xref: /openbmc/linux/fs/ceph/mds_client.c (revision 37be287c)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9 
10 #include "super.h"
11 #include "mds_client.h"
12 
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
19 
20 /*
21  * A cluster of MDS (metadata server) daemons is responsible for
22  * managing the file system namespace (the directory hierarchy and
23  * inodes) and for coordinating shared access to storage.  Metadata is
24  * partitioning hierarchically across a number of servers, and that
25  * partition varies over time as the cluster adjusts the distribution
26  * in order to balance load.
27  *
28  * The MDS client is primarily responsible to managing synchronous
29  * metadata requests for operations like open, unlink, and so forth.
30  * If there is a MDS failure, we find out about it when we (possibly
31  * request and) receive a new MDS map, and can resubmit affected
32  * requests.
33  *
34  * For the most part, though, we take advantage of a lossless
35  * communications channel to the MDS, and do not need to worry about
36  * timing out or resubmitting requests.
37  *
38  * We maintain a stateful "session" with each MDS we interact with.
39  * Within each session, we sent periodic heartbeat messages to ensure
40  * any capabilities or leases we have been issues remain valid.  If
41  * the session times out and goes stale, our leases and capabilities
42  * are no longer valid.
43  */
44 
45 struct ceph_reconnect_state {
46 	int nr_caps;
47 	struct ceph_pagelist *pagelist;
48 	bool flock;
49 };
50 
51 static void __wake_requests(struct ceph_mds_client *mdsc,
52 			    struct list_head *head);
53 
54 static const struct ceph_connection_operations mds_con_ops;
55 
56 
57 /*
58  * mds reply parsing
59  */
60 
61 /*
62  * parse individual inode info
63  */
64 static int parse_reply_info_in(void **p, void *end,
65 			       struct ceph_mds_reply_info_in *info,
66 			       u64 features)
67 {
68 	int err = -EIO;
69 
70 	info->in = *p;
71 	*p += sizeof(struct ceph_mds_reply_inode) +
72 		sizeof(*info->in->fragtree.splits) *
73 		le32_to_cpu(info->in->fragtree.nsplits);
74 
75 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
76 	ceph_decode_need(p, end, info->symlink_len, bad);
77 	info->symlink = *p;
78 	*p += info->symlink_len;
79 
80 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
81 		ceph_decode_copy_safe(p, end, &info->dir_layout,
82 				      sizeof(info->dir_layout), bad);
83 	else
84 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
85 
86 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
87 	ceph_decode_need(p, end, info->xattr_len, bad);
88 	info->xattr_data = *p;
89 	*p += info->xattr_len;
90 	return 0;
91 bad:
92 	return err;
93 }
94 
95 /*
96  * parse a normal reply, which may contain a (dir+)dentry and/or a
97  * target inode.
98  */
99 static int parse_reply_info_trace(void **p, void *end,
100 				  struct ceph_mds_reply_info_parsed *info,
101 				  u64 features)
102 {
103 	int err;
104 
105 	if (info->head->is_dentry) {
106 		err = parse_reply_info_in(p, end, &info->diri, features);
107 		if (err < 0)
108 			goto out_bad;
109 
110 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
111 			goto bad;
112 		info->dirfrag = *p;
113 		*p += sizeof(*info->dirfrag) +
114 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
115 		if (unlikely(*p > end))
116 			goto bad;
117 
118 		ceph_decode_32_safe(p, end, info->dname_len, bad);
119 		ceph_decode_need(p, end, info->dname_len, bad);
120 		info->dname = *p;
121 		*p += info->dname_len;
122 		info->dlease = *p;
123 		*p += sizeof(*info->dlease);
124 	}
125 
126 	if (info->head->is_target) {
127 		err = parse_reply_info_in(p, end, &info->targeti, features);
128 		if (err < 0)
129 			goto out_bad;
130 	}
131 
132 	if (unlikely(*p != end))
133 		goto bad;
134 	return 0;
135 
136 bad:
137 	err = -EIO;
138 out_bad:
139 	pr_err("problem parsing mds trace %d\n", err);
140 	return err;
141 }
142 
143 /*
144  * parse readdir results
145  */
146 static int parse_reply_info_dir(void **p, void *end,
147 				struct ceph_mds_reply_info_parsed *info,
148 				u64 features)
149 {
150 	u32 num, i = 0;
151 	int err;
152 
153 	info->dir_dir = *p;
154 	if (*p + sizeof(*info->dir_dir) > end)
155 		goto bad;
156 	*p += sizeof(*info->dir_dir) +
157 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
158 	if (*p > end)
159 		goto bad;
160 
161 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
162 	num = ceph_decode_32(p);
163 	info->dir_end = ceph_decode_8(p);
164 	info->dir_complete = ceph_decode_8(p);
165 	if (num == 0)
166 		goto done;
167 
168 	/* alloc large array */
169 	info->dir_nr = num;
170 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
171 			       sizeof(*info->dir_dname) +
172 			       sizeof(*info->dir_dname_len) +
173 			       sizeof(*info->dir_dlease),
174 			       GFP_NOFS);
175 	if (info->dir_in == NULL) {
176 		err = -ENOMEM;
177 		goto out_bad;
178 	}
179 	info->dir_dname = (void *)(info->dir_in + num);
180 	info->dir_dname_len = (void *)(info->dir_dname + num);
181 	info->dir_dlease = (void *)(info->dir_dname_len + num);
182 
183 	while (num) {
184 		/* dentry */
185 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
186 		info->dir_dname_len[i] = ceph_decode_32(p);
187 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
188 		info->dir_dname[i] = *p;
189 		*p += info->dir_dname_len[i];
190 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
191 		     info->dir_dname[i]);
192 		info->dir_dlease[i] = *p;
193 		*p += sizeof(struct ceph_mds_reply_lease);
194 
195 		/* inode */
196 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
197 		if (err < 0)
198 			goto out_bad;
199 		i++;
200 		num--;
201 	}
202 
203 done:
204 	if (*p != end)
205 		goto bad;
206 	return 0;
207 
208 bad:
209 	err = -EIO;
210 out_bad:
211 	pr_err("problem parsing dir contents %d\n", err);
212 	return err;
213 }
214 
215 /*
216  * parse fcntl F_GETLK results
217  */
218 static int parse_reply_info_filelock(void **p, void *end,
219 				     struct ceph_mds_reply_info_parsed *info,
220 				     u64 features)
221 {
222 	if (*p + sizeof(*info->filelock_reply) > end)
223 		goto bad;
224 
225 	info->filelock_reply = *p;
226 	*p += sizeof(*info->filelock_reply);
227 
228 	if (unlikely(*p != end))
229 		goto bad;
230 	return 0;
231 
232 bad:
233 	return -EIO;
234 }
235 
236 /*
237  * parse create results
238  */
239 static int parse_reply_info_create(void **p, void *end,
240 				  struct ceph_mds_reply_info_parsed *info,
241 				  u64 features)
242 {
243 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
244 		if (*p == end) {
245 			info->has_create_ino = false;
246 		} else {
247 			info->has_create_ino = true;
248 			info->ino = ceph_decode_64(p);
249 		}
250 	}
251 
252 	if (unlikely(*p != end))
253 		goto bad;
254 	return 0;
255 
256 bad:
257 	return -EIO;
258 }
259 
260 /*
261  * parse extra results
262  */
263 static int parse_reply_info_extra(void **p, void *end,
264 				  struct ceph_mds_reply_info_parsed *info,
265 				  u64 features)
266 {
267 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
268 		return parse_reply_info_filelock(p, end, info, features);
269 	else if (info->head->op == CEPH_MDS_OP_READDIR ||
270 		 info->head->op == CEPH_MDS_OP_LSSNAP)
271 		return parse_reply_info_dir(p, end, info, features);
272 	else if (info->head->op == CEPH_MDS_OP_CREATE)
273 		return parse_reply_info_create(p, end, info, features);
274 	else
275 		return -EIO;
276 }
277 
278 /*
279  * parse entire mds reply
280  */
281 static int parse_reply_info(struct ceph_msg *msg,
282 			    struct ceph_mds_reply_info_parsed *info,
283 			    u64 features)
284 {
285 	void *p, *end;
286 	u32 len;
287 	int err;
288 
289 	info->head = msg->front.iov_base;
290 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
291 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
292 
293 	/* trace */
294 	ceph_decode_32_safe(&p, end, len, bad);
295 	if (len > 0) {
296 		ceph_decode_need(&p, end, len, bad);
297 		err = parse_reply_info_trace(&p, p+len, info, features);
298 		if (err < 0)
299 			goto out_bad;
300 	}
301 
302 	/* extra */
303 	ceph_decode_32_safe(&p, end, len, bad);
304 	if (len > 0) {
305 		ceph_decode_need(&p, end, len, bad);
306 		err = parse_reply_info_extra(&p, p+len, info, features);
307 		if (err < 0)
308 			goto out_bad;
309 	}
310 
311 	/* snap blob */
312 	ceph_decode_32_safe(&p, end, len, bad);
313 	info->snapblob_len = len;
314 	info->snapblob = p;
315 	p += len;
316 
317 	if (p != end)
318 		goto bad;
319 	return 0;
320 
321 bad:
322 	err = -EIO;
323 out_bad:
324 	pr_err("mds parse_reply err %d\n", err);
325 	return err;
326 }
327 
328 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
329 {
330 	kfree(info->dir_in);
331 }
332 
333 
334 /*
335  * sessions
336  */
337 static const char *session_state_name(int s)
338 {
339 	switch (s) {
340 	case CEPH_MDS_SESSION_NEW: return "new";
341 	case CEPH_MDS_SESSION_OPENING: return "opening";
342 	case CEPH_MDS_SESSION_OPEN: return "open";
343 	case CEPH_MDS_SESSION_HUNG: return "hung";
344 	case CEPH_MDS_SESSION_CLOSING: return "closing";
345 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
346 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
347 	default: return "???";
348 	}
349 }
350 
351 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
352 {
353 	if (atomic_inc_not_zero(&s->s_ref)) {
354 		dout("mdsc get_session %p %d -> %d\n", s,
355 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
356 		return s;
357 	} else {
358 		dout("mdsc get_session %p 0 -- FAIL", s);
359 		return NULL;
360 	}
361 }
362 
363 void ceph_put_mds_session(struct ceph_mds_session *s)
364 {
365 	dout("mdsc put_session %p %d -> %d\n", s,
366 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
367 	if (atomic_dec_and_test(&s->s_ref)) {
368 		if (s->s_auth.authorizer)
369 			ceph_auth_destroy_authorizer(
370 				s->s_mdsc->fsc->client->monc.auth,
371 				s->s_auth.authorizer);
372 		kfree(s);
373 	}
374 }
375 
376 /*
377  * called under mdsc->mutex
378  */
379 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
380 						   int mds)
381 {
382 	struct ceph_mds_session *session;
383 
384 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
385 		return NULL;
386 	session = mdsc->sessions[mds];
387 	dout("lookup_mds_session %p %d\n", session,
388 	     atomic_read(&session->s_ref));
389 	get_session(session);
390 	return session;
391 }
392 
393 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
394 {
395 	if (mds >= mdsc->max_sessions)
396 		return false;
397 	return mdsc->sessions[mds];
398 }
399 
400 static int __verify_registered_session(struct ceph_mds_client *mdsc,
401 				       struct ceph_mds_session *s)
402 {
403 	if (s->s_mds >= mdsc->max_sessions ||
404 	    mdsc->sessions[s->s_mds] != s)
405 		return -ENOENT;
406 	return 0;
407 }
408 
409 /*
410  * create+register a new session for given mds.
411  * called under mdsc->mutex.
412  */
413 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
414 						 int mds)
415 {
416 	struct ceph_mds_session *s;
417 
418 	if (mds >= mdsc->mdsmap->m_max_mds)
419 		return ERR_PTR(-EINVAL);
420 
421 	s = kzalloc(sizeof(*s), GFP_NOFS);
422 	if (!s)
423 		return ERR_PTR(-ENOMEM);
424 	s->s_mdsc = mdsc;
425 	s->s_mds = mds;
426 	s->s_state = CEPH_MDS_SESSION_NEW;
427 	s->s_ttl = 0;
428 	s->s_seq = 0;
429 	mutex_init(&s->s_mutex);
430 
431 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
432 
433 	spin_lock_init(&s->s_gen_ttl_lock);
434 	s->s_cap_gen = 0;
435 	s->s_cap_ttl = jiffies - 1;
436 
437 	spin_lock_init(&s->s_cap_lock);
438 	s->s_renew_requested = 0;
439 	s->s_renew_seq = 0;
440 	INIT_LIST_HEAD(&s->s_caps);
441 	s->s_nr_caps = 0;
442 	s->s_trim_caps = 0;
443 	atomic_set(&s->s_ref, 1);
444 	INIT_LIST_HEAD(&s->s_waiting);
445 	INIT_LIST_HEAD(&s->s_unsafe);
446 	s->s_num_cap_releases = 0;
447 	s->s_cap_reconnect = 0;
448 	s->s_cap_iterator = NULL;
449 	INIT_LIST_HEAD(&s->s_cap_releases);
450 	INIT_LIST_HEAD(&s->s_cap_releases_done);
451 	INIT_LIST_HEAD(&s->s_cap_flushing);
452 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
453 
454 	dout("register_session mds%d\n", mds);
455 	if (mds >= mdsc->max_sessions) {
456 		int newmax = 1 << get_count_order(mds+1);
457 		struct ceph_mds_session **sa;
458 
459 		dout("register_session realloc to %d\n", newmax);
460 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
461 		if (sa == NULL)
462 			goto fail_realloc;
463 		if (mdsc->sessions) {
464 			memcpy(sa, mdsc->sessions,
465 			       mdsc->max_sessions * sizeof(void *));
466 			kfree(mdsc->sessions);
467 		}
468 		mdsc->sessions = sa;
469 		mdsc->max_sessions = newmax;
470 	}
471 	mdsc->sessions[mds] = s;
472 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
473 
474 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
475 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
476 
477 	return s;
478 
479 fail_realloc:
480 	kfree(s);
481 	return ERR_PTR(-ENOMEM);
482 }
483 
484 /*
485  * called under mdsc->mutex
486  */
487 static void __unregister_session(struct ceph_mds_client *mdsc,
488 			       struct ceph_mds_session *s)
489 {
490 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
491 	BUG_ON(mdsc->sessions[s->s_mds] != s);
492 	mdsc->sessions[s->s_mds] = NULL;
493 	ceph_con_close(&s->s_con);
494 	ceph_put_mds_session(s);
495 }
496 
497 /*
498  * drop session refs in request.
499  *
500  * should be last request ref, or hold mdsc->mutex
501  */
502 static void put_request_session(struct ceph_mds_request *req)
503 {
504 	if (req->r_session) {
505 		ceph_put_mds_session(req->r_session);
506 		req->r_session = NULL;
507 	}
508 }
509 
510 void ceph_mdsc_release_request(struct kref *kref)
511 {
512 	struct ceph_mds_request *req = container_of(kref,
513 						    struct ceph_mds_request,
514 						    r_kref);
515 	if (req->r_request)
516 		ceph_msg_put(req->r_request);
517 	if (req->r_reply) {
518 		ceph_msg_put(req->r_reply);
519 		destroy_reply_info(&req->r_reply_info);
520 	}
521 	if (req->r_inode) {
522 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
523 		iput(req->r_inode);
524 	}
525 	if (req->r_locked_dir)
526 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
527 	if (req->r_target_inode)
528 		iput(req->r_target_inode);
529 	if (req->r_dentry)
530 		dput(req->r_dentry);
531 	if (req->r_old_dentry) {
532 		/*
533 		 * track (and drop pins for) r_old_dentry_dir
534 		 * separately, since r_old_dentry's d_parent may have
535 		 * changed between the dir mutex being dropped and
536 		 * this request being freed.
537 		 */
538 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
539 				  CEPH_CAP_PIN);
540 		dput(req->r_old_dentry);
541 		iput(req->r_old_dentry_dir);
542 	}
543 	kfree(req->r_path1);
544 	kfree(req->r_path2);
545 	put_request_session(req);
546 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
547 	kfree(req);
548 }
549 
550 /*
551  * lookup session, bump ref if found.
552  *
553  * called under mdsc->mutex.
554  */
555 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
556 					     u64 tid)
557 {
558 	struct ceph_mds_request *req;
559 	struct rb_node *n = mdsc->request_tree.rb_node;
560 
561 	while (n) {
562 		req = rb_entry(n, struct ceph_mds_request, r_node);
563 		if (tid < req->r_tid)
564 			n = n->rb_left;
565 		else if (tid > req->r_tid)
566 			n = n->rb_right;
567 		else {
568 			ceph_mdsc_get_request(req);
569 			return req;
570 		}
571 	}
572 	return NULL;
573 }
574 
575 static void __insert_request(struct ceph_mds_client *mdsc,
576 			     struct ceph_mds_request *new)
577 {
578 	struct rb_node **p = &mdsc->request_tree.rb_node;
579 	struct rb_node *parent = NULL;
580 	struct ceph_mds_request *req = NULL;
581 
582 	while (*p) {
583 		parent = *p;
584 		req = rb_entry(parent, struct ceph_mds_request, r_node);
585 		if (new->r_tid < req->r_tid)
586 			p = &(*p)->rb_left;
587 		else if (new->r_tid > req->r_tid)
588 			p = &(*p)->rb_right;
589 		else
590 			BUG();
591 	}
592 
593 	rb_link_node(&new->r_node, parent, p);
594 	rb_insert_color(&new->r_node, &mdsc->request_tree);
595 }
596 
597 /*
598  * Register an in-flight request, and assign a tid.  Link to directory
599  * are modifying (if any).
600  *
601  * Called under mdsc->mutex.
602  */
603 static void __register_request(struct ceph_mds_client *mdsc,
604 			       struct ceph_mds_request *req,
605 			       struct inode *dir)
606 {
607 	req->r_tid = ++mdsc->last_tid;
608 	if (req->r_num_caps)
609 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
610 				  req->r_num_caps);
611 	dout("__register_request %p tid %lld\n", req, req->r_tid);
612 	ceph_mdsc_get_request(req);
613 	__insert_request(mdsc, req);
614 
615 	req->r_uid = current_fsuid();
616 	req->r_gid = current_fsgid();
617 
618 	if (dir) {
619 		struct ceph_inode_info *ci = ceph_inode(dir);
620 
621 		ihold(dir);
622 		spin_lock(&ci->i_unsafe_lock);
623 		req->r_unsafe_dir = dir;
624 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
625 		spin_unlock(&ci->i_unsafe_lock);
626 	}
627 }
628 
629 static void __unregister_request(struct ceph_mds_client *mdsc,
630 				 struct ceph_mds_request *req)
631 {
632 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
633 	rb_erase(&req->r_node, &mdsc->request_tree);
634 	RB_CLEAR_NODE(&req->r_node);
635 
636 	if (req->r_unsafe_dir) {
637 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
638 
639 		spin_lock(&ci->i_unsafe_lock);
640 		list_del_init(&req->r_unsafe_dir_item);
641 		spin_unlock(&ci->i_unsafe_lock);
642 
643 		iput(req->r_unsafe_dir);
644 		req->r_unsafe_dir = NULL;
645 	}
646 
647 	complete_all(&req->r_safe_completion);
648 
649 	ceph_mdsc_put_request(req);
650 }
651 
652 /*
653  * Choose mds to send request to next.  If there is a hint set in the
654  * request (e.g., due to a prior forward hint from the mds), use that.
655  * Otherwise, consult frag tree and/or caps to identify the
656  * appropriate mds.  If all else fails, choose randomly.
657  *
658  * Called under mdsc->mutex.
659  */
660 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
661 {
662 	/*
663 	 * we don't need to worry about protecting the d_parent access
664 	 * here because we never renaming inside the snapped namespace
665 	 * except to resplice to another snapdir, and either the old or new
666 	 * result is a valid result.
667 	 */
668 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
669 		dentry = dentry->d_parent;
670 	return dentry;
671 }
672 
673 static int __choose_mds(struct ceph_mds_client *mdsc,
674 			struct ceph_mds_request *req)
675 {
676 	struct inode *inode;
677 	struct ceph_inode_info *ci;
678 	struct ceph_cap *cap;
679 	int mode = req->r_direct_mode;
680 	int mds = -1;
681 	u32 hash = req->r_direct_hash;
682 	bool is_hash = req->r_direct_is_hash;
683 
684 	/*
685 	 * is there a specific mds we should try?  ignore hint if we have
686 	 * no session and the mds is not up (active or recovering).
687 	 */
688 	if (req->r_resend_mds >= 0 &&
689 	    (__have_session(mdsc, req->r_resend_mds) ||
690 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
691 		dout("choose_mds using resend_mds mds%d\n",
692 		     req->r_resend_mds);
693 		return req->r_resend_mds;
694 	}
695 
696 	if (mode == USE_RANDOM_MDS)
697 		goto random;
698 
699 	inode = NULL;
700 	if (req->r_inode) {
701 		inode = req->r_inode;
702 	} else if (req->r_dentry) {
703 		/* ignore race with rename; old or new d_parent is okay */
704 		struct dentry *parent = req->r_dentry->d_parent;
705 		struct inode *dir = parent->d_inode;
706 
707 		if (dir->i_sb != mdsc->fsc->sb) {
708 			/* not this fs! */
709 			inode = req->r_dentry->d_inode;
710 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
711 			/* direct snapped/virtual snapdir requests
712 			 * based on parent dir inode */
713 			struct dentry *dn = get_nonsnap_parent(parent);
714 			inode = dn->d_inode;
715 			dout("__choose_mds using nonsnap parent %p\n", inode);
716 		} else {
717 			/* dentry target */
718 			inode = req->r_dentry->d_inode;
719 			if (!inode || mode == USE_AUTH_MDS) {
720 				/* dir + name */
721 				inode = dir;
722 				hash = ceph_dentry_hash(dir, req->r_dentry);
723 				is_hash = true;
724 			}
725 		}
726 	}
727 
728 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
729 	     (int)hash, mode);
730 	if (!inode)
731 		goto random;
732 	ci = ceph_inode(inode);
733 
734 	if (is_hash && S_ISDIR(inode->i_mode)) {
735 		struct ceph_inode_frag frag;
736 		int found;
737 
738 		ceph_choose_frag(ci, hash, &frag, &found);
739 		if (found) {
740 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
741 				u8 r;
742 
743 				/* choose a random replica */
744 				get_random_bytes(&r, 1);
745 				r %= frag.ndist;
746 				mds = frag.dist[r];
747 				dout("choose_mds %p %llx.%llx "
748 				     "frag %u mds%d (%d/%d)\n",
749 				     inode, ceph_vinop(inode),
750 				     frag.frag, mds,
751 				     (int)r, frag.ndist);
752 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
753 				    CEPH_MDS_STATE_ACTIVE)
754 					return mds;
755 			}
756 
757 			/* since this file/dir wasn't known to be
758 			 * replicated, then we want to look for the
759 			 * authoritative mds. */
760 			mode = USE_AUTH_MDS;
761 			if (frag.mds >= 0) {
762 				/* choose auth mds */
763 				mds = frag.mds;
764 				dout("choose_mds %p %llx.%llx "
765 				     "frag %u mds%d (auth)\n",
766 				     inode, ceph_vinop(inode), frag.frag, mds);
767 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
768 				    CEPH_MDS_STATE_ACTIVE)
769 					return mds;
770 			}
771 		}
772 	}
773 
774 	spin_lock(&ci->i_ceph_lock);
775 	cap = NULL;
776 	if (mode == USE_AUTH_MDS)
777 		cap = ci->i_auth_cap;
778 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
779 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
780 	if (!cap) {
781 		spin_unlock(&ci->i_ceph_lock);
782 		goto random;
783 	}
784 	mds = cap->session->s_mds;
785 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
786 	     inode, ceph_vinop(inode), mds,
787 	     cap == ci->i_auth_cap ? "auth " : "", cap);
788 	spin_unlock(&ci->i_ceph_lock);
789 	return mds;
790 
791 random:
792 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
793 	dout("choose_mds chose random mds%d\n", mds);
794 	return mds;
795 }
796 
797 
798 /*
799  * session messages
800  */
801 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
802 {
803 	struct ceph_msg *msg;
804 	struct ceph_mds_session_head *h;
805 
806 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
807 			   false);
808 	if (!msg) {
809 		pr_err("create_session_msg ENOMEM creating msg\n");
810 		return NULL;
811 	}
812 	h = msg->front.iov_base;
813 	h->op = cpu_to_le32(op);
814 	h->seq = cpu_to_le64(seq);
815 	return msg;
816 }
817 
818 /*
819  * send session open request.
820  *
821  * called under mdsc->mutex
822  */
823 static int __open_session(struct ceph_mds_client *mdsc,
824 			  struct ceph_mds_session *session)
825 {
826 	struct ceph_msg *msg;
827 	int mstate;
828 	int mds = session->s_mds;
829 
830 	/* wait for mds to go active? */
831 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
832 	dout("open_session to mds%d (%s)\n", mds,
833 	     ceph_mds_state_name(mstate));
834 	session->s_state = CEPH_MDS_SESSION_OPENING;
835 	session->s_renew_requested = jiffies;
836 
837 	/* send connect message */
838 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
839 	if (!msg)
840 		return -ENOMEM;
841 	ceph_con_send(&session->s_con, msg);
842 	return 0;
843 }
844 
845 /*
846  * open sessions for any export targets for the given mds
847  *
848  * called under mdsc->mutex
849  */
850 static struct ceph_mds_session *
851 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
852 {
853 	struct ceph_mds_session *session;
854 
855 	session = __ceph_lookup_mds_session(mdsc, target);
856 	if (!session) {
857 		session = register_session(mdsc, target);
858 		if (IS_ERR(session))
859 			return session;
860 	}
861 	if (session->s_state == CEPH_MDS_SESSION_NEW ||
862 	    session->s_state == CEPH_MDS_SESSION_CLOSING)
863 		__open_session(mdsc, session);
864 
865 	return session;
866 }
867 
868 struct ceph_mds_session *
869 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
870 {
871 	struct ceph_mds_session *session;
872 
873 	dout("open_export_target_session to mds%d\n", target);
874 
875 	mutex_lock(&mdsc->mutex);
876 	session = __open_export_target_session(mdsc, target);
877 	mutex_unlock(&mdsc->mutex);
878 
879 	return session;
880 }
881 
882 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
883 					  struct ceph_mds_session *session)
884 {
885 	struct ceph_mds_info *mi;
886 	struct ceph_mds_session *ts;
887 	int i, mds = session->s_mds;
888 
889 	if (mds >= mdsc->mdsmap->m_max_mds)
890 		return;
891 
892 	mi = &mdsc->mdsmap->m_info[mds];
893 	dout("open_export_target_sessions for mds%d (%d targets)\n",
894 	     session->s_mds, mi->num_export_targets);
895 
896 	for (i = 0; i < mi->num_export_targets; i++) {
897 		ts = __open_export_target_session(mdsc, mi->export_targets[i]);
898 		if (!IS_ERR(ts))
899 			ceph_put_mds_session(ts);
900 	}
901 }
902 
903 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
904 					   struct ceph_mds_session *session)
905 {
906 	mutex_lock(&mdsc->mutex);
907 	__open_export_target_sessions(mdsc, session);
908 	mutex_unlock(&mdsc->mutex);
909 }
910 
911 /*
912  * session caps
913  */
914 
915 /*
916  * Free preallocated cap messages assigned to this session
917  */
918 static void cleanup_cap_releases(struct ceph_mds_session *session)
919 {
920 	struct ceph_msg *msg;
921 
922 	spin_lock(&session->s_cap_lock);
923 	while (!list_empty(&session->s_cap_releases)) {
924 		msg = list_first_entry(&session->s_cap_releases,
925 				       struct ceph_msg, list_head);
926 		list_del_init(&msg->list_head);
927 		ceph_msg_put(msg);
928 	}
929 	while (!list_empty(&session->s_cap_releases_done)) {
930 		msg = list_first_entry(&session->s_cap_releases_done,
931 				       struct ceph_msg, list_head);
932 		list_del_init(&msg->list_head);
933 		ceph_msg_put(msg);
934 	}
935 	spin_unlock(&session->s_cap_lock);
936 }
937 
938 /*
939  * Helper to safely iterate over all caps associated with a session, with
940  * special care taken to handle a racing __ceph_remove_cap().
941  *
942  * Caller must hold session s_mutex.
943  */
944 static int iterate_session_caps(struct ceph_mds_session *session,
945 				 int (*cb)(struct inode *, struct ceph_cap *,
946 					    void *), void *arg)
947 {
948 	struct list_head *p;
949 	struct ceph_cap *cap;
950 	struct inode *inode, *last_inode = NULL;
951 	struct ceph_cap *old_cap = NULL;
952 	int ret;
953 
954 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
955 	spin_lock(&session->s_cap_lock);
956 	p = session->s_caps.next;
957 	while (p != &session->s_caps) {
958 		cap = list_entry(p, struct ceph_cap, session_caps);
959 		inode = igrab(&cap->ci->vfs_inode);
960 		if (!inode) {
961 			p = p->next;
962 			continue;
963 		}
964 		session->s_cap_iterator = cap;
965 		spin_unlock(&session->s_cap_lock);
966 
967 		if (last_inode) {
968 			iput(last_inode);
969 			last_inode = NULL;
970 		}
971 		if (old_cap) {
972 			ceph_put_cap(session->s_mdsc, old_cap);
973 			old_cap = NULL;
974 		}
975 
976 		ret = cb(inode, cap, arg);
977 		last_inode = inode;
978 
979 		spin_lock(&session->s_cap_lock);
980 		p = p->next;
981 		if (cap->ci == NULL) {
982 			dout("iterate_session_caps  finishing cap %p removal\n",
983 			     cap);
984 			BUG_ON(cap->session != session);
985 			list_del_init(&cap->session_caps);
986 			session->s_nr_caps--;
987 			cap->session = NULL;
988 			old_cap = cap;  /* put_cap it w/o locks held */
989 		}
990 		if (ret < 0)
991 			goto out;
992 	}
993 	ret = 0;
994 out:
995 	session->s_cap_iterator = NULL;
996 	spin_unlock(&session->s_cap_lock);
997 
998 	if (last_inode)
999 		iput(last_inode);
1000 	if (old_cap)
1001 		ceph_put_cap(session->s_mdsc, old_cap);
1002 
1003 	return ret;
1004 }
1005 
1006 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1007 				  void *arg)
1008 {
1009 	struct ceph_inode_info *ci = ceph_inode(inode);
1010 	int drop = 0;
1011 
1012 	dout("removing cap %p, ci is %p, inode is %p\n",
1013 	     cap, ci, &ci->vfs_inode);
1014 	spin_lock(&ci->i_ceph_lock);
1015 	__ceph_remove_cap(cap, false);
1016 	if (!__ceph_is_any_real_caps(ci)) {
1017 		struct ceph_mds_client *mdsc =
1018 			ceph_sb_to_client(inode->i_sb)->mdsc;
1019 
1020 		spin_lock(&mdsc->cap_dirty_lock);
1021 		if (!list_empty(&ci->i_dirty_item)) {
1022 			pr_info(" dropping dirty %s state for %p %lld\n",
1023 				ceph_cap_string(ci->i_dirty_caps),
1024 				inode, ceph_ino(inode));
1025 			ci->i_dirty_caps = 0;
1026 			list_del_init(&ci->i_dirty_item);
1027 			drop = 1;
1028 		}
1029 		if (!list_empty(&ci->i_flushing_item)) {
1030 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1031 				ceph_cap_string(ci->i_flushing_caps),
1032 				inode, ceph_ino(inode));
1033 			ci->i_flushing_caps = 0;
1034 			list_del_init(&ci->i_flushing_item);
1035 			mdsc->num_cap_flushing--;
1036 			drop = 1;
1037 		}
1038 		if (drop && ci->i_wrbuffer_ref) {
1039 			pr_info(" dropping dirty data for %p %lld\n",
1040 				inode, ceph_ino(inode));
1041 			ci->i_wrbuffer_ref = 0;
1042 			ci->i_wrbuffer_ref_head = 0;
1043 			drop++;
1044 		}
1045 		spin_unlock(&mdsc->cap_dirty_lock);
1046 	}
1047 	spin_unlock(&ci->i_ceph_lock);
1048 	while (drop--)
1049 		iput(inode);
1050 	return 0;
1051 }
1052 
1053 /*
1054  * caller must hold session s_mutex
1055  */
1056 static void remove_session_caps(struct ceph_mds_session *session)
1057 {
1058 	dout("remove_session_caps on %p\n", session);
1059 	iterate_session_caps(session, remove_session_caps_cb, NULL);
1060 
1061 	spin_lock(&session->s_cap_lock);
1062 	if (session->s_nr_caps > 0) {
1063 		struct super_block *sb = session->s_mdsc->fsc->sb;
1064 		struct inode *inode;
1065 		struct ceph_cap *cap, *prev = NULL;
1066 		struct ceph_vino vino;
1067 		/*
1068 		 * iterate_session_caps() skips inodes that are being
1069 		 * deleted, we need to wait until deletions are complete.
1070 		 * __wait_on_freeing_inode() is designed for the job,
1071 		 * but it is not exported, so use lookup inode function
1072 		 * to access it.
1073 		 */
1074 		while (!list_empty(&session->s_caps)) {
1075 			cap = list_entry(session->s_caps.next,
1076 					 struct ceph_cap, session_caps);
1077 			if (cap == prev)
1078 				break;
1079 			prev = cap;
1080 			vino = cap->ci->i_vino;
1081 			spin_unlock(&session->s_cap_lock);
1082 
1083 			inode = ceph_find_inode(sb, vino);
1084 			iput(inode);
1085 
1086 			spin_lock(&session->s_cap_lock);
1087 		}
1088 	}
1089 	spin_unlock(&session->s_cap_lock);
1090 
1091 	BUG_ON(session->s_nr_caps > 0);
1092 	BUG_ON(!list_empty(&session->s_cap_flushing));
1093 	cleanup_cap_releases(session);
1094 }
1095 
1096 /*
1097  * wake up any threads waiting on this session's caps.  if the cap is
1098  * old (didn't get renewed on the client reconnect), remove it now.
1099  *
1100  * caller must hold s_mutex.
1101  */
1102 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1103 			      void *arg)
1104 {
1105 	struct ceph_inode_info *ci = ceph_inode(inode);
1106 
1107 	wake_up_all(&ci->i_cap_wq);
1108 	if (arg) {
1109 		spin_lock(&ci->i_ceph_lock);
1110 		ci->i_wanted_max_size = 0;
1111 		ci->i_requested_max_size = 0;
1112 		spin_unlock(&ci->i_ceph_lock);
1113 	}
1114 	return 0;
1115 }
1116 
1117 static void wake_up_session_caps(struct ceph_mds_session *session,
1118 				 int reconnect)
1119 {
1120 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1121 	iterate_session_caps(session, wake_up_session_cb,
1122 			     (void *)(unsigned long)reconnect);
1123 }
1124 
1125 /*
1126  * Send periodic message to MDS renewing all currently held caps.  The
1127  * ack will reset the expiration for all caps from this session.
1128  *
1129  * caller holds s_mutex
1130  */
1131 static int send_renew_caps(struct ceph_mds_client *mdsc,
1132 			   struct ceph_mds_session *session)
1133 {
1134 	struct ceph_msg *msg;
1135 	int state;
1136 
1137 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1138 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1139 		pr_info("mds%d caps stale\n", session->s_mds);
1140 	session->s_renew_requested = jiffies;
1141 
1142 	/* do not try to renew caps until a recovering mds has reconnected
1143 	 * with its clients. */
1144 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1145 	if (state < CEPH_MDS_STATE_RECONNECT) {
1146 		dout("send_renew_caps ignoring mds%d (%s)\n",
1147 		     session->s_mds, ceph_mds_state_name(state));
1148 		return 0;
1149 	}
1150 
1151 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1152 		ceph_mds_state_name(state));
1153 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1154 				 ++session->s_renew_seq);
1155 	if (!msg)
1156 		return -ENOMEM;
1157 	ceph_con_send(&session->s_con, msg);
1158 	return 0;
1159 }
1160 
1161 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1162 			     struct ceph_mds_session *session, u64 seq)
1163 {
1164 	struct ceph_msg *msg;
1165 
1166 	dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1167 	     session->s_mds, session_state_name(session->s_state), seq);
1168 	msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1169 	if (!msg)
1170 		return -ENOMEM;
1171 	ceph_con_send(&session->s_con, msg);
1172 	return 0;
1173 }
1174 
1175 
1176 /*
1177  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1178  *
1179  * Called under session->s_mutex
1180  */
1181 static void renewed_caps(struct ceph_mds_client *mdsc,
1182 			 struct ceph_mds_session *session, int is_renew)
1183 {
1184 	int was_stale;
1185 	int wake = 0;
1186 
1187 	spin_lock(&session->s_cap_lock);
1188 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1189 
1190 	session->s_cap_ttl = session->s_renew_requested +
1191 		mdsc->mdsmap->m_session_timeout*HZ;
1192 
1193 	if (was_stale) {
1194 		if (time_before(jiffies, session->s_cap_ttl)) {
1195 			pr_info("mds%d caps renewed\n", session->s_mds);
1196 			wake = 1;
1197 		} else {
1198 			pr_info("mds%d caps still stale\n", session->s_mds);
1199 		}
1200 	}
1201 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1202 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1203 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1204 	spin_unlock(&session->s_cap_lock);
1205 
1206 	if (wake)
1207 		wake_up_session_caps(session, 0);
1208 }
1209 
1210 /*
1211  * send a session close request
1212  */
1213 static int request_close_session(struct ceph_mds_client *mdsc,
1214 				 struct ceph_mds_session *session)
1215 {
1216 	struct ceph_msg *msg;
1217 
1218 	dout("request_close_session mds%d state %s seq %lld\n",
1219 	     session->s_mds, session_state_name(session->s_state),
1220 	     session->s_seq);
1221 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1222 	if (!msg)
1223 		return -ENOMEM;
1224 	ceph_con_send(&session->s_con, msg);
1225 	return 0;
1226 }
1227 
1228 /*
1229  * Called with s_mutex held.
1230  */
1231 static int __close_session(struct ceph_mds_client *mdsc,
1232 			 struct ceph_mds_session *session)
1233 {
1234 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1235 		return 0;
1236 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1237 	return request_close_session(mdsc, session);
1238 }
1239 
1240 /*
1241  * Trim old(er) caps.
1242  *
1243  * Because we can't cache an inode without one or more caps, we do
1244  * this indirectly: if a cap is unused, we prune its aliases, at which
1245  * point the inode will hopefully get dropped to.
1246  *
1247  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1248  * memory pressure from the MDS, though, so it needn't be perfect.
1249  */
1250 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1251 {
1252 	struct ceph_mds_session *session = arg;
1253 	struct ceph_inode_info *ci = ceph_inode(inode);
1254 	int used, wanted, oissued, mine;
1255 
1256 	if (session->s_trim_caps <= 0)
1257 		return -1;
1258 
1259 	spin_lock(&ci->i_ceph_lock);
1260 	mine = cap->issued | cap->implemented;
1261 	used = __ceph_caps_used(ci);
1262 	wanted = __ceph_caps_file_wanted(ci);
1263 	oissued = __ceph_caps_issued_other(ci, cap);
1264 
1265 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1266 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1267 	     ceph_cap_string(used), ceph_cap_string(wanted));
1268 	if (cap == ci->i_auth_cap) {
1269 		if (ci->i_dirty_caps | ci->i_flushing_caps)
1270 			goto out;
1271 		if ((used | wanted) & CEPH_CAP_ANY_WR)
1272 			goto out;
1273 	}
1274 	if ((used | wanted) & ~oissued & mine)
1275 		goto out;   /* we need these caps */
1276 
1277 	session->s_trim_caps--;
1278 	if (oissued) {
1279 		/* we aren't the only cap.. just remove us */
1280 		__ceph_remove_cap(cap, true);
1281 	} else {
1282 		/* try to drop referring dentries */
1283 		spin_unlock(&ci->i_ceph_lock);
1284 		d_prune_aliases(inode);
1285 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1286 		     inode, cap, atomic_read(&inode->i_count));
1287 		return 0;
1288 	}
1289 
1290 out:
1291 	spin_unlock(&ci->i_ceph_lock);
1292 	return 0;
1293 }
1294 
1295 /*
1296  * Trim session cap count down to some max number.
1297  */
1298 static int trim_caps(struct ceph_mds_client *mdsc,
1299 		     struct ceph_mds_session *session,
1300 		     int max_caps)
1301 {
1302 	int trim_caps = session->s_nr_caps - max_caps;
1303 
1304 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1305 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1306 	if (trim_caps > 0) {
1307 		session->s_trim_caps = trim_caps;
1308 		iterate_session_caps(session, trim_caps_cb, session);
1309 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1310 		     session->s_mds, session->s_nr_caps, max_caps,
1311 			trim_caps - session->s_trim_caps);
1312 		session->s_trim_caps = 0;
1313 	}
1314 	return 0;
1315 }
1316 
1317 /*
1318  * Allocate cap_release messages.  If there is a partially full message
1319  * in the queue, try to allocate enough to cover it's remainder, so that
1320  * we can send it immediately.
1321  *
1322  * Called under s_mutex.
1323  */
1324 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1325 			  struct ceph_mds_session *session)
1326 {
1327 	struct ceph_msg *msg, *partial = NULL;
1328 	struct ceph_mds_cap_release *head;
1329 	int err = -ENOMEM;
1330 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1331 	int num;
1332 
1333 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1334 	     extra);
1335 
1336 	spin_lock(&session->s_cap_lock);
1337 
1338 	if (!list_empty(&session->s_cap_releases)) {
1339 		msg = list_first_entry(&session->s_cap_releases,
1340 				       struct ceph_msg,
1341 				 list_head);
1342 		head = msg->front.iov_base;
1343 		num = le32_to_cpu(head->num);
1344 		if (num) {
1345 			dout(" partial %p with (%d/%d)\n", msg, num,
1346 			     (int)CEPH_CAPS_PER_RELEASE);
1347 			extra += CEPH_CAPS_PER_RELEASE - num;
1348 			partial = msg;
1349 		}
1350 	}
1351 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1352 		spin_unlock(&session->s_cap_lock);
1353 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1354 				   GFP_NOFS, false);
1355 		if (!msg)
1356 			goto out_unlocked;
1357 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1358 		     (int)msg->front.iov_len);
1359 		head = msg->front.iov_base;
1360 		head->num = cpu_to_le32(0);
1361 		msg->front.iov_len = sizeof(*head);
1362 		spin_lock(&session->s_cap_lock);
1363 		list_add(&msg->list_head, &session->s_cap_releases);
1364 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1365 	}
1366 
1367 	if (partial) {
1368 		head = partial->front.iov_base;
1369 		num = le32_to_cpu(head->num);
1370 		dout(" queueing partial %p with %d/%d\n", partial, num,
1371 		     (int)CEPH_CAPS_PER_RELEASE);
1372 		list_move_tail(&partial->list_head,
1373 			       &session->s_cap_releases_done);
1374 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1375 	}
1376 	err = 0;
1377 	spin_unlock(&session->s_cap_lock);
1378 out_unlocked:
1379 	return err;
1380 }
1381 
1382 /*
1383  * flush all dirty inode data to disk.
1384  *
1385  * returns true if we've flushed through want_flush_seq
1386  */
1387 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1388 {
1389 	int mds, ret = 1;
1390 
1391 	dout("check_cap_flush want %lld\n", want_flush_seq);
1392 	mutex_lock(&mdsc->mutex);
1393 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1394 		struct ceph_mds_session *session = mdsc->sessions[mds];
1395 
1396 		if (!session)
1397 			continue;
1398 		get_session(session);
1399 		mutex_unlock(&mdsc->mutex);
1400 
1401 		mutex_lock(&session->s_mutex);
1402 		if (!list_empty(&session->s_cap_flushing)) {
1403 			struct ceph_inode_info *ci =
1404 				list_entry(session->s_cap_flushing.next,
1405 					   struct ceph_inode_info,
1406 					   i_flushing_item);
1407 			struct inode *inode = &ci->vfs_inode;
1408 
1409 			spin_lock(&ci->i_ceph_lock);
1410 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1411 				dout("check_cap_flush still flushing %p "
1412 				     "seq %lld <= %lld to mds%d\n", inode,
1413 				     ci->i_cap_flush_seq, want_flush_seq,
1414 				     session->s_mds);
1415 				ret = 0;
1416 			}
1417 			spin_unlock(&ci->i_ceph_lock);
1418 		}
1419 		mutex_unlock(&session->s_mutex);
1420 		ceph_put_mds_session(session);
1421 
1422 		if (!ret)
1423 			return ret;
1424 		mutex_lock(&mdsc->mutex);
1425 	}
1426 
1427 	mutex_unlock(&mdsc->mutex);
1428 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1429 	return ret;
1430 }
1431 
1432 /*
1433  * called under s_mutex
1434  */
1435 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1436 			    struct ceph_mds_session *session)
1437 {
1438 	struct ceph_msg *msg;
1439 
1440 	dout("send_cap_releases mds%d\n", session->s_mds);
1441 	spin_lock(&session->s_cap_lock);
1442 	while (!list_empty(&session->s_cap_releases_done)) {
1443 		msg = list_first_entry(&session->s_cap_releases_done,
1444 				 struct ceph_msg, list_head);
1445 		list_del_init(&msg->list_head);
1446 		spin_unlock(&session->s_cap_lock);
1447 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1448 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1449 		ceph_con_send(&session->s_con, msg);
1450 		spin_lock(&session->s_cap_lock);
1451 	}
1452 	spin_unlock(&session->s_cap_lock);
1453 }
1454 
1455 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1456 				 struct ceph_mds_session *session)
1457 {
1458 	struct ceph_msg *msg;
1459 	struct ceph_mds_cap_release *head;
1460 	unsigned num;
1461 
1462 	dout("discard_cap_releases mds%d\n", session->s_mds);
1463 
1464 	/* zero out the in-progress message */
1465 	msg = list_first_entry(&session->s_cap_releases,
1466 			       struct ceph_msg, list_head);
1467 	head = msg->front.iov_base;
1468 	num = le32_to_cpu(head->num);
1469 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1470 	head->num = cpu_to_le32(0);
1471 	msg->front.iov_len = sizeof(*head);
1472 	session->s_num_cap_releases += num;
1473 
1474 	/* requeue completed messages */
1475 	while (!list_empty(&session->s_cap_releases_done)) {
1476 		msg = list_first_entry(&session->s_cap_releases_done,
1477 				 struct ceph_msg, list_head);
1478 		list_del_init(&msg->list_head);
1479 
1480 		head = msg->front.iov_base;
1481 		num = le32_to_cpu(head->num);
1482 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1483 		     num);
1484 		session->s_num_cap_releases += num;
1485 		head->num = cpu_to_le32(0);
1486 		msg->front.iov_len = sizeof(*head);
1487 		list_add(&msg->list_head, &session->s_cap_releases);
1488 	}
1489 }
1490 
1491 /*
1492  * requests
1493  */
1494 
1495 /*
1496  * Create an mds request.
1497  */
1498 struct ceph_mds_request *
1499 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1500 {
1501 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1502 
1503 	if (!req)
1504 		return ERR_PTR(-ENOMEM);
1505 
1506 	mutex_init(&req->r_fill_mutex);
1507 	req->r_mdsc = mdsc;
1508 	req->r_started = jiffies;
1509 	req->r_resend_mds = -1;
1510 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1511 	req->r_fmode = -1;
1512 	kref_init(&req->r_kref);
1513 	INIT_LIST_HEAD(&req->r_wait);
1514 	init_completion(&req->r_completion);
1515 	init_completion(&req->r_safe_completion);
1516 	INIT_LIST_HEAD(&req->r_unsafe_item);
1517 
1518 	req->r_op = op;
1519 	req->r_direct_mode = mode;
1520 	return req;
1521 }
1522 
1523 /*
1524  * return oldest (lowest) request, tid in request tree, 0 if none.
1525  *
1526  * called under mdsc->mutex.
1527  */
1528 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1529 {
1530 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1531 		return NULL;
1532 	return rb_entry(rb_first(&mdsc->request_tree),
1533 			struct ceph_mds_request, r_node);
1534 }
1535 
1536 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1537 {
1538 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1539 
1540 	if (req)
1541 		return req->r_tid;
1542 	return 0;
1543 }
1544 
1545 /*
1546  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1547  * on build_path_from_dentry in fs/cifs/dir.c.
1548  *
1549  * If @stop_on_nosnap, generate path relative to the first non-snapped
1550  * inode.
1551  *
1552  * Encode hidden .snap dirs as a double /, i.e.
1553  *   foo/.snap/bar -> foo//bar
1554  */
1555 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1556 			   int stop_on_nosnap)
1557 {
1558 	struct dentry *temp;
1559 	char *path;
1560 	int len, pos;
1561 	unsigned seq;
1562 
1563 	if (dentry == NULL)
1564 		return ERR_PTR(-EINVAL);
1565 
1566 retry:
1567 	len = 0;
1568 	seq = read_seqbegin(&rename_lock);
1569 	rcu_read_lock();
1570 	for (temp = dentry; !IS_ROOT(temp);) {
1571 		struct inode *inode = temp->d_inode;
1572 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1573 			len++;  /* slash only */
1574 		else if (stop_on_nosnap && inode &&
1575 			 ceph_snap(inode) == CEPH_NOSNAP)
1576 			break;
1577 		else
1578 			len += 1 + temp->d_name.len;
1579 		temp = temp->d_parent;
1580 	}
1581 	rcu_read_unlock();
1582 	if (len)
1583 		len--;  /* no leading '/' */
1584 
1585 	path = kmalloc(len+1, GFP_NOFS);
1586 	if (path == NULL)
1587 		return ERR_PTR(-ENOMEM);
1588 	pos = len;
1589 	path[pos] = 0;	/* trailing null */
1590 	rcu_read_lock();
1591 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1592 		struct inode *inode;
1593 
1594 		spin_lock(&temp->d_lock);
1595 		inode = temp->d_inode;
1596 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1597 			dout("build_path path+%d: %p SNAPDIR\n",
1598 			     pos, temp);
1599 		} else if (stop_on_nosnap && inode &&
1600 			   ceph_snap(inode) == CEPH_NOSNAP) {
1601 			spin_unlock(&temp->d_lock);
1602 			break;
1603 		} else {
1604 			pos -= temp->d_name.len;
1605 			if (pos < 0) {
1606 				spin_unlock(&temp->d_lock);
1607 				break;
1608 			}
1609 			strncpy(path + pos, temp->d_name.name,
1610 				temp->d_name.len);
1611 		}
1612 		spin_unlock(&temp->d_lock);
1613 		if (pos)
1614 			path[--pos] = '/';
1615 		temp = temp->d_parent;
1616 	}
1617 	rcu_read_unlock();
1618 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1619 		pr_err("build_path did not end path lookup where "
1620 		       "expected, namelen is %d, pos is %d\n", len, pos);
1621 		/* presumably this is only possible if racing with a
1622 		   rename of one of the parent directories (we can not
1623 		   lock the dentries above us to prevent this, but
1624 		   retrying should be harmless) */
1625 		kfree(path);
1626 		goto retry;
1627 	}
1628 
1629 	*base = ceph_ino(temp->d_inode);
1630 	*plen = len;
1631 	dout("build_path on %p %d built %llx '%.*s'\n",
1632 	     dentry, d_count(dentry), *base, len, path);
1633 	return path;
1634 }
1635 
1636 static int build_dentry_path(struct dentry *dentry,
1637 			     const char **ppath, int *ppathlen, u64 *pino,
1638 			     int *pfreepath)
1639 {
1640 	char *path;
1641 
1642 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1643 		*pino = ceph_ino(dentry->d_parent->d_inode);
1644 		*ppath = dentry->d_name.name;
1645 		*ppathlen = dentry->d_name.len;
1646 		return 0;
1647 	}
1648 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1649 	if (IS_ERR(path))
1650 		return PTR_ERR(path);
1651 	*ppath = path;
1652 	*pfreepath = 1;
1653 	return 0;
1654 }
1655 
1656 static int build_inode_path(struct inode *inode,
1657 			    const char **ppath, int *ppathlen, u64 *pino,
1658 			    int *pfreepath)
1659 {
1660 	struct dentry *dentry;
1661 	char *path;
1662 
1663 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1664 		*pino = ceph_ino(inode);
1665 		*ppathlen = 0;
1666 		return 0;
1667 	}
1668 	dentry = d_find_alias(inode);
1669 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1670 	dput(dentry);
1671 	if (IS_ERR(path))
1672 		return PTR_ERR(path);
1673 	*ppath = path;
1674 	*pfreepath = 1;
1675 	return 0;
1676 }
1677 
1678 /*
1679  * request arguments may be specified via an inode *, a dentry *, or
1680  * an explicit ino+path.
1681  */
1682 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1683 				  const char *rpath, u64 rino,
1684 				  const char **ppath, int *pathlen,
1685 				  u64 *ino, int *freepath)
1686 {
1687 	int r = 0;
1688 
1689 	if (rinode) {
1690 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1691 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1692 		     ceph_snap(rinode));
1693 	} else if (rdentry) {
1694 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1695 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1696 		     *ppath);
1697 	} else if (rpath || rino) {
1698 		*ino = rino;
1699 		*ppath = rpath;
1700 		*pathlen = rpath ? strlen(rpath) : 0;
1701 		dout(" path %.*s\n", *pathlen, rpath);
1702 	}
1703 
1704 	return r;
1705 }
1706 
1707 /*
1708  * called under mdsc->mutex
1709  */
1710 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1711 					       struct ceph_mds_request *req,
1712 					       int mds)
1713 {
1714 	struct ceph_msg *msg;
1715 	struct ceph_mds_request_head *head;
1716 	const char *path1 = NULL;
1717 	const char *path2 = NULL;
1718 	u64 ino1 = 0, ino2 = 0;
1719 	int pathlen1 = 0, pathlen2 = 0;
1720 	int freepath1 = 0, freepath2 = 0;
1721 	int len;
1722 	u16 releases;
1723 	void *p, *end;
1724 	int ret;
1725 
1726 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1727 			      req->r_path1, req->r_ino1.ino,
1728 			      &path1, &pathlen1, &ino1, &freepath1);
1729 	if (ret < 0) {
1730 		msg = ERR_PTR(ret);
1731 		goto out;
1732 	}
1733 
1734 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1735 			      req->r_path2, req->r_ino2.ino,
1736 			      &path2, &pathlen2, &ino2, &freepath2);
1737 	if (ret < 0) {
1738 		msg = ERR_PTR(ret);
1739 		goto out_free1;
1740 	}
1741 
1742 	len = sizeof(*head) +
1743 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1744 
1745 	/* calculate (max) length for cap releases */
1746 	len += sizeof(struct ceph_mds_request_release) *
1747 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1748 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1749 	if (req->r_dentry_drop)
1750 		len += req->r_dentry->d_name.len;
1751 	if (req->r_old_dentry_drop)
1752 		len += req->r_old_dentry->d_name.len;
1753 
1754 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1755 	if (!msg) {
1756 		msg = ERR_PTR(-ENOMEM);
1757 		goto out_free2;
1758 	}
1759 
1760 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1761 
1762 	head = msg->front.iov_base;
1763 	p = msg->front.iov_base + sizeof(*head);
1764 	end = msg->front.iov_base + msg->front.iov_len;
1765 
1766 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1767 	head->op = cpu_to_le32(req->r_op);
1768 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1769 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1770 	head->args = req->r_args;
1771 
1772 	ceph_encode_filepath(&p, end, ino1, path1);
1773 	ceph_encode_filepath(&p, end, ino2, path2);
1774 
1775 	/* make note of release offset, in case we need to replay */
1776 	req->r_request_release_offset = p - msg->front.iov_base;
1777 
1778 	/* cap releases */
1779 	releases = 0;
1780 	if (req->r_inode_drop)
1781 		releases += ceph_encode_inode_release(&p,
1782 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1783 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1784 	if (req->r_dentry_drop)
1785 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1786 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1787 	if (req->r_old_dentry_drop)
1788 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1789 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1790 	if (req->r_old_inode_drop)
1791 		releases += ceph_encode_inode_release(&p,
1792 		      req->r_old_dentry->d_inode,
1793 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1794 	head->num_releases = cpu_to_le16(releases);
1795 
1796 	BUG_ON(p > end);
1797 	msg->front.iov_len = p - msg->front.iov_base;
1798 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1799 
1800 	if (req->r_data_len) {
1801 		/* outbound data set only by ceph_sync_setxattr() */
1802 		BUG_ON(!req->r_pages);
1803 		ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
1804 	}
1805 
1806 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1807 	msg->hdr.data_off = cpu_to_le16(0);
1808 
1809 out_free2:
1810 	if (freepath2)
1811 		kfree((char *)path2);
1812 out_free1:
1813 	if (freepath1)
1814 		kfree((char *)path1);
1815 out:
1816 	return msg;
1817 }
1818 
1819 /*
1820  * called under mdsc->mutex if error, under no mutex if
1821  * success.
1822  */
1823 static void complete_request(struct ceph_mds_client *mdsc,
1824 			     struct ceph_mds_request *req)
1825 {
1826 	if (req->r_callback)
1827 		req->r_callback(mdsc, req);
1828 	else
1829 		complete_all(&req->r_completion);
1830 }
1831 
1832 /*
1833  * called under mdsc->mutex
1834  */
1835 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1836 				  struct ceph_mds_request *req,
1837 				  int mds)
1838 {
1839 	struct ceph_mds_request_head *rhead;
1840 	struct ceph_msg *msg;
1841 	int flags = 0;
1842 
1843 	req->r_attempts++;
1844 	if (req->r_inode) {
1845 		struct ceph_cap *cap =
1846 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1847 
1848 		if (cap)
1849 			req->r_sent_on_mseq = cap->mseq;
1850 		else
1851 			req->r_sent_on_mseq = -1;
1852 	}
1853 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1854 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1855 
1856 	if (req->r_got_unsafe) {
1857 		/*
1858 		 * Replay.  Do not regenerate message (and rebuild
1859 		 * paths, etc.); just use the original message.
1860 		 * Rebuilding paths will break for renames because
1861 		 * d_move mangles the src name.
1862 		 */
1863 		msg = req->r_request;
1864 		rhead = msg->front.iov_base;
1865 
1866 		flags = le32_to_cpu(rhead->flags);
1867 		flags |= CEPH_MDS_FLAG_REPLAY;
1868 		rhead->flags = cpu_to_le32(flags);
1869 
1870 		if (req->r_target_inode)
1871 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1872 
1873 		rhead->num_retry = req->r_attempts - 1;
1874 
1875 		/* remove cap/dentry releases from message */
1876 		rhead->num_releases = 0;
1877 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1878 		msg->front.iov_len = req->r_request_release_offset;
1879 		return 0;
1880 	}
1881 
1882 	if (req->r_request) {
1883 		ceph_msg_put(req->r_request);
1884 		req->r_request = NULL;
1885 	}
1886 	msg = create_request_message(mdsc, req, mds);
1887 	if (IS_ERR(msg)) {
1888 		req->r_err = PTR_ERR(msg);
1889 		complete_request(mdsc, req);
1890 		return PTR_ERR(msg);
1891 	}
1892 	req->r_request = msg;
1893 
1894 	rhead = msg->front.iov_base;
1895 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1896 	if (req->r_got_unsafe)
1897 		flags |= CEPH_MDS_FLAG_REPLAY;
1898 	if (req->r_locked_dir)
1899 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1900 	rhead->flags = cpu_to_le32(flags);
1901 	rhead->num_fwd = req->r_num_fwd;
1902 	rhead->num_retry = req->r_attempts - 1;
1903 	rhead->ino = 0;
1904 
1905 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1906 	return 0;
1907 }
1908 
1909 /*
1910  * send request, or put it on the appropriate wait list.
1911  */
1912 static int __do_request(struct ceph_mds_client *mdsc,
1913 			struct ceph_mds_request *req)
1914 {
1915 	struct ceph_mds_session *session = NULL;
1916 	int mds = -1;
1917 	int err = -EAGAIN;
1918 
1919 	if (req->r_err || req->r_got_result) {
1920 		if (req->r_aborted)
1921 			__unregister_request(mdsc, req);
1922 		goto out;
1923 	}
1924 
1925 	if (req->r_timeout &&
1926 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1927 		dout("do_request timed out\n");
1928 		err = -EIO;
1929 		goto finish;
1930 	}
1931 
1932 	put_request_session(req);
1933 
1934 	mds = __choose_mds(mdsc, req);
1935 	if (mds < 0 ||
1936 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1937 		dout("do_request no mds or not active, waiting for map\n");
1938 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1939 		goto out;
1940 	}
1941 
1942 	/* get, open session */
1943 	session = __ceph_lookup_mds_session(mdsc, mds);
1944 	if (!session) {
1945 		session = register_session(mdsc, mds);
1946 		if (IS_ERR(session)) {
1947 			err = PTR_ERR(session);
1948 			goto finish;
1949 		}
1950 	}
1951 	req->r_session = get_session(session);
1952 
1953 	dout("do_request mds%d session %p state %s\n", mds, session,
1954 	     session_state_name(session->s_state));
1955 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1956 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1957 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1958 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1959 			__open_session(mdsc, session);
1960 		list_add(&req->r_wait, &session->s_waiting);
1961 		goto out_session;
1962 	}
1963 
1964 	/* send request */
1965 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1966 
1967 	if (req->r_request_started == 0)   /* note request start time */
1968 		req->r_request_started = jiffies;
1969 
1970 	err = __prepare_send_request(mdsc, req, mds);
1971 	if (!err) {
1972 		ceph_msg_get(req->r_request);
1973 		ceph_con_send(&session->s_con, req->r_request);
1974 	}
1975 
1976 out_session:
1977 	ceph_put_mds_session(session);
1978 out:
1979 	return err;
1980 
1981 finish:
1982 	req->r_err = err;
1983 	complete_request(mdsc, req);
1984 	goto out;
1985 }
1986 
1987 /*
1988  * called under mdsc->mutex
1989  */
1990 static void __wake_requests(struct ceph_mds_client *mdsc,
1991 			    struct list_head *head)
1992 {
1993 	struct ceph_mds_request *req;
1994 	LIST_HEAD(tmp_list);
1995 
1996 	list_splice_init(head, &tmp_list);
1997 
1998 	while (!list_empty(&tmp_list)) {
1999 		req = list_entry(tmp_list.next,
2000 				 struct ceph_mds_request, r_wait);
2001 		list_del_init(&req->r_wait);
2002 		dout(" wake request %p tid %llu\n", req, req->r_tid);
2003 		__do_request(mdsc, req);
2004 	}
2005 }
2006 
2007 /*
2008  * Wake up threads with requests pending for @mds, so that they can
2009  * resubmit their requests to a possibly different mds.
2010  */
2011 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2012 {
2013 	struct ceph_mds_request *req;
2014 	struct rb_node *p;
2015 
2016 	dout("kick_requests mds%d\n", mds);
2017 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
2018 		req = rb_entry(p, struct ceph_mds_request, r_node);
2019 		if (req->r_got_unsafe)
2020 			continue;
2021 		if (req->r_session &&
2022 		    req->r_session->s_mds == mds) {
2023 			dout(" kicking tid %llu\n", req->r_tid);
2024 			__do_request(mdsc, req);
2025 		}
2026 	}
2027 }
2028 
2029 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2030 			      struct ceph_mds_request *req)
2031 {
2032 	dout("submit_request on %p\n", req);
2033 	mutex_lock(&mdsc->mutex);
2034 	__register_request(mdsc, req, NULL);
2035 	__do_request(mdsc, req);
2036 	mutex_unlock(&mdsc->mutex);
2037 }
2038 
2039 /*
2040  * Synchrously perform an mds request.  Take care of all of the
2041  * session setup, forwarding, retry details.
2042  */
2043 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2044 			 struct inode *dir,
2045 			 struct ceph_mds_request *req)
2046 {
2047 	int err;
2048 
2049 	dout("do_request on %p\n", req);
2050 
2051 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2052 	if (req->r_inode)
2053 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2054 	if (req->r_locked_dir)
2055 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2056 	if (req->r_old_dentry)
2057 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2058 				  CEPH_CAP_PIN);
2059 
2060 	/* issue */
2061 	mutex_lock(&mdsc->mutex);
2062 	__register_request(mdsc, req, dir);
2063 	__do_request(mdsc, req);
2064 
2065 	if (req->r_err) {
2066 		err = req->r_err;
2067 		__unregister_request(mdsc, req);
2068 		dout("do_request early error %d\n", err);
2069 		goto out;
2070 	}
2071 
2072 	/* wait */
2073 	mutex_unlock(&mdsc->mutex);
2074 	dout("do_request waiting\n");
2075 	if (req->r_timeout) {
2076 		err = (long)wait_for_completion_killable_timeout(
2077 			&req->r_completion, req->r_timeout);
2078 		if (err == 0)
2079 			err = -EIO;
2080 	} else {
2081 		err = wait_for_completion_killable(&req->r_completion);
2082 	}
2083 	dout("do_request waited, got %d\n", err);
2084 	mutex_lock(&mdsc->mutex);
2085 
2086 	/* only abort if we didn't race with a real reply */
2087 	if (req->r_got_result) {
2088 		err = le32_to_cpu(req->r_reply_info.head->result);
2089 	} else if (err < 0) {
2090 		dout("aborted request %lld with %d\n", req->r_tid, err);
2091 
2092 		/*
2093 		 * ensure we aren't running concurrently with
2094 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2095 		 * rely on locks (dir mutex) held by our caller.
2096 		 */
2097 		mutex_lock(&req->r_fill_mutex);
2098 		req->r_err = err;
2099 		req->r_aborted = true;
2100 		mutex_unlock(&req->r_fill_mutex);
2101 
2102 		if (req->r_locked_dir &&
2103 		    (req->r_op & CEPH_MDS_OP_WRITE))
2104 			ceph_invalidate_dir_request(req);
2105 	} else {
2106 		err = req->r_err;
2107 	}
2108 
2109 out:
2110 	mutex_unlock(&mdsc->mutex);
2111 	dout("do_request %p done, result %d\n", req, err);
2112 	return err;
2113 }
2114 
2115 /*
2116  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2117  * namespace request.
2118  */
2119 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2120 {
2121 	struct inode *inode = req->r_locked_dir;
2122 
2123 	dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2124 
2125 	ceph_dir_clear_complete(inode);
2126 	if (req->r_dentry)
2127 		ceph_invalidate_dentry_lease(req->r_dentry);
2128 	if (req->r_old_dentry)
2129 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2130 }
2131 
2132 /*
2133  * Handle mds reply.
2134  *
2135  * We take the session mutex and parse and process the reply immediately.
2136  * This preserves the logical ordering of replies, capabilities, etc., sent
2137  * by the MDS as they are applied to our local cache.
2138  */
2139 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2140 {
2141 	struct ceph_mds_client *mdsc = session->s_mdsc;
2142 	struct ceph_mds_request *req;
2143 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2144 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2145 	u64 tid;
2146 	int err, result;
2147 	int mds = session->s_mds;
2148 
2149 	if (msg->front.iov_len < sizeof(*head)) {
2150 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2151 		ceph_msg_dump(msg);
2152 		return;
2153 	}
2154 
2155 	/* get request, session */
2156 	tid = le64_to_cpu(msg->hdr.tid);
2157 	mutex_lock(&mdsc->mutex);
2158 	req = __lookup_request(mdsc, tid);
2159 	if (!req) {
2160 		dout("handle_reply on unknown tid %llu\n", tid);
2161 		mutex_unlock(&mdsc->mutex);
2162 		return;
2163 	}
2164 	dout("handle_reply %p\n", req);
2165 
2166 	/* correct session? */
2167 	if (req->r_session != session) {
2168 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2169 		       " not mds%d\n", tid, session->s_mds,
2170 		       req->r_session ? req->r_session->s_mds : -1);
2171 		mutex_unlock(&mdsc->mutex);
2172 		goto out;
2173 	}
2174 
2175 	/* dup? */
2176 	if ((req->r_got_unsafe && !head->safe) ||
2177 	    (req->r_got_safe && head->safe)) {
2178 		pr_warning("got a dup %s reply on %llu from mds%d\n",
2179 			   head->safe ? "safe" : "unsafe", tid, mds);
2180 		mutex_unlock(&mdsc->mutex);
2181 		goto out;
2182 	}
2183 	if (req->r_got_safe && !head->safe) {
2184 		pr_warning("got unsafe after safe on %llu from mds%d\n",
2185 			   tid, mds);
2186 		mutex_unlock(&mdsc->mutex);
2187 		goto out;
2188 	}
2189 
2190 	result = le32_to_cpu(head->result);
2191 
2192 	/*
2193 	 * Handle an ESTALE
2194 	 * if we're not talking to the authority, send to them
2195 	 * if the authority has changed while we weren't looking,
2196 	 * send to new authority
2197 	 * Otherwise we just have to return an ESTALE
2198 	 */
2199 	if (result == -ESTALE) {
2200 		dout("got ESTALE on request %llu", req->r_tid);
2201 		if (req->r_direct_mode != USE_AUTH_MDS) {
2202 			dout("not using auth, setting for that now");
2203 			req->r_direct_mode = USE_AUTH_MDS;
2204 			__do_request(mdsc, req);
2205 			mutex_unlock(&mdsc->mutex);
2206 			goto out;
2207 		} else  {
2208 			int mds = __choose_mds(mdsc, req);
2209 			if (mds >= 0 && mds != req->r_session->s_mds) {
2210 				dout("but auth changed, so resending");
2211 				__do_request(mdsc, req);
2212 				mutex_unlock(&mdsc->mutex);
2213 				goto out;
2214 			}
2215 		}
2216 		dout("have to return ESTALE on request %llu", req->r_tid);
2217 	}
2218 
2219 
2220 	if (head->safe) {
2221 		req->r_got_safe = true;
2222 		__unregister_request(mdsc, req);
2223 
2224 		if (req->r_got_unsafe) {
2225 			/*
2226 			 * We already handled the unsafe response, now do the
2227 			 * cleanup.  No need to examine the response; the MDS
2228 			 * doesn't include any result info in the safe
2229 			 * response.  And even if it did, there is nothing
2230 			 * useful we could do with a revised return value.
2231 			 */
2232 			dout("got safe reply %llu, mds%d\n", tid, mds);
2233 			list_del_init(&req->r_unsafe_item);
2234 
2235 			/* last unsafe request during umount? */
2236 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2237 				complete_all(&mdsc->safe_umount_waiters);
2238 			mutex_unlock(&mdsc->mutex);
2239 			goto out;
2240 		}
2241 	} else {
2242 		req->r_got_unsafe = true;
2243 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2244 	}
2245 
2246 	dout("handle_reply tid %lld result %d\n", tid, result);
2247 	rinfo = &req->r_reply_info;
2248 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2249 	mutex_unlock(&mdsc->mutex);
2250 
2251 	mutex_lock(&session->s_mutex);
2252 	if (err < 0) {
2253 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2254 		ceph_msg_dump(msg);
2255 		goto out_err;
2256 	}
2257 
2258 	/* snap trace */
2259 	if (rinfo->snapblob_len) {
2260 		down_write(&mdsc->snap_rwsem);
2261 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2262 			       rinfo->snapblob + rinfo->snapblob_len,
2263 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2264 		downgrade_write(&mdsc->snap_rwsem);
2265 	} else {
2266 		down_read(&mdsc->snap_rwsem);
2267 	}
2268 
2269 	/* insert trace into our cache */
2270 	mutex_lock(&req->r_fill_mutex);
2271 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2272 	if (err == 0) {
2273 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2274 				    req->r_op == CEPH_MDS_OP_LSSNAP))
2275 			ceph_readdir_prepopulate(req, req->r_session);
2276 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2277 	}
2278 	mutex_unlock(&req->r_fill_mutex);
2279 
2280 	up_read(&mdsc->snap_rwsem);
2281 out_err:
2282 	mutex_lock(&mdsc->mutex);
2283 	if (!req->r_aborted) {
2284 		if (err) {
2285 			req->r_err = err;
2286 		} else {
2287 			req->r_reply = msg;
2288 			ceph_msg_get(msg);
2289 			req->r_got_result = true;
2290 		}
2291 	} else {
2292 		dout("reply arrived after request %lld was aborted\n", tid);
2293 	}
2294 	mutex_unlock(&mdsc->mutex);
2295 
2296 	ceph_add_cap_releases(mdsc, req->r_session);
2297 	mutex_unlock(&session->s_mutex);
2298 
2299 	/* kick calling process */
2300 	complete_request(mdsc, req);
2301 out:
2302 	ceph_mdsc_put_request(req);
2303 	return;
2304 }
2305 
2306 
2307 
2308 /*
2309  * handle mds notification that our request has been forwarded.
2310  */
2311 static void handle_forward(struct ceph_mds_client *mdsc,
2312 			   struct ceph_mds_session *session,
2313 			   struct ceph_msg *msg)
2314 {
2315 	struct ceph_mds_request *req;
2316 	u64 tid = le64_to_cpu(msg->hdr.tid);
2317 	u32 next_mds;
2318 	u32 fwd_seq;
2319 	int err = -EINVAL;
2320 	void *p = msg->front.iov_base;
2321 	void *end = p + msg->front.iov_len;
2322 
2323 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2324 	next_mds = ceph_decode_32(&p);
2325 	fwd_seq = ceph_decode_32(&p);
2326 
2327 	mutex_lock(&mdsc->mutex);
2328 	req = __lookup_request(mdsc, tid);
2329 	if (!req) {
2330 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2331 		goto out;  /* dup reply? */
2332 	}
2333 
2334 	if (req->r_aborted) {
2335 		dout("forward tid %llu aborted, unregistering\n", tid);
2336 		__unregister_request(mdsc, req);
2337 	} else if (fwd_seq <= req->r_num_fwd) {
2338 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2339 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2340 	} else {
2341 		/* resend. forward race not possible; mds would drop */
2342 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2343 		BUG_ON(req->r_err);
2344 		BUG_ON(req->r_got_result);
2345 		req->r_num_fwd = fwd_seq;
2346 		req->r_resend_mds = next_mds;
2347 		put_request_session(req);
2348 		__do_request(mdsc, req);
2349 	}
2350 	ceph_mdsc_put_request(req);
2351 out:
2352 	mutex_unlock(&mdsc->mutex);
2353 	return;
2354 
2355 bad:
2356 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2357 }
2358 
2359 /*
2360  * handle a mds session control message
2361  */
2362 static void handle_session(struct ceph_mds_session *session,
2363 			   struct ceph_msg *msg)
2364 {
2365 	struct ceph_mds_client *mdsc = session->s_mdsc;
2366 	u32 op;
2367 	u64 seq;
2368 	int mds = session->s_mds;
2369 	struct ceph_mds_session_head *h = msg->front.iov_base;
2370 	int wake = 0;
2371 
2372 	/* decode */
2373 	if (msg->front.iov_len != sizeof(*h))
2374 		goto bad;
2375 	op = le32_to_cpu(h->op);
2376 	seq = le64_to_cpu(h->seq);
2377 
2378 	mutex_lock(&mdsc->mutex);
2379 	if (op == CEPH_SESSION_CLOSE)
2380 		__unregister_session(mdsc, session);
2381 	/* FIXME: this ttl calculation is generous */
2382 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2383 	mutex_unlock(&mdsc->mutex);
2384 
2385 	mutex_lock(&session->s_mutex);
2386 
2387 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2388 	     mds, ceph_session_op_name(op), session,
2389 	     session_state_name(session->s_state), seq);
2390 
2391 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2392 		session->s_state = CEPH_MDS_SESSION_OPEN;
2393 		pr_info("mds%d came back\n", session->s_mds);
2394 	}
2395 
2396 	switch (op) {
2397 	case CEPH_SESSION_OPEN:
2398 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2399 			pr_info("mds%d reconnect success\n", session->s_mds);
2400 		session->s_state = CEPH_MDS_SESSION_OPEN;
2401 		renewed_caps(mdsc, session, 0);
2402 		wake = 1;
2403 		if (mdsc->stopping)
2404 			__close_session(mdsc, session);
2405 		break;
2406 
2407 	case CEPH_SESSION_RENEWCAPS:
2408 		if (session->s_renew_seq == seq)
2409 			renewed_caps(mdsc, session, 1);
2410 		break;
2411 
2412 	case CEPH_SESSION_CLOSE:
2413 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2414 			pr_info("mds%d reconnect denied\n", session->s_mds);
2415 		remove_session_caps(session);
2416 		wake = 1; /* for good measure */
2417 		wake_up_all(&mdsc->session_close_wq);
2418 		kick_requests(mdsc, mds);
2419 		break;
2420 
2421 	case CEPH_SESSION_STALE:
2422 		pr_info("mds%d caps went stale, renewing\n",
2423 			session->s_mds);
2424 		spin_lock(&session->s_gen_ttl_lock);
2425 		session->s_cap_gen++;
2426 		session->s_cap_ttl = jiffies - 1;
2427 		spin_unlock(&session->s_gen_ttl_lock);
2428 		send_renew_caps(mdsc, session);
2429 		break;
2430 
2431 	case CEPH_SESSION_RECALL_STATE:
2432 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2433 		break;
2434 
2435 	case CEPH_SESSION_FLUSHMSG:
2436 		send_flushmsg_ack(mdsc, session, seq);
2437 		break;
2438 
2439 	default:
2440 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2441 		WARN_ON(1);
2442 	}
2443 
2444 	mutex_unlock(&session->s_mutex);
2445 	if (wake) {
2446 		mutex_lock(&mdsc->mutex);
2447 		__wake_requests(mdsc, &session->s_waiting);
2448 		mutex_unlock(&mdsc->mutex);
2449 	}
2450 	return;
2451 
2452 bad:
2453 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2454 	       (int)msg->front.iov_len);
2455 	ceph_msg_dump(msg);
2456 	return;
2457 }
2458 
2459 
2460 /*
2461  * called under session->mutex.
2462  */
2463 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2464 				   struct ceph_mds_session *session)
2465 {
2466 	struct ceph_mds_request *req, *nreq;
2467 	int err;
2468 
2469 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2470 
2471 	mutex_lock(&mdsc->mutex);
2472 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2473 		err = __prepare_send_request(mdsc, req, session->s_mds);
2474 		if (!err) {
2475 			ceph_msg_get(req->r_request);
2476 			ceph_con_send(&session->s_con, req->r_request);
2477 		}
2478 	}
2479 	mutex_unlock(&mdsc->mutex);
2480 }
2481 
2482 /*
2483  * Encode information about a cap for a reconnect with the MDS.
2484  */
2485 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2486 			  void *arg)
2487 {
2488 	union {
2489 		struct ceph_mds_cap_reconnect v2;
2490 		struct ceph_mds_cap_reconnect_v1 v1;
2491 	} rec;
2492 	size_t reclen;
2493 	struct ceph_inode_info *ci;
2494 	struct ceph_reconnect_state *recon_state = arg;
2495 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2496 	char *path;
2497 	int pathlen, err;
2498 	u64 pathbase;
2499 	struct dentry *dentry;
2500 
2501 	ci = cap->ci;
2502 
2503 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2504 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2505 	     ceph_cap_string(cap->issued));
2506 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2507 	if (err)
2508 		return err;
2509 
2510 	dentry = d_find_alias(inode);
2511 	if (dentry) {
2512 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2513 		if (IS_ERR(path)) {
2514 			err = PTR_ERR(path);
2515 			goto out_dput;
2516 		}
2517 	} else {
2518 		path = NULL;
2519 		pathlen = 0;
2520 	}
2521 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2522 	if (err)
2523 		goto out_free;
2524 
2525 	spin_lock(&ci->i_ceph_lock);
2526 	cap->seq = 0;        /* reset cap seq */
2527 	cap->issue_seq = 0;  /* and issue_seq */
2528 	cap->mseq = 0;       /* and migrate_seq */
2529 	cap->cap_gen = cap->session->s_cap_gen;
2530 
2531 	if (recon_state->flock) {
2532 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2533 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2534 		rec.v2.issued = cpu_to_le32(cap->issued);
2535 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2536 		rec.v2.pathbase = cpu_to_le64(pathbase);
2537 		rec.v2.flock_len = 0;
2538 		reclen = sizeof(rec.v2);
2539 	} else {
2540 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2541 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2542 		rec.v1.issued = cpu_to_le32(cap->issued);
2543 		rec.v1.size = cpu_to_le64(inode->i_size);
2544 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2545 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2546 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2547 		rec.v1.pathbase = cpu_to_le64(pathbase);
2548 		reclen = sizeof(rec.v1);
2549 	}
2550 	spin_unlock(&ci->i_ceph_lock);
2551 
2552 	if (recon_state->flock) {
2553 		int num_fcntl_locks, num_flock_locks;
2554 		struct ceph_filelock *flocks;
2555 
2556 encode_again:
2557 		spin_lock(&inode->i_lock);
2558 		ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2559 		spin_unlock(&inode->i_lock);
2560 		flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2561 				 sizeof(struct ceph_filelock), GFP_NOFS);
2562 		if (!flocks) {
2563 			err = -ENOMEM;
2564 			goto out_free;
2565 		}
2566 		spin_lock(&inode->i_lock);
2567 		err = ceph_encode_locks_to_buffer(inode, flocks,
2568 						  num_fcntl_locks,
2569 						  num_flock_locks);
2570 		spin_unlock(&inode->i_lock);
2571 		if (err) {
2572 			kfree(flocks);
2573 			if (err == -ENOSPC)
2574 				goto encode_again;
2575 			goto out_free;
2576 		}
2577 		/*
2578 		 * number of encoded locks is stable, so copy to pagelist
2579 		 */
2580 		rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2581 				    (num_fcntl_locks+num_flock_locks) *
2582 				    sizeof(struct ceph_filelock));
2583 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2584 		if (!err)
2585 			err = ceph_locks_to_pagelist(flocks, pagelist,
2586 						     num_fcntl_locks,
2587 						     num_flock_locks);
2588 		kfree(flocks);
2589 	} else {
2590 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2591 	}
2592 
2593 	recon_state->nr_caps++;
2594 out_free:
2595 	kfree(path);
2596 out_dput:
2597 	dput(dentry);
2598 	return err;
2599 }
2600 
2601 
2602 /*
2603  * If an MDS fails and recovers, clients need to reconnect in order to
2604  * reestablish shared state.  This includes all caps issued through
2605  * this session _and_ the snap_realm hierarchy.  Because it's not
2606  * clear which snap realms the mds cares about, we send everything we
2607  * know about.. that ensures we'll then get any new info the
2608  * recovering MDS might have.
2609  *
2610  * This is a relatively heavyweight operation, but it's rare.
2611  *
2612  * called with mdsc->mutex held.
2613  */
2614 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2615 			       struct ceph_mds_session *session)
2616 {
2617 	struct ceph_msg *reply;
2618 	struct rb_node *p;
2619 	int mds = session->s_mds;
2620 	int err = -ENOMEM;
2621 	int s_nr_caps;
2622 	struct ceph_pagelist *pagelist;
2623 	struct ceph_reconnect_state recon_state;
2624 
2625 	pr_info("mds%d reconnect start\n", mds);
2626 
2627 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2628 	if (!pagelist)
2629 		goto fail_nopagelist;
2630 	ceph_pagelist_init(pagelist);
2631 
2632 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2633 	if (!reply)
2634 		goto fail_nomsg;
2635 
2636 	mutex_lock(&session->s_mutex);
2637 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2638 	session->s_seq = 0;
2639 
2640 	ceph_con_close(&session->s_con);
2641 	ceph_con_open(&session->s_con,
2642 		      CEPH_ENTITY_TYPE_MDS, mds,
2643 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2644 
2645 	/* replay unsafe requests */
2646 	replay_unsafe_requests(mdsc, session);
2647 
2648 	down_read(&mdsc->snap_rwsem);
2649 
2650 	dout("session %p state %s\n", session,
2651 	     session_state_name(session->s_state));
2652 
2653 	spin_lock(&session->s_gen_ttl_lock);
2654 	session->s_cap_gen++;
2655 	spin_unlock(&session->s_gen_ttl_lock);
2656 
2657 	spin_lock(&session->s_cap_lock);
2658 	/*
2659 	 * notify __ceph_remove_cap() that we are composing cap reconnect.
2660 	 * If a cap get released before being added to the cap reconnect,
2661 	 * __ceph_remove_cap() should skip queuing cap release.
2662 	 */
2663 	session->s_cap_reconnect = 1;
2664 	/* drop old cap expires; we're about to reestablish that state */
2665 	discard_cap_releases(mdsc, session);
2666 	spin_unlock(&session->s_cap_lock);
2667 
2668 	/* traverse this session's caps */
2669 	s_nr_caps = session->s_nr_caps;
2670 	err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2671 	if (err)
2672 		goto fail;
2673 
2674 	recon_state.nr_caps = 0;
2675 	recon_state.pagelist = pagelist;
2676 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2677 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2678 	if (err < 0)
2679 		goto fail;
2680 
2681 	spin_lock(&session->s_cap_lock);
2682 	session->s_cap_reconnect = 0;
2683 	spin_unlock(&session->s_cap_lock);
2684 
2685 	/*
2686 	 * snaprealms.  we provide mds with the ino, seq (version), and
2687 	 * parent for all of our realms.  If the mds has any newer info,
2688 	 * it will tell us.
2689 	 */
2690 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2691 		struct ceph_snap_realm *realm =
2692 			rb_entry(p, struct ceph_snap_realm, node);
2693 		struct ceph_mds_snaprealm_reconnect sr_rec;
2694 
2695 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2696 		     realm->ino, realm->seq, realm->parent_ino);
2697 		sr_rec.ino = cpu_to_le64(realm->ino);
2698 		sr_rec.seq = cpu_to_le64(realm->seq);
2699 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2700 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2701 		if (err)
2702 			goto fail;
2703 	}
2704 
2705 	if (recon_state.flock)
2706 		reply->hdr.version = cpu_to_le16(2);
2707 
2708 	/* raced with cap release? */
2709 	if (s_nr_caps != recon_state.nr_caps) {
2710 		struct page *page = list_first_entry(&pagelist->head,
2711 						     struct page, lru);
2712 		__le32 *addr = kmap_atomic(page);
2713 		*addr = cpu_to_le32(recon_state.nr_caps);
2714 		kunmap_atomic(addr);
2715 	}
2716 
2717 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2718 	ceph_msg_data_add_pagelist(reply, pagelist);
2719 	ceph_con_send(&session->s_con, reply);
2720 
2721 	mutex_unlock(&session->s_mutex);
2722 
2723 	mutex_lock(&mdsc->mutex);
2724 	__wake_requests(mdsc, &session->s_waiting);
2725 	mutex_unlock(&mdsc->mutex);
2726 
2727 	up_read(&mdsc->snap_rwsem);
2728 	return;
2729 
2730 fail:
2731 	ceph_msg_put(reply);
2732 	up_read(&mdsc->snap_rwsem);
2733 	mutex_unlock(&session->s_mutex);
2734 fail_nomsg:
2735 	ceph_pagelist_release(pagelist);
2736 	kfree(pagelist);
2737 fail_nopagelist:
2738 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2739 	return;
2740 }
2741 
2742 
2743 /*
2744  * compare old and new mdsmaps, kicking requests
2745  * and closing out old connections as necessary
2746  *
2747  * called under mdsc->mutex.
2748  */
2749 static void check_new_map(struct ceph_mds_client *mdsc,
2750 			  struct ceph_mdsmap *newmap,
2751 			  struct ceph_mdsmap *oldmap)
2752 {
2753 	int i;
2754 	int oldstate, newstate;
2755 	struct ceph_mds_session *s;
2756 
2757 	dout("check_new_map new %u old %u\n",
2758 	     newmap->m_epoch, oldmap->m_epoch);
2759 
2760 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2761 		if (mdsc->sessions[i] == NULL)
2762 			continue;
2763 		s = mdsc->sessions[i];
2764 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2765 		newstate = ceph_mdsmap_get_state(newmap, i);
2766 
2767 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2768 		     i, ceph_mds_state_name(oldstate),
2769 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2770 		     ceph_mds_state_name(newstate),
2771 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2772 		     session_state_name(s->s_state));
2773 
2774 		if (i >= newmap->m_max_mds ||
2775 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
2776 			   ceph_mdsmap_get_addr(newmap, i),
2777 			   sizeof(struct ceph_entity_addr))) {
2778 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2779 				/* the session never opened, just close it
2780 				 * out now */
2781 				__wake_requests(mdsc, &s->s_waiting);
2782 				__unregister_session(mdsc, s);
2783 			} else {
2784 				/* just close it */
2785 				mutex_unlock(&mdsc->mutex);
2786 				mutex_lock(&s->s_mutex);
2787 				mutex_lock(&mdsc->mutex);
2788 				ceph_con_close(&s->s_con);
2789 				mutex_unlock(&s->s_mutex);
2790 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2791 			}
2792 
2793 			/* kick any requests waiting on the recovering mds */
2794 			kick_requests(mdsc, i);
2795 		} else if (oldstate == newstate) {
2796 			continue;  /* nothing new with this mds */
2797 		}
2798 
2799 		/*
2800 		 * send reconnect?
2801 		 */
2802 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2803 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2804 			mutex_unlock(&mdsc->mutex);
2805 			send_mds_reconnect(mdsc, s);
2806 			mutex_lock(&mdsc->mutex);
2807 		}
2808 
2809 		/*
2810 		 * kick request on any mds that has gone active.
2811 		 */
2812 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2813 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2814 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2815 			    oldstate != CEPH_MDS_STATE_STARTING)
2816 				pr_info("mds%d recovery completed\n", s->s_mds);
2817 			kick_requests(mdsc, i);
2818 			ceph_kick_flushing_caps(mdsc, s);
2819 			wake_up_session_caps(s, 1);
2820 		}
2821 	}
2822 
2823 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2824 		s = mdsc->sessions[i];
2825 		if (!s)
2826 			continue;
2827 		if (!ceph_mdsmap_is_laggy(newmap, i))
2828 			continue;
2829 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2830 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2831 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2832 			dout(" connecting to export targets of laggy mds%d\n",
2833 			     i);
2834 			__open_export_target_sessions(mdsc, s);
2835 		}
2836 	}
2837 }
2838 
2839 
2840 
2841 /*
2842  * leases
2843  */
2844 
2845 /*
2846  * caller must hold session s_mutex, dentry->d_lock
2847  */
2848 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2849 {
2850 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2851 
2852 	ceph_put_mds_session(di->lease_session);
2853 	di->lease_session = NULL;
2854 }
2855 
2856 static void handle_lease(struct ceph_mds_client *mdsc,
2857 			 struct ceph_mds_session *session,
2858 			 struct ceph_msg *msg)
2859 {
2860 	struct super_block *sb = mdsc->fsc->sb;
2861 	struct inode *inode;
2862 	struct dentry *parent, *dentry;
2863 	struct ceph_dentry_info *di;
2864 	int mds = session->s_mds;
2865 	struct ceph_mds_lease *h = msg->front.iov_base;
2866 	u32 seq;
2867 	struct ceph_vino vino;
2868 	struct qstr dname;
2869 	int release = 0;
2870 
2871 	dout("handle_lease from mds%d\n", mds);
2872 
2873 	/* decode */
2874 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2875 		goto bad;
2876 	vino.ino = le64_to_cpu(h->ino);
2877 	vino.snap = CEPH_NOSNAP;
2878 	seq = le32_to_cpu(h->seq);
2879 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2880 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2881 	if (dname.len != get_unaligned_le32(h+1))
2882 		goto bad;
2883 
2884 	mutex_lock(&session->s_mutex);
2885 	session->s_seq++;
2886 
2887 	/* lookup inode */
2888 	inode = ceph_find_inode(sb, vino);
2889 	dout("handle_lease %s, ino %llx %p %.*s\n",
2890 	     ceph_lease_op_name(h->action), vino.ino, inode,
2891 	     dname.len, dname.name);
2892 	if (inode == NULL) {
2893 		dout("handle_lease no inode %llx\n", vino.ino);
2894 		goto release;
2895 	}
2896 
2897 	/* dentry */
2898 	parent = d_find_alias(inode);
2899 	if (!parent) {
2900 		dout("no parent dentry on inode %p\n", inode);
2901 		WARN_ON(1);
2902 		goto release;  /* hrm... */
2903 	}
2904 	dname.hash = full_name_hash(dname.name, dname.len);
2905 	dentry = d_lookup(parent, &dname);
2906 	dput(parent);
2907 	if (!dentry)
2908 		goto release;
2909 
2910 	spin_lock(&dentry->d_lock);
2911 	di = ceph_dentry(dentry);
2912 	switch (h->action) {
2913 	case CEPH_MDS_LEASE_REVOKE:
2914 		if (di->lease_session == session) {
2915 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2916 				h->seq = cpu_to_le32(di->lease_seq);
2917 			__ceph_mdsc_drop_dentry_lease(dentry);
2918 		}
2919 		release = 1;
2920 		break;
2921 
2922 	case CEPH_MDS_LEASE_RENEW:
2923 		if (di->lease_session == session &&
2924 		    di->lease_gen == session->s_cap_gen &&
2925 		    di->lease_renew_from &&
2926 		    di->lease_renew_after == 0) {
2927 			unsigned long duration =
2928 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2929 
2930 			di->lease_seq = seq;
2931 			dentry->d_time = di->lease_renew_from + duration;
2932 			di->lease_renew_after = di->lease_renew_from +
2933 				(duration >> 1);
2934 			di->lease_renew_from = 0;
2935 		}
2936 		break;
2937 	}
2938 	spin_unlock(&dentry->d_lock);
2939 	dput(dentry);
2940 
2941 	if (!release)
2942 		goto out;
2943 
2944 release:
2945 	/* let's just reuse the same message */
2946 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2947 	ceph_msg_get(msg);
2948 	ceph_con_send(&session->s_con, msg);
2949 
2950 out:
2951 	iput(inode);
2952 	mutex_unlock(&session->s_mutex);
2953 	return;
2954 
2955 bad:
2956 	pr_err("corrupt lease message\n");
2957 	ceph_msg_dump(msg);
2958 }
2959 
2960 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2961 			      struct inode *inode,
2962 			      struct dentry *dentry, char action,
2963 			      u32 seq)
2964 {
2965 	struct ceph_msg *msg;
2966 	struct ceph_mds_lease *lease;
2967 	int len = sizeof(*lease) + sizeof(u32);
2968 	int dnamelen = 0;
2969 
2970 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2971 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2972 	dnamelen = dentry->d_name.len;
2973 	len += dnamelen;
2974 
2975 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2976 	if (!msg)
2977 		return;
2978 	lease = msg->front.iov_base;
2979 	lease->action = action;
2980 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2981 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2982 	lease->seq = cpu_to_le32(seq);
2983 	put_unaligned_le32(dnamelen, lease + 1);
2984 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2985 
2986 	/*
2987 	 * if this is a preemptive lease RELEASE, no need to
2988 	 * flush request stream, since the actual request will
2989 	 * soon follow.
2990 	 */
2991 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2992 
2993 	ceph_con_send(&session->s_con, msg);
2994 }
2995 
2996 /*
2997  * Preemptively release a lease we expect to invalidate anyway.
2998  * Pass @inode always, @dentry is optional.
2999  */
3000 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
3001 			     struct dentry *dentry)
3002 {
3003 	struct ceph_dentry_info *di;
3004 	struct ceph_mds_session *session;
3005 	u32 seq;
3006 
3007 	BUG_ON(inode == NULL);
3008 	BUG_ON(dentry == NULL);
3009 
3010 	/* is dentry lease valid? */
3011 	spin_lock(&dentry->d_lock);
3012 	di = ceph_dentry(dentry);
3013 	if (!di || !di->lease_session ||
3014 	    di->lease_session->s_mds < 0 ||
3015 	    di->lease_gen != di->lease_session->s_cap_gen ||
3016 	    !time_before(jiffies, dentry->d_time)) {
3017 		dout("lease_release inode %p dentry %p -- "
3018 		     "no lease\n",
3019 		     inode, dentry);
3020 		spin_unlock(&dentry->d_lock);
3021 		return;
3022 	}
3023 
3024 	/* we do have a lease on this dentry; note mds and seq */
3025 	session = ceph_get_mds_session(di->lease_session);
3026 	seq = di->lease_seq;
3027 	__ceph_mdsc_drop_dentry_lease(dentry);
3028 	spin_unlock(&dentry->d_lock);
3029 
3030 	dout("lease_release inode %p dentry %p to mds%d\n",
3031 	     inode, dentry, session->s_mds);
3032 	ceph_mdsc_lease_send_msg(session, inode, dentry,
3033 				 CEPH_MDS_LEASE_RELEASE, seq);
3034 	ceph_put_mds_session(session);
3035 }
3036 
3037 /*
3038  * drop all leases (and dentry refs) in preparation for umount
3039  */
3040 static void drop_leases(struct ceph_mds_client *mdsc)
3041 {
3042 	int i;
3043 
3044 	dout("drop_leases\n");
3045 	mutex_lock(&mdsc->mutex);
3046 	for (i = 0; i < mdsc->max_sessions; i++) {
3047 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3048 		if (!s)
3049 			continue;
3050 		mutex_unlock(&mdsc->mutex);
3051 		mutex_lock(&s->s_mutex);
3052 		mutex_unlock(&s->s_mutex);
3053 		ceph_put_mds_session(s);
3054 		mutex_lock(&mdsc->mutex);
3055 	}
3056 	mutex_unlock(&mdsc->mutex);
3057 }
3058 
3059 
3060 
3061 /*
3062  * delayed work -- periodically trim expired leases, renew caps with mds
3063  */
3064 static void schedule_delayed(struct ceph_mds_client *mdsc)
3065 {
3066 	int delay = 5;
3067 	unsigned hz = round_jiffies_relative(HZ * delay);
3068 	schedule_delayed_work(&mdsc->delayed_work, hz);
3069 }
3070 
3071 static void delayed_work(struct work_struct *work)
3072 {
3073 	int i;
3074 	struct ceph_mds_client *mdsc =
3075 		container_of(work, struct ceph_mds_client, delayed_work.work);
3076 	int renew_interval;
3077 	int renew_caps;
3078 
3079 	dout("mdsc delayed_work\n");
3080 	ceph_check_delayed_caps(mdsc);
3081 
3082 	mutex_lock(&mdsc->mutex);
3083 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3084 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3085 				   mdsc->last_renew_caps);
3086 	if (renew_caps)
3087 		mdsc->last_renew_caps = jiffies;
3088 
3089 	for (i = 0; i < mdsc->max_sessions; i++) {
3090 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3091 		if (s == NULL)
3092 			continue;
3093 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3094 			dout("resending session close request for mds%d\n",
3095 			     s->s_mds);
3096 			request_close_session(mdsc, s);
3097 			ceph_put_mds_session(s);
3098 			continue;
3099 		}
3100 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3101 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3102 				s->s_state = CEPH_MDS_SESSION_HUNG;
3103 				pr_info("mds%d hung\n", s->s_mds);
3104 			}
3105 		}
3106 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3107 			/* this mds is failed or recovering, just wait */
3108 			ceph_put_mds_session(s);
3109 			continue;
3110 		}
3111 		mutex_unlock(&mdsc->mutex);
3112 
3113 		mutex_lock(&s->s_mutex);
3114 		if (renew_caps)
3115 			send_renew_caps(mdsc, s);
3116 		else
3117 			ceph_con_keepalive(&s->s_con);
3118 		ceph_add_cap_releases(mdsc, s);
3119 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3120 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3121 			ceph_send_cap_releases(mdsc, s);
3122 		mutex_unlock(&s->s_mutex);
3123 		ceph_put_mds_session(s);
3124 
3125 		mutex_lock(&mdsc->mutex);
3126 	}
3127 	mutex_unlock(&mdsc->mutex);
3128 
3129 	schedule_delayed(mdsc);
3130 }
3131 
3132 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3133 
3134 {
3135 	struct ceph_mds_client *mdsc;
3136 
3137 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3138 	if (!mdsc)
3139 		return -ENOMEM;
3140 	mdsc->fsc = fsc;
3141 	fsc->mdsc = mdsc;
3142 	mutex_init(&mdsc->mutex);
3143 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3144 	if (mdsc->mdsmap == NULL) {
3145 		kfree(mdsc);
3146 		return -ENOMEM;
3147 	}
3148 
3149 	init_completion(&mdsc->safe_umount_waiters);
3150 	init_waitqueue_head(&mdsc->session_close_wq);
3151 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3152 	mdsc->sessions = NULL;
3153 	mdsc->max_sessions = 0;
3154 	mdsc->stopping = 0;
3155 	init_rwsem(&mdsc->snap_rwsem);
3156 	mdsc->snap_realms = RB_ROOT;
3157 	INIT_LIST_HEAD(&mdsc->snap_empty);
3158 	spin_lock_init(&mdsc->snap_empty_lock);
3159 	mdsc->last_tid = 0;
3160 	mdsc->request_tree = RB_ROOT;
3161 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3162 	mdsc->last_renew_caps = jiffies;
3163 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3164 	spin_lock_init(&mdsc->cap_delay_lock);
3165 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3166 	spin_lock_init(&mdsc->snap_flush_lock);
3167 	mdsc->cap_flush_seq = 0;
3168 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3169 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3170 	mdsc->num_cap_flushing = 0;
3171 	spin_lock_init(&mdsc->cap_dirty_lock);
3172 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3173 	spin_lock_init(&mdsc->dentry_lru_lock);
3174 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3175 
3176 	ceph_caps_init(mdsc);
3177 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3178 
3179 	return 0;
3180 }
3181 
3182 /*
3183  * Wait for safe replies on open mds requests.  If we time out, drop
3184  * all requests from the tree to avoid dangling dentry refs.
3185  */
3186 static void wait_requests(struct ceph_mds_client *mdsc)
3187 {
3188 	struct ceph_mds_request *req;
3189 	struct ceph_fs_client *fsc = mdsc->fsc;
3190 
3191 	mutex_lock(&mdsc->mutex);
3192 	if (__get_oldest_req(mdsc)) {
3193 		mutex_unlock(&mdsc->mutex);
3194 
3195 		dout("wait_requests waiting for requests\n");
3196 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3197 				    fsc->client->options->mount_timeout * HZ);
3198 
3199 		/* tear down remaining requests */
3200 		mutex_lock(&mdsc->mutex);
3201 		while ((req = __get_oldest_req(mdsc))) {
3202 			dout("wait_requests timed out on tid %llu\n",
3203 			     req->r_tid);
3204 			__unregister_request(mdsc, req);
3205 		}
3206 	}
3207 	mutex_unlock(&mdsc->mutex);
3208 	dout("wait_requests done\n");
3209 }
3210 
3211 /*
3212  * called before mount is ro, and before dentries are torn down.
3213  * (hmm, does this still race with new lookups?)
3214  */
3215 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3216 {
3217 	dout("pre_umount\n");
3218 	mdsc->stopping = 1;
3219 
3220 	drop_leases(mdsc);
3221 	ceph_flush_dirty_caps(mdsc);
3222 	wait_requests(mdsc);
3223 
3224 	/*
3225 	 * wait for reply handlers to drop their request refs and
3226 	 * their inode/dcache refs
3227 	 */
3228 	ceph_msgr_flush();
3229 }
3230 
3231 /*
3232  * wait for all write mds requests to flush.
3233  */
3234 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3235 {
3236 	struct ceph_mds_request *req = NULL, *nextreq;
3237 	struct rb_node *n;
3238 
3239 	mutex_lock(&mdsc->mutex);
3240 	dout("wait_unsafe_requests want %lld\n", want_tid);
3241 restart:
3242 	req = __get_oldest_req(mdsc);
3243 	while (req && req->r_tid <= want_tid) {
3244 		/* find next request */
3245 		n = rb_next(&req->r_node);
3246 		if (n)
3247 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3248 		else
3249 			nextreq = NULL;
3250 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3251 			/* write op */
3252 			ceph_mdsc_get_request(req);
3253 			if (nextreq)
3254 				ceph_mdsc_get_request(nextreq);
3255 			mutex_unlock(&mdsc->mutex);
3256 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3257 			     req->r_tid, want_tid);
3258 			wait_for_completion(&req->r_safe_completion);
3259 			mutex_lock(&mdsc->mutex);
3260 			ceph_mdsc_put_request(req);
3261 			if (!nextreq)
3262 				break;  /* next dne before, so we're done! */
3263 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3264 				/* next request was removed from tree */
3265 				ceph_mdsc_put_request(nextreq);
3266 				goto restart;
3267 			}
3268 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3269 		}
3270 		req = nextreq;
3271 	}
3272 	mutex_unlock(&mdsc->mutex);
3273 	dout("wait_unsafe_requests done\n");
3274 }
3275 
3276 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3277 {
3278 	u64 want_tid, want_flush;
3279 
3280 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3281 		return;
3282 
3283 	dout("sync\n");
3284 	mutex_lock(&mdsc->mutex);
3285 	want_tid = mdsc->last_tid;
3286 	want_flush = mdsc->cap_flush_seq;
3287 	mutex_unlock(&mdsc->mutex);
3288 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3289 
3290 	ceph_flush_dirty_caps(mdsc);
3291 
3292 	wait_unsafe_requests(mdsc, want_tid);
3293 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3294 }
3295 
3296 /*
3297  * true if all sessions are closed, or we force unmount
3298  */
3299 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3300 {
3301 	int i, n = 0;
3302 
3303 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3304 		return true;
3305 
3306 	mutex_lock(&mdsc->mutex);
3307 	for (i = 0; i < mdsc->max_sessions; i++)
3308 		if (mdsc->sessions[i])
3309 			n++;
3310 	mutex_unlock(&mdsc->mutex);
3311 	return n == 0;
3312 }
3313 
3314 /*
3315  * called after sb is ro.
3316  */
3317 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3318 {
3319 	struct ceph_mds_session *session;
3320 	int i;
3321 	struct ceph_fs_client *fsc = mdsc->fsc;
3322 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3323 
3324 	dout("close_sessions\n");
3325 
3326 	/* close sessions */
3327 	mutex_lock(&mdsc->mutex);
3328 	for (i = 0; i < mdsc->max_sessions; i++) {
3329 		session = __ceph_lookup_mds_session(mdsc, i);
3330 		if (!session)
3331 			continue;
3332 		mutex_unlock(&mdsc->mutex);
3333 		mutex_lock(&session->s_mutex);
3334 		__close_session(mdsc, session);
3335 		mutex_unlock(&session->s_mutex);
3336 		ceph_put_mds_session(session);
3337 		mutex_lock(&mdsc->mutex);
3338 	}
3339 	mutex_unlock(&mdsc->mutex);
3340 
3341 	dout("waiting for sessions to close\n");
3342 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3343 			   timeout);
3344 
3345 	/* tear down remaining sessions */
3346 	mutex_lock(&mdsc->mutex);
3347 	for (i = 0; i < mdsc->max_sessions; i++) {
3348 		if (mdsc->sessions[i]) {
3349 			session = get_session(mdsc->sessions[i]);
3350 			__unregister_session(mdsc, session);
3351 			mutex_unlock(&mdsc->mutex);
3352 			mutex_lock(&session->s_mutex);
3353 			remove_session_caps(session);
3354 			mutex_unlock(&session->s_mutex);
3355 			ceph_put_mds_session(session);
3356 			mutex_lock(&mdsc->mutex);
3357 		}
3358 	}
3359 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3360 	mutex_unlock(&mdsc->mutex);
3361 
3362 	ceph_cleanup_empty_realms(mdsc);
3363 
3364 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3365 
3366 	dout("stopped\n");
3367 }
3368 
3369 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3370 {
3371 	dout("stop\n");
3372 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3373 	if (mdsc->mdsmap)
3374 		ceph_mdsmap_destroy(mdsc->mdsmap);
3375 	kfree(mdsc->sessions);
3376 	ceph_caps_finalize(mdsc);
3377 }
3378 
3379 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3380 {
3381 	struct ceph_mds_client *mdsc = fsc->mdsc;
3382 
3383 	dout("mdsc_destroy %p\n", mdsc);
3384 	ceph_mdsc_stop(mdsc);
3385 
3386 	/* flush out any connection work with references to us */
3387 	ceph_msgr_flush();
3388 
3389 	fsc->mdsc = NULL;
3390 	kfree(mdsc);
3391 	dout("mdsc_destroy %p done\n", mdsc);
3392 }
3393 
3394 
3395 /*
3396  * handle mds map update.
3397  */
3398 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3399 {
3400 	u32 epoch;
3401 	u32 maplen;
3402 	void *p = msg->front.iov_base;
3403 	void *end = p + msg->front.iov_len;
3404 	struct ceph_mdsmap *newmap, *oldmap;
3405 	struct ceph_fsid fsid;
3406 	int err = -EINVAL;
3407 
3408 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3409 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3410 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3411 		return;
3412 	epoch = ceph_decode_32(&p);
3413 	maplen = ceph_decode_32(&p);
3414 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3415 
3416 	/* do we need it? */
3417 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3418 	mutex_lock(&mdsc->mutex);
3419 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3420 		dout("handle_map epoch %u <= our %u\n",
3421 		     epoch, mdsc->mdsmap->m_epoch);
3422 		mutex_unlock(&mdsc->mutex);
3423 		return;
3424 	}
3425 
3426 	newmap = ceph_mdsmap_decode(&p, end);
3427 	if (IS_ERR(newmap)) {
3428 		err = PTR_ERR(newmap);
3429 		goto bad_unlock;
3430 	}
3431 
3432 	/* swap into place */
3433 	if (mdsc->mdsmap) {
3434 		oldmap = mdsc->mdsmap;
3435 		mdsc->mdsmap = newmap;
3436 		check_new_map(mdsc, newmap, oldmap);
3437 		ceph_mdsmap_destroy(oldmap);
3438 	} else {
3439 		mdsc->mdsmap = newmap;  /* first mds map */
3440 	}
3441 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3442 
3443 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3444 
3445 	mutex_unlock(&mdsc->mutex);
3446 	schedule_delayed(mdsc);
3447 	return;
3448 
3449 bad_unlock:
3450 	mutex_unlock(&mdsc->mutex);
3451 bad:
3452 	pr_err("error decoding mdsmap %d\n", err);
3453 	return;
3454 }
3455 
3456 static struct ceph_connection *con_get(struct ceph_connection *con)
3457 {
3458 	struct ceph_mds_session *s = con->private;
3459 
3460 	if (get_session(s)) {
3461 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3462 		return con;
3463 	}
3464 	dout("mdsc con_get %p FAIL\n", s);
3465 	return NULL;
3466 }
3467 
3468 static void con_put(struct ceph_connection *con)
3469 {
3470 	struct ceph_mds_session *s = con->private;
3471 
3472 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3473 	ceph_put_mds_session(s);
3474 }
3475 
3476 /*
3477  * if the client is unresponsive for long enough, the mds will kill
3478  * the session entirely.
3479  */
3480 static void peer_reset(struct ceph_connection *con)
3481 {
3482 	struct ceph_mds_session *s = con->private;
3483 	struct ceph_mds_client *mdsc = s->s_mdsc;
3484 
3485 	pr_warning("mds%d closed our session\n", s->s_mds);
3486 	send_mds_reconnect(mdsc, s);
3487 }
3488 
3489 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3490 {
3491 	struct ceph_mds_session *s = con->private;
3492 	struct ceph_mds_client *mdsc = s->s_mdsc;
3493 	int type = le16_to_cpu(msg->hdr.type);
3494 
3495 	mutex_lock(&mdsc->mutex);
3496 	if (__verify_registered_session(mdsc, s) < 0) {
3497 		mutex_unlock(&mdsc->mutex);
3498 		goto out;
3499 	}
3500 	mutex_unlock(&mdsc->mutex);
3501 
3502 	switch (type) {
3503 	case CEPH_MSG_MDS_MAP:
3504 		ceph_mdsc_handle_map(mdsc, msg);
3505 		break;
3506 	case CEPH_MSG_CLIENT_SESSION:
3507 		handle_session(s, msg);
3508 		break;
3509 	case CEPH_MSG_CLIENT_REPLY:
3510 		handle_reply(s, msg);
3511 		break;
3512 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3513 		handle_forward(mdsc, s, msg);
3514 		break;
3515 	case CEPH_MSG_CLIENT_CAPS:
3516 		ceph_handle_caps(s, msg);
3517 		break;
3518 	case CEPH_MSG_CLIENT_SNAP:
3519 		ceph_handle_snap(mdsc, s, msg);
3520 		break;
3521 	case CEPH_MSG_CLIENT_LEASE:
3522 		handle_lease(mdsc, s, msg);
3523 		break;
3524 
3525 	default:
3526 		pr_err("received unknown message type %d %s\n", type,
3527 		       ceph_msg_type_name(type));
3528 	}
3529 out:
3530 	ceph_msg_put(msg);
3531 }
3532 
3533 /*
3534  * authentication
3535  */
3536 
3537 /*
3538  * Note: returned pointer is the address of a structure that's
3539  * managed separately.  Caller must *not* attempt to free it.
3540  */
3541 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3542 					int *proto, int force_new)
3543 {
3544 	struct ceph_mds_session *s = con->private;
3545 	struct ceph_mds_client *mdsc = s->s_mdsc;
3546 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3547 	struct ceph_auth_handshake *auth = &s->s_auth;
3548 
3549 	if (force_new && auth->authorizer) {
3550 		ceph_auth_destroy_authorizer(ac, auth->authorizer);
3551 		auth->authorizer = NULL;
3552 	}
3553 	if (!auth->authorizer) {
3554 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3555 						      auth);
3556 		if (ret)
3557 			return ERR_PTR(ret);
3558 	} else {
3559 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3560 						      auth);
3561 		if (ret)
3562 			return ERR_PTR(ret);
3563 	}
3564 	*proto = ac->protocol;
3565 
3566 	return auth;
3567 }
3568 
3569 
3570 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3571 {
3572 	struct ceph_mds_session *s = con->private;
3573 	struct ceph_mds_client *mdsc = s->s_mdsc;
3574 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3575 
3576 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3577 }
3578 
3579 static int invalidate_authorizer(struct ceph_connection *con)
3580 {
3581 	struct ceph_mds_session *s = con->private;
3582 	struct ceph_mds_client *mdsc = s->s_mdsc;
3583 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3584 
3585 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3586 
3587 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3588 }
3589 
3590 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3591 				struct ceph_msg_header *hdr, int *skip)
3592 {
3593 	struct ceph_msg *msg;
3594 	int type = (int) le16_to_cpu(hdr->type);
3595 	int front_len = (int) le32_to_cpu(hdr->front_len);
3596 
3597 	if (con->in_msg)
3598 		return con->in_msg;
3599 
3600 	*skip = 0;
3601 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3602 	if (!msg) {
3603 		pr_err("unable to allocate msg type %d len %d\n",
3604 		       type, front_len);
3605 		return NULL;
3606 	}
3607 
3608 	return msg;
3609 }
3610 
3611 static const struct ceph_connection_operations mds_con_ops = {
3612 	.get = con_get,
3613 	.put = con_put,
3614 	.dispatch = dispatch,
3615 	.get_authorizer = get_authorizer,
3616 	.verify_authorizer_reply = verify_authorizer_reply,
3617 	.invalidate_authorizer = invalidate_authorizer,
3618 	.peer_reset = peer_reset,
3619 	.alloc_msg = mds_alloc_msg,
3620 };
3621 
3622 /* eof */
3623