xref: /openbmc/linux/fs/ceph/mds_client.c (revision 1ab142d4)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9 
10 #include "super.h"
11 #include "mds_client.h"
12 
13 #include <linux/ceph/messenger.h>
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/pagelist.h>
16 #include <linux/ceph/auth.h>
17 #include <linux/ceph/debugfs.h>
18 
19 /*
20  * A cluster of MDS (metadata server) daemons is responsible for
21  * managing the file system namespace (the directory hierarchy and
22  * inodes) and for coordinating shared access to storage.  Metadata is
23  * partitioning hierarchically across a number of servers, and that
24  * partition varies over time as the cluster adjusts the distribution
25  * in order to balance load.
26  *
27  * The MDS client is primarily responsible to managing synchronous
28  * metadata requests for operations like open, unlink, and so forth.
29  * If there is a MDS failure, we find out about it when we (possibly
30  * request and) receive a new MDS map, and can resubmit affected
31  * requests.
32  *
33  * For the most part, though, we take advantage of a lossless
34  * communications channel to the MDS, and do not need to worry about
35  * timing out or resubmitting requests.
36  *
37  * We maintain a stateful "session" with each MDS we interact with.
38  * Within each session, we sent periodic heartbeat messages to ensure
39  * any capabilities or leases we have been issues remain valid.  If
40  * the session times out and goes stale, our leases and capabilities
41  * are no longer valid.
42  */
43 
44 struct ceph_reconnect_state {
45 	struct ceph_pagelist *pagelist;
46 	bool flock;
47 };
48 
49 static void __wake_requests(struct ceph_mds_client *mdsc,
50 			    struct list_head *head);
51 
52 static const struct ceph_connection_operations mds_con_ops;
53 
54 
55 /*
56  * mds reply parsing
57  */
58 
59 /*
60  * parse individual inode info
61  */
62 static int parse_reply_info_in(void **p, void *end,
63 			       struct ceph_mds_reply_info_in *info,
64 			       int features)
65 {
66 	int err = -EIO;
67 
68 	info->in = *p;
69 	*p += sizeof(struct ceph_mds_reply_inode) +
70 		sizeof(*info->in->fragtree.splits) *
71 		le32_to_cpu(info->in->fragtree.nsplits);
72 
73 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
74 	ceph_decode_need(p, end, info->symlink_len, bad);
75 	info->symlink = *p;
76 	*p += info->symlink_len;
77 
78 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
79 		ceph_decode_copy_safe(p, end, &info->dir_layout,
80 				      sizeof(info->dir_layout), bad);
81 	else
82 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
83 
84 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
85 	ceph_decode_need(p, end, info->xattr_len, bad);
86 	info->xattr_data = *p;
87 	*p += info->xattr_len;
88 	return 0;
89 bad:
90 	return err;
91 }
92 
93 /*
94  * parse a normal reply, which may contain a (dir+)dentry and/or a
95  * target inode.
96  */
97 static int parse_reply_info_trace(void **p, void *end,
98 				  struct ceph_mds_reply_info_parsed *info,
99 				  int features)
100 {
101 	int err;
102 
103 	if (info->head->is_dentry) {
104 		err = parse_reply_info_in(p, end, &info->diri, features);
105 		if (err < 0)
106 			goto out_bad;
107 
108 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
109 			goto bad;
110 		info->dirfrag = *p;
111 		*p += sizeof(*info->dirfrag) +
112 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
113 		if (unlikely(*p > end))
114 			goto bad;
115 
116 		ceph_decode_32_safe(p, end, info->dname_len, bad);
117 		ceph_decode_need(p, end, info->dname_len, bad);
118 		info->dname = *p;
119 		*p += info->dname_len;
120 		info->dlease = *p;
121 		*p += sizeof(*info->dlease);
122 	}
123 
124 	if (info->head->is_target) {
125 		err = parse_reply_info_in(p, end, &info->targeti, features);
126 		if (err < 0)
127 			goto out_bad;
128 	}
129 
130 	if (unlikely(*p != end))
131 		goto bad;
132 	return 0;
133 
134 bad:
135 	err = -EIO;
136 out_bad:
137 	pr_err("problem parsing mds trace %d\n", err);
138 	return err;
139 }
140 
141 /*
142  * parse readdir results
143  */
144 static int parse_reply_info_dir(void **p, void *end,
145 				struct ceph_mds_reply_info_parsed *info,
146 				int features)
147 {
148 	u32 num, i = 0;
149 	int err;
150 
151 	info->dir_dir = *p;
152 	if (*p + sizeof(*info->dir_dir) > end)
153 		goto bad;
154 	*p += sizeof(*info->dir_dir) +
155 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
156 	if (*p > end)
157 		goto bad;
158 
159 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
160 	num = ceph_decode_32(p);
161 	info->dir_end = ceph_decode_8(p);
162 	info->dir_complete = ceph_decode_8(p);
163 	if (num == 0)
164 		goto done;
165 
166 	/* alloc large array */
167 	info->dir_nr = num;
168 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
169 			       sizeof(*info->dir_dname) +
170 			       sizeof(*info->dir_dname_len) +
171 			       sizeof(*info->dir_dlease),
172 			       GFP_NOFS);
173 	if (info->dir_in == NULL) {
174 		err = -ENOMEM;
175 		goto out_bad;
176 	}
177 	info->dir_dname = (void *)(info->dir_in + num);
178 	info->dir_dname_len = (void *)(info->dir_dname + num);
179 	info->dir_dlease = (void *)(info->dir_dname_len + num);
180 
181 	while (num) {
182 		/* dentry */
183 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
184 		info->dir_dname_len[i] = ceph_decode_32(p);
185 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
186 		info->dir_dname[i] = *p;
187 		*p += info->dir_dname_len[i];
188 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
189 		     info->dir_dname[i]);
190 		info->dir_dlease[i] = *p;
191 		*p += sizeof(struct ceph_mds_reply_lease);
192 
193 		/* inode */
194 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
195 		if (err < 0)
196 			goto out_bad;
197 		i++;
198 		num--;
199 	}
200 
201 done:
202 	if (*p != end)
203 		goto bad;
204 	return 0;
205 
206 bad:
207 	err = -EIO;
208 out_bad:
209 	pr_err("problem parsing dir contents %d\n", err);
210 	return err;
211 }
212 
213 /*
214  * parse fcntl F_GETLK results
215  */
216 static int parse_reply_info_filelock(void **p, void *end,
217 				     struct ceph_mds_reply_info_parsed *info,
218 				     int features)
219 {
220 	if (*p + sizeof(*info->filelock_reply) > end)
221 		goto bad;
222 
223 	info->filelock_reply = *p;
224 	*p += sizeof(*info->filelock_reply);
225 
226 	if (unlikely(*p != end))
227 		goto bad;
228 	return 0;
229 
230 bad:
231 	return -EIO;
232 }
233 
234 /*
235  * parse extra results
236  */
237 static int parse_reply_info_extra(void **p, void *end,
238 				  struct ceph_mds_reply_info_parsed *info,
239 				  int features)
240 {
241 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
242 		return parse_reply_info_filelock(p, end, info, features);
243 	else
244 		return parse_reply_info_dir(p, end, info, features);
245 }
246 
247 /*
248  * parse entire mds reply
249  */
250 static int parse_reply_info(struct ceph_msg *msg,
251 			    struct ceph_mds_reply_info_parsed *info,
252 			    int features)
253 {
254 	void *p, *end;
255 	u32 len;
256 	int err;
257 
258 	info->head = msg->front.iov_base;
259 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
260 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
261 
262 	/* trace */
263 	ceph_decode_32_safe(&p, end, len, bad);
264 	if (len > 0) {
265 		ceph_decode_need(&p, end, len, bad);
266 		err = parse_reply_info_trace(&p, p+len, info, features);
267 		if (err < 0)
268 			goto out_bad;
269 	}
270 
271 	/* extra */
272 	ceph_decode_32_safe(&p, end, len, bad);
273 	if (len > 0) {
274 		ceph_decode_need(&p, end, len, bad);
275 		err = parse_reply_info_extra(&p, p+len, info, features);
276 		if (err < 0)
277 			goto out_bad;
278 	}
279 
280 	/* snap blob */
281 	ceph_decode_32_safe(&p, end, len, bad);
282 	info->snapblob_len = len;
283 	info->snapblob = p;
284 	p += len;
285 
286 	if (p != end)
287 		goto bad;
288 	return 0;
289 
290 bad:
291 	err = -EIO;
292 out_bad:
293 	pr_err("mds parse_reply err %d\n", err);
294 	return err;
295 }
296 
297 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
298 {
299 	kfree(info->dir_in);
300 }
301 
302 
303 /*
304  * sessions
305  */
306 static const char *session_state_name(int s)
307 {
308 	switch (s) {
309 	case CEPH_MDS_SESSION_NEW: return "new";
310 	case CEPH_MDS_SESSION_OPENING: return "opening";
311 	case CEPH_MDS_SESSION_OPEN: return "open";
312 	case CEPH_MDS_SESSION_HUNG: return "hung";
313 	case CEPH_MDS_SESSION_CLOSING: return "closing";
314 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
315 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
316 	default: return "???";
317 	}
318 }
319 
320 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
321 {
322 	if (atomic_inc_not_zero(&s->s_ref)) {
323 		dout("mdsc get_session %p %d -> %d\n", s,
324 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
325 		return s;
326 	} else {
327 		dout("mdsc get_session %p 0 -- FAIL", s);
328 		return NULL;
329 	}
330 }
331 
332 void ceph_put_mds_session(struct ceph_mds_session *s)
333 {
334 	dout("mdsc put_session %p %d -> %d\n", s,
335 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
336 	if (atomic_dec_and_test(&s->s_ref)) {
337 		if (s->s_authorizer)
338 		     s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer(
339 			     s->s_mdsc->fsc->client->monc.auth,
340 			     s->s_authorizer);
341 		kfree(s);
342 	}
343 }
344 
345 /*
346  * called under mdsc->mutex
347  */
348 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
349 						   int mds)
350 {
351 	struct ceph_mds_session *session;
352 
353 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
354 		return NULL;
355 	session = mdsc->sessions[mds];
356 	dout("lookup_mds_session %p %d\n", session,
357 	     atomic_read(&session->s_ref));
358 	get_session(session);
359 	return session;
360 }
361 
362 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
363 {
364 	if (mds >= mdsc->max_sessions)
365 		return false;
366 	return mdsc->sessions[mds];
367 }
368 
369 static int __verify_registered_session(struct ceph_mds_client *mdsc,
370 				       struct ceph_mds_session *s)
371 {
372 	if (s->s_mds >= mdsc->max_sessions ||
373 	    mdsc->sessions[s->s_mds] != s)
374 		return -ENOENT;
375 	return 0;
376 }
377 
378 /*
379  * create+register a new session for given mds.
380  * called under mdsc->mutex.
381  */
382 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
383 						 int mds)
384 {
385 	struct ceph_mds_session *s;
386 
387 	s = kzalloc(sizeof(*s), GFP_NOFS);
388 	if (!s)
389 		return ERR_PTR(-ENOMEM);
390 	s->s_mdsc = mdsc;
391 	s->s_mds = mds;
392 	s->s_state = CEPH_MDS_SESSION_NEW;
393 	s->s_ttl = 0;
394 	s->s_seq = 0;
395 	mutex_init(&s->s_mutex);
396 
397 	ceph_con_init(mdsc->fsc->client->msgr, &s->s_con);
398 	s->s_con.private = s;
399 	s->s_con.ops = &mds_con_ops;
400 	s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
401 	s->s_con.peer_name.num = cpu_to_le64(mds);
402 
403 	spin_lock_init(&s->s_gen_ttl_lock);
404 	s->s_cap_gen = 0;
405 	s->s_cap_ttl = 0;
406 
407 	spin_lock_init(&s->s_cap_lock);
408 	s->s_renew_requested = 0;
409 	s->s_renew_seq = 0;
410 	INIT_LIST_HEAD(&s->s_caps);
411 	s->s_nr_caps = 0;
412 	s->s_trim_caps = 0;
413 	atomic_set(&s->s_ref, 1);
414 	INIT_LIST_HEAD(&s->s_waiting);
415 	INIT_LIST_HEAD(&s->s_unsafe);
416 	s->s_num_cap_releases = 0;
417 	s->s_cap_iterator = NULL;
418 	INIT_LIST_HEAD(&s->s_cap_releases);
419 	INIT_LIST_HEAD(&s->s_cap_releases_done);
420 	INIT_LIST_HEAD(&s->s_cap_flushing);
421 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
422 
423 	dout("register_session mds%d\n", mds);
424 	if (mds >= mdsc->max_sessions) {
425 		int newmax = 1 << get_count_order(mds+1);
426 		struct ceph_mds_session **sa;
427 
428 		dout("register_session realloc to %d\n", newmax);
429 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
430 		if (sa == NULL)
431 			goto fail_realloc;
432 		if (mdsc->sessions) {
433 			memcpy(sa, mdsc->sessions,
434 			       mdsc->max_sessions * sizeof(void *));
435 			kfree(mdsc->sessions);
436 		}
437 		mdsc->sessions = sa;
438 		mdsc->max_sessions = newmax;
439 	}
440 	mdsc->sessions[mds] = s;
441 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
442 
443 	ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
444 
445 	return s;
446 
447 fail_realloc:
448 	kfree(s);
449 	return ERR_PTR(-ENOMEM);
450 }
451 
452 /*
453  * called under mdsc->mutex
454  */
455 static void __unregister_session(struct ceph_mds_client *mdsc,
456 			       struct ceph_mds_session *s)
457 {
458 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
459 	BUG_ON(mdsc->sessions[s->s_mds] != s);
460 	mdsc->sessions[s->s_mds] = NULL;
461 	ceph_con_close(&s->s_con);
462 	ceph_put_mds_session(s);
463 }
464 
465 /*
466  * drop session refs in request.
467  *
468  * should be last request ref, or hold mdsc->mutex
469  */
470 static void put_request_session(struct ceph_mds_request *req)
471 {
472 	if (req->r_session) {
473 		ceph_put_mds_session(req->r_session);
474 		req->r_session = NULL;
475 	}
476 }
477 
478 void ceph_mdsc_release_request(struct kref *kref)
479 {
480 	struct ceph_mds_request *req = container_of(kref,
481 						    struct ceph_mds_request,
482 						    r_kref);
483 	if (req->r_request)
484 		ceph_msg_put(req->r_request);
485 	if (req->r_reply) {
486 		ceph_msg_put(req->r_reply);
487 		destroy_reply_info(&req->r_reply_info);
488 	}
489 	if (req->r_inode) {
490 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
491 		iput(req->r_inode);
492 	}
493 	if (req->r_locked_dir)
494 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
495 	if (req->r_target_inode)
496 		iput(req->r_target_inode);
497 	if (req->r_dentry)
498 		dput(req->r_dentry);
499 	if (req->r_old_dentry) {
500 		/*
501 		 * track (and drop pins for) r_old_dentry_dir
502 		 * separately, since r_old_dentry's d_parent may have
503 		 * changed between the dir mutex being dropped and
504 		 * this request being freed.
505 		 */
506 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
507 				  CEPH_CAP_PIN);
508 		dput(req->r_old_dentry);
509 		iput(req->r_old_dentry_dir);
510 	}
511 	kfree(req->r_path1);
512 	kfree(req->r_path2);
513 	put_request_session(req);
514 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
515 	kfree(req);
516 }
517 
518 /*
519  * lookup session, bump ref if found.
520  *
521  * called under mdsc->mutex.
522  */
523 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
524 					     u64 tid)
525 {
526 	struct ceph_mds_request *req;
527 	struct rb_node *n = mdsc->request_tree.rb_node;
528 
529 	while (n) {
530 		req = rb_entry(n, struct ceph_mds_request, r_node);
531 		if (tid < req->r_tid)
532 			n = n->rb_left;
533 		else if (tid > req->r_tid)
534 			n = n->rb_right;
535 		else {
536 			ceph_mdsc_get_request(req);
537 			return req;
538 		}
539 	}
540 	return NULL;
541 }
542 
543 static void __insert_request(struct ceph_mds_client *mdsc,
544 			     struct ceph_mds_request *new)
545 {
546 	struct rb_node **p = &mdsc->request_tree.rb_node;
547 	struct rb_node *parent = NULL;
548 	struct ceph_mds_request *req = NULL;
549 
550 	while (*p) {
551 		parent = *p;
552 		req = rb_entry(parent, struct ceph_mds_request, r_node);
553 		if (new->r_tid < req->r_tid)
554 			p = &(*p)->rb_left;
555 		else if (new->r_tid > req->r_tid)
556 			p = &(*p)->rb_right;
557 		else
558 			BUG();
559 	}
560 
561 	rb_link_node(&new->r_node, parent, p);
562 	rb_insert_color(&new->r_node, &mdsc->request_tree);
563 }
564 
565 /*
566  * Register an in-flight request, and assign a tid.  Link to directory
567  * are modifying (if any).
568  *
569  * Called under mdsc->mutex.
570  */
571 static void __register_request(struct ceph_mds_client *mdsc,
572 			       struct ceph_mds_request *req,
573 			       struct inode *dir)
574 {
575 	req->r_tid = ++mdsc->last_tid;
576 	if (req->r_num_caps)
577 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
578 				  req->r_num_caps);
579 	dout("__register_request %p tid %lld\n", req, req->r_tid);
580 	ceph_mdsc_get_request(req);
581 	__insert_request(mdsc, req);
582 
583 	req->r_uid = current_fsuid();
584 	req->r_gid = current_fsgid();
585 
586 	if (dir) {
587 		struct ceph_inode_info *ci = ceph_inode(dir);
588 
589 		ihold(dir);
590 		spin_lock(&ci->i_unsafe_lock);
591 		req->r_unsafe_dir = dir;
592 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
593 		spin_unlock(&ci->i_unsafe_lock);
594 	}
595 }
596 
597 static void __unregister_request(struct ceph_mds_client *mdsc,
598 				 struct ceph_mds_request *req)
599 {
600 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
601 	rb_erase(&req->r_node, &mdsc->request_tree);
602 	RB_CLEAR_NODE(&req->r_node);
603 
604 	if (req->r_unsafe_dir) {
605 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
606 
607 		spin_lock(&ci->i_unsafe_lock);
608 		list_del_init(&req->r_unsafe_dir_item);
609 		spin_unlock(&ci->i_unsafe_lock);
610 
611 		iput(req->r_unsafe_dir);
612 		req->r_unsafe_dir = NULL;
613 	}
614 
615 	ceph_mdsc_put_request(req);
616 }
617 
618 /*
619  * Choose mds to send request to next.  If there is a hint set in the
620  * request (e.g., due to a prior forward hint from the mds), use that.
621  * Otherwise, consult frag tree and/or caps to identify the
622  * appropriate mds.  If all else fails, choose randomly.
623  *
624  * Called under mdsc->mutex.
625  */
626 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
627 {
628 	/*
629 	 * we don't need to worry about protecting the d_parent access
630 	 * here because we never renaming inside the snapped namespace
631 	 * except to resplice to another snapdir, and either the old or new
632 	 * result is a valid result.
633 	 */
634 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
635 		dentry = dentry->d_parent;
636 	return dentry;
637 }
638 
639 static int __choose_mds(struct ceph_mds_client *mdsc,
640 			struct ceph_mds_request *req)
641 {
642 	struct inode *inode;
643 	struct ceph_inode_info *ci;
644 	struct ceph_cap *cap;
645 	int mode = req->r_direct_mode;
646 	int mds = -1;
647 	u32 hash = req->r_direct_hash;
648 	bool is_hash = req->r_direct_is_hash;
649 
650 	/*
651 	 * is there a specific mds we should try?  ignore hint if we have
652 	 * no session and the mds is not up (active or recovering).
653 	 */
654 	if (req->r_resend_mds >= 0 &&
655 	    (__have_session(mdsc, req->r_resend_mds) ||
656 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
657 		dout("choose_mds using resend_mds mds%d\n",
658 		     req->r_resend_mds);
659 		return req->r_resend_mds;
660 	}
661 
662 	if (mode == USE_RANDOM_MDS)
663 		goto random;
664 
665 	inode = NULL;
666 	if (req->r_inode) {
667 		inode = req->r_inode;
668 	} else if (req->r_dentry) {
669 		/* ignore race with rename; old or new d_parent is okay */
670 		struct dentry *parent = req->r_dentry->d_parent;
671 		struct inode *dir = parent->d_inode;
672 
673 		if (dir->i_sb != mdsc->fsc->sb) {
674 			/* not this fs! */
675 			inode = req->r_dentry->d_inode;
676 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
677 			/* direct snapped/virtual snapdir requests
678 			 * based on parent dir inode */
679 			struct dentry *dn = get_nonsnap_parent(parent);
680 			inode = dn->d_inode;
681 			dout("__choose_mds using nonsnap parent %p\n", inode);
682 		} else if (req->r_dentry->d_inode) {
683 			/* dentry target */
684 			inode = req->r_dentry->d_inode;
685 		} else {
686 			/* dir + name */
687 			inode = dir;
688 			hash = ceph_dentry_hash(dir, req->r_dentry);
689 			is_hash = true;
690 		}
691 	}
692 
693 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
694 	     (int)hash, mode);
695 	if (!inode)
696 		goto random;
697 	ci = ceph_inode(inode);
698 
699 	if (is_hash && S_ISDIR(inode->i_mode)) {
700 		struct ceph_inode_frag frag;
701 		int found;
702 
703 		ceph_choose_frag(ci, hash, &frag, &found);
704 		if (found) {
705 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
706 				u8 r;
707 
708 				/* choose a random replica */
709 				get_random_bytes(&r, 1);
710 				r %= frag.ndist;
711 				mds = frag.dist[r];
712 				dout("choose_mds %p %llx.%llx "
713 				     "frag %u mds%d (%d/%d)\n",
714 				     inode, ceph_vinop(inode),
715 				     frag.frag, mds,
716 				     (int)r, frag.ndist);
717 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
718 				    CEPH_MDS_STATE_ACTIVE)
719 					return mds;
720 			}
721 
722 			/* since this file/dir wasn't known to be
723 			 * replicated, then we want to look for the
724 			 * authoritative mds. */
725 			mode = USE_AUTH_MDS;
726 			if (frag.mds >= 0) {
727 				/* choose auth mds */
728 				mds = frag.mds;
729 				dout("choose_mds %p %llx.%llx "
730 				     "frag %u mds%d (auth)\n",
731 				     inode, ceph_vinop(inode), frag.frag, mds);
732 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
733 				    CEPH_MDS_STATE_ACTIVE)
734 					return mds;
735 			}
736 		}
737 	}
738 
739 	spin_lock(&ci->i_ceph_lock);
740 	cap = NULL;
741 	if (mode == USE_AUTH_MDS)
742 		cap = ci->i_auth_cap;
743 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
744 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
745 	if (!cap) {
746 		spin_unlock(&ci->i_ceph_lock);
747 		goto random;
748 	}
749 	mds = cap->session->s_mds;
750 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
751 	     inode, ceph_vinop(inode), mds,
752 	     cap == ci->i_auth_cap ? "auth " : "", cap);
753 	spin_unlock(&ci->i_ceph_lock);
754 	return mds;
755 
756 random:
757 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
758 	dout("choose_mds chose random mds%d\n", mds);
759 	return mds;
760 }
761 
762 
763 /*
764  * session messages
765  */
766 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
767 {
768 	struct ceph_msg *msg;
769 	struct ceph_mds_session_head *h;
770 
771 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
772 			   false);
773 	if (!msg) {
774 		pr_err("create_session_msg ENOMEM creating msg\n");
775 		return NULL;
776 	}
777 	h = msg->front.iov_base;
778 	h->op = cpu_to_le32(op);
779 	h->seq = cpu_to_le64(seq);
780 	return msg;
781 }
782 
783 /*
784  * send session open request.
785  *
786  * called under mdsc->mutex
787  */
788 static int __open_session(struct ceph_mds_client *mdsc,
789 			  struct ceph_mds_session *session)
790 {
791 	struct ceph_msg *msg;
792 	int mstate;
793 	int mds = session->s_mds;
794 
795 	/* wait for mds to go active? */
796 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
797 	dout("open_session to mds%d (%s)\n", mds,
798 	     ceph_mds_state_name(mstate));
799 	session->s_state = CEPH_MDS_SESSION_OPENING;
800 	session->s_renew_requested = jiffies;
801 
802 	/* send connect message */
803 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
804 	if (!msg)
805 		return -ENOMEM;
806 	ceph_con_send(&session->s_con, msg);
807 	return 0;
808 }
809 
810 /*
811  * open sessions for any export targets for the given mds
812  *
813  * called under mdsc->mutex
814  */
815 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
816 					  struct ceph_mds_session *session)
817 {
818 	struct ceph_mds_info *mi;
819 	struct ceph_mds_session *ts;
820 	int i, mds = session->s_mds;
821 	int target;
822 
823 	if (mds >= mdsc->mdsmap->m_max_mds)
824 		return;
825 	mi = &mdsc->mdsmap->m_info[mds];
826 	dout("open_export_target_sessions for mds%d (%d targets)\n",
827 	     session->s_mds, mi->num_export_targets);
828 
829 	for (i = 0; i < mi->num_export_targets; i++) {
830 		target = mi->export_targets[i];
831 		ts = __ceph_lookup_mds_session(mdsc, target);
832 		if (!ts) {
833 			ts = register_session(mdsc, target);
834 			if (IS_ERR(ts))
835 				return;
836 		}
837 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
838 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
839 			__open_session(mdsc, session);
840 		else
841 			dout(" mds%d target mds%d %p is %s\n", session->s_mds,
842 			     i, ts, session_state_name(ts->s_state));
843 		ceph_put_mds_session(ts);
844 	}
845 }
846 
847 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
848 					   struct ceph_mds_session *session)
849 {
850 	mutex_lock(&mdsc->mutex);
851 	__open_export_target_sessions(mdsc, session);
852 	mutex_unlock(&mdsc->mutex);
853 }
854 
855 /*
856  * session caps
857  */
858 
859 /*
860  * Free preallocated cap messages assigned to this session
861  */
862 static void cleanup_cap_releases(struct ceph_mds_session *session)
863 {
864 	struct ceph_msg *msg;
865 
866 	spin_lock(&session->s_cap_lock);
867 	while (!list_empty(&session->s_cap_releases)) {
868 		msg = list_first_entry(&session->s_cap_releases,
869 				       struct ceph_msg, list_head);
870 		list_del_init(&msg->list_head);
871 		ceph_msg_put(msg);
872 	}
873 	while (!list_empty(&session->s_cap_releases_done)) {
874 		msg = list_first_entry(&session->s_cap_releases_done,
875 				       struct ceph_msg, list_head);
876 		list_del_init(&msg->list_head);
877 		ceph_msg_put(msg);
878 	}
879 	spin_unlock(&session->s_cap_lock);
880 }
881 
882 /*
883  * Helper to safely iterate over all caps associated with a session, with
884  * special care taken to handle a racing __ceph_remove_cap().
885  *
886  * Caller must hold session s_mutex.
887  */
888 static int iterate_session_caps(struct ceph_mds_session *session,
889 				 int (*cb)(struct inode *, struct ceph_cap *,
890 					    void *), void *arg)
891 {
892 	struct list_head *p;
893 	struct ceph_cap *cap;
894 	struct inode *inode, *last_inode = NULL;
895 	struct ceph_cap *old_cap = NULL;
896 	int ret;
897 
898 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
899 	spin_lock(&session->s_cap_lock);
900 	p = session->s_caps.next;
901 	while (p != &session->s_caps) {
902 		cap = list_entry(p, struct ceph_cap, session_caps);
903 		inode = igrab(&cap->ci->vfs_inode);
904 		if (!inode) {
905 			p = p->next;
906 			continue;
907 		}
908 		session->s_cap_iterator = cap;
909 		spin_unlock(&session->s_cap_lock);
910 
911 		if (last_inode) {
912 			iput(last_inode);
913 			last_inode = NULL;
914 		}
915 		if (old_cap) {
916 			ceph_put_cap(session->s_mdsc, old_cap);
917 			old_cap = NULL;
918 		}
919 
920 		ret = cb(inode, cap, arg);
921 		last_inode = inode;
922 
923 		spin_lock(&session->s_cap_lock);
924 		p = p->next;
925 		if (cap->ci == NULL) {
926 			dout("iterate_session_caps  finishing cap %p removal\n",
927 			     cap);
928 			BUG_ON(cap->session != session);
929 			list_del_init(&cap->session_caps);
930 			session->s_nr_caps--;
931 			cap->session = NULL;
932 			old_cap = cap;  /* put_cap it w/o locks held */
933 		}
934 		if (ret < 0)
935 			goto out;
936 	}
937 	ret = 0;
938 out:
939 	session->s_cap_iterator = NULL;
940 	spin_unlock(&session->s_cap_lock);
941 
942 	if (last_inode)
943 		iput(last_inode);
944 	if (old_cap)
945 		ceph_put_cap(session->s_mdsc, old_cap);
946 
947 	return ret;
948 }
949 
950 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
951 				  void *arg)
952 {
953 	struct ceph_inode_info *ci = ceph_inode(inode);
954 	int drop = 0;
955 
956 	dout("removing cap %p, ci is %p, inode is %p\n",
957 	     cap, ci, &ci->vfs_inode);
958 	spin_lock(&ci->i_ceph_lock);
959 	__ceph_remove_cap(cap);
960 	if (!__ceph_is_any_real_caps(ci)) {
961 		struct ceph_mds_client *mdsc =
962 			ceph_sb_to_client(inode->i_sb)->mdsc;
963 
964 		spin_lock(&mdsc->cap_dirty_lock);
965 		if (!list_empty(&ci->i_dirty_item)) {
966 			pr_info(" dropping dirty %s state for %p %lld\n",
967 				ceph_cap_string(ci->i_dirty_caps),
968 				inode, ceph_ino(inode));
969 			ci->i_dirty_caps = 0;
970 			list_del_init(&ci->i_dirty_item);
971 			drop = 1;
972 		}
973 		if (!list_empty(&ci->i_flushing_item)) {
974 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
975 				ceph_cap_string(ci->i_flushing_caps),
976 				inode, ceph_ino(inode));
977 			ci->i_flushing_caps = 0;
978 			list_del_init(&ci->i_flushing_item);
979 			mdsc->num_cap_flushing--;
980 			drop = 1;
981 		}
982 		if (drop && ci->i_wrbuffer_ref) {
983 			pr_info(" dropping dirty data for %p %lld\n",
984 				inode, ceph_ino(inode));
985 			ci->i_wrbuffer_ref = 0;
986 			ci->i_wrbuffer_ref_head = 0;
987 			drop++;
988 		}
989 		spin_unlock(&mdsc->cap_dirty_lock);
990 	}
991 	spin_unlock(&ci->i_ceph_lock);
992 	while (drop--)
993 		iput(inode);
994 	return 0;
995 }
996 
997 /*
998  * caller must hold session s_mutex
999  */
1000 static void remove_session_caps(struct ceph_mds_session *session)
1001 {
1002 	dout("remove_session_caps on %p\n", session);
1003 	iterate_session_caps(session, remove_session_caps_cb, NULL);
1004 	BUG_ON(session->s_nr_caps > 0);
1005 	BUG_ON(!list_empty(&session->s_cap_flushing));
1006 	cleanup_cap_releases(session);
1007 }
1008 
1009 /*
1010  * wake up any threads waiting on this session's caps.  if the cap is
1011  * old (didn't get renewed on the client reconnect), remove it now.
1012  *
1013  * caller must hold s_mutex.
1014  */
1015 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1016 			      void *arg)
1017 {
1018 	struct ceph_inode_info *ci = ceph_inode(inode);
1019 
1020 	wake_up_all(&ci->i_cap_wq);
1021 	if (arg) {
1022 		spin_lock(&ci->i_ceph_lock);
1023 		ci->i_wanted_max_size = 0;
1024 		ci->i_requested_max_size = 0;
1025 		spin_unlock(&ci->i_ceph_lock);
1026 	}
1027 	return 0;
1028 }
1029 
1030 static void wake_up_session_caps(struct ceph_mds_session *session,
1031 				 int reconnect)
1032 {
1033 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1034 	iterate_session_caps(session, wake_up_session_cb,
1035 			     (void *)(unsigned long)reconnect);
1036 }
1037 
1038 /*
1039  * Send periodic message to MDS renewing all currently held caps.  The
1040  * ack will reset the expiration for all caps from this session.
1041  *
1042  * caller holds s_mutex
1043  */
1044 static int send_renew_caps(struct ceph_mds_client *mdsc,
1045 			   struct ceph_mds_session *session)
1046 {
1047 	struct ceph_msg *msg;
1048 	int state;
1049 
1050 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1051 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1052 		pr_info("mds%d caps stale\n", session->s_mds);
1053 	session->s_renew_requested = jiffies;
1054 
1055 	/* do not try to renew caps until a recovering mds has reconnected
1056 	 * with its clients. */
1057 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1058 	if (state < CEPH_MDS_STATE_RECONNECT) {
1059 		dout("send_renew_caps ignoring mds%d (%s)\n",
1060 		     session->s_mds, ceph_mds_state_name(state));
1061 		return 0;
1062 	}
1063 
1064 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1065 		ceph_mds_state_name(state));
1066 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1067 				 ++session->s_renew_seq);
1068 	if (!msg)
1069 		return -ENOMEM;
1070 	ceph_con_send(&session->s_con, msg);
1071 	return 0;
1072 }
1073 
1074 /*
1075  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1076  *
1077  * Called under session->s_mutex
1078  */
1079 static void renewed_caps(struct ceph_mds_client *mdsc,
1080 			 struct ceph_mds_session *session, int is_renew)
1081 {
1082 	int was_stale;
1083 	int wake = 0;
1084 
1085 	spin_lock(&session->s_cap_lock);
1086 	was_stale = is_renew && (session->s_cap_ttl == 0 ||
1087 				 time_after_eq(jiffies, session->s_cap_ttl));
1088 
1089 	session->s_cap_ttl = session->s_renew_requested +
1090 		mdsc->mdsmap->m_session_timeout*HZ;
1091 
1092 	if (was_stale) {
1093 		if (time_before(jiffies, session->s_cap_ttl)) {
1094 			pr_info("mds%d caps renewed\n", session->s_mds);
1095 			wake = 1;
1096 		} else {
1097 			pr_info("mds%d caps still stale\n", session->s_mds);
1098 		}
1099 	}
1100 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1101 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1102 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1103 	spin_unlock(&session->s_cap_lock);
1104 
1105 	if (wake)
1106 		wake_up_session_caps(session, 0);
1107 }
1108 
1109 /*
1110  * send a session close request
1111  */
1112 static int request_close_session(struct ceph_mds_client *mdsc,
1113 				 struct ceph_mds_session *session)
1114 {
1115 	struct ceph_msg *msg;
1116 
1117 	dout("request_close_session mds%d state %s seq %lld\n",
1118 	     session->s_mds, session_state_name(session->s_state),
1119 	     session->s_seq);
1120 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1121 	if (!msg)
1122 		return -ENOMEM;
1123 	ceph_con_send(&session->s_con, msg);
1124 	return 0;
1125 }
1126 
1127 /*
1128  * Called with s_mutex held.
1129  */
1130 static int __close_session(struct ceph_mds_client *mdsc,
1131 			 struct ceph_mds_session *session)
1132 {
1133 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1134 		return 0;
1135 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1136 	return request_close_session(mdsc, session);
1137 }
1138 
1139 /*
1140  * Trim old(er) caps.
1141  *
1142  * Because we can't cache an inode without one or more caps, we do
1143  * this indirectly: if a cap is unused, we prune its aliases, at which
1144  * point the inode will hopefully get dropped to.
1145  *
1146  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1147  * memory pressure from the MDS, though, so it needn't be perfect.
1148  */
1149 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1150 {
1151 	struct ceph_mds_session *session = arg;
1152 	struct ceph_inode_info *ci = ceph_inode(inode);
1153 	int used, oissued, mine;
1154 
1155 	if (session->s_trim_caps <= 0)
1156 		return -1;
1157 
1158 	spin_lock(&ci->i_ceph_lock);
1159 	mine = cap->issued | cap->implemented;
1160 	used = __ceph_caps_used(ci);
1161 	oissued = __ceph_caps_issued_other(ci, cap);
1162 
1163 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1164 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1165 	     ceph_cap_string(used));
1166 	if (ci->i_dirty_caps)
1167 		goto out;   /* dirty caps */
1168 	if ((used & ~oissued) & mine)
1169 		goto out;   /* we need these caps */
1170 
1171 	session->s_trim_caps--;
1172 	if (oissued) {
1173 		/* we aren't the only cap.. just remove us */
1174 		__ceph_remove_cap(cap);
1175 	} else {
1176 		/* try to drop referring dentries */
1177 		spin_unlock(&ci->i_ceph_lock);
1178 		d_prune_aliases(inode);
1179 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1180 		     inode, cap, atomic_read(&inode->i_count));
1181 		return 0;
1182 	}
1183 
1184 out:
1185 	spin_unlock(&ci->i_ceph_lock);
1186 	return 0;
1187 }
1188 
1189 /*
1190  * Trim session cap count down to some max number.
1191  */
1192 static int trim_caps(struct ceph_mds_client *mdsc,
1193 		     struct ceph_mds_session *session,
1194 		     int max_caps)
1195 {
1196 	int trim_caps = session->s_nr_caps - max_caps;
1197 
1198 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1199 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1200 	if (trim_caps > 0) {
1201 		session->s_trim_caps = trim_caps;
1202 		iterate_session_caps(session, trim_caps_cb, session);
1203 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1204 		     session->s_mds, session->s_nr_caps, max_caps,
1205 			trim_caps - session->s_trim_caps);
1206 		session->s_trim_caps = 0;
1207 	}
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Allocate cap_release messages.  If there is a partially full message
1213  * in the queue, try to allocate enough to cover it's remainder, so that
1214  * we can send it immediately.
1215  *
1216  * Called under s_mutex.
1217  */
1218 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1219 			  struct ceph_mds_session *session)
1220 {
1221 	struct ceph_msg *msg, *partial = NULL;
1222 	struct ceph_mds_cap_release *head;
1223 	int err = -ENOMEM;
1224 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1225 	int num;
1226 
1227 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1228 	     extra);
1229 
1230 	spin_lock(&session->s_cap_lock);
1231 
1232 	if (!list_empty(&session->s_cap_releases)) {
1233 		msg = list_first_entry(&session->s_cap_releases,
1234 				       struct ceph_msg,
1235 				 list_head);
1236 		head = msg->front.iov_base;
1237 		num = le32_to_cpu(head->num);
1238 		if (num) {
1239 			dout(" partial %p with (%d/%d)\n", msg, num,
1240 			     (int)CEPH_CAPS_PER_RELEASE);
1241 			extra += CEPH_CAPS_PER_RELEASE - num;
1242 			partial = msg;
1243 		}
1244 	}
1245 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1246 		spin_unlock(&session->s_cap_lock);
1247 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1248 				   GFP_NOFS, false);
1249 		if (!msg)
1250 			goto out_unlocked;
1251 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1252 		     (int)msg->front.iov_len);
1253 		head = msg->front.iov_base;
1254 		head->num = cpu_to_le32(0);
1255 		msg->front.iov_len = sizeof(*head);
1256 		spin_lock(&session->s_cap_lock);
1257 		list_add(&msg->list_head, &session->s_cap_releases);
1258 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1259 	}
1260 
1261 	if (partial) {
1262 		head = partial->front.iov_base;
1263 		num = le32_to_cpu(head->num);
1264 		dout(" queueing partial %p with %d/%d\n", partial, num,
1265 		     (int)CEPH_CAPS_PER_RELEASE);
1266 		list_move_tail(&partial->list_head,
1267 			       &session->s_cap_releases_done);
1268 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1269 	}
1270 	err = 0;
1271 	spin_unlock(&session->s_cap_lock);
1272 out_unlocked:
1273 	return err;
1274 }
1275 
1276 /*
1277  * flush all dirty inode data to disk.
1278  *
1279  * returns true if we've flushed through want_flush_seq
1280  */
1281 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1282 {
1283 	int mds, ret = 1;
1284 
1285 	dout("check_cap_flush want %lld\n", want_flush_seq);
1286 	mutex_lock(&mdsc->mutex);
1287 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1288 		struct ceph_mds_session *session = mdsc->sessions[mds];
1289 
1290 		if (!session)
1291 			continue;
1292 		get_session(session);
1293 		mutex_unlock(&mdsc->mutex);
1294 
1295 		mutex_lock(&session->s_mutex);
1296 		if (!list_empty(&session->s_cap_flushing)) {
1297 			struct ceph_inode_info *ci =
1298 				list_entry(session->s_cap_flushing.next,
1299 					   struct ceph_inode_info,
1300 					   i_flushing_item);
1301 			struct inode *inode = &ci->vfs_inode;
1302 
1303 			spin_lock(&ci->i_ceph_lock);
1304 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1305 				dout("check_cap_flush still flushing %p "
1306 				     "seq %lld <= %lld to mds%d\n", inode,
1307 				     ci->i_cap_flush_seq, want_flush_seq,
1308 				     session->s_mds);
1309 				ret = 0;
1310 			}
1311 			spin_unlock(&ci->i_ceph_lock);
1312 		}
1313 		mutex_unlock(&session->s_mutex);
1314 		ceph_put_mds_session(session);
1315 
1316 		if (!ret)
1317 			return ret;
1318 		mutex_lock(&mdsc->mutex);
1319 	}
1320 
1321 	mutex_unlock(&mdsc->mutex);
1322 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1323 	return ret;
1324 }
1325 
1326 /*
1327  * called under s_mutex
1328  */
1329 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1330 			    struct ceph_mds_session *session)
1331 {
1332 	struct ceph_msg *msg;
1333 
1334 	dout("send_cap_releases mds%d\n", session->s_mds);
1335 	spin_lock(&session->s_cap_lock);
1336 	while (!list_empty(&session->s_cap_releases_done)) {
1337 		msg = list_first_entry(&session->s_cap_releases_done,
1338 				 struct ceph_msg, list_head);
1339 		list_del_init(&msg->list_head);
1340 		spin_unlock(&session->s_cap_lock);
1341 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1342 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1343 		ceph_con_send(&session->s_con, msg);
1344 		spin_lock(&session->s_cap_lock);
1345 	}
1346 	spin_unlock(&session->s_cap_lock);
1347 }
1348 
1349 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1350 				 struct ceph_mds_session *session)
1351 {
1352 	struct ceph_msg *msg;
1353 	struct ceph_mds_cap_release *head;
1354 	unsigned num;
1355 
1356 	dout("discard_cap_releases mds%d\n", session->s_mds);
1357 	spin_lock(&session->s_cap_lock);
1358 
1359 	/* zero out the in-progress message */
1360 	msg = list_first_entry(&session->s_cap_releases,
1361 			       struct ceph_msg, list_head);
1362 	head = msg->front.iov_base;
1363 	num = le32_to_cpu(head->num);
1364 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1365 	head->num = cpu_to_le32(0);
1366 	session->s_num_cap_releases += num;
1367 
1368 	/* requeue completed messages */
1369 	while (!list_empty(&session->s_cap_releases_done)) {
1370 		msg = list_first_entry(&session->s_cap_releases_done,
1371 				 struct ceph_msg, list_head);
1372 		list_del_init(&msg->list_head);
1373 
1374 		head = msg->front.iov_base;
1375 		num = le32_to_cpu(head->num);
1376 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1377 		     num);
1378 		session->s_num_cap_releases += num;
1379 		head->num = cpu_to_le32(0);
1380 		msg->front.iov_len = sizeof(*head);
1381 		list_add(&msg->list_head, &session->s_cap_releases);
1382 	}
1383 
1384 	spin_unlock(&session->s_cap_lock);
1385 }
1386 
1387 /*
1388  * requests
1389  */
1390 
1391 /*
1392  * Create an mds request.
1393  */
1394 struct ceph_mds_request *
1395 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1396 {
1397 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1398 
1399 	if (!req)
1400 		return ERR_PTR(-ENOMEM);
1401 
1402 	mutex_init(&req->r_fill_mutex);
1403 	req->r_mdsc = mdsc;
1404 	req->r_started = jiffies;
1405 	req->r_resend_mds = -1;
1406 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1407 	req->r_fmode = -1;
1408 	kref_init(&req->r_kref);
1409 	INIT_LIST_HEAD(&req->r_wait);
1410 	init_completion(&req->r_completion);
1411 	init_completion(&req->r_safe_completion);
1412 	INIT_LIST_HEAD(&req->r_unsafe_item);
1413 
1414 	req->r_op = op;
1415 	req->r_direct_mode = mode;
1416 	return req;
1417 }
1418 
1419 /*
1420  * return oldest (lowest) request, tid in request tree, 0 if none.
1421  *
1422  * called under mdsc->mutex.
1423  */
1424 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1425 {
1426 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1427 		return NULL;
1428 	return rb_entry(rb_first(&mdsc->request_tree),
1429 			struct ceph_mds_request, r_node);
1430 }
1431 
1432 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1433 {
1434 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1435 
1436 	if (req)
1437 		return req->r_tid;
1438 	return 0;
1439 }
1440 
1441 /*
1442  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1443  * on build_path_from_dentry in fs/cifs/dir.c.
1444  *
1445  * If @stop_on_nosnap, generate path relative to the first non-snapped
1446  * inode.
1447  *
1448  * Encode hidden .snap dirs as a double /, i.e.
1449  *   foo/.snap/bar -> foo//bar
1450  */
1451 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1452 			   int stop_on_nosnap)
1453 {
1454 	struct dentry *temp;
1455 	char *path;
1456 	int len, pos;
1457 	unsigned seq;
1458 
1459 	if (dentry == NULL)
1460 		return ERR_PTR(-EINVAL);
1461 
1462 retry:
1463 	len = 0;
1464 	seq = read_seqbegin(&rename_lock);
1465 	rcu_read_lock();
1466 	for (temp = dentry; !IS_ROOT(temp);) {
1467 		struct inode *inode = temp->d_inode;
1468 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1469 			len++;  /* slash only */
1470 		else if (stop_on_nosnap && inode &&
1471 			 ceph_snap(inode) == CEPH_NOSNAP)
1472 			break;
1473 		else
1474 			len += 1 + temp->d_name.len;
1475 		temp = temp->d_parent;
1476 		if (temp == NULL) {
1477 			rcu_read_unlock();
1478 			pr_err("build_path corrupt dentry %p\n", dentry);
1479 			return ERR_PTR(-EINVAL);
1480 		}
1481 	}
1482 	rcu_read_unlock();
1483 	if (len)
1484 		len--;  /* no leading '/' */
1485 
1486 	path = kmalloc(len+1, GFP_NOFS);
1487 	if (path == NULL)
1488 		return ERR_PTR(-ENOMEM);
1489 	pos = len;
1490 	path[pos] = 0;	/* trailing null */
1491 	rcu_read_lock();
1492 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1493 		struct inode *inode;
1494 
1495 		spin_lock(&temp->d_lock);
1496 		inode = temp->d_inode;
1497 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1498 			dout("build_path path+%d: %p SNAPDIR\n",
1499 			     pos, temp);
1500 		} else if (stop_on_nosnap && inode &&
1501 			   ceph_snap(inode) == CEPH_NOSNAP) {
1502 			spin_unlock(&temp->d_lock);
1503 			break;
1504 		} else {
1505 			pos -= temp->d_name.len;
1506 			if (pos < 0) {
1507 				spin_unlock(&temp->d_lock);
1508 				break;
1509 			}
1510 			strncpy(path + pos, temp->d_name.name,
1511 				temp->d_name.len);
1512 		}
1513 		spin_unlock(&temp->d_lock);
1514 		if (pos)
1515 			path[--pos] = '/';
1516 		temp = temp->d_parent;
1517 		if (temp == NULL) {
1518 			rcu_read_unlock();
1519 			pr_err("build_path corrupt dentry\n");
1520 			kfree(path);
1521 			return ERR_PTR(-EINVAL);
1522 		}
1523 	}
1524 	rcu_read_unlock();
1525 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1526 		pr_err("build_path did not end path lookup where "
1527 		       "expected, namelen is %d, pos is %d\n", len, pos);
1528 		/* presumably this is only possible if racing with a
1529 		   rename of one of the parent directories (we can not
1530 		   lock the dentries above us to prevent this, but
1531 		   retrying should be harmless) */
1532 		kfree(path);
1533 		goto retry;
1534 	}
1535 
1536 	*base = ceph_ino(temp->d_inode);
1537 	*plen = len;
1538 	dout("build_path on %p %d built %llx '%.*s'\n",
1539 	     dentry, dentry->d_count, *base, len, path);
1540 	return path;
1541 }
1542 
1543 static int build_dentry_path(struct dentry *dentry,
1544 			     const char **ppath, int *ppathlen, u64 *pino,
1545 			     int *pfreepath)
1546 {
1547 	char *path;
1548 
1549 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1550 		*pino = ceph_ino(dentry->d_parent->d_inode);
1551 		*ppath = dentry->d_name.name;
1552 		*ppathlen = dentry->d_name.len;
1553 		return 0;
1554 	}
1555 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1556 	if (IS_ERR(path))
1557 		return PTR_ERR(path);
1558 	*ppath = path;
1559 	*pfreepath = 1;
1560 	return 0;
1561 }
1562 
1563 static int build_inode_path(struct inode *inode,
1564 			    const char **ppath, int *ppathlen, u64 *pino,
1565 			    int *pfreepath)
1566 {
1567 	struct dentry *dentry;
1568 	char *path;
1569 
1570 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1571 		*pino = ceph_ino(inode);
1572 		*ppathlen = 0;
1573 		return 0;
1574 	}
1575 	dentry = d_find_alias(inode);
1576 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1577 	dput(dentry);
1578 	if (IS_ERR(path))
1579 		return PTR_ERR(path);
1580 	*ppath = path;
1581 	*pfreepath = 1;
1582 	return 0;
1583 }
1584 
1585 /*
1586  * request arguments may be specified via an inode *, a dentry *, or
1587  * an explicit ino+path.
1588  */
1589 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1590 				  const char *rpath, u64 rino,
1591 				  const char **ppath, int *pathlen,
1592 				  u64 *ino, int *freepath)
1593 {
1594 	int r = 0;
1595 
1596 	if (rinode) {
1597 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1598 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1599 		     ceph_snap(rinode));
1600 	} else if (rdentry) {
1601 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1602 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1603 		     *ppath);
1604 	} else if (rpath || rino) {
1605 		*ino = rino;
1606 		*ppath = rpath;
1607 		*pathlen = strlen(rpath);
1608 		dout(" path %.*s\n", *pathlen, rpath);
1609 	}
1610 
1611 	return r;
1612 }
1613 
1614 /*
1615  * called under mdsc->mutex
1616  */
1617 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1618 					       struct ceph_mds_request *req,
1619 					       int mds)
1620 {
1621 	struct ceph_msg *msg;
1622 	struct ceph_mds_request_head *head;
1623 	const char *path1 = NULL;
1624 	const char *path2 = NULL;
1625 	u64 ino1 = 0, ino2 = 0;
1626 	int pathlen1 = 0, pathlen2 = 0;
1627 	int freepath1 = 0, freepath2 = 0;
1628 	int len;
1629 	u16 releases;
1630 	void *p, *end;
1631 	int ret;
1632 
1633 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1634 			      req->r_path1, req->r_ino1.ino,
1635 			      &path1, &pathlen1, &ino1, &freepath1);
1636 	if (ret < 0) {
1637 		msg = ERR_PTR(ret);
1638 		goto out;
1639 	}
1640 
1641 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1642 			      req->r_path2, req->r_ino2.ino,
1643 			      &path2, &pathlen2, &ino2, &freepath2);
1644 	if (ret < 0) {
1645 		msg = ERR_PTR(ret);
1646 		goto out_free1;
1647 	}
1648 
1649 	len = sizeof(*head) +
1650 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1651 
1652 	/* calculate (max) length for cap releases */
1653 	len += sizeof(struct ceph_mds_request_release) *
1654 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1655 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1656 	if (req->r_dentry_drop)
1657 		len += req->r_dentry->d_name.len;
1658 	if (req->r_old_dentry_drop)
1659 		len += req->r_old_dentry->d_name.len;
1660 
1661 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1662 	if (!msg) {
1663 		msg = ERR_PTR(-ENOMEM);
1664 		goto out_free2;
1665 	}
1666 
1667 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1668 
1669 	head = msg->front.iov_base;
1670 	p = msg->front.iov_base + sizeof(*head);
1671 	end = msg->front.iov_base + msg->front.iov_len;
1672 
1673 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1674 	head->op = cpu_to_le32(req->r_op);
1675 	head->caller_uid = cpu_to_le32(req->r_uid);
1676 	head->caller_gid = cpu_to_le32(req->r_gid);
1677 	head->args = req->r_args;
1678 
1679 	ceph_encode_filepath(&p, end, ino1, path1);
1680 	ceph_encode_filepath(&p, end, ino2, path2);
1681 
1682 	/* make note of release offset, in case we need to replay */
1683 	req->r_request_release_offset = p - msg->front.iov_base;
1684 
1685 	/* cap releases */
1686 	releases = 0;
1687 	if (req->r_inode_drop)
1688 		releases += ceph_encode_inode_release(&p,
1689 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1690 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1691 	if (req->r_dentry_drop)
1692 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1693 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1694 	if (req->r_old_dentry_drop)
1695 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1696 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1697 	if (req->r_old_inode_drop)
1698 		releases += ceph_encode_inode_release(&p,
1699 		      req->r_old_dentry->d_inode,
1700 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1701 	head->num_releases = cpu_to_le16(releases);
1702 
1703 	BUG_ON(p > end);
1704 	msg->front.iov_len = p - msg->front.iov_base;
1705 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1706 
1707 	msg->pages = req->r_pages;
1708 	msg->nr_pages = req->r_num_pages;
1709 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1710 	msg->hdr.data_off = cpu_to_le16(0);
1711 
1712 out_free2:
1713 	if (freepath2)
1714 		kfree((char *)path2);
1715 out_free1:
1716 	if (freepath1)
1717 		kfree((char *)path1);
1718 out:
1719 	return msg;
1720 }
1721 
1722 /*
1723  * called under mdsc->mutex if error, under no mutex if
1724  * success.
1725  */
1726 static void complete_request(struct ceph_mds_client *mdsc,
1727 			     struct ceph_mds_request *req)
1728 {
1729 	if (req->r_callback)
1730 		req->r_callback(mdsc, req);
1731 	else
1732 		complete_all(&req->r_completion);
1733 }
1734 
1735 /*
1736  * called under mdsc->mutex
1737  */
1738 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1739 				  struct ceph_mds_request *req,
1740 				  int mds)
1741 {
1742 	struct ceph_mds_request_head *rhead;
1743 	struct ceph_msg *msg;
1744 	int flags = 0;
1745 
1746 	req->r_attempts++;
1747 	if (req->r_inode) {
1748 		struct ceph_cap *cap =
1749 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1750 
1751 		if (cap)
1752 			req->r_sent_on_mseq = cap->mseq;
1753 		else
1754 			req->r_sent_on_mseq = -1;
1755 	}
1756 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1757 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1758 
1759 	if (req->r_got_unsafe) {
1760 		/*
1761 		 * Replay.  Do not regenerate message (and rebuild
1762 		 * paths, etc.); just use the original message.
1763 		 * Rebuilding paths will break for renames because
1764 		 * d_move mangles the src name.
1765 		 */
1766 		msg = req->r_request;
1767 		rhead = msg->front.iov_base;
1768 
1769 		flags = le32_to_cpu(rhead->flags);
1770 		flags |= CEPH_MDS_FLAG_REPLAY;
1771 		rhead->flags = cpu_to_le32(flags);
1772 
1773 		if (req->r_target_inode)
1774 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1775 
1776 		rhead->num_retry = req->r_attempts - 1;
1777 
1778 		/* remove cap/dentry releases from message */
1779 		rhead->num_releases = 0;
1780 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1781 		msg->front.iov_len = req->r_request_release_offset;
1782 		return 0;
1783 	}
1784 
1785 	if (req->r_request) {
1786 		ceph_msg_put(req->r_request);
1787 		req->r_request = NULL;
1788 	}
1789 	msg = create_request_message(mdsc, req, mds);
1790 	if (IS_ERR(msg)) {
1791 		req->r_err = PTR_ERR(msg);
1792 		complete_request(mdsc, req);
1793 		return PTR_ERR(msg);
1794 	}
1795 	req->r_request = msg;
1796 
1797 	rhead = msg->front.iov_base;
1798 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1799 	if (req->r_got_unsafe)
1800 		flags |= CEPH_MDS_FLAG_REPLAY;
1801 	if (req->r_locked_dir)
1802 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1803 	rhead->flags = cpu_to_le32(flags);
1804 	rhead->num_fwd = req->r_num_fwd;
1805 	rhead->num_retry = req->r_attempts - 1;
1806 	rhead->ino = 0;
1807 
1808 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1809 	return 0;
1810 }
1811 
1812 /*
1813  * send request, or put it on the appropriate wait list.
1814  */
1815 static int __do_request(struct ceph_mds_client *mdsc,
1816 			struct ceph_mds_request *req)
1817 {
1818 	struct ceph_mds_session *session = NULL;
1819 	int mds = -1;
1820 	int err = -EAGAIN;
1821 
1822 	if (req->r_err || req->r_got_result)
1823 		goto out;
1824 
1825 	if (req->r_timeout &&
1826 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1827 		dout("do_request timed out\n");
1828 		err = -EIO;
1829 		goto finish;
1830 	}
1831 
1832 	put_request_session(req);
1833 
1834 	mds = __choose_mds(mdsc, req);
1835 	if (mds < 0 ||
1836 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1837 		dout("do_request no mds or not active, waiting for map\n");
1838 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1839 		goto out;
1840 	}
1841 
1842 	/* get, open session */
1843 	session = __ceph_lookup_mds_session(mdsc, mds);
1844 	if (!session) {
1845 		session = register_session(mdsc, mds);
1846 		if (IS_ERR(session)) {
1847 			err = PTR_ERR(session);
1848 			goto finish;
1849 		}
1850 	}
1851 	req->r_session = get_session(session);
1852 
1853 	dout("do_request mds%d session %p state %s\n", mds, session,
1854 	     session_state_name(session->s_state));
1855 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1856 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1857 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1858 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1859 			__open_session(mdsc, session);
1860 		list_add(&req->r_wait, &session->s_waiting);
1861 		goto out_session;
1862 	}
1863 
1864 	/* send request */
1865 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1866 
1867 	if (req->r_request_started == 0)   /* note request start time */
1868 		req->r_request_started = jiffies;
1869 
1870 	err = __prepare_send_request(mdsc, req, mds);
1871 	if (!err) {
1872 		ceph_msg_get(req->r_request);
1873 		ceph_con_send(&session->s_con, req->r_request);
1874 	}
1875 
1876 out_session:
1877 	ceph_put_mds_session(session);
1878 out:
1879 	return err;
1880 
1881 finish:
1882 	req->r_err = err;
1883 	complete_request(mdsc, req);
1884 	goto out;
1885 }
1886 
1887 /*
1888  * called under mdsc->mutex
1889  */
1890 static void __wake_requests(struct ceph_mds_client *mdsc,
1891 			    struct list_head *head)
1892 {
1893 	struct ceph_mds_request *req, *nreq;
1894 
1895 	list_for_each_entry_safe(req, nreq, head, r_wait) {
1896 		list_del_init(&req->r_wait);
1897 		__do_request(mdsc, req);
1898 	}
1899 }
1900 
1901 /*
1902  * Wake up threads with requests pending for @mds, so that they can
1903  * resubmit their requests to a possibly different mds.
1904  */
1905 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1906 {
1907 	struct ceph_mds_request *req;
1908 	struct rb_node *p;
1909 
1910 	dout("kick_requests mds%d\n", mds);
1911 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1912 		req = rb_entry(p, struct ceph_mds_request, r_node);
1913 		if (req->r_got_unsafe)
1914 			continue;
1915 		if (req->r_session &&
1916 		    req->r_session->s_mds == mds) {
1917 			dout(" kicking tid %llu\n", req->r_tid);
1918 			__do_request(mdsc, req);
1919 		}
1920 	}
1921 }
1922 
1923 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1924 			      struct ceph_mds_request *req)
1925 {
1926 	dout("submit_request on %p\n", req);
1927 	mutex_lock(&mdsc->mutex);
1928 	__register_request(mdsc, req, NULL);
1929 	__do_request(mdsc, req);
1930 	mutex_unlock(&mdsc->mutex);
1931 }
1932 
1933 /*
1934  * Synchrously perform an mds request.  Take care of all of the
1935  * session setup, forwarding, retry details.
1936  */
1937 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1938 			 struct inode *dir,
1939 			 struct ceph_mds_request *req)
1940 {
1941 	int err;
1942 
1943 	dout("do_request on %p\n", req);
1944 
1945 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1946 	if (req->r_inode)
1947 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1948 	if (req->r_locked_dir)
1949 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1950 	if (req->r_old_dentry)
1951 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1952 				  CEPH_CAP_PIN);
1953 
1954 	/* issue */
1955 	mutex_lock(&mdsc->mutex);
1956 	__register_request(mdsc, req, dir);
1957 	__do_request(mdsc, req);
1958 
1959 	if (req->r_err) {
1960 		err = req->r_err;
1961 		__unregister_request(mdsc, req);
1962 		dout("do_request early error %d\n", err);
1963 		goto out;
1964 	}
1965 
1966 	/* wait */
1967 	mutex_unlock(&mdsc->mutex);
1968 	dout("do_request waiting\n");
1969 	if (req->r_timeout) {
1970 		err = (long)wait_for_completion_killable_timeout(
1971 			&req->r_completion, req->r_timeout);
1972 		if (err == 0)
1973 			err = -EIO;
1974 	} else {
1975 		err = wait_for_completion_killable(&req->r_completion);
1976 	}
1977 	dout("do_request waited, got %d\n", err);
1978 	mutex_lock(&mdsc->mutex);
1979 
1980 	/* only abort if we didn't race with a real reply */
1981 	if (req->r_got_result) {
1982 		err = le32_to_cpu(req->r_reply_info.head->result);
1983 	} else if (err < 0) {
1984 		dout("aborted request %lld with %d\n", req->r_tid, err);
1985 
1986 		/*
1987 		 * ensure we aren't running concurrently with
1988 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
1989 		 * rely on locks (dir mutex) held by our caller.
1990 		 */
1991 		mutex_lock(&req->r_fill_mutex);
1992 		req->r_err = err;
1993 		req->r_aborted = true;
1994 		mutex_unlock(&req->r_fill_mutex);
1995 
1996 		if (req->r_locked_dir &&
1997 		    (req->r_op & CEPH_MDS_OP_WRITE))
1998 			ceph_invalidate_dir_request(req);
1999 	} else {
2000 		err = req->r_err;
2001 	}
2002 
2003 out:
2004 	mutex_unlock(&mdsc->mutex);
2005 	dout("do_request %p done, result %d\n", req, err);
2006 	return err;
2007 }
2008 
2009 /*
2010  * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS
2011  * namespace request.
2012  */
2013 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2014 {
2015 	struct inode *inode = req->r_locked_dir;
2016 	struct ceph_inode_info *ci = ceph_inode(inode);
2017 
2018 	dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode);
2019 	spin_lock(&ci->i_ceph_lock);
2020 	ceph_dir_clear_complete(inode);
2021 	ci->i_release_count++;
2022 	spin_unlock(&ci->i_ceph_lock);
2023 
2024 	if (req->r_dentry)
2025 		ceph_invalidate_dentry_lease(req->r_dentry);
2026 	if (req->r_old_dentry)
2027 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2028 }
2029 
2030 /*
2031  * Handle mds reply.
2032  *
2033  * We take the session mutex and parse and process the reply immediately.
2034  * This preserves the logical ordering of replies, capabilities, etc., sent
2035  * by the MDS as they are applied to our local cache.
2036  */
2037 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2038 {
2039 	struct ceph_mds_client *mdsc = session->s_mdsc;
2040 	struct ceph_mds_request *req;
2041 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2042 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2043 	u64 tid;
2044 	int err, result;
2045 	int mds = session->s_mds;
2046 
2047 	if (msg->front.iov_len < sizeof(*head)) {
2048 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2049 		ceph_msg_dump(msg);
2050 		return;
2051 	}
2052 
2053 	/* get request, session */
2054 	tid = le64_to_cpu(msg->hdr.tid);
2055 	mutex_lock(&mdsc->mutex);
2056 	req = __lookup_request(mdsc, tid);
2057 	if (!req) {
2058 		dout("handle_reply on unknown tid %llu\n", tid);
2059 		mutex_unlock(&mdsc->mutex);
2060 		return;
2061 	}
2062 	dout("handle_reply %p\n", req);
2063 
2064 	/* correct session? */
2065 	if (req->r_session != session) {
2066 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2067 		       " not mds%d\n", tid, session->s_mds,
2068 		       req->r_session ? req->r_session->s_mds : -1);
2069 		mutex_unlock(&mdsc->mutex);
2070 		goto out;
2071 	}
2072 
2073 	/* dup? */
2074 	if ((req->r_got_unsafe && !head->safe) ||
2075 	    (req->r_got_safe && head->safe)) {
2076 		pr_warning("got a dup %s reply on %llu from mds%d\n",
2077 			   head->safe ? "safe" : "unsafe", tid, mds);
2078 		mutex_unlock(&mdsc->mutex);
2079 		goto out;
2080 	}
2081 	if (req->r_got_safe && !head->safe) {
2082 		pr_warning("got unsafe after safe on %llu from mds%d\n",
2083 			   tid, mds);
2084 		mutex_unlock(&mdsc->mutex);
2085 		goto out;
2086 	}
2087 
2088 	result = le32_to_cpu(head->result);
2089 
2090 	/*
2091 	 * Handle an ESTALE
2092 	 * if we're not talking to the authority, send to them
2093 	 * if the authority has changed while we weren't looking,
2094 	 * send to new authority
2095 	 * Otherwise we just have to return an ESTALE
2096 	 */
2097 	if (result == -ESTALE) {
2098 		dout("got ESTALE on request %llu", req->r_tid);
2099 		if (!req->r_inode) {
2100 			/* do nothing; not an authority problem */
2101 		} else if (req->r_direct_mode != USE_AUTH_MDS) {
2102 			dout("not using auth, setting for that now");
2103 			req->r_direct_mode = USE_AUTH_MDS;
2104 			__do_request(mdsc, req);
2105 			mutex_unlock(&mdsc->mutex);
2106 			goto out;
2107 		} else  {
2108 			struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2109 			struct ceph_cap *cap = NULL;
2110 
2111 			if (req->r_session)
2112 				cap = ceph_get_cap_for_mds(ci,
2113 						   req->r_session->s_mds);
2114 
2115 			dout("already using auth");
2116 			if ((!cap || cap != ci->i_auth_cap) ||
2117 			    (cap->mseq != req->r_sent_on_mseq)) {
2118 				dout("but cap changed, so resending");
2119 				__do_request(mdsc, req);
2120 				mutex_unlock(&mdsc->mutex);
2121 				goto out;
2122 			}
2123 		}
2124 		dout("have to return ESTALE on request %llu", req->r_tid);
2125 	}
2126 
2127 
2128 	if (head->safe) {
2129 		req->r_got_safe = true;
2130 		__unregister_request(mdsc, req);
2131 		complete_all(&req->r_safe_completion);
2132 
2133 		if (req->r_got_unsafe) {
2134 			/*
2135 			 * We already handled the unsafe response, now do the
2136 			 * cleanup.  No need to examine the response; the MDS
2137 			 * doesn't include any result info in the safe
2138 			 * response.  And even if it did, there is nothing
2139 			 * useful we could do with a revised return value.
2140 			 */
2141 			dout("got safe reply %llu, mds%d\n", tid, mds);
2142 			list_del_init(&req->r_unsafe_item);
2143 
2144 			/* last unsafe request during umount? */
2145 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2146 				complete_all(&mdsc->safe_umount_waiters);
2147 			mutex_unlock(&mdsc->mutex);
2148 			goto out;
2149 		}
2150 	} else {
2151 		req->r_got_unsafe = true;
2152 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2153 	}
2154 
2155 	dout("handle_reply tid %lld result %d\n", tid, result);
2156 	rinfo = &req->r_reply_info;
2157 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2158 	mutex_unlock(&mdsc->mutex);
2159 
2160 	mutex_lock(&session->s_mutex);
2161 	if (err < 0) {
2162 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2163 		ceph_msg_dump(msg);
2164 		goto out_err;
2165 	}
2166 
2167 	/* snap trace */
2168 	if (rinfo->snapblob_len) {
2169 		down_write(&mdsc->snap_rwsem);
2170 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2171 			       rinfo->snapblob + rinfo->snapblob_len,
2172 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2173 		downgrade_write(&mdsc->snap_rwsem);
2174 	} else {
2175 		down_read(&mdsc->snap_rwsem);
2176 	}
2177 
2178 	/* insert trace into our cache */
2179 	mutex_lock(&req->r_fill_mutex);
2180 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2181 	if (err == 0) {
2182 		if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK &&
2183 		    rinfo->dir_nr)
2184 			ceph_readdir_prepopulate(req, req->r_session);
2185 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2186 	}
2187 	mutex_unlock(&req->r_fill_mutex);
2188 
2189 	up_read(&mdsc->snap_rwsem);
2190 out_err:
2191 	mutex_lock(&mdsc->mutex);
2192 	if (!req->r_aborted) {
2193 		if (err) {
2194 			req->r_err = err;
2195 		} else {
2196 			req->r_reply = msg;
2197 			ceph_msg_get(msg);
2198 			req->r_got_result = true;
2199 		}
2200 	} else {
2201 		dout("reply arrived after request %lld was aborted\n", tid);
2202 	}
2203 	mutex_unlock(&mdsc->mutex);
2204 
2205 	ceph_add_cap_releases(mdsc, req->r_session);
2206 	mutex_unlock(&session->s_mutex);
2207 
2208 	/* kick calling process */
2209 	complete_request(mdsc, req);
2210 out:
2211 	ceph_mdsc_put_request(req);
2212 	return;
2213 }
2214 
2215 
2216 
2217 /*
2218  * handle mds notification that our request has been forwarded.
2219  */
2220 static void handle_forward(struct ceph_mds_client *mdsc,
2221 			   struct ceph_mds_session *session,
2222 			   struct ceph_msg *msg)
2223 {
2224 	struct ceph_mds_request *req;
2225 	u64 tid = le64_to_cpu(msg->hdr.tid);
2226 	u32 next_mds;
2227 	u32 fwd_seq;
2228 	int err = -EINVAL;
2229 	void *p = msg->front.iov_base;
2230 	void *end = p + msg->front.iov_len;
2231 
2232 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2233 	next_mds = ceph_decode_32(&p);
2234 	fwd_seq = ceph_decode_32(&p);
2235 
2236 	mutex_lock(&mdsc->mutex);
2237 	req = __lookup_request(mdsc, tid);
2238 	if (!req) {
2239 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2240 		goto out;  /* dup reply? */
2241 	}
2242 
2243 	if (req->r_aborted) {
2244 		dout("forward tid %llu aborted, unregistering\n", tid);
2245 		__unregister_request(mdsc, req);
2246 	} else if (fwd_seq <= req->r_num_fwd) {
2247 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2248 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2249 	} else {
2250 		/* resend. forward race not possible; mds would drop */
2251 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2252 		BUG_ON(req->r_err);
2253 		BUG_ON(req->r_got_result);
2254 		req->r_num_fwd = fwd_seq;
2255 		req->r_resend_mds = next_mds;
2256 		put_request_session(req);
2257 		__do_request(mdsc, req);
2258 	}
2259 	ceph_mdsc_put_request(req);
2260 out:
2261 	mutex_unlock(&mdsc->mutex);
2262 	return;
2263 
2264 bad:
2265 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2266 }
2267 
2268 /*
2269  * handle a mds session control message
2270  */
2271 static void handle_session(struct ceph_mds_session *session,
2272 			   struct ceph_msg *msg)
2273 {
2274 	struct ceph_mds_client *mdsc = session->s_mdsc;
2275 	u32 op;
2276 	u64 seq;
2277 	int mds = session->s_mds;
2278 	struct ceph_mds_session_head *h = msg->front.iov_base;
2279 	int wake = 0;
2280 
2281 	/* decode */
2282 	if (msg->front.iov_len != sizeof(*h))
2283 		goto bad;
2284 	op = le32_to_cpu(h->op);
2285 	seq = le64_to_cpu(h->seq);
2286 
2287 	mutex_lock(&mdsc->mutex);
2288 	if (op == CEPH_SESSION_CLOSE)
2289 		__unregister_session(mdsc, session);
2290 	/* FIXME: this ttl calculation is generous */
2291 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2292 	mutex_unlock(&mdsc->mutex);
2293 
2294 	mutex_lock(&session->s_mutex);
2295 
2296 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2297 	     mds, ceph_session_op_name(op), session,
2298 	     session_state_name(session->s_state), seq);
2299 
2300 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2301 		session->s_state = CEPH_MDS_SESSION_OPEN;
2302 		pr_info("mds%d came back\n", session->s_mds);
2303 	}
2304 
2305 	switch (op) {
2306 	case CEPH_SESSION_OPEN:
2307 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2308 			pr_info("mds%d reconnect success\n", session->s_mds);
2309 		session->s_state = CEPH_MDS_SESSION_OPEN;
2310 		renewed_caps(mdsc, session, 0);
2311 		wake = 1;
2312 		if (mdsc->stopping)
2313 			__close_session(mdsc, session);
2314 		break;
2315 
2316 	case CEPH_SESSION_RENEWCAPS:
2317 		if (session->s_renew_seq == seq)
2318 			renewed_caps(mdsc, session, 1);
2319 		break;
2320 
2321 	case CEPH_SESSION_CLOSE:
2322 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2323 			pr_info("mds%d reconnect denied\n", session->s_mds);
2324 		remove_session_caps(session);
2325 		wake = 1; /* for good measure */
2326 		wake_up_all(&mdsc->session_close_wq);
2327 		kick_requests(mdsc, mds);
2328 		break;
2329 
2330 	case CEPH_SESSION_STALE:
2331 		pr_info("mds%d caps went stale, renewing\n",
2332 			session->s_mds);
2333 		spin_lock(&session->s_gen_ttl_lock);
2334 		session->s_cap_gen++;
2335 		session->s_cap_ttl = 0;
2336 		spin_unlock(&session->s_gen_ttl_lock);
2337 		send_renew_caps(mdsc, session);
2338 		break;
2339 
2340 	case CEPH_SESSION_RECALL_STATE:
2341 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2342 		break;
2343 
2344 	default:
2345 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2346 		WARN_ON(1);
2347 	}
2348 
2349 	mutex_unlock(&session->s_mutex);
2350 	if (wake) {
2351 		mutex_lock(&mdsc->mutex);
2352 		__wake_requests(mdsc, &session->s_waiting);
2353 		mutex_unlock(&mdsc->mutex);
2354 	}
2355 	return;
2356 
2357 bad:
2358 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2359 	       (int)msg->front.iov_len);
2360 	ceph_msg_dump(msg);
2361 	return;
2362 }
2363 
2364 
2365 /*
2366  * called under session->mutex.
2367  */
2368 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2369 				   struct ceph_mds_session *session)
2370 {
2371 	struct ceph_mds_request *req, *nreq;
2372 	int err;
2373 
2374 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2375 
2376 	mutex_lock(&mdsc->mutex);
2377 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2378 		err = __prepare_send_request(mdsc, req, session->s_mds);
2379 		if (!err) {
2380 			ceph_msg_get(req->r_request);
2381 			ceph_con_send(&session->s_con, req->r_request);
2382 		}
2383 	}
2384 	mutex_unlock(&mdsc->mutex);
2385 }
2386 
2387 /*
2388  * Encode information about a cap for a reconnect with the MDS.
2389  */
2390 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2391 			  void *arg)
2392 {
2393 	union {
2394 		struct ceph_mds_cap_reconnect v2;
2395 		struct ceph_mds_cap_reconnect_v1 v1;
2396 	} rec;
2397 	size_t reclen;
2398 	struct ceph_inode_info *ci;
2399 	struct ceph_reconnect_state *recon_state = arg;
2400 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2401 	char *path;
2402 	int pathlen, err;
2403 	u64 pathbase;
2404 	struct dentry *dentry;
2405 
2406 	ci = cap->ci;
2407 
2408 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2409 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2410 	     ceph_cap_string(cap->issued));
2411 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2412 	if (err)
2413 		return err;
2414 
2415 	dentry = d_find_alias(inode);
2416 	if (dentry) {
2417 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2418 		if (IS_ERR(path)) {
2419 			err = PTR_ERR(path);
2420 			goto out_dput;
2421 		}
2422 	} else {
2423 		path = NULL;
2424 		pathlen = 0;
2425 	}
2426 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2427 	if (err)
2428 		goto out_free;
2429 
2430 	spin_lock(&ci->i_ceph_lock);
2431 	cap->seq = 0;        /* reset cap seq */
2432 	cap->issue_seq = 0;  /* and issue_seq */
2433 
2434 	if (recon_state->flock) {
2435 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2436 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2437 		rec.v2.issued = cpu_to_le32(cap->issued);
2438 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2439 		rec.v2.pathbase = cpu_to_le64(pathbase);
2440 		rec.v2.flock_len = 0;
2441 		reclen = sizeof(rec.v2);
2442 	} else {
2443 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2444 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2445 		rec.v1.issued = cpu_to_le32(cap->issued);
2446 		rec.v1.size = cpu_to_le64(inode->i_size);
2447 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2448 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2449 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2450 		rec.v1.pathbase = cpu_to_le64(pathbase);
2451 		reclen = sizeof(rec.v1);
2452 	}
2453 	spin_unlock(&ci->i_ceph_lock);
2454 
2455 	if (recon_state->flock) {
2456 		int num_fcntl_locks, num_flock_locks;
2457 		struct ceph_pagelist_cursor trunc_point;
2458 
2459 		ceph_pagelist_set_cursor(pagelist, &trunc_point);
2460 		do {
2461 			lock_flocks();
2462 			ceph_count_locks(inode, &num_fcntl_locks,
2463 					 &num_flock_locks);
2464 			rec.v2.flock_len = (2*sizeof(u32) +
2465 					    (num_fcntl_locks+num_flock_locks) *
2466 					    sizeof(struct ceph_filelock));
2467 			unlock_flocks();
2468 
2469 			/* pre-alloc pagelist */
2470 			ceph_pagelist_truncate(pagelist, &trunc_point);
2471 			err = ceph_pagelist_append(pagelist, &rec, reclen);
2472 			if (!err)
2473 				err = ceph_pagelist_reserve(pagelist,
2474 							    rec.v2.flock_len);
2475 
2476 			/* encode locks */
2477 			if (!err) {
2478 				lock_flocks();
2479 				err = ceph_encode_locks(inode,
2480 							pagelist,
2481 							num_fcntl_locks,
2482 							num_flock_locks);
2483 				unlock_flocks();
2484 			}
2485 		} while (err == -ENOSPC);
2486 	} else {
2487 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2488 	}
2489 
2490 out_free:
2491 	kfree(path);
2492 out_dput:
2493 	dput(dentry);
2494 	return err;
2495 }
2496 
2497 
2498 /*
2499  * If an MDS fails and recovers, clients need to reconnect in order to
2500  * reestablish shared state.  This includes all caps issued through
2501  * this session _and_ the snap_realm hierarchy.  Because it's not
2502  * clear which snap realms the mds cares about, we send everything we
2503  * know about.. that ensures we'll then get any new info the
2504  * recovering MDS might have.
2505  *
2506  * This is a relatively heavyweight operation, but it's rare.
2507  *
2508  * called with mdsc->mutex held.
2509  */
2510 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2511 			       struct ceph_mds_session *session)
2512 {
2513 	struct ceph_msg *reply;
2514 	struct rb_node *p;
2515 	int mds = session->s_mds;
2516 	int err = -ENOMEM;
2517 	struct ceph_pagelist *pagelist;
2518 	struct ceph_reconnect_state recon_state;
2519 
2520 	pr_info("mds%d reconnect start\n", mds);
2521 
2522 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2523 	if (!pagelist)
2524 		goto fail_nopagelist;
2525 	ceph_pagelist_init(pagelist);
2526 
2527 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2528 	if (!reply)
2529 		goto fail_nomsg;
2530 
2531 	mutex_lock(&session->s_mutex);
2532 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2533 	session->s_seq = 0;
2534 
2535 	ceph_con_open(&session->s_con,
2536 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2537 
2538 	/* replay unsafe requests */
2539 	replay_unsafe_requests(mdsc, session);
2540 
2541 	down_read(&mdsc->snap_rwsem);
2542 
2543 	dout("session %p state %s\n", session,
2544 	     session_state_name(session->s_state));
2545 
2546 	/* drop old cap expires; we're about to reestablish that state */
2547 	discard_cap_releases(mdsc, session);
2548 
2549 	/* traverse this session's caps */
2550 	err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2551 	if (err)
2552 		goto fail;
2553 
2554 	recon_state.pagelist = pagelist;
2555 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2556 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2557 	if (err < 0)
2558 		goto fail;
2559 
2560 	/*
2561 	 * snaprealms.  we provide mds with the ino, seq (version), and
2562 	 * parent for all of our realms.  If the mds has any newer info,
2563 	 * it will tell us.
2564 	 */
2565 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2566 		struct ceph_snap_realm *realm =
2567 			rb_entry(p, struct ceph_snap_realm, node);
2568 		struct ceph_mds_snaprealm_reconnect sr_rec;
2569 
2570 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2571 		     realm->ino, realm->seq, realm->parent_ino);
2572 		sr_rec.ino = cpu_to_le64(realm->ino);
2573 		sr_rec.seq = cpu_to_le64(realm->seq);
2574 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2575 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2576 		if (err)
2577 			goto fail;
2578 	}
2579 
2580 	reply->pagelist = pagelist;
2581 	if (recon_state.flock)
2582 		reply->hdr.version = cpu_to_le16(2);
2583 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2584 	reply->nr_pages = calc_pages_for(0, pagelist->length);
2585 	ceph_con_send(&session->s_con, reply);
2586 
2587 	mutex_unlock(&session->s_mutex);
2588 
2589 	mutex_lock(&mdsc->mutex);
2590 	__wake_requests(mdsc, &session->s_waiting);
2591 	mutex_unlock(&mdsc->mutex);
2592 
2593 	up_read(&mdsc->snap_rwsem);
2594 	return;
2595 
2596 fail:
2597 	ceph_msg_put(reply);
2598 	up_read(&mdsc->snap_rwsem);
2599 	mutex_unlock(&session->s_mutex);
2600 fail_nomsg:
2601 	ceph_pagelist_release(pagelist);
2602 	kfree(pagelist);
2603 fail_nopagelist:
2604 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2605 	return;
2606 }
2607 
2608 
2609 /*
2610  * compare old and new mdsmaps, kicking requests
2611  * and closing out old connections as necessary
2612  *
2613  * called under mdsc->mutex.
2614  */
2615 static void check_new_map(struct ceph_mds_client *mdsc,
2616 			  struct ceph_mdsmap *newmap,
2617 			  struct ceph_mdsmap *oldmap)
2618 {
2619 	int i;
2620 	int oldstate, newstate;
2621 	struct ceph_mds_session *s;
2622 
2623 	dout("check_new_map new %u old %u\n",
2624 	     newmap->m_epoch, oldmap->m_epoch);
2625 
2626 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2627 		if (mdsc->sessions[i] == NULL)
2628 			continue;
2629 		s = mdsc->sessions[i];
2630 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2631 		newstate = ceph_mdsmap_get_state(newmap, i);
2632 
2633 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2634 		     i, ceph_mds_state_name(oldstate),
2635 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2636 		     ceph_mds_state_name(newstate),
2637 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2638 		     session_state_name(s->s_state));
2639 
2640 		if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2641 			   ceph_mdsmap_get_addr(newmap, i),
2642 			   sizeof(struct ceph_entity_addr))) {
2643 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2644 				/* the session never opened, just close it
2645 				 * out now */
2646 				__wake_requests(mdsc, &s->s_waiting);
2647 				__unregister_session(mdsc, s);
2648 			} else {
2649 				/* just close it */
2650 				mutex_unlock(&mdsc->mutex);
2651 				mutex_lock(&s->s_mutex);
2652 				mutex_lock(&mdsc->mutex);
2653 				ceph_con_close(&s->s_con);
2654 				mutex_unlock(&s->s_mutex);
2655 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2656 			}
2657 
2658 			/* kick any requests waiting on the recovering mds */
2659 			kick_requests(mdsc, i);
2660 		} else if (oldstate == newstate) {
2661 			continue;  /* nothing new with this mds */
2662 		}
2663 
2664 		/*
2665 		 * send reconnect?
2666 		 */
2667 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2668 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2669 			mutex_unlock(&mdsc->mutex);
2670 			send_mds_reconnect(mdsc, s);
2671 			mutex_lock(&mdsc->mutex);
2672 		}
2673 
2674 		/*
2675 		 * kick request on any mds that has gone active.
2676 		 */
2677 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2678 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2679 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2680 			    oldstate != CEPH_MDS_STATE_STARTING)
2681 				pr_info("mds%d recovery completed\n", s->s_mds);
2682 			kick_requests(mdsc, i);
2683 			ceph_kick_flushing_caps(mdsc, s);
2684 			wake_up_session_caps(s, 1);
2685 		}
2686 	}
2687 
2688 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2689 		s = mdsc->sessions[i];
2690 		if (!s)
2691 			continue;
2692 		if (!ceph_mdsmap_is_laggy(newmap, i))
2693 			continue;
2694 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2695 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2696 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2697 			dout(" connecting to export targets of laggy mds%d\n",
2698 			     i);
2699 			__open_export_target_sessions(mdsc, s);
2700 		}
2701 	}
2702 }
2703 
2704 
2705 
2706 /*
2707  * leases
2708  */
2709 
2710 /*
2711  * caller must hold session s_mutex, dentry->d_lock
2712  */
2713 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2714 {
2715 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2716 
2717 	ceph_put_mds_session(di->lease_session);
2718 	di->lease_session = NULL;
2719 }
2720 
2721 static void handle_lease(struct ceph_mds_client *mdsc,
2722 			 struct ceph_mds_session *session,
2723 			 struct ceph_msg *msg)
2724 {
2725 	struct super_block *sb = mdsc->fsc->sb;
2726 	struct inode *inode;
2727 	struct dentry *parent, *dentry;
2728 	struct ceph_dentry_info *di;
2729 	int mds = session->s_mds;
2730 	struct ceph_mds_lease *h = msg->front.iov_base;
2731 	u32 seq;
2732 	struct ceph_vino vino;
2733 	struct qstr dname;
2734 	int release = 0;
2735 
2736 	dout("handle_lease from mds%d\n", mds);
2737 
2738 	/* decode */
2739 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2740 		goto bad;
2741 	vino.ino = le64_to_cpu(h->ino);
2742 	vino.snap = CEPH_NOSNAP;
2743 	seq = le32_to_cpu(h->seq);
2744 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2745 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2746 	if (dname.len != get_unaligned_le32(h+1))
2747 		goto bad;
2748 
2749 	mutex_lock(&session->s_mutex);
2750 	session->s_seq++;
2751 
2752 	/* lookup inode */
2753 	inode = ceph_find_inode(sb, vino);
2754 	dout("handle_lease %s, ino %llx %p %.*s\n",
2755 	     ceph_lease_op_name(h->action), vino.ino, inode,
2756 	     dname.len, dname.name);
2757 	if (inode == NULL) {
2758 		dout("handle_lease no inode %llx\n", vino.ino);
2759 		goto release;
2760 	}
2761 
2762 	/* dentry */
2763 	parent = d_find_alias(inode);
2764 	if (!parent) {
2765 		dout("no parent dentry on inode %p\n", inode);
2766 		WARN_ON(1);
2767 		goto release;  /* hrm... */
2768 	}
2769 	dname.hash = full_name_hash(dname.name, dname.len);
2770 	dentry = d_lookup(parent, &dname);
2771 	dput(parent);
2772 	if (!dentry)
2773 		goto release;
2774 
2775 	spin_lock(&dentry->d_lock);
2776 	di = ceph_dentry(dentry);
2777 	switch (h->action) {
2778 	case CEPH_MDS_LEASE_REVOKE:
2779 		if (di->lease_session == session) {
2780 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2781 				h->seq = cpu_to_le32(di->lease_seq);
2782 			__ceph_mdsc_drop_dentry_lease(dentry);
2783 		}
2784 		release = 1;
2785 		break;
2786 
2787 	case CEPH_MDS_LEASE_RENEW:
2788 		if (di->lease_session == session &&
2789 		    di->lease_gen == session->s_cap_gen &&
2790 		    di->lease_renew_from &&
2791 		    di->lease_renew_after == 0) {
2792 			unsigned long duration =
2793 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2794 
2795 			di->lease_seq = seq;
2796 			dentry->d_time = di->lease_renew_from + duration;
2797 			di->lease_renew_after = di->lease_renew_from +
2798 				(duration >> 1);
2799 			di->lease_renew_from = 0;
2800 		}
2801 		break;
2802 	}
2803 	spin_unlock(&dentry->d_lock);
2804 	dput(dentry);
2805 
2806 	if (!release)
2807 		goto out;
2808 
2809 release:
2810 	/* let's just reuse the same message */
2811 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2812 	ceph_msg_get(msg);
2813 	ceph_con_send(&session->s_con, msg);
2814 
2815 out:
2816 	iput(inode);
2817 	mutex_unlock(&session->s_mutex);
2818 	return;
2819 
2820 bad:
2821 	pr_err("corrupt lease message\n");
2822 	ceph_msg_dump(msg);
2823 }
2824 
2825 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2826 			      struct inode *inode,
2827 			      struct dentry *dentry, char action,
2828 			      u32 seq)
2829 {
2830 	struct ceph_msg *msg;
2831 	struct ceph_mds_lease *lease;
2832 	int len = sizeof(*lease) + sizeof(u32);
2833 	int dnamelen = 0;
2834 
2835 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2836 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2837 	dnamelen = dentry->d_name.len;
2838 	len += dnamelen;
2839 
2840 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2841 	if (!msg)
2842 		return;
2843 	lease = msg->front.iov_base;
2844 	lease->action = action;
2845 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2846 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2847 	lease->seq = cpu_to_le32(seq);
2848 	put_unaligned_le32(dnamelen, lease + 1);
2849 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2850 
2851 	/*
2852 	 * if this is a preemptive lease RELEASE, no need to
2853 	 * flush request stream, since the actual request will
2854 	 * soon follow.
2855 	 */
2856 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2857 
2858 	ceph_con_send(&session->s_con, msg);
2859 }
2860 
2861 /*
2862  * Preemptively release a lease we expect to invalidate anyway.
2863  * Pass @inode always, @dentry is optional.
2864  */
2865 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2866 			     struct dentry *dentry)
2867 {
2868 	struct ceph_dentry_info *di;
2869 	struct ceph_mds_session *session;
2870 	u32 seq;
2871 
2872 	BUG_ON(inode == NULL);
2873 	BUG_ON(dentry == NULL);
2874 
2875 	/* is dentry lease valid? */
2876 	spin_lock(&dentry->d_lock);
2877 	di = ceph_dentry(dentry);
2878 	if (!di || !di->lease_session ||
2879 	    di->lease_session->s_mds < 0 ||
2880 	    di->lease_gen != di->lease_session->s_cap_gen ||
2881 	    !time_before(jiffies, dentry->d_time)) {
2882 		dout("lease_release inode %p dentry %p -- "
2883 		     "no lease\n",
2884 		     inode, dentry);
2885 		spin_unlock(&dentry->d_lock);
2886 		return;
2887 	}
2888 
2889 	/* we do have a lease on this dentry; note mds and seq */
2890 	session = ceph_get_mds_session(di->lease_session);
2891 	seq = di->lease_seq;
2892 	__ceph_mdsc_drop_dentry_lease(dentry);
2893 	spin_unlock(&dentry->d_lock);
2894 
2895 	dout("lease_release inode %p dentry %p to mds%d\n",
2896 	     inode, dentry, session->s_mds);
2897 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2898 				 CEPH_MDS_LEASE_RELEASE, seq);
2899 	ceph_put_mds_session(session);
2900 }
2901 
2902 /*
2903  * drop all leases (and dentry refs) in preparation for umount
2904  */
2905 static void drop_leases(struct ceph_mds_client *mdsc)
2906 {
2907 	int i;
2908 
2909 	dout("drop_leases\n");
2910 	mutex_lock(&mdsc->mutex);
2911 	for (i = 0; i < mdsc->max_sessions; i++) {
2912 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2913 		if (!s)
2914 			continue;
2915 		mutex_unlock(&mdsc->mutex);
2916 		mutex_lock(&s->s_mutex);
2917 		mutex_unlock(&s->s_mutex);
2918 		ceph_put_mds_session(s);
2919 		mutex_lock(&mdsc->mutex);
2920 	}
2921 	mutex_unlock(&mdsc->mutex);
2922 }
2923 
2924 
2925 
2926 /*
2927  * delayed work -- periodically trim expired leases, renew caps with mds
2928  */
2929 static void schedule_delayed(struct ceph_mds_client *mdsc)
2930 {
2931 	int delay = 5;
2932 	unsigned hz = round_jiffies_relative(HZ * delay);
2933 	schedule_delayed_work(&mdsc->delayed_work, hz);
2934 }
2935 
2936 static void delayed_work(struct work_struct *work)
2937 {
2938 	int i;
2939 	struct ceph_mds_client *mdsc =
2940 		container_of(work, struct ceph_mds_client, delayed_work.work);
2941 	int renew_interval;
2942 	int renew_caps;
2943 
2944 	dout("mdsc delayed_work\n");
2945 	ceph_check_delayed_caps(mdsc);
2946 
2947 	mutex_lock(&mdsc->mutex);
2948 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2949 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2950 				   mdsc->last_renew_caps);
2951 	if (renew_caps)
2952 		mdsc->last_renew_caps = jiffies;
2953 
2954 	for (i = 0; i < mdsc->max_sessions; i++) {
2955 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2956 		if (s == NULL)
2957 			continue;
2958 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2959 			dout("resending session close request for mds%d\n",
2960 			     s->s_mds);
2961 			request_close_session(mdsc, s);
2962 			ceph_put_mds_session(s);
2963 			continue;
2964 		}
2965 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2966 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2967 				s->s_state = CEPH_MDS_SESSION_HUNG;
2968 				pr_info("mds%d hung\n", s->s_mds);
2969 			}
2970 		}
2971 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2972 			/* this mds is failed or recovering, just wait */
2973 			ceph_put_mds_session(s);
2974 			continue;
2975 		}
2976 		mutex_unlock(&mdsc->mutex);
2977 
2978 		mutex_lock(&s->s_mutex);
2979 		if (renew_caps)
2980 			send_renew_caps(mdsc, s);
2981 		else
2982 			ceph_con_keepalive(&s->s_con);
2983 		ceph_add_cap_releases(mdsc, s);
2984 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2985 		    s->s_state == CEPH_MDS_SESSION_HUNG)
2986 			ceph_send_cap_releases(mdsc, s);
2987 		mutex_unlock(&s->s_mutex);
2988 		ceph_put_mds_session(s);
2989 
2990 		mutex_lock(&mdsc->mutex);
2991 	}
2992 	mutex_unlock(&mdsc->mutex);
2993 
2994 	schedule_delayed(mdsc);
2995 }
2996 
2997 int ceph_mdsc_init(struct ceph_fs_client *fsc)
2998 
2999 {
3000 	struct ceph_mds_client *mdsc;
3001 
3002 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3003 	if (!mdsc)
3004 		return -ENOMEM;
3005 	mdsc->fsc = fsc;
3006 	fsc->mdsc = mdsc;
3007 	mutex_init(&mdsc->mutex);
3008 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3009 	if (mdsc->mdsmap == NULL)
3010 		return -ENOMEM;
3011 
3012 	init_completion(&mdsc->safe_umount_waiters);
3013 	init_waitqueue_head(&mdsc->session_close_wq);
3014 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3015 	mdsc->sessions = NULL;
3016 	mdsc->max_sessions = 0;
3017 	mdsc->stopping = 0;
3018 	init_rwsem(&mdsc->snap_rwsem);
3019 	mdsc->snap_realms = RB_ROOT;
3020 	INIT_LIST_HEAD(&mdsc->snap_empty);
3021 	spin_lock_init(&mdsc->snap_empty_lock);
3022 	mdsc->last_tid = 0;
3023 	mdsc->request_tree = RB_ROOT;
3024 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3025 	mdsc->last_renew_caps = jiffies;
3026 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3027 	spin_lock_init(&mdsc->cap_delay_lock);
3028 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3029 	spin_lock_init(&mdsc->snap_flush_lock);
3030 	mdsc->cap_flush_seq = 0;
3031 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3032 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3033 	mdsc->num_cap_flushing = 0;
3034 	spin_lock_init(&mdsc->cap_dirty_lock);
3035 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3036 	spin_lock_init(&mdsc->dentry_lru_lock);
3037 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3038 
3039 	ceph_caps_init(mdsc);
3040 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3041 
3042 	return 0;
3043 }
3044 
3045 /*
3046  * Wait for safe replies on open mds requests.  If we time out, drop
3047  * all requests from the tree to avoid dangling dentry refs.
3048  */
3049 static void wait_requests(struct ceph_mds_client *mdsc)
3050 {
3051 	struct ceph_mds_request *req;
3052 	struct ceph_fs_client *fsc = mdsc->fsc;
3053 
3054 	mutex_lock(&mdsc->mutex);
3055 	if (__get_oldest_req(mdsc)) {
3056 		mutex_unlock(&mdsc->mutex);
3057 
3058 		dout("wait_requests waiting for requests\n");
3059 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3060 				    fsc->client->options->mount_timeout * HZ);
3061 
3062 		/* tear down remaining requests */
3063 		mutex_lock(&mdsc->mutex);
3064 		while ((req = __get_oldest_req(mdsc))) {
3065 			dout("wait_requests timed out on tid %llu\n",
3066 			     req->r_tid);
3067 			__unregister_request(mdsc, req);
3068 		}
3069 	}
3070 	mutex_unlock(&mdsc->mutex);
3071 	dout("wait_requests done\n");
3072 }
3073 
3074 /*
3075  * called before mount is ro, and before dentries are torn down.
3076  * (hmm, does this still race with new lookups?)
3077  */
3078 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3079 {
3080 	dout("pre_umount\n");
3081 	mdsc->stopping = 1;
3082 
3083 	drop_leases(mdsc);
3084 	ceph_flush_dirty_caps(mdsc);
3085 	wait_requests(mdsc);
3086 
3087 	/*
3088 	 * wait for reply handlers to drop their request refs and
3089 	 * their inode/dcache refs
3090 	 */
3091 	ceph_msgr_flush();
3092 }
3093 
3094 /*
3095  * wait for all write mds requests to flush.
3096  */
3097 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3098 {
3099 	struct ceph_mds_request *req = NULL, *nextreq;
3100 	struct rb_node *n;
3101 
3102 	mutex_lock(&mdsc->mutex);
3103 	dout("wait_unsafe_requests want %lld\n", want_tid);
3104 restart:
3105 	req = __get_oldest_req(mdsc);
3106 	while (req && req->r_tid <= want_tid) {
3107 		/* find next request */
3108 		n = rb_next(&req->r_node);
3109 		if (n)
3110 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3111 		else
3112 			nextreq = NULL;
3113 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3114 			/* write op */
3115 			ceph_mdsc_get_request(req);
3116 			if (nextreq)
3117 				ceph_mdsc_get_request(nextreq);
3118 			mutex_unlock(&mdsc->mutex);
3119 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3120 			     req->r_tid, want_tid);
3121 			wait_for_completion(&req->r_safe_completion);
3122 			mutex_lock(&mdsc->mutex);
3123 			ceph_mdsc_put_request(req);
3124 			if (!nextreq)
3125 				break;  /* next dne before, so we're done! */
3126 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3127 				/* next request was removed from tree */
3128 				ceph_mdsc_put_request(nextreq);
3129 				goto restart;
3130 			}
3131 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3132 		}
3133 		req = nextreq;
3134 	}
3135 	mutex_unlock(&mdsc->mutex);
3136 	dout("wait_unsafe_requests done\n");
3137 }
3138 
3139 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3140 {
3141 	u64 want_tid, want_flush;
3142 
3143 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3144 		return;
3145 
3146 	dout("sync\n");
3147 	mutex_lock(&mdsc->mutex);
3148 	want_tid = mdsc->last_tid;
3149 	want_flush = mdsc->cap_flush_seq;
3150 	mutex_unlock(&mdsc->mutex);
3151 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3152 
3153 	ceph_flush_dirty_caps(mdsc);
3154 
3155 	wait_unsafe_requests(mdsc, want_tid);
3156 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3157 }
3158 
3159 /*
3160  * true if all sessions are closed, or we force unmount
3161  */
3162 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3163 {
3164 	int i, n = 0;
3165 
3166 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3167 		return true;
3168 
3169 	mutex_lock(&mdsc->mutex);
3170 	for (i = 0; i < mdsc->max_sessions; i++)
3171 		if (mdsc->sessions[i])
3172 			n++;
3173 	mutex_unlock(&mdsc->mutex);
3174 	return n == 0;
3175 }
3176 
3177 /*
3178  * called after sb is ro.
3179  */
3180 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3181 {
3182 	struct ceph_mds_session *session;
3183 	int i;
3184 	struct ceph_fs_client *fsc = mdsc->fsc;
3185 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3186 
3187 	dout("close_sessions\n");
3188 
3189 	/* close sessions */
3190 	mutex_lock(&mdsc->mutex);
3191 	for (i = 0; i < mdsc->max_sessions; i++) {
3192 		session = __ceph_lookup_mds_session(mdsc, i);
3193 		if (!session)
3194 			continue;
3195 		mutex_unlock(&mdsc->mutex);
3196 		mutex_lock(&session->s_mutex);
3197 		__close_session(mdsc, session);
3198 		mutex_unlock(&session->s_mutex);
3199 		ceph_put_mds_session(session);
3200 		mutex_lock(&mdsc->mutex);
3201 	}
3202 	mutex_unlock(&mdsc->mutex);
3203 
3204 	dout("waiting for sessions to close\n");
3205 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3206 			   timeout);
3207 
3208 	/* tear down remaining sessions */
3209 	mutex_lock(&mdsc->mutex);
3210 	for (i = 0; i < mdsc->max_sessions; i++) {
3211 		if (mdsc->sessions[i]) {
3212 			session = get_session(mdsc->sessions[i]);
3213 			__unregister_session(mdsc, session);
3214 			mutex_unlock(&mdsc->mutex);
3215 			mutex_lock(&session->s_mutex);
3216 			remove_session_caps(session);
3217 			mutex_unlock(&session->s_mutex);
3218 			ceph_put_mds_session(session);
3219 			mutex_lock(&mdsc->mutex);
3220 		}
3221 	}
3222 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3223 	mutex_unlock(&mdsc->mutex);
3224 
3225 	ceph_cleanup_empty_realms(mdsc);
3226 
3227 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3228 
3229 	dout("stopped\n");
3230 }
3231 
3232 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3233 {
3234 	dout("stop\n");
3235 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3236 	if (mdsc->mdsmap)
3237 		ceph_mdsmap_destroy(mdsc->mdsmap);
3238 	kfree(mdsc->sessions);
3239 	ceph_caps_finalize(mdsc);
3240 }
3241 
3242 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3243 {
3244 	struct ceph_mds_client *mdsc = fsc->mdsc;
3245 
3246 	dout("mdsc_destroy %p\n", mdsc);
3247 	ceph_mdsc_stop(mdsc);
3248 
3249 	/* flush out any connection work with references to us */
3250 	ceph_msgr_flush();
3251 
3252 	fsc->mdsc = NULL;
3253 	kfree(mdsc);
3254 	dout("mdsc_destroy %p done\n", mdsc);
3255 }
3256 
3257 
3258 /*
3259  * handle mds map update.
3260  */
3261 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3262 {
3263 	u32 epoch;
3264 	u32 maplen;
3265 	void *p = msg->front.iov_base;
3266 	void *end = p + msg->front.iov_len;
3267 	struct ceph_mdsmap *newmap, *oldmap;
3268 	struct ceph_fsid fsid;
3269 	int err = -EINVAL;
3270 
3271 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3272 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3273 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3274 		return;
3275 	epoch = ceph_decode_32(&p);
3276 	maplen = ceph_decode_32(&p);
3277 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3278 
3279 	/* do we need it? */
3280 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3281 	mutex_lock(&mdsc->mutex);
3282 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3283 		dout("handle_map epoch %u <= our %u\n",
3284 		     epoch, mdsc->mdsmap->m_epoch);
3285 		mutex_unlock(&mdsc->mutex);
3286 		return;
3287 	}
3288 
3289 	newmap = ceph_mdsmap_decode(&p, end);
3290 	if (IS_ERR(newmap)) {
3291 		err = PTR_ERR(newmap);
3292 		goto bad_unlock;
3293 	}
3294 
3295 	/* swap into place */
3296 	if (mdsc->mdsmap) {
3297 		oldmap = mdsc->mdsmap;
3298 		mdsc->mdsmap = newmap;
3299 		check_new_map(mdsc, newmap, oldmap);
3300 		ceph_mdsmap_destroy(oldmap);
3301 	} else {
3302 		mdsc->mdsmap = newmap;  /* first mds map */
3303 	}
3304 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3305 
3306 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3307 
3308 	mutex_unlock(&mdsc->mutex);
3309 	schedule_delayed(mdsc);
3310 	return;
3311 
3312 bad_unlock:
3313 	mutex_unlock(&mdsc->mutex);
3314 bad:
3315 	pr_err("error decoding mdsmap %d\n", err);
3316 	return;
3317 }
3318 
3319 static struct ceph_connection *con_get(struct ceph_connection *con)
3320 {
3321 	struct ceph_mds_session *s = con->private;
3322 
3323 	if (get_session(s)) {
3324 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3325 		return con;
3326 	}
3327 	dout("mdsc con_get %p FAIL\n", s);
3328 	return NULL;
3329 }
3330 
3331 static void con_put(struct ceph_connection *con)
3332 {
3333 	struct ceph_mds_session *s = con->private;
3334 
3335 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3336 	ceph_put_mds_session(s);
3337 }
3338 
3339 /*
3340  * if the client is unresponsive for long enough, the mds will kill
3341  * the session entirely.
3342  */
3343 static void peer_reset(struct ceph_connection *con)
3344 {
3345 	struct ceph_mds_session *s = con->private;
3346 	struct ceph_mds_client *mdsc = s->s_mdsc;
3347 
3348 	pr_warning("mds%d closed our session\n", s->s_mds);
3349 	send_mds_reconnect(mdsc, s);
3350 }
3351 
3352 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3353 {
3354 	struct ceph_mds_session *s = con->private;
3355 	struct ceph_mds_client *mdsc = s->s_mdsc;
3356 	int type = le16_to_cpu(msg->hdr.type);
3357 
3358 	mutex_lock(&mdsc->mutex);
3359 	if (__verify_registered_session(mdsc, s) < 0) {
3360 		mutex_unlock(&mdsc->mutex);
3361 		goto out;
3362 	}
3363 	mutex_unlock(&mdsc->mutex);
3364 
3365 	switch (type) {
3366 	case CEPH_MSG_MDS_MAP:
3367 		ceph_mdsc_handle_map(mdsc, msg);
3368 		break;
3369 	case CEPH_MSG_CLIENT_SESSION:
3370 		handle_session(s, msg);
3371 		break;
3372 	case CEPH_MSG_CLIENT_REPLY:
3373 		handle_reply(s, msg);
3374 		break;
3375 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3376 		handle_forward(mdsc, s, msg);
3377 		break;
3378 	case CEPH_MSG_CLIENT_CAPS:
3379 		ceph_handle_caps(s, msg);
3380 		break;
3381 	case CEPH_MSG_CLIENT_SNAP:
3382 		ceph_handle_snap(mdsc, s, msg);
3383 		break;
3384 	case CEPH_MSG_CLIENT_LEASE:
3385 		handle_lease(mdsc, s, msg);
3386 		break;
3387 
3388 	default:
3389 		pr_err("received unknown message type %d %s\n", type,
3390 		       ceph_msg_type_name(type));
3391 	}
3392 out:
3393 	ceph_msg_put(msg);
3394 }
3395 
3396 /*
3397  * authentication
3398  */
3399 static int get_authorizer(struct ceph_connection *con,
3400 			  void **buf, int *len, int *proto,
3401 			  void **reply_buf, int *reply_len, int force_new)
3402 {
3403 	struct ceph_mds_session *s = con->private;
3404 	struct ceph_mds_client *mdsc = s->s_mdsc;
3405 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3406 	int ret = 0;
3407 
3408 	if (force_new && s->s_authorizer) {
3409 		ac->ops->destroy_authorizer(ac, s->s_authorizer);
3410 		s->s_authorizer = NULL;
3411 	}
3412 	if (s->s_authorizer == NULL) {
3413 		if (ac->ops->create_authorizer) {
3414 			ret = ac->ops->create_authorizer(
3415 				ac, CEPH_ENTITY_TYPE_MDS,
3416 				&s->s_authorizer,
3417 				&s->s_authorizer_buf,
3418 				&s->s_authorizer_buf_len,
3419 				&s->s_authorizer_reply_buf,
3420 				&s->s_authorizer_reply_buf_len);
3421 			if (ret)
3422 				return ret;
3423 		}
3424 	}
3425 
3426 	*proto = ac->protocol;
3427 	*buf = s->s_authorizer_buf;
3428 	*len = s->s_authorizer_buf_len;
3429 	*reply_buf = s->s_authorizer_reply_buf;
3430 	*reply_len = s->s_authorizer_reply_buf_len;
3431 	return 0;
3432 }
3433 
3434 
3435 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3436 {
3437 	struct ceph_mds_session *s = con->private;
3438 	struct ceph_mds_client *mdsc = s->s_mdsc;
3439 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3440 
3441 	return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3442 }
3443 
3444 static int invalidate_authorizer(struct ceph_connection *con)
3445 {
3446 	struct ceph_mds_session *s = con->private;
3447 	struct ceph_mds_client *mdsc = s->s_mdsc;
3448 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3449 
3450 	if (ac->ops->invalidate_authorizer)
3451 		ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3452 
3453 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3454 }
3455 
3456 static const struct ceph_connection_operations mds_con_ops = {
3457 	.get = con_get,
3458 	.put = con_put,
3459 	.dispatch = dispatch,
3460 	.get_authorizer = get_authorizer,
3461 	.verify_authorizer_reply = verify_authorizer_reply,
3462 	.invalidate_authorizer = invalidate_authorizer,
3463 	.peer_reset = peer_reset,
3464 };
3465 
3466 /* eof */
3467