1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/sched.h> 7 #include <linux/debugfs.h> 8 #include <linux/seq_file.h> 9 10 #include "super.h" 11 #include "mds_client.h" 12 13 #include <linux/ceph/ceph_features.h> 14 #include <linux/ceph/messenger.h> 15 #include <linux/ceph/decode.h> 16 #include <linux/ceph/pagelist.h> 17 #include <linux/ceph/auth.h> 18 #include <linux/ceph/debugfs.h> 19 20 /* 21 * A cluster of MDS (metadata server) daemons is responsible for 22 * managing the file system namespace (the directory hierarchy and 23 * inodes) and for coordinating shared access to storage. Metadata is 24 * partitioning hierarchically across a number of servers, and that 25 * partition varies over time as the cluster adjusts the distribution 26 * in order to balance load. 27 * 28 * The MDS client is primarily responsible to managing synchronous 29 * metadata requests for operations like open, unlink, and so forth. 30 * If there is a MDS failure, we find out about it when we (possibly 31 * request and) receive a new MDS map, and can resubmit affected 32 * requests. 33 * 34 * For the most part, though, we take advantage of a lossless 35 * communications channel to the MDS, and do not need to worry about 36 * timing out or resubmitting requests. 37 * 38 * We maintain a stateful "session" with each MDS we interact with. 39 * Within each session, we sent periodic heartbeat messages to ensure 40 * any capabilities or leases we have been issues remain valid. If 41 * the session times out and goes stale, our leases and capabilities 42 * are no longer valid. 43 */ 44 45 struct ceph_reconnect_state { 46 int nr_caps; 47 struct ceph_pagelist *pagelist; 48 bool flock; 49 }; 50 51 static void __wake_requests(struct ceph_mds_client *mdsc, 52 struct list_head *head); 53 54 static const struct ceph_connection_operations mds_con_ops; 55 56 57 /* 58 * mds reply parsing 59 */ 60 61 /* 62 * parse individual inode info 63 */ 64 static int parse_reply_info_in(void **p, void *end, 65 struct ceph_mds_reply_info_in *info, 66 u64 features) 67 { 68 int err = -EIO; 69 70 info->in = *p; 71 *p += sizeof(struct ceph_mds_reply_inode) + 72 sizeof(*info->in->fragtree.splits) * 73 le32_to_cpu(info->in->fragtree.nsplits); 74 75 ceph_decode_32_safe(p, end, info->symlink_len, bad); 76 ceph_decode_need(p, end, info->symlink_len, bad); 77 info->symlink = *p; 78 *p += info->symlink_len; 79 80 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 81 ceph_decode_copy_safe(p, end, &info->dir_layout, 82 sizeof(info->dir_layout), bad); 83 else 84 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 85 86 ceph_decode_32_safe(p, end, info->xattr_len, bad); 87 ceph_decode_need(p, end, info->xattr_len, bad); 88 info->xattr_data = *p; 89 *p += info->xattr_len; 90 return 0; 91 bad: 92 return err; 93 } 94 95 /* 96 * parse a normal reply, which may contain a (dir+)dentry and/or a 97 * target inode. 98 */ 99 static int parse_reply_info_trace(void **p, void *end, 100 struct ceph_mds_reply_info_parsed *info, 101 u64 features) 102 { 103 int err; 104 105 if (info->head->is_dentry) { 106 err = parse_reply_info_in(p, end, &info->diri, features); 107 if (err < 0) 108 goto out_bad; 109 110 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 111 goto bad; 112 info->dirfrag = *p; 113 *p += sizeof(*info->dirfrag) + 114 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 115 if (unlikely(*p > end)) 116 goto bad; 117 118 ceph_decode_32_safe(p, end, info->dname_len, bad); 119 ceph_decode_need(p, end, info->dname_len, bad); 120 info->dname = *p; 121 *p += info->dname_len; 122 info->dlease = *p; 123 *p += sizeof(*info->dlease); 124 } 125 126 if (info->head->is_target) { 127 err = parse_reply_info_in(p, end, &info->targeti, features); 128 if (err < 0) 129 goto out_bad; 130 } 131 132 if (unlikely(*p != end)) 133 goto bad; 134 return 0; 135 136 bad: 137 err = -EIO; 138 out_bad: 139 pr_err("problem parsing mds trace %d\n", err); 140 return err; 141 } 142 143 /* 144 * parse readdir results 145 */ 146 static int parse_reply_info_dir(void **p, void *end, 147 struct ceph_mds_reply_info_parsed *info, 148 u64 features) 149 { 150 u32 num, i = 0; 151 int err; 152 153 info->dir_dir = *p; 154 if (*p + sizeof(*info->dir_dir) > end) 155 goto bad; 156 *p += sizeof(*info->dir_dir) + 157 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 158 if (*p > end) 159 goto bad; 160 161 ceph_decode_need(p, end, sizeof(num) + 2, bad); 162 num = ceph_decode_32(p); 163 info->dir_end = ceph_decode_8(p); 164 info->dir_complete = ceph_decode_8(p); 165 if (num == 0) 166 goto done; 167 168 /* alloc large array */ 169 info->dir_nr = num; 170 info->dir_in = kcalloc(num, sizeof(*info->dir_in) + 171 sizeof(*info->dir_dname) + 172 sizeof(*info->dir_dname_len) + 173 sizeof(*info->dir_dlease), 174 GFP_NOFS); 175 if (info->dir_in == NULL) { 176 err = -ENOMEM; 177 goto out_bad; 178 } 179 info->dir_dname = (void *)(info->dir_in + num); 180 info->dir_dname_len = (void *)(info->dir_dname + num); 181 info->dir_dlease = (void *)(info->dir_dname_len + num); 182 183 while (num) { 184 /* dentry */ 185 ceph_decode_need(p, end, sizeof(u32)*2, bad); 186 info->dir_dname_len[i] = ceph_decode_32(p); 187 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 188 info->dir_dname[i] = *p; 189 *p += info->dir_dname_len[i]; 190 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 191 info->dir_dname[i]); 192 info->dir_dlease[i] = *p; 193 *p += sizeof(struct ceph_mds_reply_lease); 194 195 /* inode */ 196 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 197 if (err < 0) 198 goto out_bad; 199 i++; 200 num--; 201 } 202 203 done: 204 if (*p != end) 205 goto bad; 206 return 0; 207 208 bad: 209 err = -EIO; 210 out_bad: 211 pr_err("problem parsing dir contents %d\n", err); 212 return err; 213 } 214 215 /* 216 * parse fcntl F_GETLK results 217 */ 218 static int parse_reply_info_filelock(void **p, void *end, 219 struct ceph_mds_reply_info_parsed *info, 220 u64 features) 221 { 222 if (*p + sizeof(*info->filelock_reply) > end) 223 goto bad; 224 225 info->filelock_reply = *p; 226 *p += sizeof(*info->filelock_reply); 227 228 if (unlikely(*p != end)) 229 goto bad; 230 return 0; 231 232 bad: 233 return -EIO; 234 } 235 236 /* 237 * parse create results 238 */ 239 static int parse_reply_info_create(void **p, void *end, 240 struct ceph_mds_reply_info_parsed *info, 241 u64 features) 242 { 243 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) { 244 if (*p == end) { 245 info->has_create_ino = false; 246 } else { 247 info->has_create_ino = true; 248 info->ino = ceph_decode_64(p); 249 } 250 } 251 252 if (unlikely(*p != end)) 253 goto bad; 254 return 0; 255 256 bad: 257 return -EIO; 258 } 259 260 /* 261 * parse extra results 262 */ 263 static int parse_reply_info_extra(void **p, void *end, 264 struct ceph_mds_reply_info_parsed *info, 265 u64 features) 266 { 267 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 268 return parse_reply_info_filelock(p, end, info, features); 269 else if (info->head->op == CEPH_MDS_OP_READDIR || 270 info->head->op == CEPH_MDS_OP_LSSNAP) 271 return parse_reply_info_dir(p, end, info, features); 272 else if (info->head->op == CEPH_MDS_OP_CREATE) 273 return parse_reply_info_create(p, end, info, features); 274 else 275 return -EIO; 276 } 277 278 /* 279 * parse entire mds reply 280 */ 281 static int parse_reply_info(struct ceph_msg *msg, 282 struct ceph_mds_reply_info_parsed *info, 283 u64 features) 284 { 285 void *p, *end; 286 u32 len; 287 int err; 288 289 info->head = msg->front.iov_base; 290 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 291 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 292 293 /* trace */ 294 ceph_decode_32_safe(&p, end, len, bad); 295 if (len > 0) { 296 ceph_decode_need(&p, end, len, bad); 297 err = parse_reply_info_trace(&p, p+len, info, features); 298 if (err < 0) 299 goto out_bad; 300 } 301 302 /* extra */ 303 ceph_decode_32_safe(&p, end, len, bad); 304 if (len > 0) { 305 ceph_decode_need(&p, end, len, bad); 306 err = parse_reply_info_extra(&p, p+len, info, features); 307 if (err < 0) 308 goto out_bad; 309 } 310 311 /* snap blob */ 312 ceph_decode_32_safe(&p, end, len, bad); 313 info->snapblob_len = len; 314 info->snapblob = p; 315 p += len; 316 317 if (p != end) 318 goto bad; 319 return 0; 320 321 bad: 322 err = -EIO; 323 out_bad: 324 pr_err("mds parse_reply err %d\n", err); 325 return err; 326 } 327 328 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 329 { 330 kfree(info->dir_in); 331 } 332 333 334 /* 335 * sessions 336 */ 337 static const char *session_state_name(int s) 338 { 339 switch (s) { 340 case CEPH_MDS_SESSION_NEW: return "new"; 341 case CEPH_MDS_SESSION_OPENING: return "opening"; 342 case CEPH_MDS_SESSION_OPEN: return "open"; 343 case CEPH_MDS_SESSION_HUNG: return "hung"; 344 case CEPH_MDS_SESSION_CLOSING: return "closing"; 345 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 346 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 347 default: return "???"; 348 } 349 } 350 351 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 352 { 353 if (atomic_inc_not_zero(&s->s_ref)) { 354 dout("mdsc get_session %p %d -> %d\n", s, 355 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 356 return s; 357 } else { 358 dout("mdsc get_session %p 0 -- FAIL", s); 359 return NULL; 360 } 361 } 362 363 void ceph_put_mds_session(struct ceph_mds_session *s) 364 { 365 dout("mdsc put_session %p %d -> %d\n", s, 366 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 367 if (atomic_dec_and_test(&s->s_ref)) { 368 if (s->s_auth.authorizer) 369 ceph_auth_destroy_authorizer( 370 s->s_mdsc->fsc->client->monc.auth, 371 s->s_auth.authorizer); 372 kfree(s); 373 } 374 } 375 376 /* 377 * called under mdsc->mutex 378 */ 379 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 380 int mds) 381 { 382 struct ceph_mds_session *session; 383 384 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 385 return NULL; 386 session = mdsc->sessions[mds]; 387 dout("lookup_mds_session %p %d\n", session, 388 atomic_read(&session->s_ref)); 389 get_session(session); 390 return session; 391 } 392 393 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 394 { 395 if (mds >= mdsc->max_sessions) 396 return false; 397 return mdsc->sessions[mds]; 398 } 399 400 static int __verify_registered_session(struct ceph_mds_client *mdsc, 401 struct ceph_mds_session *s) 402 { 403 if (s->s_mds >= mdsc->max_sessions || 404 mdsc->sessions[s->s_mds] != s) 405 return -ENOENT; 406 return 0; 407 } 408 409 /* 410 * create+register a new session for given mds. 411 * called under mdsc->mutex. 412 */ 413 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 414 int mds) 415 { 416 struct ceph_mds_session *s; 417 418 if (mds >= mdsc->mdsmap->m_max_mds) 419 return ERR_PTR(-EINVAL); 420 421 s = kzalloc(sizeof(*s), GFP_NOFS); 422 if (!s) 423 return ERR_PTR(-ENOMEM); 424 s->s_mdsc = mdsc; 425 s->s_mds = mds; 426 s->s_state = CEPH_MDS_SESSION_NEW; 427 s->s_ttl = 0; 428 s->s_seq = 0; 429 mutex_init(&s->s_mutex); 430 431 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 432 433 spin_lock_init(&s->s_gen_ttl_lock); 434 s->s_cap_gen = 0; 435 s->s_cap_ttl = jiffies - 1; 436 437 spin_lock_init(&s->s_cap_lock); 438 s->s_renew_requested = 0; 439 s->s_renew_seq = 0; 440 INIT_LIST_HEAD(&s->s_caps); 441 s->s_nr_caps = 0; 442 s->s_trim_caps = 0; 443 atomic_set(&s->s_ref, 1); 444 INIT_LIST_HEAD(&s->s_waiting); 445 INIT_LIST_HEAD(&s->s_unsafe); 446 s->s_num_cap_releases = 0; 447 s->s_cap_reconnect = 0; 448 s->s_cap_iterator = NULL; 449 INIT_LIST_HEAD(&s->s_cap_releases); 450 INIT_LIST_HEAD(&s->s_cap_releases_done); 451 INIT_LIST_HEAD(&s->s_cap_flushing); 452 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 453 454 dout("register_session mds%d\n", mds); 455 if (mds >= mdsc->max_sessions) { 456 int newmax = 1 << get_count_order(mds+1); 457 struct ceph_mds_session **sa; 458 459 dout("register_session realloc to %d\n", newmax); 460 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 461 if (sa == NULL) 462 goto fail_realloc; 463 if (mdsc->sessions) { 464 memcpy(sa, mdsc->sessions, 465 mdsc->max_sessions * sizeof(void *)); 466 kfree(mdsc->sessions); 467 } 468 mdsc->sessions = sa; 469 mdsc->max_sessions = newmax; 470 } 471 mdsc->sessions[mds] = s; 472 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 473 474 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 475 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 476 477 return s; 478 479 fail_realloc: 480 kfree(s); 481 return ERR_PTR(-ENOMEM); 482 } 483 484 /* 485 * called under mdsc->mutex 486 */ 487 static void __unregister_session(struct ceph_mds_client *mdsc, 488 struct ceph_mds_session *s) 489 { 490 dout("__unregister_session mds%d %p\n", s->s_mds, s); 491 BUG_ON(mdsc->sessions[s->s_mds] != s); 492 mdsc->sessions[s->s_mds] = NULL; 493 ceph_con_close(&s->s_con); 494 ceph_put_mds_session(s); 495 } 496 497 /* 498 * drop session refs in request. 499 * 500 * should be last request ref, or hold mdsc->mutex 501 */ 502 static void put_request_session(struct ceph_mds_request *req) 503 { 504 if (req->r_session) { 505 ceph_put_mds_session(req->r_session); 506 req->r_session = NULL; 507 } 508 } 509 510 void ceph_mdsc_release_request(struct kref *kref) 511 { 512 struct ceph_mds_request *req = container_of(kref, 513 struct ceph_mds_request, 514 r_kref); 515 if (req->r_request) 516 ceph_msg_put(req->r_request); 517 if (req->r_reply) { 518 ceph_msg_put(req->r_reply); 519 destroy_reply_info(&req->r_reply_info); 520 } 521 if (req->r_inode) { 522 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 523 iput(req->r_inode); 524 } 525 if (req->r_locked_dir) 526 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 527 if (req->r_target_inode) 528 iput(req->r_target_inode); 529 if (req->r_dentry) 530 dput(req->r_dentry); 531 if (req->r_old_dentry) { 532 /* 533 * track (and drop pins for) r_old_dentry_dir 534 * separately, since r_old_dentry's d_parent may have 535 * changed between the dir mutex being dropped and 536 * this request being freed. 537 */ 538 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 539 CEPH_CAP_PIN); 540 dput(req->r_old_dentry); 541 iput(req->r_old_dentry_dir); 542 } 543 kfree(req->r_path1); 544 kfree(req->r_path2); 545 put_request_session(req); 546 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 547 kfree(req); 548 } 549 550 /* 551 * lookup session, bump ref if found. 552 * 553 * called under mdsc->mutex. 554 */ 555 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 556 u64 tid) 557 { 558 struct ceph_mds_request *req; 559 struct rb_node *n = mdsc->request_tree.rb_node; 560 561 while (n) { 562 req = rb_entry(n, struct ceph_mds_request, r_node); 563 if (tid < req->r_tid) 564 n = n->rb_left; 565 else if (tid > req->r_tid) 566 n = n->rb_right; 567 else { 568 ceph_mdsc_get_request(req); 569 return req; 570 } 571 } 572 return NULL; 573 } 574 575 static void __insert_request(struct ceph_mds_client *mdsc, 576 struct ceph_mds_request *new) 577 { 578 struct rb_node **p = &mdsc->request_tree.rb_node; 579 struct rb_node *parent = NULL; 580 struct ceph_mds_request *req = NULL; 581 582 while (*p) { 583 parent = *p; 584 req = rb_entry(parent, struct ceph_mds_request, r_node); 585 if (new->r_tid < req->r_tid) 586 p = &(*p)->rb_left; 587 else if (new->r_tid > req->r_tid) 588 p = &(*p)->rb_right; 589 else 590 BUG(); 591 } 592 593 rb_link_node(&new->r_node, parent, p); 594 rb_insert_color(&new->r_node, &mdsc->request_tree); 595 } 596 597 /* 598 * Register an in-flight request, and assign a tid. Link to directory 599 * are modifying (if any). 600 * 601 * Called under mdsc->mutex. 602 */ 603 static void __register_request(struct ceph_mds_client *mdsc, 604 struct ceph_mds_request *req, 605 struct inode *dir) 606 { 607 req->r_tid = ++mdsc->last_tid; 608 if (req->r_num_caps) 609 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 610 req->r_num_caps); 611 dout("__register_request %p tid %lld\n", req, req->r_tid); 612 ceph_mdsc_get_request(req); 613 __insert_request(mdsc, req); 614 615 req->r_uid = current_fsuid(); 616 req->r_gid = current_fsgid(); 617 618 if (dir) { 619 struct ceph_inode_info *ci = ceph_inode(dir); 620 621 ihold(dir); 622 spin_lock(&ci->i_unsafe_lock); 623 req->r_unsafe_dir = dir; 624 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 625 spin_unlock(&ci->i_unsafe_lock); 626 } 627 } 628 629 static void __unregister_request(struct ceph_mds_client *mdsc, 630 struct ceph_mds_request *req) 631 { 632 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 633 rb_erase(&req->r_node, &mdsc->request_tree); 634 RB_CLEAR_NODE(&req->r_node); 635 636 if (req->r_unsafe_dir) { 637 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 638 639 spin_lock(&ci->i_unsafe_lock); 640 list_del_init(&req->r_unsafe_dir_item); 641 spin_unlock(&ci->i_unsafe_lock); 642 643 iput(req->r_unsafe_dir); 644 req->r_unsafe_dir = NULL; 645 } 646 647 complete_all(&req->r_safe_completion); 648 649 ceph_mdsc_put_request(req); 650 } 651 652 /* 653 * Choose mds to send request to next. If there is a hint set in the 654 * request (e.g., due to a prior forward hint from the mds), use that. 655 * Otherwise, consult frag tree and/or caps to identify the 656 * appropriate mds. If all else fails, choose randomly. 657 * 658 * Called under mdsc->mutex. 659 */ 660 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 661 { 662 /* 663 * we don't need to worry about protecting the d_parent access 664 * here because we never renaming inside the snapped namespace 665 * except to resplice to another snapdir, and either the old or new 666 * result is a valid result. 667 */ 668 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP) 669 dentry = dentry->d_parent; 670 return dentry; 671 } 672 673 static int __choose_mds(struct ceph_mds_client *mdsc, 674 struct ceph_mds_request *req) 675 { 676 struct inode *inode; 677 struct ceph_inode_info *ci; 678 struct ceph_cap *cap; 679 int mode = req->r_direct_mode; 680 int mds = -1; 681 u32 hash = req->r_direct_hash; 682 bool is_hash = req->r_direct_is_hash; 683 684 /* 685 * is there a specific mds we should try? ignore hint if we have 686 * no session and the mds is not up (active or recovering). 687 */ 688 if (req->r_resend_mds >= 0 && 689 (__have_session(mdsc, req->r_resend_mds) || 690 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 691 dout("choose_mds using resend_mds mds%d\n", 692 req->r_resend_mds); 693 return req->r_resend_mds; 694 } 695 696 if (mode == USE_RANDOM_MDS) 697 goto random; 698 699 inode = NULL; 700 if (req->r_inode) { 701 inode = req->r_inode; 702 } else if (req->r_dentry) { 703 /* ignore race with rename; old or new d_parent is okay */ 704 struct dentry *parent = req->r_dentry->d_parent; 705 struct inode *dir = parent->d_inode; 706 707 if (dir->i_sb != mdsc->fsc->sb) { 708 /* not this fs! */ 709 inode = req->r_dentry->d_inode; 710 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 711 /* direct snapped/virtual snapdir requests 712 * based on parent dir inode */ 713 struct dentry *dn = get_nonsnap_parent(parent); 714 inode = dn->d_inode; 715 dout("__choose_mds using nonsnap parent %p\n", inode); 716 } else { 717 /* dentry target */ 718 inode = req->r_dentry->d_inode; 719 if (!inode || mode == USE_AUTH_MDS) { 720 /* dir + name */ 721 inode = dir; 722 hash = ceph_dentry_hash(dir, req->r_dentry); 723 is_hash = true; 724 } 725 } 726 } 727 728 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 729 (int)hash, mode); 730 if (!inode) 731 goto random; 732 ci = ceph_inode(inode); 733 734 if (is_hash && S_ISDIR(inode->i_mode)) { 735 struct ceph_inode_frag frag; 736 int found; 737 738 ceph_choose_frag(ci, hash, &frag, &found); 739 if (found) { 740 if (mode == USE_ANY_MDS && frag.ndist > 0) { 741 u8 r; 742 743 /* choose a random replica */ 744 get_random_bytes(&r, 1); 745 r %= frag.ndist; 746 mds = frag.dist[r]; 747 dout("choose_mds %p %llx.%llx " 748 "frag %u mds%d (%d/%d)\n", 749 inode, ceph_vinop(inode), 750 frag.frag, mds, 751 (int)r, frag.ndist); 752 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 753 CEPH_MDS_STATE_ACTIVE) 754 return mds; 755 } 756 757 /* since this file/dir wasn't known to be 758 * replicated, then we want to look for the 759 * authoritative mds. */ 760 mode = USE_AUTH_MDS; 761 if (frag.mds >= 0) { 762 /* choose auth mds */ 763 mds = frag.mds; 764 dout("choose_mds %p %llx.%llx " 765 "frag %u mds%d (auth)\n", 766 inode, ceph_vinop(inode), frag.frag, mds); 767 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 768 CEPH_MDS_STATE_ACTIVE) 769 return mds; 770 } 771 } 772 } 773 774 spin_lock(&ci->i_ceph_lock); 775 cap = NULL; 776 if (mode == USE_AUTH_MDS) 777 cap = ci->i_auth_cap; 778 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 779 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 780 if (!cap) { 781 spin_unlock(&ci->i_ceph_lock); 782 goto random; 783 } 784 mds = cap->session->s_mds; 785 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 786 inode, ceph_vinop(inode), mds, 787 cap == ci->i_auth_cap ? "auth " : "", cap); 788 spin_unlock(&ci->i_ceph_lock); 789 return mds; 790 791 random: 792 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 793 dout("choose_mds chose random mds%d\n", mds); 794 return mds; 795 } 796 797 798 /* 799 * session messages 800 */ 801 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 802 { 803 struct ceph_msg *msg; 804 struct ceph_mds_session_head *h; 805 806 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 807 false); 808 if (!msg) { 809 pr_err("create_session_msg ENOMEM creating msg\n"); 810 return NULL; 811 } 812 h = msg->front.iov_base; 813 h->op = cpu_to_le32(op); 814 h->seq = cpu_to_le64(seq); 815 return msg; 816 } 817 818 /* 819 * send session open request. 820 * 821 * called under mdsc->mutex 822 */ 823 static int __open_session(struct ceph_mds_client *mdsc, 824 struct ceph_mds_session *session) 825 { 826 struct ceph_msg *msg; 827 int mstate; 828 int mds = session->s_mds; 829 830 /* wait for mds to go active? */ 831 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 832 dout("open_session to mds%d (%s)\n", mds, 833 ceph_mds_state_name(mstate)); 834 session->s_state = CEPH_MDS_SESSION_OPENING; 835 session->s_renew_requested = jiffies; 836 837 /* send connect message */ 838 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq); 839 if (!msg) 840 return -ENOMEM; 841 ceph_con_send(&session->s_con, msg); 842 return 0; 843 } 844 845 /* 846 * open sessions for any export targets for the given mds 847 * 848 * called under mdsc->mutex 849 */ 850 static struct ceph_mds_session * 851 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 852 { 853 struct ceph_mds_session *session; 854 855 session = __ceph_lookup_mds_session(mdsc, target); 856 if (!session) { 857 session = register_session(mdsc, target); 858 if (IS_ERR(session)) 859 return session; 860 } 861 if (session->s_state == CEPH_MDS_SESSION_NEW || 862 session->s_state == CEPH_MDS_SESSION_CLOSING) 863 __open_session(mdsc, session); 864 865 return session; 866 } 867 868 struct ceph_mds_session * 869 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 870 { 871 struct ceph_mds_session *session; 872 873 dout("open_export_target_session to mds%d\n", target); 874 875 mutex_lock(&mdsc->mutex); 876 session = __open_export_target_session(mdsc, target); 877 mutex_unlock(&mdsc->mutex); 878 879 return session; 880 } 881 882 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 883 struct ceph_mds_session *session) 884 { 885 struct ceph_mds_info *mi; 886 struct ceph_mds_session *ts; 887 int i, mds = session->s_mds; 888 889 if (mds >= mdsc->mdsmap->m_max_mds) 890 return; 891 892 mi = &mdsc->mdsmap->m_info[mds]; 893 dout("open_export_target_sessions for mds%d (%d targets)\n", 894 session->s_mds, mi->num_export_targets); 895 896 for (i = 0; i < mi->num_export_targets; i++) { 897 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 898 if (!IS_ERR(ts)) 899 ceph_put_mds_session(ts); 900 } 901 } 902 903 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 904 struct ceph_mds_session *session) 905 { 906 mutex_lock(&mdsc->mutex); 907 __open_export_target_sessions(mdsc, session); 908 mutex_unlock(&mdsc->mutex); 909 } 910 911 /* 912 * session caps 913 */ 914 915 /* 916 * Free preallocated cap messages assigned to this session 917 */ 918 static void cleanup_cap_releases(struct ceph_mds_session *session) 919 { 920 struct ceph_msg *msg; 921 922 spin_lock(&session->s_cap_lock); 923 while (!list_empty(&session->s_cap_releases)) { 924 msg = list_first_entry(&session->s_cap_releases, 925 struct ceph_msg, list_head); 926 list_del_init(&msg->list_head); 927 ceph_msg_put(msg); 928 } 929 while (!list_empty(&session->s_cap_releases_done)) { 930 msg = list_first_entry(&session->s_cap_releases_done, 931 struct ceph_msg, list_head); 932 list_del_init(&msg->list_head); 933 ceph_msg_put(msg); 934 } 935 spin_unlock(&session->s_cap_lock); 936 } 937 938 /* 939 * Helper to safely iterate over all caps associated with a session, with 940 * special care taken to handle a racing __ceph_remove_cap(). 941 * 942 * Caller must hold session s_mutex. 943 */ 944 static int iterate_session_caps(struct ceph_mds_session *session, 945 int (*cb)(struct inode *, struct ceph_cap *, 946 void *), void *arg) 947 { 948 struct list_head *p; 949 struct ceph_cap *cap; 950 struct inode *inode, *last_inode = NULL; 951 struct ceph_cap *old_cap = NULL; 952 int ret; 953 954 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 955 spin_lock(&session->s_cap_lock); 956 p = session->s_caps.next; 957 while (p != &session->s_caps) { 958 cap = list_entry(p, struct ceph_cap, session_caps); 959 inode = igrab(&cap->ci->vfs_inode); 960 if (!inode) { 961 p = p->next; 962 continue; 963 } 964 session->s_cap_iterator = cap; 965 spin_unlock(&session->s_cap_lock); 966 967 if (last_inode) { 968 iput(last_inode); 969 last_inode = NULL; 970 } 971 if (old_cap) { 972 ceph_put_cap(session->s_mdsc, old_cap); 973 old_cap = NULL; 974 } 975 976 ret = cb(inode, cap, arg); 977 last_inode = inode; 978 979 spin_lock(&session->s_cap_lock); 980 p = p->next; 981 if (cap->ci == NULL) { 982 dout("iterate_session_caps finishing cap %p removal\n", 983 cap); 984 BUG_ON(cap->session != session); 985 list_del_init(&cap->session_caps); 986 session->s_nr_caps--; 987 cap->session = NULL; 988 old_cap = cap; /* put_cap it w/o locks held */ 989 } 990 if (ret < 0) 991 goto out; 992 } 993 ret = 0; 994 out: 995 session->s_cap_iterator = NULL; 996 spin_unlock(&session->s_cap_lock); 997 998 if (last_inode) 999 iput(last_inode); 1000 if (old_cap) 1001 ceph_put_cap(session->s_mdsc, old_cap); 1002 1003 return ret; 1004 } 1005 1006 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 1007 void *arg) 1008 { 1009 struct ceph_inode_info *ci = ceph_inode(inode); 1010 int drop = 0; 1011 1012 dout("removing cap %p, ci is %p, inode is %p\n", 1013 cap, ci, &ci->vfs_inode); 1014 spin_lock(&ci->i_ceph_lock); 1015 __ceph_remove_cap(cap, false); 1016 if (!__ceph_is_any_real_caps(ci)) { 1017 struct ceph_mds_client *mdsc = 1018 ceph_sb_to_client(inode->i_sb)->mdsc; 1019 1020 spin_lock(&mdsc->cap_dirty_lock); 1021 if (!list_empty(&ci->i_dirty_item)) { 1022 pr_info(" dropping dirty %s state for %p %lld\n", 1023 ceph_cap_string(ci->i_dirty_caps), 1024 inode, ceph_ino(inode)); 1025 ci->i_dirty_caps = 0; 1026 list_del_init(&ci->i_dirty_item); 1027 drop = 1; 1028 } 1029 if (!list_empty(&ci->i_flushing_item)) { 1030 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 1031 ceph_cap_string(ci->i_flushing_caps), 1032 inode, ceph_ino(inode)); 1033 ci->i_flushing_caps = 0; 1034 list_del_init(&ci->i_flushing_item); 1035 mdsc->num_cap_flushing--; 1036 drop = 1; 1037 } 1038 if (drop && ci->i_wrbuffer_ref) { 1039 pr_info(" dropping dirty data for %p %lld\n", 1040 inode, ceph_ino(inode)); 1041 ci->i_wrbuffer_ref = 0; 1042 ci->i_wrbuffer_ref_head = 0; 1043 drop++; 1044 } 1045 spin_unlock(&mdsc->cap_dirty_lock); 1046 } 1047 spin_unlock(&ci->i_ceph_lock); 1048 while (drop--) 1049 iput(inode); 1050 return 0; 1051 } 1052 1053 /* 1054 * caller must hold session s_mutex 1055 */ 1056 static void remove_session_caps(struct ceph_mds_session *session) 1057 { 1058 dout("remove_session_caps on %p\n", session); 1059 iterate_session_caps(session, remove_session_caps_cb, NULL); 1060 1061 spin_lock(&session->s_cap_lock); 1062 if (session->s_nr_caps > 0) { 1063 struct super_block *sb = session->s_mdsc->fsc->sb; 1064 struct inode *inode; 1065 struct ceph_cap *cap, *prev = NULL; 1066 struct ceph_vino vino; 1067 /* 1068 * iterate_session_caps() skips inodes that are being 1069 * deleted, we need to wait until deletions are complete. 1070 * __wait_on_freeing_inode() is designed for the job, 1071 * but it is not exported, so use lookup inode function 1072 * to access it. 1073 */ 1074 while (!list_empty(&session->s_caps)) { 1075 cap = list_entry(session->s_caps.next, 1076 struct ceph_cap, session_caps); 1077 if (cap == prev) 1078 break; 1079 prev = cap; 1080 vino = cap->ci->i_vino; 1081 spin_unlock(&session->s_cap_lock); 1082 1083 inode = ceph_find_inode(sb, vino); 1084 iput(inode); 1085 1086 spin_lock(&session->s_cap_lock); 1087 } 1088 } 1089 spin_unlock(&session->s_cap_lock); 1090 1091 BUG_ON(session->s_nr_caps > 0); 1092 BUG_ON(!list_empty(&session->s_cap_flushing)); 1093 cleanup_cap_releases(session); 1094 } 1095 1096 /* 1097 * wake up any threads waiting on this session's caps. if the cap is 1098 * old (didn't get renewed on the client reconnect), remove it now. 1099 * 1100 * caller must hold s_mutex. 1101 */ 1102 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1103 void *arg) 1104 { 1105 struct ceph_inode_info *ci = ceph_inode(inode); 1106 1107 wake_up_all(&ci->i_cap_wq); 1108 if (arg) { 1109 spin_lock(&ci->i_ceph_lock); 1110 ci->i_wanted_max_size = 0; 1111 ci->i_requested_max_size = 0; 1112 spin_unlock(&ci->i_ceph_lock); 1113 } 1114 return 0; 1115 } 1116 1117 static void wake_up_session_caps(struct ceph_mds_session *session, 1118 int reconnect) 1119 { 1120 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1121 iterate_session_caps(session, wake_up_session_cb, 1122 (void *)(unsigned long)reconnect); 1123 } 1124 1125 /* 1126 * Send periodic message to MDS renewing all currently held caps. The 1127 * ack will reset the expiration for all caps from this session. 1128 * 1129 * caller holds s_mutex 1130 */ 1131 static int send_renew_caps(struct ceph_mds_client *mdsc, 1132 struct ceph_mds_session *session) 1133 { 1134 struct ceph_msg *msg; 1135 int state; 1136 1137 if (time_after_eq(jiffies, session->s_cap_ttl) && 1138 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1139 pr_info("mds%d caps stale\n", session->s_mds); 1140 session->s_renew_requested = jiffies; 1141 1142 /* do not try to renew caps until a recovering mds has reconnected 1143 * with its clients. */ 1144 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1145 if (state < CEPH_MDS_STATE_RECONNECT) { 1146 dout("send_renew_caps ignoring mds%d (%s)\n", 1147 session->s_mds, ceph_mds_state_name(state)); 1148 return 0; 1149 } 1150 1151 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1152 ceph_mds_state_name(state)); 1153 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1154 ++session->s_renew_seq); 1155 if (!msg) 1156 return -ENOMEM; 1157 ceph_con_send(&session->s_con, msg); 1158 return 0; 1159 } 1160 1161 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 1162 struct ceph_mds_session *session, u64 seq) 1163 { 1164 struct ceph_msg *msg; 1165 1166 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 1167 session->s_mds, session_state_name(session->s_state), seq); 1168 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 1169 if (!msg) 1170 return -ENOMEM; 1171 ceph_con_send(&session->s_con, msg); 1172 return 0; 1173 } 1174 1175 1176 /* 1177 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1178 * 1179 * Called under session->s_mutex 1180 */ 1181 static void renewed_caps(struct ceph_mds_client *mdsc, 1182 struct ceph_mds_session *session, int is_renew) 1183 { 1184 int was_stale; 1185 int wake = 0; 1186 1187 spin_lock(&session->s_cap_lock); 1188 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1189 1190 session->s_cap_ttl = session->s_renew_requested + 1191 mdsc->mdsmap->m_session_timeout*HZ; 1192 1193 if (was_stale) { 1194 if (time_before(jiffies, session->s_cap_ttl)) { 1195 pr_info("mds%d caps renewed\n", session->s_mds); 1196 wake = 1; 1197 } else { 1198 pr_info("mds%d caps still stale\n", session->s_mds); 1199 } 1200 } 1201 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1202 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1203 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1204 spin_unlock(&session->s_cap_lock); 1205 1206 if (wake) 1207 wake_up_session_caps(session, 0); 1208 } 1209 1210 /* 1211 * send a session close request 1212 */ 1213 static int request_close_session(struct ceph_mds_client *mdsc, 1214 struct ceph_mds_session *session) 1215 { 1216 struct ceph_msg *msg; 1217 1218 dout("request_close_session mds%d state %s seq %lld\n", 1219 session->s_mds, session_state_name(session->s_state), 1220 session->s_seq); 1221 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1222 if (!msg) 1223 return -ENOMEM; 1224 ceph_con_send(&session->s_con, msg); 1225 return 0; 1226 } 1227 1228 /* 1229 * Called with s_mutex held. 1230 */ 1231 static int __close_session(struct ceph_mds_client *mdsc, 1232 struct ceph_mds_session *session) 1233 { 1234 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1235 return 0; 1236 session->s_state = CEPH_MDS_SESSION_CLOSING; 1237 return request_close_session(mdsc, session); 1238 } 1239 1240 /* 1241 * Trim old(er) caps. 1242 * 1243 * Because we can't cache an inode without one or more caps, we do 1244 * this indirectly: if a cap is unused, we prune its aliases, at which 1245 * point the inode will hopefully get dropped to. 1246 * 1247 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1248 * memory pressure from the MDS, though, so it needn't be perfect. 1249 */ 1250 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1251 { 1252 struct ceph_mds_session *session = arg; 1253 struct ceph_inode_info *ci = ceph_inode(inode); 1254 int used, wanted, oissued, mine; 1255 1256 if (session->s_trim_caps <= 0) 1257 return -1; 1258 1259 spin_lock(&ci->i_ceph_lock); 1260 mine = cap->issued | cap->implemented; 1261 used = __ceph_caps_used(ci); 1262 wanted = __ceph_caps_file_wanted(ci); 1263 oissued = __ceph_caps_issued_other(ci, cap); 1264 1265 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 1266 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1267 ceph_cap_string(used), ceph_cap_string(wanted)); 1268 if (cap == ci->i_auth_cap) { 1269 if (ci->i_dirty_caps | ci->i_flushing_caps) 1270 goto out; 1271 if ((used | wanted) & CEPH_CAP_ANY_WR) 1272 goto out; 1273 } 1274 if ((used | wanted) & ~oissued & mine) 1275 goto out; /* we need these caps */ 1276 1277 session->s_trim_caps--; 1278 if (oissued) { 1279 /* we aren't the only cap.. just remove us */ 1280 __ceph_remove_cap(cap, true); 1281 } else { 1282 /* try to drop referring dentries */ 1283 spin_unlock(&ci->i_ceph_lock); 1284 d_prune_aliases(inode); 1285 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1286 inode, cap, atomic_read(&inode->i_count)); 1287 return 0; 1288 } 1289 1290 out: 1291 spin_unlock(&ci->i_ceph_lock); 1292 return 0; 1293 } 1294 1295 /* 1296 * Trim session cap count down to some max number. 1297 */ 1298 static int trim_caps(struct ceph_mds_client *mdsc, 1299 struct ceph_mds_session *session, 1300 int max_caps) 1301 { 1302 int trim_caps = session->s_nr_caps - max_caps; 1303 1304 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1305 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1306 if (trim_caps > 0) { 1307 session->s_trim_caps = trim_caps; 1308 iterate_session_caps(session, trim_caps_cb, session); 1309 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1310 session->s_mds, session->s_nr_caps, max_caps, 1311 trim_caps - session->s_trim_caps); 1312 session->s_trim_caps = 0; 1313 } 1314 return 0; 1315 } 1316 1317 /* 1318 * Allocate cap_release messages. If there is a partially full message 1319 * in the queue, try to allocate enough to cover it's remainder, so that 1320 * we can send it immediately. 1321 * 1322 * Called under s_mutex. 1323 */ 1324 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1325 struct ceph_mds_session *session) 1326 { 1327 struct ceph_msg *msg, *partial = NULL; 1328 struct ceph_mds_cap_release *head; 1329 int err = -ENOMEM; 1330 int extra = mdsc->fsc->mount_options->cap_release_safety; 1331 int num; 1332 1333 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1334 extra); 1335 1336 spin_lock(&session->s_cap_lock); 1337 1338 if (!list_empty(&session->s_cap_releases)) { 1339 msg = list_first_entry(&session->s_cap_releases, 1340 struct ceph_msg, 1341 list_head); 1342 head = msg->front.iov_base; 1343 num = le32_to_cpu(head->num); 1344 if (num) { 1345 dout(" partial %p with (%d/%d)\n", msg, num, 1346 (int)CEPH_CAPS_PER_RELEASE); 1347 extra += CEPH_CAPS_PER_RELEASE - num; 1348 partial = msg; 1349 } 1350 } 1351 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1352 spin_unlock(&session->s_cap_lock); 1353 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1354 GFP_NOFS, false); 1355 if (!msg) 1356 goto out_unlocked; 1357 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1358 (int)msg->front.iov_len); 1359 head = msg->front.iov_base; 1360 head->num = cpu_to_le32(0); 1361 msg->front.iov_len = sizeof(*head); 1362 spin_lock(&session->s_cap_lock); 1363 list_add(&msg->list_head, &session->s_cap_releases); 1364 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1365 } 1366 1367 if (partial) { 1368 head = partial->front.iov_base; 1369 num = le32_to_cpu(head->num); 1370 dout(" queueing partial %p with %d/%d\n", partial, num, 1371 (int)CEPH_CAPS_PER_RELEASE); 1372 list_move_tail(&partial->list_head, 1373 &session->s_cap_releases_done); 1374 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1375 } 1376 err = 0; 1377 spin_unlock(&session->s_cap_lock); 1378 out_unlocked: 1379 return err; 1380 } 1381 1382 /* 1383 * flush all dirty inode data to disk. 1384 * 1385 * returns true if we've flushed through want_flush_seq 1386 */ 1387 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1388 { 1389 int mds, ret = 1; 1390 1391 dout("check_cap_flush want %lld\n", want_flush_seq); 1392 mutex_lock(&mdsc->mutex); 1393 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1394 struct ceph_mds_session *session = mdsc->sessions[mds]; 1395 1396 if (!session) 1397 continue; 1398 get_session(session); 1399 mutex_unlock(&mdsc->mutex); 1400 1401 mutex_lock(&session->s_mutex); 1402 if (!list_empty(&session->s_cap_flushing)) { 1403 struct ceph_inode_info *ci = 1404 list_entry(session->s_cap_flushing.next, 1405 struct ceph_inode_info, 1406 i_flushing_item); 1407 struct inode *inode = &ci->vfs_inode; 1408 1409 spin_lock(&ci->i_ceph_lock); 1410 if (ci->i_cap_flush_seq <= want_flush_seq) { 1411 dout("check_cap_flush still flushing %p " 1412 "seq %lld <= %lld to mds%d\n", inode, 1413 ci->i_cap_flush_seq, want_flush_seq, 1414 session->s_mds); 1415 ret = 0; 1416 } 1417 spin_unlock(&ci->i_ceph_lock); 1418 } 1419 mutex_unlock(&session->s_mutex); 1420 ceph_put_mds_session(session); 1421 1422 if (!ret) 1423 return ret; 1424 mutex_lock(&mdsc->mutex); 1425 } 1426 1427 mutex_unlock(&mdsc->mutex); 1428 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1429 return ret; 1430 } 1431 1432 /* 1433 * called under s_mutex 1434 */ 1435 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1436 struct ceph_mds_session *session) 1437 { 1438 struct ceph_msg *msg; 1439 1440 dout("send_cap_releases mds%d\n", session->s_mds); 1441 spin_lock(&session->s_cap_lock); 1442 while (!list_empty(&session->s_cap_releases_done)) { 1443 msg = list_first_entry(&session->s_cap_releases_done, 1444 struct ceph_msg, list_head); 1445 list_del_init(&msg->list_head); 1446 spin_unlock(&session->s_cap_lock); 1447 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1448 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1449 ceph_con_send(&session->s_con, msg); 1450 spin_lock(&session->s_cap_lock); 1451 } 1452 spin_unlock(&session->s_cap_lock); 1453 } 1454 1455 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1456 struct ceph_mds_session *session) 1457 { 1458 struct ceph_msg *msg; 1459 struct ceph_mds_cap_release *head; 1460 unsigned num; 1461 1462 dout("discard_cap_releases mds%d\n", session->s_mds); 1463 1464 /* zero out the in-progress message */ 1465 msg = list_first_entry(&session->s_cap_releases, 1466 struct ceph_msg, list_head); 1467 head = msg->front.iov_base; 1468 num = le32_to_cpu(head->num); 1469 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num); 1470 head->num = cpu_to_le32(0); 1471 msg->front.iov_len = sizeof(*head); 1472 session->s_num_cap_releases += num; 1473 1474 /* requeue completed messages */ 1475 while (!list_empty(&session->s_cap_releases_done)) { 1476 msg = list_first_entry(&session->s_cap_releases_done, 1477 struct ceph_msg, list_head); 1478 list_del_init(&msg->list_head); 1479 1480 head = msg->front.iov_base; 1481 num = le32_to_cpu(head->num); 1482 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1483 num); 1484 session->s_num_cap_releases += num; 1485 head->num = cpu_to_le32(0); 1486 msg->front.iov_len = sizeof(*head); 1487 list_add(&msg->list_head, &session->s_cap_releases); 1488 } 1489 } 1490 1491 /* 1492 * requests 1493 */ 1494 1495 /* 1496 * Create an mds request. 1497 */ 1498 struct ceph_mds_request * 1499 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1500 { 1501 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1502 1503 if (!req) 1504 return ERR_PTR(-ENOMEM); 1505 1506 mutex_init(&req->r_fill_mutex); 1507 req->r_mdsc = mdsc; 1508 req->r_started = jiffies; 1509 req->r_resend_mds = -1; 1510 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1511 req->r_fmode = -1; 1512 kref_init(&req->r_kref); 1513 INIT_LIST_HEAD(&req->r_wait); 1514 init_completion(&req->r_completion); 1515 init_completion(&req->r_safe_completion); 1516 INIT_LIST_HEAD(&req->r_unsafe_item); 1517 1518 req->r_op = op; 1519 req->r_direct_mode = mode; 1520 return req; 1521 } 1522 1523 /* 1524 * return oldest (lowest) request, tid in request tree, 0 if none. 1525 * 1526 * called under mdsc->mutex. 1527 */ 1528 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1529 { 1530 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1531 return NULL; 1532 return rb_entry(rb_first(&mdsc->request_tree), 1533 struct ceph_mds_request, r_node); 1534 } 1535 1536 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1537 { 1538 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1539 1540 if (req) 1541 return req->r_tid; 1542 return 0; 1543 } 1544 1545 /* 1546 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1547 * on build_path_from_dentry in fs/cifs/dir.c. 1548 * 1549 * If @stop_on_nosnap, generate path relative to the first non-snapped 1550 * inode. 1551 * 1552 * Encode hidden .snap dirs as a double /, i.e. 1553 * foo/.snap/bar -> foo//bar 1554 */ 1555 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1556 int stop_on_nosnap) 1557 { 1558 struct dentry *temp; 1559 char *path; 1560 int len, pos; 1561 unsigned seq; 1562 1563 if (dentry == NULL) 1564 return ERR_PTR(-EINVAL); 1565 1566 retry: 1567 len = 0; 1568 seq = read_seqbegin(&rename_lock); 1569 rcu_read_lock(); 1570 for (temp = dentry; !IS_ROOT(temp);) { 1571 struct inode *inode = temp->d_inode; 1572 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1573 len++; /* slash only */ 1574 else if (stop_on_nosnap && inode && 1575 ceph_snap(inode) == CEPH_NOSNAP) 1576 break; 1577 else 1578 len += 1 + temp->d_name.len; 1579 temp = temp->d_parent; 1580 } 1581 rcu_read_unlock(); 1582 if (len) 1583 len--; /* no leading '/' */ 1584 1585 path = kmalloc(len+1, GFP_NOFS); 1586 if (path == NULL) 1587 return ERR_PTR(-ENOMEM); 1588 pos = len; 1589 path[pos] = 0; /* trailing null */ 1590 rcu_read_lock(); 1591 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1592 struct inode *inode; 1593 1594 spin_lock(&temp->d_lock); 1595 inode = temp->d_inode; 1596 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1597 dout("build_path path+%d: %p SNAPDIR\n", 1598 pos, temp); 1599 } else if (stop_on_nosnap && inode && 1600 ceph_snap(inode) == CEPH_NOSNAP) { 1601 spin_unlock(&temp->d_lock); 1602 break; 1603 } else { 1604 pos -= temp->d_name.len; 1605 if (pos < 0) { 1606 spin_unlock(&temp->d_lock); 1607 break; 1608 } 1609 strncpy(path + pos, temp->d_name.name, 1610 temp->d_name.len); 1611 } 1612 spin_unlock(&temp->d_lock); 1613 if (pos) 1614 path[--pos] = '/'; 1615 temp = temp->d_parent; 1616 } 1617 rcu_read_unlock(); 1618 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1619 pr_err("build_path did not end path lookup where " 1620 "expected, namelen is %d, pos is %d\n", len, pos); 1621 /* presumably this is only possible if racing with a 1622 rename of one of the parent directories (we can not 1623 lock the dentries above us to prevent this, but 1624 retrying should be harmless) */ 1625 kfree(path); 1626 goto retry; 1627 } 1628 1629 *base = ceph_ino(temp->d_inode); 1630 *plen = len; 1631 dout("build_path on %p %d built %llx '%.*s'\n", 1632 dentry, d_count(dentry), *base, len, path); 1633 return path; 1634 } 1635 1636 static int build_dentry_path(struct dentry *dentry, 1637 const char **ppath, int *ppathlen, u64 *pino, 1638 int *pfreepath) 1639 { 1640 char *path; 1641 1642 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1643 *pino = ceph_ino(dentry->d_parent->d_inode); 1644 *ppath = dentry->d_name.name; 1645 *ppathlen = dentry->d_name.len; 1646 return 0; 1647 } 1648 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1649 if (IS_ERR(path)) 1650 return PTR_ERR(path); 1651 *ppath = path; 1652 *pfreepath = 1; 1653 return 0; 1654 } 1655 1656 static int build_inode_path(struct inode *inode, 1657 const char **ppath, int *ppathlen, u64 *pino, 1658 int *pfreepath) 1659 { 1660 struct dentry *dentry; 1661 char *path; 1662 1663 if (ceph_snap(inode) == CEPH_NOSNAP) { 1664 *pino = ceph_ino(inode); 1665 *ppathlen = 0; 1666 return 0; 1667 } 1668 dentry = d_find_alias(inode); 1669 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1670 dput(dentry); 1671 if (IS_ERR(path)) 1672 return PTR_ERR(path); 1673 *ppath = path; 1674 *pfreepath = 1; 1675 return 0; 1676 } 1677 1678 /* 1679 * request arguments may be specified via an inode *, a dentry *, or 1680 * an explicit ino+path. 1681 */ 1682 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1683 const char *rpath, u64 rino, 1684 const char **ppath, int *pathlen, 1685 u64 *ino, int *freepath) 1686 { 1687 int r = 0; 1688 1689 if (rinode) { 1690 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1691 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1692 ceph_snap(rinode)); 1693 } else if (rdentry) { 1694 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1695 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1696 *ppath); 1697 } else if (rpath || rino) { 1698 *ino = rino; 1699 *ppath = rpath; 1700 *pathlen = rpath ? strlen(rpath) : 0; 1701 dout(" path %.*s\n", *pathlen, rpath); 1702 } 1703 1704 return r; 1705 } 1706 1707 /* 1708 * called under mdsc->mutex 1709 */ 1710 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1711 struct ceph_mds_request *req, 1712 int mds) 1713 { 1714 struct ceph_msg *msg; 1715 struct ceph_mds_request_head *head; 1716 const char *path1 = NULL; 1717 const char *path2 = NULL; 1718 u64 ino1 = 0, ino2 = 0; 1719 int pathlen1 = 0, pathlen2 = 0; 1720 int freepath1 = 0, freepath2 = 0; 1721 int len; 1722 u16 releases; 1723 void *p, *end; 1724 int ret; 1725 1726 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1727 req->r_path1, req->r_ino1.ino, 1728 &path1, &pathlen1, &ino1, &freepath1); 1729 if (ret < 0) { 1730 msg = ERR_PTR(ret); 1731 goto out; 1732 } 1733 1734 ret = set_request_path_attr(NULL, req->r_old_dentry, 1735 req->r_path2, req->r_ino2.ino, 1736 &path2, &pathlen2, &ino2, &freepath2); 1737 if (ret < 0) { 1738 msg = ERR_PTR(ret); 1739 goto out_free1; 1740 } 1741 1742 len = sizeof(*head) + 1743 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)); 1744 1745 /* calculate (max) length for cap releases */ 1746 len += sizeof(struct ceph_mds_request_release) * 1747 (!!req->r_inode_drop + !!req->r_dentry_drop + 1748 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1749 if (req->r_dentry_drop) 1750 len += req->r_dentry->d_name.len; 1751 if (req->r_old_dentry_drop) 1752 len += req->r_old_dentry->d_name.len; 1753 1754 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1755 if (!msg) { 1756 msg = ERR_PTR(-ENOMEM); 1757 goto out_free2; 1758 } 1759 1760 msg->hdr.tid = cpu_to_le64(req->r_tid); 1761 1762 head = msg->front.iov_base; 1763 p = msg->front.iov_base + sizeof(*head); 1764 end = msg->front.iov_base + msg->front.iov_len; 1765 1766 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1767 head->op = cpu_to_le32(req->r_op); 1768 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); 1769 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); 1770 head->args = req->r_args; 1771 1772 ceph_encode_filepath(&p, end, ino1, path1); 1773 ceph_encode_filepath(&p, end, ino2, path2); 1774 1775 /* make note of release offset, in case we need to replay */ 1776 req->r_request_release_offset = p - msg->front.iov_base; 1777 1778 /* cap releases */ 1779 releases = 0; 1780 if (req->r_inode_drop) 1781 releases += ceph_encode_inode_release(&p, 1782 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1783 mds, req->r_inode_drop, req->r_inode_unless, 0); 1784 if (req->r_dentry_drop) 1785 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1786 mds, req->r_dentry_drop, req->r_dentry_unless); 1787 if (req->r_old_dentry_drop) 1788 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1789 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1790 if (req->r_old_inode_drop) 1791 releases += ceph_encode_inode_release(&p, 1792 req->r_old_dentry->d_inode, 1793 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1794 head->num_releases = cpu_to_le16(releases); 1795 1796 BUG_ON(p > end); 1797 msg->front.iov_len = p - msg->front.iov_base; 1798 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1799 1800 if (req->r_data_len) { 1801 /* outbound data set only by ceph_sync_setxattr() */ 1802 BUG_ON(!req->r_pages); 1803 ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0); 1804 } 1805 1806 msg->hdr.data_len = cpu_to_le32(req->r_data_len); 1807 msg->hdr.data_off = cpu_to_le16(0); 1808 1809 out_free2: 1810 if (freepath2) 1811 kfree((char *)path2); 1812 out_free1: 1813 if (freepath1) 1814 kfree((char *)path1); 1815 out: 1816 return msg; 1817 } 1818 1819 /* 1820 * called under mdsc->mutex if error, under no mutex if 1821 * success. 1822 */ 1823 static void complete_request(struct ceph_mds_client *mdsc, 1824 struct ceph_mds_request *req) 1825 { 1826 if (req->r_callback) 1827 req->r_callback(mdsc, req); 1828 else 1829 complete_all(&req->r_completion); 1830 } 1831 1832 /* 1833 * called under mdsc->mutex 1834 */ 1835 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1836 struct ceph_mds_request *req, 1837 int mds) 1838 { 1839 struct ceph_mds_request_head *rhead; 1840 struct ceph_msg *msg; 1841 int flags = 0; 1842 1843 req->r_attempts++; 1844 if (req->r_inode) { 1845 struct ceph_cap *cap = 1846 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 1847 1848 if (cap) 1849 req->r_sent_on_mseq = cap->mseq; 1850 else 1851 req->r_sent_on_mseq = -1; 1852 } 1853 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1854 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1855 1856 if (req->r_got_unsafe) { 1857 /* 1858 * Replay. Do not regenerate message (and rebuild 1859 * paths, etc.); just use the original message. 1860 * Rebuilding paths will break for renames because 1861 * d_move mangles the src name. 1862 */ 1863 msg = req->r_request; 1864 rhead = msg->front.iov_base; 1865 1866 flags = le32_to_cpu(rhead->flags); 1867 flags |= CEPH_MDS_FLAG_REPLAY; 1868 rhead->flags = cpu_to_le32(flags); 1869 1870 if (req->r_target_inode) 1871 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 1872 1873 rhead->num_retry = req->r_attempts - 1; 1874 1875 /* remove cap/dentry releases from message */ 1876 rhead->num_releases = 0; 1877 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset); 1878 msg->front.iov_len = req->r_request_release_offset; 1879 return 0; 1880 } 1881 1882 if (req->r_request) { 1883 ceph_msg_put(req->r_request); 1884 req->r_request = NULL; 1885 } 1886 msg = create_request_message(mdsc, req, mds); 1887 if (IS_ERR(msg)) { 1888 req->r_err = PTR_ERR(msg); 1889 complete_request(mdsc, req); 1890 return PTR_ERR(msg); 1891 } 1892 req->r_request = msg; 1893 1894 rhead = msg->front.iov_base; 1895 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 1896 if (req->r_got_unsafe) 1897 flags |= CEPH_MDS_FLAG_REPLAY; 1898 if (req->r_locked_dir) 1899 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 1900 rhead->flags = cpu_to_le32(flags); 1901 rhead->num_fwd = req->r_num_fwd; 1902 rhead->num_retry = req->r_attempts - 1; 1903 rhead->ino = 0; 1904 1905 dout(" r_locked_dir = %p\n", req->r_locked_dir); 1906 return 0; 1907 } 1908 1909 /* 1910 * send request, or put it on the appropriate wait list. 1911 */ 1912 static int __do_request(struct ceph_mds_client *mdsc, 1913 struct ceph_mds_request *req) 1914 { 1915 struct ceph_mds_session *session = NULL; 1916 int mds = -1; 1917 int err = -EAGAIN; 1918 1919 if (req->r_err || req->r_got_result) { 1920 if (req->r_aborted) 1921 __unregister_request(mdsc, req); 1922 goto out; 1923 } 1924 1925 if (req->r_timeout && 1926 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 1927 dout("do_request timed out\n"); 1928 err = -EIO; 1929 goto finish; 1930 } 1931 1932 put_request_session(req); 1933 1934 mds = __choose_mds(mdsc, req); 1935 if (mds < 0 || 1936 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 1937 dout("do_request no mds or not active, waiting for map\n"); 1938 list_add(&req->r_wait, &mdsc->waiting_for_map); 1939 goto out; 1940 } 1941 1942 /* get, open session */ 1943 session = __ceph_lookup_mds_session(mdsc, mds); 1944 if (!session) { 1945 session = register_session(mdsc, mds); 1946 if (IS_ERR(session)) { 1947 err = PTR_ERR(session); 1948 goto finish; 1949 } 1950 } 1951 req->r_session = get_session(session); 1952 1953 dout("do_request mds%d session %p state %s\n", mds, session, 1954 session_state_name(session->s_state)); 1955 if (session->s_state != CEPH_MDS_SESSION_OPEN && 1956 session->s_state != CEPH_MDS_SESSION_HUNG) { 1957 if (session->s_state == CEPH_MDS_SESSION_NEW || 1958 session->s_state == CEPH_MDS_SESSION_CLOSING) 1959 __open_session(mdsc, session); 1960 list_add(&req->r_wait, &session->s_waiting); 1961 goto out_session; 1962 } 1963 1964 /* send request */ 1965 req->r_resend_mds = -1; /* forget any previous mds hint */ 1966 1967 if (req->r_request_started == 0) /* note request start time */ 1968 req->r_request_started = jiffies; 1969 1970 err = __prepare_send_request(mdsc, req, mds); 1971 if (!err) { 1972 ceph_msg_get(req->r_request); 1973 ceph_con_send(&session->s_con, req->r_request); 1974 } 1975 1976 out_session: 1977 ceph_put_mds_session(session); 1978 out: 1979 return err; 1980 1981 finish: 1982 req->r_err = err; 1983 complete_request(mdsc, req); 1984 goto out; 1985 } 1986 1987 /* 1988 * called under mdsc->mutex 1989 */ 1990 static void __wake_requests(struct ceph_mds_client *mdsc, 1991 struct list_head *head) 1992 { 1993 struct ceph_mds_request *req; 1994 LIST_HEAD(tmp_list); 1995 1996 list_splice_init(head, &tmp_list); 1997 1998 while (!list_empty(&tmp_list)) { 1999 req = list_entry(tmp_list.next, 2000 struct ceph_mds_request, r_wait); 2001 list_del_init(&req->r_wait); 2002 dout(" wake request %p tid %llu\n", req, req->r_tid); 2003 __do_request(mdsc, req); 2004 } 2005 } 2006 2007 /* 2008 * Wake up threads with requests pending for @mds, so that they can 2009 * resubmit their requests to a possibly different mds. 2010 */ 2011 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 2012 { 2013 struct ceph_mds_request *req; 2014 struct rb_node *p; 2015 2016 dout("kick_requests mds%d\n", mds); 2017 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) { 2018 req = rb_entry(p, struct ceph_mds_request, r_node); 2019 if (req->r_got_unsafe) 2020 continue; 2021 if (req->r_session && 2022 req->r_session->s_mds == mds) { 2023 dout(" kicking tid %llu\n", req->r_tid); 2024 __do_request(mdsc, req); 2025 } 2026 } 2027 } 2028 2029 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 2030 struct ceph_mds_request *req) 2031 { 2032 dout("submit_request on %p\n", req); 2033 mutex_lock(&mdsc->mutex); 2034 __register_request(mdsc, req, NULL); 2035 __do_request(mdsc, req); 2036 mutex_unlock(&mdsc->mutex); 2037 } 2038 2039 /* 2040 * Synchrously perform an mds request. Take care of all of the 2041 * session setup, forwarding, retry details. 2042 */ 2043 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 2044 struct inode *dir, 2045 struct ceph_mds_request *req) 2046 { 2047 int err; 2048 2049 dout("do_request on %p\n", req); 2050 2051 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 2052 if (req->r_inode) 2053 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 2054 if (req->r_locked_dir) 2055 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 2056 if (req->r_old_dentry) 2057 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 2058 CEPH_CAP_PIN); 2059 2060 /* issue */ 2061 mutex_lock(&mdsc->mutex); 2062 __register_request(mdsc, req, dir); 2063 __do_request(mdsc, req); 2064 2065 if (req->r_err) { 2066 err = req->r_err; 2067 __unregister_request(mdsc, req); 2068 dout("do_request early error %d\n", err); 2069 goto out; 2070 } 2071 2072 /* wait */ 2073 mutex_unlock(&mdsc->mutex); 2074 dout("do_request waiting\n"); 2075 if (req->r_timeout) { 2076 err = (long)wait_for_completion_killable_timeout( 2077 &req->r_completion, req->r_timeout); 2078 if (err == 0) 2079 err = -EIO; 2080 } else { 2081 err = wait_for_completion_killable(&req->r_completion); 2082 } 2083 dout("do_request waited, got %d\n", err); 2084 mutex_lock(&mdsc->mutex); 2085 2086 /* only abort if we didn't race with a real reply */ 2087 if (req->r_got_result) { 2088 err = le32_to_cpu(req->r_reply_info.head->result); 2089 } else if (err < 0) { 2090 dout("aborted request %lld with %d\n", req->r_tid, err); 2091 2092 /* 2093 * ensure we aren't running concurrently with 2094 * ceph_fill_trace or ceph_readdir_prepopulate, which 2095 * rely on locks (dir mutex) held by our caller. 2096 */ 2097 mutex_lock(&req->r_fill_mutex); 2098 req->r_err = err; 2099 req->r_aborted = true; 2100 mutex_unlock(&req->r_fill_mutex); 2101 2102 if (req->r_locked_dir && 2103 (req->r_op & CEPH_MDS_OP_WRITE)) 2104 ceph_invalidate_dir_request(req); 2105 } else { 2106 err = req->r_err; 2107 } 2108 2109 out: 2110 mutex_unlock(&mdsc->mutex); 2111 dout("do_request %p done, result %d\n", req, err); 2112 return err; 2113 } 2114 2115 /* 2116 * Invalidate dir's completeness, dentry lease state on an aborted MDS 2117 * namespace request. 2118 */ 2119 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2120 { 2121 struct inode *inode = req->r_locked_dir; 2122 2123 dout("invalidate_dir_request %p (complete, lease(s))\n", inode); 2124 2125 ceph_dir_clear_complete(inode); 2126 if (req->r_dentry) 2127 ceph_invalidate_dentry_lease(req->r_dentry); 2128 if (req->r_old_dentry) 2129 ceph_invalidate_dentry_lease(req->r_old_dentry); 2130 } 2131 2132 /* 2133 * Handle mds reply. 2134 * 2135 * We take the session mutex and parse and process the reply immediately. 2136 * This preserves the logical ordering of replies, capabilities, etc., sent 2137 * by the MDS as they are applied to our local cache. 2138 */ 2139 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2140 { 2141 struct ceph_mds_client *mdsc = session->s_mdsc; 2142 struct ceph_mds_request *req; 2143 struct ceph_mds_reply_head *head = msg->front.iov_base; 2144 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2145 u64 tid; 2146 int err, result; 2147 int mds = session->s_mds; 2148 2149 if (msg->front.iov_len < sizeof(*head)) { 2150 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2151 ceph_msg_dump(msg); 2152 return; 2153 } 2154 2155 /* get request, session */ 2156 tid = le64_to_cpu(msg->hdr.tid); 2157 mutex_lock(&mdsc->mutex); 2158 req = __lookup_request(mdsc, tid); 2159 if (!req) { 2160 dout("handle_reply on unknown tid %llu\n", tid); 2161 mutex_unlock(&mdsc->mutex); 2162 return; 2163 } 2164 dout("handle_reply %p\n", req); 2165 2166 /* correct session? */ 2167 if (req->r_session != session) { 2168 pr_err("mdsc_handle_reply got %llu on session mds%d" 2169 " not mds%d\n", tid, session->s_mds, 2170 req->r_session ? req->r_session->s_mds : -1); 2171 mutex_unlock(&mdsc->mutex); 2172 goto out; 2173 } 2174 2175 /* dup? */ 2176 if ((req->r_got_unsafe && !head->safe) || 2177 (req->r_got_safe && head->safe)) { 2178 pr_warning("got a dup %s reply on %llu from mds%d\n", 2179 head->safe ? "safe" : "unsafe", tid, mds); 2180 mutex_unlock(&mdsc->mutex); 2181 goto out; 2182 } 2183 if (req->r_got_safe && !head->safe) { 2184 pr_warning("got unsafe after safe on %llu from mds%d\n", 2185 tid, mds); 2186 mutex_unlock(&mdsc->mutex); 2187 goto out; 2188 } 2189 2190 result = le32_to_cpu(head->result); 2191 2192 /* 2193 * Handle an ESTALE 2194 * if we're not talking to the authority, send to them 2195 * if the authority has changed while we weren't looking, 2196 * send to new authority 2197 * Otherwise we just have to return an ESTALE 2198 */ 2199 if (result == -ESTALE) { 2200 dout("got ESTALE on request %llu", req->r_tid); 2201 if (req->r_direct_mode != USE_AUTH_MDS) { 2202 dout("not using auth, setting for that now"); 2203 req->r_direct_mode = USE_AUTH_MDS; 2204 __do_request(mdsc, req); 2205 mutex_unlock(&mdsc->mutex); 2206 goto out; 2207 } else { 2208 int mds = __choose_mds(mdsc, req); 2209 if (mds >= 0 && mds != req->r_session->s_mds) { 2210 dout("but auth changed, so resending"); 2211 __do_request(mdsc, req); 2212 mutex_unlock(&mdsc->mutex); 2213 goto out; 2214 } 2215 } 2216 dout("have to return ESTALE on request %llu", req->r_tid); 2217 } 2218 2219 2220 if (head->safe) { 2221 req->r_got_safe = true; 2222 __unregister_request(mdsc, req); 2223 2224 if (req->r_got_unsafe) { 2225 /* 2226 * We already handled the unsafe response, now do the 2227 * cleanup. No need to examine the response; the MDS 2228 * doesn't include any result info in the safe 2229 * response. And even if it did, there is nothing 2230 * useful we could do with a revised return value. 2231 */ 2232 dout("got safe reply %llu, mds%d\n", tid, mds); 2233 list_del_init(&req->r_unsafe_item); 2234 2235 /* last unsafe request during umount? */ 2236 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2237 complete_all(&mdsc->safe_umount_waiters); 2238 mutex_unlock(&mdsc->mutex); 2239 goto out; 2240 } 2241 } else { 2242 req->r_got_unsafe = true; 2243 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2244 } 2245 2246 dout("handle_reply tid %lld result %d\n", tid, result); 2247 rinfo = &req->r_reply_info; 2248 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2249 mutex_unlock(&mdsc->mutex); 2250 2251 mutex_lock(&session->s_mutex); 2252 if (err < 0) { 2253 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2254 ceph_msg_dump(msg); 2255 goto out_err; 2256 } 2257 2258 /* snap trace */ 2259 if (rinfo->snapblob_len) { 2260 down_write(&mdsc->snap_rwsem); 2261 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2262 rinfo->snapblob + rinfo->snapblob_len, 2263 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 2264 downgrade_write(&mdsc->snap_rwsem); 2265 } else { 2266 down_read(&mdsc->snap_rwsem); 2267 } 2268 2269 /* insert trace into our cache */ 2270 mutex_lock(&req->r_fill_mutex); 2271 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2272 if (err == 0) { 2273 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 2274 req->r_op == CEPH_MDS_OP_LSSNAP)) 2275 ceph_readdir_prepopulate(req, req->r_session); 2276 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2277 } 2278 mutex_unlock(&req->r_fill_mutex); 2279 2280 up_read(&mdsc->snap_rwsem); 2281 out_err: 2282 mutex_lock(&mdsc->mutex); 2283 if (!req->r_aborted) { 2284 if (err) { 2285 req->r_err = err; 2286 } else { 2287 req->r_reply = msg; 2288 ceph_msg_get(msg); 2289 req->r_got_result = true; 2290 } 2291 } else { 2292 dout("reply arrived after request %lld was aborted\n", tid); 2293 } 2294 mutex_unlock(&mdsc->mutex); 2295 2296 ceph_add_cap_releases(mdsc, req->r_session); 2297 mutex_unlock(&session->s_mutex); 2298 2299 /* kick calling process */ 2300 complete_request(mdsc, req); 2301 out: 2302 ceph_mdsc_put_request(req); 2303 return; 2304 } 2305 2306 2307 2308 /* 2309 * handle mds notification that our request has been forwarded. 2310 */ 2311 static void handle_forward(struct ceph_mds_client *mdsc, 2312 struct ceph_mds_session *session, 2313 struct ceph_msg *msg) 2314 { 2315 struct ceph_mds_request *req; 2316 u64 tid = le64_to_cpu(msg->hdr.tid); 2317 u32 next_mds; 2318 u32 fwd_seq; 2319 int err = -EINVAL; 2320 void *p = msg->front.iov_base; 2321 void *end = p + msg->front.iov_len; 2322 2323 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2324 next_mds = ceph_decode_32(&p); 2325 fwd_seq = ceph_decode_32(&p); 2326 2327 mutex_lock(&mdsc->mutex); 2328 req = __lookup_request(mdsc, tid); 2329 if (!req) { 2330 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2331 goto out; /* dup reply? */ 2332 } 2333 2334 if (req->r_aborted) { 2335 dout("forward tid %llu aborted, unregistering\n", tid); 2336 __unregister_request(mdsc, req); 2337 } else if (fwd_seq <= req->r_num_fwd) { 2338 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2339 tid, next_mds, req->r_num_fwd, fwd_seq); 2340 } else { 2341 /* resend. forward race not possible; mds would drop */ 2342 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2343 BUG_ON(req->r_err); 2344 BUG_ON(req->r_got_result); 2345 req->r_num_fwd = fwd_seq; 2346 req->r_resend_mds = next_mds; 2347 put_request_session(req); 2348 __do_request(mdsc, req); 2349 } 2350 ceph_mdsc_put_request(req); 2351 out: 2352 mutex_unlock(&mdsc->mutex); 2353 return; 2354 2355 bad: 2356 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2357 } 2358 2359 /* 2360 * handle a mds session control message 2361 */ 2362 static void handle_session(struct ceph_mds_session *session, 2363 struct ceph_msg *msg) 2364 { 2365 struct ceph_mds_client *mdsc = session->s_mdsc; 2366 u32 op; 2367 u64 seq; 2368 int mds = session->s_mds; 2369 struct ceph_mds_session_head *h = msg->front.iov_base; 2370 int wake = 0; 2371 2372 /* decode */ 2373 if (msg->front.iov_len != sizeof(*h)) 2374 goto bad; 2375 op = le32_to_cpu(h->op); 2376 seq = le64_to_cpu(h->seq); 2377 2378 mutex_lock(&mdsc->mutex); 2379 if (op == CEPH_SESSION_CLOSE) 2380 __unregister_session(mdsc, session); 2381 /* FIXME: this ttl calculation is generous */ 2382 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2383 mutex_unlock(&mdsc->mutex); 2384 2385 mutex_lock(&session->s_mutex); 2386 2387 dout("handle_session mds%d %s %p state %s seq %llu\n", 2388 mds, ceph_session_op_name(op), session, 2389 session_state_name(session->s_state), seq); 2390 2391 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2392 session->s_state = CEPH_MDS_SESSION_OPEN; 2393 pr_info("mds%d came back\n", session->s_mds); 2394 } 2395 2396 switch (op) { 2397 case CEPH_SESSION_OPEN: 2398 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2399 pr_info("mds%d reconnect success\n", session->s_mds); 2400 session->s_state = CEPH_MDS_SESSION_OPEN; 2401 renewed_caps(mdsc, session, 0); 2402 wake = 1; 2403 if (mdsc->stopping) 2404 __close_session(mdsc, session); 2405 break; 2406 2407 case CEPH_SESSION_RENEWCAPS: 2408 if (session->s_renew_seq == seq) 2409 renewed_caps(mdsc, session, 1); 2410 break; 2411 2412 case CEPH_SESSION_CLOSE: 2413 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2414 pr_info("mds%d reconnect denied\n", session->s_mds); 2415 remove_session_caps(session); 2416 wake = 1; /* for good measure */ 2417 wake_up_all(&mdsc->session_close_wq); 2418 kick_requests(mdsc, mds); 2419 break; 2420 2421 case CEPH_SESSION_STALE: 2422 pr_info("mds%d caps went stale, renewing\n", 2423 session->s_mds); 2424 spin_lock(&session->s_gen_ttl_lock); 2425 session->s_cap_gen++; 2426 session->s_cap_ttl = jiffies - 1; 2427 spin_unlock(&session->s_gen_ttl_lock); 2428 send_renew_caps(mdsc, session); 2429 break; 2430 2431 case CEPH_SESSION_RECALL_STATE: 2432 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2433 break; 2434 2435 case CEPH_SESSION_FLUSHMSG: 2436 send_flushmsg_ack(mdsc, session, seq); 2437 break; 2438 2439 default: 2440 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2441 WARN_ON(1); 2442 } 2443 2444 mutex_unlock(&session->s_mutex); 2445 if (wake) { 2446 mutex_lock(&mdsc->mutex); 2447 __wake_requests(mdsc, &session->s_waiting); 2448 mutex_unlock(&mdsc->mutex); 2449 } 2450 return; 2451 2452 bad: 2453 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2454 (int)msg->front.iov_len); 2455 ceph_msg_dump(msg); 2456 return; 2457 } 2458 2459 2460 /* 2461 * called under session->mutex. 2462 */ 2463 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2464 struct ceph_mds_session *session) 2465 { 2466 struct ceph_mds_request *req, *nreq; 2467 int err; 2468 2469 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2470 2471 mutex_lock(&mdsc->mutex); 2472 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2473 err = __prepare_send_request(mdsc, req, session->s_mds); 2474 if (!err) { 2475 ceph_msg_get(req->r_request); 2476 ceph_con_send(&session->s_con, req->r_request); 2477 } 2478 } 2479 mutex_unlock(&mdsc->mutex); 2480 } 2481 2482 /* 2483 * Encode information about a cap for a reconnect with the MDS. 2484 */ 2485 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2486 void *arg) 2487 { 2488 union { 2489 struct ceph_mds_cap_reconnect v2; 2490 struct ceph_mds_cap_reconnect_v1 v1; 2491 } rec; 2492 size_t reclen; 2493 struct ceph_inode_info *ci; 2494 struct ceph_reconnect_state *recon_state = arg; 2495 struct ceph_pagelist *pagelist = recon_state->pagelist; 2496 char *path; 2497 int pathlen, err; 2498 u64 pathbase; 2499 struct dentry *dentry; 2500 2501 ci = cap->ci; 2502 2503 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2504 inode, ceph_vinop(inode), cap, cap->cap_id, 2505 ceph_cap_string(cap->issued)); 2506 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2507 if (err) 2508 return err; 2509 2510 dentry = d_find_alias(inode); 2511 if (dentry) { 2512 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2513 if (IS_ERR(path)) { 2514 err = PTR_ERR(path); 2515 goto out_dput; 2516 } 2517 } else { 2518 path = NULL; 2519 pathlen = 0; 2520 } 2521 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2522 if (err) 2523 goto out_free; 2524 2525 spin_lock(&ci->i_ceph_lock); 2526 cap->seq = 0; /* reset cap seq */ 2527 cap->issue_seq = 0; /* and issue_seq */ 2528 cap->mseq = 0; /* and migrate_seq */ 2529 cap->cap_gen = cap->session->s_cap_gen; 2530 2531 if (recon_state->flock) { 2532 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2533 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2534 rec.v2.issued = cpu_to_le32(cap->issued); 2535 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2536 rec.v2.pathbase = cpu_to_le64(pathbase); 2537 rec.v2.flock_len = 0; 2538 reclen = sizeof(rec.v2); 2539 } else { 2540 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2541 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2542 rec.v1.issued = cpu_to_le32(cap->issued); 2543 rec.v1.size = cpu_to_le64(inode->i_size); 2544 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2545 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2546 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2547 rec.v1.pathbase = cpu_to_le64(pathbase); 2548 reclen = sizeof(rec.v1); 2549 } 2550 spin_unlock(&ci->i_ceph_lock); 2551 2552 if (recon_state->flock) { 2553 int num_fcntl_locks, num_flock_locks; 2554 struct ceph_filelock *flocks; 2555 2556 encode_again: 2557 spin_lock(&inode->i_lock); 2558 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 2559 spin_unlock(&inode->i_lock); 2560 flocks = kmalloc((num_fcntl_locks+num_flock_locks) * 2561 sizeof(struct ceph_filelock), GFP_NOFS); 2562 if (!flocks) { 2563 err = -ENOMEM; 2564 goto out_free; 2565 } 2566 spin_lock(&inode->i_lock); 2567 err = ceph_encode_locks_to_buffer(inode, flocks, 2568 num_fcntl_locks, 2569 num_flock_locks); 2570 spin_unlock(&inode->i_lock); 2571 if (err) { 2572 kfree(flocks); 2573 if (err == -ENOSPC) 2574 goto encode_again; 2575 goto out_free; 2576 } 2577 /* 2578 * number of encoded locks is stable, so copy to pagelist 2579 */ 2580 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) + 2581 (num_fcntl_locks+num_flock_locks) * 2582 sizeof(struct ceph_filelock)); 2583 err = ceph_pagelist_append(pagelist, &rec, reclen); 2584 if (!err) 2585 err = ceph_locks_to_pagelist(flocks, pagelist, 2586 num_fcntl_locks, 2587 num_flock_locks); 2588 kfree(flocks); 2589 } else { 2590 err = ceph_pagelist_append(pagelist, &rec, reclen); 2591 } 2592 2593 recon_state->nr_caps++; 2594 out_free: 2595 kfree(path); 2596 out_dput: 2597 dput(dentry); 2598 return err; 2599 } 2600 2601 2602 /* 2603 * If an MDS fails and recovers, clients need to reconnect in order to 2604 * reestablish shared state. This includes all caps issued through 2605 * this session _and_ the snap_realm hierarchy. Because it's not 2606 * clear which snap realms the mds cares about, we send everything we 2607 * know about.. that ensures we'll then get any new info the 2608 * recovering MDS might have. 2609 * 2610 * This is a relatively heavyweight operation, but it's rare. 2611 * 2612 * called with mdsc->mutex held. 2613 */ 2614 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2615 struct ceph_mds_session *session) 2616 { 2617 struct ceph_msg *reply; 2618 struct rb_node *p; 2619 int mds = session->s_mds; 2620 int err = -ENOMEM; 2621 int s_nr_caps; 2622 struct ceph_pagelist *pagelist; 2623 struct ceph_reconnect_state recon_state; 2624 2625 pr_info("mds%d reconnect start\n", mds); 2626 2627 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2628 if (!pagelist) 2629 goto fail_nopagelist; 2630 ceph_pagelist_init(pagelist); 2631 2632 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2633 if (!reply) 2634 goto fail_nomsg; 2635 2636 mutex_lock(&session->s_mutex); 2637 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2638 session->s_seq = 0; 2639 2640 ceph_con_close(&session->s_con); 2641 ceph_con_open(&session->s_con, 2642 CEPH_ENTITY_TYPE_MDS, mds, 2643 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2644 2645 /* replay unsafe requests */ 2646 replay_unsafe_requests(mdsc, session); 2647 2648 down_read(&mdsc->snap_rwsem); 2649 2650 dout("session %p state %s\n", session, 2651 session_state_name(session->s_state)); 2652 2653 spin_lock(&session->s_gen_ttl_lock); 2654 session->s_cap_gen++; 2655 spin_unlock(&session->s_gen_ttl_lock); 2656 2657 spin_lock(&session->s_cap_lock); 2658 /* 2659 * notify __ceph_remove_cap() that we are composing cap reconnect. 2660 * If a cap get released before being added to the cap reconnect, 2661 * __ceph_remove_cap() should skip queuing cap release. 2662 */ 2663 session->s_cap_reconnect = 1; 2664 /* drop old cap expires; we're about to reestablish that state */ 2665 discard_cap_releases(mdsc, session); 2666 spin_unlock(&session->s_cap_lock); 2667 2668 /* traverse this session's caps */ 2669 s_nr_caps = session->s_nr_caps; 2670 err = ceph_pagelist_encode_32(pagelist, s_nr_caps); 2671 if (err) 2672 goto fail; 2673 2674 recon_state.nr_caps = 0; 2675 recon_state.pagelist = pagelist; 2676 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2677 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2678 if (err < 0) 2679 goto fail; 2680 2681 spin_lock(&session->s_cap_lock); 2682 session->s_cap_reconnect = 0; 2683 spin_unlock(&session->s_cap_lock); 2684 2685 /* 2686 * snaprealms. we provide mds with the ino, seq (version), and 2687 * parent for all of our realms. If the mds has any newer info, 2688 * it will tell us. 2689 */ 2690 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2691 struct ceph_snap_realm *realm = 2692 rb_entry(p, struct ceph_snap_realm, node); 2693 struct ceph_mds_snaprealm_reconnect sr_rec; 2694 2695 dout(" adding snap realm %llx seq %lld parent %llx\n", 2696 realm->ino, realm->seq, realm->parent_ino); 2697 sr_rec.ino = cpu_to_le64(realm->ino); 2698 sr_rec.seq = cpu_to_le64(realm->seq); 2699 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2700 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2701 if (err) 2702 goto fail; 2703 } 2704 2705 if (recon_state.flock) 2706 reply->hdr.version = cpu_to_le16(2); 2707 2708 /* raced with cap release? */ 2709 if (s_nr_caps != recon_state.nr_caps) { 2710 struct page *page = list_first_entry(&pagelist->head, 2711 struct page, lru); 2712 __le32 *addr = kmap_atomic(page); 2713 *addr = cpu_to_le32(recon_state.nr_caps); 2714 kunmap_atomic(addr); 2715 } 2716 2717 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2718 ceph_msg_data_add_pagelist(reply, pagelist); 2719 ceph_con_send(&session->s_con, reply); 2720 2721 mutex_unlock(&session->s_mutex); 2722 2723 mutex_lock(&mdsc->mutex); 2724 __wake_requests(mdsc, &session->s_waiting); 2725 mutex_unlock(&mdsc->mutex); 2726 2727 up_read(&mdsc->snap_rwsem); 2728 return; 2729 2730 fail: 2731 ceph_msg_put(reply); 2732 up_read(&mdsc->snap_rwsem); 2733 mutex_unlock(&session->s_mutex); 2734 fail_nomsg: 2735 ceph_pagelist_release(pagelist); 2736 kfree(pagelist); 2737 fail_nopagelist: 2738 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2739 return; 2740 } 2741 2742 2743 /* 2744 * compare old and new mdsmaps, kicking requests 2745 * and closing out old connections as necessary 2746 * 2747 * called under mdsc->mutex. 2748 */ 2749 static void check_new_map(struct ceph_mds_client *mdsc, 2750 struct ceph_mdsmap *newmap, 2751 struct ceph_mdsmap *oldmap) 2752 { 2753 int i; 2754 int oldstate, newstate; 2755 struct ceph_mds_session *s; 2756 2757 dout("check_new_map new %u old %u\n", 2758 newmap->m_epoch, oldmap->m_epoch); 2759 2760 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2761 if (mdsc->sessions[i] == NULL) 2762 continue; 2763 s = mdsc->sessions[i]; 2764 oldstate = ceph_mdsmap_get_state(oldmap, i); 2765 newstate = ceph_mdsmap_get_state(newmap, i); 2766 2767 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 2768 i, ceph_mds_state_name(oldstate), 2769 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 2770 ceph_mds_state_name(newstate), 2771 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 2772 session_state_name(s->s_state)); 2773 2774 if (i >= newmap->m_max_mds || 2775 memcmp(ceph_mdsmap_get_addr(oldmap, i), 2776 ceph_mdsmap_get_addr(newmap, i), 2777 sizeof(struct ceph_entity_addr))) { 2778 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2779 /* the session never opened, just close it 2780 * out now */ 2781 __wake_requests(mdsc, &s->s_waiting); 2782 __unregister_session(mdsc, s); 2783 } else { 2784 /* just close it */ 2785 mutex_unlock(&mdsc->mutex); 2786 mutex_lock(&s->s_mutex); 2787 mutex_lock(&mdsc->mutex); 2788 ceph_con_close(&s->s_con); 2789 mutex_unlock(&s->s_mutex); 2790 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2791 } 2792 2793 /* kick any requests waiting on the recovering mds */ 2794 kick_requests(mdsc, i); 2795 } else if (oldstate == newstate) { 2796 continue; /* nothing new with this mds */ 2797 } 2798 2799 /* 2800 * send reconnect? 2801 */ 2802 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2803 newstate >= CEPH_MDS_STATE_RECONNECT) { 2804 mutex_unlock(&mdsc->mutex); 2805 send_mds_reconnect(mdsc, s); 2806 mutex_lock(&mdsc->mutex); 2807 } 2808 2809 /* 2810 * kick request on any mds that has gone active. 2811 */ 2812 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2813 newstate >= CEPH_MDS_STATE_ACTIVE) { 2814 if (oldstate != CEPH_MDS_STATE_CREATING && 2815 oldstate != CEPH_MDS_STATE_STARTING) 2816 pr_info("mds%d recovery completed\n", s->s_mds); 2817 kick_requests(mdsc, i); 2818 ceph_kick_flushing_caps(mdsc, s); 2819 wake_up_session_caps(s, 1); 2820 } 2821 } 2822 2823 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 2824 s = mdsc->sessions[i]; 2825 if (!s) 2826 continue; 2827 if (!ceph_mdsmap_is_laggy(newmap, i)) 2828 continue; 2829 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2830 s->s_state == CEPH_MDS_SESSION_HUNG || 2831 s->s_state == CEPH_MDS_SESSION_CLOSING) { 2832 dout(" connecting to export targets of laggy mds%d\n", 2833 i); 2834 __open_export_target_sessions(mdsc, s); 2835 } 2836 } 2837 } 2838 2839 2840 2841 /* 2842 * leases 2843 */ 2844 2845 /* 2846 * caller must hold session s_mutex, dentry->d_lock 2847 */ 2848 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2849 { 2850 struct ceph_dentry_info *di = ceph_dentry(dentry); 2851 2852 ceph_put_mds_session(di->lease_session); 2853 di->lease_session = NULL; 2854 } 2855 2856 static void handle_lease(struct ceph_mds_client *mdsc, 2857 struct ceph_mds_session *session, 2858 struct ceph_msg *msg) 2859 { 2860 struct super_block *sb = mdsc->fsc->sb; 2861 struct inode *inode; 2862 struct dentry *parent, *dentry; 2863 struct ceph_dentry_info *di; 2864 int mds = session->s_mds; 2865 struct ceph_mds_lease *h = msg->front.iov_base; 2866 u32 seq; 2867 struct ceph_vino vino; 2868 struct qstr dname; 2869 int release = 0; 2870 2871 dout("handle_lease from mds%d\n", mds); 2872 2873 /* decode */ 2874 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 2875 goto bad; 2876 vino.ino = le64_to_cpu(h->ino); 2877 vino.snap = CEPH_NOSNAP; 2878 seq = le32_to_cpu(h->seq); 2879 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 2880 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 2881 if (dname.len != get_unaligned_le32(h+1)) 2882 goto bad; 2883 2884 mutex_lock(&session->s_mutex); 2885 session->s_seq++; 2886 2887 /* lookup inode */ 2888 inode = ceph_find_inode(sb, vino); 2889 dout("handle_lease %s, ino %llx %p %.*s\n", 2890 ceph_lease_op_name(h->action), vino.ino, inode, 2891 dname.len, dname.name); 2892 if (inode == NULL) { 2893 dout("handle_lease no inode %llx\n", vino.ino); 2894 goto release; 2895 } 2896 2897 /* dentry */ 2898 parent = d_find_alias(inode); 2899 if (!parent) { 2900 dout("no parent dentry on inode %p\n", inode); 2901 WARN_ON(1); 2902 goto release; /* hrm... */ 2903 } 2904 dname.hash = full_name_hash(dname.name, dname.len); 2905 dentry = d_lookup(parent, &dname); 2906 dput(parent); 2907 if (!dentry) 2908 goto release; 2909 2910 spin_lock(&dentry->d_lock); 2911 di = ceph_dentry(dentry); 2912 switch (h->action) { 2913 case CEPH_MDS_LEASE_REVOKE: 2914 if (di->lease_session == session) { 2915 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 2916 h->seq = cpu_to_le32(di->lease_seq); 2917 __ceph_mdsc_drop_dentry_lease(dentry); 2918 } 2919 release = 1; 2920 break; 2921 2922 case CEPH_MDS_LEASE_RENEW: 2923 if (di->lease_session == session && 2924 di->lease_gen == session->s_cap_gen && 2925 di->lease_renew_from && 2926 di->lease_renew_after == 0) { 2927 unsigned long duration = 2928 le32_to_cpu(h->duration_ms) * HZ / 1000; 2929 2930 di->lease_seq = seq; 2931 dentry->d_time = di->lease_renew_from + duration; 2932 di->lease_renew_after = di->lease_renew_from + 2933 (duration >> 1); 2934 di->lease_renew_from = 0; 2935 } 2936 break; 2937 } 2938 spin_unlock(&dentry->d_lock); 2939 dput(dentry); 2940 2941 if (!release) 2942 goto out; 2943 2944 release: 2945 /* let's just reuse the same message */ 2946 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 2947 ceph_msg_get(msg); 2948 ceph_con_send(&session->s_con, msg); 2949 2950 out: 2951 iput(inode); 2952 mutex_unlock(&session->s_mutex); 2953 return; 2954 2955 bad: 2956 pr_err("corrupt lease message\n"); 2957 ceph_msg_dump(msg); 2958 } 2959 2960 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 2961 struct inode *inode, 2962 struct dentry *dentry, char action, 2963 u32 seq) 2964 { 2965 struct ceph_msg *msg; 2966 struct ceph_mds_lease *lease; 2967 int len = sizeof(*lease) + sizeof(u32); 2968 int dnamelen = 0; 2969 2970 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 2971 inode, dentry, ceph_lease_op_name(action), session->s_mds); 2972 dnamelen = dentry->d_name.len; 2973 len += dnamelen; 2974 2975 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 2976 if (!msg) 2977 return; 2978 lease = msg->front.iov_base; 2979 lease->action = action; 2980 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 2981 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 2982 lease->seq = cpu_to_le32(seq); 2983 put_unaligned_le32(dnamelen, lease + 1); 2984 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 2985 2986 /* 2987 * if this is a preemptive lease RELEASE, no need to 2988 * flush request stream, since the actual request will 2989 * soon follow. 2990 */ 2991 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 2992 2993 ceph_con_send(&session->s_con, msg); 2994 } 2995 2996 /* 2997 * Preemptively release a lease we expect to invalidate anyway. 2998 * Pass @inode always, @dentry is optional. 2999 */ 3000 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 3001 struct dentry *dentry) 3002 { 3003 struct ceph_dentry_info *di; 3004 struct ceph_mds_session *session; 3005 u32 seq; 3006 3007 BUG_ON(inode == NULL); 3008 BUG_ON(dentry == NULL); 3009 3010 /* is dentry lease valid? */ 3011 spin_lock(&dentry->d_lock); 3012 di = ceph_dentry(dentry); 3013 if (!di || !di->lease_session || 3014 di->lease_session->s_mds < 0 || 3015 di->lease_gen != di->lease_session->s_cap_gen || 3016 !time_before(jiffies, dentry->d_time)) { 3017 dout("lease_release inode %p dentry %p -- " 3018 "no lease\n", 3019 inode, dentry); 3020 spin_unlock(&dentry->d_lock); 3021 return; 3022 } 3023 3024 /* we do have a lease on this dentry; note mds and seq */ 3025 session = ceph_get_mds_session(di->lease_session); 3026 seq = di->lease_seq; 3027 __ceph_mdsc_drop_dentry_lease(dentry); 3028 spin_unlock(&dentry->d_lock); 3029 3030 dout("lease_release inode %p dentry %p to mds%d\n", 3031 inode, dentry, session->s_mds); 3032 ceph_mdsc_lease_send_msg(session, inode, dentry, 3033 CEPH_MDS_LEASE_RELEASE, seq); 3034 ceph_put_mds_session(session); 3035 } 3036 3037 /* 3038 * drop all leases (and dentry refs) in preparation for umount 3039 */ 3040 static void drop_leases(struct ceph_mds_client *mdsc) 3041 { 3042 int i; 3043 3044 dout("drop_leases\n"); 3045 mutex_lock(&mdsc->mutex); 3046 for (i = 0; i < mdsc->max_sessions; i++) { 3047 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3048 if (!s) 3049 continue; 3050 mutex_unlock(&mdsc->mutex); 3051 mutex_lock(&s->s_mutex); 3052 mutex_unlock(&s->s_mutex); 3053 ceph_put_mds_session(s); 3054 mutex_lock(&mdsc->mutex); 3055 } 3056 mutex_unlock(&mdsc->mutex); 3057 } 3058 3059 3060 3061 /* 3062 * delayed work -- periodically trim expired leases, renew caps with mds 3063 */ 3064 static void schedule_delayed(struct ceph_mds_client *mdsc) 3065 { 3066 int delay = 5; 3067 unsigned hz = round_jiffies_relative(HZ * delay); 3068 schedule_delayed_work(&mdsc->delayed_work, hz); 3069 } 3070 3071 static void delayed_work(struct work_struct *work) 3072 { 3073 int i; 3074 struct ceph_mds_client *mdsc = 3075 container_of(work, struct ceph_mds_client, delayed_work.work); 3076 int renew_interval; 3077 int renew_caps; 3078 3079 dout("mdsc delayed_work\n"); 3080 ceph_check_delayed_caps(mdsc); 3081 3082 mutex_lock(&mdsc->mutex); 3083 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 3084 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 3085 mdsc->last_renew_caps); 3086 if (renew_caps) 3087 mdsc->last_renew_caps = jiffies; 3088 3089 for (i = 0; i < mdsc->max_sessions; i++) { 3090 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3091 if (s == NULL) 3092 continue; 3093 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 3094 dout("resending session close request for mds%d\n", 3095 s->s_mds); 3096 request_close_session(mdsc, s); 3097 ceph_put_mds_session(s); 3098 continue; 3099 } 3100 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 3101 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 3102 s->s_state = CEPH_MDS_SESSION_HUNG; 3103 pr_info("mds%d hung\n", s->s_mds); 3104 } 3105 } 3106 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 3107 /* this mds is failed or recovering, just wait */ 3108 ceph_put_mds_session(s); 3109 continue; 3110 } 3111 mutex_unlock(&mdsc->mutex); 3112 3113 mutex_lock(&s->s_mutex); 3114 if (renew_caps) 3115 send_renew_caps(mdsc, s); 3116 else 3117 ceph_con_keepalive(&s->s_con); 3118 ceph_add_cap_releases(mdsc, s); 3119 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3120 s->s_state == CEPH_MDS_SESSION_HUNG) 3121 ceph_send_cap_releases(mdsc, s); 3122 mutex_unlock(&s->s_mutex); 3123 ceph_put_mds_session(s); 3124 3125 mutex_lock(&mdsc->mutex); 3126 } 3127 mutex_unlock(&mdsc->mutex); 3128 3129 schedule_delayed(mdsc); 3130 } 3131 3132 int ceph_mdsc_init(struct ceph_fs_client *fsc) 3133 3134 { 3135 struct ceph_mds_client *mdsc; 3136 3137 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 3138 if (!mdsc) 3139 return -ENOMEM; 3140 mdsc->fsc = fsc; 3141 fsc->mdsc = mdsc; 3142 mutex_init(&mdsc->mutex); 3143 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3144 if (mdsc->mdsmap == NULL) { 3145 kfree(mdsc); 3146 return -ENOMEM; 3147 } 3148 3149 init_completion(&mdsc->safe_umount_waiters); 3150 init_waitqueue_head(&mdsc->session_close_wq); 3151 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3152 mdsc->sessions = NULL; 3153 mdsc->max_sessions = 0; 3154 mdsc->stopping = 0; 3155 init_rwsem(&mdsc->snap_rwsem); 3156 mdsc->snap_realms = RB_ROOT; 3157 INIT_LIST_HEAD(&mdsc->snap_empty); 3158 spin_lock_init(&mdsc->snap_empty_lock); 3159 mdsc->last_tid = 0; 3160 mdsc->request_tree = RB_ROOT; 3161 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3162 mdsc->last_renew_caps = jiffies; 3163 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3164 spin_lock_init(&mdsc->cap_delay_lock); 3165 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3166 spin_lock_init(&mdsc->snap_flush_lock); 3167 mdsc->cap_flush_seq = 0; 3168 INIT_LIST_HEAD(&mdsc->cap_dirty); 3169 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3170 mdsc->num_cap_flushing = 0; 3171 spin_lock_init(&mdsc->cap_dirty_lock); 3172 init_waitqueue_head(&mdsc->cap_flushing_wq); 3173 spin_lock_init(&mdsc->dentry_lru_lock); 3174 INIT_LIST_HEAD(&mdsc->dentry_lru); 3175 3176 ceph_caps_init(mdsc); 3177 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3178 3179 return 0; 3180 } 3181 3182 /* 3183 * Wait for safe replies on open mds requests. If we time out, drop 3184 * all requests from the tree to avoid dangling dentry refs. 3185 */ 3186 static void wait_requests(struct ceph_mds_client *mdsc) 3187 { 3188 struct ceph_mds_request *req; 3189 struct ceph_fs_client *fsc = mdsc->fsc; 3190 3191 mutex_lock(&mdsc->mutex); 3192 if (__get_oldest_req(mdsc)) { 3193 mutex_unlock(&mdsc->mutex); 3194 3195 dout("wait_requests waiting for requests\n"); 3196 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3197 fsc->client->options->mount_timeout * HZ); 3198 3199 /* tear down remaining requests */ 3200 mutex_lock(&mdsc->mutex); 3201 while ((req = __get_oldest_req(mdsc))) { 3202 dout("wait_requests timed out on tid %llu\n", 3203 req->r_tid); 3204 __unregister_request(mdsc, req); 3205 } 3206 } 3207 mutex_unlock(&mdsc->mutex); 3208 dout("wait_requests done\n"); 3209 } 3210 3211 /* 3212 * called before mount is ro, and before dentries are torn down. 3213 * (hmm, does this still race with new lookups?) 3214 */ 3215 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3216 { 3217 dout("pre_umount\n"); 3218 mdsc->stopping = 1; 3219 3220 drop_leases(mdsc); 3221 ceph_flush_dirty_caps(mdsc); 3222 wait_requests(mdsc); 3223 3224 /* 3225 * wait for reply handlers to drop their request refs and 3226 * their inode/dcache refs 3227 */ 3228 ceph_msgr_flush(); 3229 } 3230 3231 /* 3232 * wait for all write mds requests to flush. 3233 */ 3234 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3235 { 3236 struct ceph_mds_request *req = NULL, *nextreq; 3237 struct rb_node *n; 3238 3239 mutex_lock(&mdsc->mutex); 3240 dout("wait_unsafe_requests want %lld\n", want_tid); 3241 restart: 3242 req = __get_oldest_req(mdsc); 3243 while (req && req->r_tid <= want_tid) { 3244 /* find next request */ 3245 n = rb_next(&req->r_node); 3246 if (n) 3247 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3248 else 3249 nextreq = NULL; 3250 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3251 /* write op */ 3252 ceph_mdsc_get_request(req); 3253 if (nextreq) 3254 ceph_mdsc_get_request(nextreq); 3255 mutex_unlock(&mdsc->mutex); 3256 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3257 req->r_tid, want_tid); 3258 wait_for_completion(&req->r_safe_completion); 3259 mutex_lock(&mdsc->mutex); 3260 ceph_mdsc_put_request(req); 3261 if (!nextreq) 3262 break; /* next dne before, so we're done! */ 3263 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3264 /* next request was removed from tree */ 3265 ceph_mdsc_put_request(nextreq); 3266 goto restart; 3267 } 3268 ceph_mdsc_put_request(nextreq); /* won't go away */ 3269 } 3270 req = nextreq; 3271 } 3272 mutex_unlock(&mdsc->mutex); 3273 dout("wait_unsafe_requests done\n"); 3274 } 3275 3276 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3277 { 3278 u64 want_tid, want_flush; 3279 3280 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3281 return; 3282 3283 dout("sync\n"); 3284 mutex_lock(&mdsc->mutex); 3285 want_tid = mdsc->last_tid; 3286 want_flush = mdsc->cap_flush_seq; 3287 mutex_unlock(&mdsc->mutex); 3288 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3289 3290 ceph_flush_dirty_caps(mdsc); 3291 3292 wait_unsafe_requests(mdsc, want_tid); 3293 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 3294 } 3295 3296 /* 3297 * true if all sessions are closed, or we force unmount 3298 */ 3299 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3300 { 3301 int i, n = 0; 3302 3303 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3304 return true; 3305 3306 mutex_lock(&mdsc->mutex); 3307 for (i = 0; i < mdsc->max_sessions; i++) 3308 if (mdsc->sessions[i]) 3309 n++; 3310 mutex_unlock(&mdsc->mutex); 3311 return n == 0; 3312 } 3313 3314 /* 3315 * called after sb is ro. 3316 */ 3317 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3318 { 3319 struct ceph_mds_session *session; 3320 int i; 3321 struct ceph_fs_client *fsc = mdsc->fsc; 3322 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3323 3324 dout("close_sessions\n"); 3325 3326 /* close sessions */ 3327 mutex_lock(&mdsc->mutex); 3328 for (i = 0; i < mdsc->max_sessions; i++) { 3329 session = __ceph_lookup_mds_session(mdsc, i); 3330 if (!session) 3331 continue; 3332 mutex_unlock(&mdsc->mutex); 3333 mutex_lock(&session->s_mutex); 3334 __close_session(mdsc, session); 3335 mutex_unlock(&session->s_mutex); 3336 ceph_put_mds_session(session); 3337 mutex_lock(&mdsc->mutex); 3338 } 3339 mutex_unlock(&mdsc->mutex); 3340 3341 dout("waiting for sessions to close\n"); 3342 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3343 timeout); 3344 3345 /* tear down remaining sessions */ 3346 mutex_lock(&mdsc->mutex); 3347 for (i = 0; i < mdsc->max_sessions; i++) { 3348 if (mdsc->sessions[i]) { 3349 session = get_session(mdsc->sessions[i]); 3350 __unregister_session(mdsc, session); 3351 mutex_unlock(&mdsc->mutex); 3352 mutex_lock(&session->s_mutex); 3353 remove_session_caps(session); 3354 mutex_unlock(&session->s_mutex); 3355 ceph_put_mds_session(session); 3356 mutex_lock(&mdsc->mutex); 3357 } 3358 } 3359 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3360 mutex_unlock(&mdsc->mutex); 3361 3362 ceph_cleanup_empty_realms(mdsc); 3363 3364 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3365 3366 dout("stopped\n"); 3367 } 3368 3369 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3370 { 3371 dout("stop\n"); 3372 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3373 if (mdsc->mdsmap) 3374 ceph_mdsmap_destroy(mdsc->mdsmap); 3375 kfree(mdsc->sessions); 3376 ceph_caps_finalize(mdsc); 3377 } 3378 3379 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3380 { 3381 struct ceph_mds_client *mdsc = fsc->mdsc; 3382 3383 dout("mdsc_destroy %p\n", mdsc); 3384 ceph_mdsc_stop(mdsc); 3385 3386 /* flush out any connection work with references to us */ 3387 ceph_msgr_flush(); 3388 3389 fsc->mdsc = NULL; 3390 kfree(mdsc); 3391 dout("mdsc_destroy %p done\n", mdsc); 3392 } 3393 3394 3395 /* 3396 * handle mds map update. 3397 */ 3398 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3399 { 3400 u32 epoch; 3401 u32 maplen; 3402 void *p = msg->front.iov_base; 3403 void *end = p + msg->front.iov_len; 3404 struct ceph_mdsmap *newmap, *oldmap; 3405 struct ceph_fsid fsid; 3406 int err = -EINVAL; 3407 3408 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3409 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3410 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3411 return; 3412 epoch = ceph_decode_32(&p); 3413 maplen = ceph_decode_32(&p); 3414 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3415 3416 /* do we need it? */ 3417 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3418 mutex_lock(&mdsc->mutex); 3419 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3420 dout("handle_map epoch %u <= our %u\n", 3421 epoch, mdsc->mdsmap->m_epoch); 3422 mutex_unlock(&mdsc->mutex); 3423 return; 3424 } 3425 3426 newmap = ceph_mdsmap_decode(&p, end); 3427 if (IS_ERR(newmap)) { 3428 err = PTR_ERR(newmap); 3429 goto bad_unlock; 3430 } 3431 3432 /* swap into place */ 3433 if (mdsc->mdsmap) { 3434 oldmap = mdsc->mdsmap; 3435 mdsc->mdsmap = newmap; 3436 check_new_map(mdsc, newmap, oldmap); 3437 ceph_mdsmap_destroy(oldmap); 3438 } else { 3439 mdsc->mdsmap = newmap; /* first mds map */ 3440 } 3441 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3442 3443 __wake_requests(mdsc, &mdsc->waiting_for_map); 3444 3445 mutex_unlock(&mdsc->mutex); 3446 schedule_delayed(mdsc); 3447 return; 3448 3449 bad_unlock: 3450 mutex_unlock(&mdsc->mutex); 3451 bad: 3452 pr_err("error decoding mdsmap %d\n", err); 3453 return; 3454 } 3455 3456 static struct ceph_connection *con_get(struct ceph_connection *con) 3457 { 3458 struct ceph_mds_session *s = con->private; 3459 3460 if (get_session(s)) { 3461 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3462 return con; 3463 } 3464 dout("mdsc con_get %p FAIL\n", s); 3465 return NULL; 3466 } 3467 3468 static void con_put(struct ceph_connection *con) 3469 { 3470 struct ceph_mds_session *s = con->private; 3471 3472 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3473 ceph_put_mds_session(s); 3474 } 3475 3476 /* 3477 * if the client is unresponsive for long enough, the mds will kill 3478 * the session entirely. 3479 */ 3480 static void peer_reset(struct ceph_connection *con) 3481 { 3482 struct ceph_mds_session *s = con->private; 3483 struct ceph_mds_client *mdsc = s->s_mdsc; 3484 3485 pr_warning("mds%d closed our session\n", s->s_mds); 3486 send_mds_reconnect(mdsc, s); 3487 } 3488 3489 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3490 { 3491 struct ceph_mds_session *s = con->private; 3492 struct ceph_mds_client *mdsc = s->s_mdsc; 3493 int type = le16_to_cpu(msg->hdr.type); 3494 3495 mutex_lock(&mdsc->mutex); 3496 if (__verify_registered_session(mdsc, s) < 0) { 3497 mutex_unlock(&mdsc->mutex); 3498 goto out; 3499 } 3500 mutex_unlock(&mdsc->mutex); 3501 3502 switch (type) { 3503 case CEPH_MSG_MDS_MAP: 3504 ceph_mdsc_handle_map(mdsc, msg); 3505 break; 3506 case CEPH_MSG_CLIENT_SESSION: 3507 handle_session(s, msg); 3508 break; 3509 case CEPH_MSG_CLIENT_REPLY: 3510 handle_reply(s, msg); 3511 break; 3512 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3513 handle_forward(mdsc, s, msg); 3514 break; 3515 case CEPH_MSG_CLIENT_CAPS: 3516 ceph_handle_caps(s, msg); 3517 break; 3518 case CEPH_MSG_CLIENT_SNAP: 3519 ceph_handle_snap(mdsc, s, msg); 3520 break; 3521 case CEPH_MSG_CLIENT_LEASE: 3522 handle_lease(mdsc, s, msg); 3523 break; 3524 3525 default: 3526 pr_err("received unknown message type %d %s\n", type, 3527 ceph_msg_type_name(type)); 3528 } 3529 out: 3530 ceph_msg_put(msg); 3531 } 3532 3533 /* 3534 * authentication 3535 */ 3536 3537 /* 3538 * Note: returned pointer is the address of a structure that's 3539 * managed separately. Caller must *not* attempt to free it. 3540 */ 3541 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 3542 int *proto, int force_new) 3543 { 3544 struct ceph_mds_session *s = con->private; 3545 struct ceph_mds_client *mdsc = s->s_mdsc; 3546 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3547 struct ceph_auth_handshake *auth = &s->s_auth; 3548 3549 if (force_new && auth->authorizer) { 3550 ceph_auth_destroy_authorizer(ac, auth->authorizer); 3551 auth->authorizer = NULL; 3552 } 3553 if (!auth->authorizer) { 3554 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3555 auth); 3556 if (ret) 3557 return ERR_PTR(ret); 3558 } else { 3559 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3560 auth); 3561 if (ret) 3562 return ERR_PTR(ret); 3563 } 3564 *proto = ac->protocol; 3565 3566 return auth; 3567 } 3568 3569 3570 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3571 { 3572 struct ceph_mds_session *s = con->private; 3573 struct ceph_mds_client *mdsc = s->s_mdsc; 3574 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3575 3576 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len); 3577 } 3578 3579 static int invalidate_authorizer(struct ceph_connection *con) 3580 { 3581 struct ceph_mds_session *s = con->private; 3582 struct ceph_mds_client *mdsc = s->s_mdsc; 3583 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3584 3585 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3586 3587 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3588 } 3589 3590 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 3591 struct ceph_msg_header *hdr, int *skip) 3592 { 3593 struct ceph_msg *msg; 3594 int type = (int) le16_to_cpu(hdr->type); 3595 int front_len = (int) le32_to_cpu(hdr->front_len); 3596 3597 if (con->in_msg) 3598 return con->in_msg; 3599 3600 *skip = 0; 3601 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 3602 if (!msg) { 3603 pr_err("unable to allocate msg type %d len %d\n", 3604 type, front_len); 3605 return NULL; 3606 } 3607 3608 return msg; 3609 } 3610 3611 static const struct ceph_connection_operations mds_con_ops = { 3612 .get = con_get, 3613 .put = con_put, 3614 .dispatch = dispatch, 3615 .get_authorizer = get_authorizer, 3616 .verify_authorizer_reply = verify_authorizer_reply, 3617 .invalidate_authorizer = invalidate_authorizer, 3618 .peer_reset = peer_reset, 3619 .alloc_msg = mds_alloc_msg, 3620 }; 3621 3622 /* eof */ 3623