 	}
824 	h = msg->front.iov_base;
825 	h->op = cpu_to_le32(op);
826 	h->seq = cpu_to_le64(seq);
827 
828 	return msg;
829 }
830 
831 /*
832  * session message, specialization for CEPH_SESSION_REQUEST_OPEN
833  * to include additional client metadata fields.
834  */
835 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
836 {
837 	struct ceph_msg *msg;
838 	struct ceph_mds_session_head *h;
839 	int i = -1;
840 	int metadata_bytes = 0;
841 	int metadata_key_count = 0;
842 	struct ceph_options *opt = mdsc->fsc->client->options;
843 	void *p;
844 
845 	const char* metadata[3][2] = {
846 		{"hostname", utsname()->nodename},
847 		{"entity_id", opt->name ? opt->name : ""},
848 		{NULL, NULL}
849 	};
850 
851 	/* Calculate serialized length of metadata */
852 	metadata_bytes = 4;  /* map length */
853 	for (i = 0; metadata[i][0] != NULL; ++i) {
854 		metadata_bytes += 8 + strlen(metadata[i][0]) +
855 			strlen(metadata[i][1]);
856 		metadata_key_count++;
857 	}
858 
859 	/* Allocate the message */
860 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
861 			   GFP_NOFS, false);
862 	if (!msg) {
863 		pr_err("create_session_msg ENOMEM creating msg\n");
864 		return NULL;
865 	}
866 	h = msg->front.iov_base;
867 	h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
868 	h->seq = cpu_to_le64(seq);
869 
870 	/*
871 	 * Serialize client metadata into waiting buffer space, using
872 	 * the format that userspace expects for map<string, string>
873 	 *
874 	 * ClientSession messages with metadata are v2
875 	 */
876 	msg->hdr.version = cpu_to_le16(2);
877 	msg->hdr.compat_version = cpu_to_le16(1);
878 
879 	/* The write pointer, following the session_head structure */
880 	p = msg->front.iov_base + sizeof(*h);
881 
882 	/* Number of entries in the map */
883 	ceph_encode_32(&p, metadata_key_count);
884 
885 	/* Two length-prefixed strings for each entry in the map */
886 	for (i = 0; metadata[i][0] != NULL; ++i) {
887 		size_t const key_len = strlen(metadata[i][0]);
888 		size_t const val_len = strlen(metadata[i][1]);
889 
890 		ceph_encode_32(&p, key_len);
891 		memcpy(p, metadata[i][0], key_len);
892 		p += key_len;
893 		ceph_encode_32(&p, val_len);
894 		memcpy(p, metadata[i][1], val_len);
895 		p += val_len;
896 	}
897 
898 	return msg;
899 }
900 
901 /*
902  * send session open request.
903  *
904  * called under mdsc->mutex
905  */
906 static int __open_session(struct ceph_mds_client *mdsc,
907 			  struct ceph_mds_session *session)
908 {
909 	struct ceph_msg *msg;
910 	int mstate;
911 	int mds = session->s_mds;
912 
913 	/* wait for mds to go active? */
914 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
915 	dout("open_session to mds%d (%s)\n", mds,
916 	     ceph_mds_state_name(mstate));
917 	session->s_state = CEPH_MDS_SESSION_OPENING;
918 	session->s_renew_requested = jiffies;
919 
920 	/* send connect message */
921 	msg = create_session_open_msg(mdsc, session->s_seq);
922 	if (!msg)
923 		return -ENOMEM;
924 	ceph_con_send(&session->s_con, msg);
925 	return 0;
926 }
927 
928 /*
929  * open sessions for any export targets for the given mds
930  *
931  * called under mdsc->mutex
932  */
933 static struct ceph_mds_session *
934 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
935 {
936 	struct ceph_mds_session *session;
937 
938 	session = __ceph_lookup_mds_session(mdsc, target);
939 	if (!session) {
940 		session = register_session(mdsc, target);
941 		if (IS_ERR(session))
942 			return session;
943 	}
944 	if (session->s_state == CEPH_MDS_SESSION_NEW ||
945 	    session->s_state == CEPH_MDS_SESSION_CLOSING)
946 		__open_session(mdsc, session);
947 
948 	return session;
949 }
950 
951 struct ceph_mds_session *
952 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
953 {
954 	struct ceph_mds_session *session;
955 
956 	dout("open_export_target_session to mds%d\n", target);
957 
958 	mutex_lock(&mdsc->mutex);
959 	session = __open_export_target_session(mdsc, target);
960 	mutex_unlock(&mdsc->mutex);
961 
962 	return session;
963 }
964 
965 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
966 					  struct ceph_mds_session *session)
967 {
968 	struct ceph_mds_info *mi;
969 	struct ceph_mds_session *ts;
970 	int i, mds = session->s_mds;
971 
972 	if (mds >= mdsc->mdsmap->m_max_mds)
973 		return;
974 
975 	mi = &mdsc->mdsmap->m_info[mds];
976 	dout("open_export_target_sessions for mds%d (%d targets)\n",
977 	     session->s_mds, mi->num_export_targets);
978 
979 	for (i = 0; i < mi->num_export_targets; i++) {
980 		ts = __open_export_target_session(mdsc, mi->export_targets[i]);
981 		if (!IS_ERR(ts))
982 			ceph_put_mds_session(ts);
983 	}
984 }
985 
986 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
987 					   struct ceph_mds_session *session)
988 {
989 	mutex_lock(&mdsc->mutex);
990 	__open_export_target_sessions(mdsc, session);
991 	mutex_unlock(&mdsc->mutex);
992 }
993 
994 /*
995  * session caps
996  */
997 
998 /*
999  * Free preallocated cap messages assigned to this session
1000  */
1001 static void cleanup_cap_releases(struct ceph_mds_session *session)
1002 {
1003 	struct ceph_msg *msg;
1004 
1005 	spin_lock(&session->s_cap_lock);
1006 	while (!list_empty(&session->s_cap_releases)) {
1007 		msg = list_first_entry(&session->s_cap_releases,
1008 				       struct ceph_msg, list_head);
1009 		list_del_init(&msg->list_head);
1010 		ceph_msg_put(msg);
1011 	}
1012 	while (!list_empty(&session->s_cap_releases_done)) {
1013 		msg = list_first_entry(&session->s_cap_releases_done,
1014 				       struct ceph_msg, list_head);
1015 		list_del_init(&msg->list_head);
1016 		ceph_msg_put(msg);
1017 	}
1018 	spin_unlock(&session->s_cap_lock);
1019 }
1020 
1021 /*
1022  * Helper to safely iterate over all caps associated with a session, with
1023  * special care taken to handle a racing __ceph_remove_cap().
1024  *
1025  * Caller must hold session s_mutex.
1026  */
1027 static int iterate_session_caps(struct ceph_mds_session *session,
1028 				 int (*cb)(struct inode *, struct ceph_cap *,
1029 					    void *), void *arg)
1030 {
1031 	struct list_head *p;
1032 	struct ceph_cap *cap;
1033 	struct inode *inode, *last_inode = NULL;
1034 	struct ceph_cap *old_cap = NULL;
1035 	int ret;
1036 
1037 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1038 	spin_lock(&session->s_cap_lock);
1039 	p = session->s_caps.next;
1040 	while (p != &session->s_caps) {
1041 		cap = list_entry(p, struct ceph_cap, session_caps);
1042 		inode = igrab(&cap->ci->vfs_inode);
1043 		if (!inode) {
1044 			p = p->next;
1045 			continue;
1046 		}
1047 		session->s_cap_iterator = cap;
1048 		spin_unlock(&session->s_cap_lock);
1049 
1050 		if (last_inode) {
1051 			iput(last_inode);
1052 			last_inode = NULL;
1053 		}
1054 		if (old_cap) {
1055 			ceph_put_cap(session->s_mdsc, old_cap);
1056 			old_cap = NULL;
1057 		}
1058 
1059 		ret = cb(inode, cap, arg);
1060 		last_inode = inode;
1061 
1062 		spin_lock(&session->s_cap_lock);
1063 		p = p->next;
1064 		if (cap->ci == NULL) {
1065 			dout("iterate_session_caps  finishing cap %p removal\n",
1066 			     cap);
1067 			BUG_ON(cap->session != session);
1068 			list_del_init(&cap->session_caps);
1069 			session->s_nr_caps--;
1070 			cap->session = NULL;
1071 			old_cap = cap;  /* put_cap it w/o locks held */
1072 		}
1073 		if (ret < 0)
1074 			goto out;
1075 	}
1076 	ret = 0;
1077 out:
1078 	session->s_cap_iterator = NULL;
1079 	spin_unlock(&session->s_cap_lock);
1080 
1081 	iput(last_inode);
1082 	if (old_cap)
1083 		ceph_put_cap(session->s_mdsc, old_cap);
1084 
1085 	return ret;
1086 }
1087 
1088 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1089 				  void *arg)
1090 {
1091 	struct ceph_inode_info *ci = ceph_inode(inode);
1092 	int drop = 0;
1093 
1094 	dout("removing cap %p, ci is %p, inode is %p\n",
1095 	     cap, ci, &ci->vfs_inode);
1096 	spin_lock(&ci->i_ceph_lock);
1097 	__ceph_remove_cap(cap, false);
1098 	if (!__ceph_is_any_real_caps(ci)) {
1099 		struct ceph_mds_client *mdsc =
1100 			ceph_sb_to_client(inode->i_sb)->mdsc;
1101 
1102 		spin_lock(&mdsc->cap_dirty_lock);
1103 		if (!list_empty(&ci->i_dirty_item)) {
1104 			pr_info(" dropping dirty %s state for %p %lld\n",
1105 				ceph_cap_string(ci->i_dirty_caps),
1106 				inode, ceph_ino(inode));
1107 			ci->i_dirty_caps = 0;
1108 			list_del_init(&ci->i_dirty_item);
1109 			drop = 1;
1110 		}
1111 		if (!list_empty(&ci->i_flushing_item)) {
1112 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1113 				ceph_cap_string(ci->i_flushing_caps),
1114 				inode, ceph_ino(inode));
1115 			ci->i_flushing_caps = 0;
1116 			list_del_init(&ci->i_flushing_item);
1117 			mdsc->num_cap_flushing--;
1118 			drop = 1;
1119 		}
1120 		if (drop && ci->i_wrbuffer_ref) {
1121 			pr_info(" dropping dirty data for %p %lld\n",
1122 				inode, ceph_ino(inode));
1123 			ci->i_wrbuffer_ref = 0;
1124 			ci->i_wrbuffer_ref_head = 0;
1125 			drop++;
1126 		}
1127 		spin_unlock(&mdsc->cap_dirty_lock);
1128 	}
1129 	spin_unlock(&ci->i_ceph_lock);
1130 	while (drop--)
1131 		iput(inode);
1132 	return 0;
1133 }
1134 
1135 /*
1136  * caller must hold session s_mutex
1137  */
1138 static void remove_session_caps(struct ceph_mds_session *session)
1139 {
1140 	dout("remove_session_caps on %p\n", session);
1141 	iterate_session_caps(session, remove_session_caps_cb, NULL);
1142 
1143 	spin_lock(&session->s_cap_lock);
1144 	if (session->s_nr_caps > 0) {
1145 		struct super_block *sb = session->s_mdsc->fsc->sb;
1146 		struct inode *inode;
1147 		struct ceph_cap *cap, *prev = NULL;
1148 		struct ceph_vino vino;
1149 		/*
1150 		 * iterate_session_caps() skips inodes that are being
1151 		 * deleted, we need to wait until deletions are complete.
1152 		 * __wait_on_freeing_inode() is designed for the job,
1153 		 * but it is not exported, so use lookup inode function
1154 		 * to access it.
1155 		 */
1156 		while (!list_empty(&session->s_caps)) {
1157 			cap = list_entry(session->s_caps.next,
1158 					 struct ceph_cap, session_caps);
1159 			if (cap == prev)
1160 				break;
1161 			prev = cap;
1162 			vino = cap->ci->i_vino;
1163 			spin_unlock(&session->s_cap_lock);
1164 
1165 			inode = ceph_find_inode(sb, vino);
1166 			iput(inode);
1167 
1168 			spin_lock(&session->s_cap_lock);
1169 		}
1170 	}
1171 	spin_unlock(&session->s_cap_lock);
1172 
1173 	BUG_ON(session->s_nr_caps > 0);
1174 	BUG_ON(!list_empty(&session->s_cap_flushing));
1175 	cleanup_cap_releases(session);
1176 }
1177 
1178 /*
1179  * wake up any threads waiting on this session's caps.  if the cap is
1180  * old (didn't get renewed on the client reconnect), remove it now.
1181  *
1182  * caller must hold s_mutex.
1183  */
1184 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1185 			      void *arg)
1186 {
1187 	struct ceph_inode_info *ci = ceph_inode(inode);
1188 
1189 	wake_up_all(&ci->i_cap_wq);
1190 	if (arg) {
1191 		spin_lock(&ci->i_ceph_lock);
1192 		ci->i_wanted_max_size = 0;
1193 		ci->i_requested_max_size = 0;
1194 		spin_unlock(&ci->i_ceph_lock);
1195 	}
1196 	return 0;
1197 }
1198 
1199 static void wake_up_session_caps(struct ceph_mds_session *session,
1200 				 int reconnect)
1201 {
1202 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1203 	iterate_session_caps(session, wake_up_session_cb,
1204 			     (void *)(unsigned long)reconnect);
1205 }
1206 
1207 /*
1208  * Send periodic message to MDS renewing all currently held caps.  The
1209  * ack will reset the expiration for all caps from this session.
1210  *
1211  * caller holds s_mutex
1212  */
1213 static int send_renew_caps(struct ceph_mds_client *mdsc,
1214 			   struct ceph_mds_session *session)
1215 {
1216 	struct ceph_msg *msg;
1217 	int state;
1218 
1219 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1220 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1221 		pr_info("mds%d caps stale\n", session->s_mds);
1222 	session->s_renew_requested = jiffies;
1223 
1224 	/* do not try to renew caps until a recovering mds has reconnected
1225 	 * with its clients. */
1226 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1227 	if (state < CEPH_MDS_STATE_RECONNECT) {
1228 		dout("send_renew_caps ignoring mds%d (%s)\n",
1229 		     session->s_mds, ceph_mds_state_name(state));
1230 		return 0;
1231 	}
1232 
1233 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1234 		ceph_mds_state_name(state));
1235 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1236 				 ++session->s_renew_seq);
1237 	if (!msg)
1238 		return -ENOMEM;
1239 	ceph_con_send(&session->s_con, msg);
1240 	return 0;
1241 }
1242 
1243 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1244 			     struct ceph_mds_session *session, u64 seq)
1245 {
1246 	struct ceph_msg *msg;
1247 
1248 	dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1249 	     session->s_mds, ceph_session_state_name(session->s_state), seq);
1250 	msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1251 	if (!msg)
1252 		return -ENOMEM;
1253 	ceph_con_send(&session->s_con, msg);
1254 	return 0;
1255 }
1256 
1257 
1258 /*
1259  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1260  *
1261  * Called under session->s_mutex
1262  */
1263 static void renewed_caps(struct ceph_mds_client *mdsc,
1264 			 struct ceph_mds_session *session, int is_renew)
1265 {
1266 	int was_stale;
1267 	int wake = 0;
1268 
1269 	spin_lock(&session->s_cap_lock);
1270 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1271 
1272 	session->s_cap_ttl = session->s_renew_requested +
1273 		mdsc->mdsmap->m_session_timeout*HZ;
1274 
1275 	if (was_stale) {
1276 		if (time_before(jiffies, session->s_cap_ttl)) {
1277 			pr_info("mds%d caps renewed\n", session->s_mds);
1278 			wake = 1;
1279 		} else {
1280 			pr_info("mds%d caps still stale\n", session->s_mds);
1281 		}
1282 	}
1283 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1284 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1285 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1286 	spin_unlock(&session->s_cap_lock);
1287 
1288 	if (wake)
1289 		wake_up_session_caps(session, 0);
1290 }
1291 
1292 /*
1293  * send a session close request
1294  */
1295 static int request_close_session(struct ceph_mds_client *mdsc,
1296 				 struct ceph_mds_session *session)
1297 {
1298 	struct ceph_msg *msg;
1299 
1300 	dout("request_close_session mds%d state %s seq %lld\n",
1301 	     session->s_mds, ceph_session_state_name(session->s_state),
1302 	     session->s_seq);
1303 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1304 	if (!msg)
1305 		return -ENOMEM;
1306 	ceph_con_send(&session->s_con, msg);
1307 	return 0;
1308 }
1309 
1310 /*
1311  * Called with s_mutex held.
1312  */
1313 static int __close_session(struct ceph_mds_client *mdsc,
1314 			 struct ceph_mds_session *session)
1315 {
1316 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1317 		return 0;
1318 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1319 	return request_close_session(mdsc, session);
1320 }
1321 
1322 /*
1323  * Trim old(er) caps.
1324  *
1325  * Because we can't cache an inode without one or more caps, we do
1326  * this indirectly: if a cap is unused, we prune its aliases, at which
1327  * point the inode will hopefully get dropped to.
1328  *
1329  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1330  * memory pressure from the MDS, though, so it needn't be perfect.
1331  */
1332 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1333 {
1334 	struct ceph_mds_session *session = arg;
1335 	struct ceph_inode_info *ci = ceph_inode(inode);
1336 	int used, wanted, oissued, mine;
1337 
1338 	if (session->s_trim_caps <= 0)
1339 		return -1;
1340 
1341 	spin_lock(&ci->i_ceph_lock);
1342 	mine = cap->issued | cap->implemented;
1343 	used = __ceph_caps_used(ci);
1344 	wanted = __ceph_caps_file_wanted(ci);
1345 	oissued = __ceph_caps_issued_other(ci, cap);
1346 
1347 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1348 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1349 	     ceph_cap_string(used), ceph_cap_string(wanted));
1350 	if (cap == ci->i_auth_cap) {
1351 		if (ci->i_dirty_caps | ci->i_flushing_caps)
1352 			goto out;
1353 		if ((used | wanted) & CEPH_CAP_ANY_WR)
1354 			goto out;
1355 	}
1356 	if ((used | wanted) & ~oissued & mine)
1357 		goto out;   /* we need these caps */
1358 
1359 	session->s_trim_caps--;
1360 	if (oissued) {
1361 		/* we aren't the only cap.. just remove us */
1362 		__ceph_remove_cap(cap, true);
1363 	} else {
1364 		/* try to drop referring dentries */
1365 		spin_unlock(&ci->i_ceph_lock);
1366 		d_prune_aliases(inode);
1367 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1368 		     inode, cap, atomic_read(&inode->i_count));
1369 		return 0;
1370 	}
1371 
1372 out:
1373 	spin_unlock(&ci->i_ceph_lock);
1374 	return 0;
1375 }
1376 
1377 /*
1378  * Trim session cap count down to some max number.
1379  */
1380 static int trim_caps(struct ceph_mds_client *mdsc,
1381 		     struct ceph_mds_session *session,
1382 		     int max_caps)
1383 {
1384 	int trim_caps = session->s_nr_caps - max_caps;
1385 
1386 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1387 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1388 	if (trim_caps > 0) {
1389 		session->s_trim_caps = trim_caps;
1390 		iterate_session_caps(session, trim_caps_cb, session);
1391 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1392 		     session->s_mds, session->s_nr_caps, max_caps,
1393 			trim_caps - session->s_trim_caps);
1394 		session->s_trim_caps = 0;
1395 	}
1396 
1397 	ceph_add_cap_releases(mdsc, session);
1398 	ceph_send_cap_releases(mdsc, session);
1399 	return 0;
1400 }
1401 
1402 /*
1403  * Allocate cap_release messages.  If there is a partially full message
1404  * in the queue, try to allocate enough to cover it's remainder, so that
1405  * we can send it immediately.
1406  *
1407  * Called under s_mutex.
1408  */
1409 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1410 			  struct ceph_mds_session *session)
1411 {
1412 	struct ceph_msg *msg, *partial = NULL;
1413 	struct ceph_mds_cap_release *head;
1414 	int err = -ENOMEM;
1415 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1416 	int num;
1417 
1418 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1419 	     extra);
1420 
1421 	spin_lock(&session->s_cap_lock);
1422 
1423 	if (!list_empty(&session->s_cap_releases)) {
1424 		msg = list_first_entry(&session->s_cap_releases,
1425 				       struct ceph_msg,
1426 				 list_head);
1427 		head = msg->front.iov_base;
1428 		num = le32_to_cpu(head->num);
1429 		if (num) {
1430 			dout(" partial %p with (%d/%d)\n", msg, num,
1431 			     (int)CEPH_CAPS_PER_RELEASE);
1432 			extra += CEPH_CAPS_PER_RELEASE - num;
1433 			partial = msg;
1434 		}
1435 	}
1436 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1437 		spin_unlock(&session->s_cap_lock);
1438 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1439 				   GFP_NOFS, false);
1440 		if (!msg)
1441 			goto out_unlocked;
1442 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1443 		     (int)msg->front.iov_len);
1444 		head = msg->front.iov_base;
1445 		head->num = cpu_to_le32(0);
1446 		msg->front.iov_len = sizeof(*head);
1447 		spin_lock(&session->s_cap_lock);
1448 		list_add(&msg->list_head, &session->s_cap_releases);
1449 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1450 	}
1451 
1452 	if (partial) {
1453 		head = partial->front.iov_base;
1454 		num = le32_to_cpu(head->num);
1455 		dout(" queueing partial %p with %d/%d\n", partial, num,
1456 		     (int)CEPH_CAPS_PER_RELEASE);
1457 		list_move_tail(&partial->list_head,
1458 			       &session->s_cap_releases_done);
1459 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1460 	}
1461 	err = 0;
1462 	spin_unlock(&session->s_cap_lock);
1463 out_unlocked:
1464 	return err;
1465 }
1466 
1467 /*
1468  * flush all dirty inode data to disk.
1469  *
1470  * returns true if we've flushed through want_flush_seq
1471  */
1472 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1473 {
1474 	int mds, ret = 1;
1475 
1476 	dout("check_cap_flush want %lld\n", want_flush_seq);
1477 	mutex_lock(&mdsc->mutex);
1478 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1479 		struct ceph_mds_session *session = mdsc->sessions[mds];
1480 
1481 		if (!session)
1482 			continue;
1483 		get_session(session);
1484 		mutex_unlock(&mdsc->mutex);
1485 
1486 		mutex_lock(&session->s_mutex);
1487 		if (!list_empty(&session->s_cap_flushing)) {
1488 			struct ceph_inode_info *ci =
1489 				list_entry(session->s_cap_flushing.next,
1490 					   struct ceph_inode_info,
1491 					   i_flushing_item);
1492 			struct inode *inode = &ci->vfs_inode;
1493 
1494 			spin_lock(&ci->i_ceph_lock);
1495 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1496 				dout("check_cap_flush still flushing %p "
1497 				     "seq %lld <= %lld to mds%d\n", inode,
1498 				     ci->i_cap_flush_seq, want_flush_seq,
1499 				     session->s_mds);
1500 				ret = 0;
1501 			}
1502 			spin_unlock(&ci->i_ceph_lock);
1503 		}
1504 		mutex_unlock(&session->s_mutex);
1505 		ceph_put_mds_session(session);
1506 
1507 		if (!ret)
1508 			return ret;
1509 		mutex_lock(&mdsc->mutex);
1510 	}
1511 
1512 	mutex_unlock(&mdsc->mutex);
1513 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1514 	return ret;
1515 }
1516 
1517 /*
1518  * called under s_mutex
1519  */
1520 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1521 			    struct ceph_mds_session *session)
1522 {
1523 	struct ceph_msg *msg;
1524 
1525 	dout("send_cap_releases mds%d\n", session->s_mds);
1526 	spin_lock(&session->s_cap_lock);
1527 	while (!list_empty(&session->s_cap_releases_done)) {
1528 		msg = list_first_entry(&session->s_cap_releases_done,
1529 				 struct ceph_msg, list_head);
1530 		list_del_init(&msg->list_head);
1531 		spin_unlock(&session->s_cap_lock);
1532 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1533 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1534 		ceph_con_send(&session->s_con, msg);
1535 		spin_lock(&session->s_cap_lock);
1536 	}
1537 	spin_unlock(&session->s_cap_lock);
1538 }
1539 
1540 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1541 				 struct ceph_mds_session *session)
1542 {
1543 	struct ceph_msg *msg;
1544 	struct ceph_mds_cap_release *head;
1545 	unsigned num;
1546 
1547 	dout("discard_cap_releases mds%d\n", session->s_mds);
1548 
1549 	if (!list_empty(&session->s_cap_releases)) {
1550 		/* zero out the in-progress message */
1551 		msg = list_first_entry(&session->s_cap_releases,
1552 					struct ceph_msg, list_head);
1553 		head = msg->front.iov_base;
1554 		num = le32_to_cpu(head->num);
1555 		dout("discard_cap_releases mds%d %p %u\n",
1556 		     session->s_mds, msg, num);
1557 		head->num = cpu_to_le32(0);
1558 		msg->front.iov_len = sizeof(*head);
1559 		session->s_num_cap_releases += num;
1560 	}
1561 
1562 	/* requeue completed messages */
1563 	while (!list_empty(&session->s_cap_releases_done)) {
1564 		msg = list_first_entry(&session->s_cap_releases_done,
1565 				 struct ceph_msg, list_head);
1566 		list_del_init(&msg->list_head);
1567 
1568 		head = msg->front.iov_base;
1569 		num = le32_to_cpu(head->num);
1570 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1571 		     num);
1572 		session->s_num_cap_releases += num;
1573 		head->num = cpu_to_le32(0);
1574 		msg->front.iov_len = sizeof(*head);
1575 		list_add(&msg->list_head, &session->s_cap_releases);
1576 	}
1577 }
1578 
1579 /*
1580  * requests
1581  */
1582 
1583 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1584 				    struct inode *dir)
1585 {
1586 	struct ceph_inode_info *ci = ceph_inode(dir);
1587 	struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1588 	struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1589 	size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) +
1590 		      sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease);
1591 	int order, num_entries;
1592 
1593 	spin_lock(&ci->i_ceph_lock);
1594 	num_entries = ci->i_files + ci->i_subdirs;
1595 	spin_unlock(&ci->i_ceph_lock);
1596 	num_entries = max(num_entries, 1);
1597 	num_entries = min(num_entries, opt->max_readdir);
1598 
1599 	order = get_order(size * num_entries);
1600 	while (order >= 0) {
1601 		rinfo->dir_in = (void*)__get_free_pages(GFP_NOFS | __GFP_NOWARN,
1602 							order);
1603 		if (rinfo->dir_in)
1604 			break;
1605 		order--;
1606 	}
1607 	if (!rinfo->dir_in)
1608 		return -ENOMEM;
1609 
1610 	num_entries = (PAGE_SIZE << order) / size;
1611 	num_entries = min(num_entries, opt->max_readdir);
1612 
1613 	rinfo->dir_buf_size = PAGE_SIZE << order;
1614 	req->r_num_caps = num_entries + 1;
1615 	req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1616 	req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1617 	return 0;
1618 }
1619 
1620 /*
1621  * Create an mds request.
1622  */
1623 struct ceph_mds_request *
1624 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1625 {
1626 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1627 
1628 	if (!req)
1629 		return ERR_PTR(-ENOMEM);
1630 
1631 	mutex_init(&req->r_fill_mutex);
1632 	req->r_mdsc = mdsc;
1633 	req->r_started = jiffies;
1634 	req->r_resend_mds = -1;
1635 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1636 	req->r_fmode = -1;
1637 	kref_init(&req->r_kref);
1638 	INIT_LIST_HEAD(&req->r_wait);
1639 	init_completion(&req->r_completion);
1640 	init_completion(&req->r_safe_completion);
1641 	INIT_LIST_HEAD(&req->r_unsafe_item);
1642 
1643 	req->r_stamp = CURRENT_TIME;
1644 
1645 	req->r_op = op;
1646 	req->r_direct_mode = mode;
1647 	return req;
1648 }
1649 
1650 /*
1651  * return oldest (lowest) request, tid in request tree, 0 if none.
1652  *
1653  * called under mdsc->mutex.
1654  */
1655 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1656 {
1657 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1658 		return NULL;
1659 	return rb_entry(rb_first(&mdsc->request_tree),
1660 			struct ceph_mds_request, r_node);
1661 }
1662 
1663 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1664 {
1665 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1666 
1667 	if (req)
1668 		return req->r_tid;
1669 	return 0;
1670 }
1671 
1672 /*
1673  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1674  * on build_path_from_dentry in fs/cifs/dir.c.
1675  *
1676  * If @stop_on_nosnap, generate path relative to the first non-snapped
1677  * inode.
1678  *
1679  * Encode hidden .snap dirs as a double /, i.e.
1680  *   foo/.snap/bar -> foo//bar
1681  */
1682 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1683 			   int stop_on_nosnap)
1684 {
1685 	struct dentry *temp;
1686 	char *path;
1687 	int len, pos;
1688 	unsigned seq;
1689 
1690 	if (dentry == NULL)
1691 		return ERR_PTR(-EINVAL);
1692 
1693 retry:
1694 	len = 0;
1695 	seq = read_seqbegin(&rename_lock);
1696 	rcu_read_lock();
1697 	for (temp = dentry; !IS_ROOT(temp);) {
1698 		struct inode *inode = temp->d_inode;
1699 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1700 			len++;  /* slash only */
1701 		else if (stop_on_nosnap && inode &&
1702 			 ceph_snap(inode) == CEPH_NOSNAP)
1703 			break;
1704 		else
1705 			len += 1 + temp->d_name.len;
1706 		temp = temp->d_parent;
1707 	}
1708 	rcu_read_unlock();
1709 	if (len)
1710 		len--;  /* no leading '/' */
1711 
1712 	path = kmalloc(len+1, GFP_NOFS);
1713 	if (path == NULL)
1714 		return ERR_PTR(-ENOMEM);
1715 	pos = len;
1716 	path[pos] = 0;	/* trailing null */
1717 	rcu_read_lock();
1718 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1719 		struct inode *inode;
1720 
1721 		spin_lock(&temp->d_lock);
1722 		inode = temp->d_inode;
1723 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1724 			dout("build_path path+%d: %p SNAPDIR\n",
1725 			     pos, temp);
1726 		} else if (stop_on_nosnap && inode &&
1727 			   ceph_snap(inode) == CEPH_NOSNAP) {
1728 			spin_unlock(&temp->d_lock);
1729 			break;
1730 		} else {
1731 			pos -= temp->d_name.len;
1732 			if (pos < 0) {
1733 				spin_unlock(&temp->d_lock);
1734 				break;
1735 			}
1736 			strncpy(path + pos, temp->d_name.name,
1737 				temp->d_name.len);
1738 		}
1739 		spin_unlock(&temp->d_lock);
1740 		if (pos)
1741 			path[--pos] = '/';
1742 		temp = temp->d_parent;
1743 	}
1744 	rcu_read_unlock();
1745 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1746 		pr_err("build_path did not end path lookup where "
1747 		       "expected, namelen is %d, pos is %d\n", len, pos);
1748 		/* presumably this is only possible if racing with a
1749 		   rename of one of the parent directories (we can not
1750 		   lock the dentries above us to prevent this, but
1751 		   retrying should be harmless) */
1752 		kfree(path);
1753 		goto retry;
1754 	}
1755 
1756 	*base = ceph_ino(temp->d_inode);
1757 	*plen = len;
1758 	dout("build_path on %p %d built %llx '%.*s'\n",
1759 	     dentry, d_count(dentry), *base, len, path);
1760 	return path;
1761 }
1762 
1763 static int build_dentry_path(struct dentry *dentry,
1764 			     const char **ppath, int *ppathlen, u64 *pino,
1765 			     int *pfreepath)
1766 {
1767 	char *path;
1768 
1769 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1770 		*pino = ceph_ino(dentry->d_parent->d_inode);
1771 		*ppath = dentry->d_name.name;
1772 		*ppathlen = dentry->d_name.len;
1773 		return 0;
1774 	}
1775 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1776 	if (IS_ERR(path))
1777 		return PTR_ERR(path);
1778 	*ppath = path;
1779 	*pfreepath = 1;
1780 	return 0;
1781 }
1782 
1783 static int build_inode_path(struct inode *inode,
1784 			    const char **ppath, int *ppathlen, u64 *pino,
1785 			    int *pfreepath)
1786 {
1787 	struct dentry *dentry;
1788 	char *path;
1789 
1790 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1791 		*pino = ceph_ino(inode);
1792 		*ppathlen = 0;
1793 		return 0;
1794 	}
1795 	dentry = d_find_alias(inode);
1796 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1797 	dput(dentry);
1798 	if (IS_ERR(path))
1799 		return PTR_ERR(path);
1800 	*ppath = path;
1801 	*pfreepath = 1;
1802 	return 0;
1803 }
1804 
1805 /*
1806  * request arguments may be specified via an inode *, a dentry *, or
1807  * an explicit ino+path.
1808  */
1809 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1810 				  const char *rpath, u64 rino,
1811 				  const char **ppath, int *pathlen,
1812 				  u64 *ino, int *freepath)
1813 {
1814 	int r = 0;
1815 
1816 	if (rinode) {
1817 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1818 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1819 		     ceph_snap(rinode));
1820 	} else if (rdentry) {
1821 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1822 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1823 		     *ppath);
1824 	} else if (rpath || rino) {
1825 		*ino = rino;
1826 		*ppath = rpath;
1827 		*pathlen = rpath ? strlen(rpath) : 0;
1828 		dout(" path %.*s\n", *pathlen, rpath);
1829 	}
1830 
1831 	return r;
1832 }
1833 
1834 /*
1835  * called under mdsc->mutex
1836  */
1837 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1838 					       struct ceph_mds_request *req,
1839 					       int mds)
1840 {
1841 	struct ceph_msg *msg;
1842 	struct ceph_mds_request_head *head;
1843 	const char *path1 = NULL;
1844 	const char *path2 = NULL;
1845 	u64 ino1 = 0, ino2 = 0;
1846 	int pathlen1 = 0, pathlen2 = 0;
1847 	int freepath1 = 0, freepath2 = 0;
1848 	int len;
1849 	u16 releases;
1850 	void *p, *end;
1851 	int ret;
1852 
1853 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1854 			      req->r_path1, req->r_ino1.ino,
1855 			      &path1, &pathlen1, &ino1, &freepath1);
1856 	if (ret < 0) {
1857 		msg = ERR_PTR(ret);
1858 		goto out;
1859 	}
1860 
1861 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1862 			      req->r_path2, req->r_ino2.ino,
1863 			      &path2, &pathlen2, &ino2, &freepath2);
1864 	if (ret < 0) {
1865 		msg = ERR_PTR(ret);
1866 		goto out_free1;
1867 	}
1868 
1869 	len = sizeof(*head) +
1870 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1871 		sizeof(struct timespec);
1872 
1873 	/* calculate (max) length for cap releases */
1874 	len += sizeof(struct ceph_mds_request_release) *
1875 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1876 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1877 	if (req->r_dentry_drop)
1878 		len += req->r_dentry->d_name.len;
1879 	if (req->r_old_dentry_drop)
1880 		len += req->r_old_dentry->d_name.len;
1881 
1882 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1883 	if (!msg) {
1884 		msg = ERR_PTR(-ENOMEM);
1885 		goto out_free2;
1886 	}
1887 
1888 	msg->hdr.version = cpu_to_le16(2);
1889 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1890 
1891 	head = msg->front.iov_base;
1892 	p = msg->front.iov_base + sizeof(*head);
1893 	end = msg->front.iov_base + msg->front.iov_len;
1894 
1895 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1896 	head->op = cpu_to_le32(req->r_op);
1897 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1898 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1899 	head->args = req->r_args;
1900 
1901 	ceph_encode_filepath(&p, end, ino1, path1);
1902 	ceph_encode_filepath(&p, end, ino2, path2);
1903 
1904 	/* make note of release offset, in case we need to replay */
1905 	req->r_request_release_offset = p - msg->front.iov_base;
1906 
1907 	/* cap releases */
1908 	releases = 0;
1909 	if (req->r_inode_drop)
1910 		releases += ceph_encode_inode_release(&p,
1911 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1912 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1913 	if (req->r_dentry_drop)
1914 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1915 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1916 	if (req->r_old_dentry_drop)
1917 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1918 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1919 	if (req->r_old_inode_drop)
1920 		releases += ceph_encode_inode_release(&p,
1921 		      req->r_old_dentry->d_inode,
1922 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1923 	head->num_releases = cpu_to_le16(releases);
1924 
1925 	/* time stamp */
1926 	ceph_encode_copy(&p, &req->r_stamp, sizeof(req->r_stamp));
1927 
1928 	BUG_ON(p > end);
1929 	msg->front.iov_len = p - msg->front.iov_base;
1930 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1931 
1932 	if (req->r_pagelist) {
1933 		struct ceph_pagelist *pagelist = req->r_pagelist;
1934 		atomic_inc(&pagelist->refcnt);
1935 		ceph_msg_data_add_pagelist(msg, pagelist);
1936 		msg->hdr.data_len = cpu_to_le32(pagelist->length);
1937 	} else {
1938 		msg->hdr.data_len = 0;
1939 	}
1940 
1941 	msg->hdr.data_off = cpu_to_le16(0);
1942 
1943 out_free2:
1944 	if (freepath2)
1945 		kfree((char *)path2);
1946 out_free1:
1947 	if (freepath1)
1948 		kfree((char *)path1);
1949 out:
1950 	return msg;
1951 }
1952 
1953 /*
1954  * called under mdsc->mutex if error, under no mutex if
1955  * success.
1956  */
1957 static void complete_request(struct ceph_mds_client *mdsc,
1958 			     struct ceph_mds_request *req)
1959 {
1960 	if (req->r_callback)
1961 		req->r_callback(mdsc, req);
1962 	else
1963 		complete_all(&req->r_completion);
1964 }
1965 
1966 /*
1967  * called under mdsc->mutex
1968  */
1969 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1970 				  struct ceph_mds_request *req,
1971 				  int mds)
1972 {
1973 	struct ceph_mds_request_head *rhead;
1974 	struct ceph_msg *msg;
1975 	int flags = 0;
1976 
1977 	req->r_attempts++;
1978 	if (req->r_inode) {
1979 		struct ceph_cap *cap =
1980 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1981 
1982 		if (cap)
1983 			req->r_sent_on_mseq = cap->mseq;
1984 		else
1985 			req->r_sent_on_mseq = -1;
1986 	}
1987 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1988 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1989 
1990 	if (req->r_got_unsafe) {
1991 		void *p;
1992 		/*
1993 		 * Replay.  Do not regenerate message (and rebuild
1994 		 * paths, etc.); just use the original message.
1995 		 * Rebuilding paths will break for renames because
1996 		 * d_move mangles the src name.
1997 		 */
1998 		msg = req->r_request;
1999 		rhead = msg->front.iov_base;
2000 
2001 		flags = le32_to_cpu(rhead->flags);
2002 		flags |= CEPH_MDS_FLAG_REPLAY;
2003 		rhead->flags = cpu_to_le32(flags);
2004 
2005 		if (req->r_target_inode)
2006 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2007 
2008 		rhead->num_retry = req->r_attempts - 1;
2009 
2010 		/* remove cap/dentry releases from message */
2011 		rhead->num_releases = 0;
2012 
2013 		/* time stamp */
2014 		p = msg->front.iov_base + req->r_request_release_offset;
2015 		ceph_encode_copy(&p, &req->r_stamp, sizeof(req->r_stamp));
2016 
2017 		msg->front.iov_len = p - msg->front.iov_base;
2018 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2019 		return 0;
2020 	}
2021 
2022 	if (req->r_request) {
2023 		ceph_msg_put(req->r_request);
2024 		req->r_request = NULL;
2025 	}
2026 	msg = create_request_message(mdsc, req, mds);
2027 	if (IS_ERR(msg)) {
2028 		req->r_err = PTR_ERR(msg);
2029 		complete_request(mdsc, req);
2030 		return PTR_ERR(msg);
2031 	}
2032 	req->r_request = msg;
2033 
2034 	rhead = msg->front.iov_base;
2035 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2036 	if (req->r_got_unsafe)
2037 		flags |= CEPH_MDS_FLAG_REPLAY;
2038 	if (req->r_locked_dir)
2039 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2040 	rhead->flags = cpu_to_le32(flags);
2041 	rhead->num_fwd = req->r_num_fwd;
2042 	rhead->num_retry = req->r_attempts - 1;
2043 	rhead->ino = 0;
2044 
2045 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
2046 	return 0;
2047 }
2048 
2049 /*
2050  * send request, or put it on the appropriate wait list.
2051  */
2052 static int __do_request(struct ceph_mds_client *mdsc,
2053 			struct ceph_mds_request *req)
2054 {
2055 	struct ceph_mds_session *session = NULL;
2056 	int mds = -1;
2057 	int err = -EAGAIN;
2058 
2059 	if (req->r_err || req->r_got_result) {
2060 		if (req->r_aborted)
2061 			__unregister_request(mdsc, req);
2062 		goto out;
2063 	}
2064 
2065 	if (req->r_timeout &&
2066 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2067 		dout("do_request timed out\n");
2068 		err = -EIO;
2069 		goto finish;
2070 	}
2071 
2072 	put_request_session(req);
2073 
2074 	mds = __choose_mds(mdsc, req);
2075 	if (mds < 0 ||
2076 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2077 		dout("do_request no mds or not active, waiting for map\n");
2078 		list_add(&req->r_wait, &mdsc->waiting_for_map);
2079 		goto out;
2080 	}
2081 
2082 	/* get, open session */
2083 	session = __ceph_lookup_mds_session(mdsc, mds);
2084 	if (!session) {
2085 		session = register_session(mdsc, mds);
2086 		if (IS_ERR(session)) {
2087 			err = PTR_ERR(session);
2088 			goto finish;
2089 		}
2090 	}
2091 	req->r_session = get_session(session);
2092 
2093 	dout("do_request mds%d session %p state %s\n", mds, session,
2094 	     ceph_session_state_name(session->s_state));
2095 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2096 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
2097 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
2098 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
2099 			__open_session(mdsc, session);
2100 		list_add(&req->r_wait, &session->s_waiting);
2101 		goto out_session;
2102 	}
2103 
2104 	/* send request */
2105 	req->r_resend_mds = -1;   /* forget any previous mds hint */
2106 
2107 	if (req->r_request_started == 0)   /* note request start time */
2108 		req->r_request_started = jiffies;
2109 
2110 	err = __prepare_send_request(mdsc, req, mds);
2111 	if (!err) {
2112 		ceph_msg_get(req->r_request);
2113 		ceph_con_send(&session->s_con, req->r_request);
2114 	}
2115 
2116 out_session:
2117 	ceph_put_mds_session(session);
2118 out:
2119 	return err;
2120 
2121 finish:
2122 	req->r_err = err;
2123 	complete_request(mdsc, req);
2124 	goto out;
2125 }
2126 
2127 /*
2128  * called under mdsc->mutex
2129  */
2130 static void __wake_requests(struct ceph_mds_client *mdsc,
2131 			    struct list_head *head)
2132 {
2133 	struct ceph_mds_request *req;
2134 	LIST_HEAD(tmp_list);
2135 
2136 	list_splice_init(head, &tmp_list);
2137 
2138 	while (!list_empty(&tmp_list)) {
2139 		req = list_entry(tmp_list.next,
2140 				 struct ceph_mds_request, r_wait);
2141 		list_del_init(&req->r_wait);
2142 		dout(" wake request %p tid %llu\n", req, req->r_tid);
2143 		__do_request(mdsc, req);
2144 	}
2145 }
2146 
2147 /*
2148  * Wake up threads with requests pending for @mds, so that they can
2149  * resubmit their requests to a possibly different mds.
2150  */
2151 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2152 {
2153 	struct ceph_mds_request *req;
2154 	struct rb_node *p = rb_first(&mdsc->request_tree);
2155 
2156 	dout("kick_requests mds%d\n", mds);
2157 	while (p) {
2158 		req = rb_entry(p, struct ceph_mds_request, r_node);
2159 		p = rb_next(p);
2160 		if (req->r_got_unsafe)
2161 			continue;
2162 		if (req->r_session &&
2163 		    req->r_session->s_mds == mds) {
2164 			dout(" kicking tid %llu\n", req->r_tid);
2165 			list_del_init(&req->r_wait);
2166 			__do_request(mdsc, req);
2167 		}
2168 	}
2169 }
2170 
2171 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2172 			      struct ceph_mds_request *req)
2173 {
2174 	dout("submit_request on %p\n", req);
2175 	mutex_lock(&mdsc->mutex);
2176 	__register_request(mdsc, req, NULL);
2177 	__do_request(mdsc, req);
2178 	mutex_unlock(&mdsc->mutex);
2179 }
2180 
2181 /*
2182  * Synchrously perform an mds request.  Take care of all of the
2183  * session setup, forwarding, retry details.
2184  */
2185 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2186 			 struct inode *dir,
2187 			 struct ceph_mds_request *req)
2188 {
2189 	int err;
2190 
2191 	dout("do_request on %p\n", req);
2192 
2193 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2194 	if (req->r_inode)
2195 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2196 	if (req->r_locked_dir)
2197 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2198 	if (req->r_old_dentry_dir)
2199 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2200 				  CEPH_CAP_PIN);
2201 
2202 	/* issue */
2203 	mutex_lock(&mdsc->mutex);
2204 	__register_request(mdsc, req, dir);
2205 	__do_request(mdsc, req);
2206 
2207 	if (req->r_err) {
2208 		err = req->r_err;
2209 		__unregister_request(mdsc, req);
2210 		dout("do_request early error %d\n", err);
2211 		goto out;
2212 	}
2213 
2214 	/* wait */
2215 	mutex_unlock(&mdsc->mutex);
2216 	dout("do_request waiting\n");
2217 	if (req->r_timeout) {
2218 		err = (long)wait_for_completion_killable_timeout(
2219 			&req->r_completion, req->r_timeout);
2220 		if (err == 0)
2221 			err = -EIO;
2222 	} else if (req->r_wait_for_completion) {
2223 		err = req->r_wait_for_completion(mdsc, req);
2224 	} else {
2225 		err = wait_for_completion_killable(&req->r_completion);
2226 	}
2227 	dout("do_request waited, got %d\n", err);
2228 	mutex_lock(&mdsc->mutex);
2229 
2230 	/* only abort if we didn't race with a real reply */
2231 	if (req->r_got_result) {
2232 		err = le32_to_cpu(req->r_reply_info.head->result);
2233 	} else if (err < 0) {
2234 		dout("aborted request %lld with %d\n", req->r_tid, err);
2235 
2236 		/*
2237 		 * ensure we aren't running concurrently with
2238 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2239 		 * rely on locks (dir mutex) held by our caller.
2240 		 */
2241 		mutex_lock(&req->r_fill_mutex);
2242 		req->r_err = err;
2243 		req->r_aborted = true;
2244 		mutex_unlock(&req->r_fill_mutex);
2245 
2246 		if (req->r_locked_dir &&
2247 		    (req->r_op & CEPH_MDS_OP_WRITE))
2248 			ceph_invalidate_dir_request(req);
2249 	} else {
2250 		err = req->r_err;
2251 	}
2252 
2253 out:
2254 	mutex_unlock(&mdsc->mutex);
2255 	dout("do_request %p done, result %d\n", req, err);
2256 	return err;
2257 }
2258 
2259 /*
2260  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2261  * namespace request.
2262  */
2263 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2264 {
2265 	struct inode *inode = req->r_locked_dir;
2266 
2267 	dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2268 
2269 	ceph_dir_clear_complete(inode);
2270 	if (req->r_dentry)
2271 		ceph_invalidate_dentry_lease(req->r_dentry);
2272 	if (req->r_old_dentry)
2273 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2274 }
2275 
2276 /*
2277  * Handle mds reply.
2278  *
2279  * We take the session mutex and parse and process the reply immediately.
2280  * This preserves the logical ordering of replies, capabilities, etc., sent
2281  * by the MDS as they are applied to our local cache.
2282  */
2283 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2284 {
2285 	struct ceph_mds_client *mdsc = session->s_mdsc;
2286 	struct ceph_mds_request *req;
2287 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2288 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2289 	u64 tid;
2290 	int err, result;
2291 	int mds = session->s_mds;
2292 
2293 	if (msg->front.iov_len < sizeof(*head)) {
2294 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2295 		ceph_msg_dump(msg);
2296 		return;
2297 	}
2298 
2299 	/* get request, session */
2300 	tid = le64_to_cpu(msg->hdr.tid);
2301 	mutex_lock(&mdsc->mutex);
2302 	req = __lookup_request(mdsc, tid);
2303 	if (!req) {
2304 		dout("handle_reply on unknown tid %llu\n", tid);
2305 		mutex_unlock(&mdsc->mutex);
2306 		return;
2307 	}
2308 	dout("handle_reply %p\n", req);
2309 
2310 	/* correct session? */
2311 	if (req->r_session != session) {
2312 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2313 		       " not mds%d\n", tid, session->s_mds,
2314 		       req->r_session ? req->r_session->s_mds : -1);
2315 		mutex_unlock(&mdsc->mutex);
2316 		goto out;
2317 	}
2318 
2319 	/* dup? */
2320 	if ((req->r_got_unsafe && !head->safe) ||
2321 	    (req->r_got_safe && head->safe)) {
2322 		pr_warn("got a dup %s reply on %llu from mds%d\n",
2323 			   head->safe ? "safe" : "unsafe", tid, mds);
2324 		mutex_unlock(&mdsc->mutex);
2325 		goto out;
2326 	}
2327 	if (req->r_got_safe && !head->safe) {
2328 		pr_warn("got unsafe after safe on %llu from mds%d\n",
2329 			   tid, mds);
2330 		mutex_unlock(&mdsc->mutex);
2331 		goto out;
2332 	}
2333 
2334 	result = le32_to_cpu(head->result);
2335 
2336 	/*
2337 	 * Handle an ESTALE
2338 	 * if we're not talking to the authority, send to them
2339 	 * if the authority has changed while we weren't looking,
2340 	 * send to new authority
2341 	 * Otherwise we just have to return an ESTALE
2342 	 */
2343 	if (result == -ESTALE) {
2344 		dout("got ESTALE on request %llu", req->r_tid);
2345 		req->r_resend_mds = -1;
2346 		if (req->r_direct_mode != USE_AUTH_MDS) {
2347 			dout("not using auth, setting for that now");
2348 			req->r_direct_mode = USE_AUTH_MDS;
2349 			__do_request(mdsc, req);
2350 			mutex_unlock(&mdsc->mutex);
2351 			goto out;
2352 		} else  {
2353 			int mds = __choose_mds(mdsc, req);
2354 			if (mds >= 0 && mds != req->r_session->s_mds) {
2355 				dout("but auth changed, so resending");
2356 				__do_request(mdsc, req);
2357 				mutex_unlock(&mdsc->mutex);
2358 				goto out;
2359 			}
2360 		}
2361 		dout("have to return ESTALE on request %llu", req->r_tid);
2362 	}
2363 
2364 
2365 	if (head->safe) {
2366 		req->r_got_safe = true;
2367 		__unregister_request(mdsc, req);
2368 
2369 		if (req->r_got_unsafe) {
2370 			/*
2371 			 * We already handled the unsafe response, now do the
2372 			 * cleanup.  No need to examine the response; the MDS
2373 			 * doesn't include any result info in the safe
2374 			 * response.  And even if it did, there is nothing
2375 			 * useful we could do with a revised return value.
2376 			 */
2377 			dout("got safe reply %llu, mds%d\n", tid, mds);
2378 			list_del_init(&req->r_unsafe_item);
2379 
2380 			/* last unsafe request during umount? */
2381 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2382 				complete_all(&mdsc->safe_umount_waiters);
2383 			mutex_unlock(&mdsc->mutex);
2384 			goto out;
2385 		}
2386 	} else {
2387 		req->r_got_unsafe = true;
2388 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2389 	}
2390 
2391 	dout("handle_reply tid %lld result %d\n", tid, result);
2392 	rinfo = &req->r_reply_info;
2393 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2394 	mutex_unlock(&mdsc->mutex);
2395 
2396 	mutex_lock(&session->s_mutex);
2397 	if (err < 0) {
2398 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2399 		ceph_msg_dump(msg);
2400 		goto out_err;
2401 	}
2402 
2403 	/* snap trace */
2404 	if (rinfo->snapblob_len) {
2405 		down_write(&mdsc->snap_rwsem);
2406 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2407 			       rinfo->snapblob + rinfo->snapblob_len,
2408 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2409 		downgrade_write(&mdsc->snap_rwsem);
2410 	} else {
2411 		down_read(&mdsc->snap_rwsem);
2412 	}
2413 
2414 	/* insert trace into our cache */
2415 	mutex_lock(&req->r_fill_mutex);
2416 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2417 	if (err == 0) {
2418 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2419 				    req->r_op == CEPH_MDS_OP_LSSNAP))
2420 			ceph_readdir_prepopulate(req, req->r_session);
2421 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2422 	}
2423 	mutex_unlock(&req->r_fill_mutex);
2424 
2425 	up_read(&mdsc->snap_rwsem);
2426 out_err:
2427 	mutex_lock(&mdsc->mutex);
2428 	if (!req->r_aborted) {
2429 		if (err) {
2430 			req->r_err = err;
2431 		} else {
2432 			req->r_reply = msg;
2433 			ceph_msg_get(msg);
2434 			req->r_got_result = true;
2435 		}
2436 	} else {
2437 		dout("reply arrived after request %lld was aborted\n", tid);
2438 	}
2439 	mutex_unlock(&mdsc->mutex);
2440 
2441 	ceph_add_cap_releases(mdsc, req->r_session);
2442 	mutex_unlock(&session->s_mutex);
2443 
2444 	/* kick calling process */
2445 	complete_request(mdsc, req);
2446 out:
2447 	ceph_mdsc_put_request(req);
2448 	return;
2449 }
2450 
2451 
2452 
2453 /*
2454  * handle mds notification that our request has been forwarded.
2455  */
2456 static void handle_forward(struct ceph_mds_client *mdsc,
2457 			   struct ceph_mds_session *session,
2458 			   struct ceph_msg *msg)
2459 {
2460 	struct ceph_mds_request *req;
2461 	u64 tid = le64_to_cpu(msg->hdr.tid);
2462 	u32 next_mds;
2463 	u32 fwd_seq;
2464 	int err = -EINVAL;
2465 	void *p = msg->front.iov_base;
2466 	void *end = p + msg->front.iov_len;
2467 
2468 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2469 	next_mds = ceph_decode_32(&p);
2470 	fwd_seq = ceph_decode_32(&p);
2471 
2472 	mutex_lock(&mdsc->mutex);
2473 	req = __lookup_request(mdsc, tid);
2474 	if (!req) {
2475 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2476 		goto out;  /* dup reply? */
2477 	}
2478 
2479 	if (req->r_aborted) {
2480 		dout("forward tid %llu aborted, unregistering\n", tid);
2481 		__unregister_request(mdsc, req);
2482 	} else if (fwd_seq <= req->r_num_fwd) {
2483 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2484 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2485 	} else {
2486 		/* resend. forward race not possible; mds would drop */
2487 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2488 		BUG_ON(req->r_err);
2489 		BUG_ON(req->r_got_result);
2490 		req->r_num_fwd = fwd_seq;
2491 		req->r_resend_mds = next_mds;
2492 		put_request_session(req);
2493 		__do_request(mdsc, req);
2494 	}
2495 	ceph_mdsc_put_request(req);
2496 out:
2497 	mutex_unlock(&mdsc->mutex);
2498 	return;
2499 
2500 bad:
2501 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2502 }
2503 
2504 /*
2505  * handle a mds session control message
2506  */
2507 static void handle_session(struct ceph_mds_session *session,
2508 			   struct ceph_msg *msg)
2509 {
2510 	struct ceph_mds_client *mdsc = session->s_mdsc;
2511 	u32 op;
2512 	u64 seq;
2513 	int mds = session->s_mds;
2514 	struct ceph_mds_session_head *h = msg->front.iov_base;
2515 	int wake = 0;
2516 
2517 	/* decode */
2518 	if (msg->front.iov_len != sizeof(*h))
2519 		goto bad;
2520 	op = le32_to_cpu(h->op);
2521 	seq = le64_to_cpu(h->seq);
2522 
2523 	mutex_lock(&mdsc->mutex);
2524 	if (op == CEPH_SESSION_CLOSE)
2525 		__unregister_session(mdsc, session);
2526 	/* FIXME: this ttl calculation is generous */
2527 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2528 	mutex_unlock(&mdsc->mutex);
2529 
2530 	mutex_lock(&session->s_mutex);
2531 
2532 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2533 	     mds, ceph_session_op_name(op), session,
2534 	     ceph_session_state_name(session->s_state), seq);
2535 
2536 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2537 		session->s_state = CEPH_MDS_SESSION_OPEN;
2538 		pr_info("mds%d came back\n", session->s_mds);
2539 	}
2540 
2541 	switch (op) {
2542 	case CEPH_SESSION_OPEN:
2543 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2544 			pr_info("mds%d reconnect success\n", session->s_mds);
2545 		session->s_state = CEPH_MDS_SESSION_OPEN;
2546 		renewed_caps(mdsc, session, 0);
2547 		wake = 1;
2548 		if (mdsc->stopping)
2549 			__close_session(mdsc, session);
2550 		break;
2551 
2552 	case CEPH_SESSION_RENEWCAPS:
2553 		if (session->s_renew_seq == seq)
2554 			renewed_caps(mdsc, session, 1);
2555 		break;
2556 
2557 	case CEPH_SESSION_CLOSE:
2558 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2559 			pr_info("mds%d reconnect denied\n", session->s_mds);
2560 		remove_session_caps(session);
2561 		wake = 2; /* for good measure */
2562 		wake_up_all(&mdsc->session_close_wq);
2563 		break;
2564 
2565 	case CEPH_SESSION_STALE:
2566 		pr_info("mds%d caps went stale, renewing\n",
2567 			session->s_mds);
2568 		spin_lock(&session->s_gen_ttl_lock);
2569 		session->s_cap_gen++;
2570 		session->s_cap_ttl = jiffies - 1;
2571 		spin_unlock(&session->s_gen_ttl_lock);
2572 		send_renew_caps(mdsc, session);
2573 		break;
2574 
2575 	case CEPH_SESSION_RECALL_STATE:
2576 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2577 		break;
2578 
2579 	case CEPH_SESSION_FLUSHMSG:
2580 		send_flushmsg_ack(mdsc, session, seq);
2581 		break;
2582 
2583 	default:
2584 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2585 		WARN_ON(1);
2586 	}
2587 
2588 	mutex_unlock(&session->s_mutex);
2589 	if (wake) {
2590 		mutex_lock(&mdsc->mutex);
2591 		__wake_requests(mdsc, &session->s_waiting);
2592 		if (wake == 2)
2593 			kick_requests(mdsc, mds);
2594 		mutex_unlock(&mdsc->mutex);
2595 	}
2596 	return;
2597 
2598 bad:
2599 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2600 	       (int)msg->front.iov_len);
2601 	ceph_msg_dump(msg);
2602 	return;
2603 }
2604 
2605 
2606 /*
2607  * called under session->mutex.
2608  */
2609 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2610 				   struct ceph_mds_session *session)
2611 {
2612 	struct ceph_mds_request *req, *nreq;
2613 	int err;
2614 
2615 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2616 
2617 	mutex_lock(&mdsc->mutex);
2618 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2619 		err = __prepare_send_request(mdsc, req, session->s_mds);
2620 		if (!err) {
2621 			ceph_msg_get(req->r_request);
2622 			ceph_con_send(&session->s_con, req->r_request);
2623 		}
2624 	}
2625 	mutex_unlock(&mdsc->mutex);
2626 }
2627 
2628 /*
2629  * Encode information about a cap for a reconnect with the MDS.
2630  */
2631 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2632 			  void *arg)
2633 {
2634 	union {
2635 		struct ceph_mds_cap_reconnect v2;
2636 		struct ceph_mds_cap_reconnect_v1 v1;
2637 	} rec;
2638 	size_t reclen;
2639 	struct ceph_inode_info *ci;
2640 	struct ceph_reconnect_state *recon_state = arg;
2641 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2642 	char *path;
2643 	int pathlen, err;
2644 	u64 pathbase;
2645 	struct dentry *dentry;
2646 
2647 	ci = cap->ci;
2648 
2649 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2650 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2651 	     ceph_cap_string(cap->issued));
2652 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2653 	if (err)
2654 		return err;
2655 
2656 	dentry = d_find_alias(inode);
2657 	if (dentry) {
2658 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2659 		if (IS_ERR(path)) {
2660 			err = PTR_ERR(path);
2661 			goto out_dput;
2662 		}
2663 	} else {
2664 		path = NULL;
2665 		pathlen = 0;
2666 	}
2667 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2668 	if (err)
2669 		goto out_free;
2670 
2671 	spin_lock(&ci->i_ceph_lock);
2672 	cap->seq = 0;        /* reset cap seq */
2673 	cap->issue_seq = 0;  /* and issue_seq */
2674 	cap->mseq = 0;       /* and migrate_seq */
2675 	cap->cap_gen = cap->session->s_cap_gen;
2676 
2677 	if (recon_state->flock) {
2678 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2679 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2680 		rec.v2.issued = cpu_to_le32(cap->issued);
2681 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2682 		rec.v2.pathbase = cpu_to_le64(pathbase);
2683 		rec.v2.flock_len = 0;
2684 		reclen = sizeof(rec.v2);
2685 	} else {
2686 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2687 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2688 		rec.v1.issued = cpu_to_le32(cap->issued);
2689 		rec.v1.size = cpu_to_le64(inode->i_size);
2690 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2691 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2692 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2693 		rec.v1.pathbase = cpu_to_le64(pathbase);
2694 		reclen = sizeof(rec.v1);
2695 	}
2696 	spin_unlock(&ci->i_ceph_lock);
2697 
2698 	if (recon_state->flock) {
2699 		int num_fcntl_locks, num_flock_locks;
2700 		struct ceph_filelock *flocks;
2701 
2702 encode_again:
2703 		spin_lock(&inode->i_lock);
2704 		ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2705 		spin_unlock(&inode->i_lock);
2706 		flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2707 				 sizeof(struct ceph_filelock), GFP_NOFS);
2708 		if (!flocks) {
2709 			err = -ENOMEM;
2710 			goto out_free;
2711 		}
2712 		spin_lock(&inode->i_lock);
2713 		err = ceph_encode_locks_to_buffer(inode, flocks,
2714 						  num_fcntl_locks,
2715 						  num_flock_locks);
2716 		spin_unlock(&inode->i_lock);
2717 		if (err) {
2718 			kfree(flocks);
2719 			if (err == -ENOSPC)
2720 				goto encode_again;
2721 			goto out_free;
2722 		}
2723 		/*
2724 		 * number of encoded locks is stable, so copy to pagelist
2725 		 */
2726 		rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2727 				    (num_fcntl_locks+num_flock_locks) *
2728 				    sizeof(struct ceph_filelock));
2729 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2730 		if (!err)
2731 			err = ceph_locks_to_pagelist(flocks, pagelist,
2732 						     num_fcntl_locks,
2733 						     num_flock_locks);
2734 		kfree(flocks);
2735 	} else {
2736 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2737 	}
2738 
2739 	recon_state->nr_caps++;
2740 out_free:
2741 	kfree(path);
2742 out_dput:
2743 	dput(dentry);
2744 	return err;
2745 }
2746 
2747 
2748 /*
2749  * If an MDS fails and recovers, clients need to reconnect in order to
2750  * reestablish shared state.  This includes all caps issued through
2751  * this session _and_ the snap_realm hierarchy.  Because it's not
2752  * clear which snap realms the mds cares about, we send everything we
2753  * know about.. that ensures we'll then get any new info the
2754  * recovering MDS might have.
2755  *
2756  * This is a relatively heavyweight operation, but it's rare.
2757  *
2758  * called with mdsc->mutex held.
2759  */
2760 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2761 			       struct ceph_mds_session *session)
2762 {
2763 	struct ceph_msg *reply;
2764 	struct rb_node *p;
2765 	int mds = session->s_mds;
2766 	int err = -ENOMEM;
2767 	int s_nr_caps;
2768 	struct ceph_pagelist *pagelist;
2769 	struct ceph_reconnect_state recon_state;
2770 
2771 	pr_info("mds%d reconnect start\n", mds);
2772 
2773 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2774 	if (!pagelist)
2775 		goto fail_nopagelist;
2776 	ceph_pagelist_init(pagelist);
2777 
2778 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2779 	if (!reply)
2780 		goto fail_nomsg;
2781 
2782 	mutex_lock(&session->s_mutex);
2783 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2784 	session->s_seq = 0;
2785 
2786 	dout("session %p state %s\n", session,
2787 	     ceph_session_state_name(session->s_state));
2788 
2789 	spin_lock(&session->s_gen_ttl_lock);
2790 	session->s_cap_gen++;
2791 	spin_unlock(&session->s_gen_ttl_lock);
2792 
2793 	spin_lock(&session->s_cap_lock);
2794 	/*
2795 	 * notify __ceph_remove_cap() that we are composing cap reconnect.
2796 	 * If a cap get released before being added to the cap reconnect,
2797 	 * __ceph_remove_cap() should skip queuing cap release.
2798 	 */
2799 	session->s_cap_reconnect = 1;
2800 	/* drop old cap expires; we're about to reestablish that state */
2801 	discard_cap_releases(mdsc, session);
2802 	spin_unlock(&session->s_cap_lock);
2803 
2804 	/* trim unused caps to reduce MDS's cache rejoin time */
2805 	shrink_dcache_parent(mdsc->fsc->sb->s_root);
2806 
2807 	ceph_con_close(&session->s_con);
2808 	ceph_con_open(&session->s_con,
2809 		      CEPH_ENTITY_TYPE_MDS, mds,
2810 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2811 
2812 	/* replay unsafe requests */
2813 	replay_unsafe_requests(mdsc, session);
2814 
2815 	down_read(&mdsc->snap_rwsem);
2816 
2817 	/* traverse this session's caps */
2818 	s_nr_caps = session->s_nr_caps;
2819 	err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2820 	if (err)
2821 		goto fail;
2822 
2823 	recon_state.nr_caps = 0;
2824 	recon_state.pagelist = pagelist;
2825 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2826 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2827 	if (err < 0)
2828 		goto fail;
2829 
2830 	spin_lock(&session->s_cap_lock);
2831 	session->s_cap_reconnect = 0;
2832 	spin_unlock(&session->s_cap_lock);
2833 
2834 	/*
2835 	 * snaprealms.  we provide mds with the ino, seq (version), and
2836 	 * parent for all of our realms.  If the mds has any newer info,
2837 	 * it will tell us.
2838 	 */
2839 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2840 		struct ceph_snap_realm *realm =
2841 			rb_entry(p, struct ceph_snap_realm, node);
2842 		struct ceph_mds_snaprealm_reconnect sr_rec;
2843 
2844 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2845 		     realm->ino, realm->seq, realm->parent_ino);
2846 		sr_rec.ino = cpu_to_le64(realm->ino);
2847 		sr_rec.seq = cpu_to_le64(realm->seq);
2848 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2849 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2850 		if (err)
2851 			goto fail;
2852 	}
2853 
2854 	if (recon_state.flock)
2855 		reply->hdr.version = cpu_to_le16(2);
2856 
2857 	/* raced with cap release? */
2858 	if (s_nr_caps != recon_state.nr_caps) {
2859 		struct page *page = list_first_entry(&pagelist->head,
2860 						     struct page, lru);
2861 		__le32 *addr = kmap_atomic(page);
2862 		*addr = cpu_to_le32(recon_state.nr_caps);
2863 		kunmap_atomic(addr);
2864 	}
2865 
2866 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2867 	ceph_msg_data_add_pagelist(reply, pagelist);
2868 	ceph_con_send(&session->s_con, reply);
2869 
2870 	mutex_unlock(&session->s_mutex);
2871 
2872 	mutex_lock(&mdsc->mutex);
2873 	__wake_requests(mdsc, &session->s_waiting);
2874 	mutex_unlock(&mdsc->mutex);
2875 
2876 	up_read(&mdsc->snap_rwsem);
2877 	return;
2878 
2879 fail:
2880 	ceph_msg_put(reply);
2881 	up_read(&mdsc->snap_rwsem);
2882 	mutex_unlock(&session->s_mutex);
2883 fail_nomsg:
2884 	ceph_pagelist_release(pagelist);
2885 fail_nopagelist:
2886 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2887 	return;
2888 }
2889 
2890 
2891 /*
2892  * compare old and new mdsmaps, kicking requests
2893  * and closing out old connections as necessary
2894  *
2895  * called under mdsc->mutex.
2896  */
2897 static void check_new_map(struct ceph_mds_client *mdsc,
2898 			  struct ceph_mdsmap *newmap,
2899 			  struct ceph_mdsmap *oldmap)
2900 {
2901 	int i;
2902 	int oldstate, newstate;
2903 	struct ceph_mds_session *s;
2904 
2905 	dout("check_new_map new %u old %u\n",
2906 	     newmap->m_epoch, oldmap->m_epoch);
2907 
2908 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2909 		if (mdsc->sessions[i] == NULL)
2910 			continue;
2911 		s = mdsc->sessions[i];
2912 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2913 		newstate = ceph_mdsmap_get_state(newmap, i);
2914 
2915 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2916 		     i, ceph_mds_state_name(oldstate),
2917 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2918 		     ceph_mds_state_name(newstate),
2919 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2920 		     ceph_session_state_name(s->s_state));
2921 
2922 		if (i >= newmap->m_max_mds ||
2923 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
2924 			   ceph_mdsmap_get_addr(newmap, i),
2925 			   sizeof(struct ceph_entity_addr))) {
2926 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2927 				/* the session never opened, just close it
2928 				 * out now */
2929 				__wake_requests(mdsc, &s->s_waiting);
2930 				__unregister_session(mdsc, s);
2931 			} else {
2932 				/* just close it */
2933 				mutex_unlock(&mdsc->mutex);
2934 				mutex_lock(&s->s_mutex);
2935 				mutex_lock(&mdsc->mutex);
2936 				ceph_con_close(&s->s_con);
2937 				mutex_unlock(&s->s_mutex);
2938 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2939 			}
2940 
2941 			/* kick any requests waiting on the recovering mds */
2942 			kick_requests(mdsc, i);
2943 		} else if (oldstate == newstate) {
2944 			continue;  /* nothing new with this mds */
2945 		}
2946 
2947 		/*
2948 		 * send reconnect?
2949 		 */
2950 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2951 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2952 			mutex_unlock(&mdsc->mutex);
2953 			send_mds_reconnect(mdsc, s);
2954 			mutex_lock(&mdsc->mutex);
2955 		}
2956 
2957 		/*
2958 		 * kick request on any mds that has gone active.
2959 		 */
2960 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2961 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2962 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2963 			    oldstate != CEPH_MDS_STATE_STARTING)
2964 				pr_info("mds%d recovery completed\n", s->s_mds);
2965 			kick_requests(mdsc, i);
2966 			ceph_kick_flushing_caps(mdsc, s);
2967 			wake_up_session_caps(s, 1);
2968 		}
2969 	}
2970 
2971 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2972 		s = mdsc->sessions[i];
2973 		if (!s)
2974 			continue;
2975 		if (!ceph_mdsmap_is_laggy(newmap, i))
2976 			continue;
2977 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2978 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2979 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2980 			dout(" connecting to export targets of laggy mds%d\n",
2981 			     i);
2982 			__open_export_target_sessions(mdsc, s);
2983 		}
2984 	}
2985 }
2986 
2987 
2988 
2989 /*
2990  * leases
2991  */
2992 
2993 /*
2994  * caller must hold session s_mutex, dentry->d_lock
2995  */
2996 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2997 {
2998 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2999 
3000 	ceph_put_mds_session(di->lease_session);
3001 	di->lease_session = NULL;
3002 }
3003 
3004 static void handle_lease(struct ceph_mds_client *mdsc,
3005 			 struct ceph_mds_session *session,
3006 			 struct ceph_msg *msg)
3007 {
3008 	struct super_block *sb = mdsc->fsc->sb;
3009 	struct inode *inode;
3010 	struct dentry *parent, *dentry;
3011 	struct ceph_dentry_info *di;
3012 	int mds = session->s_mds;
3013 	struct ceph_mds_lease *h = msg->front.iov_base;
3014 	u32 seq;
3015 	struct ceph_vino vino;
3016 	struct qstr dname;
3017 	int release = 0;
3018 
3019 	dout("handle_lease from mds%d\n", mds);
3020 
3021 	/* decode */
3022 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3023 		goto bad;
3024 	vino.ino = le64_to_cpu(h->ino);
3025 	vino.snap = CEPH_NOSNAP;
3026 	seq = le32_to_cpu(h->seq);
3027 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3028 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3029 	if (dname.len != get_unaligned_le32(h+1))
3030 		goto bad;
3031 
3032 	/* lookup inode */
3033 	inode = ceph_find_inode(sb, vino);
3034 	dout("handle_lease %s, ino %llx %p %.*s\n",
3035 	     ceph_lease_op_name(h->action), vino.ino, inode,
3036 	     dname.len, dname.name);
3037 
3038 	mutex_lock(&session->s_mutex);
3039 	session->s_seq++;
3040 
3041 	if (inode == NULL) {
3042 		dout("handle_lease no inode %llx\n", vino.ino);
3043 		goto release;
3044 	}
3045 
3046 	/* dentry */
3047 	parent = d_find_alias(inode);
3048 	if (!parent) {
3049 		dout("no parent dentry on inode %p\n", inode);
3050 		WARN_ON(1);
3051 		goto release;  /* hrm... */
3052 	}
3053 	dname.hash = full_name_hash(dname.name, dname.len);
3054 	dentry = d_lookup(parent, &dname);
3055 	dput(parent);
3056 	if (!dentry)
3057 		goto release;
3058 
3059 	spin_lock(&dentry->d_lock);
3060 	di = ceph_dentry(dentry);
3061 	switch (h->action) {
3062 	case CEPH_MDS_LEASE_REVOKE:
3063 		if (di->lease_session == session) {
3064 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3065 				h->seq = cpu_to_le32(di->lease_seq);
3066 			__ceph_mdsc_drop_dentry_lease(dentry);
3067 		}
3068 		release = 1;
3069 		break;
3070 
3071 	case CEPH_MDS_LEASE_RENEW:
3072 		if (di->lease_session == session &&
3073 		    di->lease_gen == session->s_cap_gen &&
3074 		    di->lease_renew_from &&
3075 		    di->lease_renew_after == 0) {
3076 			unsigned long duration =
3077 				le32_to_cpu(h->duration_ms) * HZ / 1000;
3078 
3079 			di->lease_seq = seq;
3080 			dentry->d_time = di->lease_renew_from + duration;
3081 			di->lease_renew_after = di->lease_renew_from +
3082 				(duration >> 1);
3083 			di->lease_renew_from = 0;
3084 		}
3085 		break;
3086 	}
3087 	spin_unlock(&dentry->d_lock);
3088 	dput(dentry);
3089 
3090 	if (!release)
3091 		goto out;
3092 
3093 release:
3094 	/* let's just reuse the same message */
3095 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3096 	ceph_msg_get(msg);
3097 	ceph_con_send(&session->s_con, msg);
3098 
3099 out:
3100 	iput(inode);
3101 	mutex_unlock(&session->s_mutex);
3102 	return;
3103 
3104 bad:
3105 	pr_err("corrupt lease message\n");
3106 	ceph_msg_dump(msg);
3107 }
3108 
3109 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3110 			      struct inode *inode,
3111 			      struct dentry *dentry, char action,
3112 			      u32 seq)
3113 {
3114 	struct ceph_msg *msg;
3115 	struct ceph_mds_lease *lease;
3116 	int len = sizeof(*lease) + sizeof(u32);
3117 	int dnamelen = 0;
3118 
3119 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3120 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
3121 	dnamelen = dentry->d_name.len;
3122 	len += dnamelen;
3123 
3124 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3125 	if (!msg)
3126 		return;
3127 	lease = msg->front.iov_base;
3128 	lease->action = action;
3129 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3130 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3131 	lease->seq = cpu_to_le32(seq);
3132 	put_unaligned_le32(dnamelen, lease + 1);
3133 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3134 
3135 	/*
3136 	 * if this is a preemptive lease RELEASE, no need to
3137 	 * flush request stream, since the actual request will
3138 	 * soon follow.
3139 	 */
3140 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3141 
3142 	ceph_con_send(&session->s_con, msg);
3143 }
3144 
3145 /*
3146  * Preemptively release a lease we expect to invalidate anyway.
3147  * Pass @inode always, @dentry is optional.
3148  */
3149 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
3150 			     struct dentry *dentry)
3151 {
3152 	struct ceph_dentry_info *di;
3153 	struct ceph_mds_session *session;
3154 	u32 seq;
3155 
3156 	BUG_ON(inode == NULL);
3157 	BUG_ON(dentry == NULL);
3158 
3159 	/* is dentry lease valid? */
3160 	spin_lock(&dentry->d_lock);
3161 	di = ceph_dentry(dentry);
3162 	if (!di || !di->lease_session ||
3163 	    di->lease_session->s_mds < 0 ||
3164 	    di->lease_gen != di->lease_session->s_cap_gen ||
3165 	    !time_before(jiffies, dentry->d_time)) {
3166 		dout("lease_release inode %p dentry %p -- "
3167 		     "no lease\n",
3168 		     inode, dentry);
3169 		spin_unlock(&dentry->d_lock);
3170 		return;
3171 	}
3172 
3173 	/* we do have a lease on this dentry; note mds and seq */
3174 	session = ceph_get_mds_session(di->lease_session);
3175 	seq = di->lease_seq;
3176 	__ceph_mdsc_drop_dentry_lease(dentry);
3177 	spin_unlock(&dentry->d_lock);
3178 
3179 	dout("lease_release inode %p dentry %p to mds%d\n",
3180 	     inode, dentry, session->s_mds);
3181 	ceph_mdsc_lease_send_msg(session, inode, dentry,
3182 				 CEPH_MDS_LEASE_RELEASE, seq);
3183 	ceph_put_mds_session(session);
3184 }
3185 
3186 /*
3187  * drop all leases (and dentry refs) in preparation for umount
3188  */
3189 static void drop_leases(struct ceph_mds_client *mdsc)
3190 {
3191 	int i;
3192 
3193 	dout("drop_leases\n");
3194 	mutex_lock(&mdsc->mutex);
3195 	for (i = 0; i < mdsc->max_sessions; i++) {
3196 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3197 		if (!s)
3198 			continue;
3199 		mutex_unlock(&mdsc->mutex);
3200 		mutex_lock(&s->s_mutex);
3201 		mutex_unlock(&s->s_mutex);
3202 		ceph_put_mds_session(s);
3203 		mutex_lock(&mdsc->mutex);
3204 	}
3205 	mutex_unlock(&mdsc->mutex);
3206 }
3207 
3208 
3209 
3210 /*
3211  * delayed work -- periodically trim expired leases, renew caps with mds
3212  */
3213 static void schedule_delayed(struct ceph_mds_client *mdsc)
3214 {
3215 	int delay = 5;
3216 	unsigned hz = round_jiffies_relative(HZ * delay);
3217 	schedule_delayed_work(&mdsc->delayed_work, hz);
3218 }
3219 
3220 static void delayed_work(struct work_struct *work)
3221 {
3222 	int i;
3223 	struct ceph_mds_client *mdsc =
3224 		container_of(work, struct ceph_mds_client, delayed_work.work);
3225 	int renew_interval;
3226 	int renew_caps;
3227 
3228 	dout("mdsc delayed_work\n");
3229 	ceph_check_delayed_caps(mdsc);
3230 
3231 	mutex_lock(&mdsc->mutex);
3232 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3233 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3234 				   mdsc->last_renew_caps);
3235 	if (renew_caps)
3236 		mdsc->last_renew_caps = jiffies;
3237 
3238 	for (i = 0; i < mdsc->max_sessions; i++) {
3239 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3240 		if (s == NULL)
3241 			continue;
3242 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3243 			dout("resending session close request for mds%d\n",
3244 			     s->s_mds);
3245 			request_close_session(mdsc, s);
3246 			ceph_put_mds_session(s);
3247 			continue;
3248 		}
3249 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3250 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3251 				s->s_state = CEPH_MDS_SESSION_HUNG;
3252 				pr_info("mds%d hung\n", s->s_mds);
3253 			}
3254 		}
3255 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3256 			/* this mds is failed or recovering, just wait */
3257 			ceph_put_mds_session(s);
3258 			continue;
3259 		}
3260 		mutex_unlock(&mdsc->mutex);
3261 
3262 		mutex_lock(&s->s_mutex);
3263 		if (renew_caps)
3264 			send_renew_caps(mdsc, s);
3265 		else
3266 			ceph_con_keepalive(&s->s_con);
3267 		ceph_add_cap_releases(mdsc, s);
3268 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3269 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3270 			ceph_send_cap_releases(mdsc, s);
3271 		mutex_unlock(&s->s_mutex);
3272 		ceph_put_mds_session(s);
3273 
3274 		mutex_lock(&mdsc->mutex);
3275 	}
3276 	mutex_unlock(&mdsc->mutex);
3277 
3278 	schedule_delayed(mdsc);
3279 }
3280 
3281 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3282 
3283 {
3284 	struct ceph_mds_client *mdsc;
3285 
3286 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3287 	if (!mdsc)
3288 		return -ENOMEM;
3289 	mdsc->fsc = fsc;
3290 	fsc->mdsc = mdsc;
3291 	mutex_init(&mdsc->mutex);
3292 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3293 	if (mdsc->mdsmap == NULL) {
3294 		kfree(mdsc);
3295 		return -ENOMEM;
3296 	}
3297 
3298 	init_completion(&mdsc->safe_umount_waiters);
3299 	init_waitqueue_head(&mdsc->session_close_wq);
3300 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3301 	mdsc->sessions = NULL;
3302 	mdsc->max_sessions = 0;
3303 	mdsc->stopping = 0;
3304 	init_rwsem(&mdsc->snap_rwsem);
3305 	mdsc->snap_realms = RB_ROOT;
3306 	INIT_LIST_HEAD(&mdsc->snap_empty);
3307 	spin_lock_init(&mdsc->snap_empty_lock);
3308 	mdsc->last_tid = 0;
3309 	mdsc->request_tree = RB_ROOT;
3310 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3311 	mdsc->last_renew_caps = jiffies;
3312 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3313 	spin_lock_init(&mdsc->cap_delay_lock);
3314 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3315 	spin_lock_init(&mdsc->snap_flush_lock);
3316 	mdsc->cap_flush_seq = 0;
3317 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3318 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3319 	mdsc->num_cap_flushing = 0;
3320 	spin_lock_init(&mdsc->cap_dirty_lock);
3321 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3322 	spin_lock_init(&mdsc->dentry_lru_lock);
3323 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3324 
3325 	ceph_caps_init(mdsc);
3326 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3327 
3328 	return 0;
3329 }
3330 
3331 /*
3332  * Wait for safe replies on open mds requests.  If we time out, drop
3333  * all requests from the tree to avoid dangling dentry refs.
3334  */
3335 static void wait_requests(struct ceph_mds_client *mdsc)
3336 {
3337 	struct ceph_mds_request *req;
3338 	struct ceph_fs_client *fsc = mdsc->fsc;
3339 
3340 	mutex_lock(&mdsc->mutex);
3341 	if (__get_oldest_req(mdsc)) {
3342 		mutex_unlock(&mdsc->mutex);
3343 
3344 		dout("wait_requests waiting for requests\n");
3345 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3346 				    fsc->client->options->mount_timeout * HZ);
3347 
3348 		/* tear down remaining requests */
3349 		mutex_lock(&mdsc->mutex);
3350 		while ((req = __get_oldest_req(mdsc))) {
3351 			dout("wait_requests timed out on tid %llu\n",
3352 			     req->r_tid);
3353 			__unregister_request(mdsc, req);
3354 		}
3355 	}
3356 	mutex_unlock(&mdsc->mutex);
3357 	dout("wait_requests done\n");
3358 }
3359 
3360 /*
3361  * called before mount is ro, and before dentries are torn down.
3362  * (hmm, does this still race with new lookups?)
3363  */
3364 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3365 {
3366 	dout("pre_umount\n");
3367 	mdsc->stopping = 1;
3368 
3369 	drop_leases(mdsc);
3370 	ceph_flush_dirty_caps(mdsc);
3371 	wait_requests(mdsc);
3372 
3373 	/*
3374 	 * wait for reply handlers to drop their request refs and
3375 	 * their inode/dcache refs
3376 	 */
3377 	ceph_msgr_flush();
3378 }
3379 
3380 /*
3381  * wait for all write mds requests to flush.
3382  */
3383 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3384 {
3385 	struct ceph_mds_request *req = NULL, *nextreq;
3386 	struct rb_node *n;
3387 
3388 	mutex_lock(&mdsc->mutex);
3389 	dout("wait_unsafe_requests want %lld\n", want_tid);
3390 restart:
3391 	req = __get_oldest_req(mdsc);
3392 	while (req && req->r_tid <= want_tid) {
3393 		/* find next request */
3394 		n = rb_next(&req->r_node);
3395 		if (n)
3396 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3397 		else
3398 			nextreq = NULL;
3399 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3400 			/* write op */
3401 			ceph_mdsc_get_request(req);
3402 			if (nextreq)
3403 				ceph_mdsc_get_request(nextreq);
3404 			mutex_unlock(&mdsc->mutex);
3405 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3406 			     req->r_tid, want_tid);
3407 			wait_for_completion(&req->r_safe_completion);
3408 			mutex_lock(&mdsc->mutex);
3409 			ceph_mdsc_put_request(req);
3410 			if (!nextreq)
3411 				break;  /* next dne before, so we're done! */
3412 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3413 				/* next request was removed from tree */
3414 				ceph_mdsc_put_request(nextreq);
3415 				goto restart;
3416 			}
3417 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3418 		}
3419 		req = nextreq;
3420 	}
3421 	mutex_unlock(&mdsc->mutex);
3422 	dout("wait_unsafe_requests done\n");
3423 }
3424 
3425 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3426 {
3427 	u64 want_tid, want_flush;
3428 
3429 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3430 		return;
3431 
3432 	dout("sync\n");
3433 	mutex_lock(&mdsc->mutex);
3434 	want_tid = mdsc->last_tid;
3435 	want_flush = mdsc->cap_flush_seq;
3436 	mutex_unlock(&mdsc->mutex);
3437 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3438 
3439 	ceph_flush_dirty_caps(mdsc);
3440 
3441 	wait_unsafe_requests(mdsc, want_tid);
3442 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3443 }
3444 
3445 /*
3446  * true if all sessions are closed, or we force unmount
3447  */
3448 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3449 {
3450 	int i, n = 0;
3451 
3452 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3453 		return true;
3454 
3455 	mutex_lock(&mdsc->mutex);
3456 	for (i = 0; i < mdsc->max_sessions; i++)
3457 		if (mdsc->sessions[i])
3458 			n++;
3459 	mutex_unlock(&mdsc->mutex);
3460 	return n == 0;
3461 }
3462 
3463 /*
3464  * called after sb is ro.
3465  */
3466 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3467 {
3468 	struct ceph_mds_session *session;
3469 	int i;
3470 	struct ceph_fs_client *fsc = mdsc->fsc;
3471 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3472 
3473 	dout("close_sessions\n");
3474 
3475 	/* close sessions */
3476 	mutex_lock(&mdsc->mutex);
3477 	for (i = 0; i < mdsc->max_sessions; i++) {
3478 		session = __ceph_lookup_mds_session(mdsc, i);
3479 		if (!session)
3480 			continue;
3481 		mutex_unlock(&mdsc->mutex);
3482 		mutex_lock(&session->s_mutex);
3483 		__close_session(mdsc, session);
3484 		mutex_unlock(&session->s_mutex);
3485 		ceph_put_mds_session(session);
3486 		mutex_lock(&mdsc->mutex);
3487 	}
3488 	mutex_unlock(&mdsc->mutex);
3489 
3490 	dout("waiting for sessions to close\n");
3491 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3492 			   timeout);
3493 
3494 	/* tear down remaining sessions */
3495 	mutex_lock(&mdsc->mutex);
3496 	for (i = 0; i < mdsc->max_sessions; i++) {
3497 		if (mdsc->sessions[i]) {
3498 			session = get_session(mdsc->sessions[i]);
3499 			__unregister_session(mdsc, session);
3500 			mutex_unlock(&mdsc->mutex);
3501 			mutex_lock(&session->s_mutex);
3502 			remove_session_caps(session);
3503 			mutex_unlock(&session->s_mutex);
3504 			ceph_put_mds_session(session);
3505 			mutex_lock(&mdsc->mutex);
3506 		}
3507 	}
3508 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3509 	mutex_unlock(&mdsc->mutex);
3510 
3511 	ceph_cleanup_empty_realms(mdsc);
3512 
3513 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3514 
3515 	dout("stopped\n");
3516 }
3517 
3518 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3519 {
3520 	dout("stop\n");
3521 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3522 	if (mdsc->mdsmap)
3523 		ceph_mdsmap_destroy(mdsc->mdsmap);
3524 	kfree(mdsc->sessions);
3525 	ceph_caps_finalize(mdsc);
3526 }
3527 
3528 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3529 {
3530 	struct ceph_mds_client *mdsc = fsc->mdsc;
3531 
3532 	dout("mdsc_destroy %p\n", mdsc);
3533 	ceph_mdsc_stop(mdsc);
3534 
3535 	/* flush out any connection work with references to us */
3536 	ceph_msgr_flush();
3537 
3538 	fsc->mdsc = NULL;
3539 	kfree(mdsc);
3540 	dout("mdsc_destroy %p done\n", mdsc);
3541 }
3542 
3543 
3544 /*
3545  * handle mds map update.
3546  */
3547 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3548 {
3549 	u32 epoch;
3550 	u32 maplen;
3551 	void *p = msg->front.iov_base;
3552 	void *end = p + msg->front.iov_len;
3553 	struct ceph_mdsmap *newmap, *oldmap;
3554 	struct ceph_fsid fsid;
3555 	int err = -EINVAL;
3556 
3557 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3558 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3559 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3560 		return;
3561 	epoch = ceph_decode_32(&p);
3562 	maplen = ceph_decode_32(&p);
3563 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3564 
3565 	/* do we need it? */
3566 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3567 	mutex_lock(&mdsc->mutex);
3568 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3569 		dout("handle_map epoch %u <= our %u\n",
3570 		     epoch, mdsc->mdsmap->m_epoch);
3571 		mutex_unlock(&mdsc->mutex);
3572 		return;
3573 	}
3574 
3575 	newmap = ceph_mdsmap_decode(&p, end);
3576 	if (IS_ERR(newmap)) {
3577 		err = PTR_ERR(newmap);
3578 		goto bad_unlock;
3579 	}
3580 
3581 	/* swap into place */
3582 	if (mdsc->mdsmap) {
3583 		oldmap = mdsc->mdsmap;
3584 		mdsc->mdsmap = newmap;
3585 		check_new_map(mdsc, newmap, oldmap);
3586 		ceph_mdsmap_destroy(oldmap);
3587 	} else {
3588 		mdsc->mdsmap = newmap;  /* first mds map */
3589 	}
3590 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3591 
3592 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3593 
3594 	mutex_unlock(&mdsc->mutex);
3595 	schedule_delayed(mdsc);
3596 	return;
3597 
3598 bad_unlock:
3599 	mutex_unlock(&mdsc->mutex);
3600 bad:
3601 	pr_err("error decoding mdsmap %d\n", err);
3602 	return;
3603 }
3604 
3605 static struct ceph_connection *con_get(struct ceph_connection *con)
3606 {
3607 	struct ceph_mds_session *s = con->private;
3608 
3609 	if (get_session(s)) {
3610 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3611 		return con;
3612 	}
3613 	dout("mdsc con_get %p FAIL\n", s);
3614 	return NULL;
3615 }
3616 
3617 static void con_put(struct ceph_connection *con)
3618 {
3619 	struct ceph_mds_session *s = con->private;
3620 
3621 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3622 	ceph_put_mds_session(s);
3623 }
3624 
3625 /*
3626  * if the client is unresponsive for long enough, the mds will kill
3627  * the session entirely.
3628  */
3629 static void peer_reset(struct ceph_connection *con)
3630 {
3631 	struct ceph_mds_session *s = con->private;
3632 	struct ceph_mds_client *mdsc = s->s_mdsc;
3633 
3634 	pr_warn("mds%d closed our session\n", s->s_mds);
3635 	send_mds_reconnect(mdsc, s);
3636 }
3637 
3638 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3639 {
3640 	struct ceph_mds_session *s = con->private;
3641 	struct ceph_mds_client *mdsc = s->s_mdsc;
3642 	int type = le16_to_cpu(msg->hdr.type);
3643 
3644 	mutex_lock(&mdsc->mutex);
3645 	if (__verify_registered_session(mdsc, s) < 0) {
3646 		mutex_unlock(&mdsc->mutex);
3647 		goto out;
3648 	}
3649 	mutex_unlock(&mdsc->mutex);
3650 
3651 	switch (type) {
3652 	case CEPH_MSG_MDS_MAP:
3653 		ceph_mdsc_handle_map(mdsc, msg);
3654 		break;
3655 	case CEPH_MSG_CLIENT_SESSION:
3656 		handle_session(s, msg);
3657 		break;
3658 	case CEPH_MSG_CLIENT_REPLY:
3659 		handle_reply(s, msg);
3660 		break;
3661 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3662 		handle_forward(mdsc, s, msg);
3663 		break;
3664 	case CEPH_MSG_CLIENT_CAPS:
3665 		ceph_handle_caps(s, msg);
3666 		break;
3667 	case CEPH_MSG_CLIENT_SNAP:
3668 		ceph_handle_snap(mdsc, s, msg);
3669 		break;
3670 	case CEPH_MSG_CLIENT_LEASE:
3671 		handle_lease(mdsc, s, msg);
3672 		break;
3673 
3674 	default:
3675 		pr_err("received unknown message type %d %s\n", type,
3676 		       ceph_msg_type_name(type));
3677 	}
3678 out:
3679 	ceph_msg_put(msg);
3680 }
3681 
3682 /*
3683  * authentication
3684  */
3685 
3686 /*
3687  * Note: returned pointer is the address of a structure that's
3688  * managed separately.  Caller must *not* attempt to free it.
3689  */
3690 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3691 					int *proto, int force_new)
3692 {
3693 	struct ceph_mds_session *s = con->private;
3694 	struct ceph_mds_client *mdsc = s->s_mdsc;
3695 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3696 	struct ceph_auth_handshake *auth = &s->s_auth;
3697 
3698 	if (force_new && auth->authorizer) {
3699 		ceph_auth_destroy_authorizer(ac, auth->authorizer);
3700 		auth->authorizer = NULL;
3701 	}
3702 	if (!auth->authorizer) {
3703 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3704 						      auth);
3705 		if (ret)
3706 			return ERR_PTR(ret);
3707 	} else {
3708 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3709 						      auth);
3710 		if (ret)
3711 			return ERR_PTR(ret);
3712 	}
3713 	*proto = ac->protocol;
3714 
3715 	return auth;
3716 }
3717 
3718 
3719 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3720 {
3721 	struct ceph_mds_session *s = con->private;
3722 	struct ceph_mds_client *mdsc = s->s_mdsc;
3723 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3724 
3725 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3726 }
3727 
3728 static int invalidate_authorizer(struct ceph_connection *con)
3729 {
3730 	struct ceph_mds_session *s = con->private;
3731 	struct ceph_mds_client *mdsc = s->s_mdsc;
3732 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3733 
3734 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3735 
3736 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3737 }
3738 
3739 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3740 				struct ceph_msg_header *hdr, int *skip)
3741 {
3742 	struct ceph_msg *msg;
3743 	int type = (int) le16_to_cpu(hdr->type);
3744 	int front_len = (int) le32_to_cpu(hdr->front_len);
3745 
3746 	if (con->in_msg)
3747 		return con->in_msg;
3748 
3749 	*skip = 0;
3750 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3751 	if (!msg) {
3752 		pr_err("unable to allocate msg type %d len %d\n",
3753 		       type, front_len);
3754 		return NULL;
3755 	}
3756 
3757 	return msg;
3758 }
3759 
3760 static int sign_message(struct ceph_connection *con, struct ceph_msg *msg)
3761 {
3762        struct ceph_mds_session *s = con->private;
3763        struct ceph_auth_handshake *auth = &s->s_auth;
3764        return ceph_auth_sign_message(auth, msg);
3765 }
3766 
3767 static int check_message_signature(struct ceph_connection *con, struct ceph_msg *msg)
3768 {
3769        struct ceph_mds_session *s = con->private;
3770        struct ceph_auth_handshake *auth = &s->s_auth;
3771        return ceph_auth_check_message_signature(auth, msg);
3772 }
3773 
3774 static const struct ceph_connection_operations mds_con_ops = {
3775 	.get = con_get,
3776 	.put = con_put,
3777 	.dispatch = dispatch,
3778 	.get_authorizer = get_authorizer,
3779 	.verify_authorizer_reply = verify_authorizer_reply,
3780 	.invalidate_authorizer = invalidate_authorizer,
3781 	.peer_reset = peer_reset,
3782 	.alloc_msg = mds_alloc_msg,
3783 	.sign_message = sign_message,
3784 	.check_message_signature = check_message_signature,
3785 };
3786 
3787 /* eof */
3788